Actual source code: plexproject.c

  1: #include <petsc/private/dmpleximpl.h>

  3: #include <petsc/private/petscfeimpl.h>

  5: /*@
  6:   DMPlexGetActivePoint - Get the point on which projection is currently working

  8:   Not Collective

 10:   Input Parameter:
 11: . dm - the `DM`

 13:   Output Parameter:
 14: . point - The mesh point involved in the current projection

 16:   Level: developer

 18: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetActivePoint()`
 19: @*/
 20: PetscErrorCode DMPlexGetActivePoint(DM dm, PetscInt *point)
 21: {
 22:   PetscFunctionBeginHot;
 23:   *point = ((DM_Plex *)dm->data)->activePoint;
 24:   PetscFunctionReturn(PETSC_SUCCESS);
 25: }

 27: /*@
 28:   DMPlexSetActivePoint - Set the point on which projection is currently working

 30:   Not Collective

 32:   Input Parameters:
 33: + dm    - the `DM`
 34: - point - The mesh point involved in the current projection

 36:   Level: developer

 38: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetActivePoint()`
 39: @*/
 40: PetscErrorCode DMPlexSetActivePoint(DM dm, PetscInt point)
 41: {
 42:   PetscFunctionBeginHot;
 43:   ((DM_Plex *)dm->data)->activePoint = point;
 44:   PetscFunctionReturn(PETSC_SUCCESS);
 45: }

 47: /*
 48:   DMProjectPoint_Func_Private - Interpolate the given function in the output basis on the given point

 50:   Input Parameters:
 51: + dm     - The output `DM`
 52: . ds     - The output `DS`
 53: . dmIn   - The input `DM`
 54: . dsIn   - The input `DS`
 55: . time   - The time for this evaluation
 56: . fegeom - The FE geometry for this point
 57: . fvgeom - The FV geometry for this point
 58: . isFE   - Flag indicating whether each output field has an FE discretization
 59: . sp     - The output `PetscDualSpace` for each field
 60: . funcs  - The evaluation function for each field
 61: - ctxs   - The user context for each field

 63:   Output Parameter:
 64: . values - The value for each dual basis vector in the output dual space

 66:   Level: developer

 68: .seealso:[](ch_unstructured), `DM`, `DMPLEX`, `PetscDS`, `PetscFEGeom`, `PetscFVCellGeom`, `PetscDualSpace`
 69: */
 70: static PetscErrorCode DMProjectPoint_Func_Private(DM dm, PetscDS ds, DM dmIn, PetscDS dsIn, PetscReal time, PetscFEGeom *fegeom, PetscFVCellGeom *fvgeom, PetscBool isFE[], PetscDualSpace sp[], PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, PetscScalar values[])
 71: {
 72:   PetscInt  debug = ((DM_Plex *)dm->data)->printProject;
 73:   PetscInt  coordDim, Nf, *Nc, f, spDim, d, v, tp;
 74:   PetscBool isAffine, isCohesive, transform;

 76:   PetscFunctionBeginHot;
 77:   PetscCall(DMGetCoordinateDim(dmIn, &coordDim));
 78:   PetscCall(DMHasBasisTransform(dmIn, &transform));
 79:   PetscCall(PetscDSGetNumFields(ds, &Nf));
 80:   PetscCall(PetscDSGetComponents(ds, &Nc));
 81:   PetscCall(PetscDSIsCohesive(ds, &isCohesive));
 82:   /* Get values for closure */
 83:   isAffine = fegeom->isAffine;
 84:   for (f = 0, v = 0, tp = 0; f < Nf; ++f) {
 85:     void *const ctx = ctxs ? ctxs[f] : NULL;
 86:     PetscBool   cohesive;

 88:     if (!sp[f]) continue;
 89:     PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
 90:     PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
 91:     if (funcs[f]) {
 92:       if (isFE[f]) {
 93:         PetscQuadrature  allPoints;
 94:         PetscInt         q, dim, numPoints;
 95:         const PetscReal *points;
 96:         PetscScalar     *pointEval;
 97:         PetscReal       *x;
 98:         DM               rdm;

100:         PetscCall(PetscDualSpaceGetDM(sp[f], &rdm));
101:         PetscCall(PetscDualSpaceGetAllData(sp[f], &allPoints, NULL));
102:         PetscCall(PetscQuadratureGetData(allPoints, &dim, NULL, &numPoints, &points, NULL));
103:         PetscCall(DMGetWorkArray(rdm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
104:         PetscCall(DMGetWorkArray(rdm, coordDim, MPIU_REAL, &x));
105:         PetscCall(PetscArrayzero(pointEval, numPoints * Nc[f]));
106:         for (q = 0; q < numPoints; q++, tp++) {
107:           const PetscReal *v0;

109:           if (isAffine) {
110:             const PetscReal *refpoint    = &points[q * dim];
111:             PetscReal        injpoint[3] = {0., 0., 0.};

113:             if (dim != fegeom->dim) {
114:               if (isCohesive) {
115:                 /* We just need to inject into the higher dimensional space assuming the last dimension is collapsed */
116:                 for (d = 0; d < dim; ++d) injpoint[d] = refpoint[d];
117:                 refpoint = injpoint;
118:               } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reference spatial dimension %" PetscInt_FMT " != %" PetscInt_FMT " dual basis spatial dimension", fegeom->dim, dim);
119:             }
120:             CoordinatesRefToReal(coordDim, fegeom->dim, fegeom->xi, fegeom->v, fegeom->J, refpoint, x);
121:             v0 = x;
122:           } else {
123:             v0 = &fegeom->v[tp * coordDim];
124:           }
125:           if (transform) {
126:             PetscCall(DMPlexBasisTransformApplyReal_Internal(dmIn, v0, PETSC_TRUE, coordDim, v0, x, dm->transformCtx));
127:             v0 = x;
128:           }
129:           if (debug > 3) {
130:             PetscInt ap;
131:             PetscCall(DMPlexGetActivePoint(dm, &ap));
132:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "Project point %" PetscInt_FMT ", analytic: ref (", ap));
133:             for (PetscInt d = 0; d < dim; ++d) {
134:               if (d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
135:               PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)points[q * dim + d]));
136:             }
137:             PetscCall(PetscPrintf(PETSC_COMM_SELF, ") real ("));
138:             for (PetscInt d = 0; d < dim; ++d) {
139:               if (d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
140:               PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)v0[d]));
141:             }
142:             PetscCall(PetscPrintf(PETSC_COMM_SELF, ")\n"));
143:           }
144:           PetscCall((*funcs[f])(coordDim, time, v0, Nc[f], &pointEval[Nc[f] * q], ctx));
145:         }
146:         /* Transform point evaluations pointEval[q,c] */
147:         PetscCall(PetscDualSpacePullback(sp[f], fegeom, numPoints, Nc[f], pointEval));
148:         PetscCall(PetscDualSpaceApplyAll(sp[f], pointEval, &values[v]));
149:         PetscCall(DMRestoreWorkArray(rdm, coordDim, MPIU_REAL, &x));
150:         PetscCall(DMRestoreWorkArray(rdm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
151:         v += spDim;
152:         if (isCohesive && !cohesive) {
153:           for (d = 0; d < spDim; d++, v++) values[v] = values[v - spDim];
154:         }
155:       } else {
156:         for (d = 0; d < spDim; ++d, ++v) PetscCall(PetscDualSpaceApplyFVM(sp[f], d, time, fvgeom, Nc[f], funcs[f], ctx, &values[v]));
157:       }
158:     } else {
159:       for (d = 0; d < spDim; d++, v++) values[v] = 0.;
160:       if (isCohesive && !cohesive) {
161:         for (d = 0; d < spDim; d++, v++) values[v] = 0.;
162:       }
163:     }
164:   }
165:   PetscFunctionReturn(PETSC_SUCCESS);
166: }

168: /*
169:   DMProjectPoint_Field_Private - Interpolate a function of the given field, in the input basis, using the output basis on the given point

171:   Input Parameters:
172: + dm             - The output DM
173: . ds             - The output DS
174: . dmIn           - The input DM
175: . dsIn           - The input DS
176: . dmAux          - The auxiliary DM, which is always for the input space
177: . dsAux          - The auxiliary DS, which is always for the input space
178: . time           - The time for this evaluation
179: . localU         - The local solution
180: . localA         - The local auziliary fields
181: . cgeom          - The FE geometry for this point
182: . sp             - The output PetscDualSpace for each field
183: . p              - The point in the output DM
184: . T              - Input basis and derivatives for each field tabulated on the quadrature points
185: . TAux           - Auxiliary basis and derivatives for each aux field tabulated on the quadrature points
186: . funcs          - The evaluation function for each field
187: - ctxs           - The user context for each field

189:   Output Parameter:
190: . values         - The value for each dual basis vector in the output dual space

192:   Level: developer

194:   Note:
195:   Not supported for FV

197: .seealso: `DMProjectPoint_Field_Private()`
198: */
199: static PetscErrorCode DMProjectPoint_Field_Private(DM dm, PetscDS ds, DM dmIn, DMEnclosureType encIn, PetscDS dsIn, DM dmAux, DMEnclosureType encAux, PetscDS dsAux, PetscReal time, Vec localU, Vec localA, PetscFEGeom *cgeom, PetscDualSpace sp[], PetscInt p, PetscTabulation *T, PetscTabulation *TAux, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void **ctxs, PetscScalar values[])
200: {
201:   PetscSection       section, sectionAux = NULL;
202:   PetscScalar       *u, *u_t = NULL, *u_x, *a = NULL, *a_t = NULL, *a_x = NULL, *bc;
203:   PetscScalar       *coefficients = NULL, *coefficientsAux = NULL;
204:   PetscScalar       *coefficients_t = NULL, *coefficientsAux_t = NULL;
205:   const PetscScalar *constants;
206:   PetscReal         *x;
207:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL, *Nc, face[2];
208:   PetscFEGeom        fegeom;
209:   const PetscInt     dE = cgeom->dimEmbed, *cone, *ornt;
210:   PetscInt           numConstants, Nf, NfIn, NfAux = 0, f, spDim, d, v, inp, tp = 0;
211:   PetscBool          isAffine, isCohesive, isCohesiveIn, transform;
212:   DMPolytopeType     qct;

214:   PetscFunctionBeginHot;
215:   PetscCall(PetscDSGetNumFields(ds, &Nf));
216:   PetscCall(PetscDSGetComponents(ds, &Nc));
217:   PetscCall(PetscDSIsCohesive(ds, &isCohesive));
218:   PetscCall(PetscDSGetNumFields(dsIn, &NfIn));
219:   PetscCall(PetscDSIsCohesive(dsIn, &isCohesiveIn));
220:   PetscCall(PetscDSGetComponentOffsets(dsIn, &uOff));
221:   PetscCall(PetscDSGetComponentDerivativeOffsets(dsIn, &uOff_x));
222:   PetscCall(PetscDSGetEvaluationArrays(dsIn, &u, &bc /*&u_t*/, &u_x));
223:   PetscCall(PetscDSGetWorkspace(dsIn, &x, NULL, NULL, NULL, NULL));
224:   PetscCall(PetscDSGetConstants(dsIn, &numConstants, &constants));
225:   PetscCall(DMHasBasisTransform(dmIn, &transform));
226:   PetscCall(DMGetLocalSection(dmIn, &section));
227:   PetscCall(DMGetEnclosurePoint(dmIn, dm, encIn, p, &inp));
228:   // Get cohesive cell hanging off face
229:   if (isCohesiveIn) {
230:     PetscCall(DMPlexGetCellType(dmIn, inp, &qct));
231:     if ((qct != DM_POLYTOPE_POINT_PRISM_TENSOR) && (qct != DM_POLYTOPE_SEG_PRISM_TENSOR) && (qct != DM_POLYTOPE_TRI_PRISM_TENSOR) && (qct != DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
232:       DMPolytopeType  ct;
233:       const PetscInt *support;
234:       PetscInt        Ns, s;

236:       PetscCall(DMPlexGetSupport(dmIn, inp, &support));
237:       PetscCall(DMPlexGetSupportSize(dmIn, inp, &Ns));
238:       for (s = 0; s < Ns; ++s) {
239:         PetscCall(DMPlexGetCellType(dmIn, support[s], &ct));
240:         if ((ct == DM_POLYTOPE_POINT_PRISM_TENSOR) || (ct == DM_POLYTOPE_SEG_PRISM_TENSOR) || (ct == DM_POLYTOPE_TRI_PRISM_TENSOR) || (ct == DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
241:           inp = support[s];
242:           break;
243:         }
244:       }
245:       PetscCheck(s < Ns, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cohesive cell not found from face %" PetscInt_FMT, inp);
246:       PetscCall(PetscDSGetComponentOffsetsCohesive(dsIn, 2, &uOff));
247:       PetscCall(DMPlexGetOrientedCone(dmIn, inp, &cone, &ornt));
248:       face[0] = 0;
249:       face[1] = 0;
250:     }
251:   }
252:   if (localU) PetscCall(DMPlexVecGetClosure(dmIn, section, localU, inp, NULL, &coefficients));
253:   if (dmAux) {
254:     PetscInt subp;

256:     PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, p, &subp));
257:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
258:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
259:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
260:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
261:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL /*&a_t*/, &a_x));
262:     PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, localA, subp, NULL, &coefficientsAux));
263:   }
264:   /* Get values for closure */
265:   isAffine        = cgeom->isAffine;
266:   fegeom.dim      = cgeom->dim;
267:   fegeom.dimEmbed = cgeom->dimEmbed;
268:   if (isAffine) {
269:     fegeom.v    = x;
270:     fegeom.xi   = cgeom->xi;
271:     fegeom.J    = cgeom->J;
272:     fegeom.invJ = cgeom->invJ;
273:     fegeom.detJ = cgeom->detJ;
274:   }
275:   for (f = 0, v = 0; f < Nf; ++f) {
276:     PetscQuadrature  allPoints;
277:     PetscInt         q, dim, numPoints;
278:     const PetscReal *points;
279:     PetscScalar     *pointEval;
280:     PetscBool        cohesive;
281:     DM               dm;

283:     if (!sp[f]) continue;
284:     PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
285:     PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
286:     if (!funcs[f]) {
287:       for (d = 0; d < spDim; d++, v++) values[v] = 0.;
288:       if (isCohesive && !cohesive) {
289:         for (d = 0; d < spDim; d++, v++) values[v] = 0.;
290:       }
291:       continue;
292:     }
293:     const PetscInt ***perms;
294:     PetscCall(PetscDualSpaceGetDM(sp[f], &dm));
295:     PetscCall(PetscDualSpaceGetSymmetries(sp[f], &perms, NULL));
296:     PetscCall(PetscDualSpaceGetAllData(sp[f], &allPoints, NULL));
297:     PetscCall(PetscQuadratureGetData(allPoints, &dim, NULL, &numPoints, &points, NULL));
298:     PetscCall(DMGetWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
299:     for (q = 0; q < numPoints; ++q, ++tp) {
300:       PetscInt qpt[2];

302:       if (isCohesiveIn) {
303:         qpt[0] = perms ? perms[0][ornt[0]][q] : q;
304:         qpt[1] = perms ? perms[0][DMPolytopeTypeComposeOrientationInv(qct, ornt[1], 0)][q] : q;
305:       }
306:       if (isAffine) {
307:         CoordinatesRefToReal(dE, cgeom->dim, fegeom.xi, cgeom->v, fegeom.J, &points[q * dim], x);
308:       } else {
309:         fegeom.v    = &cgeom->v[tp * dE];
310:         fegeom.J    = &cgeom->J[tp * dE * dE];
311:         fegeom.invJ = &cgeom->invJ[tp * dE * dE];
312:         fegeom.detJ = &cgeom->detJ[tp];
313:       }
314:       if (coefficients) {
315:         if (isCohesiveIn) PetscCall(PetscFEEvaluateFieldJets_Hybrid_Internal(dsIn, NfIn, 0, tp, T, face, qpt, T, &fegeom, coefficients, coefficients_t, u, u_x, u_t));
316:         else PetscCall(PetscFEEvaluateFieldJets_Internal(dsIn, NfIn, 0, tp, T, &fegeom, coefficients, coefficients_t, u, u_x, u_t));
317:       }
318:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, tp, TAux, &fegeom, coefficientsAux, coefficientsAux_t, a, a_x, a_t));
319:       if (transform) PetscCall(DMPlexBasisTransformApplyReal_Internal(dmIn, fegeom.v, PETSC_TRUE, dE, fegeom.v, fegeom.v, dm->transformCtx));
320:       (*funcs[f])(dE, NfIn, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, a_t, a_x, time, fegeom.v, numConstants, constants, &pointEval[Nc[f] * q]);
321:     }
322:     PetscCall(PetscDualSpaceApplyAll(sp[f], pointEval, &values[v]));
323:     PetscCall(DMRestoreWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
324:     v += spDim;
325:     /* TODO: For now, set both sides equal, but this should use info from other support cell */
326:     if (isCohesive && !cohesive) {
327:       for (d = 0; d < spDim; d++, v++) values[v] = values[v - spDim];
328:     }
329:   }
330:   if (localU) PetscCall(DMPlexVecRestoreClosure(dmIn, section, localU, inp, NULL, &coefficients));
331:   if (dmAux) PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, localA, p, NULL, &coefficientsAux));
332:   if (isCohesiveIn) PetscCall(DMPlexRestoreOrientedCone(dmIn, inp, &cone, &ornt));
333:   PetscFunctionReturn(PETSC_SUCCESS);
334: }

336: static PetscErrorCode DMProjectPoint_BdField_Private(DM dm, PetscDS ds, DM dmIn, DMEnclosureType encIn, PetscDS dsIn, DM dmAux, DMEnclosureType encAux, PetscDS dsAux, PetscReal time, Vec localU, Vec localA, PetscFEGeom *fgeom, PetscDualSpace sp[], PetscInt p, PetscTabulation *T, PetscTabulation *TAux, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void **ctxs, PetscScalar values[])
337: {
338:   PetscSection       section, sectionAux = NULL;
339:   PetscScalar       *u, *u_t = NULL, *u_x, *a = NULL, *a_t = NULL, *a_x = NULL, *bc;
340:   PetscScalar       *coefficients = NULL, *coefficientsAux = NULL;
341:   PetscScalar       *coefficients_t = NULL, *coefficientsAux_t = NULL;
342:   const PetscScalar *constants;
343:   PetscReal         *x;
344:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL, *Nc, face[2];
345:   PetscFEGeom        fegeom, cgeom;
346:   const PetscInt     dE = fgeom->dimEmbed, *cone, *ornt;
347:   PetscInt           numConstants, Nf, NfIn, NfAux = 0, f, spDim, d, v, inp, tp = 0;
348:   PetscBool          isAffine, isCohesive, isCohesiveIn, transform;
349:   DMPolytopeType     qct;

351:   PetscFunctionBeginHot;
352:   PetscCall(PetscDSGetNumFields(ds, &Nf));
353:   PetscCall(PetscDSGetComponents(ds, &Nc));
354:   PetscCall(PetscDSIsCohesive(ds, &isCohesive));
355:   PetscCall(PetscDSGetNumFields(dsIn, &NfIn));
356:   PetscCall(PetscDSIsCohesive(dsIn, &isCohesiveIn));
357:   PetscCall(PetscDSGetComponentOffsets(dsIn, &uOff));
358:   PetscCall(PetscDSGetComponentDerivativeOffsets(dsIn, &uOff_x));
359:   PetscCall(PetscDSGetEvaluationArrays(dsIn, &u, &bc /*&u_t*/, &u_x));
360:   PetscCall(PetscDSGetWorkspace(dsIn, &x, NULL, NULL, NULL, NULL));
361:   PetscCall(PetscDSGetConstants(dsIn, &numConstants, &constants));
362:   PetscCall(DMHasBasisTransform(dmIn, &transform));
363:   PetscCall(DMGetLocalSection(dmIn, &section));
364:   PetscCall(DMGetEnclosurePoint(dmIn, dm, encIn, p, &inp));
365:   // Get cohesive cell hanging off face
366:   if (isCohesiveIn) {
367:     PetscCall(DMPlexGetCellType(dmIn, inp, &qct));
368:     if ((qct != DM_POLYTOPE_POINT_PRISM_TENSOR) && (qct != DM_POLYTOPE_SEG_PRISM_TENSOR) && (qct != DM_POLYTOPE_TRI_PRISM_TENSOR) && (qct != DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
369:       DMPolytopeType  ct;
370:       const PetscInt *support;
371:       PetscInt        Ns, s;

373:       PetscCall(DMPlexGetSupport(dmIn, inp, &support));
374:       PetscCall(DMPlexGetSupportSize(dmIn, inp, &Ns));
375:       for (s = 0; s < Ns; ++s) {
376:         PetscCall(DMPlexGetCellType(dmIn, support[s], &ct));
377:         if ((ct == DM_POLYTOPE_POINT_PRISM_TENSOR) || (ct == DM_POLYTOPE_SEG_PRISM_TENSOR) || (ct == DM_POLYTOPE_TRI_PRISM_TENSOR) || (ct == DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
378:           inp = support[s];
379:           break;
380:         }
381:       }
382:       PetscCheck(s < Ns, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cohesive cell not found from face %" PetscInt_FMT, inp);
383:       PetscCall(PetscDSGetComponentOffsetsCohesive(dsIn, 2, &uOff));
384:       PetscCall(DMPlexGetOrientedCone(dmIn, inp, &cone, &ornt));
385:       face[0] = 0;
386:       face[1] = 0;
387:     }
388:   }
389:   if (localU) PetscCall(DMPlexVecGetClosure(dmIn, section, localU, inp, NULL, &coefficients));
390:   if (dmAux) {
391:     PetscInt subp;

393:     PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, p, &subp));
394:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
395:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
396:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
397:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
398:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL /*&a_t*/, &a_x));
399:     PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, localA, subp, NULL, &coefficientsAux));
400:   }
401:   /* Get values for closure */
402:   isAffine       = fgeom->isAffine;
403:   fegeom.n       = NULL;
404:   fegeom.J       = NULL;
405:   fegeom.v       = NULL;
406:   fegeom.xi      = NULL;
407:   cgeom.dim      = fgeom->dim;
408:   cgeom.dimEmbed = fgeom->dimEmbed;
409:   if (isAffine) {
410:     fegeom.v    = x;
411:     fegeom.xi   = fgeom->xi;
412:     fegeom.J    = fgeom->J;
413:     fegeom.invJ = fgeom->invJ;
414:     fegeom.detJ = fgeom->detJ;
415:     fegeom.n    = fgeom->n;

417:     cgeom.J    = fgeom->suppJ[0];
418:     cgeom.invJ = fgeom->suppInvJ[0];
419:     cgeom.detJ = fgeom->suppDetJ[0];
420:   }
421:   for (f = 0, v = 0; f < Nf; ++f) {
422:     PetscQuadrature  allPoints;
423:     PetscInt         q, dim, numPoints;
424:     const PetscReal *points;
425:     PetscScalar     *pointEval;
426:     PetscBool        cohesive;
427:     DM               dm;

429:     if (!sp[f]) continue;
430:     PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
431:     PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
432:     if (!funcs[f]) {
433:       for (d = 0; d < spDim; d++, v++) values[v] = 0.;
434:       if (isCohesive && !cohesive) {
435:         for (d = 0; d < spDim; d++, v++) values[v] = 0.;
436:       }
437:       continue;
438:     }
439:     PetscCall(PetscDualSpaceGetDM(sp[f], &dm));
440:     PetscCall(PetscDualSpaceGetAllData(sp[f], &allPoints, NULL));
441:     PetscCall(PetscQuadratureGetData(allPoints, &dim, NULL, &numPoints, &points, NULL));
442:     PetscCall(DMGetWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
443:     for (q = 0; q < numPoints; ++q, ++tp) {
444:       PetscInt qpt[2];

446:       if (isCohesiveIn) {
447:         // These points are not integration quadratures, but dual space quadratures
448:         // If they had multiple points we should match them from both sides, similar to hybrid residual eval
449:         qpt[0] = qpt[1] = q;
450:       }
451:       if (isAffine) {
452:         CoordinatesRefToReal(dE, fgeom->dim, fegeom.xi, fgeom->v, fegeom.J, &points[q * dim], x);
453:       } else {
454:         fegeom.v    = &fgeom->v[tp * dE];
455:         fegeom.J    = &fgeom->J[tp * dE * dE];
456:         fegeom.invJ = &fgeom->invJ[tp * dE * dE];
457:         fegeom.detJ = &fgeom->detJ[tp];
458:         fegeom.n    = &fgeom->n[tp * dE];

460:         cgeom.J    = &fgeom->suppJ[0][tp * dE * dE];
461:         cgeom.invJ = &fgeom->suppInvJ[0][tp * dE * dE];
462:         cgeom.detJ = &fgeom->suppDetJ[0][tp];
463:       }
464:       /* TODO We should use cgeom here, instead of fegeom, however the geometry coming in through fgeom does not have the support cell geometry */
465:       if (coefficients) {
466:         if (isCohesiveIn) PetscCall(PetscFEEvaluateFieldJets_Hybrid_Internal(dsIn, NfIn, 0, tp, T, face, qpt, T, &cgeom, coefficients, coefficients_t, u, u_x, u_t));
467:         else PetscCall(PetscFEEvaluateFieldJets_Internal(dsIn, NfIn, 0, tp, T, &cgeom, coefficients, coefficients_t, u, u_x, u_t));
468:       }
469:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, tp, TAux, &cgeom, coefficientsAux, coefficientsAux_t, a, a_x, a_t));
470:       if (transform) PetscCall(DMPlexBasisTransformApplyReal_Internal(dmIn, fegeom.v, PETSC_TRUE, dE, fegeom.v, fegeom.v, dm->transformCtx));
471:       (*funcs[f])(dE, NfIn, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, a_t, a_x, time, fegeom.v, fegeom.n, numConstants, constants, &pointEval[Nc[f] * q]);
472:     }
473:     PetscCall(PetscDualSpaceApplyAll(sp[f], pointEval, &values[v]));
474:     PetscCall(DMRestoreWorkArray(dm, numPoints * Nc[f], MPIU_SCALAR, &pointEval));
475:     v += spDim;
476:     /* TODO: For now, set both sides equal, but this should use info from other support cell */
477:     if (isCohesive && !cohesive) {
478:       for (d = 0; d < spDim; d++, v++) values[v] = values[v - spDim];
479:     }
480:   }
481:   if (localU) PetscCall(DMPlexVecRestoreClosure(dmIn, section, localU, inp, NULL, &coefficients));
482:   if (dmAux) PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, localA, p, NULL, &coefficientsAux));
483:   if (isCohesiveIn) PetscCall(DMPlexRestoreOrientedCone(dmIn, inp, &cone, &ornt));
484:   PetscFunctionReturn(PETSC_SUCCESS);
485: }

487: static PetscErrorCode DMProjectPoint_Private(DM dm, PetscDS ds, DM dmIn, DMEnclosureType encIn, PetscDS dsIn, DM dmAux, DMEnclosureType encAux, PetscDS dsAux, PetscFEGeom *fegeom, PetscInt effectiveHeight, PetscReal time, Vec localU, Vec localA, PetscBool hasFE, PetscBool hasFV, PetscBool isFE[], PetscDualSpace sp[], PetscInt p, PetscTabulation *T, PetscTabulation *TAux, DMBoundaryConditionType type, void (**funcs)(void), void **ctxs, PetscBool fieldActive[], PetscScalar values[])
488: {
489:   PetscFVCellGeom fvgeom;
490:   PetscInt        dim, dimEmbed;

492:   PetscFunctionBeginHot;
493:   PetscCall(DMGetDimension(dm, &dim));
494:   PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
495:   if (hasFV) PetscCall(DMPlexComputeCellGeometryFVM(dm, p, &fvgeom.volume, fvgeom.centroid, NULL));
496:   switch (type) {
497:   case DM_BC_ESSENTIAL:
498:   case DM_BC_NATURAL:
499:     PetscCall(DMProjectPoint_Func_Private(dm, ds, dmIn, dsIn, time, fegeom, &fvgeom, isFE, sp, (PetscErrorCode (**)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *))funcs, ctxs, values));
500:     break;
501:   case DM_BC_ESSENTIAL_FIELD:
502:   case DM_BC_NATURAL_FIELD:
503:     PetscCall(DMProjectPoint_Field_Private(dm, ds, dmIn, encIn, dsIn, dmAux, encAux, dsAux, time, localU, localA, fegeom, sp, p, T, TAux, (void (**)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))funcs, ctxs, values));
504:     break;
505:   case DM_BC_ESSENTIAL_BD_FIELD:
506:     PetscCall(DMProjectPoint_BdField_Private(dm, ds, dmIn, encIn, dsIn, dmAux, encAux, dsAux, time, localU, localA, fegeom, sp, p, T, TAux, (void (**)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))funcs, ctxs, values));
507:     break;
508:   default:
509:     SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown boundary condition type: %d", (int)type);
510:   }
511:   PetscFunctionReturn(PETSC_SUCCESS);
512: }

514: static PetscErrorCode PetscDualSpaceGetAllPointsUnion(PetscInt Nf, PetscDualSpace *sp, PetscInt dim, void (**funcs)(void), PetscQuadrature *allPoints)
515: {
516:   PetscReal *points;
517:   PetscInt   f, numPoints;

519:   PetscFunctionBegin;
520:   if (!dim) {
521:     PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, allPoints));
522:     PetscFunctionReturn(PETSC_SUCCESS);
523:   }
524:   numPoints = 0;
525:   for (f = 0; f < Nf; ++f) {
526:     if (funcs[f]) {
527:       PetscQuadrature fAllPoints;
528:       PetscInt        fNumPoints;

530:       PetscCall(PetscDualSpaceGetAllData(sp[f], &fAllPoints, NULL));
531:       PetscCall(PetscQuadratureGetData(fAllPoints, NULL, NULL, &fNumPoints, NULL, NULL));
532:       numPoints += fNumPoints;
533:     }
534:   }
535:   PetscCall(PetscMalloc1(dim * numPoints, &points));
536:   numPoints = 0;
537:   for (f = 0; f < Nf; ++f) {
538:     if (funcs[f]) {
539:       PetscQuadrature  fAllPoints;
540:       PetscInt         qdim, fNumPoints, q;
541:       const PetscReal *fPoints;

543:       PetscCall(PetscDualSpaceGetAllData(sp[f], &fAllPoints, NULL));
544:       PetscCall(PetscQuadratureGetData(fAllPoints, &qdim, NULL, &fNumPoints, &fPoints, NULL));
545:       PetscCheck(qdim == dim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Spatial dimension %" PetscInt_FMT " for dual basis does not match input dimension %" PetscInt_FMT, qdim, dim);
546:       for (q = 0; q < fNumPoints * dim; ++q) points[numPoints * dim + q] = fPoints[q];
547:       numPoints += fNumPoints;
548:     }
549:   }
550:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, allPoints));
551:   PetscCall(PetscQuadratureSetData(*allPoints, dim, 0, numPoints, points, NULL));
552:   PetscFunctionReturn(PETSC_SUCCESS);
553: }

555: /*@C
556:   DMGetFirstLabeledPoint - Find first labeled `point` in `odm` such that the corresponding point in `dm` has the specified `height`. Return `point` and the corresponding `ds`.

558:   Input Parameters:
559: + dm     - the `DM`
560: . odm    - the enclosing `DM`
561: . label  - label for `DM` domain, or `NULL` for whole domain
562: . numIds - the number of `ids`
563: . ids    - An array of the label ids in sequence for the domain
564: - height - Height of target cells in `DMPLEX` topology

566:   Output Parameters:
567: + point - the first labeled point
568: - ds    - the `PetscDS` corresponding to the first labeled point

570:   Level: developer

572: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetActivePoint()`, `DMLabel`, `PetscDS`
573: @*/
574: PetscErrorCode DMGetFirstLabeledPoint(DM dm, DM odm, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt height, PetscInt *point, PetscDS *ds)
575: {
576:   DM              plex;
577:   DMEnclosureType enc;
578:   PetscInt        ls = -1;

580:   PetscFunctionBegin;
581:   if (point) *point = -1;
582:   if (!label) PetscFunctionReturn(PETSC_SUCCESS);
583:   PetscCall(DMGetEnclosureRelation(dm, odm, &enc));
584:   PetscCall(DMConvert(dm, DMPLEX, &plex));
585:   for (PetscInt i = 0; i < numIds; ++i) {
586:     IS       labelIS;
587:     PetscInt num_points, pStart, pEnd;
588:     PetscCall(DMLabelGetStratumIS(label, ids[i], &labelIS));
589:     if (!labelIS) continue; /* No points with that id on this process */
590:     PetscCall(DMPlexGetHeightStratum(plex, height, &pStart, &pEnd));
591:     PetscCall(ISGetSize(labelIS, &num_points));
592:     if (num_points) {
593:       const PetscInt *points;
594:       PetscCall(ISGetIndices(labelIS, &points));
595:       for (PetscInt i = 0; i < num_points; i++) {
596:         PetscInt point;
597:         PetscCall(DMGetEnclosurePoint(dm, odm, enc, points[i], &point));
598:         if (pStart <= point && point < pEnd) {
599:           ls = point;
600:           if (ds) {
601:             // If this is a face of a cohesive cell, then prefer that DS
602:             if (height == 1) {
603:               const PetscInt *supp;
604:               PetscInt        suppSize;
605:               DMPolytopeType  ct;

607:               PetscCall(DMPlexGetSupport(dm, ls, &supp));
608:               PetscCall(DMPlexGetSupportSize(dm, ls, &suppSize));
609:               for (PetscInt s = 0; s < suppSize; ++s) {
610:                 PetscCall(DMPlexGetCellType(dm, supp[s], &ct));
611:                 if ((ct == DM_POLYTOPE_POINT_PRISM_TENSOR) || (ct == DM_POLYTOPE_SEG_PRISM_TENSOR) || (ct == DM_POLYTOPE_TRI_PRISM_TENSOR) || (ct == DM_POLYTOPE_QUAD_PRISM_TENSOR)) {
612:                   ls = supp[s];
613:                   break;
614:                 }
615:               }
616:             }
617:             PetscCall(DMGetCellDS(dm, ls, ds, NULL));
618:           }
619:           if (ls >= 0) break;
620:         }
621:       }
622:       PetscCall(ISRestoreIndices(labelIS, &points));
623:     }
624:     PetscCall(ISDestroy(&labelIS));
625:     if (ls >= 0) break;
626:   }
627:   if (point) *point = ls;
628:   PetscCall(DMDestroy(&plex));
629:   PetscFunctionReturn(PETSC_SUCCESS);
630: }

632: /*
633:   This function iterates over a manifold, and interpolates the input function/field using the basis provided by the DS in our DM

635:   There are several different scenarios:

637:   1) Volumetric mesh with volumetric auxiliary data

639:      Here minHeight=0 since we loop over cells.

641:   2) Boundary mesh with boundary auxiliary data

643:      Here minHeight=1 since we loop over faces. This normally happens since we hang cells off of our boundary meshes to facilitate computation.

645:   3) Volumetric mesh with boundary auxiliary data

647:      Here minHeight=1 and auxbd=PETSC_TRUE since we loop over faces and use data only supported on those faces. This is common when imposing Dirichlet boundary conditions.

649:   4) Volumetric input mesh with boundary output mesh

651:      Here we must get a subspace for the input DS

653:   The maxHeight is used to support enforcement of constraints in DMForest.

655:   If localU is given and not equal to localX, we call DMPlexInsertBoundaryValues() to complete it.

657:   If we are using an input field (DM_BC_ESSENTIAL_FIELD or DM_BC_NATURAL_FIELD), we need to evaluate it at all the quadrature points of the dual basis functionals.
658:     - We use effectiveHeight to mean the height above our incoming DS. For example, if the DS is for a submesh then the effective height is zero, whereas if the DS
659:       is for the volumetric mesh, but we are iterating over a surface, then the effective height is nonzero. When the effective height is nonzero, we need to extract
660:       dual spaces for the boundary from our input spaces.
661:     - After extracting all quadrature points, we tabulate the input fields and auxiliary fields on them.

663:   We check that the #dof(closure(p)) == #dual basis functionals(p) for a representative p in the iteration

665:   If we have a label, we iterate over those points. This will probably break the maxHeight functionality since we do not check the height of those points.
666: */
667: static PetscErrorCode DMProjectLocal_Generic_Plex(DM dm, PetscReal time, Vec localU, PetscInt Ncc, const PetscInt comps[], DMLabel label, PetscInt numIds, const PetscInt ids[], DMBoundaryConditionType type, void (**funcs)(void), void **ctxs, InsertMode mode, Vec localX)
668: {
669:   DM               plex, dmIn, plexIn, dmAux = NULL, plexAux = NULL, tdm;
670:   DMEnclosureType  encIn, encAux;
671:   PetscDS          ds = NULL, dsIn = NULL, dsAux = NULL;
672:   Vec              localA = NULL, tv;
673:   IS               fieldIS;
674:   PetscSection     section;
675:   PetscDualSpace  *sp, *cellsp, *spIn, *cellspIn;
676:   PetscTabulation *T = NULL, *TAux = NULL;
677:   PetscInt        *Nc;
678:   PetscInt         dim, dimEmbed, depth, htInc = 0, htIncIn = 0, htIncAux = 0, minHeight, maxHeight, minHeightIn, minHeightAux, h, regionNum, Nf, NfIn, NfAux = 0, NfTot, f;
679:   PetscBool       *isFE, hasFE = PETSC_FALSE, hasFV = PETSC_FALSE, isCohesive = PETSC_FALSE, isCohesiveIn = PETSC_FALSE, transform;
680:   DMField          coordField;
681:   DMLabel          depthLabel;
682:   PetscQuadrature  allPoints = NULL;

684:   PetscFunctionBegin;
685:   if (localU) PetscCall(VecGetDM(localU, &dmIn));
686:   else dmIn = dm;
687:   PetscCall(DMGetAuxiliaryVec(dm, label, numIds ? ids[0] : 0, 0, &localA));
688:   if (localA) PetscCall(VecGetDM(localA, &dmAux));
689:   else dmAux = NULL;
690:   PetscCall(DMConvert(dm, DMPLEX, &plex));
691:   PetscCall(DMConvert(dmIn, DMPLEX, &plexIn));
692:   PetscCall(DMGetEnclosureRelation(dmIn, dm, &encIn));
693:   PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
694:   PetscCall(DMGetDimension(dm, &dim));
695:   PetscCall(DMPlexGetVTKCellHeight(plex, &minHeight));
696:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
697:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
698:   PetscCall(DMHasBasisTransform(dm, &transform));
699:   /* Auxiliary information can only be used with interpolation of field functions */
700:   if (dmAux) {
701:     PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
702:     if (type == DM_BC_ESSENTIAL_FIELD || type == DM_BC_ESSENTIAL_BD_FIELD || type == DM_BC_NATURAL_FIELD) PetscCheck(localA, PETSC_COMM_SELF, PETSC_ERR_USER, "Missing localA vector");
703:   }
704:   if (localU && localU != localX) PetscCall(DMPlexInsertBoundaryValues(plexIn, PETSC_TRUE, localU, time, NULL, NULL, NULL));
705:   PetscCall(DMGetCoordinateField(dm, &coordField));
706:   PetscCheck(coordField, PETSC_COMM_SELF, PETSC_ERR_USER, "DM must have a coordinate field");
707:   /**** No collective calls below this point ****/
708:   /* Determine height for iteration of all meshes */
709:   {
710:     DMPolytopeType ct, ctIn, ctAux;
711:     PetscInt       lStart, pStart, pEnd, p, pStartIn, pStartAux, pEndAux;
712:     PetscInt       dim = -1, dimIn = -1, dimAux = -1;

714:     PetscCall(DMPlexGetSimplexOrBoxCells(plex, minHeight, &pStart, &pEnd));
715:     if (pEnd > pStart) {
716:       PetscCall(DMGetFirstLabeledPoint(dm, dm, label, numIds, ids, minHeight, &lStart, NULL));
717:       p = lStart < 0 ? pStart : lStart;
718:       PetscCall(DMPlexGetCellType(plex, p, &ct));
719:       dim = DMPolytopeTypeGetDim(ct);
720:       PetscCall(DMPlexGetVTKCellHeight(plexIn, &minHeightIn));
721:       PetscCall(DMPlexGetSimplexOrBoxCells(plexIn, minHeightIn, &pStartIn, NULL));
722:       PetscCall(DMPlexGetCellType(plexIn, pStartIn, &ctIn));
723:       dimIn = DMPolytopeTypeGetDim(ctIn);
724:       if (dmAux) {
725:         PetscCall(DMPlexGetVTKCellHeight(plexAux, &minHeightAux));
726:         PetscCall(DMPlexGetSimplexOrBoxCells(plexAux, minHeightAux, &pStartAux, &pEndAux));
727:         if (pStartAux < pEndAux) {
728:           PetscCall(DMPlexGetCellType(plexAux, pStartAux, &ctAux));
729:           dimAux = DMPolytopeTypeGetDim(ctAux);
730:         }
731:       } else dimAux = dim;
732:     } else {
733:       PetscCall(DMDestroy(&plex));
734:       PetscCall(DMDestroy(&plexIn));
735:       if (dmAux) PetscCall(DMDestroy(&plexAux));
736:       PetscFunctionReturn(PETSC_SUCCESS);
737:     }
738:     if (dim < 0) {
739:       DMLabel spmap = NULL, spmapIn = NULL, spmapAux = NULL;

741:       /* Fall back to determination based on being a submesh */
742:       PetscCall(DMPlexGetSubpointMap(plex, &spmap));
743:       PetscCall(DMPlexGetSubpointMap(plexIn, &spmapIn));
744:       if (plexAux) PetscCall(DMPlexGetSubpointMap(plexAux, &spmapAux));
745:       dim    = spmap ? 1 : 0;
746:       dimIn  = spmapIn ? 1 : 0;
747:       dimAux = spmapAux ? 1 : 0;
748:     }
749:     {
750:       PetscInt dimProj   = PetscMin(PetscMin(dim, dimIn), dimAux < 0 ? PETSC_INT_MAX : dimAux);
751:       PetscInt dimAuxEff = dimAux < 0 ? dimProj : dimAux;

753:       PetscCheck(PetscAbsInt(dimProj - dim) <= 1 && PetscAbsInt(dimProj - dimIn) <= 1 && PetscAbsInt(dimProj - dimAuxEff) <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Do not currently support differences of more than 1 in dimension");
754:       if (dimProj < dim) minHeight = 1;
755:       htInc    = dim - dimProj;
756:       htIncIn  = dimIn - dimProj;
757:       htIncAux = dimAuxEff - dimProj;
758:     }
759:   }
760:   PetscCall(DMPlexGetDepth(plex, &depth));
761:   PetscCall(DMPlexGetDepthLabel(plex, &depthLabel));
762:   PetscCall(DMPlexGetMaxProjectionHeight(plex, &maxHeight));
763:   maxHeight = PetscMax(maxHeight, minHeight);
764:   PetscCheck(maxHeight >= 0 && maxHeight <= dim, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Maximum projection height %" PetscInt_FMT " not in [0, %" PetscInt_FMT ")", maxHeight, dim);
765:   PetscCall(DMGetFirstLabeledPoint(dm, dm, label, numIds, ids, minHeight, NULL, &ds));
766:   if (!ds) PetscCall(DMGetDS(dm, &ds));
767:   PetscCall(DMGetFirstLabeledPoint(dmIn, dm, label, numIds, ids, minHeight, NULL, &dsIn));
768:   if (!dsIn) PetscCall(DMGetDS(dmIn, &dsIn));
769:   PetscCall(PetscDSGetNumFields(ds, &Nf));
770:   PetscCall(PetscDSGetNumFields(dsIn, &NfIn));
771:   PetscCall(PetscDSIsCohesive(dsIn, &isCohesiveIn));
772:   if (isCohesiveIn) --htIncIn; // Should be rearranged
773:   PetscCall(DMGetNumFields(dm, &NfTot));
774:   PetscCall(DMFindRegionNum(dm, ds, &regionNum));
775:   PetscCall(DMGetRegionNumDS(dm, regionNum, NULL, &fieldIS, NULL, NULL));
776:   PetscCall(PetscDSIsCohesive(ds, &isCohesive));
777:   PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
778:   PetscCall(DMGetLocalSection(dm, &section));
779:   if (dmAux) {
780:     PetscCall(DMGetDS(dmAux, &dsAux));
781:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
782:   }
783:   PetscCall(PetscDSGetComponents(ds, &Nc));
784:   PetscCall(PetscMalloc3(Nf, &isFE, Nf, &sp, NfIn, &spIn));
785:   if (maxHeight > 0) PetscCall(PetscMalloc2(Nf, &cellsp, NfIn, &cellspIn));
786:   else {
787:     cellsp   = sp;
788:     cellspIn = spIn;
789:   }
790:   /* Get cell dual spaces */
791:   for (f = 0; f < Nf; ++f) {
792:     PetscDiscType disctype;

794:     PetscCall(PetscDSGetDiscType_Internal(ds, f, &disctype));
795:     if (disctype == PETSC_DISC_FE) {
796:       PetscFE fe;

798:       isFE[f] = PETSC_TRUE;
799:       hasFE   = PETSC_TRUE;
800:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
801:       PetscCall(PetscFEGetDualSpace(fe, &cellsp[f]));
802:     } else if (disctype == PETSC_DISC_FV) {
803:       PetscFV fv;

805:       isFE[f] = PETSC_FALSE;
806:       hasFV   = PETSC_TRUE;
807:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fv));
808:       PetscCall(PetscFVGetDualSpace(fv, &cellsp[f]));
809:     } else {
810:       isFE[f]   = PETSC_FALSE;
811:       cellsp[f] = NULL;
812:     }
813:   }
814:   for (f = 0; f < NfIn; ++f) {
815:     PetscDiscType disctype;

817:     PetscCall(PetscDSGetDiscType_Internal(dsIn, f, &disctype));
818:     if (disctype == PETSC_DISC_FE) {
819:       PetscFE fe;

821:       PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fe));
822:       PetscCall(PetscFEGetDualSpace(fe, &cellspIn[f]));
823:     } else if (disctype == PETSC_DISC_FV) {
824:       PetscFV fv;

826:       PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fv));
827:       PetscCall(PetscFVGetDualSpace(fv, &cellspIn[f]));
828:     } else {
829:       cellspIn[f] = NULL;
830:     }
831:   }
832:   for (f = 0; f < Nf; ++f) {
833:     if (!htInc) {
834:       sp[f] = cellsp[f];
835:     } else PetscCall(PetscDualSpaceGetHeightSubspace(cellsp[f], htInc, &sp[f]));
836:   }
837:   if (type == DM_BC_ESSENTIAL_FIELD || type == DM_BC_ESSENTIAL_BD_FIELD || type == DM_BC_NATURAL_FIELD) {
838:     PetscFE          fem, subfem;
839:     PetscDiscType    disctype;
840:     const PetscReal *points;
841:     PetscInt         numPoints;

843:     PetscCheck(maxHeight <= minHeight, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Field projection not supported for face interpolation");
844:     PetscCall(PetscDualSpaceGetAllPointsUnion(Nf, sp, dim - htInc, funcs, &allPoints));
845:     PetscCall(PetscQuadratureGetData(allPoints, NULL, NULL, &numPoints, &points, NULL));
846:     PetscCall(PetscMalloc2(NfIn, &T, NfAux, &TAux));
847:     for (f = 0; f < NfIn; ++f) {
848:       if (!htIncIn) {
849:         spIn[f] = cellspIn[f];
850:       } else PetscCall(PetscDualSpaceGetHeightSubspace(cellspIn[f], htIncIn, &spIn[f]));

852:       PetscCall(PetscDSGetDiscType_Internal(dsIn, f, &disctype));
853:       if (disctype != PETSC_DISC_FE) continue;
854:       PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fem));
855:       if (!htIncIn) {
856:         subfem = fem;
857:       } else PetscCall(PetscFEGetHeightSubspace(fem, htIncIn, &subfem));
858:       PetscCall(PetscFECreateTabulation(subfem, 1, numPoints, points, 1, &T[f]));
859:     }
860:     for (f = 0; f < NfAux; ++f) {
861:       PetscCall(PetscDSGetDiscType_Internal(dsAux, f, &disctype));
862:       if (disctype != PETSC_DISC_FE) continue;
863:       PetscCall(PetscDSGetDiscretization(dsAux, f, (PetscObject *)&fem));
864:       if (!htIncAux) {
865:         subfem = fem;
866:       } else PetscCall(PetscFEGetHeightSubspace(fem, htIncAux, &subfem));
867:       PetscCall(PetscFECreateTabulation(subfem, 1, numPoints, points, 1, &TAux[f]));
868:     }
869:   }
870:   /* Note: We make no attempt to optimize for height. Higher height things just overwrite the lower height results. */
871:   for (h = minHeight; h <= maxHeight; h++) {
872:     PetscInt     hEff     = h - minHeight + htInc;
873:     PetscInt     hEffIn   = h - minHeight + htIncIn;
874:     PetscInt     hEffAux  = h - minHeight + htIncAux;
875:     PetscDS      dsEff    = ds;
876:     PetscDS      dsEffIn  = dsIn;
877:     PetscDS      dsEffAux = dsAux;
878:     PetscScalar *values;
879:     PetscBool   *fieldActive;
880:     PetscInt     maxDegree;
881:     PetscInt     pStart, pEnd, p, lStart, spDim, totDim, numValues;
882:     IS           heightIS;

884:     if (h > minHeight) {
885:       for (f = 0; f < Nf; ++f) PetscCall(PetscDualSpaceGetHeightSubspace(cellsp[f], hEff, &sp[f]));
886:     }
887:     PetscCall(DMPlexGetSimplexOrBoxCells(plex, h, &pStart, &pEnd));
888:     PetscCall(DMGetFirstLabeledPoint(dm, dm, label, numIds, ids, h, &lStart, NULL));
889:     PetscCall(DMLabelGetStratumIS(depthLabel, depth - h, &heightIS));
890:     if (pEnd <= pStart) {
891:       PetscCall(ISDestroy(&heightIS));
892:       continue;
893:     }
894:     /* Compute totDim, the number of dofs in the closure of a point at this height */
895:     totDim = 0;
896:     for (f = 0; f < Nf; ++f) {
897:       PetscBool cohesive;

899:       if (!sp[f]) continue;
900:       PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
901:       PetscCall(PetscDualSpaceGetDimension(sp[f], &spDim));
902:       totDim += spDim;
903:       if (isCohesive && !cohesive) totDim += spDim;
904:     }
905:     p = lStart < 0 ? pStart : lStart;
906:     PetscCall(DMPlexVecGetClosure(plex, section, localX, p, &numValues, NULL));
907:     PetscCheck(numValues == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The output section point (%" PetscInt_FMT ") closure size %" PetscInt_FMT " != dual space dimension %" PetscInt_FMT " at height %" PetscInt_FMT " in [%" PetscInt_FMT ", %" PetscInt_FMT "]", p, numValues, totDim, h, minHeight, maxHeight);
908:     if (!totDim) {
909:       PetscCall(ISDestroy(&heightIS));
910:       continue;
911:     }
912:     if (htInc) PetscCall(PetscDSGetHeightSubspace(ds, hEff, &dsEff));
913:     /* Compute totDimIn, the number of dofs in the closure of a point at this height */
914:     if (localU) {
915:       PetscInt totDimIn, pIn, numValuesIn;

917:       totDimIn = 0;
918:       for (f = 0; f < NfIn; ++f) {
919:         PetscBool cohesive;

921:         if (!spIn[f]) continue;
922:         PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
923:         PetscCall(PetscDualSpaceGetDimension(spIn[f], &spDim));
924:         totDimIn += spDim;
925:         if (isCohesiveIn && !cohesive) totDimIn += spDim;
926:       }
927:       PetscCall(DMGetEnclosurePoint(dmIn, dm, encIn, lStart < 0 ? pStart : lStart, &pIn));
928:       PetscCall(DMPlexVecGetClosure(plexIn, NULL, localU, pIn, &numValuesIn, NULL));
929:       // TODO We could check that pIn is a cohesive cell for this check
930:       PetscCheck(isCohesiveIn || (numValuesIn == totDimIn), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The input section point (%" PetscInt_FMT ") closure size %" PetscInt_FMT " != dual space dimension %" PetscInt_FMT " at height %" PetscInt_FMT, pIn, numValuesIn, totDimIn, htIncIn);
931:       if (htIncIn) PetscCall(PetscDSGetHeightSubspace(dsIn, hEffIn, &dsEffIn));
932:     }
933:     if (htIncAux) PetscCall(PetscDSGetHeightSubspace(dsAux, hEffAux, &dsEffAux));
934:     /* Loop over points at this height */
935:     PetscCall(DMGetWorkArray(dm, numValues, MPIU_SCALAR, &values));
936:     PetscCall(DMGetWorkArray(dm, NfTot, MPI_INT, &fieldActive));
937:     {
938:       const PetscInt *fields;

940:       PetscCall(ISGetIndices(fieldIS, &fields));
941:       for (f = 0; f < NfTot; ++f) fieldActive[f] = PETSC_FALSE;
942:       for (f = 0; f < Nf; ++f) fieldActive[fields[f]] = (funcs[f] && sp[f]) ? PETSC_TRUE : PETSC_FALSE;
943:       PetscCall(ISRestoreIndices(fieldIS, &fields));
944:     }
945:     if (label) {
946:       PetscInt i;

948:       for (i = 0; i < numIds; ++i) {
949:         IS              pointIS, isectIS;
950:         const PetscInt *points;
951:         PetscInt        n;
952:         PetscFEGeom    *fegeom = NULL, *chunkgeom = NULL;
953:         PetscQuadrature quad = NULL;

955:         PetscCall(DMLabelGetStratumIS(label, ids[i], &pointIS));
956:         if (!pointIS) continue; /* No points with that id on this process */
957:         PetscCall(ISIntersect(pointIS, heightIS, &isectIS));
958:         PetscCall(ISDestroy(&pointIS));
959:         if (!isectIS) continue;
960:         PetscCall(ISGetLocalSize(isectIS, &n));
961:         PetscCall(ISGetIndices(isectIS, &points));
962:         PetscCall(DMFieldGetDegree(coordField, isectIS, NULL, &maxDegree));
963:         if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, isectIS, &quad));
964:         if (!quad) {
965:           if (!h && allPoints) {
966:             quad      = allPoints;
967:             allPoints = NULL;
968:           } else {
969:             PetscCall(PetscDualSpaceGetAllPointsUnion(Nf, sp, isCohesive ? dim - htInc - 1 : dim - htInc, funcs, &quad));
970:           }
971:         }
972:         PetscBool computeFaceGeom = htInc && h == minHeight ? PETSC_TRUE : PETSC_FALSE;

974:         if (n) {
975:           PetscInt depth, dep;

977:           PetscCall(DMPlexGetDepth(dm, &depth));
978:           PetscCall(DMPlexGetPointDepth(dm, points[0], &dep));
979:           if (dep < depth && h == minHeight) computeFaceGeom = PETSC_TRUE;
980:         }
981:         PetscCall(DMFieldCreateFEGeom(coordField, isectIS, quad, computeFaceGeom, &fegeom));
982:         for (p = 0; p < n; ++p) {
983:           const PetscInt point = points[p];

985:           PetscCall(PetscArrayzero(values, numValues));
986:           PetscCall(PetscFEGeomGetChunk(fegeom, p, p + 1, &chunkgeom));
987:           PetscCall(DMPlexSetActivePoint(dm, point));
988:           PetscCall(DMProjectPoint_Private(dm, dsEff, plexIn, encIn, dsEffIn, plexAux, encAux, dsEffAux, chunkgeom, htInc, time, localU, localA, hasFE, hasFV, isFE, sp, point, T, TAux, type, funcs, ctxs, fieldActive, values));
989:           if (transform) PetscCall(DMPlexBasisTransformPoint_Internal(plex, tdm, tv, point, fieldActive, PETSC_FALSE, values));
990:           PetscCall(DMPlexVecSetFieldClosure_Internal(plex, section, localX, fieldActive, point, Ncc, comps, label, ids[i], values, mode));
991:         }
992:         PetscCall(PetscFEGeomRestoreChunk(fegeom, p, p + 1, &chunkgeom));
993:         PetscCall(PetscFEGeomDestroy(&fegeom));
994:         PetscCall(PetscQuadratureDestroy(&quad));
995:         PetscCall(ISRestoreIndices(isectIS, &points));
996:         PetscCall(ISDestroy(&isectIS));
997:       }
998:     } else {
999:       PetscFEGeom    *fegeom = NULL, *chunkgeom = NULL;
1000:       PetscQuadrature quad = NULL;
1001:       IS              pointIS;

1003:       PetscCall(ISCreateStride(PETSC_COMM_SELF, pEnd - pStart, pStart, 1, &pointIS));
1004:       PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
1005:       if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &quad));
1006:       if (!quad) {
1007:         if (!h && allPoints) {
1008:           quad      = allPoints;
1009:           allPoints = NULL;
1010:         } else {
1011:           PetscCall(PetscDualSpaceGetAllPointsUnion(Nf, sp, dim - htInc, funcs, &quad));
1012:         }
1013:       }
1014:       PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, (htInc && h == minHeight) ? PETSC_TRUE : PETSC_FALSE, &fegeom));
1015:       for (p = pStart; p < pEnd; ++p) {
1016:         PetscCall(PetscArrayzero(values, numValues));
1017:         PetscCall(PetscFEGeomGetChunk(fegeom, p - pStart, p - pStart + 1, &chunkgeom));
1018:         PetscCall(DMPlexSetActivePoint(dm, p));
1019:         PetscCall(DMProjectPoint_Private(dm, dsEff, plexIn, encIn, dsEffIn, plexAux, encAux, dsEffAux, chunkgeom, htInc, time, localU, localA, hasFE, hasFV, isFE, sp, p, T, TAux, type, funcs, ctxs, fieldActive, values));
1020:         if (transform) PetscCall(DMPlexBasisTransformPoint_Internal(plex, tdm, tv, p, fieldActive, PETSC_FALSE, values));
1021:         PetscCall(DMPlexVecSetFieldClosure_Internal(plex, section, localX, fieldActive, p, Ncc, comps, NULL, -1, values, mode));
1022:       }
1023:       PetscCall(PetscFEGeomRestoreChunk(fegeom, p - pStart, pStart - p + 1, &chunkgeom));
1024:       PetscCall(PetscFEGeomDestroy(&fegeom));
1025:       PetscCall(PetscQuadratureDestroy(&quad));
1026:       PetscCall(ISDestroy(&pointIS));
1027:     }
1028:     PetscCall(ISDestroy(&heightIS));
1029:     PetscCall(DMRestoreWorkArray(dm, numValues, MPIU_SCALAR, &values));
1030:     PetscCall(DMRestoreWorkArray(dm, Nf, MPI_INT, &fieldActive));
1031:   }
1032:   /* Cleanup */
1033:   if (type == DM_BC_ESSENTIAL_FIELD || type == DM_BC_ESSENTIAL_BD_FIELD || type == DM_BC_NATURAL_FIELD) {
1034:     for (f = 0; f < NfIn; ++f) PetscCall(PetscTabulationDestroy(&T[f]));
1035:     for (f = 0; f < NfAux; ++f) PetscCall(PetscTabulationDestroy(&TAux[f]));
1036:     PetscCall(PetscFree2(T, TAux));
1037:   }
1038:   PetscCall(PetscQuadratureDestroy(&allPoints));
1039:   PetscCall(PetscFree3(isFE, sp, spIn));
1040:   if (maxHeight > 0) PetscCall(PetscFree2(cellsp, cellspIn));
1041:   PetscCall(DMDestroy(&plex));
1042:   PetscCall(DMDestroy(&plexIn));
1043:   if (dmAux) PetscCall(DMDestroy(&plexAux));
1044:   PetscFunctionReturn(PETSC_SUCCESS);
1045: }

1047: PetscErrorCode DMProjectFunctionLocal_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, InsertMode mode, Vec localX)
1048: {
1049:   PetscFunctionBegin;
1050:   PetscCall(DMProjectLocal_Generic_Plex(dm, time, NULL, 0, NULL, NULL, 0, NULL, DM_BC_ESSENTIAL, (void (**)(void))funcs, ctxs, mode, localX));
1051:   PetscFunctionReturn(PETSC_SUCCESS);
1052: }

1054: PetscErrorCode DMProjectFunctionLabelLocal_Plex(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Ncc, const PetscInt comps[], PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, InsertMode mode, Vec localX)
1055: {
1056:   PetscFunctionBegin;
1057:   PetscCall(DMProjectLocal_Generic_Plex(dm, time, NULL, Ncc, comps, label, numIds, ids, DM_BC_ESSENTIAL, (void (**)(void))funcs, ctxs, mode, localX));
1058:   PetscFunctionReturn(PETSC_SUCCESS);
1059: }

1061: PetscErrorCode DMProjectFieldLocal_Plex(DM dm, PetscReal time, Vec localU, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), InsertMode mode, Vec localX)
1062: {
1063:   PetscFunctionBegin;
1064:   PetscCall(DMProjectLocal_Generic_Plex(dm, time, localU, 0, NULL, NULL, 0, NULL, DM_BC_ESSENTIAL_FIELD, (void (**)(void))funcs, NULL, mode, localX));
1065:   PetscFunctionReturn(PETSC_SUCCESS);
1066: }

1068: PetscErrorCode DMProjectFieldLabelLocal_Plex(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Ncc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), InsertMode mode, Vec localX)
1069: {
1070:   PetscFunctionBegin;
1071:   PetscCall(DMProjectLocal_Generic_Plex(dm, time, localU, Ncc, comps, label, numIds, ids, DM_BC_ESSENTIAL_FIELD, (void (**)(void))funcs, NULL, mode, localX));
1072:   PetscFunctionReturn(PETSC_SUCCESS);
1073: }

1075: PetscErrorCode DMProjectBdFieldLabelLocal_Plex(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Ncc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), InsertMode mode, Vec localX)
1076: {
1077:   PetscFunctionBegin;
1078:   PetscCall(DMProjectLocal_Generic_Plex(dm, time, localU, Ncc, comps, label, numIds, ids, DM_BC_ESSENTIAL_BD_FIELD, (void (**)(void))funcs, NULL, mode, localX));
1079:   PetscFunctionReturn(PETSC_SUCCESS);
1080: }