Actual source code: kdtree.c

  1: #include <petsc.h>
  2: #include <petscis.h>
  3: #include <petsc/private/petscimpl.h>

  5: // For accessing bitwise boolean values in are_handles_leaves
  6: #define GREATER_BIT    0
  7: #define LESS_EQUAL_BIT 1

  9: typedef struct {
 10:   uint8_t    axis;
 11:   char       are_handles_leaves;
 12:   PetscReal  split;
 13:   PetscCount greater_handle, less_equal_handle;
 14: } KDStem;

 16: typedef struct {
 17:   PetscInt   count;
 18:   PetscCount indices_handle, coords_handle;
 19: } KDLeaf;

 21: struct _n_PetscKDTree {
 22:   PetscInt dim;
 23:   PetscInt max_bucket_size;

 25:   PetscBool  is_root_leaf;
 26:   PetscCount root_handle;

 28:   PetscCount       num_coords, num_leaves, num_stems, num_bucket_indices;
 29:   const PetscReal *coords, *coords_owned; // Only free owned on Destroy
 30:   KDLeaf          *leaves;
 31:   KDStem          *stems;
 32:   PetscCount      *bucket_indices;
 33: };

 35: /*@C
 36:   PetscKDTreeDestroy - destroy a `PetscKDTree`

 38:   Not Collective, No Fortran Support

 40:   Input Parameters:
 41: . tree - tree to destroy

 43:   Level: advanced

 45: .seealso: `PetscKDTree`, `PetscKDTreeCreate()`
 46: @*/
 47: PetscErrorCode PetscKDTreeDestroy(PetscKDTree *tree)
 48: {
 49:   PetscFunctionBeginUser;
 50:   if (*tree == NULL) PetscFunctionReturn(PETSC_SUCCESS);
 51:   PetscCall(PetscFree((*tree)->stems));
 52:   PetscCall(PetscFree((*tree)->leaves));
 53:   PetscCall(PetscFree((*tree)->bucket_indices));
 54:   PetscCall(PetscFree((*tree)->coords_owned));
 55:   PetscCall(PetscFree(*tree));
 56:   PetscFunctionReturn(PETSC_SUCCESS);
 57: }

 59: PetscLogEvent         PetscKDTree_Build, PetscKDTree_Query;
 60: static PetscErrorCode PetscKDTreeRegisterLogEvents(void)
 61: {
 62:   static PetscBool is_initialized = PETSC_FALSE;

 64:   PetscFunctionBeginUser;
 65:   if (is_initialized) PetscFunctionReturn(PETSC_SUCCESS);
 66:   PetscCall(PetscLogEventRegister("KDTreeBuild", IS_CLASSID, &PetscKDTree_Build));
 67:   PetscCall(PetscLogEventRegister("KDTreeQuery", IS_CLASSID, &PetscKDTree_Query));
 68:   PetscFunctionReturn(PETSC_SUCCESS);
 69: }

 71: // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
 72: static inline uint32_t RoundToNextPowerOfTwo(uint32_t v)
 73: {
 74:   v--;
 75:   v |= v >> 1;
 76:   v |= v >> 2;
 77:   v |= v >> 4;
 78:   v |= v >> 8;
 79:   v |= v >> 16;
 80:   v++;
 81:   return v;
 82: }

 84: typedef struct {
 85:   uint8_t     initial_axis;
 86:   PetscKDTree tree;
 87: } *KDTreeSortContext;

 89: // Sort nodes based on "superkey"
 90: // See "Building a Balanced k-d Tree in O(kn log n) Time" https://jcgt.org/published/0004/01/03/
 91: static inline int PetscKDTreeSortFunc(PetscCount left, PetscCount right, PetscKDTree tree, uint8_t axis)
 92: {
 93:   const PetscReal *coords = tree->coords;
 94:   const PetscInt   dim    = tree->dim;

 96:   for (PetscInt i = 0; i < dim; i++) {
 97:     PetscReal diff = coords[left * dim + axis] - coords[right * dim + axis];
 98:     if (PetscUnlikely(diff == 0)) {
 99:       axis = (axis + 1) % dim;
100:       continue;
101:     } else return PetscSign(diff);
102:   }
103:   return 0; // All components are the same
104: }

106: static int PetscKDTreeTimSort(const void *l, const void *r, void *ctx)
107: {
108:   KDTreeSortContext kd_ctx = (KDTreeSortContext)ctx;
109:   return PetscKDTreeSortFunc(*(PetscCount *)l, *(PetscCount *)r, kd_ctx->tree, kd_ctx->initial_axis);
110: }

112: static PetscErrorCode PetscKDTreeVerifySortedIndices(PetscKDTree tree, PetscCount sorted_indices[], PetscCount temp[], PetscCount start, PetscCount end)
113: {
114:   PetscCount num_coords = tree->num_coords, range_size = end - start, location;
115:   PetscBool  has_duplicates;

117:   PetscFunctionBeginUser;
118:   PetscCall(PetscArraycpy(temp, &sorted_indices[0 * num_coords + start], range_size));
119:   PetscCall(PetscSortCount(range_size, temp));
120:   PetscCall(PetscSortedCheckDupsCount(range_size, temp, &has_duplicates));
121:   PetscCheck(has_duplicates == PETSC_FALSE, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Sorted indices must have unique entries, but found duplicates");
122:   for (PetscInt d = 1; d < tree->dim; d++) {
123:     for (PetscCount i = start; i < end; i++) {
124:       PetscCall(PetscFindCount(sorted_indices[d * num_coords + i], range_size, temp, &location));
125:       PetscCheck(location > -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Sorted indices are not consistent. Could not find %" PetscCount_FMT " from %" PetscInt_FMT " dimensional index in 0th dimension", sorted_indices[d * num_coords + i], d);
126:     }
127:   }
128:   PetscFunctionReturn(PETSC_SUCCESS);
129: }

131: typedef struct {
132:   PetscKDTree    tree;
133:   PetscSegBuffer stems, leaves, bucket_indices, bucket_coords;
134:   PetscBool      debug_build, copy_coords;
135: } *KDTreeBuild;

137: // The range is end exclusive, so [start,end).
138: static PetscErrorCode PetscKDTreeBuildStemAndLeaves(KDTreeBuild kd_build, PetscCount sorted_indices[], PetscCount temp[], PetscCount start, PetscCount end, PetscInt depth, PetscBool *is_node_leaf, PetscCount *node_handle)
139: {
140:   PetscKDTree tree = kd_build->tree;
141:   PetscInt    dim  = tree->dim;

143:   PetscFunctionBeginUser;
144:   PetscCheck(start <= end, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Start %" PetscCount_FMT " must be less than or equal to end %" PetscCount_FMT, start, end);
145:   if (kd_build->debug_build) PetscCall(PetscKDTreeVerifySortedIndices(tree, sorted_indices, temp, start, end));
146:   if (end - start <= tree->max_bucket_size) {
147:     KDLeaf     *leaf;
148:     PetscCount *bucket_indices;

150:     PetscCall(PetscSegBufferGetSize(kd_build->leaves, node_handle));
151:     PetscCall(PetscSegBufferGet(kd_build->leaves, 1, &leaf));
152:     PetscCall(PetscMemzero(leaf, sizeof(KDLeaf)));
153:     *is_node_leaf = PETSC_TRUE;

155:     PetscCall(PetscIntCast(end - start, &leaf->count));
156:     PetscCall(PetscSegBufferGetSize(kd_build->bucket_indices, &leaf->indices_handle));
157:     PetscCall(PetscSegBufferGet(kd_build->bucket_indices, leaf->count, &bucket_indices));
158:     PetscCall(PetscArraycpy(bucket_indices, &sorted_indices[start], leaf->count));
159:     if (kd_build->copy_coords) {
160:       PetscReal *bucket_coords;
161:       PetscCall(PetscSegBufferGetSize(kd_build->bucket_coords, &leaf->coords_handle));
162:       PetscCall(PetscSegBufferGet(kd_build->bucket_coords, leaf->count * dim, &bucket_coords));
163:       // Coords are saved in axis-major ordering for better vectorization
164:       for (PetscCount i = 0; i < leaf->count; i++) {
165:         for (PetscInt d = 0; d < dim; d++) bucket_coords[d * leaf->count + i] = tree->coords[bucket_indices[i] * dim + d];
166:       }
167:     } else leaf->coords_handle = -1;
168:   } else {
169:     KDStem    *stem;
170:     PetscCount num_coords = tree->num_coords;
171:     uint8_t    axis       = (uint8_t)(depth % dim);
172:     PetscBool  is_greater_leaf, is_less_equal_leaf;
173:     PetscCount median     = start + PetscCeilInt64(end - start, 2) - 1, lower;
174:     PetscCount median_idx = sorted_indices[median], medianp1_idx = sorted_indices[median + 1];

176:     PetscCall(PetscSegBufferGetSize(kd_build->stems, node_handle));
177:     PetscCall(PetscSegBufferGet(kd_build->stems, 1, &stem));
178:     PetscCall(PetscMemzero(stem, sizeof(KDStem)));
179:     *is_node_leaf = PETSC_FALSE;

181:     stem->axis = axis;
182:     // Place split halfway between the "boundary" nodes of the partitioning
183:     stem->split = (tree->coords[tree->dim * median_idx + axis] + tree->coords[tree->dim * medianp1_idx + axis]) / 2;
184:     PetscCall(PetscArraycpy(temp, &sorted_indices[0 * num_coords + start], end - start));
185:     lower = median; // Set lower in case dim == 1
186:     for (PetscInt d = 1; d < tree->dim; d++) {
187:       PetscCount upper = median;
188:       lower            = start - 1;
189:       for (PetscCount i = start; i < end; i++) {
190:         // In case of duplicate coord point equal to the median coord point, limit lower partition to median, ensuring balanced tree
191:         if (lower < median && PetscKDTreeSortFunc(sorted_indices[d * num_coords + i], median_idx, tree, axis) <= 0) {
192:           sorted_indices[(d - 1) * num_coords + (++lower)] = sorted_indices[d * num_coords + i];
193:         } else {
194:           sorted_indices[(d - 1) * num_coords + (++upper)] = sorted_indices[d * num_coords + i];
195:         }
196:       }
197:       PetscCheck(lower == median, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Partitioning into less_equal bin failed. Range upper bound should be %" PetscCount_FMT " but partitioning resulted in %" PetscCount_FMT, median, lower);
198:       PetscCheck(upper == end - 1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Partitioning into greater bin failed. Range upper bound should be %" PetscCount_FMT " but partitioning resulted in %" PetscCount_FMT, upper, end - 1);
199:     }
200:     PetscCall(PetscArraycpy(&sorted_indices[(tree->dim - 1) * num_coords + start], temp, end - start));

202:     PetscCall(PetscKDTreeBuildStemAndLeaves(kd_build, sorted_indices, temp, start, lower + 1, depth + 1, &is_less_equal_leaf, &stem->less_equal_handle));
203:     if (is_less_equal_leaf) PetscCall(PetscBTSet(&stem->are_handles_leaves, LESS_EQUAL_BIT));
204:     PetscCall(PetscKDTreeBuildStemAndLeaves(kd_build, sorted_indices, temp, lower + 1, end, depth + 1, &is_greater_leaf, &stem->greater_handle));
205:     if (is_greater_leaf) PetscCall(PetscBTSet(&stem->are_handles_leaves, GREATER_BIT));
206:   }
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: /*@C
211:   PetscKDTreeCreate - create a `PetscKDTree`

213:   Not Collective, No Fortran Support

215:   Input Parameters:
216: + num_coords      - number of coordinate points to build the `PetscKDTree`
217: . dim             - the dimension of the coordinates
218: . coords          - array of the coordinates, in point-major order
219: . copy_mode       - behavior handling `coords`, `PETSC_COPY_VALUES` generally more performant
220: - max_bucket_size - maximum number of points stored at each leaf

222:   Output Parameter:
223: . new_tree - the resulting `PetscKDTree`

225:   Level: advanced

227:   Note:
228:   When `copy_mode == PETSC_COPY_VALUES`, the coordinates are copied and organized to optimize vectorization and cache-coherency.
229:   It is recommended to run this way if the extra memory use is not a concern and it has very little impact on the `PetscKDTree` creation time.

231:   Developer Note:
232:   Building algorithm detailed in 'Building a Balanced k-d Tree in O(kn log n) Time' Brown, 2015

234: .seealso: `PetscKDTree`, `PetscKDTreeDestroy()`, `PetscKDTreeQueryPointsNearestNeighbor()`
235: @*/
236: PetscErrorCode PetscKDTreeCreate(PetscCount num_coords, PetscInt dim, const PetscReal coords[], PetscCopyMode copy_mode, PetscInt max_bucket_size, PetscKDTree *new_tree)
237: {
238:   PetscKDTree tree;
239:   PetscCount *sorted_indices, *temp;

241:   PetscFunctionBeginUser;
242:   PetscCall(PetscKDTreeRegisterLogEvents());
243:   PetscCall(PetscLogEventBegin(PetscKDTree_Build, 0, 0, 0, 0));
244:   PetscCheck(dim > 0, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "Dimension of PetscKDTree must be greater than 0, received %" PetscInt_FMT, dim);
245:   PetscCheck(num_coords > -1, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "Number of coordinates may not be negative, received %" PetscCount_FMT, num_coords);
246:   if (num_coords == 0) {
247:     *new_tree = NULL;
248:     PetscFunctionReturn(PETSC_SUCCESS);
249:   }
250:   PetscAssertPointer(coords, 3);
251:   PetscAssertPointer(new_tree, 6);
252:   PetscCall(PetscNew(&tree));
253:   tree->dim             = dim;
254:   tree->max_bucket_size = max_bucket_size == PETSC_DECIDE ? 32 : max_bucket_size;
255:   tree->num_coords      = num_coords;

257:   switch (copy_mode) {
258:   case PETSC_OWN_POINTER:
259:     tree->coords_owned = coords; // fallthrough
260:   case PETSC_USE_POINTER:
261:     tree->coords = coords;
262:     break;
263:   case PETSC_COPY_VALUES:
264:     PetscCall(PetscMalloc1(num_coords * dim, &tree->coords_owned));
265:     PetscCall(PetscArraycpy((PetscReal *)tree->coords_owned, coords, num_coords * dim));
266:     tree->coords = tree->coords_owned;
267:     break;
268:   }

270:   KDTreeSortContext kd_ctx;
271:   PetscCall(PetscMalloc2(num_coords * dim, &sorted_indices, num_coords, &temp));
272:   PetscCall(PetscNew(&kd_ctx));
273:   kd_ctx->tree = tree;
274:   for (PetscInt j = 0; j < dim; j++) {
275:     for (PetscCount i = 0; i < num_coords; i++) sorted_indices[num_coords * j + i] = i;
276:     kd_ctx->initial_axis = (uint8_t)j;
277:     PetscCall(PetscTimSort((PetscInt)num_coords, &sorted_indices[num_coords * j], sizeof(*sorted_indices), PetscKDTreeTimSort, kd_ctx));
278:   }
279:   PetscCall(PetscFree(kd_ctx));

281:   PetscInt    num_leaves = (PetscInt)PetscCeilInt64(num_coords, tree->max_bucket_size);
282:   PetscInt    num_stems  = RoundToNextPowerOfTwo((uint32_t)num_leaves);
283:   KDTreeBuild kd_build;
284:   PetscCall(PetscNew(&kd_build));
285:   kd_build->tree        = tree;
286:   kd_build->copy_coords = copy_mode == PETSC_COPY_VALUES ? PETSC_TRUE : PETSC_FALSE;
287:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-kdtree_debug", &kd_build->debug_build, NULL));
288:   PetscCall(PetscSegBufferCreate(sizeof(KDStem), num_stems, &kd_build->stems));
289:   PetscCall(PetscSegBufferCreate(sizeof(KDLeaf), num_leaves, &kd_build->leaves));
290:   PetscCall(PetscSegBufferCreate(sizeof(PetscCount), num_coords, &kd_build->bucket_indices));
291:   if (kd_build->copy_coords) PetscCall(PetscSegBufferCreate(sizeof(PetscReal), num_coords * dim, &kd_build->bucket_coords));

293:   PetscCall(PetscKDTreeBuildStemAndLeaves(kd_build, sorted_indices, temp, 0, num_coords, 0, &tree->is_root_leaf, &tree->root_handle));

295:   PetscCall(PetscSegBufferGetSize(kd_build->stems, &tree->num_stems));
296:   PetscCall(PetscSegBufferGetSize(kd_build->leaves, &tree->num_leaves));
297:   PetscCall(PetscSegBufferGetSize(kd_build->bucket_indices, &tree->num_bucket_indices));
298:   PetscCall(PetscSegBufferExtractAlloc(kd_build->stems, &tree->stems));
299:   PetscCall(PetscSegBufferExtractAlloc(kd_build->leaves, &tree->leaves));
300:   PetscCall(PetscSegBufferExtractAlloc(kd_build->bucket_indices, &tree->bucket_indices));
301:   if (kd_build->copy_coords) {
302:     PetscCall(PetscFree(tree->coords_owned));
303:     PetscCall(PetscSegBufferExtractAlloc(kd_build->bucket_coords, &tree->coords_owned));
304:     tree->coords = tree->coords_owned;
305:     PetscCall(PetscSegBufferDestroy(&kd_build->bucket_coords));
306:   }
307:   PetscCall(PetscSegBufferDestroy(&kd_build->stems));
308:   PetscCall(PetscSegBufferDestroy(&kd_build->leaves));
309:   PetscCall(PetscSegBufferDestroy(&kd_build->bucket_indices));
310:   PetscCall(PetscFree(kd_build));
311:   PetscCall(PetscFree2(sorted_indices, temp));
312:   *new_tree = tree;
313:   PetscCall(PetscLogEventEnd(PetscKDTree_Build, 0, 0, 0, 0));
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: static inline PetscReal PetscSquareDistance(PetscInt dim, const PetscReal *PETSC_RESTRICT x, const PetscReal *PETSC_RESTRICT y)
318: {
319:   PetscReal dist = 0;
320:   for (PetscInt j = 0; j < dim; j++) dist += PetscSqr(x[j] - y[j]);
321:   return dist;
322: }

324: static inline PetscErrorCode PetscKDTreeQueryLeaf(PetscKDTree tree, KDLeaf leaf, const PetscReal point[], PetscCount *index, PetscReal *distance_sqr)
325: {
326:   PetscInt dim = tree->dim;

328:   PetscFunctionBeginUser;
329:   *distance_sqr = PETSC_MAX_REAL;
330:   *index        = -1;
331:   for (PetscInt i = 0; i < leaf.count; i++) {
332:     PetscCount point_index = tree->bucket_indices[leaf.indices_handle + i];
333:     PetscReal  dist        = PetscSquareDistance(dim, point, &tree->coords[point_index * dim]);
334:     if (dist < *distance_sqr) {
335:       *distance_sqr = dist;
336:       *index        = point_index;
337:     }
338:   }
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: static inline PetscErrorCode PetscKDTreeQueryLeaf_CopyCoords(PetscKDTree tree, KDLeaf leaf, const PetscReal point[], PetscCount *index, PetscReal *distance_sqr)
343: {
344:   PetscInt dim = tree->dim;

346:   PetscFunctionBeginUser;
347:   *distance_sqr = PETSC_MAX_REAL;
348:   *index        = -1;
349:   for (PetscInt i = 0; i < leaf.count; i++) {
350:     // Coord data saved in axis-major ordering for vectorization
351:     PetscReal dist = 0.;
352:     for (PetscInt d = 0; d < dim; d++) dist += PetscSqr(point[d] - tree->coords[leaf.coords_handle + d * leaf.count + i]);
353:     if (dist < *distance_sqr) {
354:       *distance_sqr = dist;
355:       *index        = tree->bucket_indices[leaf.indices_handle + i];
356:     }
357:   }
358:   PetscFunctionReturn(PETSC_SUCCESS);
359: }

361: // Recursive point query from 'Algorithms for Fast Vector Quantization' by  Sunil Arya and David Mount
362: // Variant also implemented in pykdtree
363: static PetscErrorCode PetscKDTreeQuery_Recurse(PetscKDTree tree, const PetscReal point[], PetscCount node_handle, char is_node_leaf, PetscReal offset[], PetscReal rd, PetscReal tol_sqr, PetscCount *index, PetscReal *dist_sqr)
364: {
365:   PetscFunctionBeginUser;
366:   if (*dist_sqr < tol_sqr) PetscFunctionReturn(PETSC_SUCCESS);
367:   if (is_node_leaf) {
368:     KDLeaf     leaf = tree->leaves[node_handle];
369:     PetscReal  dist;
370:     PetscCount point_index;

372:     if (leaf.coords_handle > -1) PetscCall(PetscKDTreeQueryLeaf_CopyCoords(tree, leaf, point, &point_index, &dist));
373:     else PetscCall(PetscKDTreeQueryLeaf(tree, leaf, point, &point_index, &dist));
374:     if (dist < *dist_sqr) {
375:       *dist_sqr = dist;
376:       *index    = point_index;
377:     }
378:     PetscFunctionReturn(PETSC_SUCCESS);
379:   }

381:   KDStem    stem       = tree->stems[node_handle];
382:   PetscReal old_offset = offset[stem.axis], new_offset = point[stem.axis] - stem.split;
383:   if (new_offset <= 0) {
384:     PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.less_equal_handle, PetscBTLookup(&stem.are_handles_leaves, LESS_EQUAL_BIT), offset, rd, tol_sqr, index, dist_sqr));
385:     rd += -PetscSqr(old_offset) + PetscSqr(new_offset);
386:     if (rd < *dist_sqr) {
387:       offset[stem.axis] = new_offset;
388:       PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.greater_handle, PetscBTLookup(&stem.are_handles_leaves, GREATER_BIT), offset, rd, tol_sqr, index, dist_sqr));
389:       offset[stem.axis] = old_offset;
390:     }
391:   } else {
392:     PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.greater_handle, PetscBTLookup(&stem.are_handles_leaves, GREATER_BIT), offset, rd, tol_sqr, index, dist_sqr));
393:     rd += -PetscSqr(old_offset) + PetscSqr(new_offset);
394:     if (rd < *dist_sqr) {
395:       offset[stem.axis] = new_offset;
396:       PetscCall(PetscKDTreeQuery_Recurse(tree, point, stem.less_equal_handle, PetscBTLookup(&stem.are_handles_leaves, LESS_EQUAL_BIT), offset, rd, tol_sqr, index, dist_sqr));
397:       offset[stem.axis] = old_offset;
398:     }
399:   }
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: /*@C
404:   PetscKDTreeQueryPointsNearestNeighbor - find the nearest neighbor in a `PetscKDTree`

406:   Not Collective, No Fortran Support

408:   Input Parameters:
409: + tree       - tree to query
410: . num_points - number of points to query
411: . points     - array of the coordinates, in point-major order
412: - tolerance  - tolerance for nearest neighbor

414:   Output Parameters:
415: + indices   - indices of the nearest neighbor to the query point
416: - distances - distance between the queried point and the nearest neighbor

418:   Level: advanced

420:   Notes:
421:   When traversing the tree, if a point has been found to be closer than the `tolerance`, the function short circuits and doesn't check for any closer points.

423:   The `indices` and `distances` arrays should be at least of size `num_points`.

425: .seealso: `PetscKDTree`, `PetscKDTreeCreate()`
426: @*/
427: PetscErrorCode PetscKDTreeQueryPointsNearestNeighbor(PetscKDTree tree, PetscCount num_points, const PetscReal points[], PetscReal tolerance, PetscCount indices[], PetscReal distances[])
428: {
429:   PetscReal *offsets, rd;

431:   PetscFunctionBeginUser;
432:   PetscCall(PetscLogEventBegin(PetscKDTree_Query, 0, 0, 0, 0));
433:   if (tree == NULL) {
434:     PetscCheck(num_points == 0, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "num_points may only be zero, if tree is NULL");
435:     PetscFunctionReturn(PETSC_SUCCESS);
436:   }
437:   PetscAssertPointer(points, 3);
438:   PetscAssertPointer(indices, 5);
439:   PetscAssertPointer(distances, 6);
440:   PetscCall(PetscCalloc1(tree->dim, &offsets));

442:   for (PetscCount p = 0; p < num_points; p++) {
443:     rd           = 0.;
444:     distances[p] = PETSC_MAX_REAL;
445:     indices[p]   = -1;
446:     PetscCall(PetscKDTreeQuery_Recurse(tree, &points[p * tree->dim], tree->root_handle, (char)tree->is_root_leaf, offsets, rd, PetscSqr(tolerance), &indices[p], &distances[p]));
447:     distances[p] = PetscSqrtReal(distances[p]);
448:   }
449:   PetscCall(PetscFree(offsets));
450:   PetscCall(PetscLogEventEnd(PetscKDTree_Query, 0, 0, 0, 0));
451:   PetscFunctionReturn(PETSC_SUCCESS);
452: }

454: /*@C
455:   PetscKDTreeView - view a `PetscKDTree`

457:   Not Collective, No Fortran Support

459:   Input Parameters:
460: + tree   - tree to view
461: - viewer - visualization context

463:   Level: advanced

465: .seealso: `PetscKDTree`, `PetscKDTreeCreate()`, `PetscViewer`
466: @*/
467: PetscErrorCode PetscKDTreeView(PetscKDTree tree, PetscViewer viewer)
468: {
469:   PetscFunctionBeginUser;
471:   else PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_SELF, &viewer));
472:   if (tree == NULL) PetscFunctionReturn(PETSC_SUCCESS);

474:   PetscCall(PetscViewerASCIIPrintf(viewer, "KDTree:\n"));
475:   PetscCall(PetscViewerASCIIPushTab(viewer)); // KDTree:
476:   PetscCall(PetscViewerASCIIPrintf(viewer, "Stems:\n"));
477:   PetscCall(PetscViewerASCIIPushTab(viewer)); // Stems:
478:   for (PetscCount i = 0; i < tree->num_stems; i++) {
479:     KDStem stem = tree->stems[i];
480:     PetscCall(PetscViewerASCIIPrintf(viewer, "Stem %" PetscCount_FMT ": Axis=%" PetscInt_FMT " Split=%g Greater_%s=%" PetscCount_FMT " Lesser_Equal_%s=%" PetscCount_FMT "\n", i, (PetscInt)stem.axis, (double)stem.split, PetscBTLookup(&stem.are_handles_leaves, GREATER_BIT) ? "Leaf" : "Stem",
481:                                      stem.greater_handle, PetscBTLookup(&stem.are_handles_leaves, LESS_EQUAL_BIT) ? "Leaf" : "Stem", stem.less_equal_handle));
482:   }
483:   PetscCall(PetscViewerASCIIPopTab(viewer)); // Stems:

485:   PetscCall(PetscViewerASCIIPrintf(viewer, "Leaves:\n"));
486:   PetscCall(PetscViewerASCIIPushTab(viewer)); // Leaves:
487:   for (PetscCount i = 0; i < tree->num_leaves; i++) {
488:     KDLeaf leaf = tree->leaves[i];
489:     PetscCall(PetscViewerASCIIPrintf(viewer, "Leaf %" PetscCount_FMT ": Count=%" PetscInt_FMT, i, leaf.count));
490:     PetscCall(PetscViewerASCIIPushTab(viewer)); // Coords:
491:     for (PetscInt j = 0; j < leaf.count; j++) {
492:       PetscInt   tabs;
493:       PetscCount bucket_index = tree->bucket_indices[leaf.indices_handle + j];
494:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
495:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscCount_FMT ": ", bucket_index));

497:       PetscCall(PetscViewerASCIIGetTab(viewer, &tabs));
498:       PetscCall(PetscViewerASCIISetTab(viewer, 0));
499:       if (leaf.coords_handle > -1) {
500:         for (PetscInt k = 0; k < tree->dim; k++) PetscCall(PetscViewerASCIIPrintf(viewer, "%g ", (double)tree->coords[leaf.coords_handle + leaf.count * k + j]));
501:         PetscCall(PetscViewerASCIIPrintf(viewer, " (stored at leaf)"));
502:       } else {
503:         for (PetscInt k = 0; k < tree->dim; k++) PetscCall(PetscViewerASCIIPrintf(viewer, "%g ", (double)tree->coords[bucket_index * tree->dim + k]));
504:       }
505:       PetscCall(PetscViewerASCIISetTab(viewer, tabs));
506:     }
507:     PetscCall(PetscViewerASCIIPopTab(viewer)); // Coords:
508:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
509:   }
510:   PetscCall(PetscViewerASCIIPopTab(viewer)); // Leaves:
511:   PetscCall(PetscViewerASCIIPopTab(viewer)); // KDTree:
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }