Actual source code: dt.c

  1: /* Discretization tools */

  3: #include <petscdt.h>
  4: #include <petscblaslapack.h>
  5: #include <petsc/private/petscimpl.h>
  6: #include <petsc/private/dtimpl.h>
  7: #include <petsc/private/petscfeimpl.h>
  8: #include <petscviewer.h>
  9: #include <petscdmplex.h>
 10: #include <petscdmshell.h>

 12: #if defined(PETSC_HAVE_MPFR)
 13:   #include <mpfr.h>
 14: #endif

 16: const char *const        PetscDTNodeTypes_shifted[] = {"default", "gaussjacobi", "equispaced", "tanhsinh", "PetscDTNodeType", "PETSCDTNODES_", NULL};
 17: const char *const *const PetscDTNodeTypes           = PetscDTNodeTypes_shifted + 1;

 19: const char *const        PetscDTSimplexQuadratureTypes_shifted[] = {"default", "conic", "minsym", "diagsym", "PetscDTSimplexQuadratureType", "PETSCDTSIMPLEXQUAD_", NULL};
 20: const char *const *const PetscDTSimplexQuadratureTypes           = PetscDTSimplexQuadratureTypes_shifted + 1;

 22: static PetscBool GolubWelschCite       = PETSC_FALSE;
 23: const char       GolubWelschCitation[] = "@article{GolubWelsch1969,\n"
 24:                                          "  author  = {Golub and Welsch},\n"
 25:                                          "  title   = {Calculation of Quadrature Rules},\n"
 26:                                          "  journal = {Math. Comp.},\n"
 27:                                          "  volume  = {23},\n"
 28:                                          "  number  = {106},\n"
 29:                                          "  pages   = {221--230},\n"
 30:                                          "  year    = {1969}\n}\n";

 32: /* Numerical tests in src/dm/dt/tests/ex1.c show that when computing the nodes and weights of Gauss-Jacobi
 33:    quadrature rules:

 35:    - in double precision, Newton's method and Golub & Welsch both work for moderate degrees (< 100),
 36:    - in single precision, Newton's method starts producing incorrect roots around n = 15, but
 37:      the weights from Golub & Welsch become a problem before then: they produces errors
 38:      in computing the Jacobi-polynomial Gram matrix around n = 6.

 40:    So we default to Newton's method (required fewer dependencies) */
 41: PetscBool PetscDTGaussQuadratureNewton_Internal = PETSC_TRUE;

 43: PetscClassId PETSCQUADRATURE_CLASSID = 0;

 45: /*@
 46:   PetscQuadratureCreate - Create a `PetscQuadrature` object

 48:   Collective

 50:   Input Parameter:
 51: . comm - The communicator for the `PetscQuadrature` object

 53:   Output Parameter:
 54: . q - The `PetscQuadrature` object

 56:   Level: beginner

 58: .seealso: `PetscQuadrature`, `Petscquadraturedestroy()`, `PetscQuadratureGetData()`
 59: @*/
 60: PetscErrorCode PetscQuadratureCreate(MPI_Comm comm, PetscQuadrature *q)
 61: {
 62:   PetscFunctionBegin;
 63:   PetscAssertPointer(q, 2);
 64:   PetscCall(DMInitializePackage());
 65:   PetscCall(PetscHeaderCreate(*q, PETSCQUADRATURE_CLASSID, "PetscQuadrature", "Quadrature", "DT", comm, PetscQuadratureDestroy, PetscQuadratureView));
 66:   (*q)->ct        = DM_POLYTOPE_UNKNOWN;
 67:   (*q)->dim       = -1;
 68:   (*q)->Nc        = 1;
 69:   (*q)->order     = -1;
 70:   (*q)->numPoints = 0;
 71:   (*q)->points    = NULL;
 72:   (*q)->weights   = NULL;
 73:   PetscFunctionReturn(PETSC_SUCCESS);
 74: }

 76: /*@
 77:   PetscQuadratureDuplicate - Create a deep copy of the `PetscQuadrature` object

 79:   Collective

 81:   Input Parameter:
 82: . q - The `PetscQuadrature` object

 84:   Output Parameter:
 85: . r - The new `PetscQuadrature` object

 87:   Level: beginner

 89: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureDestroy()`, `PetscQuadratureGetData()`
 90: @*/
 91: PetscErrorCode PetscQuadratureDuplicate(PetscQuadrature q, PetscQuadrature *r)
 92: {
 93:   DMPolytopeType   ct;
 94:   PetscInt         order, dim, Nc, Nq;
 95:   const PetscReal *points, *weights;
 96:   PetscReal       *p, *w;

 98:   PetscFunctionBegin;
 99:   PetscAssertPointer(q, 1);
100:   PetscCall(PetscQuadratureCreate(PetscObjectComm((PetscObject)q), r));
101:   PetscCall(PetscQuadratureGetCellType(q, &ct));
102:   PetscCall(PetscQuadratureSetCellType(*r, ct));
103:   PetscCall(PetscQuadratureGetOrder(q, &order));
104:   PetscCall(PetscQuadratureSetOrder(*r, order));
105:   PetscCall(PetscQuadratureGetData(q, &dim, &Nc, &Nq, &points, &weights));
106:   PetscCall(PetscMalloc1(Nq * dim, &p));
107:   PetscCall(PetscMalloc1(Nq * Nc, &w));
108:   PetscCall(PetscArraycpy(p, points, Nq * dim));
109:   PetscCall(PetscArraycpy(w, weights, Nc * Nq));
110:   PetscCall(PetscQuadratureSetData(*r, dim, Nc, Nq, p, w));
111:   PetscFunctionReturn(PETSC_SUCCESS);
112: }

114: /*@
115:   PetscQuadratureDestroy - Destroys a `PetscQuadrature` object

117:   Collective

119:   Input Parameter:
120: . q - The `PetscQuadrature` object

122:   Level: beginner

124: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureGetData()`
125: @*/
126: PetscErrorCode PetscQuadratureDestroy(PetscQuadrature *q)
127: {
128:   PetscFunctionBegin;
129:   if (!*q) PetscFunctionReturn(PETSC_SUCCESS);
131:   if (--((PetscObject)*q)->refct > 0) {
132:     *q = NULL;
133:     PetscFunctionReturn(PETSC_SUCCESS);
134:   }
135:   PetscCall(PetscFree((*q)->points));
136:   PetscCall(PetscFree((*q)->weights));
137:   PetscCall(PetscHeaderDestroy(q));
138:   PetscFunctionReturn(PETSC_SUCCESS);
139: }

141: /*@
142:   PetscQuadratureGetCellType - Return the cell type of the integration domain

144:   Not Collective

146:   Input Parameter:
147: . q - The `PetscQuadrature` object

149:   Output Parameter:
150: . ct - The cell type of the integration domain

152:   Level: intermediate

154: .seealso: `PetscQuadrature`, `PetscQuadratureSetCellType()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
155: @*/
156: PetscErrorCode PetscQuadratureGetCellType(PetscQuadrature q, DMPolytopeType *ct)
157: {
158:   PetscFunctionBegin;
160:   PetscAssertPointer(ct, 2);
161:   *ct = q->ct;
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: /*@
166:   PetscQuadratureSetCellType - Set the cell type of the integration domain

168:   Not Collective

170:   Input Parameters:
171: + q  - The `PetscQuadrature` object
172: - ct - The cell type of the integration domain

174:   Level: intermediate

176: .seealso: `PetscQuadrature`, `PetscQuadratureGetCellType()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
177: @*/
178: PetscErrorCode PetscQuadratureSetCellType(PetscQuadrature q, DMPolytopeType ct)
179: {
180:   PetscFunctionBegin;
182:   q->ct = ct;
183:   PetscFunctionReturn(PETSC_SUCCESS);
184: }

186: /*@
187:   PetscQuadratureGetOrder - Return the order of the method in the `PetscQuadrature`

189:   Not Collective

191:   Input Parameter:
192: . q - The `PetscQuadrature` object

194:   Output Parameter:
195: . order - The order of the quadrature, i.e. the highest degree polynomial that is exactly integrated

197:   Level: intermediate

199: .seealso: `PetscQuadrature`, `PetscQuadratureSetOrder()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
200: @*/
201: PetscErrorCode PetscQuadratureGetOrder(PetscQuadrature q, PetscInt *order)
202: {
203:   PetscFunctionBegin;
205:   PetscAssertPointer(order, 2);
206:   *order = q->order;
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: /*@
211:   PetscQuadratureSetOrder - Set the order of the method in the `PetscQuadrature`

213:   Not Collective

215:   Input Parameters:
216: + q     - The `PetscQuadrature` object
217: - order - The order of the quadrature, i.e. the highest degree polynomial that is exactly integrated

219:   Level: intermediate

221: .seealso: `PetscQuadrature`, `PetscQuadratureGetOrder()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
222: @*/
223: PetscErrorCode PetscQuadratureSetOrder(PetscQuadrature q, PetscInt order)
224: {
225:   PetscFunctionBegin;
227:   q->order = order;
228:   PetscFunctionReturn(PETSC_SUCCESS);
229: }

231: /*@
232:   PetscQuadratureGetNumComponents - Return the number of components for functions to be integrated

234:   Not Collective

236:   Input Parameter:
237: . q - The `PetscQuadrature` object

239:   Output Parameter:
240: . Nc - The number of components

242:   Level: intermediate

244:   Note:
245:   We are performing an integral $\int f(x) w(x) dx$, where both $f$ and $w$ (the weight) have `Nc` components.

247: .seealso: `PetscQuadrature`, `PetscQuadratureSetNumComponents()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
248: @*/
249: PetscErrorCode PetscQuadratureGetNumComponents(PetscQuadrature q, PetscInt *Nc)
250: {
251:   PetscFunctionBegin;
253:   PetscAssertPointer(Nc, 2);
254:   *Nc = q->Nc;
255:   PetscFunctionReturn(PETSC_SUCCESS);
256: }

258: /*@
259:   PetscQuadratureSetNumComponents - Sets the number of components for functions to be integrated

261:   Not Collective

263:   Input Parameters:
264: + q  - The `PetscQuadrature` object
265: - Nc - The number of components

267:   Level: intermediate

269:   Note:
270:   We are performing an integral $\int f(x) w(x) dx$, where both $f$ and $w$ (the weight) have `Nc` components.

272: .seealso: `PetscQuadrature`, `PetscQuadratureGetNumComponents()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
273: @*/
274: PetscErrorCode PetscQuadratureSetNumComponents(PetscQuadrature q, PetscInt Nc)
275: {
276:   PetscFunctionBegin;
278:   q->Nc = Nc;
279:   PetscFunctionReturn(PETSC_SUCCESS);
280: }

282: /*@C
283:   PetscQuadratureGetData - Returns the data defining the `PetscQuadrature`

285:   Not Collective

287:   Input Parameter:
288: . q - The `PetscQuadrature` object

290:   Output Parameters:
291: + dim     - The spatial dimension
292: . Nc      - The number of components
293: . npoints - The number of quadrature points
294: . points  - The coordinates of each quadrature point
295: - weights - The weight of each quadrature point

297:   Level: intermediate

299:   Note:
300:   All output arguments are optional, pass `NULL` for any argument not required

302:   Fortran Note:
303:   Call `PetscQuadratureRestoreData()` when you are done with the data

305: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureSetData()`
306: @*/
307: PetscErrorCode PetscQuadratureGetData(PetscQuadrature q, PeOp PetscInt *dim, PeOp PetscInt *Nc, PeOp PetscInt *npoints, PeOp const PetscReal *points[], PeOp const PetscReal *weights[])
308: {
309:   PetscFunctionBegin;
311:   if (dim) {
312:     PetscAssertPointer(dim, 2);
313:     *dim = q->dim;
314:   }
315:   if (Nc) {
316:     PetscAssertPointer(Nc, 3);
317:     *Nc = q->Nc;
318:   }
319:   if (npoints) {
320:     PetscAssertPointer(npoints, 4);
321:     *npoints = q->numPoints;
322:   }
323:   if (points) {
324:     PetscAssertPointer(points, 5);
325:     *points = q->points;
326:   }
327:   if (weights) {
328:     PetscAssertPointer(weights, 6);
329:     *weights = q->weights;
330:   }
331:   PetscFunctionReturn(PETSC_SUCCESS);
332: }

334: /*@
335:   PetscQuadratureEqual - determine whether two quadratures are equivalent

337:   Input Parameters:
338: + A - A `PetscQuadrature` object
339: - B - Another `PetscQuadrature` object

341:   Output Parameter:
342: . equal - `PETSC_TRUE` if the quadratures are the same

344:   Level: intermediate

346: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`
347: @*/
348: PetscErrorCode PetscQuadratureEqual(PetscQuadrature A, PetscQuadrature B, PetscBool *equal)
349: {
350:   PetscFunctionBegin;
353:   PetscAssertPointer(equal, 3);
354:   *equal = PETSC_FALSE;
355:   if (A->ct != B->ct || A->dim != B->dim || A->Nc != B->Nc || A->order != B->order || A->numPoints != B->numPoints) PetscFunctionReturn(PETSC_SUCCESS);
356:   for (PetscInt i = 0; i < A->numPoints * A->dim; i++) {
357:     if (PetscAbsReal(A->points[i] - B->points[i]) > PETSC_SMALL) PetscFunctionReturn(PETSC_SUCCESS);
358:   }
359:   if (!A->weights && !B->weights) {
360:     *equal = PETSC_TRUE;
361:     PetscFunctionReturn(PETSC_SUCCESS);
362:   }
363:   if (A->weights && B->weights) {
364:     for (PetscInt i = 0; i < A->numPoints; i++) {
365:       if (PetscAbsReal(A->weights[i] - B->weights[i]) > PETSC_SMALL) PetscFunctionReturn(PETSC_SUCCESS);
366:     }
367:     *equal = PETSC_TRUE;
368:   }
369:   PetscFunctionReturn(PETSC_SUCCESS);
370: }

372: static PetscErrorCode PetscDTJacobianInverse_Internal(PetscInt m, PetscInt n, const PetscReal J[], PetscReal Jinv[])
373: {
374:   PetscScalar *Js, *Jinvs;
375:   PetscInt     i, j, k;
376:   PetscBLASInt bm, bn, info;

378:   PetscFunctionBegin;
379:   if (!m || !n) PetscFunctionReturn(PETSC_SUCCESS);
380:   PetscCall(PetscBLASIntCast(m, &bm));
381:   PetscCall(PetscBLASIntCast(n, &bn));
382: #if defined(PETSC_USE_COMPLEX)
383:   PetscCall(PetscMalloc2(m * n, &Js, m * n, &Jinvs));
384:   for (i = 0; i < m * n; i++) Js[i] = J[i];
385: #else
386:   Js    = (PetscReal *)J;
387:   Jinvs = Jinv;
388: #endif
389:   if (m == n) {
390:     PetscBLASInt *pivots;
391:     PetscScalar  *W;

393:     PetscCall(PetscMalloc2(m, &pivots, m, &W));

395:     PetscCall(PetscArraycpy(Jinvs, Js, m * m));
396:     PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&bm, &bm, Jinvs, &bm, pivots, &info));
397:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
398:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&bm, Jinvs, &bm, pivots, W, &bm, &info));
399:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
400:     PetscCall(PetscFree2(pivots, W));
401:   } else if (m < n) {
402:     PetscScalar  *JJT;
403:     PetscBLASInt *pivots;
404:     PetscScalar  *W;

406:     PetscCall(PetscMalloc1(m * m, &JJT));
407:     PetscCall(PetscMalloc2(m, &pivots, m, &W));
408:     for (i = 0; i < m; i++) {
409:       for (j = 0; j < m; j++) {
410:         PetscScalar val = 0.;

412:         for (k = 0; k < n; k++) val += Js[i * n + k] * Js[j * n + k];
413:         JJT[i * m + j] = val;
414:       }
415:     }

417:     PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&bm, &bm, JJT, &bm, pivots, &info));
418:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
419:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&bm, JJT, &bm, pivots, W, &bm, &info));
420:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
421:     for (i = 0; i < n; i++) {
422:       for (j = 0; j < m; j++) {
423:         PetscScalar val = 0.;

425:         for (k = 0; k < m; k++) val += Js[k * n + i] * JJT[k * m + j];
426:         Jinvs[i * m + j] = val;
427:       }
428:     }
429:     PetscCall(PetscFree2(pivots, W));
430:     PetscCall(PetscFree(JJT));
431:   } else {
432:     PetscScalar  *JTJ;
433:     PetscBLASInt *pivots;
434:     PetscScalar  *W;

436:     PetscCall(PetscMalloc1(n * n, &JTJ));
437:     PetscCall(PetscMalloc2(n, &pivots, n, &W));
438:     for (i = 0; i < n; i++) {
439:       for (j = 0; j < n; j++) {
440:         PetscScalar val = 0.;

442:         for (k = 0; k < m; k++) val += Js[k * n + i] * Js[k * n + j];
443:         JTJ[i * n + j] = val;
444:       }
445:     }

447:     PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&bn, &bn, JTJ, &bn, pivots, &info));
448:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
449:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&bn, JTJ, &bn, pivots, W, &bn, &info));
450:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
451:     for (i = 0; i < n; i++) {
452:       for (j = 0; j < m; j++) {
453:         PetscScalar val = 0.;

455:         for (k = 0; k < n; k++) val += JTJ[i * n + k] * Js[j * n + k];
456:         Jinvs[i * m + j] = val;
457:       }
458:     }
459:     PetscCall(PetscFree2(pivots, W));
460:     PetscCall(PetscFree(JTJ));
461:   }
462: #if defined(PETSC_USE_COMPLEX)
463:   for (i = 0; i < m * n; i++) Jinv[i] = PetscRealPart(Jinvs[i]);
464:   PetscCall(PetscFree2(Js, Jinvs));
465: #endif
466:   PetscFunctionReturn(PETSC_SUCCESS);
467: }

469: /*@
470:   PetscQuadraturePushForward - Push forward a quadrature functional under an affine transformation.

472:   Collective

474:   Input Parameters:
475: + q           - the quadrature functional
476: . imageDim    - the dimension of the image of the transformation
477: . origin      - a point in the original space
478: . originImage - the image of the origin under the transformation
479: . J           - the Jacobian of the image: an [imageDim x dim] matrix in row major order
480: - formDegree  - transform the quadrature weights as k-forms of this form degree (if the number of components is a multiple of (dim choose `formDegree`),
481:                 it is assumed that they represent multiple k-forms) [see `PetscDTAltVPullback()` for interpretation of `formDegree`]

483:   Output Parameter:
484: . Jinvstarq - a quadrature rule where each point is the image of a point in the original quadrature rule, and where the k-form weights have
485:   been pulled-back by the pseudoinverse of `J` to the k-form weights in the image space.

487:   Level: intermediate

489:   Note:
490:   The new quadrature rule will have a different number of components if spaces have different dimensions.
491:   For example, pushing a 2-form forward from a two dimensional space to a three dimensional space changes the number of components from 1 to 3.

493: .seealso: `PetscQuadrature`, `PetscDTAltVPullback()`, `PetscDTAltVPullbackMatrix()`
494: @*/
495: PetscErrorCode PetscQuadraturePushForward(PetscQuadrature q, PetscInt imageDim, const PetscReal origin[], const PetscReal originImage[], const PetscReal J[], PetscInt formDegree, PetscQuadrature *Jinvstarq)
496: {
497:   PetscInt         dim, Nc, imageNc, formSize, Ncopies, imageFormSize, Npoints, pt, i, j, c;
498:   const PetscReal *points;
499:   const PetscReal *weights;
500:   PetscReal       *imagePoints, *imageWeights;
501:   PetscReal       *Jinv;
502:   PetscReal       *Jinvstar;

504:   PetscFunctionBegin;
506:   PetscCheck(imageDim >= PetscAbsInt(formDegree), PetscObjectComm((PetscObject)q), PETSC_ERR_ARG_INCOMP, "Cannot represent a %" PetscInt_FMT "-form in %" PetscInt_FMT " dimensions", PetscAbsInt(formDegree), imageDim);
507:   PetscCall(PetscQuadratureGetData(q, &dim, &Nc, &Npoints, &points, &weights));
508:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(formDegree), &formSize));
509:   PetscCheck(Nc % formSize == 0, PetscObjectComm((PetscObject)q), PETSC_ERR_ARG_INCOMP, "Number of components %" PetscInt_FMT " is not a multiple of formSize %" PetscInt_FMT, Nc, formSize);
510:   Ncopies = Nc / formSize;
511:   PetscCall(PetscDTBinomialInt(imageDim, PetscAbsInt(formDegree), &imageFormSize));
512:   imageNc = Ncopies * imageFormSize;
513:   PetscCall(PetscMalloc1(Npoints * imageDim, &imagePoints));
514:   PetscCall(PetscMalloc1(Npoints * imageNc, &imageWeights));
515:   PetscCall(PetscMalloc2(imageDim * dim, &Jinv, formSize * imageFormSize, &Jinvstar));
516:   PetscCall(PetscDTJacobianInverse_Internal(imageDim, dim, J, Jinv));
517:   PetscCall(PetscDTAltVPullbackMatrix(imageDim, dim, Jinv, formDegree, Jinvstar));
518:   for (pt = 0; pt < Npoints; pt++) {
519:     const PetscReal *point      = PetscSafePointerPlusOffset(points, pt * dim);
520:     PetscReal       *imagePoint = &imagePoints[pt * imageDim];

522:     for (i = 0; i < imageDim; i++) {
523:       PetscReal val = originImage[i];

525:       for (j = 0; j < dim; j++) val += J[i * dim + j] * (point[j] - origin[j]);
526:       imagePoint[i] = val;
527:     }
528:     for (c = 0; c < Ncopies; c++) {
529:       const PetscReal *form      = &weights[pt * Nc + c * formSize];
530:       PetscReal       *imageForm = &imageWeights[pt * imageNc + c * imageFormSize];

532:       for (i = 0; i < imageFormSize; i++) {
533:         PetscReal val = 0.;

535:         for (j = 0; j < formSize; j++) val += Jinvstar[i * formSize + j] * form[j];
536:         imageForm[i] = val;
537:       }
538:     }
539:   }
540:   PetscCall(PetscQuadratureCreate(PetscObjectComm((PetscObject)q), Jinvstarq));
541:   PetscCall(PetscQuadratureSetData(*Jinvstarq, imageDim, imageNc, Npoints, imagePoints, imageWeights));
542:   PetscCall(PetscFree2(Jinv, Jinvstar));
543:   PetscFunctionReturn(PETSC_SUCCESS);
544: }

546: /*@C
547:   PetscQuadratureSetData - Sets the data defining the quadrature

549:   Not Collective

551:   Input Parameters:
552: + q       - The `PetscQuadrature` object
553: . dim     - The spatial dimension
554: . Nc      - The number of components
555: . npoints - The number of quadrature points
556: . points  - The coordinates of each quadrature point
557: - weights - The weight of each quadrature point

559:   Level: intermediate

561:   Note:
562:   `q` owns the references to points and weights, so they must be allocated using `PetscMalloc()` and the user should not free them.

564: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureGetData()`
565: @*/
566: PetscErrorCode PetscQuadratureSetData(PetscQuadrature q, PetscInt dim, PetscInt Nc, PetscInt npoints, const PetscReal points[], const PetscReal weights[]) PeNSS
567: {
568:   PetscFunctionBegin;
570:   if (dim >= 0) q->dim = dim;
571:   if (Nc >= 0) q->Nc = Nc;
572:   if (npoints >= 0) q->numPoints = npoints;
573:   if (points) {
574:     PetscAssertPointer(points, 5);
575:     q->points = points;
576:   }
577:   if (weights) {
578:     PetscAssertPointer(weights, 6);
579:     q->weights = weights;
580:   }
581:   PetscFunctionReturn(PETSC_SUCCESS);
582: }

584: static PetscErrorCode PetscQuadratureView_Ascii(PetscQuadrature quad, PetscViewer v)
585: {
586:   PetscInt          q, d, c;
587:   PetscViewerFormat format;

589:   PetscFunctionBegin;
590:   if (quad->Nc > 1)
591:     PetscCall(PetscViewerASCIIPrintf(v, "Quadrature on a %s of order %" PetscInt_FMT " on %" PetscInt_FMT " points (dim %" PetscInt_FMT ") with %" PetscInt_FMT " components\n", DMPolytopeTypes[quad->ct], quad->order, quad->numPoints, quad->dim, quad->Nc));
592:   else PetscCall(PetscViewerASCIIPrintf(v, "Quadrature on a %s of order %" PetscInt_FMT " on %" PetscInt_FMT " points (dim %" PetscInt_FMT ")\n", DMPolytopeTypes[quad->ct], quad->order, quad->numPoints, quad->dim));
593:   PetscCall(PetscViewerGetFormat(v, &format));
594:   if (format != PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);
595:   for (q = 0; q < quad->numPoints; ++q) {
596:     PetscCall(PetscViewerASCIIPrintf(v, "p%" PetscInt_FMT " (", q));
597:     PetscCall(PetscViewerASCIIUseTabs(v, PETSC_FALSE));
598:     for (d = 0; d < quad->dim; ++d) {
599:       if (d) PetscCall(PetscViewerASCIIPrintf(v, ", "));
600:       PetscCall(PetscViewerASCIIPrintf(v, "%+g", (double)quad->points[q * quad->dim + d]));
601:     }
602:     PetscCall(PetscViewerASCIIPrintf(v, ") "));
603:     if (quad->Nc > 1) PetscCall(PetscViewerASCIIPrintf(v, "w%" PetscInt_FMT " (", q));
604:     for (c = 0; c < quad->Nc; ++c) {
605:       if (c) PetscCall(PetscViewerASCIIPrintf(v, ", "));
606:       PetscCall(PetscViewerASCIIPrintf(v, "%+g", (double)quad->weights[q * quad->Nc + c]));
607:     }
608:     if (quad->Nc > 1) PetscCall(PetscViewerASCIIPrintf(v, ")"));
609:     PetscCall(PetscViewerASCIIPrintf(v, "\n"));
610:     PetscCall(PetscViewerASCIIUseTabs(v, PETSC_TRUE));
611:   }
612:   PetscFunctionReturn(PETSC_SUCCESS);
613: }

615: /*@
616:   PetscQuadratureView - View a `PetscQuadrature` object

618:   Collective

620:   Input Parameters:
621: + quad   - The `PetscQuadrature` object
622: - viewer - The `PetscViewer` object

624:   Level: beginner

626: .seealso: `PetscQuadrature`, `PetscViewer`, `PetscQuadratureCreate()`, `PetscQuadratureGetData()`
627: @*/
628: PetscErrorCode PetscQuadratureView(PetscQuadrature quad, PetscViewer viewer)
629: {
630:   PetscBool isascii;

632:   PetscFunctionBegin;
635:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)quad), &viewer));
636:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
637:   PetscCall(PetscViewerASCIIPushTab(viewer));
638:   if (isascii) PetscCall(PetscQuadratureView_Ascii(quad, viewer));
639:   PetscCall(PetscViewerASCIIPopTab(viewer));
640:   PetscFunctionReturn(PETSC_SUCCESS);
641: }

643: /*@C
644:   PetscQuadratureExpandComposite - Return a quadrature over the composite element, which has the original quadrature in each subelement

646:   Not Collective; No Fortran Support

648:   Input Parameters:
649: + q              - The original `PetscQuadrature`
650: . numSubelements - The number of subelements the original element is divided into
651: . v0             - An array of the initial points for each subelement
652: - jac            - An array of the Jacobian mappings from the reference to each subelement

654:   Output Parameter:
655: . qref - The dimension

657:   Level: intermediate

659:   Note:
660:   Together `v0` and `jac` define an affine mapping from the original reference element to each subelement

662: .seealso: `PetscQuadrature`, `PetscFECreate()`, `PetscSpaceGetDimension()`, `PetscDualSpaceGetDimension()`
663: @*/
664: PetscErrorCode PetscQuadratureExpandComposite(PetscQuadrature q, PetscInt numSubelements, const PetscReal v0[], const PetscReal jac[], PetscQuadrature *qref)
665: {
666:   DMPolytopeType   ct;
667:   const PetscReal *points, *weights;
668:   PetscReal       *pointsRef, *weightsRef;
669:   PetscInt         dim, Nc, order, npoints, npointsRef, c, p, cp, d, e;

671:   PetscFunctionBegin;
673:   PetscAssertPointer(v0, 3);
674:   PetscAssertPointer(jac, 4);
675:   PetscAssertPointer(qref, 5);
676:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, qref));
677:   PetscCall(PetscQuadratureGetCellType(q, &ct));
678:   PetscCall(PetscQuadratureGetOrder(q, &order));
679:   PetscCall(PetscQuadratureGetData(q, &dim, &Nc, &npoints, &points, &weights));
680:   npointsRef = npoints * numSubelements;
681:   PetscCall(PetscMalloc1(npointsRef * dim, &pointsRef));
682:   PetscCall(PetscMalloc1(npointsRef * Nc, &weightsRef));
683:   for (c = 0; c < numSubelements; ++c) {
684:     for (p = 0; p < npoints; ++p) {
685:       for (d = 0; d < dim; ++d) {
686:         pointsRef[(c * npoints + p) * dim + d] = v0[c * dim + d];
687:         for (e = 0; e < dim; ++e) pointsRef[(c * npoints + p) * dim + d] += jac[(c * dim + d) * dim + e] * (points[p * dim + e] + 1.0);
688:       }
689:       /* Could also use detJ here */
690:       for (cp = 0; cp < Nc; ++cp) weightsRef[(c * npoints + p) * Nc + cp] = weights[p * Nc + cp] / numSubelements;
691:     }
692:   }
693:   PetscCall(PetscQuadratureSetCellType(*qref, ct));
694:   PetscCall(PetscQuadratureSetOrder(*qref, order));
695:   PetscCall(PetscQuadratureSetData(*qref, dim, Nc, npointsRef, pointsRef, weightsRef));
696:   PetscFunctionReturn(PETSC_SUCCESS);
697: }

699: /* Compute the coefficients for the Jacobi polynomial recurrence,

701:    J^{a,b}_n(x) = (cnm1 + cnm1x * x) * J^{a,b}_{n-1}(x) - cnm2 * J^{a,b}_{n-2}(x).
702:  */
703: #define PetscDTJacobiRecurrence_Internal(n, a, b, cnm1, cnm1x, cnm2) \
704:   do { \
705:     PetscReal _a = (a); \
706:     PetscReal _b = (b); \
707:     PetscReal _n = (n); \
708:     if (n == 1) { \
709:       (cnm1)  = (_a - _b) * 0.5; \
710:       (cnm1x) = (_a + _b + 2.) * 0.5; \
711:       (cnm2)  = 0.; \
712:     } else { \
713:       PetscReal _2n  = _n + _n; \
714:       PetscReal _d   = (_2n * (_n + _a + _b) * (_2n + _a + _b - 2)); \
715:       PetscReal _n1  = (_2n + _a + _b - 1.) * (_a * _a - _b * _b); \
716:       PetscReal _n1x = (_2n + _a + _b - 1.) * (_2n + _a + _b) * (_2n + _a + _b - 2); \
717:       PetscReal _n2  = 2. * ((_n + _a - 1.) * (_n + _b - 1.) * (_2n + _a + _b)); \
718:       (cnm1)         = _n1 / _d; \
719:       (cnm1x)        = _n1x / _d; \
720:       (cnm2)         = _n2 / _d; \
721:     } \
722:   } while (0)

724: /*@
725:   PetscDTJacobiNorm - Compute the weighted L2 norm of a Jacobi polynomial.

727:   $\| P^{\alpha,\beta}_n \|_{\alpha,\beta}^2 = \int_{-1}^1 (1 + x)^{\alpha} (1 - x)^{\beta} P^{\alpha,\beta}_n (x)^2 dx.$

729:   Input Parameters:
730: + alpha - the left exponent > -1
731: . beta  - the right exponent > -1
732: - n     - the polynomial degree

734:   Output Parameter:
735: . norm - the weighted L2 norm

737:   Level: beginner

739: .seealso: `PetscQuadrature`, `PetscDTJacobiEval()`
740: @*/
741: PetscErrorCode PetscDTJacobiNorm(PetscReal alpha, PetscReal beta, PetscInt n, PetscReal *norm)
742: {
743:   PetscReal twoab1;
744:   PetscReal gr;

746:   PetscFunctionBegin;
747:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Exponent alpha %g <= -1. invalid", (double)alpha);
748:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Exponent beta %g <= -1. invalid", (double)beta);
749:   PetscCheck(n >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "n %" PetscInt_FMT " < 0 invalid", n);
750:   twoab1 = PetscPowReal(2., alpha + beta + 1.);
751: #if defined(PETSC_HAVE_LGAMMA)
752:   if (!n) {
753:     gr = PetscExpReal(PetscLGamma(alpha + 1.) + PetscLGamma(beta + 1.) - PetscLGamma(alpha + beta + 2.));
754:   } else {
755:     gr = PetscExpReal(PetscLGamma(n + alpha + 1.) + PetscLGamma(n + beta + 1.) - (PetscLGamma(n + 1.) + PetscLGamma(n + alpha + beta + 1.))) / (n + n + alpha + beta + 1.);
756:   }
757: #else
758:   {
759:     PetscInt alphai = (PetscInt)alpha;
760:     PetscInt betai  = (PetscInt)beta;
761:     PetscInt i;

763:     gr = n ? (1. / (n + n + alpha + beta + 1.)) : 1.;
764:     if ((PetscReal)alphai == alpha) {
765:       if (!n) {
766:         for (i = 0; i < alphai; i++) gr *= (i + 1.) / (beta + i + 1.);
767:         gr /= (alpha + beta + 1.);
768:       } else {
769:         for (i = 0; i < alphai; i++) gr *= (n + i + 1.) / (n + beta + i + 1.);
770:       }
771:     } else if ((PetscReal)betai == beta) {
772:       if (!n) {
773:         for (i = 0; i < betai; i++) gr *= (i + 1.) / (alpha + i + 2.);
774:         gr /= (alpha + beta + 1.);
775:       } else {
776:         for (i = 0; i < betai; i++) gr *= (n + i + 1.) / (n + alpha + i + 1.);
777:       }
778:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "lgamma() - math routine is unavailable.");
779:   }
780: #endif
781:   *norm = PetscSqrtReal(twoab1 * gr);
782:   PetscFunctionReturn(PETSC_SUCCESS);
783: }

785: static PetscErrorCode PetscDTJacobiEval_Internal(PetscInt npoints, PetscReal a, PetscReal b, PetscInt k, const PetscReal *points, PetscInt ndegree, const PetscInt *degrees, PetscReal *p)
786: {
787:   PetscReal ak, bk;
788:   PetscReal abk1;
789:   PetscInt  i, l, maxdegree;

791:   PetscFunctionBegin;
792:   maxdegree = degrees[ndegree - 1] - k;
793:   ak        = a + k;
794:   bk        = b + k;
795:   abk1      = a + b + k + 1.;
796:   if (maxdegree < 0) {
797:     for (i = 0; i < npoints; i++)
798:       for (l = 0; l < ndegree; l++) p[i * ndegree + l] = 0.;
799:     PetscFunctionReturn(PETSC_SUCCESS);
800:   }
801:   for (i = 0; i < npoints; i++) {
802:     PetscReal pm1, pm2, x;
803:     PetscReal cnm1, cnm1x, cnm2;
804:     PetscInt  j, m;

806:     x   = points[i];
807:     pm2 = 1.;
808:     PetscDTJacobiRecurrence_Internal(1, ak, bk, cnm1, cnm1x, cnm2);
809:     pm1 = (cnm1 + cnm1x * x);
810:     l   = 0;
811:     while (l < ndegree && degrees[l] - k < 0) p[l++] = 0.;
812:     while (l < ndegree && degrees[l] - k == 0) {
813:       p[l] = pm2;
814:       for (m = 0; m < k; m++) p[l] *= (abk1 + m) * 0.5;
815:       l++;
816:     }
817:     while (l < ndegree && degrees[l] - k == 1) {
818:       p[l] = pm1;
819:       for (m = 0; m < k; m++) p[l] *= (abk1 + 1 + m) * 0.5;
820:       l++;
821:     }
822:     for (j = 2; j <= maxdegree; j++) {
823:       PetscReal pp;

825:       PetscDTJacobiRecurrence_Internal(j, ak, bk, cnm1, cnm1x, cnm2);
826:       pp  = (cnm1 + cnm1x * x) * pm1 - cnm2 * pm2;
827:       pm2 = pm1;
828:       pm1 = pp;
829:       while (l < ndegree && degrees[l] - k == j) {
830:         p[l] = pp;
831:         for (m = 0; m < k; m++) p[l] *= (abk1 + j + m) * 0.5;
832:         l++;
833:       }
834:     }
835:     p += ndegree;
836:   }
837:   PetscFunctionReturn(PETSC_SUCCESS);
838: }

840: /*@
841:   PetscDTJacobiEvalJet - Evaluate the jet (function and derivatives) of the Jacobi polynomials basis up to a given degree.

843:   Input Parameters:
844: + alpha   - the left exponent of the weight
845: . beta    - the right exponetn of the weight
846: . npoints - the number of points to evaluate the polynomials at
847: . points  - [npoints] array of point coordinates
848: . degree  - the maximm degree polynomial space to evaluate, (degree + 1) will be evaluated total.
849: - k       - the maximum derivative to evaluate in the jet, (k + 1) will be evaluated total.

851:   Output Parameter:
852: . p - an array containing the evaluations of the Jacobi polynomials's jets on the points.  the size is (degree + 1) x
853:       (k + 1) x npoints, which also describes the order of the dimensions of this three-dimensional array: the first
854:       (slowest varying) dimension is polynomial degree; the second dimension is derivative order; the third (fastest
855:       varying) dimension is the index of the evaluation point.

857:   Level: advanced

859:   Notes:
860:   The Jacobi polynomials with indices $\alpha$ and $\beta$ are orthogonal with respect to the
861:   weighted inner product $\langle f, g \rangle = \int_{-1}^1 (1+x)^{\alpha} (1-x)^{\beta} f(x)
862:   g(x) dx$.

864: .seealso: `PetscDTJacobiEval()`, `PetscDTPKDEvalJet()`
865: @*/
866: PetscErrorCode PetscDTJacobiEvalJet(PetscReal alpha, PetscReal beta, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt k, PetscReal p[])
867: {
868:   PetscInt   i, j, l;
869:   PetscInt  *degrees;
870:   PetscReal *psingle;

872:   PetscFunctionBegin;
873:   if (degree == 0) {
874:     PetscInt zero = 0;

876:     for (i = 0; i <= k; i++) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, i, points, 1, &zero, &p[i * npoints]));
877:     PetscFunctionReturn(PETSC_SUCCESS);
878:   }
879:   PetscCall(PetscMalloc1(degree + 1, &degrees));
880:   PetscCall(PetscMalloc1((degree + 1) * npoints, &psingle));
881:   for (i = 0; i <= degree; i++) degrees[i] = i;
882:   for (i = 0; i <= k; i++) {
883:     PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, i, points, degree + 1, degrees, psingle));
884:     for (j = 0; j <= degree; j++) {
885:       for (l = 0; l < npoints; l++) p[(j * (k + 1) + i) * npoints + l] = psingle[l * (degree + 1) + j];
886:     }
887:   }
888:   PetscCall(PetscFree(psingle));
889:   PetscCall(PetscFree(degrees));
890:   PetscFunctionReturn(PETSC_SUCCESS);
891: }

893: /*@
894:   PetscDTJacobiEval - evaluate Jacobi polynomials for the weight function $(1.+x)^{\alpha} (1.-x)^{\beta}$ at a set of points
895:   at points

897:   Not Collective

899:   Input Parameters:
900: + npoints - number of spatial points to evaluate at
901: . alpha   - the left exponent > -1
902: . beta    - the right exponent > -1
903: . points  - array of locations to evaluate at
904: . ndegree - number of basis degrees to evaluate
905: - degrees - sorted array of degrees to evaluate

907:   Output Parameters:
908: + B  - row-oriented basis evaluation matrix B[point*ndegree + degree] (dimension npoints*ndegrees, allocated by caller) (or `NULL`)
909: . D  - row-oriented derivative evaluation matrix (or `NULL`)
910: - D2 - row-oriented second derivative evaluation matrix (or `NULL`)

912:   Level: intermediate

914: .seealso: `PetscDTGaussQuadrature()`, `PetscDTLegendreEval()`
915: @*/
916: PetscErrorCode PetscDTJacobiEval(PetscInt npoints, PetscReal alpha, PetscReal beta, const PetscReal *points, PetscInt ndegree, const PetscInt *degrees, PeOp PetscReal B[], PeOp PetscReal D[], PeOp PetscReal D2[])
917: {
918:   PetscFunctionBegin;
919:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "alpha must be > -1.");
920:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "beta must be > -1.");
921:   if (!npoints || !ndegree) PetscFunctionReturn(PETSC_SUCCESS);
922:   if (B) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, 0, points, ndegree, degrees, B));
923:   if (D) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, 1, points, ndegree, degrees, D));
924:   if (D2) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, 2, points, ndegree, degrees, D2));
925:   PetscFunctionReturn(PETSC_SUCCESS);
926: }

928: /*@
929:   PetscDTLegendreEval - evaluate Legendre polynomials at points

931:   Not Collective

933:   Input Parameters:
934: + npoints - number of spatial points to evaluate at
935: . points  - array of locations to evaluate at
936: . ndegree - number of basis degrees to evaluate
937: - degrees - sorted array of degrees to evaluate

939:   Output Parameters:
940: + B  - row-oriented basis evaluation matrix B[point*ndegree + degree] (dimension `npoints`*`ndegrees`, allocated by caller) (or `NULL`)
941: . D  - row-oriented derivative evaluation matrix (or `NULL`)
942: - D2 - row-oriented second derivative evaluation matrix (or `NULL`)

944:   Level: intermediate

946: .seealso: `PetscDTGaussQuadrature()`
947: @*/
948: PetscErrorCode PetscDTLegendreEval(PetscInt npoints, const PetscReal *points, PetscInt ndegree, const PetscInt *degrees, PeOp PetscReal B[], PeOp PetscReal D[], PeOp PetscReal D2[])
949: {
950:   PetscFunctionBegin;
951:   PetscCall(PetscDTJacobiEval(npoints, 0., 0., points, ndegree, degrees, B, D, D2));
952:   PetscFunctionReturn(PETSC_SUCCESS);
953: }

955: /*@
956:   PetscDTIndexToGradedOrder - convert an index into a tuple of monomial degrees in a graded order (that is, if the degree sum of tuple x is less than the degree sum of tuple y,
957:   then the index of x is smaller than the index of y)

959:   Input Parameters:
960: + len   - the desired length of the degree tuple
961: - index - the index to convert: should be >= 0

963:   Output Parameter:
964: . degtup - filled with a tuple of degrees

966:   Level: beginner

968:   Note:
969:   For two tuples x and y with the same degree sum, partial degree sums over the final elements of the tuples
970:   acts as a tiebreaker.  For example, (2, 1, 1) and (1, 2, 1) have the same degree sum, but the degree sum over the
971:   last two elements is smaller for the former, so (2, 1, 1) < (1, 2, 1).

973: .seealso: `PetscDTGradedOrderToIndex()`
974: @*/
975: PetscErrorCode PetscDTIndexToGradedOrder(PetscInt len, PetscInt index, PetscInt degtup[])
976: {
977:   PetscInt i, total;
978:   PetscInt sum;

980:   PetscFunctionBeginHot;
981:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
982:   PetscCheck(index >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "index must be non-negative");
983:   total = 1;
984:   sum   = 0;
985:   while (index >= total) {
986:     index -= total;
987:     total = (total * (len + sum)) / (sum + 1);
988:     sum++;
989:   }
990:   for (i = 0; i < len; i++) {
991:     PetscInt c;

993:     degtup[i] = sum;
994:     for (c = 0, total = 1; c < sum; c++) {
995:       /* going into the loop, total is the number of way to have a tuple of sum exactly c with length len - 1 - i */
996:       if (index < total) break;
997:       index -= total;
998:       total = (total * (len - 1 - i + c)) / (c + 1);
999:       degtup[i]--;
1000:     }
1001:     sum -= degtup[i];
1002:   }
1003:   PetscFunctionReturn(PETSC_SUCCESS);
1004: }

1006: /*@
1007:   PetscDTGradedOrderToIndex - convert a tuple into an index in a graded order, the inverse of `PetscDTIndexToGradedOrder()`.

1009:   Input Parameters:
1010: + len    - the length of the degree tuple
1011: - degtup - tuple with this length

1013:   Output Parameter:
1014: . index - index in graded order: >= 0

1016:   Level: beginner

1018:   Note:
1019:   For two tuples x and y with the same degree sum, partial degree sums over the final elements of the tuples
1020:   acts as a tiebreaker.  For example, (2, 1, 1) and (1, 2, 1) have the same degree sum, but the degree sum over the
1021:   last two elements is smaller for the former, so (2, 1, 1) < (1, 2, 1).

1023: .seealso: `PetscDTIndexToGradedOrder()`
1024: @*/
1025: PetscErrorCode PetscDTGradedOrderToIndex(PetscInt len, const PetscInt degtup[], PetscInt *index)
1026: {
1027:   PetscInt i, idx, sum, total;

1029:   PetscFunctionBeginHot;
1030:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
1031:   for (i = 0, sum = 0; i < len; i++) sum += degtup[i];
1032:   idx   = 0;
1033:   total = 1;
1034:   for (i = 0; i < sum; i++) {
1035:     idx += total;
1036:     total = (total * (len + i)) / (i + 1);
1037:   }
1038:   for (i = 0; i < len - 1; i++) {
1039:     PetscInt c;

1041:     total = 1;
1042:     sum -= degtup[i];
1043:     for (c = 0; c < sum; c++) {
1044:       idx += total;
1045:       total = (total * (len - 1 - i + c)) / (c + 1);
1046:     }
1047:   }
1048:   *index = idx;
1049:   PetscFunctionReturn(PETSC_SUCCESS);
1050: }

1052: static PetscBool PKDCite       = PETSC_FALSE;
1053: const char       PKDCitation[] = "@article{Kirby2010,\n"
1054:                                  "  title={Singularity-free evaluation of collapsed-coordinate orthogonal polynomials},\n"
1055:                                  "  author={Kirby, Robert C},\n"
1056:                                  "  journal={ACM Transactions on Mathematical Software (TOMS)},\n"
1057:                                  "  volume={37},\n"
1058:                                  "  number={1},\n"
1059:                                  "  pages={1--16},\n"
1060:                                  "  year={2010},\n"
1061:                                  "  publisher={ACM New York, NY, USA}\n}\n";

1063: /*@
1064:   PetscDTPKDEvalJet - Evaluate the jet (function and derivatives) of the Proriol-Koornwinder-Dubiner (PKD) basis for
1065:   the space of polynomials up to a given degree.

1067:   Input Parameters:
1068: + dim     - the number of variables in the multivariate polynomials
1069: . npoints - the number of points to evaluate the polynomials at
1070: . points  - [npoints x dim] array of point coordinates
1071: . degree  - the degree (sum of degrees on the variables in a monomial) of the polynomial space to evaluate.  There are ((dim + degree) choose dim) polynomials in this space.
1072: - k       - the maximum order partial derivative to evaluate in the jet.  There are (dim + k choose dim) partial derivatives
1073:             in the jet.  Choosing k = 0 means to evaluate just the function and no derivatives

1075:   Output Parameter:
1076: . p - an array containing the evaluations of the PKD polynomials' jets on the points.  The size is ((dim + degree)
1077:       choose dim) x ((dim + k) choose dim) x npoints, which also describes the order of the dimensions of this
1078:       three-dimensional array: the first (slowest varying) dimension is basis function index; the second dimension is jet
1079:       index; the third (fastest varying) dimension is the index of the evaluation point.

1081:   Level: advanced

1083:   Notes:
1084:   The PKD basis is L2-orthonormal on the biunit simplex (which is used as the reference element
1085:   for finite elements in PETSc), which makes it a stable basis to use for evaluating
1086:   polynomials in that domain.

1088:   The ordering of the basis functions, and the ordering of the derivatives in the jet, both follow the graded
1089:   ordering of `PetscDTIndexToGradedOrder()` and `PetscDTGradedOrderToIndex()`.  For example, in 3D, the polynomial with
1090:   leading monomial x^2,y^0,z^1, which has degree tuple (2,0,1), which by `PetscDTGradedOrderToIndex()` has index 12 (it is the 13th basis function in the space);
1091:   the partial derivative $\partial_x \partial_z$ has order tuple (1,0,1), appears at index 6 in the jet (it is the 7th partial derivative in the jet).

1093:   The implementation uses Kirby's singularity-free evaluation algorithm, <https://doi.org/10.1145/1644001.1644006>.

1095: .seealso: `PetscDTGradedOrderToIndex()`, `PetscDTIndexToGradedOrder()`, `PetscDTJacobiEvalJet()`
1096: @*/
1097: PetscErrorCode PetscDTPKDEvalJet(PetscInt dim, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt k, PetscReal p[])
1098: {
1099:   PetscInt   degidx, kidx, d, pt;
1100:   PetscInt   Nk, Ndeg;
1101:   PetscInt  *ktup, *degtup;
1102:   PetscReal *scales, initscale, scaleexp;

1104:   PetscFunctionBegin;
1105:   PetscCall(PetscCitationsRegister(PKDCitation, &PKDCite));
1106:   PetscCall(PetscDTBinomialInt(dim + k, k, &Nk));
1107:   PetscCall(PetscDTBinomialInt(degree + dim, degree, &Ndeg));
1108:   PetscCall(PetscMalloc2(dim, &degtup, dim, &ktup));
1109:   PetscCall(PetscMalloc1(Ndeg, &scales));
1110:   initscale = 1.;
1111:   if (dim > 1) {
1112:     PetscCall(PetscDTBinomial(dim, 2, &scaleexp));
1113:     initscale = PetscPowReal(2., scaleexp * 0.5);
1114:   }
1115:   for (degidx = 0; degidx < Ndeg; degidx++) {
1116:     PetscInt  e, i;
1117:     PetscInt  m1idx = -1, m2idx = -1;
1118:     PetscInt  n;
1119:     PetscInt  degsum;
1120:     PetscReal alpha;
1121:     PetscReal cnm1, cnm1x, cnm2;
1122:     PetscReal norm;

1124:     PetscCall(PetscDTIndexToGradedOrder(dim, degidx, degtup));
1125:     for (d = dim - 1; d >= 0; d--)
1126:       if (degtup[d]) break;
1127:     if (d < 0) { /* constant is 1 everywhere, all derivatives are zero */
1128:       scales[degidx] = initscale;
1129:       for (e = 0; e < dim; e++) {
1130:         PetscCall(PetscDTJacobiNorm(e, 0., 0, &norm));
1131:         scales[degidx] /= norm;
1132:       }
1133:       for (i = 0; i < npoints; i++) p[degidx * Nk * npoints + i] = 1.;
1134:       for (i = 0; i < (Nk - 1) * npoints; i++) p[(degidx * Nk + 1) * npoints + i] = 0.;
1135:       continue;
1136:     }
1137:     n = degtup[d];
1138:     degtup[d]--;
1139:     PetscCall(PetscDTGradedOrderToIndex(dim, degtup, &m1idx));
1140:     if (degtup[d] > 0) {
1141:       degtup[d]--;
1142:       PetscCall(PetscDTGradedOrderToIndex(dim, degtup, &m2idx));
1143:       degtup[d]++;
1144:     }
1145:     degtup[d]++;
1146:     for (e = 0, degsum = 0; e < d; e++) degsum += degtup[e];
1147:     alpha = 2 * degsum + d;
1148:     PetscDTJacobiRecurrence_Internal(n, alpha, 0., cnm1, cnm1x, cnm2);

1150:     scales[degidx] = initscale;
1151:     for (e = 0, degsum = 0; e < dim; e++) {
1152:       PetscInt  f;
1153:       PetscReal ealpha;
1154:       PetscReal enorm;

1156:       ealpha = 2 * degsum + e;
1157:       for (f = 0; f < degsum; f++) scales[degidx] *= 2.;
1158:       PetscCall(PetscDTJacobiNorm(ealpha, 0., degtup[e], &enorm));
1159:       scales[degidx] /= enorm;
1160:       degsum += degtup[e];
1161:     }

1163:     for (pt = 0; pt < npoints; pt++) {
1164:       /* compute the multipliers */
1165:       PetscReal thetanm1, thetanm1x, thetanm2;

1167:       thetanm1x = dim - (d + 1) + 2. * points[pt * dim + d];
1168:       for (e = d + 1; e < dim; e++) thetanm1x += points[pt * dim + e];
1169:       thetanm1x *= 0.5;
1170:       thetanm1 = (2. - (dim - (d + 1)));
1171:       for (e = d + 1; e < dim; e++) thetanm1 -= points[pt * dim + e];
1172:       thetanm1 *= 0.5;
1173:       thetanm2 = thetanm1 * thetanm1;

1175:       for (kidx = 0; kidx < Nk; kidx++) {
1176:         PetscInt f;

1178:         PetscCall(PetscDTIndexToGradedOrder(dim, kidx, ktup));
1179:         /* first sum in the same derivative terms */
1180:         p[(degidx * Nk + kidx) * npoints + pt] = (cnm1 * thetanm1 + cnm1x * thetanm1x) * p[(m1idx * Nk + kidx) * npoints + pt];
1181:         if (m2idx >= 0) p[(degidx * Nk + kidx) * npoints + pt] -= cnm2 * thetanm2 * p[(m2idx * Nk + kidx) * npoints + pt];

1183:         for (f = d; f < dim; f++) {
1184:           PetscInt km1idx, mplty = ktup[f];

1186:           if (!mplty) continue;
1187:           ktup[f]--;
1188:           PetscCall(PetscDTGradedOrderToIndex(dim, ktup, &km1idx));

1190:           /* the derivative of  cnm1x * thetanm1x  wrt x variable f is 0.5 * cnm1x if f > d otherwise it is cnm1x */
1191:           /* the derivative of  cnm1  * thetanm1   wrt x variable f is 0 if f == d, otherwise it is -0.5 * cnm1 */
1192:           /* the derivative of -cnm2  * thetanm2   wrt x variable f is 0 if f == d, otherwise it is cnm2 * thetanm1 */
1193:           if (f > d) {
1194:             PetscInt f2;

1196:             p[(degidx * Nk + kidx) * npoints + pt] += mplty * 0.5 * (cnm1x - cnm1) * p[(m1idx * Nk + km1idx) * npoints + pt];
1197:             if (m2idx >= 0) {
1198:               p[(degidx * Nk + kidx) * npoints + pt] += mplty * cnm2 * thetanm1 * p[(m2idx * Nk + km1idx) * npoints + pt];
1199:               /* second derivatives of -cnm2  * thetanm2   wrt x variable f,f2 is like - 0.5 * cnm2 */
1200:               for (f2 = f; f2 < dim; f2++) {
1201:                 PetscInt km2idx, mplty2 = ktup[f2];
1202:                 PetscInt factor;

1204:                 if (!mplty2) continue;
1205:                 ktup[f2]--;
1206:                 PetscCall(PetscDTGradedOrderToIndex(dim, ktup, &km2idx));

1208:                 factor = mplty * mplty2;
1209:                 if (f == f2) factor /= 2;
1210:                 p[(degidx * Nk + kidx) * npoints + pt] -= 0.5 * factor * cnm2 * p[(m2idx * Nk + km2idx) * npoints + pt];
1211:                 ktup[f2]++;
1212:               }
1213:             }
1214:           } else {
1215:             p[(degidx * Nk + kidx) * npoints + pt] += mplty * cnm1x * p[(m1idx * Nk + km1idx) * npoints + pt];
1216:           }
1217:           ktup[f]++;
1218:         }
1219:       }
1220:     }
1221:   }
1222:   for (degidx = 0; degidx < Ndeg; degidx++) {
1223:     PetscReal scale = scales[degidx];
1224:     PetscInt  i;

1226:     for (i = 0; i < Nk * npoints; i++) p[degidx * Nk * npoints + i] *= scale;
1227:   }
1228:   PetscCall(PetscFree(scales));
1229:   PetscCall(PetscFree2(degtup, ktup));
1230:   PetscFunctionReturn(PETSC_SUCCESS);
1231: }

1233: /*@
1234:   PetscDTPTrimmedSize - The size of the trimmed polynomial space of k-forms with a given degree and form degree,
1235:   which can be evaluated in `PetscDTPTrimmedEvalJet()`.

1237:   Input Parameters:
1238: + dim        - the number of variables in the multivariate polynomials
1239: . degree     - the degree (sum of degrees on the variables in a monomial) of the trimmed polynomial space.
1240: - formDegree - the degree of the form

1242:   Output Parameter:
1243: . size - The number ((`dim` + `degree`) choose (`dim` + `formDegree`)) x ((`degree` + `formDegree` - 1) choose (`formDegree`))

1245:   Level: advanced

1247: .seealso: `PetscDTPTrimmedEvalJet()`
1248: @*/
1249: PetscErrorCode PetscDTPTrimmedSize(PetscInt dim, PetscInt degree, PetscInt formDegree, PetscInt *size)
1250: {
1251:   PetscInt Nrk, Nbpt; // number of trimmed polynomials

1253:   PetscFunctionBegin;
1254:   formDegree = PetscAbsInt(formDegree);
1255:   PetscCall(PetscDTBinomialInt(degree + dim, degree + formDegree, &Nbpt));
1256:   PetscCall(PetscDTBinomialInt(degree + formDegree - 1, formDegree, &Nrk));
1257:   Nbpt *= Nrk;
1258:   *size = Nbpt;
1259:   PetscFunctionReturn(PETSC_SUCCESS);
1260: }

1262: /* there was a reference implementation based on section 4.4 of Arnold, Falk & Winther (acta numerica, 2006), but it
1263:  * was inferior to this implementation */
1264: static PetscErrorCode PetscDTPTrimmedEvalJet_Internal(PetscInt dim, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt formDegree, PetscInt jetDegree, PetscReal p[])
1265: {
1266:   PetscInt  formDegreeOrig = formDegree;
1267:   PetscBool formNegative   = (formDegreeOrig < 0) ? PETSC_TRUE : PETSC_FALSE;

1269:   PetscFunctionBegin;
1270:   formDegree = PetscAbsInt(formDegreeOrig);
1271:   if (formDegree == 0) {
1272:     PetscCall(PetscDTPKDEvalJet(dim, npoints, points, degree, jetDegree, p));
1273:     PetscFunctionReturn(PETSC_SUCCESS);
1274:   }
1275:   if (formDegree == dim) {
1276:     PetscCall(PetscDTPKDEvalJet(dim, npoints, points, degree - 1, jetDegree, p));
1277:     PetscFunctionReturn(PETSC_SUCCESS);
1278:   }
1279:   PetscInt Nbpt;
1280:   PetscCall(PetscDTPTrimmedSize(dim, degree, formDegree, &Nbpt));
1281:   PetscInt Nf;
1282:   PetscCall(PetscDTBinomialInt(dim, formDegree, &Nf));
1283:   PetscInt Nk;
1284:   PetscCall(PetscDTBinomialInt(dim + jetDegree, dim, &Nk));
1285:   PetscCall(PetscArrayzero(p, Nbpt * Nf * Nk * npoints));

1287:   PetscInt Nbpm1; // number of scalar polynomials up to degree - 1;
1288:   PetscCall(PetscDTBinomialInt(dim + degree - 1, dim, &Nbpm1));
1289:   PetscReal *p_scalar;
1290:   PetscCall(PetscMalloc1(Nbpm1 * Nk * npoints, &p_scalar));
1291:   PetscCall(PetscDTPKDEvalJet(dim, npoints, points, degree - 1, jetDegree, p_scalar));
1292:   PetscInt total = 0;
1293:   // First add the full polynomials up to degree - 1 into the basis: take the scalar
1294:   // and copy one for each form component
1295:   for (PetscInt i = 0; i < Nbpm1; i++) {
1296:     const PetscReal *src = &p_scalar[i * Nk * npoints];
1297:     for (PetscInt f = 0; f < Nf; f++) {
1298:       PetscReal *dest = &p[(total++ * Nf + f) * Nk * npoints];
1299:       PetscCall(PetscArraycpy(dest, src, Nk * npoints));
1300:     }
1301:   }
1302:   PetscInt *form_atoms;
1303:   PetscCall(PetscMalloc1(formDegree + 1, &form_atoms));
1304:   // construct the interior product pattern
1305:   PetscInt (*pattern)[3];
1306:   PetscInt Nf1; // number of formDegree + 1 forms
1307:   PetscCall(PetscDTBinomialInt(dim, formDegree + 1, &Nf1));
1308:   PetscInt nnz = Nf1 * (formDegree + 1);
1309:   PetscCall(PetscMalloc1(Nf1 * (formDegree + 1), &pattern));
1310:   PetscCall(PetscDTAltVInteriorPattern(dim, formDegree + 1, pattern));
1311:   PetscReal centroid = (1. - dim) / (dim + 1.);
1312:   PetscInt *deriv;
1313:   PetscCall(PetscMalloc1(dim, &deriv));
1314:   for (PetscInt d = dim; d >= formDegree + 1; d--) {
1315:     PetscInt Nfd1; // number of formDegree + 1 forms in dimension d that include dx_0
1316:                    // (equal to the number of formDegree forms in dimension d-1)
1317:     PetscCall(PetscDTBinomialInt(d - 1, formDegree, &Nfd1));
1318:     // The number of homogeneous (degree-1) scalar polynomials in d variables
1319:     PetscInt Nh;
1320:     PetscCall(PetscDTBinomialInt(d - 1 + degree - 1, d - 1, &Nh));
1321:     const PetscReal *h_scalar = &p_scalar[(Nbpm1 - Nh) * Nk * npoints];
1322:     for (PetscInt b = 0; b < Nh; b++) {
1323:       const PetscReal *h_s = &h_scalar[b * Nk * npoints];
1324:       for (PetscInt f = 0; f < Nfd1; f++) {
1325:         // construct all formDegree+1 forms that start with dx_(dim - d) /\ ...
1326:         form_atoms[0] = dim - d;
1327:         PetscCall(PetscDTEnumSubset(d - 1, formDegree, f, &form_atoms[1]));
1328:         for (PetscInt i = 0; i < formDegree; i++) form_atoms[1 + i] += form_atoms[0] + 1;
1329:         PetscInt f_ind; // index of the resulting form
1330:         PetscCall(PetscDTSubsetIndex(dim, formDegree + 1, form_atoms, &f_ind));
1331:         PetscReal *p_f = &p[total++ * Nf * Nk * npoints];
1332:         for (PetscInt nz = 0; nz < nnz; nz++) {
1333:           PetscInt  i     = pattern[nz][0]; // formDegree component
1334:           PetscInt  j     = pattern[nz][1]; // (formDegree + 1) component
1335:           PetscInt  v     = pattern[nz][2]; // coordinate component
1336:           PetscReal scale = v < 0 ? -1. : 1.;

1338:           i     = formNegative ? (Nf - 1 - i) : i;
1339:           scale = (formNegative && (i & 1)) ? -scale : scale;
1340:           v     = v < 0 ? -(v + 1) : v;
1341:           if (j != f_ind) continue;
1342:           PetscReal *p_i = &p_f[i * Nk * npoints];
1343:           for (PetscInt jet = 0; jet < Nk; jet++) {
1344:             const PetscReal *h_jet = &h_s[jet * npoints];
1345:             PetscReal       *p_jet = &p_i[jet * npoints];

1347:             for (PetscInt pt = 0; pt < npoints; pt++) p_jet[pt] += scale * h_jet[pt] * (points[pt * dim + v] - centroid);
1348:             PetscCall(PetscDTIndexToGradedOrder(dim, jet, deriv));
1349:             deriv[v]++;
1350:             PetscReal mult = deriv[v];
1351:             PetscInt  l;
1352:             PetscCall(PetscDTGradedOrderToIndex(dim, deriv, &l));
1353:             if (l >= Nk) continue;
1354:             p_jet = &p_i[l * npoints];
1355:             for (PetscInt pt = 0; pt < npoints; pt++) p_jet[pt] += scale * mult * h_jet[pt];
1356:             deriv[v]--;
1357:           }
1358:         }
1359:       }
1360:     }
1361:   }
1362:   PetscCheck(total == Nbpt, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrectly counted P trimmed polynomials");
1363:   PetscCall(PetscFree(deriv));
1364:   PetscCall(PetscFree(pattern));
1365:   PetscCall(PetscFree(form_atoms));
1366:   PetscCall(PetscFree(p_scalar));
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: /*@
1371:   PetscDTPTrimmedEvalJet - Evaluate the jet (function and derivatives) of a basis of the trimmed polynomial k-forms up to
1372:   a given degree.

1374:   Input Parameters:
1375: + dim        - the number of variables in the multivariate polynomials
1376: . npoints    - the number of points to evaluate the polynomials at
1377: . points     - [npoints x dim] array of point coordinates
1378: . degree     - the degree (sum of degrees on the variables in a monomial) of the trimmed polynomial space to evaluate.
1379:            There are ((dim + degree) choose (dim + formDegree)) x ((degree + formDegree - 1) choose (formDegree)) polynomials in this space.
1380:            (You can use `PetscDTPTrimmedSize()` to compute this size.)
1381: . formDegree - the degree of the form
1382: - jetDegree  - the maximum order partial derivative to evaluate in the jet.  There are ((dim + jetDegree) choose dim) partial derivatives
1383:               in the jet.  Choosing jetDegree = 0 means to evaluate just the function and no derivatives

1385:   Output Parameter:
1386: . p - an array containing the evaluations of the PKD polynomials' jets on the points.

1388:   Level: advanced

1390:   Notes:
1391:   The size of `p` is `PetscDTPTrimmedSize()` x ((dim + formDegree) choose dim) x ((dim + k)
1392:   choose dim) x npoints,which also describes the order of the dimensions of this
1393:   four-dimensional array\:

1395:   the first (slowest varying) dimension is basis function index;
1396:   the second dimension is component of the form;
1397:   the third dimension is jet index;
1398:   the fourth (fastest varying) dimension is the index of the evaluation point.

1400:   The ordering of the basis functions is not graded, so the basis functions are not nested by degree like `PetscDTPKDEvalJet()`.
1401:   The basis functions are not an L2-orthonormal basis on any particular domain.

1403:   The implementation is based on the description of the trimmed polynomials up to degree r as
1404:   the direct sum of polynomials up to degree (r-1) and the Koszul differential applied to
1405:   homogeneous polynomials of degree (r-1).

1407: .seealso: `PetscDTPKDEvalJet()`, `PetscDTPTrimmedSize()`
1408: @*/
1409: PetscErrorCode PetscDTPTrimmedEvalJet(PetscInt dim, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt formDegree, PetscInt jetDegree, PetscReal p[])
1410: {
1411:   PetscFunctionBegin;
1412:   PetscCall(PetscDTPTrimmedEvalJet_Internal(dim, npoints, points, degree, formDegree, jetDegree, p));
1413:   PetscFunctionReturn(PETSC_SUCCESS);
1414: }

1416: /* solve the symmetric tridiagonal eigenvalue system, writing the eigenvalues into eigs and the eigenvectors into V
1417:  * with lds n; diag and subdiag are overwritten */
1418: static PetscErrorCode PetscDTSymmetricTridiagonalEigensolve(PetscInt n, PetscReal diag[], PetscReal subdiag[], PetscReal eigs[], PetscScalar V[])
1419: {
1420:   char          jobz   = 'V'; /* eigenvalues and eigenvectors */
1421:   char          range  = 'A'; /* all eigenvalues will be found */
1422:   PetscReal     VL     = 0.;  /* ignored because range is 'A' */
1423:   PetscReal     VU     = 0.;  /* ignored because range is 'A' */
1424:   PetscBLASInt  IL     = 0;   /* ignored because range is 'A' */
1425:   PetscBLASInt  IU     = 0;   /* ignored because range is 'A' */
1426:   PetscReal     abstol = 0.;  /* unused */
1427:   PetscBLASInt  bn, bm, ldz;  /* bm will equal bn on exit */
1428:   PetscBLASInt *isuppz;
1429:   PetscBLASInt  lwork, liwork;
1430:   PetscReal     workquery;
1431:   PetscBLASInt  iworkquery;
1432:   PetscBLASInt *iwork;
1433:   PetscBLASInt  info;
1434:   PetscReal    *work = NULL;

1436:   PetscFunctionBegin;
1437: #if !defined(PETSCDTGAUSSIANQUADRATURE_EIG)
1438:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP_SYS, "A LAPACK symmetric tridiagonal eigensolver could not be found");
1439: #endif
1440:   PetscCall(PetscBLASIntCast(n, &bn));
1441:   PetscCall(PetscBLASIntCast(n, &ldz));
1442: #if !defined(PETSC_MISSING_LAPACK_STEGR)
1443:   PetscCall(PetscMalloc1(2 * n, &isuppz));
1444:   lwork  = -1;
1445:   liwork = -1;
1446:   PetscCallBLAS("LAPACKstegr", LAPACKstegr_(&jobz, &range, &bn, diag, subdiag, &VL, &VU, &IL, &IU, &abstol, &bm, eigs, V, &ldz, isuppz, &workquery, &lwork, &iworkquery, &liwork, &info));
1447:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_PLIB, "xSTEGR error");
1448:   lwork  = (PetscBLASInt)workquery;
1449:   liwork = iworkquery;
1450:   PetscCall(PetscMalloc2(lwork, &work, liwork, &iwork));
1451:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
1452:   PetscCallBLAS("LAPACKstegr", LAPACKstegr_(&jobz, &range, &bn, diag, subdiag, &VL, &VU, &IL, &IU, &abstol, &bm, eigs, V, &ldz, isuppz, work, &lwork, iwork, &liwork, &info));
1453:   PetscCall(PetscFPTrapPop());
1454:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_PLIB, "xSTEGR error");
1455:   PetscCall(PetscFree2(work, iwork));
1456:   PetscCall(PetscFree(isuppz));
1457: #elif !defined(PETSC_MISSING_LAPACK_STEQR)
1458:   jobz = 'I'; /* Compute eigenvalues and eigenvectors of the
1459:                  tridiagonal matrix.  Z is initialized to the identity
1460:                  matrix. */
1461:   PetscCall(PetscMalloc1(PetscMax(1, 2 * n - 2), &work));
1462:   PetscCallBLAS("LAPACKsteqr", LAPACKsteqr_("I", &bn, diag, subdiag, V, &ldz, work, &info));
1463:   PetscCall(PetscFPTrapPop());
1464:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_PLIB, "xSTEQR error");
1465:   PetscCall(PetscFree(work));
1466:   PetscCall(PetscArraycpy(eigs, diag, n));
1467: #endif
1468:   PetscFunctionReturn(PETSC_SUCCESS);
1469: }

1471: /* Formula for the weights at the endpoints (-1 and 1) of Gauss-Lobatto-Jacobi
1472:  * quadrature rules on the interval [-1, 1] */
1473: static PetscErrorCode PetscDTGaussLobattoJacobiEndweights_Internal(PetscInt n, PetscReal alpha, PetscReal beta, PetscReal *leftw, PetscReal *rightw)
1474: {
1475:   PetscReal twoab1;
1476:   PetscInt  m = n - 2;
1477:   PetscReal a = alpha + 1.;
1478:   PetscReal b = beta + 1.;
1479:   PetscReal gra, grb;

1481:   PetscFunctionBegin;
1482:   twoab1 = PetscPowReal(2., a + b - 1.);
1483: #if defined(PETSC_HAVE_LGAMMA)
1484:   grb = PetscExpReal(2. * PetscLGamma(b + 1.) + PetscLGamma(m + 1.) + PetscLGamma(m + a + 1.) - (PetscLGamma(m + b + 1) + PetscLGamma(m + a + b + 1.)));
1485:   gra = PetscExpReal(2. * PetscLGamma(a + 1.) + PetscLGamma(m + 1.) + PetscLGamma(m + b + 1.) - (PetscLGamma(m + a + 1) + PetscLGamma(m + a + b + 1.)));
1486: #else
1487:   {
1488:     PetscReal binom1, binom2;
1489:     PetscInt  alphai = (PetscInt)alpha;
1490:     PetscInt  betai  = (PetscInt)beta;

1492:     PetscCheck((PetscReal)alphai == alpha && (PetscReal)betai == beta, PETSC_COMM_SELF, PETSC_ERR_SUP, "lgamma() - math routine is unavailable.");
1493:     PetscCall(PetscDTBinomial(m + b, b, &binom1));
1494:     PetscCall(PetscDTBinomial(m + a + b, b, &binom2));
1495:     grb = 1. / (binom1 * binom2);
1496:     PetscCall(PetscDTBinomial(m + a, a, &binom1));
1497:     PetscCall(PetscDTBinomial(m + a + b, a, &binom2));
1498:     gra = 1. / (binom1 * binom2);
1499:   }
1500: #endif
1501:   *leftw  = twoab1 * grb / b;
1502:   *rightw = twoab1 * gra / a;
1503:   PetscFunctionReturn(PETSC_SUCCESS);
1504: }

1506: /* Evaluates the nth jacobi polynomial with weight parameters a,b at a point x.
1507:    Recurrence relations implemented from the pseudocode given in Karniadakis and Sherwin, Appendix B */
1508: static inline PetscErrorCode PetscDTComputeJacobi(PetscReal a, PetscReal b, PetscInt n, PetscReal x, PetscReal *P)
1509: {
1510:   PetscReal pn1, pn2;
1511:   PetscReal cnm1, cnm1x, cnm2;
1512:   PetscInt  k;

1514:   PetscFunctionBegin;
1515:   if (!n) {
1516:     *P = 1.0;
1517:     PetscFunctionReturn(PETSC_SUCCESS);
1518:   }
1519:   PetscDTJacobiRecurrence_Internal(1, a, b, cnm1, cnm1x, cnm2);
1520:   pn2 = 1.;
1521:   pn1 = cnm1 + cnm1x * x;
1522:   if (n == 1) {
1523:     *P = pn1;
1524:     PetscFunctionReturn(PETSC_SUCCESS);
1525:   }
1526:   *P = 0.0;
1527:   for (k = 2; k < n + 1; ++k) {
1528:     PetscDTJacobiRecurrence_Internal(k, a, b, cnm1, cnm1x, cnm2);

1530:     *P  = (cnm1 + cnm1x * x) * pn1 - cnm2 * pn2;
1531:     pn2 = pn1;
1532:     pn1 = *P;
1533:   }
1534:   PetscFunctionReturn(PETSC_SUCCESS);
1535: }

1537: /* Evaluates the first derivative of P_{n}^{a,b} at a point x. */
1538: static inline PetscErrorCode PetscDTComputeJacobiDerivative(PetscReal a, PetscReal b, PetscInt n, PetscReal x, PetscInt k, PetscReal *P)
1539: {
1540:   PetscReal nP;
1541:   PetscInt  i;

1543:   PetscFunctionBegin;
1544:   *P = 0.0;
1545:   if (k > n) PetscFunctionReturn(PETSC_SUCCESS);
1546:   PetscCall(PetscDTComputeJacobi(a + k, b + k, n - k, x, &nP));
1547:   for (i = 0; i < k; i++) nP *= (a + b + n + 1. + i) * 0.5;
1548:   *P = nP;
1549:   PetscFunctionReturn(PETSC_SUCCESS);
1550: }

1552: static PetscErrorCode PetscDTGaussJacobiQuadrature_Newton_Internal(PetscInt npoints, PetscReal a, PetscReal b, PetscReal x[], PetscReal w[])
1553: {
1554:   PetscInt  maxIter = 100;
1555:   PetscReal eps     = PetscExpReal(0.75 * PetscLogReal(PETSC_MACHINE_EPSILON));
1556:   PetscReal a1, a6, gf;
1557:   PetscInt  k;

1559:   PetscFunctionBegin;
1560:   a1 = PetscPowReal(2.0, a + b + 1);
1561: #if defined(PETSC_HAVE_LGAMMA)
1562:   {
1563:     PetscReal a2, a3, a4, a5;
1564:     a2 = PetscLGamma(a + npoints + 1);
1565:     a3 = PetscLGamma(b + npoints + 1);
1566:     a4 = PetscLGamma(a + b + npoints + 1);
1567:     a5 = PetscLGamma(npoints + 1);
1568:     gf = PetscExpReal(a2 + a3 - (a4 + a5));
1569:   }
1570: #else
1571:   {
1572:     PetscInt ia, ib;

1574:     ia = (PetscInt)a;
1575:     ib = (PetscInt)b;
1576:     gf = 1.;
1577:     if (ia == a && ia >= 0) { /* compute ratio of rising factorals wrt a */
1578:       for (k = 0; k < ia; k++) gf *= (npoints + 1. + k) / (npoints + b + 1. + k);
1579:     } else if (b == b && ib >= 0) { /* compute ratio of rising factorials wrt b */
1580:       for (k = 0; k < ib; k++) gf *= (npoints + 1. + k) / (npoints + a + 1. + k);
1581:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "lgamma() - math routine is unavailable.");
1582:   }
1583: #endif

1585:   a6 = a1 * gf;
1586:   /* Computes the m roots of P_{m}^{a,b} on [-1,1] by Newton's method with Chebyshev points as initial guesses.
1587:    Algorithm implemented from the pseudocode given by Karniadakis and Sherwin and Python in FIAT */
1588:   for (k = 0; k < npoints; ++k) {
1589:     PetscReal r = PetscCosReal(PETSC_PI * (1. - (4. * k + 3. + 2. * b) / (4. * npoints + 2. * (a + b + 1.)))), dP;
1590:     PetscInt  j;

1592:     if (k > 0) r = 0.5 * (r + x[k - 1]);
1593:     for (j = 0; j < maxIter; ++j) {
1594:       PetscReal s = 0.0, delta, f, fp;
1595:       PetscInt  i;

1597:       for (i = 0; i < k; ++i) s = s + 1.0 / (r - x[i]);
1598:       PetscCall(PetscDTComputeJacobi(a, b, npoints, r, &f));
1599:       PetscCall(PetscDTComputeJacobiDerivative(a, b, npoints, r, 1, &fp));
1600:       delta = f / (fp - f * s);
1601:       r     = r - delta;
1602:       if (PetscAbsReal(delta) < eps) break;
1603:     }
1604:     x[k] = r;
1605:     PetscCall(PetscDTComputeJacobiDerivative(a, b, npoints, x[k], 1, &dP));
1606:     w[k] = a6 / (1.0 - PetscSqr(x[k])) / PetscSqr(dP);
1607:   }
1608:   PetscFunctionReturn(PETSC_SUCCESS);
1609: }

1611: /* Compute the diagonals of the Jacobi matrix used in Golub & Welsch algorithms for Gauss-Jacobi
1612:  * quadrature weight calculations on [-1,1] for exponents (1. + x)^a (1.-x)^b */
1613: static PetscErrorCode PetscDTJacobiMatrix_Internal(PetscInt nPoints, PetscReal a, PetscReal b, PetscReal *d, PetscReal *s)
1614: {
1615:   PetscInt i;

1617:   PetscFunctionBegin;
1618:   for (i = 0; i < nPoints; i++) {
1619:     PetscReal A, B, C;

1621:     PetscDTJacobiRecurrence_Internal(i + 1, a, b, A, B, C);
1622:     d[i] = -A / B;
1623:     if (i) s[i - 1] *= C / B;
1624:     if (i < nPoints - 1) s[i] = 1. / B;
1625:   }
1626:   PetscFunctionReturn(PETSC_SUCCESS);
1627: }

1629: static PetscErrorCode PetscDTGaussJacobiQuadrature_GolubWelsch_Internal(PetscInt npoints, PetscReal a, PetscReal b, PetscReal *x, PetscReal *w)
1630: {
1631:   PetscReal mu0;
1632:   PetscReal ga, gb, gab;
1633:   PetscInt  i;

1635:   PetscFunctionBegin;
1636:   PetscCall(PetscCitationsRegister(GolubWelschCitation, &GolubWelschCite));

1638: #if defined(PETSC_HAVE_TGAMMA)
1639:   ga  = PetscTGamma(a + 1);
1640:   gb  = PetscTGamma(b + 1);
1641:   gab = PetscTGamma(a + b + 2);
1642: #else
1643:   {
1644:     PetscInt ia = (PetscInt)a, ib = (PetscInt)b;

1646:     PetscCheck(ia == a && ib == b && ia + 1 > 0 && ib + 1 > 0 && ia + ib + 2 > 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "tgamma() - math routine is unavailable.");
1647:     /* All gamma(x) terms are (x-1)! terms */
1648:     PetscCall(PetscDTFactorial(ia, &ga));
1649:     PetscCall(PetscDTFactorial(ib, &gb));
1650:     PetscCall(PetscDTFactorial(ia + ib + 1, &gab));
1651:   }
1652: #endif
1653:   mu0 = PetscPowReal(2., a + b + 1.) * ga * gb / gab;

1655: #if defined(PETSCDTGAUSSIANQUADRATURE_EIG)
1656:   {
1657:     PetscReal   *diag, *subdiag;
1658:     PetscScalar *V;

1660:     PetscCall(PetscMalloc2(npoints, &diag, npoints, &subdiag));
1661:     PetscCall(PetscMalloc1(npoints * npoints, &V));
1662:     PetscCall(PetscDTJacobiMatrix_Internal(npoints, a, b, diag, subdiag));
1663:     for (i = 0; i < npoints - 1; i++) subdiag[i] = PetscSqrtReal(subdiag[i]);
1664:     PetscCall(PetscDTSymmetricTridiagonalEigensolve(npoints, diag, subdiag, x, V));
1665:     for (i = 0; i < npoints; i++) w[i] = PetscSqr(PetscRealPart(V[i * npoints])) * mu0;
1666:     PetscCall(PetscFree(V));
1667:     PetscCall(PetscFree2(diag, subdiag));
1668:   }
1669: #else
1670:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP_SYS, "A LAPACK symmetric tridiagonal eigensolver could not be found");
1671: #endif
1672:   { /* As of March 2, 2020, The Sun Performance Library breaks the LAPACK contract for xstegr and xsteqr: the
1673:        eigenvalues are not guaranteed to be in ascending order.  So we heave a passive aggressive sigh and check that
1674:        the eigenvalues are sorted */
1675:     PetscBool sorted;

1677:     PetscCall(PetscSortedReal(npoints, x, &sorted));
1678:     if (!sorted) {
1679:       PetscInt  *order, i;
1680:       PetscReal *tmp;

1682:       PetscCall(PetscMalloc2(npoints, &order, npoints, &tmp));
1683:       for (i = 0; i < npoints; i++) order[i] = i;
1684:       PetscCall(PetscSortRealWithPermutation(npoints, x, order));
1685:       PetscCall(PetscArraycpy(tmp, x, npoints));
1686:       for (i = 0; i < npoints; i++) x[i] = tmp[order[i]];
1687:       PetscCall(PetscArraycpy(tmp, w, npoints));
1688:       for (i = 0; i < npoints; i++) w[i] = tmp[order[i]];
1689:       PetscCall(PetscFree2(order, tmp));
1690:     }
1691:   }
1692:   PetscFunctionReturn(PETSC_SUCCESS);
1693: }

1695: static PetscErrorCode PetscDTGaussJacobiQuadrature_Internal(PetscInt npoints, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[], PetscBool newton)
1696: {
1697:   PetscFunctionBegin;
1698:   PetscCheck(npoints >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of points must be positive");
1699:   /* If asking for a 1D Lobatto point, just return the non-Lobatto 1D point */
1700:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "alpha must be > -1.");
1701:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "beta must be > -1.");

1703:   if (newton) PetscCall(PetscDTGaussJacobiQuadrature_Newton_Internal(npoints, alpha, beta, x, w));
1704:   else PetscCall(PetscDTGaussJacobiQuadrature_GolubWelsch_Internal(npoints, alpha, beta, x, w));
1705:   if (alpha == beta) { /* symmetrize */
1706:     PetscInt i;
1707:     for (i = 0; i < (npoints + 1) / 2; i++) {
1708:       PetscInt  j  = npoints - 1 - i;
1709:       PetscReal xi = x[i];
1710:       PetscReal xj = x[j];
1711:       PetscReal wi = w[i];
1712:       PetscReal wj = w[j];

1714:       x[i] = (xi - xj) / 2.;
1715:       x[j] = (xj - xi) / 2.;
1716:       w[i] = w[j] = (wi + wj) / 2.;
1717:     }
1718:   }
1719:   PetscFunctionReturn(PETSC_SUCCESS);
1720: }

1722: /*@
1723:   PetscDTGaussJacobiQuadrature - quadrature for the interval $[a, b]$ with the weight function
1724:   $(x-a)^\alpha (x-b)^\beta$.

1726:   Not Collective

1728:   Input Parameters:
1729: + npoints - the number of points in the quadrature rule
1730: . a       - the left endpoint of the interval
1731: . b       - the right endpoint of the interval
1732: . alpha   - the left exponent
1733: - beta    - the right exponent

1735:   Output Parameters:
1736: + x - array of length `npoints`, the locations of the quadrature points
1737: - w - array of length `npoints`, the weights of the quadrature points

1739:   Level: intermediate

1741:   Note:
1742:   This quadrature rule is exact for polynomials up to degree 2*`npoints` - 1.

1744: .seealso: `PetscDTGaussQuadrature()`
1745: @*/
1746: PetscErrorCode PetscDTGaussJacobiQuadrature(PetscInt npoints, PetscReal a, PetscReal b, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[])
1747: {
1748:   PetscInt i;

1750:   PetscFunctionBegin;
1751:   PetscCall(PetscDTGaussJacobiQuadrature_Internal(npoints, alpha, beta, x, w, PetscDTGaussQuadratureNewton_Internal));
1752:   if (a != -1. || b != 1.) { /* shift */
1753:     for (i = 0; i < npoints; i++) {
1754:       x[i] = (x[i] + 1.) * ((b - a) / 2.) + a;
1755:       w[i] *= (b - a) / 2.;
1756:     }
1757:   }
1758:   PetscFunctionReturn(PETSC_SUCCESS);
1759: }

1761: static PetscErrorCode PetscDTGaussLobattoJacobiQuadrature_Internal(PetscInt npoints, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[], PetscBool newton)
1762: {
1763:   PetscInt i;

1765:   PetscFunctionBegin;
1766:   PetscCheck(npoints >= 2, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of points must be positive");
1767:   /* If asking for a 1D Lobatto point, just return the non-Lobatto 1D point */
1768:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "alpha must be > -1.");
1769:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "beta must be > -1.");

1771:   x[0]           = -1.;
1772:   x[npoints - 1] = 1.;
1773:   if (npoints > 2) PetscCall(PetscDTGaussJacobiQuadrature_Internal(npoints - 2, alpha + 1., beta + 1., &x[1], &w[1], newton));
1774:   for (i = 1; i < npoints - 1; i++) w[i] /= (1. - x[i] * x[i]);
1775:   PetscCall(PetscDTGaussLobattoJacobiEndweights_Internal(npoints, alpha, beta, &w[0], &w[npoints - 1]));
1776:   PetscFunctionReturn(PETSC_SUCCESS);
1777: }

1779: /*@
1780:   PetscDTGaussLobattoJacobiQuadrature - quadrature for the interval $[a, b]$ with the weight function
1781:   $(x-a)^\alpha (x-b)^\beta$, with endpoints `a` and `b` included as quadrature points.

1783:   Not Collective

1785:   Input Parameters:
1786: + npoints - the number of points in the quadrature rule
1787: . a       - the left endpoint of the interval
1788: . b       - the right endpoint of the interval
1789: . alpha   - the left exponent
1790: - beta    - the right exponent

1792:   Output Parameters:
1793: + x - array of length `npoints`, the locations of the quadrature points
1794: - w - array of length `npoints`, the weights of the quadrature points

1796:   Level: intermediate

1798:   Note:
1799:   This quadrature rule is exact for polynomials up to degree 2*`npoints` - 3.

1801: .seealso: `PetscDTGaussJacobiQuadrature()`
1802: @*/
1803: PetscErrorCode PetscDTGaussLobattoJacobiQuadrature(PetscInt npoints, PetscReal a, PetscReal b, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[])
1804: {
1805:   PetscInt i;

1807:   PetscFunctionBegin;
1808:   PetscCall(PetscDTGaussLobattoJacobiQuadrature_Internal(npoints, alpha, beta, x, w, PetscDTGaussQuadratureNewton_Internal));
1809:   if (a != -1. || b != 1.) { /* shift */
1810:     for (i = 0; i < npoints; i++) {
1811:       x[i] = (x[i] + 1.) * ((b - a) / 2.) + a;
1812:       w[i] *= (b - a) / 2.;
1813:     }
1814:   }
1815:   PetscFunctionReturn(PETSC_SUCCESS);
1816: }

1818: /*@
1819:   PetscDTGaussQuadrature - create Gauss-Legendre quadrature

1821:   Not Collective

1823:   Input Parameters:
1824: + npoints - number of points
1825: . a       - left end of interval (often-1)
1826: - b       - right end of interval (often +1)

1828:   Output Parameters:
1829: + x - quadrature points
1830: - w - quadrature weights

1832:   Level: intermediate

1834:   Note:
1835:   See {cite}`golub1969calculation`

1837: .seealso: `PetscDTLegendreEval()`, `PetscDTGaussJacobiQuadrature()`
1838: @*/
1839: PetscErrorCode PetscDTGaussQuadrature(PetscInt npoints, PetscReal a, PetscReal b, PetscReal x[], PetscReal w[])
1840: {
1841:   PetscInt i;

1843:   PetscFunctionBegin;
1844:   PetscCall(PetscDTGaussJacobiQuadrature_Internal(npoints, 0., 0., x, w, PetscDTGaussQuadratureNewton_Internal));
1845:   if (a != -1. || b != 1.) { /* shift */
1846:     for (i = 0; i < npoints; i++) {
1847:       x[i] = (x[i] + 1.) * ((b - a) / 2.) + a;
1848:       w[i] *= (b - a) / 2.;
1849:     }
1850:   }
1851:   PetscFunctionReturn(PETSC_SUCCESS);
1852: }

1854: /*@
1855:   PetscDTGaussLobattoLegendreQuadrature - creates a set of the locations and weights of the Gauss-Lobatto-Legendre
1856:   nodes of a given size on the domain $[-1,1]$

1858:   Not Collective

1860:   Input Parameters:
1861: + npoints - number of grid nodes
1862: - type    - `PETSCGAUSSLOBATTOLEGENDRE_VIA_LINEAR_ALGEBRA` or `PETSCGAUSSLOBATTOLEGENDRE_VIA_NEWTON`

1864:   Output Parameters:
1865: + x - quadrature points, pass in an array of length `npoints`
1866: - w - quadrature weights, pass in an array of length `npoints`

1868:   Level: intermediate

1870:   Notes:
1871:   For n > 30  the Newton approach computes duplicate (incorrect) values for some nodes because the initial guess is apparently not
1872:   close enough to the desired solution

1874:   These are useful for implementing spectral methods based on Gauss-Lobatto-Legendre (GLL) nodes

1876:   See <https://epubs.siam.org/doi/abs/10.1137/110855442>  <https://epubs.siam.org/doi/abs/10.1137/120889873> for better ways to compute GLL nodes

1878: .seealso: `PetscDTGaussQuadrature()`, `PetscGaussLobattoLegendreCreateType`

1880: @*/
1881: PetscErrorCode PetscDTGaussLobattoLegendreQuadrature(PetscInt npoints, PetscGaussLobattoLegendreCreateType type, PetscReal x[], PetscReal w[])
1882: {
1883:   PetscBool newton;

1885:   PetscFunctionBegin;
1886:   PetscCheck(npoints >= 2, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must provide at least 2 grid points per element");
1887:   newton = (PetscBool)(type == PETSCGAUSSLOBATTOLEGENDRE_VIA_NEWTON);
1888:   PetscCall(PetscDTGaussLobattoJacobiQuadrature_Internal(npoints, 0., 0., x, w, newton));
1889:   PetscFunctionReturn(PETSC_SUCCESS);
1890: }

1892: /*@
1893:   PetscDTGaussTensorQuadrature - creates a tensor-product Gauss quadrature

1895:   Not Collective

1897:   Input Parameters:
1898: + dim     - The spatial dimension
1899: . Nc      - The number of components
1900: . npoints - number of points in one dimension
1901: . a       - left end of interval (often-1)
1902: - b       - right end of interval (often +1)

1904:   Output Parameter:
1905: . q - A `PetscQuadrature` object

1907:   Level: intermediate

1909: .seealso: `PetscDTGaussQuadrature()`, `PetscDTLegendreEval()`
1910: @*/
1911: PetscErrorCode PetscDTGaussTensorQuadrature(PetscInt dim, PetscInt Nc, PetscInt npoints, PetscReal a, PetscReal b, PetscQuadrature *q)
1912: {
1913:   DMPolytopeType ct;
1914:   PetscInt       totpoints = dim > 1 ? dim > 2 ? npoints * PetscSqr(npoints) : PetscSqr(npoints) : npoints;
1915:   PetscReal     *x, *w, *xw, *ww;

1917:   PetscFunctionBegin;
1918:   PetscCall(PetscMalloc1(totpoints * dim, &x));
1919:   PetscCall(PetscMalloc1(totpoints * Nc, &w));
1920:   /* Set up the Golub-Welsch system */
1921:   switch (dim) {
1922:   case 0:
1923:     ct = DM_POLYTOPE_POINT;
1924:     PetscCall(PetscFree(x));
1925:     PetscCall(PetscFree(w));
1926:     PetscCall(PetscMalloc1(1, &x));
1927:     PetscCall(PetscMalloc1(Nc, &w));
1928:     totpoints = 1;
1929:     x[0]      = 0.0;
1930:     for (PetscInt c = 0; c < Nc; ++c) w[c] = 1.0;
1931:     break;
1932:   case 1:
1933:     ct = DM_POLYTOPE_SEGMENT;
1934:     PetscCall(PetscMalloc1(npoints, &ww));
1935:     PetscCall(PetscDTGaussQuadrature(npoints, a, b, x, ww));
1936:     for (PetscInt i = 0; i < npoints; ++i)
1937:       for (PetscInt c = 0; c < Nc; ++c) w[i * Nc + c] = ww[i];
1938:     PetscCall(PetscFree(ww));
1939:     break;
1940:   case 2:
1941:     ct = DM_POLYTOPE_QUADRILATERAL;
1942:     PetscCall(PetscMalloc2(npoints, &xw, npoints, &ww));
1943:     PetscCall(PetscDTGaussQuadrature(npoints, a, b, xw, ww));
1944:     for (PetscInt i = 0; i < npoints; ++i) {
1945:       for (PetscInt j = 0; j < npoints; ++j) {
1946:         x[(i * npoints + j) * dim + 0] = xw[i];
1947:         x[(i * npoints + j) * dim + 1] = xw[j];
1948:         for (PetscInt c = 0; c < Nc; ++c) w[(i * npoints + j) * Nc + c] = ww[i] * ww[j];
1949:       }
1950:     }
1951:     PetscCall(PetscFree2(xw, ww));
1952:     break;
1953:   case 3:
1954:     ct = DM_POLYTOPE_HEXAHEDRON;
1955:     PetscCall(PetscMalloc2(npoints, &xw, npoints, &ww));
1956:     PetscCall(PetscDTGaussQuadrature(npoints, a, b, xw, ww));
1957:     for (PetscInt i = 0; i < npoints; ++i) {
1958:       for (PetscInt j = 0; j < npoints; ++j) {
1959:         for (PetscInt k = 0; k < npoints; ++k) {
1960:           x[((i * npoints + j) * npoints + k) * dim + 0] = xw[i];
1961:           x[((i * npoints + j) * npoints + k) * dim + 1] = xw[j];
1962:           x[((i * npoints + j) * npoints + k) * dim + 2] = xw[k];
1963:           for (PetscInt c = 0; c < Nc; ++c) w[((i * npoints + j) * npoints + k) * Nc + c] = ww[i] * ww[j] * ww[k];
1964:         }
1965:       }
1966:     }
1967:     PetscCall(PetscFree2(xw, ww));
1968:     break;
1969:   default:
1970:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot construct quadrature rule for dimension %" PetscInt_FMT, dim);
1971:   }
1972:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
1973:   PetscCall(PetscQuadratureSetCellType(*q, ct));
1974:   PetscCall(PetscQuadratureSetOrder(*q, 2 * npoints - 1));
1975:   PetscCall(PetscQuadratureSetData(*q, dim, Nc, totpoints, x, w));
1976:   PetscCall(PetscObjectChangeTypeName((PetscObject)*q, "GaussTensor"));
1977:   PetscFunctionReturn(PETSC_SUCCESS);
1978: }

1980: /*@
1981:   PetscDTStroudConicalQuadrature - create Stroud conical quadrature for a simplex {cite}`karniadakis2005spectral`

1983:   Not Collective

1985:   Input Parameters:
1986: + dim     - The simplex dimension
1987: . Nc      - The number of components
1988: . npoints - The number of points in one dimension
1989: . a       - left end of interval (often-1)
1990: - b       - right end of interval (often +1)

1992:   Output Parameter:
1993: . q - A `PetscQuadrature` object

1995:   Level: intermediate

1997:   Note:
1998:   For `dim` == 1, this is Gauss-Legendre quadrature

2000: .seealso: `PetscDTGaussTensorQuadrature()`, `PetscDTGaussQuadrature()`
2001: @*/
2002: PetscErrorCode PetscDTStroudConicalQuadrature(PetscInt dim, PetscInt Nc, PetscInt npoints, PetscReal a, PetscReal b, PetscQuadrature *q)
2003: {
2004:   DMPolytopeType ct;
2005:   PetscInt       totpoints;
2006:   PetscReal     *p1, *w1;
2007:   PetscReal     *x, *w;

2009:   PetscFunctionBegin;
2010:   PetscCheck(!(a != -1.0) && !(b != 1.0), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must use default internal right now");
2011:   switch (dim) {
2012:   case 0:
2013:     ct = DM_POLYTOPE_POINT;
2014:     break;
2015:   case 1:
2016:     ct = DM_POLYTOPE_SEGMENT;
2017:     break;
2018:   case 2:
2019:     ct = DM_POLYTOPE_TRIANGLE;
2020:     break;
2021:   case 3:
2022:     ct = DM_POLYTOPE_TETRAHEDRON;
2023:     break;
2024:   default:
2025:     ct = DM_POLYTOPE_UNKNOWN;
2026:   }
2027:   totpoints = 1;
2028:   for (PetscInt i = 0; i < dim; ++i) totpoints *= npoints;
2029:   PetscCall(PetscMalloc1(totpoints * dim, &x));
2030:   PetscCall(PetscMalloc1(totpoints * Nc, &w));
2031:   PetscCall(PetscMalloc2(npoints, &p1, npoints, &w1));
2032:   for (PetscInt i = 0; i < totpoints * Nc; ++i) w[i] = 1.;
2033:   for (PetscInt i = 0, totprev = 1, totrem = totpoints / npoints; i < dim; ++i) {
2034:     PetscReal mul;

2036:     mul = PetscPowReal(2., -i);
2037:     PetscCall(PetscDTGaussJacobiQuadrature(npoints, -1., 1., i, 0.0, p1, w1));
2038:     for (PetscInt pt = 0, l = 0; l < totprev; l++) {
2039:       for (PetscInt j = 0; j < npoints; j++) {
2040:         for (PetscInt m = 0; m < totrem; m++, pt++) {
2041:           for (PetscInt k = 0; k < i; k++) x[pt * dim + k] = (x[pt * dim + k] + 1.) * (1. - p1[j]) * 0.5 - 1.;
2042:           x[pt * dim + i] = p1[j];
2043:           for (PetscInt c = 0; c < Nc; c++) w[pt * Nc + c] *= mul * w1[j];
2044:         }
2045:       }
2046:     }
2047:     totprev *= npoints;
2048:     totrem /= npoints;
2049:   }
2050:   PetscCall(PetscFree2(p1, w1));
2051:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
2052:   PetscCall(PetscQuadratureSetCellType(*q, ct));
2053:   PetscCall(PetscQuadratureSetOrder(*q, 2 * npoints - 1));
2054:   PetscCall(PetscQuadratureSetData(*q, dim, Nc, totpoints, x, w));
2055:   PetscCall(PetscObjectChangeTypeName((PetscObject)*q, "StroudConical"));
2056:   PetscFunctionReturn(PETSC_SUCCESS);
2057: }

2059: static PetscBool MinSymTriQuadCite       = PETSC_FALSE;
2060: const char       MinSymTriQuadCitation[] = "@article{WitherdenVincent2015,\n"
2061:                                            "  title = {On the identification of symmetric quadrature rules for finite element methods},\n"
2062:                                            "  journal = {Computers & Mathematics with Applications},\n"
2063:                                            "  volume = {69},\n"
2064:                                            "  number = {10},\n"
2065:                                            "  pages = {1232-1241},\n"
2066:                                            "  year = {2015},\n"
2067:                                            "  issn = {0898-1221},\n"
2068:                                            "  doi = {10.1016/j.camwa.2015.03.017},\n"
2069:                                            "  url = {https://www.sciencedirect.com/science/article/pii/S0898122115001224},\n"
2070:                                            "  author = {F.D. Witherden and P.E. Vincent},\n"
2071:                                            "}\n";

2073: #include "petscdttriquadrules.h"

2075: static PetscBool MinSymTetQuadCite       = PETSC_FALSE;
2076: const char       MinSymTetQuadCitation[] = "@article{JaskowiecSukumar2021\n"
2077:                                            "  author = {Jaskowiec, Jan and Sukumar, N.},\n"
2078:                                            "  title = {High-order symmetric cubature rules for tetrahedra and pyramids},\n"
2079:                                            "  journal = {International Journal for Numerical Methods in Engineering},\n"
2080:                                            "  volume = {122},\n"
2081:                                            "  number = {1},\n"
2082:                                            "  pages = {148-171},\n"
2083:                                            "  doi = {10.1002/nme.6528},\n"
2084:                                            "  url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6528},\n"
2085:                                            "  eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6528},\n"
2086:                                            "  year = {2021}\n"
2087:                                            "}\n";

2089: #include "petscdttetquadrules.h"

2091: static PetscBool DiagSymTriQuadCite       = PETSC_FALSE;
2092: const char       DiagSymTriQuadCitation[] = "@article{KongMulderVeldhuizen1999,\n"
2093:                                             "  title = {Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation},\n"
2094:                                             "  journal = {Journal of Engineering Mathematics},\n"
2095:                                             "  volume = {35},\n"
2096:                                             "  number = {4},\n"
2097:                                             "  pages = {405--426},\n"
2098:                                             "  year = {1999},\n"
2099:                                             "  doi = {10.1023/A:1004420829610},\n"
2100:                                             "  url = {https://link.springer.com/article/10.1023/A:1004420829610},\n"
2101:                                             "  author = {MJS Chin-Joe-Kong and Wim A Mulder and Marinus Van Veldhuizen},\n"
2102:                                             "}\n";

2104: #include "petscdttridiagquadrules.h"

2106: // https://en.wikipedia.org/wiki/Partition_(number_theory)
2107: static PetscErrorCode PetscDTPartitionNumber(PetscInt n, PetscInt *p)
2108: {
2109:   // sequence A000041 in the OEIS
2110:   const PetscInt partition[]   = {1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604};
2111:   PetscInt       tabulated_max = PETSC_STATIC_ARRAY_LENGTH(partition) - 1;

2113:   PetscFunctionBegin;
2114:   PetscCheck(n >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Partition number not defined for negative number %" PetscInt_FMT, n);
2115:   // not implementing the pentagonal number recurrence, we don't need partition numbers for n that high
2116:   PetscCheck(n <= tabulated_max, PETSC_COMM_SELF, PETSC_ERR_SUP, "Partition numbers only tabulated up to %" PetscInt_FMT ", not computed for %" PetscInt_FMT, tabulated_max, n);
2117:   *p = partition[n];
2118:   PetscFunctionReturn(PETSC_SUCCESS);
2119: }

2121: /*@
2122:   PetscDTSimplexQuadrature - Create a quadrature rule for a simplex that exactly integrates polynomials up to a given degree.

2124:   Not Collective

2126:   Input Parameters:
2127: + dim    - The spatial dimension of the simplex (1 = segment, 2 = triangle, 3 = tetrahedron)
2128: . degree - The largest polynomial degree that is required to be integrated exactly
2129: - type   - `PetscDTSimplexQuadratureType` indicating the type of quadrature rule

2131:   Output Parameter:
2132: . quad - A `PetscQuadrature` object for integration over the biunit simplex
2133:             (defined by the bounds $x_i >= -1$ and $\sum_i x_i <= 2 - d$) that is exact for
2134:             polynomials up to the given degree

2136:   Level: intermediate

2138: .seealso: `PetscDTSimplexQuadratureType`, `PetscDTGaussQuadrature()`, `PetscDTStroudCononicalQuadrature()`, `PetscQuadrature`
2139: @*/
2140: PetscErrorCode PetscDTSimplexQuadrature(PetscInt dim, PetscInt degree, PetscDTSimplexQuadratureType type, PetscQuadrature *quad)
2141: {
2142:   PetscDTSimplexQuadratureType orig_type = type;

2144:   PetscFunctionBegin;
2145:   PetscCheck(dim >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative dimension %" PetscInt_FMT, dim);
2146:   PetscCheck(degree >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative degree %" PetscInt_FMT, degree);
2147:   if (type == PETSCDTSIMPLEXQUAD_DEFAULT) type = PETSCDTSIMPLEXQUAD_MINSYM;
2148:   if (type == PETSCDTSIMPLEXQUAD_CONIC || dim < 2) {
2149:     PetscInt points_per_dim = (degree + 2) / 2; // ceil((degree + 1) / 2);
2150:     PetscCall(PetscDTStroudConicalQuadrature(dim, 1, points_per_dim, -1, 1, quad));
2151:   } else {
2152:     DMPolytopeType    ct;
2153:     PetscInt          n    = dim + 1;
2154:     PetscInt          fact = 1;
2155:     PetscInt         *part, *perm;
2156:     PetscInt          p = 0;
2157:     PetscInt          max_degree;
2158:     const PetscInt   *nodes_per_type     = NULL;
2159:     const PetscInt   *all_num_full_nodes = NULL;
2160:     const PetscReal **weights_list       = NULL;
2161:     const PetscReal **compact_nodes_list = NULL;
2162:     const char       *citation           = NULL;
2163:     PetscBool        *cited              = NULL;

2165:     switch (dim) {
2166:     case 0:
2167:       ct = DM_POLYTOPE_POINT;
2168:       break;
2169:     case 1:
2170:       ct = DM_POLYTOPE_SEGMENT;
2171:       break;
2172:     case 2:
2173:       ct = DM_POLYTOPE_TRIANGLE;
2174:       break;
2175:     case 3:
2176:       ct = DM_POLYTOPE_TETRAHEDRON;
2177:       break;
2178:     default:
2179:       ct = DM_POLYTOPE_UNKNOWN;
2180:     }
2181:     if (type == PETSCDTSIMPLEXQUAD_MINSYM) {
2182:       switch (dim) {
2183:       case 2:
2184:         cited              = &MinSymTriQuadCite;
2185:         citation           = MinSymTriQuadCitation;
2186:         max_degree         = PetscDTWVTriQuad_max_degree;
2187:         nodes_per_type     = PetscDTWVTriQuad_num_orbits;
2188:         all_num_full_nodes = PetscDTWVTriQuad_num_nodes;
2189:         weights_list       = PetscDTWVTriQuad_weights;
2190:         compact_nodes_list = PetscDTWVTriQuad_orbits;
2191:         break;
2192:       case 3:
2193:         cited              = &MinSymTetQuadCite;
2194:         citation           = MinSymTetQuadCitation;
2195:         max_degree         = PetscDTJSTetQuad_max_degree;
2196:         nodes_per_type     = PetscDTJSTetQuad_num_orbits;
2197:         all_num_full_nodes = PetscDTJSTetQuad_num_nodes;
2198:         weights_list       = PetscDTJSTetQuad_weights;
2199:         compact_nodes_list = PetscDTJSTetQuad_orbits;
2200:         break;
2201:       default:
2202:         max_degree = -1;
2203:         break;
2204:       }
2205:     } else {
2206:       switch (dim) {
2207:       case 2:
2208:         cited              = &DiagSymTriQuadCite;
2209:         citation           = DiagSymTriQuadCitation;
2210:         max_degree         = PetscDTKMVTriQuad_max_degree;
2211:         nodes_per_type     = PetscDTKMVTriQuad_num_orbits;
2212:         all_num_full_nodes = PetscDTKMVTriQuad_num_nodes;
2213:         weights_list       = PetscDTKMVTriQuad_weights;
2214:         compact_nodes_list = PetscDTKMVTriQuad_orbits;
2215:         break;
2216:       default:
2217:         max_degree = -1;
2218:         break;
2219:       }
2220:     }

2222:     if (degree > max_degree) {
2223:       PetscCheck(orig_type == PETSCDTSIMPLEXQUAD_DEFAULT, PETSC_COMM_SELF, PETSC_ERR_SUP, "%s symmetric quadrature for dim %" PetscInt_FMT ", degree %" PetscInt_FMT " unsupported", orig_type == PETSCDTSIMPLEXQUAD_MINSYM ? "Minimal" : "Diagonal", dim, degree);
2224:       // fall back to conic
2225:       PetscCall(PetscDTSimplexQuadrature(dim, degree, PETSCDTSIMPLEXQUAD_CONIC, quad));
2226:       PetscFunctionReturn(PETSC_SUCCESS);
2227:     }

2229:     PetscCall(PetscCitationsRegister(citation, cited));

2231:     PetscCall(PetscDTPartitionNumber(n, &p));
2232:     for (PetscInt d = 2; d <= n; d++) fact *= d;

2234:     PetscInt         num_full_nodes      = all_num_full_nodes[degree];
2235:     const PetscReal *all_compact_nodes   = compact_nodes_list[degree];
2236:     const PetscReal *all_compact_weights = weights_list[degree];
2237:     nodes_per_type                       = &nodes_per_type[p * degree];

2239:     PetscReal      *points;
2240:     PetscReal      *counts;
2241:     PetscReal      *weights;
2242:     PetscReal      *bary_to_biunit; // row-major transformation of barycentric coordinate to biunit
2243:     PetscQuadrature q;

2245:     // compute the transformation
2246:     PetscCall(PetscMalloc1(n * dim, &bary_to_biunit));
2247:     for (PetscInt d = 0; d < dim; d++) {
2248:       for (PetscInt b = 0; b < n; b++) bary_to_biunit[d * n + b] = (d == b) ? 1.0 : -1.0;
2249:     }

2251:     PetscCall(PetscMalloc3(n, &part, n, &perm, n, &counts));
2252:     PetscCall(PetscCalloc1(num_full_nodes * dim, &points));
2253:     PetscCall(PetscMalloc1(num_full_nodes, &weights));

2255:     // (0, 0, ...) is the first partition lexicographically
2256:     PetscCall(PetscArrayzero(part, n));
2257:     PetscCall(PetscArrayzero(counts, n));
2258:     counts[0] = n;

2260:     // for each partition
2261:     for (PetscInt s = 0, node_offset = 0; s < p; s++) {
2262:       PetscInt num_compact_coords = part[n - 1] + 1;

2264:       const PetscReal *compact_nodes   = all_compact_nodes;
2265:       const PetscReal *compact_weights = all_compact_weights;
2266:       all_compact_nodes += num_compact_coords * nodes_per_type[s];
2267:       all_compact_weights += nodes_per_type[s];

2269:       // for every permutation of the vertices
2270:       for (PetscInt f = 0; f < fact; f++) {
2271:         PetscCall(PetscDTEnumPerm(n, f, perm, NULL));

2273:         // check if it is a valid permutation
2274:         PetscInt digit;
2275:         for (digit = 1; digit < n; digit++) {
2276:           // skip permutations that would duplicate a node because it has a smaller symmetry group
2277:           if (part[digit - 1] == part[digit] && perm[digit - 1] > perm[digit]) break;
2278:         }
2279:         if (digit < n) continue;

2281:         // create full nodes from this permutation of the compact nodes
2282:         PetscReal *full_nodes   = &points[node_offset * dim];
2283:         PetscReal *full_weights = &weights[node_offset];

2285:         PetscCall(PetscArraycpy(full_weights, compact_weights, nodes_per_type[s]));
2286:         for (PetscInt b = 0; b < n; b++) {
2287:           for (PetscInt d = 0; d < dim; d++) {
2288:             for (PetscInt node = 0; node < nodes_per_type[s]; node++) full_nodes[node * dim + d] += bary_to_biunit[d * n + perm[b]] * compact_nodes[node * num_compact_coords + part[b]];
2289:           }
2290:         }
2291:         node_offset += nodes_per_type[s];
2292:       }

2294:       if (s < p - 1) { // Generate the next partition
2295:         /* A partition is described by the number of coordinates that are in
2296:          * each set of duplicates (counts) and redundantly by mapping each
2297:          * index to its set of duplicates (part)
2298:          *
2299:          * Counts should always be in nonincreasing order
2300:          *
2301:          * We want to generate the partitions lexically by part, which means
2302:          * finding the last index where count > 1 and reducing by 1.
2303:          *
2304:          * For the new counts beyond that index, we eagerly assign the remaining
2305:          * capacity of the partition to smaller indices (ensures lexical ordering),
2306:          * while respecting the nonincreasing invariant of the counts
2307:          */
2308:         PetscInt last_digit            = part[n - 1];
2309:         PetscInt last_digit_with_extra = last_digit;
2310:         while (counts[last_digit_with_extra] == 1) last_digit_with_extra--;
2311:         PetscInt limit               = --counts[last_digit_with_extra];
2312:         PetscInt total_to_distribute = last_digit - last_digit_with_extra + 1;
2313:         for (PetscInt digit = last_digit_with_extra + 1; digit < n; digit++) {
2314:           counts[digit] = PetscMin(limit, total_to_distribute);
2315:           total_to_distribute -= PetscMin(limit, total_to_distribute);
2316:         }
2317:         for (PetscInt digit = 0, offset = 0; digit < n; digit++) {
2318:           PetscInt count = counts[digit];
2319:           for (PetscInt c = 0; c < count; c++) part[offset++] = digit;
2320:         }
2321:       }
2322:       PetscCheck(node_offset <= num_full_nodes, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Node offset %" PetscInt_FMT " > %" PetscInt_FMT " number of nodes", node_offset, num_full_nodes);
2323:     }
2324:     PetscCall(PetscFree3(part, perm, counts));
2325:     PetscCall(PetscFree(bary_to_biunit));
2326:     PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &q));
2327:     PetscCall(PetscQuadratureSetCellType(q, ct));
2328:     PetscCall(PetscQuadratureSetOrder(q, degree));
2329:     PetscCall(PetscQuadratureSetData(q, dim, 1, num_full_nodes, points, weights));
2330:     *quad = q;
2331:   }
2332:   PetscFunctionReturn(PETSC_SUCCESS);
2333: }

2335: /*@
2336:   PetscDTTanhSinhTensorQuadrature - create tanh-sinh quadrature for a tensor product cell

2338:   Not Collective

2340:   Input Parameters:
2341: + dim   - The cell dimension
2342: . level - The number of points in one dimension, $2^l$
2343: . a     - left end of interval (often-1)
2344: - b     - right end of interval (often +1)

2346:   Output Parameter:
2347: . q - A `PetscQuadrature` object

2349:   Level: intermediate

2351: .seealso: `PetscDTGaussTensorQuadrature()`, `PetscQuadrature`
2352: @*/
2353: PetscErrorCode PetscDTTanhSinhTensorQuadrature(PetscInt dim, PetscInt level, PetscReal a, PetscReal b, PetscQuadrature *q)
2354: {
2355:   DMPolytopeType  ct;
2356:   const PetscInt  p     = 16;                        /* Digits of precision in the evaluation */
2357:   const PetscReal alpha = (b - a) / 2.;              /* Half-width of the integration interval */
2358:   const PetscReal beta  = (b + a) / 2.;              /* Center of the integration interval */
2359:   const PetscReal h     = PetscPowReal(2.0, -level); /* Step size, length between x_k */
2360:   PetscReal       xk;                                /* Quadrature point x_k on reference domain [-1, 1] */
2361:   PetscReal       wk = 0.5 * PETSC_PI;               /* Quadrature weight at x_k */
2362:   PetscReal      *x, *w;
2363:   PetscInt        K, k, npoints;

2365:   PetscFunctionBegin;
2366:   PetscCheck(dim <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Dimension %" PetscInt_FMT " not yet implemented", dim);
2367:   PetscCheck(level, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must give a number of significant digits");
2368:   switch (dim) {
2369:   case 0:
2370:     ct = DM_POLYTOPE_POINT;
2371:     break;
2372:   case 1:
2373:     ct = DM_POLYTOPE_SEGMENT;
2374:     break;
2375:   case 2:
2376:     ct = DM_POLYTOPE_QUADRILATERAL;
2377:     break;
2378:   case 3:
2379:     ct = DM_POLYTOPE_HEXAHEDRON;
2380:     break;
2381:   default:
2382:     ct = DM_POLYTOPE_UNKNOWN;
2383:   }
2384:   /* Find K such that the weights are < 32 digits of precision */
2385:   for (K = 1; PetscAbsReal(PetscLog10Real(wk)) < 2 * p; ++K) wk = 0.5 * h * PETSC_PI * PetscCoshReal(K * h) / PetscSqr(PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(K * h)));
2386:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
2387:   PetscCall(PetscQuadratureSetCellType(*q, ct));
2388:   PetscCall(PetscQuadratureSetOrder(*q, 2 * K + 1));
2389:   npoints = 2 * K - 1;
2390:   PetscCall(PetscMalloc1(npoints * dim, &x));
2391:   PetscCall(PetscMalloc1(npoints, &w));
2392:   /* Center term */
2393:   x[0] = beta;
2394:   w[0] = 0.5 * alpha * PETSC_PI;
2395:   for (k = 1; k < K; ++k) {
2396:     wk           = 0.5 * alpha * h * PETSC_PI * PetscCoshReal(k * h) / PetscSqr(PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(k * h)));
2397:     xk           = PetscTanhReal(0.5 * PETSC_PI * PetscSinhReal(k * h));
2398:     x[2 * k - 1] = -alpha * xk + beta;
2399:     w[2 * k - 1] = wk;
2400:     x[2 * k + 0] = alpha * xk + beta;
2401:     w[2 * k + 0] = wk;
2402:   }
2403:   PetscCall(PetscQuadratureSetData(*q, dim, 1, npoints, x, w));
2404:   PetscFunctionReturn(PETSC_SUCCESS);
2405: }

2407: PetscErrorCode PetscDTTanhSinhIntegrate(void (*func)(const PetscReal[], void *, PetscReal *), PetscReal a, PetscReal b, PetscInt digits, void *ctx, PetscReal *sol)
2408: {
2409:   const PetscInt  p     = 16;           /* Digits of precision in the evaluation */
2410:   const PetscReal alpha = (b - a) / 2.; /* Half-width of the integration interval */
2411:   const PetscReal beta  = (b + a) / 2.; /* Center of the integration interval */
2412:   PetscReal       h     = 1.0;          /* Step size, length between x_k */
2413:   PetscInt        l     = 0;            /* Level of refinement, h = 2^{-l} */
2414:   PetscReal       osum  = 0.0;          /* Integral on last level */
2415:   PetscReal       psum  = 0.0;          /* Integral on the level before the last level */
2416:   PetscReal       sum;                  /* Integral on current level */
2417:   PetscReal       yk;                   /* Quadrature point 1 - x_k on reference domain [-1, 1] */
2418:   PetscReal       lx, rx;               /* Quadrature points to the left and right of 0 on the real domain [a, b] */
2419:   PetscReal       wk;                   /* Quadrature weight at x_k */
2420:   PetscReal       lval, rval;           /* Terms in the quadature sum to the left and right of 0 */
2421:   PetscInt        d;                    /* Digits of precision in the integral */

2423:   PetscFunctionBegin;
2424:   PetscCheck(digits > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must give a positive number of significant digits");
2425:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2426:   /* Center term */
2427:   func(&beta, ctx, &lval);
2428:   sum = 0.5 * alpha * PETSC_PI * lval;
2429:   /* */
2430:   do {
2431:     PetscReal lterm, rterm, maxTerm = 0.0, d1, d2, d3, d4;
2432:     PetscInt  k = 1;

2434:     ++l;
2435:     /* PetscPrintf(PETSC_COMM_SELF, "LEVEL %" PetscInt_FMT " sum: %15.15f\n", l, sum); */
2436:     /* At each level of refinement, h --> h/2 and sum --> sum/2 */
2437:     psum = osum;
2438:     osum = sum;
2439:     h *= 0.5;
2440:     sum *= 0.5;
2441:     do {
2442:       wk = 0.5 * h * PETSC_PI * PetscCoshReal(k * h) / PetscSqr(PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(k * h)));
2443:       yk = 1.0 / (PetscExpReal(0.5 * PETSC_PI * PetscSinhReal(k * h)) * PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(k * h)));
2444:       lx = -alpha * (1.0 - yk) + beta;
2445:       rx = alpha * (1.0 - yk) + beta;
2446:       func(&lx, ctx, &lval);
2447:       func(&rx, ctx, &rval);
2448:       lterm   = alpha * wk * lval;
2449:       maxTerm = PetscMax(PetscAbsReal(lterm), maxTerm);
2450:       sum += lterm;
2451:       rterm   = alpha * wk * rval;
2452:       maxTerm = PetscMax(PetscAbsReal(rterm), maxTerm);
2453:       sum += rterm;
2454:       ++k;
2455:       /* Only need to evaluate every other point on refined levels */
2456:       if (l != 1) ++k;
2457:     } while (PetscAbsReal(PetscLog10Real(wk)) < p); /* Only need to evaluate sum until weights are < 32 digits of precision */

2459:     d1 = PetscLog10Real(PetscAbsReal(sum - osum));
2460:     d2 = PetscLog10Real(PetscAbsReal(sum - psum));
2461:     d3 = PetscLog10Real(maxTerm) - p;
2462:     if (PetscMax(PetscAbsReal(lterm), PetscAbsReal(rterm)) == 0.0) d4 = 0.0;
2463:     else d4 = PetscLog10Real(PetscMax(PetscAbsReal(lterm), PetscAbsReal(rterm)));
2464:     d = PetscAbsInt(PetscMin(0, PetscMax(PetscMax(PetscMax(PetscSqr(d1) / d2, 2 * d1), d3), d4)));
2465:   } while (d < digits && l < 12);
2466:   *sol = sum;
2467:   PetscCall(PetscFPTrapPop());
2468:   PetscFunctionReturn(PETSC_SUCCESS);
2469: }

2471: #if defined(PETSC_HAVE_MPFR)
2472: PetscErrorCode PetscDTTanhSinhIntegrateMPFR(void (*func)(const PetscReal[], void *, PetscReal *), PetscReal a, PetscReal b, PetscInt digits, void *ctx, PetscReal *sol)
2473: {
2474:   const PetscInt safetyFactor = 2; /* Calculate abscissa until 2*p digits */
2475:   PetscInt       l            = 0; /* Level of refinement, h = 2^{-l} */
2476:   mpfr_t         alpha;            /* Half-width of the integration interval */
2477:   mpfr_t         beta;             /* Center of the integration interval */
2478:   mpfr_t         h;                /* Step size, length between x_k */
2479:   mpfr_t         osum;             /* Integral on last level */
2480:   mpfr_t         psum;             /* Integral on the level before the last level */
2481:   mpfr_t         sum;              /* Integral on current level */
2482:   mpfr_t         yk;               /* Quadrature point 1 - x_k on reference domain [-1, 1] */
2483:   mpfr_t         lx, rx;           /* Quadrature points to the left and right of 0 on the real domain [a, b] */
2484:   mpfr_t         wk;               /* Quadrature weight at x_k */
2485:   PetscReal      lval, rval, rtmp; /* Terms in the quadature sum to the left and right of 0 */
2486:   PetscInt       d;                /* Digits of precision in the integral */
2487:   mpfr_t         pi2, kh, msinh, mcosh, maxTerm, curTerm, tmp;

2489:   PetscFunctionBegin;
2490:   PetscCheck(digits > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must give a positive number of significant digits");
2491:   /* Create high precision storage */
2492:   mpfr_inits2(PetscCeilReal(safetyFactor * digits * PetscLogReal(10.) / PetscLogReal(2.)), alpha, beta, h, sum, osum, psum, yk, wk, lx, rx, tmp, maxTerm, curTerm, pi2, kh, msinh, mcosh, NULL);
2493:   /* Initialization */
2494:   mpfr_set_d(alpha, 0.5 * (b - a), MPFR_RNDN);
2495:   mpfr_set_d(beta, 0.5 * (b + a), MPFR_RNDN);
2496:   mpfr_set_d(osum, 0.0, MPFR_RNDN);
2497:   mpfr_set_d(psum, 0.0, MPFR_RNDN);
2498:   mpfr_set_d(h, 1.0, MPFR_RNDN);
2499:   mpfr_const_pi(pi2, MPFR_RNDN);
2500:   mpfr_mul_d(pi2, pi2, 0.5, MPFR_RNDN);
2501:   /* Center term */
2502:   rtmp = 0.5 * (b + a);
2503:   func(&rtmp, ctx, &lval);
2504:   mpfr_set(sum, pi2, MPFR_RNDN);
2505:   mpfr_mul(sum, sum, alpha, MPFR_RNDN);
2506:   mpfr_mul_d(sum, sum, lval, MPFR_RNDN);
2507:   /* */
2508:   do {
2509:     PetscReal d1, d2, d3, d4;
2510:     PetscInt  k = 1;

2512:     ++l;
2513:     mpfr_set_d(maxTerm, 0.0, MPFR_RNDN);
2514:     /* PetscPrintf(PETSC_COMM_SELF, "LEVEL %" PetscInt_FMT " sum: %15.15f\n", l, sum); */
2515:     /* At each level of refinement, h --> h/2 and sum --> sum/2 */
2516:     mpfr_set(psum, osum, MPFR_RNDN);
2517:     mpfr_set(osum, sum, MPFR_RNDN);
2518:     mpfr_mul_d(h, h, 0.5, MPFR_RNDN);
2519:     mpfr_mul_d(sum, sum, 0.5, MPFR_RNDN);
2520:     do {
2521:       mpfr_set_si(kh, k, MPFR_RNDN);
2522:       mpfr_mul(kh, kh, h, MPFR_RNDN);
2523:       /* Weight */
2524:       mpfr_set(wk, h, MPFR_RNDN);
2525:       mpfr_sinh_cosh(msinh, mcosh, kh, MPFR_RNDN);
2526:       mpfr_mul(msinh, msinh, pi2, MPFR_RNDN);
2527:       mpfr_mul(mcosh, mcosh, pi2, MPFR_RNDN);
2528:       mpfr_cosh(tmp, msinh, MPFR_RNDN);
2529:       mpfr_sqr(tmp, tmp, MPFR_RNDN);
2530:       mpfr_mul(wk, wk, mcosh, MPFR_RNDN);
2531:       mpfr_div(wk, wk, tmp, MPFR_RNDN);
2532:       /* Abscissa */
2533:       mpfr_set_d(yk, 1.0, MPFR_RNDZ);
2534:       mpfr_cosh(tmp, msinh, MPFR_RNDN);
2535:       mpfr_div(yk, yk, tmp, MPFR_RNDZ);
2536:       mpfr_exp(tmp, msinh, MPFR_RNDN);
2537:       mpfr_div(yk, yk, tmp, MPFR_RNDZ);
2538:       /* Quadrature points */
2539:       mpfr_sub_d(lx, yk, 1.0, MPFR_RNDZ);
2540:       mpfr_mul(lx, lx, alpha, MPFR_RNDU);
2541:       mpfr_add(lx, lx, beta, MPFR_RNDU);
2542:       mpfr_d_sub(rx, 1.0, yk, MPFR_RNDZ);
2543:       mpfr_mul(rx, rx, alpha, MPFR_RNDD);
2544:       mpfr_add(rx, rx, beta, MPFR_RNDD);
2545:       /* Evaluation */
2546:       rtmp = mpfr_get_d(lx, MPFR_RNDU);
2547:       func(&rtmp, ctx, &lval);
2548:       rtmp = mpfr_get_d(rx, MPFR_RNDD);
2549:       func(&rtmp, ctx, &rval);
2550:       /* Update */
2551:       mpfr_mul(tmp, wk, alpha, MPFR_RNDN);
2552:       mpfr_mul_d(tmp, tmp, lval, MPFR_RNDN);
2553:       mpfr_add(sum, sum, tmp, MPFR_RNDN);
2554:       mpfr_abs(tmp, tmp, MPFR_RNDN);
2555:       mpfr_max(maxTerm, maxTerm, tmp, MPFR_RNDN);
2556:       mpfr_set(curTerm, tmp, MPFR_RNDN);
2557:       mpfr_mul(tmp, wk, alpha, MPFR_RNDN);
2558:       mpfr_mul_d(tmp, tmp, rval, MPFR_RNDN);
2559:       mpfr_add(sum, sum, tmp, MPFR_RNDN);
2560:       mpfr_abs(tmp, tmp, MPFR_RNDN);
2561:       mpfr_max(maxTerm, maxTerm, tmp, MPFR_RNDN);
2562:       mpfr_max(curTerm, curTerm, tmp, MPFR_RNDN);
2563:       ++k;
2564:       /* Only need to evaluate every other point on refined levels */
2565:       if (l != 1) ++k;
2566:       mpfr_log10(tmp, wk, MPFR_RNDN);
2567:       mpfr_abs(tmp, tmp, MPFR_RNDN);
2568:     } while (mpfr_get_d(tmp, MPFR_RNDN) < safetyFactor * digits); /* Only need to evaluate sum until weights are < 32 digits of precision */
2569:     mpfr_sub(tmp, sum, osum, MPFR_RNDN);
2570:     mpfr_abs(tmp, tmp, MPFR_RNDN);
2571:     mpfr_log10(tmp, tmp, MPFR_RNDN);
2572:     d1 = mpfr_get_d(tmp, MPFR_RNDN);
2573:     mpfr_sub(tmp, sum, psum, MPFR_RNDN);
2574:     mpfr_abs(tmp, tmp, MPFR_RNDN);
2575:     mpfr_log10(tmp, tmp, MPFR_RNDN);
2576:     d2 = mpfr_get_d(tmp, MPFR_RNDN);
2577:     mpfr_log10(tmp, maxTerm, MPFR_RNDN);
2578:     d3 = mpfr_get_d(tmp, MPFR_RNDN) - digits;
2579:     mpfr_log10(tmp, curTerm, MPFR_RNDN);
2580:     d4 = mpfr_get_d(tmp, MPFR_RNDN);
2581:     d  = PetscAbsInt(PetscMin(0, PetscMax(PetscMax(PetscMax(PetscSqr(d1) / d2, 2 * d1), d3), d4)));
2582:   } while (d < digits && l < 8);
2583:   *sol = mpfr_get_d(sum, MPFR_RNDN);
2584:   /* Cleanup */
2585:   mpfr_clears(alpha, beta, h, sum, osum, psum, yk, wk, lx, rx, tmp, maxTerm, curTerm, pi2, kh, msinh, mcosh, NULL);
2586:   PetscFunctionReturn(PETSC_SUCCESS);
2587: }
2588: #else

2590: PetscErrorCode PetscDTTanhSinhIntegrateMPFR(void (*func)(const PetscReal[], void *, PetscReal *), PetscReal a, PetscReal b, PetscInt digits, void *ctx, PetscReal *sol)
2591: {
2592:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "This method will not work without MPFR. Reconfigure using --download-mpfr --download-gmp");
2593: }
2594: #endif

2596: /*@
2597:   PetscDTTensorQuadratureCreate - create the tensor product quadrature from two lower-dimensional quadratures

2599:   Not Collective

2601:   Input Parameters:
2602: + q1 - The first quadrature
2603: - q2 - The second quadrature

2605:   Output Parameter:
2606: . q - A `PetscQuadrature` object

2608:   Level: intermediate

2610: .seealso: `PetscQuadrature`, `PetscDTGaussTensorQuadrature()`
2611: @*/
2612: PetscErrorCode PetscDTTensorQuadratureCreate(PetscQuadrature q1, PetscQuadrature q2, PetscQuadrature *q)
2613: {
2614:   DMPolytopeType   ct1, ct2, ct;
2615:   const PetscReal *x1, *w1, *x2, *w2;
2616:   PetscReal       *x, *w;
2617:   PetscInt         dim1, Nc1, Np1, order1, qa, d1;
2618:   PetscInt         dim2, Nc2, Np2, order2, qb, d2;
2619:   PetscInt         dim, Nc, Np, order, qc, d;

2621:   PetscFunctionBegin;
2624:   PetscAssertPointer(q, 3);

2626:   PetscCall(PetscQuadratureGetOrder(q1, &order1));
2627:   PetscCall(PetscQuadratureGetOrder(q2, &order2));
2628:   PetscCheck(order1 == order2, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Order1 %" PetscInt_FMT " != %" PetscInt_FMT " Order2", order1, order2);
2629:   PetscCall(PetscQuadratureGetData(q1, &dim1, &Nc1, &Np1, &x1, &w1));
2630:   PetscCall(PetscQuadratureGetCellType(q1, &ct1));
2631:   PetscCall(PetscQuadratureGetData(q2, &dim2, &Nc2, &Np2, &x2, &w2));
2632:   PetscCall(PetscQuadratureGetCellType(q2, &ct2));
2633:   PetscCheck(Nc1 == Nc2, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "NumComp1 %" PetscInt_FMT " != %" PetscInt_FMT " NumComp2", Nc1, Nc2);

2635:   switch (ct1) {
2636:   case DM_POLYTOPE_POINT:
2637:     ct = ct2;
2638:     break;
2639:   case DM_POLYTOPE_SEGMENT:
2640:     switch (ct2) {
2641:     case DM_POLYTOPE_POINT:
2642:       ct = ct1;
2643:       break;
2644:     case DM_POLYTOPE_SEGMENT:
2645:       ct = DM_POLYTOPE_QUADRILATERAL;
2646:       break;
2647:     case DM_POLYTOPE_TRIANGLE:
2648:       ct = DM_POLYTOPE_TRI_PRISM;
2649:       break;
2650:     case DM_POLYTOPE_QUADRILATERAL:
2651:       ct = DM_POLYTOPE_HEXAHEDRON;
2652:       break;
2653:     case DM_POLYTOPE_TETRAHEDRON:
2654:       ct = DM_POLYTOPE_UNKNOWN;
2655:       break;
2656:     case DM_POLYTOPE_HEXAHEDRON:
2657:       ct = DM_POLYTOPE_UNKNOWN;
2658:       break;
2659:     default:
2660:       ct = DM_POLYTOPE_UNKNOWN;
2661:     }
2662:     break;
2663:   case DM_POLYTOPE_TRIANGLE:
2664:     switch (ct2) {
2665:     case DM_POLYTOPE_POINT:
2666:       ct = ct1;
2667:       break;
2668:     case DM_POLYTOPE_SEGMENT:
2669:       ct = DM_POLYTOPE_TRI_PRISM;
2670:       break;
2671:     case DM_POLYTOPE_TRIANGLE:
2672:       ct = DM_POLYTOPE_UNKNOWN;
2673:       break;
2674:     case DM_POLYTOPE_QUADRILATERAL:
2675:       ct = DM_POLYTOPE_UNKNOWN;
2676:       break;
2677:     case DM_POLYTOPE_TETRAHEDRON:
2678:       ct = DM_POLYTOPE_UNKNOWN;
2679:       break;
2680:     case DM_POLYTOPE_HEXAHEDRON:
2681:       ct = DM_POLYTOPE_UNKNOWN;
2682:       break;
2683:     default:
2684:       ct = DM_POLYTOPE_UNKNOWN;
2685:     }
2686:     break;
2687:   case DM_POLYTOPE_QUADRILATERAL:
2688:     switch (ct2) {
2689:     case DM_POLYTOPE_POINT:
2690:       ct = ct1;
2691:       break;
2692:     case DM_POLYTOPE_SEGMENT:
2693:       ct = DM_POLYTOPE_HEXAHEDRON;
2694:       break;
2695:     case DM_POLYTOPE_TRIANGLE:
2696:       ct = DM_POLYTOPE_UNKNOWN;
2697:       break;
2698:     case DM_POLYTOPE_QUADRILATERAL:
2699:       ct = DM_POLYTOPE_UNKNOWN;
2700:       break;
2701:     case DM_POLYTOPE_TETRAHEDRON:
2702:       ct = DM_POLYTOPE_UNKNOWN;
2703:       break;
2704:     case DM_POLYTOPE_HEXAHEDRON:
2705:       ct = DM_POLYTOPE_UNKNOWN;
2706:       break;
2707:     default:
2708:       ct = DM_POLYTOPE_UNKNOWN;
2709:     }
2710:     break;
2711:   case DM_POLYTOPE_TETRAHEDRON:
2712:     switch (ct2) {
2713:     case DM_POLYTOPE_POINT:
2714:       ct = ct1;
2715:       break;
2716:     case DM_POLYTOPE_SEGMENT:
2717:       ct = DM_POLYTOPE_UNKNOWN;
2718:       break;
2719:     case DM_POLYTOPE_TRIANGLE:
2720:       ct = DM_POLYTOPE_UNKNOWN;
2721:       break;
2722:     case DM_POLYTOPE_QUADRILATERAL:
2723:       ct = DM_POLYTOPE_UNKNOWN;
2724:       break;
2725:     case DM_POLYTOPE_TETRAHEDRON:
2726:       ct = DM_POLYTOPE_UNKNOWN;
2727:       break;
2728:     case DM_POLYTOPE_HEXAHEDRON:
2729:       ct = DM_POLYTOPE_UNKNOWN;
2730:       break;
2731:     default:
2732:       ct = DM_POLYTOPE_UNKNOWN;
2733:     }
2734:     break;
2735:   case DM_POLYTOPE_HEXAHEDRON:
2736:     switch (ct2) {
2737:     case DM_POLYTOPE_POINT:
2738:       ct = ct1;
2739:       break;
2740:     case DM_POLYTOPE_SEGMENT:
2741:       ct = DM_POLYTOPE_UNKNOWN;
2742:       break;
2743:     case DM_POLYTOPE_TRIANGLE:
2744:       ct = DM_POLYTOPE_UNKNOWN;
2745:       break;
2746:     case DM_POLYTOPE_QUADRILATERAL:
2747:       ct = DM_POLYTOPE_UNKNOWN;
2748:       break;
2749:     case DM_POLYTOPE_TETRAHEDRON:
2750:       ct = DM_POLYTOPE_UNKNOWN;
2751:       break;
2752:     case DM_POLYTOPE_HEXAHEDRON:
2753:       ct = DM_POLYTOPE_UNKNOWN;
2754:       break;
2755:     default:
2756:       ct = DM_POLYTOPE_UNKNOWN;
2757:     }
2758:     break;
2759:   default:
2760:     ct = DM_POLYTOPE_UNKNOWN;
2761:   }
2762:   dim   = dim1 + dim2;
2763:   Nc    = Nc1;
2764:   Np    = Np1 * Np2;
2765:   order = order1;
2766:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
2767:   PetscCall(PetscQuadratureSetCellType(*q, ct));
2768:   PetscCall(PetscQuadratureSetOrder(*q, order));
2769:   PetscCall(PetscMalloc1(Np * dim, &x));
2770:   PetscCall(PetscMalloc1(Np, &w));
2771:   for (qa = 0, qc = 0; qa < Np1; ++qa) {
2772:     for (qb = 0; qb < Np2; ++qb, ++qc) {
2773:       for (d1 = 0, d = 0; d1 < dim1; ++d1, ++d) x[qc * dim + d] = x1[qa * dim1 + d1];
2774:       for (d2 = 0; d2 < dim2; ++d2, ++d) x[qc * dim + d] = x2[qb * dim2 + d2];
2775:       w[qc] = w1[qa] * w2[qb];
2776:     }
2777:   }
2778:   PetscCall(PetscQuadratureSetData(*q, dim, Nc, Np, x, w));
2779:   PetscFunctionReturn(PETSC_SUCCESS);
2780: }

2782: /* Overwrites A. Can only handle full-rank problems with m>=n
2783:    A in column-major format
2784:    Ainv in row-major format
2785:    tau has length m
2786:    worksize must be >= max(1,n)
2787:  */
2788: static PetscErrorCode PetscDTPseudoInverseQR(PetscInt m, PetscInt mstride, PetscInt n, PetscReal *A_in, PetscReal *Ainv_out, PetscScalar *tau, PetscInt worksize, PetscScalar *work)
2789: {
2790:   PetscBLASInt M, N, K, lda, ldb, ldwork, info;
2791:   PetscScalar *A, *Ainv, *R, *Q, Alpha;

2793:   PetscFunctionBegin;
2794: #if defined(PETSC_USE_COMPLEX)
2795:   {
2796:     PetscInt i, j;
2797:     PetscCall(PetscMalloc2(m * n, &A, m * n, &Ainv));
2798:     for (j = 0; j < n; j++) {
2799:       for (i = 0; i < m; i++) A[i + m * j] = A_in[i + mstride * j];
2800:     }
2801:     mstride = m;
2802:   }
2803: #else
2804:   A    = A_in;
2805:   Ainv = Ainv_out;
2806: #endif

2808:   PetscCall(PetscBLASIntCast(m, &M));
2809:   PetscCall(PetscBLASIntCast(n, &N));
2810:   PetscCall(PetscBLASIntCast(mstride, &lda));
2811:   PetscCall(PetscBLASIntCast(worksize, &ldwork));
2812:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2813:   PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&M, &N, A, &lda, tau, work, &ldwork, &info));
2814:   PetscCall(PetscFPTrapPop());
2815:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "xGEQRF error");
2816:   R = A; /* Upper triangular part of A now contains R, the rest contains the elementary reflectors */

2818:   /* Extract an explicit representation of Q */
2819:   Q = Ainv;
2820:   PetscCall(PetscArraycpy(Q, A, mstride * n));
2821:   K = N; /* full rank */
2822:   PetscCallBLAS("LAPACKorgqr", LAPACKorgqr_(&M, &N, &K, Q, &lda, tau, work, &ldwork, &info));
2823:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "xORGQR/xUNGQR error");

2825:   /* Compute A^{-T} = (R^{-1} Q^T)^T = Q R^{-T} */
2826:   Alpha = 1.0;
2827:   ldb   = lda;
2828:   PetscCallBLAS("BLAStrsm", BLAStrsm_("Right", "Upper", "ConjugateTranspose", "NotUnitTriangular", &M, &N, &Alpha, R, &lda, Q, &ldb));
2829:   /* Ainv is Q, overwritten with inverse */

2831: #if defined(PETSC_USE_COMPLEX)
2832:   {
2833:     PetscInt i;
2834:     for (i = 0; i < m * n; i++) Ainv_out[i] = PetscRealPart(Ainv[i]);
2835:     PetscCall(PetscFree2(A, Ainv));
2836:   }
2837: #endif
2838:   PetscFunctionReturn(PETSC_SUCCESS);
2839: }

2841: /* Computes integral of L_p' over intervals {(x0,x1),(x1,x2),...} */
2842: static PetscErrorCode PetscDTLegendreIntegrate(PetscInt ninterval, const PetscReal *x, PetscInt ndegree, const PetscInt *degrees, PetscBool Transpose, PetscReal *B)
2843: {
2844:   PetscReal *Bv;
2845:   PetscInt   i, j;

2847:   PetscFunctionBegin;
2848:   PetscCall(PetscMalloc1((ninterval + 1) * ndegree, &Bv));
2849:   /* Point evaluation of L_p on all the source vertices */
2850:   PetscCall(PetscDTLegendreEval(ninterval + 1, x, ndegree, degrees, Bv, NULL, NULL));
2851:   /* Integral over each interval: \int_a^b L_p' = L_p(b)-L_p(a) */
2852:   for (i = 0; i < ninterval; i++) {
2853:     for (j = 0; j < ndegree; j++) {
2854:       if (Transpose) B[i + ninterval * j] = Bv[(i + 1) * ndegree + j] - Bv[i * ndegree + j];
2855:       else B[i * ndegree + j] = Bv[(i + 1) * ndegree + j] - Bv[i * ndegree + j];
2856:     }
2857:   }
2858:   PetscCall(PetscFree(Bv));
2859:   PetscFunctionReturn(PETSC_SUCCESS);
2860: }

2862: /*@
2863:   PetscDTReconstructPoly - create matrix representing polynomial reconstruction using cell intervals and evaluation at target intervals

2865:   Not Collective

2867:   Input Parameters:
2868: + degree  - degree of reconstruction polynomial
2869: . nsource - number of source intervals
2870: . sourcex - sorted coordinates of source cell boundaries (length `nsource`+1)
2871: . ntarget - number of target intervals
2872: - targetx - sorted coordinates of target cell boundaries (length `ntarget`+1)

2874:   Output Parameter:
2875: . R - reconstruction matrix, utarget = sum_s R[t*nsource+s] * usource[s]

2877:   Level: advanced

2879: .seealso: `PetscDTLegendreEval()`
2880: @*/
2881: PetscErrorCode PetscDTReconstructPoly(PetscInt degree, PetscInt nsource, const PetscReal sourcex[], PetscInt ntarget, const PetscReal targetx[], PetscReal R[])
2882: {
2883:   PetscInt     i, j, k, *bdegrees, worksize;
2884:   PetscReal    xmin, xmax, center, hscale, *sourcey, *targety, *Bsource, *Bsinv, *Btarget;
2885:   PetscScalar *tau, *work;

2887:   PetscFunctionBegin;
2888:   PetscAssertPointer(sourcex, 3);
2889:   PetscAssertPointer(targetx, 5);
2890:   PetscAssertPointer(R, 6);
2891:   PetscCheck(degree < nsource, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Reconstruction degree %" PetscInt_FMT " must be less than number of source intervals %" PetscInt_FMT, degree, nsource);
2892:   if (PetscDefined(USE_DEBUG)) {
2893:     for (i = 0; i < nsource; i++) PetscCheck(sourcex[i] < sourcex[i + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_CORRUPT, "Source interval %" PetscInt_FMT " has negative orientation (%g,%g)", i, (double)sourcex[i], (double)sourcex[i + 1]);
2894:     for (i = 0; i < ntarget; i++) PetscCheck(targetx[i] < targetx[i + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_CORRUPT, "Target interval %" PetscInt_FMT " has negative orientation (%g,%g)", i, (double)targetx[i], (double)targetx[i + 1]);
2895:   }
2896:   xmin     = PetscMin(sourcex[0], targetx[0]);
2897:   xmax     = PetscMax(sourcex[nsource], targetx[ntarget]);
2898:   center   = (xmin + xmax) / 2;
2899:   hscale   = (xmax - xmin) / 2;
2900:   worksize = nsource;
2901:   PetscCall(PetscMalloc4(degree + 1, &bdegrees, nsource + 1, &sourcey, nsource * (degree + 1), &Bsource, worksize, &work));
2902:   PetscCall(PetscMalloc4(nsource, &tau, nsource * (degree + 1), &Bsinv, ntarget + 1, &targety, ntarget * (degree + 1), &Btarget));
2903:   for (i = 0; i <= nsource; i++) sourcey[i] = (sourcex[i] - center) / hscale;
2904:   for (i = 0; i <= degree; i++) bdegrees[i] = i + 1;
2905:   PetscCall(PetscDTLegendreIntegrate(nsource, sourcey, degree + 1, bdegrees, PETSC_TRUE, Bsource));
2906:   PetscCall(PetscDTPseudoInverseQR(nsource, nsource, degree + 1, Bsource, Bsinv, tau, nsource, work));
2907:   for (i = 0; i <= ntarget; i++) targety[i] = (targetx[i] - center) / hscale;
2908:   PetscCall(PetscDTLegendreIntegrate(ntarget, targety, degree + 1, bdegrees, PETSC_FALSE, Btarget));
2909:   for (i = 0; i < ntarget; i++) {
2910:     PetscReal rowsum = 0;
2911:     for (j = 0; j < nsource; j++) {
2912:       PetscReal sum = 0;
2913:       for (k = 0; k < degree + 1; k++) sum += Btarget[i * (degree + 1) + k] * Bsinv[k * nsource + j];
2914:       R[i * nsource + j] = sum;
2915:       rowsum += sum;
2916:     }
2917:     for (j = 0; j < nsource; j++) R[i * nsource + j] /= rowsum; /* normalize each row */
2918:   }
2919:   PetscCall(PetscFree4(bdegrees, sourcey, Bsource, work));
2920:   PetscCall(PetscFree4(tau, Bsinv, targety, Btarget));
2921:   PetscFunctionReturn(PETSC_SUCCESS);
2922: }

2924: /*@
2925:   PetscGaussLobattoLegendreIntegrate - Compute the L2 integral of a function on the GLL points

2927:   Not Collective

2929:   Input Parameters:
2930: + n       - the number of GLL nodes
2931: . nodes   - the GLL nodes
2932: . weights - the GLL weights
2933: - f       - the function values at the nodes

2935:   Output Parameter:
2936: . in - the value of the integral

2938:   Level: beginner

2940: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`
2941: @*/
2942: PetscErrorCode PetscGaussLobattoLegendreIntegrate(PetscInt n, PetscReal nodes[], PetscReal weights[], const PetscReal f[], PetscReal *in)
2943: {
2944:   PetscInt i;

2946:   PetscFunctionBegin;
2947:   *in = 0.;
2948:   for (i = 0; i < n; i++) *in += f[i] * f[i] * weights[i];
2949:   PetscFunctionReturn(PETSC_SUCCESS);
2950: }

2952: /*@C
2953:   PetscGaussLobattoLegendreElementLaplacianCreate - computes the Laplacian for a single 1d GLL element

2955:   Not Collective

2957:   Input Parameters:
2958: + n       - the number of GLL nodes
2959: . nodes   - the GLL nodes, of length `n`
2960: - weights - the GLL weights, of length `n`

2962:   Output Parameter:
2963: . AA - the stiffness element, of size `n` by `n`

2965:   Level: beginner

2967:   Notes:
2968:   Destroy this with `PetscGaussLobattoLegendreElementLaplacianDestroy()`

2970:   You can access entries in this array with AA[i][j] but in memory it is stored in contiguous memory, row-oriented (the array is symmetric)

2972: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianDestroy()`
2973: @*/
2974: PetscErrorCode PetscGaussLobattoLegendreElementLaplacianCreate(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
2975: {
2976:   PetscReal      **A;
2977:   const PetscReal *gllnodes = nodes;
2978:   const PetscInt   p        = n - 1;
2979:   PetscReal        z0, z1, z2 = -1, x, Lpj, Lpr;
2980:   PetscInt         i, j, nn, r;

2982:   PetscFunctionBegin;
2983:   PetscCall(PetscMalloc1(n, &A));
2984:   PetscCall(PetscMalloc1(n * n, &A[0]));
2985:   for (i = 1; i < n; i++) A[i] = A[i - 1] + n;

2987:   for (j = 1; j < p; j++) {
2988:     x  = gllnodes[j];
2989:     z0 = 1.;
2990:     z1 = x;
2991:     for (nn = 1; nn < p; nn++) {
2992:       z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
2993:       z0 = z1;
2994:       z1 = z2;
2995:     }
2996:     Lpj = z2;
2997:     for (r = 1; r < p; r++) {
2998:       if (r == j) {
2999:         A[j][j] = 2. / (3. * (1. - gllnodes[j] * gllnodes[j]) * Lpj * Lpj);
3000:       } else {
3001:         x  = gllnodes[r];
3002:         z0 = 1.;
3003:         z1 = x;
3004:         for (nn = 1; nn < p; nn++) {
3005:           z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
3006:           z0 = z1;
3007:           z1 = z2;
3008:         }
3009:         Lpr     = z2;
3010:         A[r][j] = 4. / (((PetscReal)p) * (((PetscReal)p) + 1.) * Lpj * Lpr * (gllnodes[j] - gllnodes[r]) * (gllnodes[j] - gllnodes[r]));
3011:       }
3012:     }
3013:   }
3014:   for (j = 1; j < p + 1; j++) {
3015:     x  = gllnodes[j];
3016:     z0 = 1.;
3017:     z1 = x;
3018:     for (nn = 1; nn < p; nn++) {
3019:       z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
3020:       z0 = z1;
3021:       z1 = z2;
3022:     }
3023:     Lpj     = z2;
3024:     A[j][0] = 4. * PetscPowRealInt(-1., p) / (((PetscReal)p) * (((PetscReal)p) + 1.) * Lpj * (1. + gllnodes[j]) * (1. + gllnodes[j]));
3025:     A[0][j] = A[j][0];
3026:   }
3027:   for (j = 0; j < p; j++) {
3028:     x  = gllnodes[j];
3029:     z0 = 1.;
3030:     z1 = x;
3031:     for (nn = 1; nn < p; nn++) {
3032:       z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
3033:       z0 = z1;
3034:       z1 = z2;
3035:     }
3036:     Lpj = z2;

3038:     A[p][j] = 4. / (((PetscReal)p) * (((PetscReal)p) + 1.) * Lpj * (1. - gllnodes[j]) * (1. - gllnodes[j]));
3039:     A[j][p] = A[p][j];
3040:   }
3041:   A[0][0] = 0.5 + (((PetscReal)p) * (((PetscReal)p) + 1.) - 2.) / 6.;
3042:   A[p][p] = A[0][0];
3043:   *AA     = A;
3044:   PetscFunctionReturn(PETSC_SUCCESS);
3045: }

3047: /*@C
3048:   PetscGaussLobattoLegendreElementLaplacianDestroy - frees the Laplacian for a single 1d GLL element created with `PetscGaussLobattoLegendreElementLaplacianCreate()`

3050:   Not Collective

3052:   Input Parameters:
3053: + n       - the number of GLL nodes
3054: . nodes   - the GLL nodes, ignored
3055: . weights - the GLL weightss, ignored
3056: - AA      - the stiffness element from `PetscGaussLobattoLegendreElementLaplacianCreate()`

3058:   Level: beginner

3060: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianCreate()`
3061: @*/
3062: PetscErrorCode PetscGaussLobattoLegendreElementLaplacianDestroy(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
3063: {
3064:   PetscFunctionBegin;
3065:   PetscCall(PetscFree((*AA)[0]));
3066:   PetscCall(PetscFree(*AA));
3067:   *AA = NULL;
3068:   PetscFunctionReturn(PETSC_SUCCESS);
3069: }

3071: /*@C
3072:   PetscGaussLobattoLegendreElementGradientCreate - computes the gradient for a single 1d GLL element

3074:   Not Collective

3076:   Input Parameters:
3077: + n       - the number of GLL nodes
3078: . nodes   - the GLL nodes, of length `n`
3079: - weights - the GLL weights, of length `n`

3081:   Output Parameters:
3082: + AA  - the stiffness element, of dimension `n` by `n`
3083: - AAT - the transpose of AA (pass in `NULL` if you do not need this array), of dimension `n` by `n`

3085:   Level: beginner

3087:   Notes:
3088:   Destroy this with `PetscGaussLobattoLegendreElementGradientDestroy()`

3090:   You can access entries in these arrays with AA[i][j] but in memory it is stored in contiguous memory, row-oriented

3092: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianDestroy()`, `PetscGaussLobattoLegendreElementGradientDestroy()`
3093: @*/
3094: PetscErrorCode PetscGaussLobattoLegendreElementGradientCreate(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA, PetscReal ***AAT)
3095: {
3096:   PetscReal      **A, **AT = NULL;
3097:   const PetscReal *gllnodes = nodes;
3098:   const PetscInt   p        = n - 1;
3099:   PetscReal        Li, Lj, d0;
3100:   PetscInt         i, j;

3102:   PetscFunctionBegin;
3103:   PetscCall(PetscMalloc1(n, &A));
3104:   PetscCall(PetscMalloc1(n * n, &A[0]));
3105:   for (i = 1; i < n; i++) A[i] = A[i - 1] + n;

3107:   if (AAT) {
3108:     PetscCall(PetscMalloc1(n, &AT));
3109:     PetscCall(PetscMalloc1(n * n, &AT[0]));
3110:     for (i = 1; i < n; i++) AT[i] = AT[i - 1] + n;
3111:   }

3113:   if (n == 1) A[0][0] = 0.;
3114:   d0 = (PetscReal)p * ((PetscReal)p + 1.) / 4.;
3115:   for (i = 0; i < n; i++) {
3116:     for (j = 0; j < n; j++) {
3117:       A[i][j] = 0.;
3118:       PetscCall(PetscDTComputeJacobi(0., 0., p, gllnodes[i], &Li));
3119:       PetscCall(PetscDTComputeJacobi(0., 0., p, gllnodes[j], &Lj));
3120:       if (i != j) A[i][j] = Li / (Lj * (gllnodes[i] - gllnodes[j]));
3121:       if ((j == i) && (i == 0)) A[i][j] = -d0;
3122:       if (j == i && i == p) A[i][j] = d0;
3123:       if (AT) AT[j][i] = A[i][j];
3124:     }
3125:   }
3126:   if (AAT) *AAT = AT;
3127:   *AA = A;
3128:   PetscFunctionReturn(PETSC_SUCCESS);
3129: }

3131: /*@C
3132:   PetscGaussLobattoLegendreElementGradientDestroy - frees the gradient for a single 1d GLL element obtained with `PetscGaussLobattoLegendreElementGradientCreate()`

3134:   Not Collective

3136:   Input Parameters:
3137: + n       - the number of GLL nodes
3138: . nodes   - the GLL nodes, ignored
3139: . weights - the GLL weights, ignored
3140: . AA      - the stiffness element obtained with `PetscGaussLobattoLegendreElementGradientCreate()`
3141: - AAT     - the transpose of the element obtained with `PetscGaussLobattoLegendreElementGradientCreate()`

3143:   Level: beginner

3145: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianCreate()`, `PetscGaussLobattoLegendreElementAdvectionCreate()`
3146: @*/
3147: PetscErrorCode PetscGaussLobattoLegendreElementGradientDestroy(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA, PetscReal ***AAT)
3148: {
3149:   PetscFunctionBegin;
3150:   PetscCall(PetscFree((*AA)[0]));
3151:   PetscCall(PetscFree(*AA));
3152:   *AA = NULL;
3153:   if (AAT) {
3154:     PetscCall(PetscFree((*AAT)[0]));
3155:     PetscCall(PetscFree(*AAT));
3156:     *AAT = NULL;
3157:   }
3158:   PetscFunctionReturn(PETSC_SUCCESS);
3159: }

3161: /*@C
3162:   PetscGaussLobattoLegendreElementAdvectionCreate - computes the advection operator for a single 1d GLL element

3164:   Not Collective

3166:   Input Parameters:
3167: + n       - the number of GLL nodes
3168: . nodes   - the GLL nodes, of length `n`
3169: - weights - the GLL weights, of length `n`

3171:   Output Parameter:
3172: . AA - the stiffness element, of dimension `n` by `n`

3174:   Level: beginner

3176:   Notes:
3177:   Destroy this with `PetscGaussLobattoLegendreElementAdvectionDestroy()`

3179:   This is the same as the Gradient operator multiplied by the diagonal mass matrix

3181:   You can access entries in this array with AA[i][j] but in memory it is stored in contiguous memory, row-oriented

3183: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianCreate()`, `PetscGaussLobattoLegendreElementAdvectionDestroy()`
3184: @*/
3185: PetscErrorCode PetscGaussLobattoLegendreElementAdvectionCreate(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
3186: {
3187:   PetscReal      **D;
3188:   const PetscReal *gllweights = weights;
3189:   const PetscInt   glln       = n;
3190:   PetscInt         i, j;

3192:   PetscFunctionBegin;
3193:   PetscCall(PetscGaussLobattoLegendreElementGradientCreate(n, nodes, weights, &D, NULL));
3194:   for (i = 0; i < glln; i++) {
3195:     for (j = 0; j < glln; j++) D[i][j] = gllweights[i] * D[i][j];
3196:   }
3197:   *AA = D;
3198:   PetscFunctionReturn(PETSC_SUCCESS);
3199: }

3201: /*@C
3202:   PetscGaussLobattoLegendreElementAdvectionDestroy - frees the advection stiffness for a single 1d GLL element created with `PetscGaussLobattoLegendreElementAdvectionCreate()`

3204:   Not Collective

3206:   Input Parameters:
3207: + n       - the number of GLL nodes
3208: . nodes   - the GLL nodes, ignored
3209: . weights - the GLL weights, ignored
3210: - AA      - advection obtained with `PetscGaussLobattoLegendreElementAdvectionCreate()`

3212:   Level: beginner

3214: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementAdvectionCreate()`
3215: @*/
3216: PetscErrorCode PetscGaussLobattoLegendreElementAdvectionDestroy(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
3217: {
3218:   PetscFunctionBegin;
3219:   PetscCall(PetscFree((*AA)[0]));
3220:   PetscCall(PetscFree(*AA));
3221:   *AA = NULL;
3222:   PetscFunctionReturn(PETSC_SUCCESS);
3223: }

3225: PetscErrorCode PetscGaussLobattoLegendreElementMassCreate(PetscInt n, PetscReal *nodes, PetscReal *weights, PetscReal ***AA)
3226: {
3227:   PetscReal      **A;
3228:   const PetscReal *gllweights = weights;
3229:   const PetscInt   glln       = n;
3230:   PetscInt         i, j;

3232:   PetscFunctionBegin;
3233:   PetscCall(PetscMalloc1(glln, &A));
3234:   PetscCall(PetscMalloc1(glln * glln, &A[0]));
3235:   for (i = 1; i < glln; i++) A[i] = A[i - 1] + glln;
3236:   if (glln == 1) A[0][0] = 0.;
3237:   for (i = 0; i < glln; i++) {
3238:     for (j = 0; j < glln; j++) {
3239:       A[i][j] = 0.;
3240:       if (j == i) A[i][j] = gllweights[i];
3241:     }
3242:   }
3243:   *AA = A;
3244:   PetscFunctionReturn(PETSC_SUCCESS);
3245: }

3247: PetscErrorCode PetscGaussLobattoLegendreElementMassDestroy(PetscInt n, PetscReal *nodes, PetscReal *weights, PetscReal ***AA)
3248: {
3249:   PetscFunctionBegin;
3250:   PetscCall(PetscFree((*AA)[0]));
3251:   PetscCall(PetscFree(*AA));
3252:   *AA = NULL;
3253:   PetscFunctionReturn(PETSC_SUCCESS);
3254: }

3256: /*@
3257:   PetscDTIndexToBary - convert an index into a barycentric coordinate.

3259:   Input Parameters:
3260: + len   - the desired length of the barycentric tuple (usually 1 more than the dimension it represents, so a barycentric coordinate in a triangle has length 3)
3261: . sum   - the value that the sum of the barycentric coordinates (which will be non-negative integers) should sum to
3262: - index - the index to convert: should be >= 0 and < Binomial(len - 1 + sum, sum)

3264:   Output Parameter:
3265: . coord - will be filled with the barycentric coordinate, of length `n`

3267:   Level: beginner

3269:   Note:
3270:   The indices map to barycentric coordinates in lexicographic order, where the first index is the
3271:   least significant and the last index is the most significant.

3273: .seealso: `PetscDTBaryToIndex()`
3274: @*/
3275: PetscErrorCode PetscDTIndexToBary(PetscInt len, PetscInt sum, PetscInt index, PetscInt coord[])
3276: {
3277:   PetscInt c, d, s, total, subtotal, nexttotal;

3279:   PetscFunctionBeginHot;
3280:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
3281:   PetscCheck(index >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "index must be non-negative");
3282:   if (!len) {
3283:     PetscCheck(!sum && !index, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid index or sum for length 0 barycentric coordinate");
3284:     PetscFunctionReturn(PETSC_SUCCESS);
3285:   }
3286:   for (c = 1, total = 1; c <= len; c++) {
3287:     /* total is the number of ways to have a tuple of length c with sum */
3288:     if (index < total) break;
3289:     total = (total * (sum + c)) / c;
3290:   }
3291:   PetscCheck(c <= len, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "index out of range");
3292:   for (d = c; d < len; d++) coord[d] = 0;
3293:   for (s = 0, subtotal = 1, nexttotal = 1; c > 0;) {
3294:     /* subtotal is the number of ways to have a tuple of length c with sum s */
3295:     /* nexttotal is the number of ways to have a tuple of length c-1 with sum s */
3296:     if ((index + subtotal) >= total) {
3297:       coord[--c] = sum - s;
3298:       index -= (total - subtotal);
3299:       sum       = s;
3300:       total     = nexttotal;
3301:       subtotal  = 1;
3302:       nexttotal = 1;
3303:       s         = 0;
3304:     } else {
3305:       subtotal  = (subtotal * (c + s)) / (s + 1);
3306:       nexttotal = (nexttotal * (c - 1 + s)) / (s + 1);
3307:       s++;
3308:     }
3309:   }
3310:   PetscFunctionReturn(PETSC_SUCCESS);
3311: }

3313: /*@
3314:   PetscDTBaryToIndex - convert a barycentric coordinate to an index

3316:   Input Parameters:
3317: + len   - the desired length of the barycentric tuple (usually 1 more than the dimension it represents, so a barycentric coordinate in a triangle has length 3)
3318: . sum   - the value that the sum of the barycentric coordinates (which will be non-negative integers) should sum to
3319: - coord - a barycentric coordinate with the given length `len` and `sum`

3321:   Output Parameter:
3322: . index - the unique index for the coordinate, >= 0 and < Binomial(len - 1 + sum, sum)

3324:   Level: beginner

3326:   Note:
3327:   The indices map to barycentric coordinates in lexicographic order, where the first index is the
3328:   least significant and the last index is the most significant.

3330: .seealso: `PetscDTIndexToBary`
3331: @*/
3332: PetscErrorCode PetscDTBaryToIndex(PetscInt len, PetscInt sum, const PetscInt coord[], PetscInt *index)
3333: {
3334:   PetscInt c;
3335:   PetscInt i;
3336:   PetscInt total;

3338:   PetscFunctionBeginHot;
3339:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
3340:   if (!len) {
3341:     PetscCheck(!sum, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid index or sum for length 0 barycentric coordinate");
3342:     *index = 0;
3343:     PetscFunctionReturn(PETSC_SUCCESS);
3344:   }
3345:   for (c = 1, total = 1; c < len; c++) total = (total * (sum + c)) / c;
3346:   i = total - 1;
3347:   c = len - 1;
3348:   sum -= coord[c];
3349:   while (sum > 0) {
3350:     PetscInt subtotal;
3351:     PetscInt s;

3353:     for (s = 1, subtotal = 1; s < sum; s++) subtotal = (subtotal * (c + s)) / s;
3354:     i -= subtotal;
3355:     sum -= coord[--c];
3356:   }
3357:   *index = i;
3358:   PetscFunctionReturn(PETSC_SUCCESS);
3359: }

3361: /*@
3362:   PetscQuadratureComputePermutations - Compute permutations of quadrature points corresponding to domain orientations

3364:   Input Parameter:
3365: . quad - The `PetscQuadrature`

3367:   Output Parameters:
3368: + Np   - The number of domain orientations
3369: - perm - An array of `IS` permutations, one for ech orientation,

3371:   Level: developer

3373: .seealso: `PetscQuadratureSetCellType()`, `PetscQuadrature`
3374: @*/
3375: PetscErrorCode PetscQuadratureComputePermutations(PetscQuadrature quad, PeOp PetscInt *Np, IS *perm[])
3376: {
3377:   DMPolytopeType   ct;
3378:   const PetscReal *xq, *wq;
3379:   PetscInt         dim, qdim, d, Na, o, Nq, q, qp;

3381:   PetscFunctionBegin;
3382:   PetscCall(PetscQuadratureGetData(quad, &qdim, NULL, &Nq, &xq, &wq));
3383:   PetscCall(PetscQuadratureGetCellType(quad, &ct));
3384:   dim = DMPolytopeTypeGetDim(ct);
3385:   Na  = DMPolytopeTypeGetNumArrangements(ct);
3386:   PetscCall(PetscMalloc1(Na, perm));
3387:   if (Np) *Np = Na;
3388:   Na /= 2;
3389:   for (o = -Na; o < Na; ++o) {
3390:     DM        refdm;
3391:     PetscInt *idx;
3392:     PetscReal xi0[3] = {-1., -1., -1.}, v0[3], J[9], detJ, txq[3];
3393:     PetscBool flg;

3395:     PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &refdm));
3396:     PetscCall(DMPlexOrientPoint(refdm, 0, o));
3397:     PetscCall(DMPlexComputeCellGeometryFEM(refdm, 0, NULL, v0, J, NULL, &detJ));
3398:     PetscCall(PetscMalloc1(Nq, &idx));
3399:     for (q = 0; q < Nq; ++q) {
3400:       CoordinatesRefToReal(dim, dim, xi0, v0, J, &xq[q * dim], txq);
3401:       for (qp = 0; qp < Nq; ++qp) {
3402:         PetscReal diff = 0.;

3404:         for (d = 0; d < dim; ++d) diff += PetscAbsReal(txq[d] - xq[qp * dim + d]);
3405:         if (diff < PETSC_SMALL) break;
3406:       }
3407:       PetscCheck(qp < Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Transformed quad point %" PetscInt_FMT " does not match another quad point", q);
3408:       idx[q] = qp;
3409:     }
3410:     PetscCall(DMDestroy(&refdm));
3411:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, Nq, idx, PETSC_OWN_POINTER, &(*perm)[o + Na]));
3412:     PetscCall(ISGetInfo((*perm)[o + Na], IS_PERMUTATION, IS_LOCAL, PETSC_TRUE, &flg));
3413:     PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Ordering for orientation %" PetscInt_FMT " was not a permutation", o);
3414:     PetscCall(ISSetPermutation((*perm)[o + Na]));
3415:   }
3416:   if (!Na) (*perm)[0] = NULL;
3417:   PetscFunctionReturn(PETSC_SUCCESS);
3418: }

3420: /*@
3421:   PetscDTCreateQuadratureByCell - Create default quadrature for a given cell

3423:   Not collective

3425:   Input Parameters:
3426: + ct     - The integration domain
3427: . qorder - The desired quadrature order
3428: - qtype  - The type of simplex quadrature, or PETSCDTSIMPLEXQUAD_DEFAULT

3430:   Output Parameters:
3431: + q  - The cell quadrature
3432: - fq - The face quadrature

3434:   Level: developer

3436: .seealso: `PetscDTCreateDefaultQuadrature()`, `PetscFECreateDefault()`, `PetscDTGaussTensorQuadrature()`, `PetscDTSimplexQuadrature()`, `PetscDTTensorQuadratureCreate()`
3437: @*/
3438: PetscErrorCode PetscDTCreateQuadratureByCell(DMPolytopeType ct, PetscInt qorder, PetscDTSimplexQuadratureType qtype, PetscQuadrature *q, PetscQuadrature *fq)
3439: {
3440:   const PetscInt quadPointsPerEdge = PetscMax(qorder + 1, 1);
3441:   const PetscInt dim               = DMPolytopeTypeGetDim(ct);

3443:   PetscFunctionBegin;
3444:   switch (ct) {
3445:   case DM_POLYTOPE_SEGMENT:
3446:   case DM_POLYTOPE_POINT_PRISM_TENSOR:
3447:   case DM_POLYTOPE_QUADRILATERAL:
3448:   case DM_POLYTOPE_SEG_PRISM_TENSOR:
3449:   case DM_POLYTOPE_HEXAHEDRON:
3450:   case DM_POLYTOPE_QUAD_PRISM_TENSOR:
3451:     PetscCall(PetscDTGaussTensorQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, q));
3452:     PetscCall(PetscDTGaussTensorQuadrature(dim - 1, 1, quadPointsPerEdge, -1.0, 1.0, fq));
3453:     break;
3454:   case DM_POLYTOPE_TRIANGLE:
3455:   case DM_POLYTOPE_TETRAHEDRON:
3456:     PetscCall(PetscDTSimplexQuadrature(dim, 2 * qorder, qtype, q));
3457:     PetscCall(PetscDTSimplexQuadrature(dim - 1, 2 * qorder, qtype, fq));
3458:     break;
3459:   case DM_POLYTOPE_TRI_PRISM:
3460:   case DM_POLYTOPE_TRI_PRISM_TENSOR: {
3461:     PetscQuadrature q1, q2;

3463:     // TODO: this should be able to use symmetric rules, but doing so causes tests to fail
3464:     PetscCall(PetscDTSimplexQuadrature(2, 2 * qorder, PETSCDTSIMPLEXQUAD_CONIC, &q1));
3465:     PetscCall(PetscDTGaussTensorQuadrature(1, 1, quadPointsPerEdge, -1.0, 1.0, &q2));
3466:     PetscCall(PetscDTTensorQuadratureCreate(q1, q2, q));
3467:     PetscCall(PetscQuadratureDestroy(&q2));
3468:     *fq = q1;
3469:     /* TODO Need separate quadratures for each face */
3470:   } break;
3471:   default:
3472:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No quadrature for celltype %s", DMPolytopeTypes[PetscMin(ct, DM_POLYTOPE_UNKNOWN)]);
3473:   }
3474:   PetscFunctionReturn(PETSC_SUCCESS);
3475: }

3477: /*@
3478:   PetscDTCreateDefaultQuadrature - Create default quadrature for a given cell

3480:   Not collective

3482:   Input Parameters:
3483: + ct     - The integration domain
3484: - qorder - The desired quadrature order

3486:   Output Parameters:
3487: + q  - The cell quadrature
3488: - fq - The face quadrature

3490:   Level: developer

3492: .seealso: `PetscDTCreateQuadratureByCell()`, `PetscFECreateDefault()`, `PetscDTGaussTensorQuadrature()`, `PetscDTSimplexQuadrature()`, `PetscDTTensorQuadratureCreate()`
3493: @*/
3494: PetscErrorCode PetscDTCreateDefaultQuadrature(DMPolytopeType ct, PetscInt qorder, PetscQuadrature *q, PetscQuadrature *fq)
3495: {
3496:   PetscFunctionBegin;
3497:   PetscCall(PetscDTCreateQuadratureByCell(ct, qorder, PETSCDTSIMPLEXQUAD_DEFAULT, q, fq));
3498:   PetscFunctionReturn(PETSC_SUCCESS);
3499: }