Actual source code: kdtree.c
1: #include <petsc.h>
2: #include <petscis.h>
3: #include <petsc/private/petscimpl.h>
5: // For accessing bitwise boolean values in are_handles_leaves
6: #define GREATER_BIT 0
7: #define LESS_EQUAL_BIT 1
9: typedef struct {
10: uint8_t axis;
11: char are_handles_leaves;
12: PetscReal split;
13: PetscCount greater_handle, less_equal_handle;
14: } KDStem;
16: typedef struct {
17: PetscInt count;
18: PetscCount indices_handle, coords_handle;
19: } KDLeaf;
21: struct _n_PetscKDTree {
22: PetscInt dim;
23: PetscInt max_bucket_size;
25: PetscBool is_root_leaf;
26: PetscCount root_handle;
28: PetscCount num_coords, num_leaves, num_stems, num_bucket_indices;
29: const PetscReal *coords, *coords_owned; // Only free owned on Destroy
30: KDLeaf *leaves;
31: KDStem *stems;
32: PetscCount *bucket_indices;
33: };
35: /*@C
36: PetscKDTreeDestroy - destroy a `PetscKDTree`
38: Not Collective, No Fortran Support
40: Input Parameters:
41: . tree - tree to destroy
43: Level: advanced
45: .seealso: `PetscKDTree`, `PetscKDTreeCreate()`
46: @*/
47: PetscErrorCode PetscKDTreeDestroy(PetscKDTree *tree)
48: {
49: PetscFunctionBeginUser;
50: if (*tree == NULL) PetscFunctionReturn(PETSC_SUCCESS);
51: PetscCall(PetscFree((*tree)->stems));
52: PetscCall(PetscFree((*tree)->leaves));
53: PetscCall(PetscFree((*tree)->bucket_indices));
54: PetscCall(PetscFree((*tree)->coords_owned));
55: PetscCall(PetscFree(*tree));
56: PetscFunctionReturn(PETSC_SUCCESS);
57: }
59: PetscLogEvent PetscKDTree_Build, PetscKDTree_Query;
60: static PetscErrorCode PetscKDTreeRegisterLogEvents(void)
61: {
62: static PetscBool is_initialized = PETSC_FALSE;
64: PetscFunctionBeginUser;
65: if (is_initialized) PetscFunctionReturn(PETSC_SUCCESS);
66: PetscCall(PetscLogEventRegister("KDTreeBuild", IS_CLASSID, &PetscKDTree_Build));
67: PetscCall(PetscLogEventRegister("KDTreeQuery", IS_CLASSID, &PetscKDTree_Query));
68: PetscFunctionReturn(PETSC_SUCCESS);
69: }
71: // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
72: static inline uint32_t RoundToNextPowerOfTwo(uint32_t v)
73: {
74: v--;
75: v |= v >> 1;
76: v |= v >> 2;
77: v |= v >> 4;
78: v |= v >> 8;
79: v |= v >> 16;
80: v++;
81: return v;
82: }
84: typedef struct {
85: uint8_t initial_axis;
86: PetscKDTree tree;
87: } *KDTreeSortContext;
89: // Sort nodes based on "superkey"
90: // See "Building a Balanced k-d Tree in O(kn log n) Time" https://jcgt.org/published/0004/01/03/
91: static inline int PetscKDTreeSortFunc(PetscCount left, PetscCount right, PetscKDTree tree, uint8_t axis)
92: {
93: const PetscReal *coords = tree->coords;
94: const PetscInt dim = tree->dim;
96: for (PetscInt i = 0; i < dim; i++) {
97: PetscReal diff = coords[left * dim + axis] - coords[right * dim + axis];
98: if (PetscUnlikely(diff == 0)) {
99: axis = (axis + 1) % dim;
100: continue;
101: } else return PetscSign(diff);
102: }
103: return 0; // All components are the same
104: }
106: static int PetscKDTreeTimSort(const void *l, const void *r, void *ctx)
107: {
108: KDTreeSortContext kd_ctx = (KDTreeSortContext)ctx;
109: return PetscKDTreeSortFunc(*(PetscCount *)l, *(PetscCount *)r, kd_ctx->tree, kd_ctx->initial_axis);
110: }
112: static PetscErrorCode PetscKDTreeVerifySortedIndices(PetscKDTree tree, PetscCount sorted_indices[], PetscCount temp[], PetscCount start, PetscCount end)
113: {
114: PetscCount num_coords = tree->num_coords, range_size = end - start, location;
115: PetscBool has_duplicates;
117: PetscFunctionBeginUser;
118: PetscCall(PetscArraycpy(temp, &sorted_indices[0 * num_coords + start], range_size));
119: PetscCall(PetscSortCount(range_size, temp));
120: PetscCall(PetscSortedCheckDupsCount(range_size, temp, &has_duplicates));
121: PetscCheck(has_duplicates == PETSC_FALSE, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Sorted indices must have unique entries, but found duplicates");
122: for (PetscInt d = 1; d < tree->dim; d++) {
123: for (PetscCount i = start; i < end; i++) {
124: PetscCall(PetscFindCount(sorted_indices[d * num_coords + i], range_size, temp, &location));
125: PetscCheck(location > -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Sorted indices are not consistent. Could not find %" PetscCount_FMT " from %" PetscInt_FMT " dimensional index in 0th dimension", sorted_indices[d * num_coords + i], d);
126: }
127: }
128: PetscFunctionReturn(PETSC_SUCCESS);
129: }
131: typedef struct {
132: PetscKDTree tree;
133: PetscSegBuffer stems, leaves, bucket_indices, bucket_coords;
134: PetscBool debug_build, copy_coords;
135: } *KDTreeBuild;
137: // The range is end exclusive, so [start,end).
138: static PetscErrorCode PetscKDTreeBuildStemAndLeaves(KDTreeBuild kd_build, PetscCount sorted_indices[], PetscCount temp[], PetscCount start, PetscCount end, PetscInt depth, PetscBool *is_node_leaf, PetscCount *node_handle)
139: {
140: PetscKDTree tree = kd_build->tree;
141: PetscInt dim = tree->dim;
143: PetscFunctionBeginUser;
144: PetscCheck(start <= end, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Start %" PetscCount_FMT " must be less than or equal to end %" PetscCount_FMT, start, end);
145: if (kd_build->debug_build) PetscCall(PetscKDTreeVerifySortedIndices(tree, sorted_indices, temp, start, end));
146: if (end - start <= tree->max_bucket_size) {
147: KDLeaf *leaf;
148: PetscCount *bucket_indices;
150: PetscCall(PetscSegBufferGetSize(kd_build->leaves, node_handle));
151: PetscCall(PetscSegBufferGet(kd_build->leaves, 1, &leaf));
152: PetscCall(PetscMemzero(leaf, sizeof(KDLeaf)));
153: *is_node_leaf = PETSC_TRUE;
155: PetscCall(PetscIntCast(end - start, &leaf->count));
156: PetscCall(PetscSegBufferGetSize(kd_build->bucket_indices, &leaf->indices_handle));
157: PetscCall(PetscSegBufferGet(kd_build->bucket_indices, leaf->count, &bucket_indices));
158: PetscCall(PetscArraycpy(bucket_indices, &sorted_indices[start], leaf->count));
159: if (kd_build->copy_coords) {
160: PetscReal *bucket_coords;
161: PetscCall(PetscSegBufferGetSize(kd_build->bucket_coords, &leaf->coords_handle));
162: PetscCall(PetscSegBufferGet(kd_build->bucket_coords, leaf->count * dim, &bucket_coords));
163: // Coords are saved in axis-major ordering for better vectorization
164: for (PetscCount i = 0; i < leaf->count; i++) {
165: for (PetscInt d = 0; d < dim; d++) bucket_coords[d * leaf->count + i] = tree->coords[bucket_indices[i] * dim + d];
166: }
167: } else leaf->coords_handle = -1;
168: } else {
169: KDStem *stem;
170: PetscCount num_coords = tree->num_coords;
171: uint8_t axis = (uint8_t)(depth % dim);
172: PetscBool is_greater_leaf, is_less_equal_leaf;
173: PetscCount median = start + PetscCeilInt64(end - start, 2) - 1, lower;
174: PetscCount median_idx = sorted_indices[median], medianp1_idx = sorted_indices[median + 1];
176: PetscCall(PetscSegBufferGetSize(kd_build->stems, node_handle));
177: PetscCall(PetscSegBufferGet(kd_build->stems, 1, &stem));
178: PetscCall(PetscMemzero(stem, sizeof(KDStem)));
179: *is_node_leaf = PETSC_FALSE;
181: stem->axis = axis;
182: // Place split halfway between the "boundary" nodes of the partitioning
183: stem->split = (tree->coords[tree->dim * median_idx + axis] + tree->coords[tree->dim * medianp1_idx + axis]) / 2;
184: PetscCall(PetscArraycpy(temp, &sorted_indices[0 * num_coords + start], end - start));
185: lower = median; // Set lower in case dim == 1
186: for (PetscInt d = 1; d < tree->dim; d++) {
187: PetscCount upper = median;
188: lower = start - 1;
189: for (PetscCount i = start; i < end; i++) {
190: // In case of duplicate coord point equal to the median coord point, limit lower partition to median, ensuring balanced tree
191: if (lower < median && PetscKDTreeSortFunc(sorted_indices[d * num_coords + i], median_idx, tree, axis) <= 0) {
192: sorted_indices[(d - 1) * num_coords + (++lower)] = sorted_indices[d * num_coords + i];
193: } else {
194: sorted_indices[(d - 1) * num_coords + (++upper)] = sorted_indices[d * num_coords + i];
195: }
196: }
197: PetscCheck(lower == median, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Partitioning into less_equal bin failed. Range upper bound should be %" PetscCount_FMT " but partitioning resulted in %" PetscCount_FMT, median, lower);
198: PetscCheck(upper == end - 1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Partitioning into greater bin failed. Range upper bound should be %" PetscCount_FMT " but partitioning resulted in %" PetscCount_FMT, upper, end - 1);
199: }
200: PetscCall(PetscArraycpy(&sorted_indices[(tree->dim - 1) * num_coords + start], temp, end - start));
202: PetscCall(PetscKDTreeBuildStemAndLeaves(kd_build, sorted_indices, temp, start, lower + 1, depth + 1, &is_less_equal_leaf, &stem->less_equal_handle));
203: if (is_less_equal_leaf) PetscCall(PetscBTSet(&stem->are_handles_leaves, LESS_EQUAL_BIT));
204: PetscCall(PetscKDTreeBuildStemAndLeaves(kd_build, sorted_indices, temp, lower + 1, end, depth + 1, &is_greater_leaf, &stem->greater_handle));
205: if (is_greater_leaf) PetscCall(PetscBTSet(&stem->are_handles_leaves, GREATER_BIT));
206: }
207: PetscFunctionReturn(PETSC_SUCCESS);
208: }
210: /*@C
211: PetscKDTreeCreate - create a `PetscKDTree`
213: Not Collective, No Fortran Support
215: Input Parameters:
216: + num_coords - number of coordinate points to build the `PetscKDTree`
217: . dim - the dimension of the coordinates
218: . coords - array of the coordinates, in point-major order
219: . copy_mode - behavior handling `coords`, `PETSC_COPY_VALUES` generally more performant
220: - max_bucket_size - maximum number of points stored at each leaf
222: Output Parameter:
223: . new_tree - the resulting `PetscKDTree`
225: Level: advanced
227: Note:
228: When `copy_mode == PETSC_COPY_VALUES`, the coordinates are copied and organized to optimize vectorization and cache-coherency.
229: It is recommended to run this way if the extra memory use is not a concern and it has very little impact on the `PetscKDTree` creation time.
231: Developer Note:
232: Building algorithm detailed in 'Building a Balanced k-d Tree in O(kn log n) Time' Brown, 2015
234: .seealso: `PetscKDTree`, `PetscKDTreeDestroy()`, `PetscKDTreeQueryPointsNearestNeighbor()`
235: @*/
236: PetscErrorCode PetscKDTreeCreate(PetscCount num_coords, PetscInt dim, const PetscReal coords[], PetscCopyMode copy_mode, PetscInt max_bucket_size, PetscKDTree *new_tree)
237: {
238: PetscKDTree tree;
239: PetscCount *sorted_indices, *temp;
241: PetscFunctionBeginUser;
242: PetscCall(PetscKDTreeRegisterLogEvents());
243: PetscCall(PetscLogEventBegin(PetscKDTree_Build, 0, 0, 0, 0));
244: PetscCheck(dim > 0, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "Dimension of PetscKDTree must be greater than 0, received %" PetscInt_FMT, dim);
245: PetscCheck(num_coords > -1, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "Number of coordinates may not be negative, received %" PetscCount_FMT, num_coords);
246: if (num_coords == 0) {
247: *new_tree = NULL;
248: PetscFunctionReturn(PETSC_SUCCESS);
249: }
250: PetscAssertPointer(coords, 3);
251: PetscAssertPointer(new_tree, 6);
252: PetscCall(PetscNew(&tree));
253: tree->dim = dim;
254: tree->max_bucket_size = max_bucket_size == PETSC_DECIDE ? 32 : max_bucket_size;
255: tree->num_coords = num_coords;
257: switch (copy_mode) {
258: case PETSC_OWN_POINTER:
259: tree->coords_owned = coords; // fallthrough
260: case PETSC_USE_POINTER:
261: tree->coords = coords;
262: break;
263: case PETSC_COPY_VALUES:
264: PetscCall(PetscMalloc1(num_coords * dim, &tree->coords_owned));
265: PetscCall(PetscArraycpy((PetscReal *)tree->coords_owned, coords, num_coords * dim));
266: tree->coords = tree->coords_owned;
267: break;
268: }
270: KDTreeSortContext kd_ctx;
271: PetscCall(PetscMalloc2(num_coords * dim, &sorted_indices, num_coords, &temp));
272: PetscCall(PetscNew(&kd_ctx));
273: kd_ctx->tree = tree;
274: for (PetscInt j = 0; j < dim; j++) {
275: for (PetscCount i = 0; i < num_coords; i++) sorted_indices[num_coords * j + i] = i;
276: kd_ctx->initial_axis = (uint8_t)j;
277: PetscCall(PetscTimSort((PetscInt)num_coords, &sorted_indices[num_coords * j], sizeof(*sorted_indices), PetscKDTreeTimSort, kd_ctx));
278: }
279: PetscCall(PetscFree(kd_ctx));
281: PetscInt num_leaves = (PetscInt)PetscCeilInt64(num_coords, tree->max_bucket_size);
282: PetscInt num_stems = RoundToNextPowerOfTwo((uint32_t)num_leaves);
283: KDTreeBuild kd_build;
284: PetscCall(PetscNew(&kd_build));
285: kd_build->tree = tree;
286: kd_build->copy_coords = copy_mode == PETSC_COPY_VALUES ? PETSC_TRUE : PETSC_FALSE;
287: PetscCall(PetscOptionsGetBool(NULL, NULL, "-kdtree_debug", &kd_build->debug_build, NULL));
288: PetscCall(PetscSegBufferCreate(sizeof(KDStem), num_stems, &kd_build->stems));
289: PetscCall(PetscSegBufferCreate(sizeof(KDLeaf), num_leaves, &kd_build->leaves));
290: PetscCall(PetscSegBufferCreate(sizeof(PetscCount), num_coords, &kd_build->bucket_indices));
291: if (kd_build->copy_coords) PetscCall(PetscSegBufferCreate(sizeof(PetscReal), num_coords * dim, &kd_build->bucket_coords));
293: PetscCall(PetscKDTreeBuildStemAndLeaves(kd_build, sorted_indices, temp, 0, num_coords, 0, &tree->is_root_leaf, &tree->root_handle));
295: PetscCall(PetscSegBufferGetSize(kd_build->stems, &tree->num_stems));
296: PetscCall(PetscSegBufferGetSize(kd_build->leaves, &tree->num_leaves));
297: PetscCall(PetscSegBufferGetSize(kd_build->bucket_indices, &tree->num_bucket_indices));
298: PetscCall(PetscSegBufferExtractAlloc(kd_build->stems, &tree->stems));
299: PetscCall(PetscSegBufferExtractAlloc(kd_build->leaves, &tree->leaves));
300: PetscCall(PetscSegBufferExtractAlloc(kd_build->bucket_indices, &tree->bucket_indices));
301: if (kd_build->copy_coords) {
302: PetscCall(PetscFree(tree->coords_owned));
303: PetscCall(PetscSegBufferExtractAlloc(kd_build->bucket_coords, &tree->coords_owned));
304: tree->coords = tree->coords_owned;
305: PetscCall(PetscSegBufferDestroy(&kd_build->bucket_coords));
306: }
307: PetscCall(PetscSegBufferDestroy(&kd_build->stems));
308: PetscCall(PetscSegBufferDestroy(&kd_build->leaves));
309: PetscCall(PetscSegBufferDestroy(&kd_build->bucket_indices));
310: PetscCall(PetscFree(kd_build));
311: PetscCall(PetscFree2(sorted_indices, temp));
312: *new_tree = tree;
313: PetscCall(PetscLogEventEnd(PetscKDTree_Build, 0, 0, 0, 0));
314: PetscFunctionReturn(PETSC_SUCCESS);
315: }
317: static inline PetscReal PetscSquareDistance(PetscInt dim, const PetscReal *PETSC_RESTRICT x, const PetscReal *PETSC_RESTRICT y)
318: {
319: PetscReal dist = 0;
320: for (PetscInt j = 0; j < dim; j++) dist += PetscSqr(x[j] - y[j]);
321: return dist;
322: }
324: static inline PetscErrorCode PetscKDTreeQueryLeaf(PetscKDTree tree, KDLeaf leaf, const PetscReal point[], PetscCount *index, PetscReal *distance_sqr)
325: {
326: PetscInt dim = tree->dim;
328: PetscFunctionBeginUser;
329: *distance_sqr = PETSC_MAX_REAL;
330: *index = -1;
331: for (PetscInt i = 0; i < leaf.count; i++) {
332: PetscCount point_index = tree->bucket_indices[leaf.indices_handle + i];
333: PetscReal dist = PetscSquareDistance(dim, point, &tree->coords[point_index * dim]);
334: if (dist < *distance_sqr) {
335: *distance_sqr = dist;
336: *index = point_index;
337: }
338: }
339: PetscFunctionReturn(PETSC_SUCCESS);
340: }
342: static inline PetscErrorCode PetscKDTreeQueryLeaf_CopyCoords(PetscKDTree tree, KDLeaf leaf, const PetscReal point[], PetscCount *index, PetscReal *distance_sqr)
343: {
344: PetscInt dim = tree->dim;
346: PetscFunctionBeginUser;
347: *distance_sqr = PETSC_MAX_REAL;
348: *index = -1;
349: for (PetscInt i = 0; i < leaf.count; i++) {
350: // Coord data saved in axis-major ordering for vectorization
351: PetscReal dist = 0.;
352: for (PetscInt d = 0; d < dim; d++) dist += PetscSqr(point[d] - tree->coords[leaf.coords_handle + d * leaf.count + i]);
353: if (dist < *distance_sqr) {
354: *distance_sqr = dist;
355: *index = tree->bucket_indices[leaf.indices_handle + i];
356: }
357: }
358: PetscFunctionReturn(PETSC_SUCCESS);
359: }
361: // Recursive point query from 'Algorithms for Fast Vector Quantization' by Sunil Arya and David Mount
362: // Variant also implemented in pykdtree
363: static PetscErrorCode PetscKDTreeQuery_Recurse(PetscKDTree tree, const PetscReal point[], PetscCount node_handle, char is_node_leaf, PetscReal offset[], PetscReal rd, PetscReal tol_sqr, PetscCount *index, PetscReal *dist_sqr)
364: {
365: PetscFunctionBeginUser;
366: if (*dist_sqr < tol_sqr) PetscFunctionReturn(PETSC_SUCCESS);
367: if (is_node_leaf) {
368: KDLeaf leaf = tree->leaves[node_handle];
369: PetscReal dist;
370: PetscCount point_index;
372: if (leaf.coords_handle > -1) PetscCall(PetscKDTreeQueryLeaf_CopyCoords(tree, leaf, point, &point_index, &dist));
373: else PetscCall(PetscKDTreeQueryLeaf(tree, leaf, point, &point_index, &dist));
374: if (dist < *dist_sqr) {
375: *dist_sqr = dist;
376: *index = point_index;
377: }
378: PetscFunctionReturn(PETSC_SUCCESS);
379: }
381: KDStem stem = tree->stems[node_handle];
382: PetscReal old_offset = offset[stem.axis], new_offset = point[stem.axis] - stem.split;
383: if (new_offset <= 0) {
384: PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.less_equal_handle, PetscBTLookup(&stem.are_handles_leaves, LESS_EQUAL_BIT), offset, rd, tol_sqr, index, dist_sqr));
385: rd += -PetscSqr(old_offset) + PetscSqr(new_offset);
386: if (rd < *dist_sqr) {
387: offset[stem.axis] = new_offset;
388: PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.greater_handle, PetscBTLookup(&stem.are_handles_leaves, GREATER_BIT), offset, rd, tol_sqr, index, dist_sqr));
389: offset[stem.axis] = old_offset;
390: }
391: } else {
392: PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.greater_handle, PetscBTLookup(&stem.are_handles_leaves, GREATER_BIT), offset, rd, tol_sqr, index, dist_sqr));
393: rd += -PetscSqr(old_offset) + PetscSqr(new_offset);
394: if (rd < *dist_sqr) {
395: offset[stem.axis] = new_offset;
396: PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.less_equal_handle, PetscBTLookup(&stem.are_handles_leaves, LESS_EQUAL_BIT), offset, rd, tol_sqr, index, dist_sqr));
397: offset[stem.axis] = old_offset;
398: }
399: }
400: PetscFunctionReturn(PETSC_SUCCESS);
401: }
403: /*@C
404: PetscKDTreeQueryPointsNearestNeighbor - find the nearest neighbor in a `PetscKDTree`
406: Not Collective, No Fortran Support
408: Input Parameters:
409: + tree - tree to query
410: . num_points - number of points to query
411: . points - array of the coordinates, in point-major order
412: - tolerance - tolerance for nearest neighbor
414: Output Parameters:
415: + indices - indices of the nearest neighbor to the query point
416: - distances - distance between the queried point and the nearest neighbor
418: Level: advanced
420: Notes:
421: When traversing the tree, if a point has been found to be closer than the `tolerance`, the function short circuits and doesn't check for any closer points.
423: The `indices` and `distances` arrays should be at least of size `num_points`.
425: .seealso: `PetscKDTree`, `PetscKDTreeCreate()`
426: @*/
427: PetscErrorCode PetscKDTreeQueryPointsNearestNeighbor(PetscKDTree tree, PetscCount num_points, const PetscReal points[], PetscReal tolerance, PetscCount indices[], PetscReal distances[])
428: {
429: PetscReal *offsets, rd;
431: PetscFunctionBeginUser;
432: PetscCall(PetscLogEventBegin(PetscKDTree_Query, 0, 0, 0, 0));
433: if (tree == NULL) {
434: PetscCheck(num_points == 0, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "num_points may only be zero, if tree is NULL");
435: PetscFunctionReturn(PETSC_SUCCESS);
436: }
437: PetscAssertPointer(points, 3);
438: PetscAssertPointer(indices, 5);
439: PetscAssertPointer(distances, 6);
440: PetscCall(PetscCalloc1(tree->dim, &offsets));
442: for (PetscCount p = 0; p < num_points; p++) {
443: rd = 0.;
444: distances[p] = PETSC_MAX_REAL;
445: indices[p] = -1;
446: PetscCall(PetscKDTreeQuery_Recurse(tree, &points[p * tree->dim], tree->root_handle, (char)tree->is_root_leaf, offsets, rd, PetscSqr(tolerance), &indices[p], &distances[p]));
447: distances[p] = PetscSqrtReal(distances[p]);
448: }
449: PetscCall(PetscFree(offsets));
450: PetscCall(PetscLogEventEnd(PetscKDTree_Query, 0, 0, 0, 0));
451: PetscFunctionReturn(PETSC_SUCCESS);
452: }
454: /*@C
455: PetscKDTreeView - view a `PetscKDTree`
457: Not Collective, No Fortran Support
459: Input Parameters:
460: + tree - tree to view
461: - viewer - visualization context
463: Level: advanced
465: .seealso: `PetscKDTree`, `PetscKDTreeCreate()`, `PetscViewer`
466: @*/
467: PetscErrorCode PetscKDTreeView(PetscKDTree tree, PetscViewer viewer)
468: {
469: PetscFunctionBeginUser;
471: else PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_SELF, &viewer));
472: if (tree == NULL) PetscFunctionReturn(PETSC_SUCCESS);
474: PetscCall(PetscViewerASCIIPrintf(viewer, "KDTree:\n"));
475: PetscCall(PetscViewerASCIIPushTab(viewer)); // KDTree:
476: PetscCall(PetscViewerASCIIPrintf(viewer, "Stems:\n"));
477: PetscCall(PetscViewerASCIIPushTab(viewer)); // Stems:
478: for (PetscCount i = 0; i < tree->num_stems; i++) {
479: KDStem stem = tree->stems[i];
480: PetscCall(PetscViewerASCIIPrintf(viewer, "Stem %" PetscCount_FMT ": Axis=%" PetscInt_FMT " Split=%g Greater_%s=%" PetscCount_FMT " Lesser_Equal_%s=%" PetscCount_FMT "\n", i, (PetscInt)stem.axis, (double)stem.split, PetscBTLookup(&stem.are_handles_leaves, GREATER_BIT) ? "Leaf" : "Stem",
481: stem.greater_handle, PetscBTLookup(&stem.are_handles_leaves, LESS_EQUAL_BIT) ? "Leaf" : "Stem", stem.less_equal_handle));
482: }
483: PetscCall(PetscViewerASCIIPopTab(viewer)); // Stems:
485: PetscCall(PetscViewerASCIIPrintf(viewer, "Leaves:\n"));
486: PetscCall(PetscViewerASCIIPushTab(viewer)); // Leaves:
487: for (PetscCount i = 0; i < tree->num_leaves; i++) {
488: KDLeaf leaf = tree->leaves[i];
489: PetscCall(PetscViewerASCIIPrintf(viewer, "Leaf %" PetscCount_FMT ": Count=%" PetscInt_FMT, i, leaf.count));
490: PetscCall(PetscViewerASCIIPushTab(viewer)); // Coords:
491: for (PetscInt j = 0; j < leaf.count; j++) {
492: PetscInt tabs;
493: PetscCount bucket_index = tree->bucket_indices[leaf.indices_handle + j];
494: PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
495: PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscCount_FMT ": ", bucket_index));
497: PetscCall(PetscViewerASCIIGetTab(viewer, &tabs));
498: PetscCall(PetscViewerASCIISetTab(viewer, 0));
499: if (leaf.coords_handle > -1) {
500: for (PetscInt k = 0; k < tree->dim; k++) PetscCall(PetscViewerASCIIPrintf(viewer, "%g ", (double)tree->coords[leaf.coords_handle + leaf.count * k + j]));
501: PetscCall(PetscViewerASCIIPrintf(viewer, " (stored at leaf)"));
502: } else {
503: for (PetscInt k = 0; k < tree->dim; k++) PetscCall(PetscViewerASCIIPrintf(viewer, "%g ", (double)tree->coords[bucket_index * tree->dim + k]));
504: }
505: PetscCall(PetscViewerASCIISetTab(viewer, tabs));
506: }
507: PetscCall(PetscViewerASCIIPopTab(viewer)); // Coords:
508: PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
509: }
510: PetscCall(PetscViewerASCIIPopTab(viewer)); // Leaves:
511: PetscCall(PetscViewerASCIIPopTab(viewer)); // KDTree:
512: PetscFunctionReturn(PETSC_SUCCESS);
513: }