Actual source code: sfutils.c

  1: #include <petsc/private/sfimpl.h>
  2: #include <petsc/private/sectionimpl.h>

  4: /*@
  5:   PetscSFSetGraphLayout - Set a parallel star forest via global indices and a `PetscLayout`

  7:   Collective

  9:   Input Parameters:
 10: + sf        - star forest
 11: . layout    - `PetscLayout` defining the global space for roots
 12: . nleaves   - number of leaf vertices on the current process, each of these references a root on any process
 13: . ilocal    - locations of leaves in leafdata buffers, pass NULL for contiguous storage
 14: . localmode - copy mode for ilocal
 15: - gremote   - root vertices in global numbering corresponding to leaves in ilocal

 17:   Level: intermediate

 19:   Note:
 20:   Global indices must lie in [0, N) where N is the global size of layout.
 21:   Leaf indices in ilocal get sorted; this means the user-provided array gets sorted if localmode is `PETSC_OWN_POINTER`.

 23:   Developer Notes:
 24:   Local indices which are the identity permutation in the range [0,nleaves) are discarded as they
 25:   encode contiguous storage. In such case, if localmode is `PETSC_OWN_POINTER`, the memory is deallocated as it is not
 26:   needed

 28: .seealso: `PetscSF`, `PetscSFGetGraphLayout()`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
 29: @*/
 30: PetscErrorCode PetscSFSetGraphLayout(PetscSF sf, PetscLayout layout, PetscInt nleaves, PetscInt *ilocal, PetscCopyMode localmode, const PetscInt *gremote)
 31: {
 32:   const PetscInt *range;
 33:   PetscInt        i, nroots, ls = -1, ln = -1;
 34:   PetscMPIInt     lr = -1;
 35:   PetscSFNode    *remote;

 37:   PetscFunctionBegin;
 39:   PetscCall(PetscLayoutSetUp(layout));
 40:   PetscCall(PetscLayoutGetLocalSize(layout, &nroots));
 41:   PetscCall(PetscLayoutGetRanges(layout, &range));
 42:   PetscCall(PetscMalloc1(nleaves, &remote));
 43:   if (nleaves) ls = gremote[0] + 1;
 44:   for (i = 0; i < nleaves; i++) {
 45:     const PetscInt idx = gremote[i] - ls;
 46:     if (idx < 0 || idx >= ln) { /* short-circuit the search */
 47:       PetscCall(PetscLayoutFindOwnerIndex(layout, gremote[i], &lr, &remote[i].index));
 48:       remote[i].rank = lr;
 49:       ls             = range[lr];
 50:       ln             = range[lr + 1] - ls;
 51:     } else {
 52:       remote[i].rank  = lr;
 53:       remote[i].index = idx;
 54:     }
 55:   }
 56:   PetscCall(PetscSFSetGraph(sf, nroots, nleaves, ilocal, localmode, remote, PETSC_OWN_POINTER));
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: /*@C
 61:   PetscSFGetGraphLayout - Get the global indices and `PetscLayout` that describe this star forest

 63:   Collective

 65:   Input Parameter:
 66: . sf - star forest

 68:   Output Parameters:
 69: + layout  - `PetscLayout` defining the global space for roots
 70: . nleaves - number of leaf vertices on the current process, each of these references a root on any process
 71: . ilocal  - locations of leaves in leafdata buffers, or NULL for contiguous storage
 72: - gremote - root vertices in global numbering corresponding to leaves in ilocal

 74:   Level: intermediate

 76:   Notes:
 77:   The outputs are such that passing them as inputs to `PetscSFSetGraphLayout()` would lead to the same star forest.
 78:   The outputs layout and gremote are freshly created each time this function is called,
 79:   so they need to be freed by user and cannot be qualified as const.

 81: .seealso: `PetscSF`, `PetscSFSetGraphLayout()`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
 82: @*/
 83: PetscErrorCode PetscSFGetGraphLayout(PetscSF sf, PetscLayout *layout, PetscInt *nleaves, const PetscInt *ilocal[], PetscInt *gremote[])
 84: {
 85:   PetscInt           nr, nl;
 86:   const PetscSFNode *ir;
 87:   PetscLayout        lt;

 89:   PetscFunctionBegin;
 90:   PetscCall(PetscSFGetGraph(sf, &nr, &nl, ilocal, &ir));
 91:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)sf), nr, PETSC_DECIDE, 1, &lt));
 92:   if (gremote) {
 93:     PetscInt        i;
 94:     const PetscInt *range;
 95:     PetscInt       *gr;

 97:     PetscCall(PetscLayoutGetRanges(lt, &range));
 98:     PetscCall(PetscMalloc1(nl, &gr));
 99:     for (i = 0; i < nl; i++) gr[i] = range[ir[i].rank] + ir[i].index;
100:     *gremote = gr;
101:   }
102:   if (nleaves) *nleaves = nl;
103:   if (layout) *layout = lt;
104:   else PetscCall(PetscLayoutDestroy(&lt));
105:   PetscFunctionReturn(PETSC_SUCCESS);
106: }

108: /*@
109:   PetscSFSetGraphSection - Sets the `PetscSF` graph encoding the parallel dof overlap based upon the `PetscSection` describing the data layout.

111:   Input Parameters:
112: + sf            - The `PetscSF`
113: . localSection  - `PetscSection` describing the local data layout
114: - globalSection - `PetscSection` describing the global data layout

116:   Level: developer

118: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFSetGraphLayout()`
119: @*/
120: PetscErrorCode PetscSFSetGraphSection(PetscSF sf, PetscSection localSection, PetscSection globalSection)
121: {
122:   MPI_Comm        comm;
123:   PetscLayout     layout;
124:   const PetscInt *ranges;
125:   PetscInt       *local;
126:   PetscSFNode    *remote;
127:   PetscInt        pStart, pEnd, p, nroots, nleaves = 0, l;
128:   PetscMPIInt     size, rank;

130:   PetscFunctionBegin;

135:   PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
136:   PetscCallMPI(MPI_Comm_size(comm, &size));
137:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
138:   PetscCall(PetscSectionGetChart(globalSection, &pStart, &pEnd));
139:   PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &nroots));
140:   PetscCall(PetscLayoutCreate(comm, &layout));
141:   PetscCall(PetscLayoutSetBlockSize(layout, 1));
142:   PetscCall(PetscLayoutSetLocalSize(layout, nroots));
143:   PetscCall(PetscLayoutSetUp(layout));
144:   PetscCall(PetscLayoutGetRanges(layout, &ranges));
145:   for (p = pStart; p < pEnd; ++p) {
146:     PetscInt gdof, gcdof;

148:     PetscCall(PetscSectionGetDof(globalSection, p, &gdof));
149:     PetscCall(PetscSectionGetConstraintDof(globalSection, p, &gcdof));
150:     PetscCheck(gcdof <= (gdof < 0 ? -(gdof + 1) : gdof), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Point %" PetscInt_FMT " has %" PetscInt_FMT " constraints > %" PetscInt_FMT " dof", p, gcdof, (gdof < 0 ? -(gdof + 1) : gdof));
151:     nleaves += gdof < 0 ? -(gdof + 1) - gcdof : gdof - gcdof;
152:   }
153:   PetscCall(PetscMalloc1(nleaves, &local));
154:   PetscCall(PetscMalloc1(nleaves, &remote));
155:   for (p = pStart, l = 0; p < pEnd; ++p) {
156:     const PetscInt *cind;
157:     PetscInt        dof, cdof, off, gdof, gcdof, goff, gsize, d, c;

159:     PetscCall(PetscSectionGetDof(localSection, p, &dof));
160:     PetscCall(PetscSectionGetOffset(localSection, p, &off));
161:     PetscCall(PetscSectionGetConstraintDof(localSection, p, &cdof));
162:     PetscCall(PetscSectionGetConstraintIndices(localSection, p, &cind));
163:     PetscCall(PetscSectionGetDof(globalSection, p, &gdof));
164:     PetscCall(PetscSectionGetConstraintDof(globalSection, p, &gcdof));
165:     PetscCall(PetscSectionGetOffset(globalSection, p, &goff));
166:     if (!gdof) continue; /* Censored point */
167:     gsize = gdof < 0 ? -(gdof + 1) - gcdof : gdof - gcdof;
168:     if (gsize != dof - cdof) {
169:       PetscCheck(gsize == dof, comm, PETSC_ERR_ARG_WRONG, "Global dof %" PetscInt_FMT " for point %" PetscInt_FMT " is neither the constrained size %" PetscInt_FMT ", nor the unconstrained %" PetscInt_FMT, gsize, p, dof - cdof, dof);
170:       cdof = 0; /* Ignore constraints */
171:     }
172:     for (d = 0, c = 0; d < dof; ++d) {
173:       if ((c < cdof) && (cind[c] == d)) {
174:         ++c;
175:         continue;
176:       }
177:       local[l + d - c] = off + d;
178:     }
179:     PetscCheck(d - c == gsize, comm, PETSC_ERR_ARG_WRONG, "Point %" PetscInt_FMT ": Global dof %" PetscInt_FMT " != %" PetscInt_FMT " size - number of constraints", p, gsize, d - c);
180:     if (gdof < 0) {
181:       for (d = 0; d < gsize; ++d, ++l) {
182:         PetscInt offset = -(goff + 1) + d, r;

184:         PetscCall(PetscFindInt(offset, size + 1, ranges, &r));
185:         if (r < 0) r = -(r + 2);
186:         PetscCheck(!(r < 0) && !(r >= size), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Point %" PetscInt_FMT " mapped to invalid process %" PetscInt_FMT " (%" PetscInt_FMT ", %" PetscInt_FMT ")", p, r, gdof, goff);
187:         remote[l].rank  = r;
188:         remote[l].index = offset - ranges[r];
189:       }
190:     } else {
191:       for (d = 0; d < gsize; ++d, ++l) {
192:         remote[l].rank  = rank;
193:         remote[l].index = goff + d - ranges[rank];
194:       }
195:     }
196:   }
197:   PetscCheck(l == nleaves, comm, PETSC_ERR_PLIB, "Iteration error, l %" PetscInt_FMT " != nleaves %" PetscInt_FMT, l, nleaves);
198:   PetscCall(PetscLayoutDestroy(&layout));
199:   PetscCall(PetscSFSetGraph(sf, nroots, nleaves, local, PETSC_OWN_POINTER, remote, PETSC_OWN_POINTER));
200:   PetscFunctionReturn(PETSC_SUCCESS);
201: }

203: /*@C
204:   PetscSFDistributeSection - Create a new `PetscSection` reorganized, moving from the root to the leaves of the `PetscSF`

206:   Collective

208:   Input Parameters:
209: + sf          - The `PetscSF`
210: - rootSection - Section defined on root space

212:   Output Parameters:
213: + remoteOffsets - root offsets in leaf storage, or NULL
214: - leafSection   - Section defined on the leaf space

216:   Level: advanced

218:   Fortran Notes:
219:   In Fortran, use PetscSFDistributeSectionF90()

221: .seealso: `PetscSF`, `PetscSFCreate()`
222: @*/
223: PetscErrorCode PetscSFDistributeSection(PetscSF sf, PetscSection rootSection, PetscInt **remoteOffsets, PetscSection leafSection)
224: {
225:   PetscSF         embedSF;
226:   const PetscInt *indices;
227:   IS              selected;
228:   PetscInt        numFields, nroots, rpStart, rpEnd, lpStart = PETSC_MAX_INT, lpEnd = -1, f, c;
229:   PetscBool      *sub, hasc;

231:   PetscFunctionBegin;
232:   PetscCall(PetscLogEventBegin(PETSCSF_DistSect, sf, 0, 0, 0));
233:   PetscCall(PetscSectionGetNumFields(rootSection, &numFields));
234:   if (numFields) {
235:     IS perm;

237:     /* PetscSectionSetNumFields() calls PetscSectionReset(), which destroys
238:        leafSection->perm. To keep this permutation set by the user, we grab
239:        the reference before calling PetscSectionSetNumFields() and set it
240:        back after. */
241:     PetscCall(PetscSectionGetPermutation(leafSection, &perm));
242:     PetscCall(PetscObjectReference((PetscObject)perm));
243:     PetscCall(PetscSectionSetNumFields(leafSection, numFields));
244:     PetscCall(PetscSectionSetPermutation(leafSection, perm));
245:     PetscCall(ISDestroy(&perm));
246:   }
247:   PetscCall(PetscMalloc1(numFields + 2, &sub));
248:   sub[1] = rootSection->bc ? PETSC_TRUE : PETSC_FALSE;
249:   for (f = 0; f < numFields; ++f) {
250:     PetscSectionSym sym, dsym = NULL;
251:     const char     *name    = NULL;
252:     PetscInt        numComp = 0;

254:     sub[2 + f] = rootSection->field[f]->bc ? PETSC_TRUE : PETSC_FALSE;
255:     PetscCall(PetscSectionGetFieldComponents(rootSection, f, &numComp));
256:     PetscCall(PetscSectionGetFieldName(rootSection, f, &name));
257:     PetscCall(PetscSectionGetFieldSym(rootSection, f, &sym));
258:     if (sym) PetscCall(PetscSectionSymDistribute(sym, sf, &dsym));
259:     PetscCall(PetscSectionSetFieldComponents(leafSection, f, numComp));
260:     PetscCall(PetscSectionSetFieldName(leafSection, f, name));
261:     PetscCall(PetscSectionSetFieldSym(leafSection, f, dsym));
262:     PetscCall(PetscSectionSymDestroy(&dsym));
263:     for (c = 0; c < rootSection->numFieldComponents[f]; ++c) {
264:       PetscCall(PetscSectionGetComponentName(rootSection, f, c, &name));
265:       PetscCall(PetscSectionSetComponentName(leafSection, f, c, name));
266:     }
267:   }
268:   PetscCall(PetscSectionGetChart(rootSection, &rpStart, &rpEnd));
269:   PetscCall(PetscSFGetGraph(sf, &nroots, NULL, NULL, NULL));
270:   rpEnd = PetscMin(rpEnd, nroots);
271:   rpEnd = PetscMax(rpStart, rpEnd);
272:   /* see if we can avoid creating the embedded SF, since it can cost more than an allreduce */
273:   sub[0] = (PetscBool)(nroots != rpEnd - rpStart);
274:   PetscCall(MPIU_Allreduce(MPI_IN_PLACE, sub, 2 + numFields, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)sf)));
275:   if (sub[0]) {
276:     PetscCall(ISCreateStride(PETSC_COMM_SELF, rpEnd - rpStart, rpStart, 1, &selected));
277:     PetscCall(ISGetIndices(selected, &indices));
278:     PetscCall(PetscSFCreateEmbeddedRootSF(sf, rpEnd - rpStart, indices, &embedSF));
279:     PetscCall(ISRestoreIndices(selected, &indices));
280:     PetscCall(ISDestroy(&selected));
281:   } else {
282:     PetscCall(PetscObjectReference((PetscObject)sf));
283:     embedSF = sf;
284:   }
285:   PetscCall(PetscSFGetLeafRange(embedSF, &lpStart, &lpEnd));
286:   lpEnd++;

288:   PetscCall(PetscSectionSetChart(leafSection, lpStart, lpEnd));

290:   /* Constrained dof section */
291:   hasc = sub[1];
292:   for (f = 0; f < numFields; ++f) hasc = (PetscBool)(hasc || sub[2 + f]);

294:   /* Could fuse these at the cost of copies and extra allocation */
295:   PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->atlasDof, -rpStart), PetscSafePointerPlusOffset(leafSection->atlasDof, -lpStart), MPI_REPLACE));
296:   PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->atlasDof, -rpStart), PetscSafePointerPlusOffset(leafSection->atlasDof, -lpStart), MPI_REPLACE));
297:   if (sub[1]) {
298:     PetscCall(PetscSectionCheckConstraints_Private(rootSection));
299:     PetscCall(PetscSectionCheckConstraints_Private(leafSection));
300:     PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, &rootSection->bc->atlasDof[-rpStart], &leafSection->bc->atlasDof[-lpStart], MPI_REPLACE));
301:     PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, &rootSection->bc->atlasDof[-rpStart], &leafSection->bc->atlasDof[-lpStart], MPI_REPLACE));
302:   }
303:   for (f = 0; f < numFields; ++f) {
304:     PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->field[f]->atlasDof, -rpStart), PetscSafePointerPlusOffset(leafSection->field[f]->atlasDof, -lpStart), MPI_REPLACE));
305:     PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->field[f]->atlasDof, -rpStart), PetscSafePointerPlusOffset(leafSection->field[f]->atlasDof, -lpStart), MPI_REPLACE));
306:     if (sub[2 + f]) {
307:       PetscCall(PetscSectionCheckConstraints_Private(rootSection->field[f]));
308:       PetscCall(PetscSectionCheckConstraints_Private(leafSection->field[f]));
309:       PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, &rootSection->field[f]->bc->atlasDof[-rpStart], &leafSection->field[f]->bc->atlasDof[-lpStart], MPI_REPLACE));
310:       PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, &rootSection->field[f]->bc->atlasDof[-rpStart], &leafSection->field[f]->bc->atlasDof[-lpStart], MPI_REPLACE));
311:     }
312:   }
313:   if (remoteOffsets) {
314:     PetscCall(PetscMalloc1(lpEnd - lpStart, remoteOffsets));
315:     PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->atlasOff, -rpStart), PetscSafePointerPlusOffset(*remoteOffsets, -lpStart), MPI_REPLACE));
316:     PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->atlasOff, -rpStart), PetscSafePointerPlusOffset(*remoteOffsets, -lpStart), MPI_REPLACE));
317:   }
318:   PetscCall(PetscSectionInvalidateMaxDof_Internal(leafSection));
319:   PetscCall(PetscSectionSetUp(leafSection));
320:   if (hasc) { /* need to communicate bcIndices */
321:     PetscSF   bcSF;
322:     PetscInt *rOffBc;

324:     PetscCall(PetscMalloc1(lpEnd - lpStart, &rOffBc));
325:     if (sub[1]) {
326:       PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, &rootSection->bc->atlasOff[-rpStart], &rOffBc[-lpStart], MPI_REPLACE));
327:       PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, &rootSection->bc->atlasOff[-rpStart], &rOffBc[-lpStart], MPI_REPLACE));
328:       PetscCall(PetscSFCreateSectionSF(embedSF, rootSection->bc, rOffBc, leafSection->bc, &bcSF));
329:       PetscCall(PetscSFBcastBegin(bcSF, MPIU_INT, rootSection->bcIndices, leafSection->bcIndices, MPI_REPLACE));
330:       PetscCall(PetscSFBcastEnd(bcSF, MPIU_INT, rootSection->bcIndices, leafSection->bcIndices, MPI_REPLACE));
331:       PetscCall(PetscSFDestroy(&bcSF));
332:     }
333:     for (f = 0; f < numFields; ++f) {
334:       if (sub[2 + f]) {
335:         PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, &rootSection->field[f]->bc->atlasOff[-rpStart], &rOffBc[-lpStart], MPI_REPLACE));
336:         PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, &rootSection->field[f]->bc->atlasOff[-rpStart], &rOffBc[-lpStart], MPI_REPLACE));
337:         PetscCall(PetscSFCreateSectionSF(embedSF, rootSection->field[f]->bc, rOffBc, leafSection->field[f]->bc, &bcSF));
338:         PetscCall(PetscSFBcastBegin(bcSF, MPIU_INT, rootSection->field[f]->bcIndices, leafSection->field[f]->bcIndices, MPI_REPLACE));
339:         PetscCall(PetscSFBcastEnd(bcSF, MPIU_INT, rootSection->field[f]->bcIndices, leafSection->field[f]->bcIndices, MPI_REPLACE));
340:         PetscCall(PetscSFDestroy(&bcSF));
341:       }
342:     }
343:     PetscCall(PetscFree(rOffBc));
344:   }
345:   PetscCall(PetscSFDestroy(&embedSF));
346:   PetscCall(PetscFree(sub));
347:   PetscCall(PetscLogEventEnd(PETSCSF_DistSect, sf, 0, 0, 0));
348:   PetscFunctionReturn(PETSC_SUCCESS);
349: }

351: /*@C
352:   PetscSFCreateRemoteOffsets - Create offsets for point data on remote processes

354:   Collective

356:   Input Parameters:
357: + sf          - The `PetscSF`
358: . rootSection - Data layout of remote points for outgoing data (this is layout for SF roots)
359: - leafSection - Data layout of local points for incoming data  (this is layout for SF leaves)

361:   Output Parameter:
362: . remoteOffsets - Offsets for point data on remote processes (these are offsets from the root section), or NULL

364:   Level: developer

366:   Fortran Notes:
367:   In Fortran, use PetscSFCreateRemoteOffsetsF90()

369: .seealso: `PetscSF`, `PetscSFCreate()`
370: @*/
371: PetscErrorCode PetscSFCreateRemoteOffsets(PetscSF sf, PetscSection rootSection, PetscSection leafSection, PetscInt **remoteOffsets)
372: {
373:   PetscSF         embedSF;
374:   const PetscInt *indices;
375:   IS              selected;
376:   PetscInt        numRoots, rpStart = 0, rpEnd = 0, lpStart = 0, lpEnd = 0;

378:   PetscFunctionBegin;
379:   *remoteOffsets = NULL;
380:   PetscCall(PetscSFGetGraph(sf, &numRoots, NULL, NULL, NULL));
381:   if (numRoots < 0) PetscFunctionReturn(PETSC_SUCCESS);
382:   PetscCall(PetscLogEventBegin(PETSCSF_RemoteOff, sf, 0, 0, 0));
383:   PetscCall(PetscSectionGetChart(rootSection, &rpStart, &rpEnd));
384:   PetscCall(PetscSectionGetChart(leafSection, &lpStart, &lpEnd));
385:   PetscCall(ISCreateStride(PETSC_COMM_SELF, rpEnd - rpStart, rpStart, 1, &selected));
386:   PetscCall(ISGetIndices(selected, &indices));
387:   PetscCall(PetscSFCreateEmbeddedRootSF(sf, rpEnd - rpStart, indices, &embedSF));
388:   PetscCall(ISRestoreIndices(selected, &indices));
389:   PetscCall(ISDestroy(&selected));
390:   PetscCall(PetscCalloc1(lpEnd - lpStart, remoteOffsets));
391:   PetscCall(PetscSFBcastBegin(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->atlasOff, -rpStart), PetscSafePointerPlusOffset(*remoteOffsets, -lpStart), MPI_REPLACE));
392:   PetscCall(PetscSFBcastEnd(embedSF, MPIU_INT, PetscSafePointerPlusOffset(rootSection->atlasOff, -rpStart), PetscSafePointerPlusOffset(*remoteOffsets, -lpStart), MPI_REPLACE));
393:   PetscCall(PetscSFDestroy(&embedSF));
394:   PetscCall(PetscLogEventEnd(PETSCSF_RemoteOff, sf, 0, 0, 0));
395:   PetscFunctionReturn(PETSC_SUCCESS);
396: }

398: /*@C
399:   PetscSFCreateSectionSF - Create an expanded `PetscSF` of dofs, assuming the input `PetscSF` relates points

401:   Collective

403:   Input Parameters:
404: + sf            - The `PetscSF`
405: . rootSection   - Data layout of remote points for outgoing data (this is usually the serial section)
406: . remoteOffsets - Offsets for point data on remote processes (these are offsets from the root section), or NULL
407: - leafSection   - Data layout of local points for incoming data  (this is the distributed section)

409:   Output Parameter:
410: . sectionSF - The new `PetscSF`

412:   Level: advanced

414:   Notes:
415:   Either rootSection or remoteOffsets can be specified

417:   Fortran Notes:
418:   In Fortran, use PetscSFCreateSectionSFF90()

420: .seealso: `PetscSF`, `PetscSFCreate()`
421: @*/
422: PetscErrorCode PetscSFCreateSectionSF(PetscSF sf, PetscSection rootSection, PetscInt remoteOffsets[], PetscSection leafSection, PetscSF *sectionSF)
423: {
424:   MPI_Comm           comm;
425:   const PetscInt    *localPoints;
426:   const PetscSFNode *remotePoints;
427:   PetscInt           lpStart, lpEnd;
428:   PetscInt           numRoots, numSectionRoots, numPoints, numIndices = 0;
429:   PetscInt          *localIndices;
430:   PetscSFNode       *remoteIndices;
431:   PetscInt           i, ind;

433:   PetscFunctionBegin;
435:   PetscAssertPointer(rootSection, 2);
436:   /* Cannot check PetscAssertPointer(remoteOffsets,3) because it can be NULL if sf does not reference any points in leafSection */
437:   PetscAssertPointer(leafSection, 4);
438:   PetscAssertPointer(sectionSF, 5);
439:   PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
440:   PetscCall(PetscSFCreate(comm, sectionSF));
441:   PetscCall(PetscSectionGetChart(leafSection, &lpStart, &lpEnd));
442:   PetscCall(PetscSectionGetStorageSize(rootSection, &numSectionRoots));
443:   PetscCall(PetscSFGetGraph(sf, &numRoots, &numPoints, &localPoints, &remotePoints));
444:   if (numRoots < 0) PetscFunctionReturn(PETSC_SUCCESS);
445:   PetscCall(PetscLogEventBegin(PETSCSF_SectSF, sf, 0, 0, 0));
446:   for (i = 0; i < numPoints; ++i) {
447:     PetscInt localPoint = localPoints ? localPoints[i] : i;
448:     PetscInt dof;

450:     if ((localPoint >= lpStart) && (localPoint < lpEnd)) {
451:       PetscCall(PetscSectionGetDof(leafSection, localPoint, &dof));
452:       numIndices += dof < 0 ? 0 : dof;
453:     }
454:   }
455:   PetscCall(PetscMalloc1(numIndices, &localIndices));
456:   PetscCall(PetscMalloc1(numIndices, &remoteIndices));
457:   /* Create new index graph */
458:   for (i = 0, ind = 0; i < numPoints; ++i) {
459:     PetscInt localPoint = localPoints ? localPoints[i] : i;
460:     PetscInt rank       = remotePoints[i].rank;

462:     if ((localPoint >= lpStart) && (localPoint < lpEnd)) {
463:       PetscInt remoteOffset = remoteOffsets[localPoint - lpStart];
464:       PetscInt loff, dof, d;

466:       PetscCall(PetscSectionGetOffset(leafSection, localPoint, &loff));
467:       PetscCall(PetscSectionGetDof(leafSection, localPoint, &dof));
468:       for (d = 0; d < dof; ++d, ++ind) {
469:         localIndices[ind]        = loff + d;
470:         remoteIndices[ind].rank  = rank;
471:         remoteIndices[ind].index = remoteOffset + d;
472:       }
473:     }
474:   }
475:   PetscCheck(numIndices == ind, comm, PETSC_ERR_PLIB, "Inconsistency in indices, %" PetscInt_FMT " should be %" PetscInt_FMT, ind, numIndices);
476:   PetscCall(PetscSFSetGraph(*sectionSF, numSectionRoots, numIndices, localIndices, PETSC_OWN_POINTER, remoteIndices, PETSC_OWN_POINTER));
477:   PetscCall(PetscSFSetUp(*sectionSF));
478:   PetscCall(PetscLogEventEnd(PETSCSF_SectSF, sf, 0, 0, 0));
479:   PetscFunctionReturn(PETSC_SUCCESS);
480: }

482: /*@C
483:   PetscSFCreateFromLayouts - Creates a parallel star forest mapping two `PetscLayout` objects

485:   Collective

487:   Input Parameters:
488: + rmap - `PetscLayout` defining the global root space
489: - lmap - `PetscLayout` defining the global leaf space

491:   Output Parameter:
492: . sf - The parallel star forest

494:   Level: intermediate

496: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscLayoutCreate()`, `PetscSFSetGraphLayout()`
497: @*/
498: PetscErrorCode PetscSFCreateFromLayouts(PetscLayout rmap, PetscLayout lmap, PetscSF *sf)
499: {
500:   PetscInt     i, nroots, nleaves = 0;
501:   PetscInt     rN, lst, len;
502:   PetscMPIInt  owner = -1;
503:   PetscSFNode *remote;
504:   MPI_Comm     rcomm = rmap->comm;
505:   MPI_Comm     lcomm = lmap->comm;
506:   PetscMPIInt  flg;

508:   PetscFunctionBegin;
509:   PetscAssertPointer(sf, 3);
510:   PetscCheck(rmap->setupcalled, rcomm, PETSC_ERR_ARG_WRONGSTATE, "Root layout not setup");
511:   PetscCheck(lmap->setupcalled, lcomm, PETSC_ERR_ARG_WRONGSTATE, "Leaf layout not setup");
512:   PetscCallMPI(MPI_Comm_compare(rcomm, lcomm, &flg));
513:   PetscCheck(flg == MPI_CONGRUENT || flg == MPI_IDENT, rcomm, PETSC_ERR_SUP, "cannot map two layouts with non-matching communicators");
514:   PetscCall(PetscSFCreate(rcomm, sf));
515:   PetscCall(PetscLayoutGetLocalSize(rmap, &nroots));
516:   PetscCall(PetscLayoutGetSize(rmap, &rN));
517:   PetscCall(PetscLayoutGetRange(lmap, &lst, &len));
518:   PetscCall(PetscMalloc1(len - lst, &remote));
519:   for (i = lst; i < len && i < rN; i++) {
520:     if (owner < -1 || i >= rmap->range[owner + 1]) PetscCall(PetscLayoutFindOwner(rmap, i, &owner));
521:     remote[nleaves].rank  = owner;
522:     remote[nleaves].index = i - rmap->range[owner];
523:     nleaves++;
524:   }
525:   PetscCall(PetscSFSetGraph(*sf, nroots, nleaves, NULL, PETSC_OWN_POINTER, remote, PETSC_COPY_VALUES));
526:   PetscCall(PetscFree(remote));
527:   PetscFunctionReturn(PETSC_SUCCESS);
528: }

530: /* TODO: handle nooffprocentries like MatZeroRowsMapLocal_Private, since this code is the same */
531: PetscErrorCode PetscLayoutMapLocal(PetscLayout map, PetscInt N, const PetscInt idxs[], PetscInt *on, PetscInt **oidxs, PetscInt **ogidxs)
532: {
533:   PetscInt    *owners = map->range;
534:   PetscInt     n      = map->n;
535:   PetscSF      sf;
536:   PetscInt    *lidxs, *work = NULL;
537:   PetscSFNode *ridxs;
538:   PetscMPIInt  rank, p = 0;
539:   PetscInt     r, len  = 0;

541:   PetscFunctionBegin;
542:   if (on) *on = 0; /* squelch -Wmaybe-uninitialized */
543:   /* Create SF where leaves are input idxs and roots are owned idxs */
544:   PetscCallMPI(MPI_Comm_rank(map->comm, &rank));
545:   PetscCall(PetscMalloc1(n, &lidxs));
546:   for (r = 0; r < n; ++r) lidxs[r] = -1;
547:   PetscCall(PetscMalloc1(N, &ridxs));
548:   for (r = 0; r < N; ++r) {
549:     const PetscInt idx = idxs[r];
550:     PetscCheck(idx >= 0 && idx < map->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Index %" PetscInt_FMT " out of range [0,%" PetscInt_FMT ")", idx, map->N);
551:     if (idx < owners[p] || owners[p + 1] <= idx) { /* short-circuit the search if the last p owns this idx too */
552:       PetscCall(PetscLayoutFindOwner(map, idx, &p));
553:     }
554:     ridxs[r].rank  = p;
555:     ridxs[r].index = idxs[r] - owners[p];
556:   }
557:   PetscCall(PetscSFCreate(map->comm, &sf));
558:   PetscCall(PetscSFSetGraph(sf, n, N, NULL, PETSC_OWN_POINTER, ridxs, PETSC_OWN_POINTER));
559:   PetscCall(PetscSFReduceBegin(sf, MPIU_INT, (PetscInt *)idxs, lidxs, MPI_LOR));
560:   PetscCall(PetscSFReduceEnd(sf, MPIU_INT, (PetscInt *)idxs, lidxs, MPI_LOR));
561:   if (ogidxs) { /* communicate global idxs */
562:     PetscInt cum = 0, start, *work2;

564:     PetscCall(PetscMalloc1(n, &work));
565:     PetscCall(PetscCalloc1(N, &work2));
566:     for (r = 0; r < N; ++r)
567:       if (idxs[r] >= 0) cum++;
568:     PetscCallMPI(MPI_Scan(&cum, &start, 1, MPIU_INT, MPI_SUM, map->comm));
569:     start -= cum;
570:     cum = 0;
571:     for (r = 0; r < N; ++r)
572:       if (idxs[r] >= 0) work2[r] = start + cum++;
573:     PetscCall(PetscSFReduceBegin(sf, MPIU_INT, work2, work, MPI_REPLACE));
574:     PetscCall(PetscSFReduceEnd(sf, MPIU_INT, work2, work, MPI_REPLACE));
575:     PetscCall(PetscFree(work2));
576:   }
577:   PetscCall(PetscSFDestroy(&sf));
578:   /* Compress and put in indices */
579:   for (r = 0; r < n; ++r)
580:     if (lidxs[r] >= 0) {
581:       if (work) work[len] = work[r];
582:       lidxs[len++] = r;
583:     }
584:   if (on) *on = len;
585:   if (oidxs) *oidxs = lidxs;
586:   if (ogidxs) *ogidxs = work;
587:   PetscFunctionReturn(PETSC_SUCCESS);
588: }

590: /*@
591:   PetscSFCreateByMatchingIndices - Create `PetscSF` by matching root and leaf indices

593:   Collective

595:   Input Parameters:
596: + layout           - `PetscLayout` defining the global index space and the rank that brokers each index
597: . numRootIndices   - size of rootIndices
598: . rootIndices      - `PetscInt` array of global indices of which this process requests ownership
599: . rootLocalIndices - root local index permutation (NULL if no permutation)
600: . rootLocalOffset  - offset to be added to root local indices
601: . numLeafIndices   - size of leafIndices
602: . leafIndices      - `PetscInt` array of global indices with which this process requires data associated
603: . leafLocalIndices - leaf local index permutation (NULL if no permutation)
604: - leafLocalOffset  - offset to be added to leaf local indices

606:   Output Parameters:
607: + sfA - star forest representing the communication pattern from the layout space to the leaf space (NULL if not needed)
608: - sf  - star forest representing the communication pattern from the root space to the leaf space

610:   Level: advanced

612:   Example 1:
613: .vb
614:   rank             : 0            1            2
615:   rootIndices      : [1 0 2]      [3]          [3]
616:   rootLocalOffset  : 100          200          300
617:   layout           : [0 1]        [2]          [3]
618:   leafIndices      : [0]          [2]          [0 3]
619:   leafLocalOffset  : 400          500          600

621: would build the following PetscSF

623:   [0] 400 <- (0,101)
624:   [1] 500 <- (0,102)
625:   [2] 600 <- (0,101)
626:   [2] 601 <- (2,300)
627: .ve

629:   Example 2:
630: .vb
631:   rank             : 0               1               2
632:   rootIndices      : [1 0 2]         [3]             [3]
633:   rootLocalOffset  : 100             200             300
634:   layout           : [0 1]           [2]             [3]
635:   leafIndices      : rootIndices     rootIndices     rootIndices
636:   leafLocalOffset  : rootLocalOffset rootLocalOffset rootLocalOffset

638: would build the following PetscSF

640:   [1] 200 <- (2,300)
641: .ve

643:   Example 3:
644: .vb
645:   No process requests ownership of global index 1, but no process needs it.

647:   rank             : 0            1            2
648:   numRootIndices   : 2            1            1
649:   rootIndices      : [0 2]        [3]          [3]
650:   rootLocalOffset  : 100          200          300
651:   layout           : [0 1]        [2]          [3]
652:   numLeafIndices   : 1            1            2
653:   leafIndices      : [0]          [2]          [0 3]
654:   leafLocalOffset  : 400          500          600

656: would build the following PetscSF

658:   [0] 400 <- (0,100)
659:   [1] 500 <- (0,101)
660:   [2] 600 <- (0,100)
661:   [2] 601 <- (2,300)
662: .ve

664:   Notes:
665:   The layout parameter represents any partitioning of [0, N), where N is the total number of global indices, and its
666:   local size can be set to `PETSC_DECIDE`.

668:   If a global index x lies in the partition owned by process i, each process whose rootIndices contains x requests
669:   ownership of x and sends its own rank and the local index of x to process i.
670:   If multiple processes request ownership of x, the one with the highest rank is to own x.
671:   Process i then broadcasts the ownership information, so that each process whose leafIndices contains x knows the
672:   ownership information of x.
673:   The output sf is constructed by associating each leaf point to a root point in this way.

675:   Suppose there is point data ordered according to the global indices and partitioned according to the given layout.
676:   The optional output `PetscSF` object sfA can be used to push such data to leaf points.

678:   All indices in rootIndices and leafIndices must lie in the layout range. The union (over all processes) of rootIndices
679:   must cover that of leafIndices, but need not cover the entire layout.

681:   If (leafIndices, leafLocalIndices, leafLocalOffset) == (rootIndices, rootLocalIndices, rootLocalOffset), the output
682:   star forest is almost identity, so will only include non-trivial part of the map.

684:   Developer Notes:
685:   Current approach of a process of the highest rank gaining the ownership may cause load imbalance; consider using
686:   hash(rank, root_local_index) as the bid for the ownership determination.

688: .seealso: `PetscSF`, `PetscSFCreate()`
689: @*/
690: PetscErrorCode PetscSFCreateByMatchingIndices(PetscLayout layout, PetscInt numRootIndices, const PetscInt *rootIndices, const PetscInt *rootLocalIndices, PetscInt rootLocalOffset, PetscInt numLeafIndices, const PetscInt *leafIndices, const PetscInt *leafLocalIndices, PetscInt leafLocalOffset, PetscSF *sfA, PetscSF *sf)
691: {
692:   MPI_Comm     comm = layout->comm;
693:   PetscMPIInt  size, rank;
694:   PetscSF      sf1;
695:   PetscSFNode *owners, *buffer, *iremote;
696:   PetscInt    *ilocal, nleaves, N, n, i;
697: #if defined(PETSC_USE_DEBUG)
698:   PetscInt N1;
699: #endif
700:   PetscBool flag;

702:   PetscFunctionBegin;
703:   if (rootIndices) PetscAssertPointer(rootIndices, 3);
704:   if (rootLocalIndices) PetscAssertPointer(rootLocalIndices, 4);
705:   if (leafIndices) PetscAssertPointer(leafIndices, 7);
706:   if (leafLocalIndices) PetscAssertPointer(leafLocalIndices, 8);
707:   if (sfA) PetscAssertPointer(sfA, 10);
708:   PetscAssertPointer(sf, 11);
709:   PetscCheck(numRootIndices >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "numRootIndices (%" PetscInt_FMT ") must be non-negative", numRootIndices);
710:   PetscCheck(numLeafIndices >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "numLeafIndices (%" PetscInt_FMT ") must be non-negative", numLeafIndices);
711:   PetscCallMPI(MPI_Comm_size(comm, &size));
712:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
713:   PetscCall(PetscLayoutSetUp(layout));
714:   PetscCall(PetscLayoutGetSize(layout, &N));
715:   PetscCall(PetscLayoutGetLocalSize(layout, &n));
716:   flag = (PetscBool)(leafIndices == rootIndices);
717:   PetscCall(MPIU_Allreduce(MPI_IN_PLACE, &flag, 1, MPIU_BOOL, MPI_LAND, comm));
718:   PetscCheck(!flag || numLeafIndices == numRootIndices, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "leafIndices == rootIndices, but numLeafIndices (%" PetscInt_FMT ") != numRootIndices(%" PetscInt_FMT ")", numLeafIndices, numRootIndices);
719: #if defined(PETSC_USE_DEBUG)
720:   N1 = PETSC_MIN_INT;
721:   for (i = 0; i < numRootIndices; i++)
722:     if (rootIndices[i] > N1) N1 = rootIndices[i];
723:   PetscCall(MPIU_Allreduce(MPI_IN_PLACE, &N1, 1, MPIU_INT, MPI_MAX, comm));
724:   PetscCheck(N1 < N, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Max. root index (%" PetscInt_FMT ") out of layout range [0,%" PetscInt_FMT ")", N1, N);
725:   if (!flag) {
726:     N1 = PETSC_MIN_INT;
727:     for (i = 0; i < numLeafIndices; i++)
728:       if (leafIndices[i] > N1) N1 = leafIndices[i];
729:     PetscCall(MPIU_Allreduce(MPI_IN_PLACE, &N1, 1, MPIU_INT, MPI_MAX, comm));
730:     PetscCheck(N1 < N, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Max. leaf index (%" PetscInt_FMT ") out of layout range [0,%" PetscInt_FMT ")", N1, N);
731:   }
732: #endif
733:   /* Reduce: owners -> buffer */
734:   PetscCall(PetscMalloc1(n, &buffer));
735:   PetscCall(PetscSFCreate(comm, &sf1));
736:   PetscCall(PetscSFSetFromOptions(sf1));
737:   PetscCall(PetscSFSetGraphLayout(sf1, layout, numRootIndices, NULL, PETSC_OWN_POINTER, rootIndices));
738:   PetscCall(PetscMalloc1(numRootIndices, &owners));
739:   for (i = 0; i < numRootIndices; ++i) {
740:     owners[i].rank  = rank;
741:     owners[i].index = rootLocalOffset + (rootLocalIndices ? rootLocalIndices[i] : i);
742:   }
743:   for (i = 0; i < n; ++i) {
744:     buffer[i].index = -1;
745:     buffer[i].rank  = -1;
746:   }
747:   PetscCall(PetscSFReduceBegin(sf1, MPIU_2INT, owners, buffer, MPI_MAXLOC));
748:   PetscCall(PetscSFReduceEnd(sf1, MPIU_2INT, owners, buffer, MPI_MAXLOC));
749:   /* Bcast: buffer -> owners */
750:   if (!flag) {
751:     /* leafIndices is different from rootIndices */
752:     PetscCall(PetscFree(owners));
753:     PetscCall(PetscSFSetGraphLayout(sf1, layout, numLeafIndices, NULL, PETSC_OWN_POINTER, leafIndices));
754:     PetscCall(PetscMalloc1(numLeafIndices, &owners));
755:   }
756:   PetscCall(PetscSFBcastBegin(sf1, MPIU_2INT, buffer, owners, MPI_REPLACE));
757:   PetscCall(PetscSFBcastEnd(sf1, MPIU_2INT, buffer, owners, MPI_REPLACE));
758:   for (i = 0; i < numLeafIndices; ++i) PetscCheck(owners[i].rank >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Global point %" PetscInt_FMT " was unclaimed", leafIndices[i]);
759:   PetscCall(PetscFree(buffer));
760:   if (sfA) {
761:     *sfA = sf1;
762:   } else PetscCall(PetscSFDestroy(&sf1));
763:   /* Create sf */
764:   if (flag && rootLocalIndices == leafLocalIndices && leafLocalOffset == rootLocalOffset) {
765:     /* leaf space == root space */
766:     for (i = 0, nleaves = 0; i < numLeafIndices; ++i)
767:       if (owners[i].rank != rank) ++nleaves;
768:     PetscCall(PetscMalloc1(nleaves, &ilocal));
769:     PetscCall(PetscMalloc1(nleaves, &iremote));
770:     for (i = 0, nleaves = 0; i < numLeafIndices; ++i) {
771:       if (owners[i].rank != rank) {
772:         ilocal[nleaves]        = leafLocalOffset + i;
773:         iremote[nleaves].rank  = owners[i].rank;
774:         iremote[nleaves].index = owners[i].index;
775:         ++nleaves;
776:       }
777:     }
778:     PetscCall(PetscFree(owners));
779:   } else {
780:     nleaves = numLeafIndices;
781:     PetscCall(PetscMalloc1(nleaves, &ilocal));
782:     for (i = 0; i < nleaves; ++i) ilocal[i] = leafLocalOffset + (leafLocalIndices ? leafLocalIndices[i] : i);
783:     iremote = owners;
784:   }
785:   PetscCall(PetscSFCreate(comm, sf));
786:   PetscCall(PetscSFSetFromOptions(*sf));
787:   PetscCall(PetscSFSetGraph(*sf, rootLocalOffset + numRootIndices, nleaves, ilocal, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));
788:   PetscFunctionReturn(PETSC_SUCCESS);
789: }

791: /*@
792:   PetscSFMerge - append/merge indices of `sfb` into `sfa`, with preference for `sfb`

794:   Collective

796:   Input Parameters:
797: + sfa - default `PetscSF`
798: - sfb - additional edges to add/replace edges in sfa

800:   Output Parameter:
801: . merged - new `PetscSF` with combined edges

803:   Level: intermediate

805: .seealso: `PetscSFCompose()`
806: @*/
807: PetscErrorCode PetscSFMerge(PetscSF sfa, PetscSF sfb, PetscSF *merged)
808: {
809:   PetscInt maxleaf;

811:   PetscFunctionBegin;
814:   PetscCheckSameComm(sfa, 1, sfb, 2);
815:   PetscAssertPointer(merged, 3);
816:   {
817:     PetscInt aleaf, bleaf;
818:     PetscCall(PetscSFGetLeafRange(sfa, NULL, &aleaf));
819:     PetscCall(PetscSFGetLeafRange(sfb, NULL, &bleaf));
820:     maxleaf = PetscMax(aleaf, bleaf) + 1; // One more than the last index
821:   }
822:   PetscInt          *clocal, aroots, aleaves, broots, bleaves;
823:   PetscSFNode       *cremote;
824:   const PetscInt    *alocal, *blocal;
825:   const PetscSFNode *aremote, *bremote;
826:   PetscCall(PetscMalloc2(maxleaf, &clocal, maxleaf, &cremote));
827:   for (PetscInt i = 0; i < maxleaf; i++) clocal[i] = -1;
828:   PetscCall(PetscSFGetGraph(sfa, &aroots, &aleaves, &alocal, &aremote));
829:   PetscCall(PetscSFGetGraph(sfb, &broots, &bleaves, &blocal, &bremote));
830:   PetscCheck(aroots == broots, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Both sfa and sfb must have the same root space");
831:   for (PetscInt i = 0; i < aleaves; i++) {
832:     PetscInt a = alocal ? alocal[i] : i;
833:     clocal[a]  = a;
834:     cremote[a] = aremote[i];
835:   }
836:   for (PetscInt i = 0; i < bleaves; i++) {
837:     PetscInt b = blocal ? blocal[i] : i;
838:     clocal[b]  = b;
839:     cremote[b] = bremote[i];
840:   }
841:   PetscInt nleaves = 0;
842:   for (PetscInt i = 0; i < maxleaf; i++) {
843:     if (clocal[i] < 0) continue;
844:     clocal[nleaves]  = clocal[i];
845:     cremote[nleaves] = cremote[i];
846:     nleaves++;
847:   }
848:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sfa), merged));
849:   PetscCall(PetscSFSetGraph(*merged, aroots, nleaves, clocal, PETSC_COPY_VALUES, cremote, PETSC_COPY_VALUES));
850:   PetscCall(PetscFree2(clocal, cremote));
851:   PetscFunctionReturn(PETSC_SUCCESS);
852: }

854: /*@
855:   PetscSFCreateStridedSF - Create an `PetscSF` to communicate interleaved blocks of data

857:   Collective

859:   Input Parameters:
860: + sf  - star forest
861: . bs  - stride
862: . ldr - leading dimension of root space
863: - ldl - leading dimension of leaf space

865:   Output Parameter:
866: . vsf - the new `PetscSF`

868:   Level: intermediate

870:   Notes:
871:   This can be useful to perform communications on blocks of right-hand sides. For example, the calling sequence
872: .vb
873:   c_datatype *roots, *leaves;
874:   for i in [0,bs) do
875:     PetscSFBcastBegin(sf, mpi_datatype, roots + i*ldr, leaves + i*ldl, op)
876:     PetscSFBcastEnd(sf, mpi_datatype, roots + i*ldr, leaves + i*ldl, op)
877: .ve
878:   is equivalent to
879: .vb
880:   c_datatype *roots, *leaves;
881:   PetscSFCreateStridedSF(sf, bs, ldr, ldl, &vsf)
882:   PetscSFBcastBegin(vsf, mpi_datatype, roots, leaves, op)
883:   PetscSFBcastEnd(vsf, mpi_datatype, roots, leaves, op)
884: .ve

886:   Developer Notes:
887:   Should this functionality be handled with a new API instead of creating a new object?

889: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFSetGraph()`
890: @*/
891: PetscErrorCode PetscSFCreateStridedSF(PetscSF sf, PetscInt bs, PetscInt ldr, PetscInt ldl, PetscSF *vsf)
892: {
893:   PetscSF            rankssf;
894:   const PetscSFNode *iremote, *sfrremote;
895:   PetscSFNode       *viremote;
896:   const PetscInt    *ilocal;
897:   PetscInt          *vilocal = NULL, *ldrs;
898:   PetscInt           nranks, nr, nl, vnr, vnl, maxl;
899:   PetscMPIInt        rank;
900:   MPI_Comm           comm;
901:   PetscSFType        sftype;

903:   PetscFunctionBegin;
906:   PetscAssertPointer(vsf, 5);
907:   if (bs == 1) {
908:     PetscCall(PetscObjectReference((PetscObject)sf));
909:     *vsf = sf;
910:     PetscFunctionReturn(PETSC_SUCCESS);
911:   }
912:   PetscCall(PetscSFSetUp(sf));
913:   PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
914:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
915:   PetscCall(PetscSFGetGraph(sf, &nr, &nl, &ilocal, &iremote));
916:   PetscCall(PetscSFGetLeafRange(sf, NULL, &maxl));
917:   maxl += 1;
918:   if (ldl == PETSC_DECIDE) ldl = maxl;
919:   if (ldr == PETSC_DECIDE) ldr = nr;
920:   PetscCheck(ldr >= nr, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid leading dimension %" PetscInt_FMT " must be smaller than number of roots %" PetscInt_FMT, ldr, nr);
921:   PetscCheck(ldl >= maxl, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid leading dimension %" PetscInt_FMT " must be larger than leaf range %" PetscInt_FMT, ldl, maxl - 1);
922:   vnr = nr * bs;
923:   vnl = nl * bs;
924:   PetscCall(PetscMalloc1(vnl, &viremote));
925:   PetscCall(PetscMalloc1(vnl, &vilocal));

927:   /* Communicate root leading dimensions to leaf ranks */
928:   PetscCall(PetscSFGetRanksSF(sf, &rankssf));
929:   PetscCall(PetscSFGetGraph(rankssf, NULL, &nranks, NULL, &sfrremote));
930:   PetscCall(PetscMalloc1(nranks, &ldrs));
931:   PetscCall(PetscSFBcastBegin(rankssf, MPIU_INT, &ldr, ldrs, MPI_REPLACE));
932:   PetscCall(PetscSFBcastEnd(rankssf, MPIU_INT, &ldr, ldrs, MPI_REPLACE));

934:   for (PetscInt i = 0, rold = -1, lda = -1; i < nl; i++) {
935:     const PetscInt r  = iremote[i].rank;
936:     const PetscInt ii = iremote[i].index;

938:     if (r == rank) lda = ldr;
939:     else if (rold != r) {
940:       PetscInt j;

942:       for (j = 0; j < nranks; j++)
943:         if (sfrremote[j].rank == r) break;
944:       PetscCheck(j < nranks, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unable to locate neighbor rank %" PetscInt_FMT, r);
945:       lda = ldrs[j];
946:     }
947:     rold = r;
948:     for (PetscInt v = 0; v < bs; v++) {
949:       viremote[v * nl + i].rank  = r;
950:       viremote[v * nl + i].index = v * lda + ii;
951:       vilocal[v * nl + i]        = v * ldl + (ilocal ? ilocal[i] : i);
952:     }
953:   }
954:   PetscCall(PetscFree(ldrs));
955:   PetscCall(PetscSFCreate(comm, vsf));
956:   PetscCall(PetscSFGetType(sf, &sftype));
957:   PetscCall(PetscSFSetType(*vsf, sftype));
958:   PetscCall(PetscSFSetGraph(*vsf, vnr, vnl, vilocal, PETSC_OWN_POINTER, viremote, PETSC_OWN_POINTER));
959:   PetscFunctionReturn(PETSC_SUCCESS);
960: }