Actual source code: plexlocalizationletkf.kokkos.cxx
1: #include <petsc/private/dmpleximpl.h>
2: #include <petscdmplex.h>
3: #include <petscmat.h>
4: #include <petsc_kokkos.hpp>
5: #include <cmath>
6: #include <cstdlib>
7: #include <algorithm>
8: #include <Kokkos_Core.hpp>
10: typedef struct {
11: PetscReal distance;
12: PetscInt obs_index;
13: } DistObsPair;
15: KOKKOS_INLINE_FUNCTION
16: static PetscReal GaspariCohn(PetscReal distance, PetscReal radius)
17: {
18: if (radius <= 0.0) return 0.0;
19: const PetscReal r = distance / radius;
21: if (r >= 2.0) return 0.0;
23: const PetscReal r2 = r * r;
24: const PetscReal r3 = r2 * r;
25: const PetscReal r4 = r3 * r;
26: const PetscReal r5 = r4 * r;
28: if (r <= 1.0) {
29: // Region [0, 1]
30: return -0.25 * r5 + 0.5 * r4 + 0.625 * r3 - (5.0 / 3.0) * r2 + 1.0;
31: } else {
32: // Region [1, 2]
33: return (1.0 / 12.0) * r5 - 0.5 * r4 + 0.625 * r3 + (5.0 / 3.0) * r2 - 5.0 * r + 4.0 - (2.0 / 3.0) / r;
34: }
35: }
37: /*@
38: DMPlexGetLETKFLocalizationMatrix - Compute localization weight matrix for LETKF [move to ml/da/interface]
40: Collective
42: Input Parameters:
43: + n_obs_vertex - Number of nearest observations to use per vertex (eg, MAX_Q_NUM_LOCAL_OBSERVATIONS in LETKF)
44: . n_obs_local - Number of local observations
45: . n_dof - Number of degrees of freedom
46: . Vecxyz - Array of vectors containing the coordinates
47: - H - Observation operator matrix
49: Output Parameter:
50: . Q - Localization weight matrix (sparse, AIJ format)
52: Notes:
53: The output matrix Q has dimensions (n_vert_global x n_obs_global) where
54: n_vert_global is the number of vertices in the DMPlex. Each row contains
55: exactly n_obs_vertex non-zero entries corresponding to the nearest
56: observations, weighted by the Gaspari-Cohn fifth-order piecewise
57: rational function.
59: The observation locations are computed as H * V where V is the vector
60: of vertex coordinates. The localization weights ensure smooth tapering
61: of observation influence with distance.
63: Kokkos is required for this routine.
65: Level: intermediate
67: .seealso:
68: @*/
69: PetscErrorCode DMPlexGetLETKFLocalizationMatrix(const PetscInt n_obs_vertex, const PetscInt n_obs_local, const PetscInt n_dof, Vec Vecxyz[3], Mat H, Mat *Q)
70: {
71: PetscInt dim = 0, n_vert_local, d, N, n_obs_global, n_state_local;
72: Vec *obs_vecs;
73: MPI_Comm comm;
74: PetscInt n_state_global;
76: PetscFunctionBegin;
78: PetscAssertPointer(Q, 6);
80: PetscCall(PetscKokkosInitializeCheck());
82: PetscCall(PetscObjectGetComm((PetscObject)H, &comm));
84: /* Infer dim from the number of vectors in Vecxyz */
85: for (d = 0; d < 3; ++d) {
86: if (Vecxyz[d]) dim++;
87: else break;
88: }
90: PetscCheck(dim > 0, comm, PETSC_ERR_ARG_WRONG, "Dim must be > 0");
91: PetscCheck(n_obs_vertex > 0, comm, PETSC_ERR_ARG_WRONG, "n_obs_vertex must be > 0");
93: PetscCall(VecGetSize(Vecxyz[0], &n_state_global));
94: PetscCall(VecGetLocalSize(Vecxyz[0], &n_state_local));
95: n_vert_local = n_state_local / n_dof;
97: /* Check H dimensions */
98: PetscCall(MatGetSize(H, &n_obs_global, &N));
99: PetscCheck(N == n_state_global, comm, PETSC_ERR_ARG_SIZ, "H number of columns %" PetscInt_FMT " != global state size %" PetscInt_FMT, N, n_state_global);
100: // If n_obs_global < n_obs_vertex, we will pad with -1 indices and 0.0 weights.
101: // This is not an error condition, but rather a case where we have fewer observations than requested neighbors.
103: /* Allocate storage for observation locations */
104: PetscCall(PetscMalloc1(dim, &obs_vecs));
106: /* Compute observation locations per dimension */
107: for (d = 0; d < dim; ++d) {
108: PetscCall(MatCreateVecs(H, NULL, &obs_vecs[d]));
109: PetscCall(MatMult(H, Vecxyz[d], obs_vecs[d]));
110: }
112: /* Create output matrix Q in N/n_dof x P */
113: PetscCall(MatCreate(comm, Q));
114: PetscCall(MatSetSizes(*Q, n_vert_local, n_obs_local, PETSC_DETERMINE, n_obs_global));
115: PetscCall(MatSetType(*Q, MATAIJ));
116: PetscCall(MatSeqAIJSetPreallocation(*Q, n_obs_vertex, NULL));
117: PetscCall(MatMPIAIJSetPreallocation(*Q, n_obs_vertex, NULL, n_obs_vertex, NULL));
118: PetscCall(MatSetFromOptions(*Q));
119: PetscCall(MatSetUp(*Q));
121: PetscCall(PetscInfo((PetscObject)*Q, "Computing LETKF localization matrix: %" PetscInt_FMT " vertices, %" PetscInt_FMT " observations, %" PetscInt_FMT " neighbors\n", n_vert_local, n_obs_global, n_obs_vertex));
123: /* Prepare Kokkos Views */
124: using ExecSpace = Kokkos::DefaultExecutionSpace;
125: using MemSpace = ExecSpace::memory_space;
127: /* Vertex Coordinates */
128: // Use LayoutLeft for coalesced access on GPU (i is contiguous)
129: Kokkos::View<PetscScalar **, Kokkos::LayoutLeft, MemSpace> vertex_coords_dev("vertex_coords", n_vert_local, dim);
130: {
131: // Host view must match the data layout from VecGetArray (d-major, i-minor implies LayoutLeft for (i,d) view)
132: Kokkos::View<PetscScalar **, Kokkos::LayoutLeft, Kokkos::HostSpace> vertex_coords_host("vertex_coords_host", n_vert_local, dim);
133: for (d = 0; d < dim; ++d) {
134: const PetscScalar *local_coords_array;
135: PetscCall(VecGetArrayRead(Vecxyz[d], &local_coords_array));
136: // Copy data. Since vertex_coords_host is LayoutLeft, &vertex_coords_host(0, d) is the start of column d.
137: for (PetscInt i = 0; i < n_vert_local; ++i) vertex_coords_host(i, d) = local_coords_array[i];
138: PetscCall(VecRestoreArrayRead(Vecxyz[d], &local_coords_array));
139: }
140: Kokkos::deep_copy(vertex_coords_dev, vertex_coords_host);
141: }
143: /* Observation Coordinates */
144: Kokkos::View<PetscReal **, Kokkos::LayoutRight, MemSpace> obs_coords_dev("obs_coords", n_obs_global, dim);
145: {
146: Kokkos::View<PetscReal **, Kokkos::LayoutRight, Kokkos::HostSpace> obs_coords_host("obs_coords_host", n_obs_global, dim);
147: for (d = 0; d < dim; ++d) {
148: VecScatter ctx;
149: Vec seq_vec;
150: const PetscScalar *array;
152: PetscCall(VecScatterCreateToAll(obs_vecs[d], &ctx, &seq_vec));
153: PetscCall(VecScatterBegin(ctx, obs_vecs[d], seq_vec, INSERT_VALUES, SCATTER_FORWARD));
154: PetscCall(VecScatterEnd(ctx, obs_vecs[d], seq_vec, INSERT_VALUES, SCATTER_FORWARD));
156: PetscCall(VecGetArrayRead(seq_vec, &array));
157: for (PetscInt j = 0; j < n_obs_global; ++j) obs_coords_host(j, d) = PetscRealPart(array[j]);
158: PetscCall(VecRestoreArrayRead(seq_vec, &array));
159: PetscCall(VecScatterDestroy(&ctx));
160: PetscCall(VecDestroy(&seq_vec));
161: }
162: Kokkos::deep_copy(obs_coords_dev, obs_coords_host);
163: }
165: PetscInt rstart;
166: PetscCall(VecGetOwnershipRange(Vecxyz[0], &rstart, NULL));
168: /* Output Views */
169: // LayoutLeft for coalesced access on GPU
170: Kokkos::View<PetscInt **, Kokkos::LayoutLeft, MemSpace> indices_dev("indices", n_vert_local, n_obs_vertex);
171: Kokkos::View<PetscScalar **, Kokkos::LayoutLeft, MemSpace> values_dev("values", n_vert_local, n_obs_vertex);
173: /* Temporary storage for top-k per vertex */
174: // LayoutLeft for coalesced access on GPU.
175: // Note: For the insertion sort within a thread, LayoutRight would offer better cache locality for the thread's private list.
176: // However, LayoutLeft is preferred for coalesced access across threads during the final weight computation and initialization.
177: // Given the random access nature of the sort (divergence), we stick to the default GPU layout (Left).
178: Kokkos::View<PetscReal **, Kokkos::LayoutLeft, MemSpace> best_dists_dev("best_dists", n_vert_local, n_obs_vertex);
179: Kokkos::View<PetscInt **, Kokkos::LayoutLeft, MemSpace> best_idxs_dev("best_idxs", n_vert_local, n_obs_vertex);
181: /* Main Kernel */
182: Kokkos::parallel_for(
183: "ComputeLocalization", Kokkos::RangePolicy<ExecSpace>(0, n_vert_local), KOKKOS_LAMBDA(const PetscInt i) {
184: PetscReal current_max_dist = PETSC_MAX_REAL;
186: // Cache vertex coordinates in registers to avoid repeated global memory access
187: // dim is small (<= 3), so this fits easily in registers
188: PetscReal v_coords[3] = {0.0, 0.0, 0.0};
189: for (PetscInt d = 0; d < dim; ++d) v_coords[d] = PetscRealPart(vertex_coords_dev(i, d));
191: // Initialize with infinity
192: for (PetscInt k = 0; k < n_obs_vertex; ++k) {
193: best_dists_dev(i, k) = PETSC_MAX_REAL;
194: best_idxs_dev(i, k) = -1;
195: }
197: // Iterate over all observations
198: for (PetscInt j = 0; j < n_obs_global; ++j) {
199: PetscReal dist2 = 0.0;
200: for (PetscInt d = 0; d < dim; ++d) {
201: PetscReal diff = v_coords[d] - obs_coords_dev(j, d);
202: dist2 += diff * diff;
203: }
205: // Check if this observation is closer than the furthest stored observation
206: if (dist2 < current_max_dist) {
207: // Insert sorted
208: PetscInt pos = n_obs_vertex - 1;
209: while (pos > 0 && best_dists_dev(i, pos - 1) > dist2) {
210: best_dists_dev(i, pos) = best_dists_dev(i, pos - 1);
211: best_idxs_dev(i, pos) = best_idxs_dev(i, pos - 1);
212: pos--;
213: }
214: best_dists_dev(i, pos) = dist2;
215: best_idxs_dev(i, pos) = j;
217: // Update current max distance
218: current_max_dist = best_dists_dev(i, n_obs_vertex - 1);
219: }
220: }
222: // Compute weights
223: PetscReal radius2 = best_dists_dev(i, n_obs_vertex - 1);
224: PetscReal radius = std::sqrt(radius2);
225: if (radius == 0.0) radius = 1.0;
227: for (PetscInt k = 0; k < n_obs_vertex; ++k) {
228: if (best_idxs_dev(i, k) != -1) {
229: PetscReal dist = std::sqrt(best_dists_dev(i, k));
230: indices_dev(i, k) = best_idxs_dev(i, k);
231: values_dev(i, k) = GaspariCohn(dist, radius);
232: } else {
233: indices_dev(i, k) = -1; // Ignore this entry
234: values_dev(i, k) = 0.0;
235: }
236: }
237: });
239: /* Copy back to host and fill matrix */
240: // Host views must be LayoutRight for MatSetValues (row-major)
241: Kokkos::View<PetscInt **, Kokkos::LayoutRight, Kokkos::HostSpace> indices_host("indices_host", n_vert_local, n_obs_vertex);
242: Kokkos::View<PetscScalar **, Kokkos::LayoutRight, Kokkos::HostSpace> values_host("values_host", n_vert_local, n_obs_vertex);
244: // Deep copy will handle layout conversion (transpose) if device views are LayoutLeft
245: // Note: Kokkos::deep_copy cannot copy between different layouts if the memory spaces are different (e.g. GPU to Host).
246: // We need an intermediate mirror view on the host with the same layout as the device view.
247: Kokkos::View<PetscInt **, Kokkos::LayoutLeft, Kokkos::HostSpace> indices_host_left = Kokkos::create_mirror_view(indices_dev);
248: Kokkos::View<PetscScalar **, Kokkos::LayoutLeft, Kokkos::HostSpace> values_host_left = Kokkos::create_mirror_view(values_dev);
250: Kokkos::deep_copy(indices_host_left, indices_dev);
251: Kokkos::deep_copy(values_host_left, values_dev);
253: // Now copy from LayoutLeft host view to LayoutRight host view
254: Kokkos::deep_copy(indices_host, indices_host_left);
255: Kokkos::deep_copy(values_host, values_host_left);
257: for (PetscInt i = 0; i < n_vert_local; ++i) {
258: PetscInt globalRow = rstart + i;
259: PetscCall(MatSetValues(*Q, 1, &globalRow, n_obs_vertex, &indices_host(i, 0), &values_host(i, 0), INSERT_VALUES));
260: }
262: /* Cleanup Phase 2 storage */
263: for (d = 0; d < dim; ++d) PetscCall(VecDestroy(&obs_vecs[d]));
264: PetscCall(PetscFree(obs_vecs));
266: /* Assemble matrix */
267: PetscCall(MatAssemblyBegin(*Q, MAT_FINAL_ASSEMBLY));
268: PetscCall(MatAssemblyEnd(*Q, MAT_FINAL_ASSEMBLY));
269: PetscFunctionReturn(PETSC_SUCCESS);
270: }