Actual source code: plexorient.c
1: #include <petsc/private/dmpleximpl.h>
2: #include <petscsf.h>
4: /*@
5: DMPlexOrientPoint - Act with the given orientation on the cone points of this mesh point, and update its use in the mesh.
7: Not Collective
9: Input Parameters:
10: + dm - The `DM`
11: . p - The mesh point
12: - o - The orientation
14: Level: intermediate
16: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexOrient()`, `DMPlexGetCone()`, `DMPlexGetConeOrientation()`, `DMPlexInterpolate()`, `DMPlexGetChart()`
17: @*/
18: PetscErrorCode DMPlexOrientPoint(DM dm, PetscInt p, PetscInt o)
19: {
20: DMPolytopeType ct;
21: const PetscInt *arr, *cone, *ornt, *support;
22: PetscInt *newcone, *newornt;
23: PetscInt coneSize, c, supportSize, s;
25: PetscFunctionBegin;
27: PetscCall(DMPlexGetCellType(dm, p, &ct));
28: arr = DMPolytopeTypeGetArrangement(ct, o);
29: if (!arr) PetscFunctionReturn(PETSC_SUCCESS);
30: PetscCall(DMPlexGetConeSize(dm, p, &coneSize));
31: PetscCall(DMPlexGetCone(dm, p, &cone));
32: PetscCall(DMPlexGetConeOrientation(dm, p, &ornt));
33: PetscCall(DMGetWorkArray(dm, coneSize, MPIU_INT, &newcone));
34: PetscCall(DMGetWorkArray(dm, coneSize, MPIU_INT, &newornt));
35: for (c = 0; c < coneSize; ++c) {
36: DMPolytopeType ft;
37: PetscInt nO;
39: PetscCall(DMPlexGetCellType(dm, cone[c], &ft));
40: nO = DMPolytopeTypeGetNumArrangements(ft) / 2;
41: newcone[c] = cone[arr[c * 2 + 0]];
42: newornt[c] = DMPolytopeTypeComposeOrientation(ft, arr[c * 2 + 1], ornt[arr[c * 2 + 0]]);
43: PetscCheck(!newornt[c] || !(newornt[c] >= nO || newornt[c] < -nO), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid orientation %" PetscInt_FMT " not in [%" PetscInt_FMT ",%" PetscInt_FMT ") for %s %" PetscInt_FMT, newornt[c], -nO, nO, DMPolytopeTypes[ft], cone[c]);
44: }
45: PetscCall(DMPlexSetCone(dm, p, newcone));
46: PetscCall(DMPlexSetConeOrientation(dm, p, newornt));
47: PetscCall(DMRestoreWorkArray(dm, coneSize, MPIU_INT, &newcone));
48: PetscCall(DMRestoreWorkArray(dm, coneSize, MPIU_INT, &newornt));
49: /* Update orientation of this point in the support points */
50: PetscCall(DMPlexGetSupportSize(dm, p, &supportSize));
51: PetscCall(DMPlexGetSupport(dm, p, &support));
52: for (s = 0; s < supportSize; ++s) {
53: PetscCall(DMPlexGetConeSize(dm, support[s], &coneSize));
54: PetscCall(DMPlexGetCone(dm, support[s], &cone));
55: PetscCall(DMPlexGetConeOrientation(dm, support[s], &ornt));
56: for (c = 0; c < coneSize; ++c) {
57: PetscInt po;
59: if (cone[c] != p) continue;
60: /* ornt[c] * 0 = target = po * o so that po = ornt[c] * o^{-1} */
61: po = DMPolytopeTypeComposeOrientationInv(ct, ornt[c], o);
62: PetscCall(DMPlexInsertConeOrientation(dm, support[s], c, po));
63: }
64: }
65: PetscFunctionReturn(PETSC_SUCCESS);
66: }
68: static PetscInt GetPointIndex(PetscInt point, PetscInt pStart, PetscInt pEnd, const PetscInt points[])
69: {
70: if (points) {
71: PetscInt loc;
73: PetscCallAbort(PETSC_COMM_SELF, PetscFindInt(point, pEnd - pStart, points, &loc));
74: if (loc >= 0) return loc;
75: } else {
76: if (point >= pStart && point < pEnd) return point - pStart;
77: }
78: return -1;
79: }
81: /*
82: - Checks face match
83: - Flips non-matching
84: - Inserts faces of support cells in FIFO
85: */
86: static PetscErrorCode DMPlexCheckFace_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, IS cellIS, IS faceIS, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
87: {
88: const PetscInt *supp, *coneA, *coneB, *coneOA, *coneOB;
89: PetscInt suppSize, Ns = 0, coneSizeA, coneSizeB, posA = -1, posB = -1;
90: PetscInt face, dim, indC[3], indS[3], seenA, flippedA, seenB, flippedB, mismatch;
91: const PetscInt *cells, *faces;
92: PetscInt cStart, cEnd, fStart, fEnd;
94: PetscFunctionBegin;
95: face = faceFIFO[(*fTop)++];
96: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
97: PetscCall(ISGetPointRange(faceIS, &fStart, &fEnd, &faces));
98: PetscCall(DMPlexGetPointDepth(dm, cells ? cells[cStart] : cStart, &dim));
99: PetscCall(DMPlexGetSupportSize(dm, face, &suppSize));
100: PetscCall(DMPlexGetSupport(dm, face, &supp));
101: // Filter the support
102: for (PetscInt s = 0; s < suppSize; ++s) {
103: // Filter support
104: indC[Ns] = GetPointIndex(supp[s], cStart, cEnd, cells);
105: indS[Ns] = s;
106: if (indC[Ns] >= 0) ++Ns;
107: }
108: if (Ns < 2) PetscFunctionReturn(PETSC_SUCCESS);
109: PetscCheck(Ns == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Faces should separate only two cells, not %" PetscInt_FMT, Ns);
110: PetscCheck(indC[0] >= 0 && indC[1] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Support cells %" PetscInt_FMT " (%" PetscInt_FMT ") and %" PetscInt_FMT " (%" PetscInt_FMT ") are not both valid", supp[0], indC[0], supp[1], indC[1]);
111: seenA = PetscBTLookup(seenCells, indC[0]);
112: flippedA = PetscBTLookup(flippedCells, indC[0]) ? 1 : 0;
113: seenB = PetscBTLookup(seenCells, indC[1]);
114: flippedB = PetscBTLookup(flippedCells, indC[1]) ? 1 : 0;
116: PetscCall(DMPlexGetConeSize(dm, supp[indS[0]], &coneSizeA));
117: PetscCall(DMPlexGetConeSize(dm, supp[indS[1]], &coneSizeB));
118: PetscCall(DMPlexGetCone(dm, supp[indS[0]], &coneA));
119: PetscCall(DMPlexGetCone(dm, supp[indS[1]], &coneB));
120: PetscCall(DMPlexGetConeOrientation(dm, supp[indS[0]], &coneOA));
121: PetscCall(DMPlexGetConeOrientation(dm, supp[indS[1]], &coneOB));
122: for (PetscInt c = 0; c < coneSizeA; ++c) {
123: const PetscInt indF = GetPointIndex(coneA[c], fStart, fEnd, faces);
125: // Filter cone
126: if (indF < 0) continue;
127: if (!PetscBTLookup(seenFaces, indF)) {
128: faceFIFO[(*fBottom)++] = coneA[c];
129: PetscCall(PetscBTSet(seenFaces, indF));
130: }
131: if (coneA[c] == face) posA = c;
132: PetscCheck(*fBottom <= fEnd - fStart, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %" PetscInt_FMT " was pushed exceeding capacity %" PetscInt_FMT " > %" PetscInt_FMT, coneA[c], *fBottom, fEnd - fStart);
133: }
134: PetscCheck(posA >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " could not be located in cell %" PetscInt_FMT, face, supp[indS[0]]);
135: for (PetscInt c = 0; c < coneSizeB; ++c) {
136: const PetscInt indF = GetPointIndex(coneB[c], fStart, fEnd, faces);
138: // Filter cone
139: if (indF < 0) continue;
140: if (!PetscBTLookup(seenFaces, indF)) {
141: faceFIFO[(*fBottom)++] = coneB[c];
142: PetscCall(PetscBTSet(seenFaces, indF));
143: }
144: if (coneB[c] == face) posB = c;
145: PetscCheck(*fBottom <= fEnd - fStart, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %" PetscInt_FMT " was pushed exceeding capacity %" PetscInt_FMT " > %" PetscInt_FMT, coneA[c], *fBottom, fEnd - fStart);
146: }
147: PetscCheck(posB >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " could not be located in cell %" PetscInt_FMT, face, supp[indS[1]]);
149: if (dim == 1) {
150: mismatch = posA == posB;
151: } else {
152: mismatch = coneOA[posA] == coneOB[posB];
153: }
155: if (mismatch ^ (flippedA ^ flippedB)) {
156: PetscCheck(!seenA || !seenB, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen cells %" PetscInt_FMT " and %" PetscInt_FMT " do not match: Fault mesh is non-orientable", supp[indS[0]], supp[indS[1]]);
157: if (!seenA && !flippedA) {
158: PetscCall(PetscBTSet(flippedCells, indC[0]));
159: } else if (!seenB && !flippedB) {
160: PetscCall(PetscBTSet(flippedCells, indC[1]));
161: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
162: } else PetscCheck(!mismatch || !flippedA || !flippedB, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
163: PetscCall(PetscBTSet(seenCells, indC[0]));
164: PetscCall(PetscBTSet(seenCells, indC[1]));
165: PetscFunctionReturn(PETSC_SUCCESS);
166: }
168: static PetscErrorCode DMPlexCheckFace_Old_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, PetscInt cStart, PetscInt fStart, PetscInt fEnd, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
169: {
170: const PetscInt *support, *coneA, *coneB, *coneOA, *coneOB;
171: PetscInt supportSize, coneSizeA, coneSizeB, posA = -1, posB = -1;
172: PetscInt face, dim, seenA, flippedA, seenB, flippedB, mismatch, c;
174: PetscFunctionBegin;
175: face = faceFIFO[(*fTop)++];
176: PetscCall(DMGetDimension(dm, &dim));
177: PetscCall(DMPlexGetSupportSize(dm, face, &supportSize));
178: PetscCall(DMPlexGetSupport(dm, face, &support));
179: if (supportSize < 2) PetscFunctionReturn(PETSC_SUCCESS);
180: PetscCheck(supportSize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Faces should separate only two cells, not %" PetscInt_FMT, supportSize);
181: seenA = PetscBTLookup(seenCells, support[0] - cStart);
182: flippedA = PetscBTLookup(flippedCells, support[0] - cStart) ? 1 : 0;
183: seenB = PetscBTLookup(seenCells, support[1] - cStart);
184: flippedB = PetscBTLookup(flippedCells, support[1] - cStart) ? 1 : 0;
186: PetscCall(DMPlexGetConeSize(dm, support[0], &coneSizeA));
187: PetscCall(DMPlexGetConeSize(dm, support[1], &coneSizeB));
188: PetscCall(DMPlexGetCone(dm, support[0], &coneA));
189: PetscCall(DMPlexGetCone(dm, support[1], &coneB));
190: PetscCall(DMPlexGetConeOrientation(dm, support[0], &coneOA));
191: PetscCall(DMPlexGetConeOrientation(dm, support[1], &coneOB));
192: for (c = 0; c < coneSizeA; ++c) {
193: if (!PetscBTLookup(seenFaces, coneA[c] - fStart)) {
194: faceFIFO[(*fBottom)++] = coneA[c];
195: PetscCall(PetscBTSet(seenFaces, coneA[c] - fStart));
196: }
197: if (coneA[c] == face) posA = c;
198: PetscCheck(*fBottom <= fEnd - fStart, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %" PetscInt_FMT " was pushed exceeding capacity %" PetscInt_FMT " > %" PetscInt_FMT, coneA[c], *fBottom, fEnd - fStart);
199: }
200: PetscCheck(posA >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " could not be located in cell %" PetscInt_FMT, face, support[0]);
201: for (c = 0; c < coneSizeB; ++c) {
202: if (!PetscBTLookup(seenFaces, coneB[c] - fStart)) {
203: faceFIFO[(*fBottom)++] = coneB[c];
204: PetscCall(PetscBTSet(seenFaces, coneB[c] - fStart));
205: }
206: if (coneB[c] == face) posB = c;
207: PetscCheck(*fBottom <= fEnd - fStart, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %" PetscInt_FMT " was pushed exceeding capacity %" PetscInt_FMT " > %" PetscInt_FMT, coneA[c], *fBottom, fEnd - fStart);
208: }
209: PetscCheck(posB >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " could not be located in cell %" PetscInt_FMT, face, support[1]);
211: if (dim == 1) {
212: mismatch = posA == posB;
213: } else {
214: mismatch = coneOA[posA] == coneOB[posB];
215: }
217: if (mismatch ^ (flippedA ^ flippedB)) {
218: PetscCheck(!seenA || !seenB, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen cells %" PetscInt_FMT " and %" PetscInt_FMT " do not match: Fault mesh is non-orientable", support[0], support[1]);
219: if (!seenA && !flippedA) {
220: PetscCall(PetscBTSet(flippedCells, support[0] - cStart));
221: } else if (!seenB && !flippedB) {
222: PetscCall(PetscBTSet(flippedCells, support[1] - cStart));
223: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
224: } else PetscCheck(!mismatch || !flippedA || !flippedB, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
225: PetscCall(PetscBTSet(seenCells, support[0] - cStart));
226: PetscCall(PetscBTSet(seenCells, support[1] - cStart));
227: PetscFunctionReturn(PETSC_SUCCESS);
228: }
230: /*
231: DMPlexOrient_Serial - Compute valid orientation for local connected components
233: Not collective
235: Input Parameters:
236: + dm - The `DM`
237: - cellHeight - The height of k-cells to be oriented
239: Output Parameters:
240: + Ncomp - The number of connected component
241: . cellComp - The connected component for each local cell
242: . faceComp - The connected component for each local face
243: - flippedCells - Marked cells should be inverted
245: Level: developer
247: .seealso: `DMPlexOrient()`
248: */
249: static PetscErrorCode DMPlexOrient_Serial(DM dm, IS cellIS, IS faceIS, PetscInt *Ncomp, PetscInt cellComp[], PetscInt faceComp[], PetscBT flippedCells)
250: {
251: PetscBT seenCells, seenFaces;
252: PetscInt *faceFIFO;
253: const PetscInt *cells = NULL, *faces = NULL;
254: PetscInt cStart = 0, cEnd = 0, fStart = 0, fEnd = 0;
256: PetscFunctionBegin;
257: if (cellIS) PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
258: if (faceIS) PetscCall(ISGetPointRange(faceIS, &fStart, &fEnd, &faces));
259: PetscCall(PetscBTCreate(cEnd - cStart, &seenCells));
260: PetscCall(PetscBTMemzero(cEnd - cStart, seenCells));
261: PetscCall(PetscBTCreate(fEnd - fStart, &seenFaces));
262: PetscCall(PetscBTMemzero(fEnd - fStart, seenFaces));
263: PetscCall(PetscMalloc1(fEnd - fStart, &faceFIFO));
264: *Ncomp = 0;
265: for (PetscInt c = 0; c < cEnd - cStart; ++c) cellComp[c] = -1;
266: do {
267: PetscInt cc, fTop, fBottom;
269: // Look for first unmarked cell
270: for (cc = cStart; cc < cEnd; ++cc)
271: if (cellComp[cc - cStart] < 0) break;
272: if (cc >= cEnd) break;
273: // Initialize FIFO with first cell in component
274: {
275: const PetscInt cell = cells ? cells[cc] : cc;
276: const PetscInt *cone;
277: PetscInt coneSize;
279: fTop = fBottom = 0;
280: PetscCall(DMPlexGetConeSize(dm, cell, &coneSize));
281: PetscCall(DMPlexGetCone(dm, cell, &cone));
282: for (PetscInt c = 0; c < coneSize; ++c) {
283: // Cell faces are guaranteed to be in the face set
284: faceFIFO[fBottom++] = cone[c];
285: PetscCall(PetscBTSet(seenFaces, GetPointIndex(cone[c], fStart, fEnd, faces)));
286: }
287: PetscCall(PetscBTSet(seenCells, cc - cStart));
288: }
289: // Consider each face in FIFO
290: while (fTop < fBottom) PetscCall(DMPlexCheckFace_Internal(dm, faceFIFO, &fTop, &fBottom, cellIS, faceIS, seenCells, flippedCells, seenFaces));
291: // Set component for cells and faces
292: for (PetscInt c = 0; c < cEnd - cStart; ++c) {
293: if (PetscBTLookup(seenCells, c)) cellComp[c] = *Ncomp;
294: }
295: for (PetscInt f = 0; f < fEnd - fStart; ++f) {
296: if (PetscBTLookup(seenFaces, f)) faceComp[f] = *Ncomp;
297: }
298: // Wipe seenCells and seenFaces for next component
299: PetscCall(PetscBTMemzero(fEnd - fStart, seenFaces));
300: PetscCall(PetscBTMemzero(cEnd - cStart, seenCells));
301: ++(*Ncomp);
302: } while (1);
303: PetscCall(PetscBTDestroy(&seenCells));
304: PetscCall(PetscBTDestroy(&seenFaces));
305: PetscCall(PetscFree(faceFIFO));
306: PetscFunctionReturn(PETSC_SUCCESS);
307: }
309: /*@
310: DMPlexOrient - Give a consistent orientation to the input mesh
312: Input Parameter:
313: . dm - The `DM`
315: Note:
316: The orientation data for the `DM` are change in-place.
318: This routine will fail for non-orientable surfaces, such as the Moebius strip.
320: Level: advanced
322: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMCreate()`
323: @*/
324: PetscErrorCode DMPlexOrient(DM dm)
325: {
326: #if 0
327: IS cellIS, faceIS;
329: PetscFunctionBegin;
330: PetscCall(DMPlexGetAllCells_Internal(dm, &cellIS));
331: PetscCall(DMPlexGetAllFaces_Internal(dm, &faceIS));
332: PetscCall(DMPlexOrientCells_Internal(dm, cellIS, faceIS));
333: PetscCall(ISDestroy(&cellIS));
334: PetscCall(ISDestroy(&faceIS));
335: PetscFunctionReturn(PETSC_SUCCESS);
336: #else
337: MPI_Comm comm;
338: PetscSF sf;
339: const PetscInt *lpoints;
340: const PetscSFNode *rpoints;
341: PetscSFNode *rorntComp = NULL, *lorntComp = NULL;
342: PetscInt *numNeighbors, **neighbors, *locSupport = NULL;
343: PetscSFNode *nrankComp;
344: PetscBool *match, *flipped;
345: PetscBT seenCells, flippedCells, seenFaces;
346: PetscInt *faceFIFO, fTop, fBottom, *cellComp, *faceComp;
347: PetscInt numLeaves, numRoots, dim, h, cStart, cEnd, c, cell, fStart, fEnd, face, off, totNeighbors = 0;
348: PetscMPIInt rank, size, numComponents, comp = 0;
349: PetscBool flg, flg2;
350: PetscViewer viewer = NULL, selfviewer = NULL;
352: PetscFunctionBegin;
353: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
354: PetscCallMPI(MPI_Comm_rank(comm, &rank));
355: PetscCallMPI(MPI_Comm_size(comm, &size));
356: PetscCall(PetscOptionsHasName(((PetscObject)dm)->options, ((PetscObject)dm)->prefix, "-orientation_view", &flg));
357: PetscCall(PetscOptionsHasName(((PetscObject)dm)->options, ((PetscObject)dm)->prefix, "-orientation_view_synchronized", &flg2));
358: PetscCall(DMGetPointSF(dm, &sf));
359: PetscCall(PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints));
360: /* Truth Table
361: mismatch flips do action mismatch flipA ^ flipB action
362: F 0 flips no F F F
363: F 1 flip yes F T T
364: F 2 flips no T F T
365: T 0 flips yes T T F
366: T 1 flip no
367: T 2 flips yes
368: */
369: PetscCall(DMGetDimension(dm, &dim));
370: PetscCall(DMPlexGetVTKCellHeight(dm, &h));
371: PetscCall(DMPlexGetHeightStratum(dm, h, &cStart, &cEnd));
372: PetscCall(DMPlexGetHeightStratum(dm, h + 1, &fStart, &fEnd));
373: PetscCall(PetscBTCreate(cEnd - cStart, &seenCells));
374: PetscCall(PetscBTMemzero(cEnd - cStart, seenCells));
375: PetscCall(PetscBTCreate(cEnd - cStart, &flippedCells));
376: PetscCall(PetscBTMemzero(cEnd - cStart, flippedCells));
377: PetscCall(PetscBTCreate(fEnd - fStart, &seenFaces));
378: PetscCall(PetscBTMemzero(fEnd - fStart, seenFaces));
379: PetscCall(PetscCalloc3(fEnd - fStart, &faceFIFO, cEnd - cStart, &cellComp, fEnd - fStart, &faceComp));
380: /*
381: OLD STYLE
382: - Add an integer array over cells and faces (component) for connected component number
383: Foreach component
384: - Mark the initial cell as seen
385: - Process component as usual
386: - Set component for all seenCells
387: - Wipe seenCells and seenFaces (flippedCells can stay)
388: - Generate parallel adjacency for component using SF and seenFaces
389: - Collect numComponents adj data from each proc to 0
390: - Build same serial graph
391: - Use same solver
392: - Use Scatterv to send back flipped flags for each component
393: - Negate flippedCells by component
395: NEW STYLE
396: - Create the adj on each process
397: - Bootstrap to complete graph on proc 0
398: */
399: /* Loop over components */
400: for (cell = cStart; cell < cEnd; ++cell) cellComp[cell - cStart] = -1;
401: do {
402: /* Look for first unmarked cell */
403: for (cell = cStart; cell < cEnd; ++cell)
404: if (cellComp[cell - cStart] < 0) break;
405: if (cell >= cEnd) break;
406: /* Initialize FIFO with first cell in component */
407: {
408: const PetscInt *cone;
409: PetscInt coneSize;
411: fTop = fBottom = 0;
412: PetscCall(DMPlexGetConeSize(dm, cell, &coneSize));
413: PetscCall(DMPlexGetCone(dm, cell, &cone));
414: for (c = 0; c < coneSize; ++c) {
415: faceFIFO[fBottom++] = cone[c];
416: PetscCall(PetscBTSet(seenFaces, cone[c] - fStart));
417: }
418: PetscCall(PetscBTSet(seenCells, cell - cStart));
419: }
420: /* Consider each face in FIFO */
421: while (fTop < fBottom) PetscCall(DMPlexCheckFace_Old_Internal(dm, faceFIFO, &fTop, &fBottom, cStart, fStart, fEnd, seenCells, flippedCells, seenFaces));
422: /* Set component for cells and faces */
423: for (cell = 0; cell < cEnd - cStart; ++cell) {
424: if (PetscBTLookup(seenCells, cell)) cellComp[cell] = comp;
425: }
426: for (face = 0; face < fEnd - fStart; ++face) {
427: if (PetscBTLookup(seenFaces, face)) faceComp[face] = comp;
428: }
429: /* Wipe seenCells and seenFaces for next component */
430: PetscCall(PetscBTMemzero(fEnd - fStart, seenFaces));
431: PetscCall(PetscBTMemzero(cEnd - cStart, seenCells));
432: ++comp;
433: } while (1);
434: numComponents = comp;
435: if (flg) {
436: PetscViewer v;
438: PetscCall(PetscViewerASCIIGetStdout(comm, &v));
439: PetscCall(PetscViewerASCIIPushSynchronized(v));
440: PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank));
441: PetscCall(PetscBTView(cEnd - cStart, flippedCells, v));
442: PetscCall(PetscViewerFlush(v));
443: PetscCall(PetscViewerASCIIPopSynchronized(v));
444: }
445: /* Now all subdomains are oriented, but we need a consistent parallel orientation */
446: if (numLeaves >= 0) {
447: PetscInt maxSupportSize, neighbor;
449: /* Store orientations of boundary faces*/
450: PetscCall(DMPlexGetMaxSizes(dm, NULL, &maxSupportSize));
451: PetscCall(PetscCalloc3(numRoots, &rorntComp, numRoots, &lorntComp, maxSupportSize, &locSupport));
452: for (face = fStart; face < fEnd; ++face) {
453: const PetscInt *cone, *support, *ornt;
454: PetscInt coneSize, supportSize, Ns = 0, s, l;
456: PetscCall(DMPlexGetSupportSize(dm, face, &supportSize));
457: /* Ignore overlapping cells */
458: PetscCall(DMPlexGetSupport(dm, face, &support));
459: for (s = 0; s < supportSize; ++s) {
460: PetscCall(PetscFindInt(support[s], numLeaves, lpoints, &l));
461: if (l >= 0) continue;
462: locSupport[Ns++] = support[s];
463: }
464: if (Ns != 1) continue;
465: neighbor = locSupport[0];
466: PetscCall(DMPlexGetCone(dm, neighbor, &cone));
467: PetscCall(DMPlexGetConeSize(dm, neighbor, &coneSize));
468: PetscCall(DMPlexGetConeOrientation(dm, neighbor, &ornt));
469: for (c = 0; c < coneSize; ++c)
470: if (cone[c] == face) break;
471: if (dim == 1) {
472: /* Use cone position instead, shifted to -1 or 1 */
473: if (PetscBTLookup(flippedCells, neighbor - cStart)) rorntComp[face].rank = 1 - c * 2;
474: else rorntComp[face].rank = c * 2 - 1;
475: } else {
476: if (PetscBTLookup(flippedCells, neighbor - cStart)) rorntComp[face].rank = ornt[c] < 0 ? -1 : 1;
477: else rorntComp[face].rank = ornt[c] < 0 ? 1 : -1;
478: }
479: rorntComp[face].index = faceComp[face - fStart];
480: }
481: /* Communicate boundary edge orientations */
482: PetscCall(PetscSFBcastBegin(sf, MPIU_SF_NODE, rorntComp, lorntComp, MPI_REPLACE));
483: PetscCall(PetscSFBcastEnd(sf, MPIU_SF_NODE, rorntComp, lorntComp, MPI_REPLACE));
484: }
485: /* Get process adjacency */
486: PetscCall(PetscMalloc2(numComponents, &numNeighbors, numComponents, &neighbors));
487: viewer = PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm));
488: if (flg2) PetscCall(PetscViewerASCIIPushSynchronized(viewer));
489: PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &selfviewer));
490: for (comp = 0; comp < numComponents; ++comp) {
491: PetscInt l, n;
493: numNeighbors[comp] = 0;
494: PetscCall(PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]));
495: /* I know this is p^2 time in general, but for bounded degree its alright */
496: for (l = 0; l < numLeaves; ++l) {
497: const PetscInt face = lpoints[l];
499: /* Find a representative face (edge) separating pairs of procs */
500: if ((face >= fStart) && (face < fEnd) && (faceComp[face - fStart] == comp) && rorntComp[face].rank) {
501: const PetscInt rrank = rpoints[l].rank;
502: const PetscInt rcomp = lorntComp[face].index;
504: for (n = 0; n < numNeighbors[comp]; ++n)
505: if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
506: if (n >= numNeighbors[comp]) {
507: PetscInt supportSize;
509: PetscCall(DMPlexGetSupportSize(dm, face, &supportSize));
510: PetscCheck(supportSize == 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Boundary faces should see one cell, not %" PetscInt_FMT, supportSize);
511: if (flg)
512: PetscCall(PetscViewerASCIIPrintf(selfviewer, "[%d]: component %d, Found representative leaf %" PetscInt_FMT " (face %" PetscInt_FMT ") connecting to face %" PetscInt_FMT " on (%" PetscInt_FMT ", %" PetscInt_FMT ") with orientation %" PetscInt_FMT "\n", rank, comp, l, face,
513: rpoints[l].index, rrank, rcomp, lorntComp[face].rank));
514: neighbors[comp][numNeighbors[comp]++] = l;
515: }
516: }
517: }
518: totNeighbors += numNeighbors[comp];
519: }
520: PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &selfviewer));
521: if (flg2) PetscCall(PetscViewerASCIIPopSynchronized(viewer));
522: PetscCall(PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match));
523: for (comp = 0, off = 0; comp < numComponents; ++comp) {
524: PetscInt n;
526: for (n = 0; n < numNeighbors[comp]; ++n, ++off) {
527: const PetscInt face = lpoints[neighbors[comp][n]];
528: const PetscInt o = rorntComp[face].rank * lorntComp[face].rank;
530: if (o < 0) match[off] = PETSC_TRUE;
531: else if (o > 0) match[off] = PETSC_FALSE;
532: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %" PetscInt_FMT " (%" PetscInt_FMT ", %" PetscInt_FMT ") neighbor: %" PetscInt_FMT " comp: %d", face, rorntComp[face].rank, lorntComp[face].rank, neighbors[comp][n], comp);
533: nrankComp[off].rank = rpoints[neighbors[comp][n]].rank;
534: nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
535: }
536: PetscCall(PetscFree(neighbors[comp]));
537: }
538: /* Collect the graph on 0 */
539: if (numLeaves >= 0) {
540: Mat G;
541: PetscBT seenProcs, flippedProcs;
542: PetscInt *procFIFO, pTop, pBottom;
543: PetscInt *N = NULL, *Noff;
544: PetscSFNode *adj = NULL;
545: PetscBool *val = NULL;
546: PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc, p, o, itotNeighbors;
547: PetscMPIInt size = 0;
549: PetscCall(PetscCalloc1(numComponents, &flipped));
550: if (rank == 0) PetscCallMPI(MPI_Comm_size(comm, &size));
551: PetscCall(PetscCalloc4(size, &recvcounts, size + 1, &displs, size, &Nc, size + 1, &Noff));
552: PetscCallMPI(MPI_Gather(&numComponents, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm));
553: for (p = 0; p < size; ++p) displs[p + 1] = displs[p] + Nc[p];
554: if (rank == 0) PetscCall(PetscMalloc1(displs[size], &N));
555: PetscCallMPI(MPI_Gatherv(numNeighbors, numComponents, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm));
556: for (p = 0, o = 0; p < size; ++p) {
557: recvcounts[p] = 0;
558: for (c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
559: displs[p + 1] = displs[p] + recvcounts[p];
560: }
561: if (rank == 0) PetscCall(PetscMalloc2(displs[size], &adj, displs[size], &val));
562: PetscCall(PetscMPIIntCast(totNeighbors, &itotNeighbors));
563: PetscCallMPI(MPI_Gatherv(nrankComp, itotNeighbors, MPIU_SF_NODE, adj, recvcounts, displs, MPIU_SF_NODE, 0, comm));
564: PetscCallMPI(MPI_Gatherv(match, itotNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm));
565: PetscCall(PetscFree2(numNeighbors, neighbors));
566: if (rank == 0) {
567: for (p = 1; p <= size; ++p) Noff[p] = Noff[p - 1] + Nc[p - 1];
568: if (flg) {
569: PetscInt n;
571: for (p = 0, off = 0; p < size; ++p) {
572: for (c = 0; c < Nc[p]; ++c) {
573: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Proc %d Comp %" PetscInt_FMT ":\n", p, c));
574: for (n = 0; n < N[Noff[p] + c]; ++n, ++off) PetscCall(PetscPrintf(PETSC_COMM_SELF, " edge (%" PetscInt_FMT ", %" PetscInt_FMT ") (%s):\n", adj[off].rank, adj[off].index, PetscBools[val[off]]));
575: }
576: }
577: }
578: /* Symmetrize the graph */
579: PetscCall(MatCreate(PETSC_COMM_SELF, &G));
580: PetscCall(MatSetSizes(G, Noff[size], Noff[size], Noff[size], Noff[size]));
581: PetscCall(MatSetUp(G));
582: for (p = 0, off = 0; p < size; ++p) {
583: for (c = 0; c < Nc[p]; ++c) {
584: const PetscInt r = Noff[p] + c;
585: PetscInt n;
587: for (n = 0; n < N[r]; ++n, ++off) {
588: const PetscInt q = Noff[adj[off].rank] + adj[off].index;
589: const PetscScalar o = val[off] ? 1.0 : 0.0;
591: PetscCall(MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES));
592: PetscCall(MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES));
593: }
594: }
595: }
596: PetscCall(MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY));
597: PetscCall(MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY));
599: PetscCall(PetscBTCreate(Noff[size], &seenProcs));
600: PetscCall(PetscBTMemzero(Noff[size], seenProcs));
601: PetscCall(PetscBTCreate(Noff[size], &flippedProcs));
602: PetscCall(PetscBTMemzero(Noff[size], flippedProcs));
603: PetscCall(PetscMalloc1(Noff[size], &procFIFO));
604: pTop = pBottom = 0;
605: for (p = 0; p < Noff[size]; ++p) {
606: if (PetscBTLookup(seenProcs, p)) continue;
607: /* Initialize FIFO with next proc */
608: procFIFO[pBottom++] = p;
609: PetscCall(PetscBTSet(seenProcs, p));
610: /* Consider each proc in FIFO */
611: while (pTop < pBottom) {
612: const PetscScalar *ornt;
613: const PetscInt *neighbors;
614: PetscInt proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors, n;
616: proc = procFIFO[pTop++];
617: flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
618: PetscCall(MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt));
619: /* Loop over neighboring procs */
620: for (n = 0; n < numNeighbors; ++n) {
621: nproc = neighbors[n];
622: mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
623: seen = PetscBTLookup(seenProcs, nproc);
624: flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;
626: if (mismatch ^ (flippedA ^ flippedB)) {
627: PetscCheck(!seen, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen procs %" PetscInt_FMT " and %" PetscInt_FMT " do not match: Fault mesh is non-orientable", proc, nproc);
628: if (!flippedB) {
629: PetscCall(PetscBTSet(flippedProcs, nproc));
630: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
631: } else PetscCheck(!mismatch || !flippedA || !flippedB, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
632: if (!seen) {
633: procFIFO[pBottom++] = nproc;
634: PetscCall(PetscBTSet(seenProcs, nproc));
635: }
636: }
637: }
638: }
639: PetscCall(PetscFree(procFIFO));
640: PetscCall(MatDestroy(&G));
641: PetscCall(PetscFree2(adj, val));
642: PetscCall(PetscBTDestroy(&seenProcs));
643: }
644: /* Scatter flip flags */
645: {
646: PetscBool *flips = NULL;
648: if (rank == 0) {
649: PetscCall(PetscMalloc1(Noff[size], &flips));
650: for (p = 0; p < Noff[size]; ++p) {
651: flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
652: if (flg && flips[p]) PetscCall(PetscPrintf(comm, "Flipping Proc+Comp %d:\n", p));
653: }
654: for (p = 0; p < size; ++p) displs[p + 1] = displs[p] + Nc[p];
655: }
656: PetscCallMPI(MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, numComponents, MPIU_BOOL, 0, comm));
657: PetscCall(PetscFree(flips));
658: }
659: if (rank == 0) PetscCall(PetscBTDestroy(&flippedProcs));
660: PetscCall(PetscFree(N));
661: PetscCall(PetscFree4(recvcounts, displs, Nc, Noff));
662: PetscCall(PetscFree2(nrankComp, match));
664: /* Decide whether to flip cells in each component */
665: for (c = 0; c < cEnd - cStart; ++c) {
666: if (flipped[cellComp[c]]) PetscCall(PetscBTNegate(flippedCells, c));
667: }
668: PetscCall(PetscFree(flipped));
669: }
670: if (flg) {
671: PetscViewer v;
673: PetscCall(PetscViewerASCIIGetStdout(comm, &v));
674: PetscCall(PetscViewerASCIIPushSynchronized(v));
675: PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank));
676: PetscCall(PetscBTView(cEnd - cStart, flippedCells, v));
677: PetscCall(PetscViewerFlush(v));
678: PetscCall(PetscViewerASCIIPopSynchronized(v));
679: }
680: /* Reverse flipped cells in the mesh */
681: for (c = cStart; c < cEnd; ++c) {
682: if (PetscBTLookup(flippedCells, c - cStart)) PetscCall(DMPlexOrientPoint(dm, c, -1));
683: }
684: PetscCall(PetscBTDestroy(&seenCells));
685: PetscCall(PetscBTDestroy(&flippedCells));
686: PetscCall(PetscBTDestroy(&seenFaces));
687: PetscCall(PetscFree2(numNeighbors, neighbors));
688: PetscCall(PetscFree3(rorntComp, lorntComp, locSupport));
689: PetscCall(PetscFree3(faceFIFO, cellComp, faceComp));
690: PetscFunctionReturn(PETSC_SUCCESS);
691: #endif
692: }
694: static PetscErrorCode CreateCellAndFaceIS_Private(DM dm, DMLabel label, IS *cellIS, IS *faceIS)
695: {
696: IS valueIS;
697: const PetscInt *values;
698: PetscInt Nv, depth = 0;
700: PetscFunctionBegin;
701: PetscCall(DMLabelGetValueIS(label, &valueIS));
702: PetscCall(ISGetLocalSize(valueIS, &Nv));
703: PetscCall(ISGetIndices(valueIS, &values));
704: for (PetscInt v = 0; v < Nv; ++v) {
705: const PetscInt val = values[v] < 0 || values[v] >= 100 ? 0 : values[v];
706: PetscInt n;
708: PetscCall(DMLabelGetStratumSize(label, val, &n));
709: if (!n) continue;
710: depth = PetscMax(val, depth);
711: }
712: PetscCall(ISDestroy(&valueIS));
713: PetscCheck(depth >= 1 || !Nv, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Depth for interface must be at least 1, not %" PetscInt_FMT, depth);
714: PetscCall(DMLabelGetStratumIS(label, depth, cellIS));
715: PetscCall(DMLabelGetStratumIS(label, depth - 1, faceIS));
716: if (!*cellIS) PetscCall(ISCreateStride(PETSC_COMM_SELF, 0, 0, 1, cellIS));
717: if (!*faceIS) PetscCall(ISCreateStride(PETSC_COMM_SELF, 0, 0, 1, faceIS));
718: PetscFunctionReturn(PETSC_SUCCESS);
719: }
721: PetscErrorCode DMPlexOrientLabel(DM dm, DMLabel label)
722: {
723: IS cellIS, faceIS;
725: PetscFunctionBegin;
726: PetscCall(CreateCellAndFaceIS_Private(dm, label, &cellIS, &faceIS));
727: PetscCall(DMPlexOrientCells_Internal(dm, cellIS, faceIS));
728: PetscCall(ISDestroy(&cellIS));
729: PetscCall(ISDestroy(&faceIS));
730: PetscFunctionReturn(PETSC_SUCCESS);
731: }
733: PetscErrorCode DMPlexOrientCells_Internal(DM dm, IS cellIS, IS faceIS)
734: {
735: MPI_Comm comm;
736: PetscSF sf;
737: const PetscInt *lpoints;
738: const PetscSFNode *rpoints;
739: PetscSFNode *rorntComp = NULL, *lorntComp = NULL;
740: PetscInt *numNeighbors, **neighbors, *locSupp = NULL;
741: PetscSFNode *nrankComp;
742: PetscBool *match, *flipped;
743: PetscBT flippedCells;
744: PetscInt *cellComp, *faceComp;
745: const PetscInt *cells = NULL, *faces = NULL;
746: PetscInt cStart = 0, cEnd = 0, fStart = 0, fEnd = 0;
747: PetscInt numLeaves, numRoots, dim, Ncomp, totNeighbors = 0;
748: PetscMPIInt rank, size;
749: PetscBool view, viewSync;
750: PetscViewer viewer = NULL, selfviewer = NULL;
752: PetscFunctionBegin;
753: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
754: PetscCallMPI(MPI_Comm_rank(comm, &rank));
755: PetscCallMPI(MPI_Comm_size(comm, &size));
756: PetscCall(PetscOptionsHasName(((PetscObject)dm)->options, ((PetscObject)dm)->prefix, "-orientation_view", &view));
757: PetscCall(PetscOptionsHasName(((PetscObject)dm)->options, ((PetscObject)dm)->prefix, "-orientation_view_synchronized", &viewSync));
759: if (cellIS) PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
760: if (faceIS) PetscCall(ISGetPointRange(faceIS, &fStart, &fEnd, &faces));
761: PetscCall(DMGetPointSF(dm, &sf));
762: PetscCall(PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints));
763: /* Truth Table
764: mismatch flips do action mismatch flipA ^ flipB action
765: F 0 flips no F F F
766: F 1 flip yes F T T
767: F 2 flips no T F T
768: T 0 flips yes T T F
769: T 1 flip no
770: T 2 flips yes
771: */
772: PetscCall(DMGetDimension(dm, &dim));
773: PetscCall(PetscBTCreate(cEnd - cStart, &flippedCells));
774: PetscCall(PetscBTMemzero(cEnd - cStart, flippedCells));
775: PetscCall(PetscCalloc2(cEnd - cStart, &cellComp, fEnd - fStart, &faceComp));
776: /*
777: OLD STYLE
778: - Add an integer array over cells and faces (component) for connected component number
779: Foreach component
780: - Mark the initial cell as seen
781: - Process component as usual
782: - Set component for all seenCells
783: - Wipe seenCells and seenFaces (flippedCells can stay)
784: - Generate parallel adjacency for component using SF and seenFaces
785: - Collect Ncomp adj data from each proc to 0
786: - Build same serial graph
787: - Use same solver
788: - Use Scatterv to send back flipped flags for each component
789: - Negate flippedCells by component
791: NEW STYLE
792: - Create the adj on each process
793: - Bootstrap to complete graph on proc 0
794: */
795: PetscCall(DMPlexOrient_Serial(dm, cellIS, faceIS, &Ncomp, cellComp, faceComp, flippedCells));
796: if (view) {
797: PetscViewer v;
798: PetscInt cdepth = -1;
800: PetscCall(PetscViewerASCIIGetStdout(comm, &v));
801: PetscCall(PetscViewerASCIIPushSynchronized(v));
802: if (cEnd > cStart) PetscCall(DMPlexGetPointDepth(dm, cells ? cells[cStart] : cStart, &cdepth));
803: PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]New Orientation %" PetscInt_FMT " cells (depth %" PetscInt_FMT ") and %" PetscInt_FMT " faces\n", rank, cEnd - cStart, cdepth, fEnd - fStart));
804: PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank));
805: PetscCall(PetscBTView(cEnd - cStart, flippedCells, v));
806: PetscCall(PetscViewerFlush(v));
807: PetscCall(PetscViewerASCIIPopSynchronized(v));
808: }
809: /* Now all subdomains are oriented, but we need a consistent parallel orientation */
810: // TODO: This all has to be rewritten to filter cones/supports to the ISes
811: if (numLeaves >= 0) {
812: PetscInt maxSuppSize, neighbor;
814: // Store orientations of boundary faces
815: PetscCall(DMPlexGetMaxSizes(dm, NULL, &maxSuppSize));
816: PetscCall(PetscCalloc3(numRoots, &rorntComp, numRoots, &lorntComp, maxSuppSize, &locSupp));
817: for (PetscInt f = fStart; f < fEnd; ++f) {
818: const PetscInt face = faces ? faces[f] : f;
819: const PetscInt *cone, *supp, *ornt;
820: PetscInt coneSize, suppSize, nind, c, Ns = 0;
822: PetscCall(DMPlexGetSupportSize(dm, face, &suppSize));
823: PetscCall(DMPlexGetSupport(dm, face, &supp));
824: for (PetscInt s = 0; s < suppSize; ++s) {
825: PetscInt ind, l;
827: // Filter support
828: ind = GetPointIndex(supp[s], cStart, cEnd, cells);
829: if (ind < 0) continue;
830: // Ignore overlapping cells
831: PetscCall(PetscFindInt(supp[s], numLeaves, lpoints, &l));
832: if (l >= 0) continue;
833: locSupp[Ns++] = supp[s];
834: }
835: PetscCheck(Ns < maxSuppSize, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Index %" PetscInt_FMT " exceeds array size %" PetscInt_FMT, Ns, maxSuppSize);
836: if (Ns != 1) continue;
837: neighbor = locSupp[0];
838: nind = GetPointIndex(neighbor, cStart, cEnd, cells);
839: PetscCall(DMPlexGetCone(dm, neighbor, &cone));
840: PetscCall(DMPlexGetConeSize(dm, neighbor, &coneSize));
841: PetscCall(DMPlexGetConeOrientation(dm, neighbor, &ornt));
842: for (c = 0; c < coneSize; ++c)
843: if (cone[c] == face) break;
844: if (dim == 1) {
845: /* Use cone position instead, shifted to -1 or 1 */
846: if (PetscBTLookup(flippedCells, nind)) rorntComp[face].rank = 1 - c * 2;
847: else rorntComp[face].rank = c * 2 - 1;
848: } else {
849: if (PetscBTLookup(flippedCells, nind)) rorntComp[face].rank = ornt[c] < 0 ? -1 : 1;
850: else rorntComp[face].rank = ornt[c] < 0 ? 1 : -1;
851: }
852: rorntComp[face].index = faceComp[GetPointIndex(face, fStart, fEnd, faces)];
853: }
854: // Communicate boundary edge orientations
855: PetscCall(PetscSFBcastBegin(sf, MPIU_SF_NODE, rorntComp, lorntComp, MPI_REPLACE));
856: PetscCall(PetscSFBcastEnd(sf, MPIU_SF_NODE, rorntComp, lorntComp, MPI_REPLACE));
857: }
858: /* Get process adjacency */
859: PetscCall(PetscMalloc2(Ncomp, &numNeighbors, Ncomp, &neighbors));
860: viewer = PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm));
861: if (viewSync) PetscCall(PetscViewerASCIIPushSynchronized(viewer));
862: PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &selfviewer));
863: for (PetscInt comp = 0; comp < Ncomp; ++comp) {
864: PetscInt n;
866: numNeighbors[comp] = 0;
867: PetscCall(PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]));
868: /* I know this is p^2 time in general, but for bounded degree its alright */
869: for (PetscInt l = 0; l < numLeaves; ++l) {
870: const PetscInt face = lpoints[l];
871: PetscInt find;
873: /* Find a representative face (edge) separating pairs of procs */
874: find = GetPointIndex(face, fStart, fEnd, faces);
875: if ((find >= 0) && (faceComp[find] == comp) && rorntComp[face].rank) {
876: const PetscInt rrank = rpoints[l].rank;
877: const PetscInt rcomp = lorntComp[face].index;
879: for (n = 0; n < numNeighbors[comp]; ++n)
880: if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
881: if (n >= numNeighbors[comp]) {
882: const PetscInt *supp;
883: PetscInt suppSize, Ns = 0;
885: PetscCall(DMPlexGetSupport(dm, face, &supp));
886: PetscCall(DMPlexGetSupportSize(dm, face, &suppSize));
887: for (PetscInt s = 0; s < suppSize; ++s) {
888: // Filter support
889: if (GetPointIndex(supp[s], cStart, cEnd, cells) >= 0) ++Ns;
890: }
891: PetscCheck(Ns == 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Boundary face %" PetscInt_FMT " should see one cell, not %" PetscInt_FMT, face, Ns);
892: if (view)
893: PetscCall(PetscViewerASCIIPrintf(selfviewer, "[%d]: component %" PetscInt_FMT ", Found representative leaf %" PetscInt_FMT " (face %" PetscInt_FMT ") connecting to face %" PetscInt_FMT " on (%" PetscInt_FMT ", %" PetscInt_FMT ") with orientation %" PetscInt_FMT "\n", rank, comp, l, face,
894: rpoints[l].index, rrank, rcomp, lorntComp[face].rank));
895: neighbors[comp][numNeighbors[comp]++] = l;
896: }
897: }
898: }
899: totNeighbors += numNeighbors[comp];
900: }
901: PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &selfviewer));
902: if (viewSync) PetscCall(PetscViewerASCIIPopSynchronized(viewer));
903: PetscCall(PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match));
904: for (PetscInt comp = 0, off = 0; comp < Ncomp; ++comp) {
905: for (PetscInt n = 0; n < numNeighbors[comp]; ++n, ++off) {
906: const PetscInt face = lpoints[neighbors[comp][n]];
907: const PetscInt o = rorntComp[face].rank * lorntComp[face].rank;
909: if (o < 0) match[off] = PETSC_TRUE;
910: else if (o > 0) match[off] = PETSC_FALSE;
911: else
912: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %" PetscInt_FMT " (%" PetscInt_FMT ", %" PetscInt_FMT ") neighbor: %" PetscInt_FMT " comp: %" PetscInt_FMT, face, rorntComp[face].rank, lorntComp[face].rank, neighbors[comp][n], comp);
913: nrankComp[off].rank = rpoints[neighbors[comp][n]].rank;
914: nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
915: }
916: PetscCall(PetscFree(neighbors[comp]));
917: }
918: /* Collect the graph on 0 */
919: if (numLeaves >= 0) {
920: Mat G;
921: PetscBT seenProcs, flippedProcs;
922: PetscInt *procFIFO, pTop, pBottom;
923: PetscInt *N = NULL, *Noff;
924: PetscSFNode *adj = NULL;
925: PetscBool *val = NULL;
926: PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc;
927: PetscMPIInt size = 0, iNcomp, itotNeighbors;
929: PetscCall(PetscCalloc1(Ncomp, &flipped));
930: if (rank == 0) PetscCallMPI(MPI_Comm_size(comm, &size));
931: PetscCall(PetscCalloc4(size, &recvcounts, size + 1, &displs, size, &Nc, size + 1, &Noff));
932: PetscCallMPI(MPI_Gather(&Ncomp, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm));
933: for (PetscInt p = 0; p < size; ++p) displs[p + 1] = displs[p] + Nc[p];
934: if (rank == 0) PetscCall(PetscMalloc1(displs[size], &N));
935: PetscCall(PetscMPIIntCast(Ncomp, &iNcomp));
936: PetscCallMPI(MPI_Gatherv(numNeighbors, iNcomp, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm));
937: for (PetscInt p = 0, o = 0; p < size; ++p) {
938: recvcounts[p] = 0;
939: for (PetscInt c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
940: displs[p + 1] = displs[p] + recvcounts[p];
941: }
942: if (rank == 0) PetscCall(PetscMalloc2(displs[size], &adj, displs[size], &val));
943: PetscCall(PetscMPIIntCast(totNeighbors, &itotNeighbors));
944: PetscCallMPI(MPI_Gatherv(nrankComp, itotNeighbors, MPIU_SF_NODE, adj, recvcounts, displs, MPIU_SF_NODE, 0, comm));
945: PetscCallMPI(MPI_Gatherv(match, itotNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm));
946: PetscCall(PetscFree2(numNeighbors, neighbors));
947: if (rank == 0) {
948: for (PetscInt p = 1; p <= size; ++p) Noff[p] = Noff[p - 1] + Nc[p - 1];
949: if (view) {
950: for (PetscInt p = 0, off = 0; p < size; ++p) {
951: for (PetscInt c = 0; c < Nc[p]; ++c) {
952: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Proc %" PetscInt_FMT " Comp %" PetscInt_FMT ":\n", p, c));
953: for (PetscInt n = 0; n < N[Noff[p] + c]; ++n, ++off) PetscCall(PetscPrintf(PETSC_COMM_SELF, " edge (%" PetscInt_FMT ", %" PetscInt_FMT ") (%s):\n", adj[off].rank, adj[off].index, PetscBools[val[off]]));
954: }
955: }
956: }
957: /* Symmetrize the graph */
958: PetscCall(MatCreate(PETSC_COMM_SELF, &G));
959: PetscCall(MatSetSizes(G, Noff[size], Noff[size], Noff[size], Noff[size]));
960: PetscCall(MatSetUp(G));
961: for (PetscInt p = 0, off = 0; p < size; ++p) {
962: for (PetscInt c = 0; c < Nc[p]; ++c) {
963: const PetscInt r = Noff[p] + c;
965: for (PetscInt n = 0; n < N[r]; ++n, ++off) {
966: const PetscInt q = Noff[adj[off].rank] + adj[off].index;
967: const PetscScalar o = val[off] ? 1.0 : 0.0;
969: PetscCall(MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES));
970: PetscCall(MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES));
971: }
972: }
973: }
974: PetscCall(MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY));
975: PetscCall(MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY));
977: PetscCall(PetscBTCreate(Noff[size], &seenProcs));
978: PetscCall(PetscBTMemzero(Noff[size], seenProcs));
979: PetscCall(PetscBTCreate(Noff[size], &flippedProcs));
980: PetscCall(PetscBTMemzero(Noff[size], flippedProcs));
981: PetscCall(PetscMalloc1(Noff[size], &procFIFO));
982: pTop = pBottom = 0;
983: for (PetscInt p = 0; p < Noff[size]; ++p) {
984: if (PetscBTLookup(seenProcs, p)) continue;
985: /* Initialize FIFO with next proc */
986: procFIFO[pBottom++] = p;
987: PetscCall(PetscBTSet(seenProcs, p));
988: /* Consider each proc in FIFO */
989: while (pTop < pBottom) {
990: const PetscScalar *ornt;
991: const PetscInt *neighbors;
992: PetscInt proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors;
994: proc = procFIFO[pTop++];
995: flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
996: PetscCall(MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt));
997: /* Loop over neighboring procs */
998: for (PetscInt n = 0; n < numNeighbors; ++n) {
999: nproc = neighbors[n];
1000: mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
1001: seen = PetscBTLookup(seenProcs, nproc);
1002: flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;
1004: if (mismatch ^ (flippedA ^ flippedB)) {
1005: PetscCheck(!seen, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen procs %" PetscInt_FMT " and %" PetscInt_FMT " do not match: Fault mesh is non-orientable", proc, nproc);
1006: if (!flippedB) {
1007: PetscCall(PetscBTSet(flippedProcs, nproc));
1008: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
1009: } else PetscCheck(!mismatch || !flippedA || !flippedB, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
1010: if (!seen) {
1011: procFIFO[pBottom++] = nproc;
1012: PetscCall(PetscBTSet(seenProcs, nproc));
1013: }
1014: }
1015: }
1016: }
1017: PetscCall(PetscFree(procFIFO));
1018: PetscCall(MatDestroy(&G));
1019: PetscCall(PetscFree2(adj, val));
1020: PetscCall(PetscBTDestroy(&seenProcs));
1021: }
1022: /* Scatter flip flags */
1023: {
1024: PetscBool *flips = NULL;
1026: if (rank == 0) {
1027: PetscCall(PetscMalloc1(Noff[size], &flips));
1028: for (PetscInt p = 0; p < Noff[size]; ++p) {
1029: flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
1030: if (view && flips[p]) PetscCall(PetscPrintf(comm, "Flipping Proc+Comp %" PetscInt_FMT ":\n", p));
1031: }
1032: for (PetscInt p = 0; p < size; ++p) displs[p + 1] = displs[p] + Nc[p];
1033: }
1034: PetscCall(PetscMPIIntCast(Ncomp, &iNcomp));
1035: PetscCallMPI(MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, iNcomp, MPIU_BOOL, 0, comm));
1036: PetscCall(PetscFree(flips));
1037: }
1038: if (rank == 0) PetscCall(PetscBTDestroy(&flippedProcs));
1039: PetscCall(PetscFree(N));
1040: PetscCall(PetscFree4(recvcounts, displs, Nc, Noff));
1041: PetscCall(PetscFree2(nrankComp, match));
1043: /* Decide whether to flip cells in each component */
1044: for (PetscInt c = 0; c < cEnd - cStart; ++c) {
1045: if (flipped[cellComp[c]]) PetscCall(PetscBTNegate(flippedCells, c));
1046: }
1047: PetscCall(PetscFree(flipped));
1048: }
1049: if (view) {
1050: PetscViewer v;
1052: PetscCall(PetscViewerASCIIGetStdout(comm, &v));
1053: PetscCall(PetscViewerASCIIPushSynchronized(v));
1054: PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank));
1055: PetscCall(PetscBTView(cEnd - cStart, flippedCells, v));
1056: PetscCall(PetscViewerFlush(v));
1057: PetscCall(PetscViewerASCIIPopSynchronized(v));
1058: }
1059: // Reverse flipped cells in the mesh
1060: PetscViewer v;
1061: const PetscInt *degree = NULL;
1062: PetscInt *points;
1063: PetscInt pStart, pEnd;
1065: if (view) {
1066: PetscCall(PetscViewerASCIIGetStdout(comm, &v));
1067: PetscCall(PetscViewerASCIIPushSynchronized(v));
1068: }
1069: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
1070: if (numRoots >= 0) {
1071: PetscCall(PetscSFComputeDegreeBegin(sf, °ree));
1072: PetscCall(PetscSFComputeDegreeEnd(sf, °ree));
1073: }
1074: PetscCall(PetscCalloc1(pEnd - pStart, &points));
1075: for (PetscInt c = cStart; c < cEnd; ++c) {
1076: if (PetscBTLookup(flippedCells, c - cStart)) {
1077: const PetscInt cell = cells ? cells[c] : c;
1079: PetscCall(DMPlexOrientPoint(dm, cell, -1));
1080: if (degree && degree[cell]) points[cell] = 1;
1081: if (view) PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]Flipping cell %" PetscInt_FMT "%s\n", rank, cell, degree && degree[cell] ? " and sending to overlap" : ""));
1082: }
1083: }
1084: // Must propagate flips for cells in the overlap
1085: if (numRoots >= 0) {
1086: PetscCall(PetscSFBcastBegin(sf, MPIU_INT, points, points, MPI_SUM));
1087: PetscCall(PetscSFBcastEnd(sf, MPIU_INT, points, points, MPI_SUM));
1088: }
1089: for (PetscInt c = cStart; c < cEnd; ++c) {
1090: const PetscInt cell = cells ? cells[c] : c;
1092: if (points[cell] && !PetscBTLookup(flippedCells, c - cStart)) {
1093: PetscCall(DMPlexOrientPoint(dm, cell, -1));
1094: if (view) PetscCall(PetscViewerASCIISynchronizedPrintf(v, "[%d]Flipping cell %" PetscInt_FMT " through overlap\n", rank, cell));
1095: }
1096: }
1097: if (view) {
1098: PetscCall(PetscViewerFlush(v));
1099: PetscCall(PetscViewerASCIIPopSynchronized(v));
1100: }
1101: PetscCall(PetscFree(points));
1102: PetscCall(PetscBTDestroy(&flippedCells));
1103: PetscCall(PetscFree2(numNeighbors, neighbors));
1104: PetscCall(PetscFree3(rorntComp, lorntComp, locSupp));
1105: PetscCall(PetscFree2(cellComp, faceComp));
1106: PetscFunctionReturn(PETSC_SUCCESS);
1107: }