Actual source code: dm.c
1: #include <petscvec.h>
2: #include <petsc/private/dmimpl.h>
3: #include <petsc/private/dmlabelimpl.h>
4: #include <petsc/private/petscdsimpl.h>
5: #include <petscdmplex.h>
6: #include <petscdmceed.h>
7: #include <petscdmfield.h>
8: #include <petscsf.h>
9: #include <petscds.h>
11: #ifdef PETSC_HAVE_LIBCEED
12: #include <petscfeceed.h>
13: #endif
15: PetscClassId DM_CLASSID;
16: PetscClassId DMLABEL_CLASSID;
17: PetscLogEvent DM_Convert, DM_GlobalToLocal, DM_LocalToGlobal, DM_LocalToLocal, DM_LocatePoints, DM_Coarsen, DM_Refine, DM_CreateInterpolation, DM_CreateRestriction, DM_CreateInjection, DM_CreateMatrix, DM_CreateMassMatrix, DM_Load, DM_View, DM_AdaptInterpolator, DM_ProjectFunction;
19: const char *const DMBoundaryTypes[] = {"NONE", "GHOSTED", "MIRROR", "PERIODIC", "TWIST", "DMBoundaryType", "DM_BOUNDARY_", NULL};
20: const char *const DMBoundaryConditionTypes[] = {"INVALID", "ESSENTIAL", "NATURAL", "INVALID", "INVALID", "ESSENTIAL_FIELD", "NATURAL_FIELD", "INVALID", "INVALID", "ESSENTIAL_BD_FIELD", "NATURAL_RIEMANN", "DMBoundaryConditionType", "DM_BC_", NULL};
21: const char *const DMBlockingTypes[] = {"TOPOLOGICAL_POINT", "FIELD_NODE", "DMBlockingType", "DM_BLOCKING_", NULL};
22: const char *const DMPolytopeTypes[] =
23: {"vertex", "segment", "tensor_segment", "triangle", "quadrilateral", "tensor_quad", "tetrahedron", "hexahedron", "triangular_prism", "tensor_triangular_prism", "tensor_quadrilateral_prism", "pyramid", "FV_ghost_cell", "interior_ghost_cell",
24: "unknown", "unknown_cell", "unknown_face", "invalid", "DMPolytopeType", "DM_POLYTOPE_", NULL};
25: const char *const DMCopyLabelsModes[] = {"replace", "keep", "fail", "DMCopyLabelsMode", "DM_COPY_LABELS_", NULL};
27: /*@
28: DMCreate - Creates an empty `DM` object. `DM`s are the abstract objects in PETSc that mediate between meshes and discretizations and the
29: algebraic solvers, time integrators, and optimization algorithms in PETSc.
31: Collective
33: Input Parameter:
34: . comm - The communicator for the `DM` object
36: Output Parameter:
37: . dm - The `DM` object
39: Level: beginner
41: Notes:
42: See `DMType` for a brief summary of available `DM`.
44: The type must then be set with `DMSetType()`. If you never call `DMSetType()` it will generate an
45: error when you try to use the `dm`.
47: `DM` is an orphan initialism or orphan acronym, the letters have no meaning and never did.
49: .seealso: [](ch_dmbase), `DM`, `DMSetType()`, `DMType`, `DMDACreate()`, `DMDA`, `DMSLICED`, `DMCOMPOSITE`, `DMPLEX`, `DMMOAB`, `DMNETWORK`
50: @*/
51: PetscErrorCode DMCreate(MPI_Comm comm, DM *dm)
52: {
53: DM v;
54: PetscDS ds;
56: PetscFunctionBegin;
57: PetscAssertPointer(dm, 2);
59: PetscCall(DMInitializePackage());
60: PetscCall(PetscHeaderCreate(v, DM_CLASSID, "DM", "Distribution Manager", "DM", comm, DMDestroy, DMView));
61: ((PetscObject)v)->non_cyclic_references = &DMCountNonCyclicReferences;
62: v->setupcalled = PETSC_FALSE;
63: v->setfromoptionscalled = PETSC_FALSE;
64: v->ltogmap = NULL;
65: v->bind_below = 0;
66: v->bs = 1;
67: v->coloringtype = IS_COLORING_GLOBAL;
68: PetscCall(PetscSFCreate(comm, &v->sf));
69: PetscCall(PetscSFCreate(comm, &v->sectionSF));
70: v->labels = NULL;
71: v->adjacency[0] = PETSC_FALSE;
72: v->adjacency[1] = PETSC_TRUE;
73: v->depthLabel = NULL;
74: v->celltypeLabel = NULL;
75: v->localSection = NULL;
76: v->globalSection = NULL;
77: v->defaultConstraint.section = NULL;
78: v->defaultConstraint.mat = NULL;
79: v->defaultConstraint.bias = NULL;
80: v->coordinates[0].dim = PETSC_DEFAULT;
81: v->coordinates[1].dim = PETSC_DEFAULT;
82: v->sparseLocalize = PETSC_TRUE;
83: v->dim = PETSC_DETERMINE;
84: {
85: PetscInt i;
86: for (i = 0; i < 10; ++i) {
87: v->nullspaceConstructors[i] = NULL;
88: v->nearnullspaceConstructors[i] = NULL;
89: }
90: }
91: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &ds));
92: PetscCall(DMSetRegionDS(v, NULL, NULL, ds, NULL));
93: PetscCall(PetscDSDestroy(&ds));
94: PetscCall(PetscHMapAuxCreate(&v->auxData));
95: v->dmBC = NULL;
96: v->coarseMesh = NULL;
97: v->outputSequenceNum = -1;
98: v->outputSequenceVal = 0.0;
99: PetscCall(DMSetVecType(v, VECSTANDARD));
100: PetscCall(DMSetMatType(v, MATAIJ));
102: *dm = v;
103: PetscFunctionReturn(PETSC_SUCCESS);
104: }
106: /*@
107: DMClone - Creates a `DM` object with the same topology as the original.
109: Collective
111: Input Parameter:
112: . dm - The original `DM` object
114: Output Parameter:
115: . newdm - The new `DM` object
117: Level: beginner
119: Notes:
120: For some `DM` implementations this is a shallow clone, the result of which may share (reference counted) information with its parent. For example,
121: `DMClone()` applied to a `DMPLEX` object will result in a new `DMPLEX` that shares the topology with the original `DMPLEX`. It does not
122: share the `PetscSection` of the original `DM`.
124: The clone is considered set up if the original has been set up.
126: Use `DMConvert()` for a general way to create new `DM` from a given `DM`
128: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMCreate()`, `DMSetType()`, `DMSetLocalSection()`, `DMSetGlobalSection()`, `DMPLEX`, `DMConvert()`
129: @*/
130: PetscErrorCode DMClone(DM dm, DM *newdm)
131: {
132: PetscSF sf;
133: Vec coords;
134: void *ctx;
135: MatOrderingType otype;
136: DMReorderDefaultFlag flg;
137: PetscInt dim, cdim, i;
139: PetscFunctionBegin;
141: PetscAssertPointer(newdm, 2);
142: PetscCall(DMCreate(PetscObjectComm((PetscObject)dm), newdm));
143: PetscCall(DMCopyLabels(dm, *newdm, PETSC_COPY_VALUES, PETSC_TRUE, DM_COPY_LABELS_FAIL));
144: (*newdm)->leveldown = dm->leveldown;
145: (*newdm)->levelup = dm->levelup;
146: (*newdm)->prealloc_only = dm->prealloc_only;
147: (*newdm)->prealloc_skip = dm->prealloc_skip;
148: PetscCall(PetscFree((*newdm)->vectype));
149: PetscCall(PetscStrallocpy(dm->vectype, (char **)&(*newdm)->vectype));
150: PetscCall(PetscFree((*newdm)->mattype));
151: PetscCall(PetscStrallocpy(dm->mattype, (char **)&(*newdm)->mattype));
152: PetscCall(DMGetDimension(dm, &dim));
153: PetscCall(DMSetDimension(*newdm, dim));
154: PetscTryTypeMethod(dm, clone, newdm);
155: (*newdm)->setupcalled = dm->setupcalled;
156: PetscCall(DMGetPointSF(dm, &sf));
157: PetscCall(DMSetPointSF(*newdm, sf));
158: PetscCall(DMGetApplicationContext(dm, &ctx));
159: PetscCall(DMSetApplicationContext(*newdm, ctx));
160: PetscCall(DMReorderSectionGetDefault(dm, &flg));
161: PetscCall(DMReorderSectionSetDefault(*newdm, flg));
162: PetscCall(DMReorderSectionGetType(dm, &otype));
163: PetscCall(DMReorderSectionSetType(*newdm, otype));
164: for (i = 0; i < 2; ++i) {
165: if (dm->coordinates[i].dm) {
166: DM ncdm;
167: PetscSection cs;
168: PetscInt pEnd = -1, pEndMax = -1;
170: PetscCall(DMGetLocalSection(dm->coordinates[i].dm, &cs));
171: if (cs) PetscCall(PetscSectionGetChart(cs, NULL, &pEnd));
172: PetscCallMPI(MPIU_Allreduce(&pEnd, &pEndMax, 1, MPIU_INT, MPI_MAX, PetscObjectComm((PetscObject)dm)));
173: if (pEndMax >= 0) {
174: PetscCall(DMClone(dm->coordinates[i].dm, &ncdm));
175: PetscCall(DMCopyDisc(dm->coordinates[i].dm, ncdm));
176: PetscCall(DMSetLocalSection(ncdm, cs));
177: if (dm->coordinates[i].dm->periodic.setup) {
178: ncdm->periodic.setup = dm->coordinates[i].dm->periodic.setup;
179: PetscCall(ncdm->periodic.setup(ncdm));
180: }
181: if (i) PetscCall(DMSetCellCoordinateDM(*newdm, ncdm));
182: else PetscCall(DMSetCoordinateDM(*newdm, ncdm));
183: PetscCall(DMDestroy(&ncdm));
184: }
185: }
186: }
187: PetscCall(DMGetCoordinateDim(dm, &cdim));
188: PetscCall(DMSetCoordinateDim(*newdm, cdim));
189: PetscCall(DMGetCoordinatesLocal(dm, &coords));
190: if (coords) {
191: PetscCall(DMSetCoordinatesLocal(*newdm, coords));
192: } else {
193: PetscCall(DMGetCoordinates(dm, &coords));
194: if (coords) PetscCall(DMSetCoordinates(*newdm, coords));
195: }
196: PetscCall(DMGetCellCoordinatesLocal(dm, &coords));
197: if (coords) {
198: PetscCall(DMSetCellCoordinatesLocal(*newdm, coords));
199: } else {
200: PetscCall(DMGetCellCoordinates(dm, &coords));
201: if (coords) PetscCall(DMSetCellCoordinates(*newdm, coords));
202: }
203: {
204: const PetscReal *maxCell, *Lstart, *L;
206: PetscCall(DMGetPeriodicity(dm, &maxCell, &Lstart, &L));
207: PetscCall(DMSetPeriodicity(*newdm, maxCell, Lstart, L));
208: }
209: {
210: PetscBool useCone, useClosure;
212: PetscCall(DMGetAdjacency(dm, PETSC_DEFAULT, &useCone, &useClosure));
213: PetscCall(DMSetAdjacency(*newdm, PETSC_DEFAULT, useCone, useClosure));
214: }
215: PetscFunctionReturn(PETSC_SUCCESS);
216: }
218: /*@
219: DMSetVecType - Sets the type of vector to be created with `DMCreateLocalVector()` and `DMCreateGlobalVector()`
221: Logically Collective
223: Input Parameters:
224: + dm - initial distributed array
225: - ctype - the vector type, for example `VECSTANDARD`, `VECCUDA`, or `VECVIENNACL`
227: Options Database Key:
228: . -dm_vec_type ctype - the type of vector to create
230: Level: intermediate
232: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMDestroy()`, `DMDAInterpolationType`, `VecType`, `DMGetVecType()`, `DMSetMatType()`, `DMGetMatType()`,
233: `VECSTANDARD`, `VECCUDA`, `VECVIENNACL`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`
234: @*/
235: PetscErrorCode DMSetVecType(DM dm, VecType ctype)
236: {
237: char *tmp;
239: PetscFunctionBegin;
241: PetscAssertPointer(ctype, 2);
242: tmp = (char *)dm->vectype;
243: PetscCall(PetscStrallocpy(ctype, (char **)&dm->vectype));
244: PetscCall(PetscFree(tmp));
245: PetscFunctionReturn(PETSC_SUCCESS);
246: }
248: /*@
249: DMGetVecType - Gets the type of vector created with `DMCreateLocalVector()` and `DMCreateGlobalVector()`
251: Logically Collective
253: Input Parameter:
254: . da - initial distributed array
256: Output Parameter:
257: . ctype - the vector type
259: Level: intermediate
261: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMDestroy()`, `DMDAInterpolationType`, `VecType`, `DMSetMatType()`, `DMGetMatType()`, `DMSetVecType()`
262: @*/
263: PetscErrorCode DMGetVecType(DM da, VecType *ctype)
264: {
265: PetscFunctionBegin;
267: *ctype = da->vectype;
268: PetscFunctionReturn(PETSC_SUCCESS);
269: }
271: /*@
272: VecGetDM - Gets the `DM` defining the data layout of the vector
274: Not Collective
276: Input Parameter:
277: . v - The `Vec`
279: Output Parameter:
280: . dm - The `DM`
282: Level: intermediate
284: Note:
285: A `Vec` may not have a `DM` associated with it.
287: .seealso: [](ch_dmbase), `DM`, `VecSetDM()`, `DMGetLocalVector()`, `DMGetGlobalVector()`, `DMSetVecType()`
288: @*/
289: PetscErrorCode VecGetDM(Vec v, DM *dm)
290: {
291: PetscFunctionBegin;
293: PetscAssertPointer(dm, 2);
294: PetscCall(PetscObjectQuery((PetscObject)v, "__PETSc_dm", (PetscObject *)dm));
295: PetscFunctionReturn(PETSC_SUCCESS);
296: }
298: /*@
299: VecSetDM - Sets the `DM` defining the data layout of the vector.
301: Not Collective
303: Input Parameters:
304: + v - The `Vec`
305: - dm - The `DM`
307: Level: developer
309: Notes:
310: This is rarely used, generally one uses `DMGetLocalVector()` or `DMGetGlobalVector()` to create a vector associated with a given `DM`
312: This is NOT the same as `DMCreateGlobalVector()` since it does not change the view methods or perform other customization, but merely sets the `DM` member.
314: .seealso: [](ch_dmbase), `DM`, `VecGetDM()`, `DMGetLocalVector()`, `DMGetGlobalVector()`, `DMSetVecType()`
315: @*/
316: PetscErrorCode VecSetDM(Vec v, DM dm)
317: {
318: PetscFunctionBegin;
321: PetscCall(PetscObjectCompose((PetscObject)v, "__PETSc_dm", (PetscObject)dm));
322: PetscFunctionReturn(PETSC_SUCCESS);
323: }
325: /*@
326: DMSetISColoringType - Sets the type of coloring, `IS_COLORING_GLOBAL` or `IS_COLORING_LOCAL` that is created by the `DM`
328: Logically Collective
330: Input Parameters:
331: + dm - the `DM` context
332: - ctype - the matrix type
334: Options Database Key:
335: . -dm_is_coloring_type - global or local
337: Level: intermediate
339: .seealso: [](ch_dmbase), `DM`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `MatType`, `DMGetMatType()`,
340: `DMGetISColoringType()`, `ISColoringType`, `IS_COLORING_GLOBAL`, `IS_COLORING_LOCAL`
341: @*/
342: PetscErrorCode DMSetISColoringType(DM dm, ISColoringType ctype)
343: {
344: PetscFunctionBegin;
346: dm->coloringtype = ctype;
347: PetscFunctionReturn(PETSC_SUCCESS);
348: }
350: /*@
351: DMGetISColoringType - Gets the type of coloring, `IS_COLORING_GLOBAL` or `IS_COLORING_LOCAL` that is created by the `DM`
353: Logically Collective
355: Input Parameter:
356: . dm - the `DM` context
358: Output Parameter:
359: . ctype - the matrix type
361: Options Database Key:
362: . -dm_is_coloring_type - global or local
364: Level: intermediate
366: .seealso: [](ch_dmbase), `DM`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `MatType`, `DMGetMatType()`,
367: `ISColoringType`, `IS_COLORING_GLOBAL`, `IS_COLORING_LOCAL`
368: @*/
369: PetscErrorCode DMGetISColoringType(DM dm, ISColoringType *ctype)
370: {
371: PetscFunctionBegin;
373: *ctype = dm->coloringtype;
374: PetscFunctionReturn(PETSC_SUCCESS);
375: }
377: /*@
378: DMSetMatType - Sets the type of matrix created with `DMCreateMatrix()`
380: Logically Collective
382: Input Parameters:
383: + dm - the `DM` context
384: - ctype - the matrix type, for example `MATMPIAIJ`
386: Options Database Key:
387: . -dm_mat_type ctype - the type of the matrix to create, for example mpiaij
389: Level: intermediate
391: .seealso: [](ch_dmbase), `DM`, `MatType`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `DMGetMatType()`, `DMCreateGlobalVector()`, `DMCreateLocalVector()`
392: @*/
393: PetscErrorCode DMSetMatType(DM dm, MatType ctype)
394: {
395: char *tmp;
397: PetscFunctionBegin;
399: PetscAssertPointer(ctype, 2);
400: tmp = (char *)dm->mattype;
401: PetscCall(PetscStrallocpy(ctype, (char **)&dm->mattype));
402: PetscCall(PetscFree(tmp));
403: PetscFunctionReturn(PETSC_SUCCESS);
404: }
406: /*@
407: DMGetMatType - Gets the type of matrix that would be created with `DMCreateMatrix()`
409: Logically Collective
411: Input Parameter:
412: . dm - the `DM` context
414: Output Parameter:
415: . ctype - the matrix type
417: Level: intermediate
419: .seealso: [](ch_dmbase), `DM`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixPreallocateOnly()`, `MatType`, `DMSetMatType()`
420: @*/
421: PetscErrorCode DMGetMatType(DM dm, MatType *ctype)
422: {
423: PetscFunctionBegin;
425: *ctype = dm->mattype;
426: PetscFunctionReturn(PETSC_SUCCESS);
427: }
429: /*@
430: MatGetDM - Gets the `DM` defining the data layout of the matrix
432: Not Collective
434: Input Parameter:
435: . A - The `Mat`
437: Output Parameter:
438: . dm - The `DM`
440: Level: intermediate
442: Note:
443: A matrix may not have a `DM` associated with it
445: Developer Note:
446: Since the `Mat` class doesn't know about the `DM` class the `DM` object is associated with the `Mat` through a `PetscObjectCompose()` operation
448: .seealso: [](ch_dmbase), `DM`, `MatSetDM()`, `DMCreateMatrix()`, `DMSetMatType()`
449: @*/
450: PetscErrorCode MatGetDM(Mat A, DM *dm)
451: {
452: PetscFunctionBegin;
454: PetscAssertPointer(dm, 2);
455: PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_dm", (PetscObject *)dm));
456: PetscFunctionReturn(PETSC_SUCCESS);
457: }
459: /*@
460: MatSetDM - Sets the `DM` defining the data layout of the matrix
462: Not Collective
464: Input Parameters:
465: + A - The `Mat`
466: - dm - The `DM`
468: Level: developer
470: Note:
471: This is rarely used in practice, rather `DMCreateMatrix()` is used to create a matrix associated with a particular `DM`
473: Developer Note:
474: Since the `Mat` class doesn't know about the `DM` class the `DM` object is associated with
475: the `Mat` through a `PetscObjectCompose()` operation
477: .seealso: [](ch_dmbase), `DM`, `MatGetDM()`, `DMCreateMatrix()`, `DMSetMatType()`
478: @*/
479: PetscErrorCode MatSetDM(Mat A, DM dm)
480: {
481: PetscFunctionBegin;
484: PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_dm", (PetscObject)dm));
485: PetscFunctionReturn(PETSC_SUCCESS);
486: }
488: /*@
489: DMSetOptionsPrefix - Sets the prefix prepended to all option names when searching through the options database
491: Logically Collective
493: Input Parameters:
494: + dm - the `DM` context
495: - prefix - the prefix to prepend
497: Level: advanced
499: Note:
500: A hyphen (-) must NOT be given at the beginning of the prefix name.
501: The first character of all runtime options is AUTOMATICALLY the hyphen.
503: .seealso: [](ch_dmbase), `DM`, `PetscObjectSetOptionsPrefix()`, `DMSetFromOptions()`
504: @*/
505: PetscErrorCode DMSetOptionsPrefix(DM dm, const char prefix[])
506: {
507: PetscFunctionBegin;
509: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dm, prefix));
510: if (dm->sf) PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dm->sf, prefix));
511: if (dm->sectionSF) PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dm->sectionSF, prefix));
512: PetscFunctionReturn(PETSC_SUCCESS);
513: }
515: /*@
516: DMAppendOptionsPrefix - Appends an additional string to an already existing prefix used for searching for
517: `DM` options in the options database.
519: Logically Collective
521: Input Parameters:
522: + dm - the `DM` context
523: - prefix - the string to append to the current prefix
525: Level: advanced
527: Note:
528: If the `DM` does not currently have an options prefix then this value is used alone as the prefix as if `DMSetOptionsPrefix()` had been called.
529: A hyphen (-) must NOT be given at the beginning of the prefix name.
530: The first character of all runtime options is AUTOMATICALLY the hyphen.
532: .seealso: [](ch_dmbase), `DM`, `DMSetOptionsPrefix()`, `DMGetOptionsPrefix()`, `PetscObjectAppendOptionsPrefix()`, `DMSetFromOptions()`
533: @*/
534: PetscErrorCode DMAppendOptionsPrefix(DM dm, const char prefix[])
535: {
536: PetscFunctionBegin;
538: PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)dm, prefix));
539: PetscFunctionReturn(PETSC_SUCCESS);
540: }
542: /*@
543: DMGetOptionsPrefix - Gets the prefix used for searching for all
544: DM options in the options database.
546: Not Collective
548: Input Parameter:
549: . dm - the `DM` context
551: Output Parameter:
552: . prefix - pointer to the prefix string used is returned
554: Level: advanced
556: .seealso: [](ch_dmbase), `DM`, `DMSetOptionsPrefix()`, `DMAppendOptionsPrefix()`, `DMSetFromOptions()`
557: @*/
558: PetscErrorCode DMGetOptionsPrefix(DM dm, const char *prefix[])
559: {
560: PetscFunctionBegin;
562: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)dm, prefix));
563: PetscFunctionReturn(PETSC_SUCCESS);
564: }
566: static PetscErrorCode DMCountNonCyclicReferences_Internal(DM dm, PetscBool recurseCoarse, PetscBool recurseFine, PetscInt *ncrefct)
567: {
568: PetscInt refct = ((PetscObject)dm)->refct;
570: PetscFunctionBegin;
571: *ncrefct = 0;
572: if (dm->coarseMesh && dm->coarseMesh->fineMesh == dm) {
573: refct--;
574: if (recurseCoarse) {
575: PetscInt coarseCount;
577: PetscCall(DMCountNonCyclicReferences_Internal(dm->coarseMesh, PETSC_TRUE, PETSC_FALSE, &coarseCount));
578: refct += coarseCount;
579: }
580: }
581: if (dm->fineMesh && dm->fineMesh->coarseMesh == dm) {
582: refct--;
583: if (recurseFine) {
584: PetscInt fineCount;
586: PetscCall(DMCountNonCyclicReferences_Internal(dm->fineMesh, PETSC_FALSE, PETSC_TRUE, &fineCount));
587: refct += fineCount;
588: }
589: }
590: *ncrefct = refct;
591: PetscFunctionReturn(PETSC_SUCCESS);
592: }
594: /* Generic wrapper for DMCountNonCyclicReferences_Internal() */
595: PetscErrorCode DMCountNonCyclicReferences(PetscObject dm, PetscInt *ncrefct)
596: {
597: PetscFunctionBegin;
598: PetscCall(DMCountNonCyclicReferences_Internal((DM)dm, PETSC_TRUE, PETSC_TRUE, ncrefct));
599: PetscFunctionReturn(PETSC_SUCCESS);
600: }
602: PetscErrorCode DMDestroyLabelLinkList_Internal(DM dm)
603: {
604: DMLabelLink next = dm->labels;
606: PetscFunctionBegin;
607: /* destroy the labels */
608: while (next) {
609: DMLabelLink tmp = next->next;
611: if (next->label == dm->depthLabel) dm->depthLabel = NULL;
612: if (next->label == dm->celltypeLabel) dm->celltypeLabel = NULL;
613: PetscCall(DMLabelDestroy(&next->label));
614: PetscCall(PetscFree(next));
615: next = tmp;
616: }
617: dm->labels = NULL;
618: PetscFunctionReturn(PETSC_SUCCESS);
619: }
621: static PetscErrorCode DMDestroyCoordinates_Private(DMCoordinates *c)
622: {
623: PetscFunctionBegin;
624: c->dim = PETSC_DEFAULT;
625: PetscCall(DMDestroy(&c->dm));
626: PetscCall(VecDestroy(&c->x));
627: PetscCall(VecDestroy(&c->xl));
628: PetscCall(DMFieldDestroy(&c->field));
629: PetscFunctionReturn(PETSC_SUCCESS);
630: }
632: /*@
633: DMDestroy - Destroys a `DM`.
635: Collective
637: Input Parameter:
638: . dm - the `DM` object to destroy
640: Level: developer
642: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMType`, `DMSetType()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`
643: @*/
644: PetscErrorCode DMDestroy(DM *dm)
645: {
646: PetscInt cnt;
648: PetscFunctionBegin;
649: if (!*dm) PetscFunctionReturn(PETSC_SUCCESS);
652: /* count all non-cyclic references in the doubly-linked list of coarse<->fine meshes */
653: PetscCall(DMCountNonCyclicReferences_Internal(*dm, PETSC_TRUE, PETSC_TRUE, &cnt));
654: --((PetscObject)*dm)->refct;
655: if (--cnt > 0) {
656: *dm = NULL;
657: PetscFunctionReturn(PETSC_SUCCESS);
658: }
659: if (((PetscObject)*dm)->refct < 0) PetscFunctionReturn(PETSC_SUCCESS);
660: ((PetscObject)*dm)->refct = 0;
662: PetscCall(DMClearGlobalVectors(*dm));
663: PetscCall(DMClearLocalVectors(*dm));
664: PetscCall(DMClearNamedGlobalVectors(*dm));
665: PetscCall(DMClearNamedLocalVectors(*dm));
667: /* Destroy the list of hooks */
668: {
669: DMCoarsenHookLink link, next;
670: for (link = (*dm)->coarsenhook; link; link = next) {
671: next = link->next;
672: PetscCall(PetscFree(link));
673: }
674: (*dm)->coarsenhook = NULL;
675: }
676: {
677: DMRefineHookLink link, next;
678: for (link = (*dm)->refinehook; link; link = next) {
679: next = link->next;
680: PetscCall(PetscFree(link));
681: }
682: (*dm)->refinehook = NULL;
683: }
684: {
685: DMSubDomainHookLink link, next;
686: for (link = (*dm)->subdomainhook; link; link = next) {
687: next = link->next;
688: PetscCall(PetscFree(link));
689: }
690: (*dm)->subdomainhook = NULL;
691: }
692: {
693: DMGlobalToLocalHookLink link, next;
694: for (link = (*dm)->gtolhook; link; link = next) {
695: next = link->next;
696: PetscCall(PetscFree(link));
697: }
698: (*dm)->gtolhook = NULL;
699: }
700: {
701: DMLocalToGlobalHookLink link, next;
702: for (link = (*dm)->ltoghook; link; link = next) {
703: next = link->next;
704: PetscCall(PetscFree(link));
705: }
706: (*dm)->ltoghook = NULL;
707: }
708: /* Destroy the work arrays */
709: {
710: DMWorkLink link, next;
711: PetscCheck(!(*dm)->workout, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Work array still checked out %p %p", (void *)(*dm)->workout, (*dm)->workout->mem);
712: for (link = (*dm)->workin; link; link = next) {
713: next = link->next;
714: PetscCall(PetscFree(link->mem));
715: PetscCall(PetscFree(link));
716: }
717: (*dm)->workin = NULL;
718: }
719: /* destroy the labels */
720: PetscCall(DMDestroyLabelLinkList_Internal(*dm));
721: /* destroy the fields */
722: PetscCall(DMClearFields(*dm));
723: /* destroy the boundaries */
724: {
725: DMBoundary next = (*dm)->boundary;
726: while (next) {
727: DMBoundary b = next;
729: next = b->next;
730: PetscCall(PetscFree(b));
731: }
732: }
734: PetscCall(PetscObjectDestroy(&(*dm)->dmksp));
735: PetscCall(PetscObjectDestroy(&(*dm)->dmsnes));
736: PetscCall(PetscObjectDestroy(&(*dm)->dmts));
738: if ((*dm)->ctx && (*dm)->ctxdestroy) PetscCall((*(*dm)->ctxdestroy)(&(*dm)->ctx));
739: PetscCall(MatFDColoringDestroy(&(*dm)->fd));
740: PetscCall(ISLocalToGlobalMappingDestroy(&(*dm)->ltogmap));
741: PetscCall(PetscFree((*dm)->vectype));
742: PetscCall(PetscFree((*dm)->mattype));
744: PetscCall(PetscSectionDestroy(&(*dm)->localSection));
745: PetscCall(PetscSectionDestroy(&(*dm)->globalSection));
746: PetscCall(PetscFree((*dm)->reorderSectionType));
747: PetscCall(PetscLayoutDestroy(&(*dm)->map));
748: PetscCall(PetscSectionDestroy(&(*dm)->defaultConstraint.section));
749: PetscCall(MatDestroy(&(*dm)->defaultConstraint.mat));
750: PetscCall(PetscSFDestroy(&(*dm)->sf));
751: PetscCall(PetscSFDestroy(&(*dm)->sectionSF));
752: if ((*dm)->sfNatural) PetscCall(PetscSFDestroy(&(*dm)->sfNatural));
753: PetscCall(PetscObjectDereference((PetscObject)(*dm)->sfMigration));
754: PetscCall(DMClearAuxiliaryVec(*dm));
755: PetscCall(PetscHMapAuxDestroy(&(*dm)->auxData));
756: if ((*dm)->coarseMesh && (*dm)->coarseMesh->fineMesh == *dm) PetscCall(DMSetFineDM((*dm)->coarseMesh, NULL));
758: PetscCall(DMDestroy(&(*dm)->coarseMesh));
759: if ((*dm)->fineMesh && (*dm)->fineMesh->coarseMesh == *dm) PetscCall(DMSetCoarseDM((*dm)->fineMesh, NULL));
760: PetscCall(DMDestroy(&(*dm)->fineMesh));
761: PetscCall(PetscFree((*dm)->Lstart));
762: PetscCall(PetscFree((*dm)->L));
763: PetscCall(PetscFree((*dm)->maxCell));
764: PetscCall(DMDestroyCoordinates_Private(&(*dm)->coordinates[0]));
765: PetscCall(DMDestroyCoordinates_Private(&(*dm)->coordinates[1]));
766: if ((*dm)->transformDestroy) PetscCall((*(*dm)->transformDestroy)(*dm, (*dm)->transformCtx));
767: PetscCall(DMDestroy(&(*dm)->transformDM));
768: PetscCall(VecDestroy(&(*dm)->transform));
769: for (PetscInt i = 0; i < (*dm)->periodic.num_affines; i++) {
770: PetscCall(VecScatterDestroy(&(*dm)->periodic.affine_to_local[i]));
771: PetscCall(VecDestroy(&(*dm)->periodic.affine[i]));
772: }
773: if ((*dm)->periodic.num_affines > 0) PetscCall(PetscFree2((*dm)->periodic.affine_to_local, (*dm)->periodic.affine));
775: PetscCall(DMClearDS(*dm));
776: PetscCall(DMDestroy(&(*dm)->dmBC));
777: /* if memory was published with SAWs then destroy it */
778: PetscCall(PetscObjectSAWsViewOff((PetscObject)*dm));
780: PetscTryTypeMethod(*dm, destroy);
781: PetscCall(DMMonitorCancel(*dm));
782: PetscCall(DMCeedDestroy(&(*dm)->dmceed));
783: #ifdef PETSC_HAVE_LIBCEED
784: PetscCallCEED(CeedElemRestrictionDestroy(&(*dm)->ceedERestrict));
785: PetscCallCEED(CeedDestroy(&(*dm)->ceed));
786: #endif
787: /* We do not destroy (*dm)->data here so that we can reference count backend objects */
788: PetscCall(PetscHeaderDestroy(dm));
789: PetscFunctionReturn(PETSC_SUCCESS);
790: }
792: /*@
793: DMSetUp - sets up the data structures inside a `DM` object
795: Collective
797: Input Parameter:
798: . dm - the `DM` object to setup
800: Level: intermediate
802: Note:
803: This is usually called after various parameter setting operations and `DMSetFromOptions()` are called on the `DM`
805: .seealso: [](ch_dmbase), `DM`, `DMCreate()`, `DMSetType()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`
806: @*/
807: PetscErrorCode DMSetUp(DM dm)
808: {
809: PetscFunctionBegin;
811: if (dm->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
812: PetscTryTypeMethod(dm, setup);
813: dm->setupcalled = PETSC_TRUE;
814: PetscFunctionReturn(PETSC_SUCCESS);
815: }
817: /*@
818: DMSetFromOptions - sets parameters in a `DM` from the options database
820: Collective
822: Input Parameter:
823: . dm - the `DM` object to set options for
825: Options Database Keys:
826: + -dm_preallocate_only - Only preallocate the matrix for `DMCreateMatrix()` and `DMCreateMassMatrix()`, but do not fill it with zeros
827: . -dm_vec_type <type> - type of vector to create inside `DM`
828: . -dm_mat_type <type> - type of matrix to create inside `DM`
829: . -dm_is_coloring_type - <global or local>
830: . -dm_bind_below <n> - bind (force execution on CPU) for `Vec` and `Mat` objects with local size (number of vector entries or matrix rows) below n; currently only supported for `DMDA`
831: . -dm_plex_option_phases <ph0_, ph1_, ...> - List of prefixes for option processing phases
832: . -dm_plex_filename <str> - File containing a mesh
833: . -dm_plex_boundary_filename <str> - File containing a mesh boundary
834: . -dm_plex_name <str> - Name of the mesh in the file
835: . -dm_plex_shape <shape> - The domain shape, such as `BOX`, `SPHERE`, etc.
836: . -dm_plex_cell <ct> - Cell shape
837: . -dm_plex_reference_cell_domain <bool> - Use a reference cell domain
838: . -dm_plex_dim <dim> - Set the topological dimension
839: . -dm_plex_simplex <bool> - `PETSC_TRUE` for simplex elements, `PETSC_FALSE` for tensor elements
840: . -dm_plex_interpolate <bool> - `PETSC_TRUE` turns on topological interpolation (creating edges and faces)
841: . -dm_plex_orient <bool> - `PETSC_TRUE` turns on topological orientation (flipping edges and faces)
842: . -dm_plex_scale <sc> - Scale factor for mesh coordinates
843: . -dm_coord_remap <bool> - Map coordinates using a function
844: . -dm_plex_coordinate_dim <dim> - Change the coordinate dimension of a mesh (usually given with cdm_ prefix)
845: . -dm_coord_map <mapname> - Select a builtin coordinate map
846: . -dm_coord_map_params <p0,p1,p2,...> - Set coordinate mapping parameters
847: . -dm_plex_box_faces <m,n,p> - Number of faces along each dimension
848: . -dm_plex_box_lower <x,y,z> - Specify lower-left-bottom coordinates for the box
849: . -dm_plex_box_upper <x,y,z> - Specify upper-right-top coordinates for the box
850: . -dm_plex_box_bd <bx,by,bz> - Specify the `DMBoundaryType` for each direction
851: . -dm_plex_sphere_radius <r> - The sphere radius
852: . -dm_plex_ball_radius <r> - Radius of the ball
853: . -dm_plex_cylinder_bd <bz> - Boundary type in the z direction
854: . -dm_plex_cylinder_num_wedges <n> - Number of wedges around the cylinder
855: . -dm_plex_reorder <order> - Reorder the mesh using the specified algorithm
856: . -dm_refine_pre <n> - The number of refinements before distribution
857: . -dm_refine_uniform_pre <bool> - Flag for uniform refinement before distribution
858: . -dm_refine_volume_limit_pre <v> - The maximum cell volume after refinement before distribution
859: . -dm_refine <n> - The number of refinements after distribution
860: . -dm_extrude <l> - Activate extrusion and specify the number of layers to extrude
861: . -dm_plex_save_transform <bool> - Save the `DMPlexTransform` that produced this mesh
862: . -dm_plex_transform_extrude_thickness <t> - The total thickness of extruded layers
863: . -dm_plex_transform_extrude_use_tensor <bool> - Use tensor cells when extruding
864: . -dm_plex_transform_extrude_symmetric <bool> - Extrude layers symmetrically about the surface
865: . -dm_plex_transform_extrude_normal <n0,...,nd> - Specify the extrusion direction
866: . -dm_plex_transform_extrude_thicknesses <t0,...,tl> - Specify thickness of each layer
867: . -dm_plex_create_fv_ghost_cells - Flag to create finite volume ghost cells on the boundary
868: . -dm_plex_fv_ghost_cells_label <name> - Label name for ghost cells boundary
869: . -dm_distribute <bool> - Flag to redistribute a mesh among processes
870: . -dm_distribute_overlap <n> - The size of the overlap halo
871: . -dm_plex_adj_cone <bool> - Set adjacency direction
872: . -dm_plex_adj_closure <bool> - Set adjacency size
873: . -dm_plex_use_ceed <bool> - Use LibCEED as the FEM backend
874: . -dm_plex_check_symmetry - Check that the adjacency information in the mesh is symmetric - `DMPlexCheckSymmetry()`
875: . -dm_plex_check_skeleton - Check that each cell has the correct number of vertices (only for homogeneous simplex or tensor meshes) - `DMPlexCheckSkeleton()`
876: . -dm_plex_check_faces - Check that the faces of each cell give a vertex order this is consistent with what we expect from the cell type - `DMPlexCheckFaces()`
877: . -dm_plex_check_geometry - Check that cells have positive volume - `DMPlexCheckGeometry()`
878: . -dm_plex_check_pointsf - Check some necessary conditions for `PointSF` - `DMPlexCheckPointSF()`
879: . -dm_plex_check_interface_cones - Check points on inter-partition interfaces have conforming order of cone points - `DMPlexCheckInterfaceCones()`
880: - -dm_plex_check_all - Perform all the checks above
882: Level: intermediate
884: Note:
885: For some `DMType` such as `DMDA` this cannot be called after `DMSetUp()` has been called.
887: .seealso: [](ch_dmbase), `DM`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`,
888: `DMPlexCheckSymmetry()`, `DMPlexCheckSkeleton()`, `DMPlexCheckFaces()`, `DMPlexCheckGeometry()`, `DMPlexCheckPointSF()`, `DMPlexCheckInterfaceCones()`,
889: `DMSetOptionsPrefix()`, `DMType`, `DMPLEX`, `DMDA`, `DMSetUp()`
890: @*/
891: PetscErrorCode DMSetFromOptions(DM dm)
892: {
893: char typeName[256];
894: PetscBool flg;
896: PetscFunctionBegin;
898: dm->setfromoptionscalled = PETSC_TRUE;
899: if (dm->sf) PetscCall(PetscSFSetFromOptions(dm->sf));
900: if (dm->sectionSF) PetscCall(PetscSFSetFromOptions(dm->sectionSF));
901: if (dm->coordinates[0].dm) PetscCall(DMSetFromOptions(dm->coordinates[0].dm));
902: PetscObjectOptionsBegin((PetscObject)dm);
903: PetscCall(PetscOptionsBool("-dm_preallocate_only", "only preallocate matrix, but do not set column indices", "DMSetMatrixPreallocateOnly", dm->prealloc_only, &dm->prealloc_only, NULL));
904: PetscCall(PetscOptionsFList("-dm_vec_type", "Vector type used for created vectors", "DMSetVecType", VecList, dm->vectype, typeName, 256, &flg));
905: if (flg) PetscCall(DMSetVecType(dm, typeName));
906: PetscCall(PetscOptionsFList("-dm_mat_type", "Matrix type used for created matrices", "DMSetMatType", MatList, dm->mattype ? dm->mattype : typeName, typeName, sizeof(typeName), &flg));
907: if (flg) PetscCall(DMSetMatType(dm, typeName));
908: PetscCall(PetscOptionsEnum("-dm_blocking_type", "Topological point or field node blocking", "DMSetBlockingType", DMBlockingTypes, (PetscEnum)dm->blocking_type, (PetscEnum *)&dm->blocking_type, NULL));
909: PetscCall(PetscOptionsEnum("-dm_is_coloring_type", "Global or local coloring of Jacobian", "DMSetISColoringType", ISColoringTypes, (PetscEnum)dm->coloringtype, (PetscEnum *)&dm->coloringtype, NULL));
910: PetscCall(PetscOptionsInt("-dm_bind_below", "Set the size threshold (in entries) below which the Vec is bound to the CPU", "VecBindToCPU", dm->bind_below, &dm->bind_below, &flg));
911: PetscCall(PetscOptionsBool("-dm_ignore_perm_output", "Ignore the local section permutation on output", "DMGetOutputDM", dm->ignorePermOutput, &dm->ignorePermOutput, NULL));
912: PetscTryTypeMethod(dm, setfromoptions, PetscOptionsObject);
913: /* process any options handlers added with PetscObjectAddOptionsHandler() */
914: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)dm, PetscOptionsObject));
915: PetscOptionsEnd();
916: PetscFunctionReturn(PETSC_SUCCESS);
917: }
919: /*@
920: DMViewFromOptions - View a `DM` in a particular way based on a request in the options database
922: Collective
924: Input Parameters:
925: + dm - the `DM` object
926: . obj - optional object that provides the prefix for the options database (if `NULL` then the prefix in `obj` is used)
927: - name - option string that is used to activate viewing
929: Level: intermediate
931: Note:
932: See `PetscObjectViewFromOptions()` for a list of values that can be provided in the options database to determine how the `DM` is viewed
934: .seealso: [](ch_dmbase), `DM`, `DMView()`, `PetscObjectViewFromOptions()`, `DMCreate()`
935: @*/
936: PetscErrorCode DMViewFromOptions(DM dm, PeOp PetscObject obj, const char name[])
937: {
938: PetscFunctionBegin;
940: PetscCall(PetscObjectViewFromOptions((PetscObject)dm, obj, name));
941: PetscFunctionReturn(PETSC_SUCCESS);
942: }
944: /*@
945: DMView - Views a `DM`. Depending on the `PetscViewer` and its `PetscViewerFormat` it may print some ASCII information about the `DM` to the screen or a file or
946: save the `DM` in a binary file to be loaded later or create a visualization of the `DM`
948: Collective
950: Input Parameters:
951: + dm - the `DM` object to view
952: - v - the viewer
954: Options Database Keys:
955: + -view_pyvista_warp <f> - Warps the mesh by the active scalar with factor f
956: - -view_pyvista_clip <xl,xu,yl,yu,zl,zu> - Defines the clipping box
958: Level: beginner
960: Notes:
962: `PetscViewer` = `PETSCVIEWERHDF5` i.e. HDF5 format can be used with `PETSC_VIEWER_HDF5_PETSC` as the `PetscViewerFormat` to save multiple `DMPLEX`
963: meshes in a single HDF5 file. This in turn requires one to name the `DMPLEX` object with `PetscObjectSetName()`
964: before saving it with `DMView()` and before loading it with `DMLoad()` for identification of the mesh object.
966: `PetscViewer` = `PETSCVIEWEREXODUSII` i.e. ExodusII format assumes that element blocks (mapped to "Cell sets" labels)
967: consists of sequentially numbered cells.
969: If `dm` has been distributed, only the part of the `DM` on MPI rank 0 (including "ghost" cells and vertices) will be written.
971: Only TRI, TET, QUAD, and HEX cells are supported in ExodusII.
973: `DMPLEX` only represents geometry while most post-processing software expect that a mesh also provides information on the discretization space. This function assumes that the file represents Lagrange finite elements of order 1 or 2.
974: The order of the mesh shall be set using `PetscViewerExodusIISetOrder()`
976: Variable names can be set and queried using `PetscViewerExodusII[Set/Get][Nodal/Zonal]VariableNames[s]`.
978: .seealso: [](ch_dmbase), `DM`, `PetscViewer`, `PetscViewerFormat`, `PetscViewerSetFormat()`, `DMDestroy()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMLoad()`, `PetscObjectSetName()`
979: @*/
980: PetscErrorCode DMView(DM dm, PetscViewer v)
981: {
982: PetscBool isbinary;
983: PetscMPIInt size;
984: PetscViewerFormat format;
986: PetscFunctionBegin;
988: if (!v) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)dm), &v));
990: /* Ideally, we would like to have this test on.
991: However, it currently breaks socket viz via GLVis.
992: During DMView(parallel_mesh,glvis_viewer), each
993: process opens a sequential ASCII socket to visualize
994: the local mesh, and PetscObjectView(dm,local_socket)
995: is internally called inside VecView_GLVis, incurring
996: in an error here */
997: /* PetscCheckSameComm(dm,1,v,2); */
998: PetscCall(PetscViewerCheckWritable(v));
1000: PetscCall(PetscLogEventBegin(DM_View, v, 0, 0, 0));
1001: PetscCall(PetscViewerGetFormat(v, &format));
1002: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)dm), &size));
1003: if (size == 1 && format == PETSC_VIEWER_LOAD_BALANCE) PetscFunctionReturn(PETSC_SUCCESS);
1004: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)dm, v));
1005: PetscCall(PetscObjectTypeCompare((PetscObject)v, PETSCVIEWERBINARY, &isbinary));
1006: if (isbinary) {
1007: PetscInt classid = DM_FILE_CLASSID;
1008: char type[256];
1010: PetscCall(PetscViewerBinaryWrite(v, &classid, 1, PETSC_INT));
1011: PetscCall(PetscStrncpy(type, ((PetscObject)dm)->type_name, sizeof(type)));
1012: PetscCall(PetscViewerBinaryWrite(v, type, 256, PETSC_CHAR));
1013: }
1014: PetscTryTypeMethod(dm, view, v);
1015: PetscCall(PetscLogEventEnd(DM_View, v, 0, 0, 0));
1016: PetscFunctionReturn(PETSC_SUCCESS);
1017: }
1019: /*@
1020: DMCreateGlobalVector - Creates a global vector from a `DM` object. A global vector is a parallel vector that has no duplicate values shared between MPI ranks,
1021: that is it has no ghost locations.
1023: Collective
1025: Input Parameter:
1026: . dm - the `DM` object
1028: Output Parameter:
1029: . vec - the global vector
1031: Level: beginner
1033: .seealso: [](ch_dmbase), `DM`, `Vec`, `DMCreateLocalVector()`, `DMGetGlobalVector()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`,
1034: `DMGlobalToLocalBegin()`, `DMGlobalToLocalEnd()`
1035: @*/
1036: PetscErrorCode DMCreateGlobalVector(DM dm, Vec *vec)
1037: {
1038: PetscFunctionBegin;
1040: PetscAssertPointer(vec, 2);
1041: PetscUseTypeMethod(dm, createglobalvector, vec);
1042: if (PetscDefined(USE_DEBUG)) {
1043: DM vdm;
1045: PetscCall(VecGetDM(*vec, &vdm));
1046: PetscCheck(vdm, PETSC_COMM_SELF, PETSC_ERR_PLIB, "DM type '%s' did not attach the DM to the vector", ((PetscObject)dm)->type_name);
1047: }
1048: PetscFunctionReturn(PETSC_SUCCESS);
1049: }
1051: /*@
1052: DMCreateLocalVector - Creates a local vector from a `DM` object.
1054: Not Collective
1056: Input Parameter:
1057: . dm - the `DM` object
1059: Output Parameter:
1060: . vec - the local vector
1062: Level: beginner
1064: Note:
1065: A local vector usually has ghost locations that contain values that are owned by different MPI ranks. A global vector has no ghost locations.
1067: .seealso: [](ch_dmbase), `DM`, `Vec`, `DMCreateGlobalVector()`, `DMGetLocalVector()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`
1068: `DMGlobalToLocalBegin()`, `DMGlobalToLocalEnd()`
1069: @*/
1070: PetscErrorCode DMCreateLocalVector(DM dm, Vec *vec)
1071: {
1072: PetscFunctionBegin;
1074: PetscAssertPointer(vec, 2);
1075: PetscUseTypeMethod(dm, createlocalvector, vec);
1076: if (PetscDefined(USE_DEBUG)) {
1077: DM vdm;
1079: PetscCall(VecGetDM(*vec, &vdm));
1080: PetscCheck(vdm, PETSC_COMM_SELF, PETSC_ERR_LIB, "DM type '%s' did not attach the DM to the vector", ((PetscObject)dm)->type_name);
1081: }
1082: PetscFunctionReturn(PETSC_SUCCESS);
1083: }
1085: /*@
1086: DMGetLocalToGlobalMapping - Accesses the local-to-global mapping in a `DM`.
1088: Collective
1090: Input Parameter:
1091: . dm - the `DM` that provides the mapping
1093: Output Parameter:
1094: . ltog - the mapping
1096: Level: advanced
1098: Notes:
1099: The global to local mapping allows one to set values into the global vector or matrix using `VecSetValuesLocal()` and `MatSetValuesLocal()`
1101: Vectors obtained with `DMCreateGlobalVector()` and matrices obtained with `DMCreateMatrix()` already contain the global mapping so you do
1102: need to use this function with those objects.
1104: This mapping can then be used by `VecSetLocalToGlobalMapping()` or `MatSetLocalToGlobalMapping()`.
1106: .seealso: [](ch_dmbase), `DM`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`, `VecSetLocalToGlobalMapping()`, `MatSetLocalToGlobalMapping()`,
1107: `DMCreateMatrix()`
1108: @*/
1109: PetscErrorCode DMGetLocalToGlobalMapping(DM dm, ISLocalToGlobalMapping *ltog)
1110: {
1111: PetscInt bs = -1, bsLocal[2], bsMinMax[2];
1113: PetscFunctionBegin;
1115: PetscAssertPointer(ltog, 2);
1116: if (!dm->ltogmap) {
1117: PetscSection section, sectionGlobal;
1119: PetscCall(DMGetLocalSection(dm, §ion));
1120: if (section) {
1121: const PetscInt *cdofs;
1122: PetscInt *ltog;
1123: PetscInt pStart, pEnd, n, p, k, l;
1125: PetscCall(DMGetGlobalSection(dm, §ionGlobal));
1126: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
1127: PetscCall(PetscSectionGetStorageSize(section, &n));
1128: PetscCall(PetscMalloc1(n, <og)); /* We want the local+overlap size */
1129: for (p = pStart, l = 0; p < pEnd; ++p) {
1130: PetscInt bdof, cdof, dof, off, c, cind;
1132: /* Should probably use constrained dofs */
1133: PetscCall(PetscSectionGetDof(section, p, &dof));
1134: PetscCall(PetscSectionGetConstraintDof(section, p, &cdof));
1135: PetscCall(PetscSectionGetConstraintIndices(section, p, &cdofs));
1136: PetscCall(PetscSectionGetOffset(sectionGlobal, p, &off));
1137: /* If you have dofs, and constraints, and they are unequal, we set the blocksize to 1 */
1138: bdof = cdof && (dof - cdof) ? 1 : dof;
1139: if (dof) bs = bs < 0 ? bdof : PetscGCD(bs, bdof);
1141: for (c = 0, cind = 0; c < dof; ++c, ++l) {
1142: if (cind < cdof && c == cdofs[cind]) {
1143: ltog[l] = off < 0 ? off - c : -(off + c + 1);
1144: cind++;
1145: } else {
1146: ltog[l] = (off < 0 ? -(off + 1) : off) + c - cind;
1147: }
1148: }
1149: }
1150: /* Must have same blocksize on all procs (some might have no points) */
1151: bsLocal[0] = bs < 0 ? PETSC_INT_MAX : bs;
1152: bsLocal[1] = bs;
1153: PetscCall(PetscGlobalMinMaxInt(PetscObjectComm((PetscObject)dm), bsLocal, bsMinMax));
1154: if (bsMinMax[0] != bsMinMax[1]) {
1155: bs = 1;
1156: } else {
1157: bs = bsMinMax[0];
1158: }
1159: bs = bs < 0 ? 1 : bs;
1160: /* Must reduce indices by blocksize */
1161: if (bs > 1) {
1162: for (l = 0, k = 0; l < n; l += bs, ++k) {
1163: // Integer division of negative values truncates toward zero(!), not toward negative infinity
1164: ltog[k] = ltog[l] >= 0 ? ltog[l] / bs : -(-(ltog[l] + 1) / bs + 1);
1165: }
1166: n /= bs;
1167: }
1168: PetscCall(ISLocalToGlobalMappingCreate(PetscObjectComm((PetscObject)dm), bs, n, ltog, PETSC_OWN_POINTER, &dm->ltogmap));
1169: } else PetscUseTypeMethod(dm, getlocaltoglobalmapping);
1170: }
1171: *ltog = dm->ltogmap;
1172: PetscFunctionReturn(PETSC_SUCCESS);
1173: }
1175: /*@
1176: DMGetBlockSize - Gets the inherent block size associated with a `DM`
1178: Not Collective
1180: Input Parameter:
1181: . dm - the `DM` with block structure
1183: Output Parameter:
1184: . bs - the block size, 1 implies no exploitable block structure
1186: Level: intermediate
1188: Notes:
1189: This might be the number of degrees of freedom at each grid point for a structured grid.
1191: Complex `DM` that represent multiphysics or staggered grids or mixed-methods do not generally have a single inherent block size, but
1192: rather different locations in the vectors may have a different block size.
1194: .seealso: [](ch_dmbase), `DM`, `ISCreateBlock()`, `VecSetBlockSize()`, `MatSetBlockSize()`, `DMGetLocalToGlobalMapping()`
1195: @*/
1196: PetscErrorCode DMGetBlockSize(DM dm, PetscInt *bs)
1197: {
1198: PetscFunctionBegin;
1200: PetscAssertPointer(bs, 2);
1201: PetscCheck(dm->bs >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "DM does not have enough information to provide a block size yet");
1202: *bs = dm->bs;
1203: PetscFunctionReturn(PETSC_SUCCESS);
1204: }
1206: /*@
1207: DMCreateInterpolation - Gets the interpolation matrix between two `DM` objects. The resulting matrix map degrees of freedom in the vector obtained by
1208: `DMCreateGlobalVector()` on the coarse `DM` to similar vectors on the fine grid `DM`.
1210: Collective
1212: Input Parameters:
1213: + dmc - the `DM` object
1214: - dmf - the second, finer `DM` object
1216: Output Parameters:
1217: + mat - the interpolation
1218: - vec - the scaling (optional, pass `NULL` if not needed), see `DMCreateInterpolationScale()`
1220: Level: developer
1222: Notes:
1223: For `DMDA` objects this only works for "uniform refinement", that is the refined mesh was obtained `DMRefine()` or the coarse mesh was obtained by
1224: DMCoarsen(). The coordinates set into the `DMDA` are completely ignored in computing the interpolation.
1226: For `DMDA` objects you can use this interpolation (more precisely the interpolation from the `DMGetCoordinateDM()`) to interpolate the mesh coordinate
1227: vectors EXCEPT in the periodic case where it does not make sense since the coordinate vectors are not periodic.
1229: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateRestriction()`, `DMCreateInterpolationScale()`
1230: @*/
1231: PetscErrorCode DMCreateInterpolation(DM dmc, DM dmf, Mat *mat, Vec *vec)
1232: {
1233: PetscFunctionBegin;
1236: PetscAssertPointer(mat, 3);
1237: PetscCall(PetscLogEventBegin(DM_CreateInterpolation, dmc, dmf, 0, 0));
1238: PetscUseTypeMethod(dmc, createinterpolation, dmf, mat, vec);
1239: PetscCall(PetscLogEventEnd(DM_CreateInterpolation, dmc, dmf, 0, 0));
1240: PetscFunctionReturn(PETSC_SUCCESS);
1241: }
1243: /*@
1244: DMCreateInterpolationScale - Forms L = 1/(R*1) where 1 is the vector of all ones, and R is
1245: the transpose of the interpolation between the `DM`.
1247: Input Parameters:
1248: + dac - `DM` that defines a coarse mesh
1249: . daf - `DM` that defines a fine mesh
1250: - mat - the restriction (or interpolation operator) from fine to coarse
1252: Output Parameter:
1253: . scale - the scaled vector
1255: Level: advanced
1257: Note:
1258: xcoarse = diag(L)*R*xfine preserves scale and is thus suitable for state (versus residual)
1259: restriction. In other words xcoarse is the coarse representation of xfine.
1261: Developer Note:
1262: If the fine-scale `DMDA` has the -dm_bind_below option set to true, then `DMCreateInterpolationScale()` calls `MatSetBindingPropagates()`
1263: on the restriction/interpolation operator to set the bindingpropagates flag to true.
1265: .seealso: [](ch_dmbase), `DM`, `MatRestrict()`, `MatInterpolate()`, `DMCreateInterpolation()`, `DMCreateRestriction()`, `DMCreateGlobalVector()`
1266: @*/
1267: PetscErrorCode DMCreateInterpolationScale(DM dac, DM daf, Mat mat, Vec *scale)
1268: {
1269: Vec fine;
1270: PetscScalar one = 1.0;
1271: #if defined(PETSC_HAVE_CUDA)
1272: PetscBool bindingpropagates, isbound;
1273: #endif
1275: PetscFunctionBegin;
1276: PetscCall(DMCreateGlobalVector(daf, &fine));
1277: PetscCall(DMCreateGlobalVector(dac, scale));
1278: PetscCall(VecSet(fine, one));
1279: #if defined(PETSC_HAVE_CUDA)
1280: /* If the 'fine' Vec is bound to the CPU, it makes sense to bind 'mat' as well.
1281: * Note that we only do this for the CUDA case, right now, but if we add support for MatMultTranspose() via ViennaCL,
1282: * we'll need to do it for that case, too.*/
1283: PetscCall(VecGetBindingPropagates(fine, &bindingpropagates));
1284: if (bindingpropagates) {
1285: PetscCall(MatSetBindingPropagates(mat, PETSC_TRUE));
1286: PetscCall(VecBoundToCPU(fine, &isbound));
1287: PetscCall(MatBindToCPU(mat, isbound));
1288: }
1289: #endif
1290: PetscCall(MatRestrict(mat, fine, *scale));
1291: PetscCall(VecDestroy(&fine));
1292: PetscCall(VecReciprocal(*scale));
1293: PetscFunctionReturn(PETSC_SUCCESS);
1294: }
1296: /*@
1297: DMCreateRestriction - Gets restriction matrix between two `DM` objects. The resulting matrix map degrees of freedom in the vector obtained by
1298: `DMCreateGlobalVector()` on the fine `DM` to similar vectors on the coarse grid `DM`.
1300: Collective
1302: Input Parameters:
1303: + dmc - the `DM` object
1304: - dmf - the second, finer `DM` object
1306: Output Parameter:
1307: . mat - the restriction
1309: Level: developer
1311: Note:
1312: This only works for `DMSTAG`. For many situations either the transpose of the operator obtained with `DMCreateInterpolation()` or that
1313: matrix multiplied by the vector obtained with `DMCreateInterpolationScale()` provides the desired object.
1315: .seealso: [](ch_dmbase), `DM`, `DMRestrict()`, `DMInterpolate()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateInterpolation()`
1316: @*/
1317: PetscErrorCode DMCreateRestriction(DM dmc, DM dmf, Mat *mat)
1318: {
1319: PetscFunctionBegin;
1322: PetscAssertPointer(mat, 3);
1323: PetscCall(PetscLogEventBegin(DM_CreateRestriction, dmc, dmf, 0, 0));
1324: PetscUseTypeMethod(dmc, createrestriction, dmf, mat);
1325: PetscCall(PetscLogEventEnd(DM_CreateRestriction, dmc, dmf, 0, 0));
1326: PetscFunctionReturn(PETSC_SUCCESS);
1327: }
1329: /*@
1330: DMCreateInjection - Gets injection matrix between two `DM` objects.
1332: Collective
1334: Input Parameters:
1335: + dac - the `DM` object
1336: - daf - the second, finer `DM` object
1338: Output Parameter:
1339: . mat - the injection
1341: Level: developer
1343: Notes:
1344: This is an operator that applied to a vector obtained with `DMCreateGlobalVector()` on the
1345: fine grid maps the values to a vector on the vector on the coarse `DM` by simply selecting
1346: the values on the coarse grid points. This compares to the operator obtained by
1347: `DMCreateRestriction()` or the transpose of the operator obtained by
1348: `DMCreateInterpolation()` that uses a "local weighted average" of the values around the
1349: coarse grid point as the coarse grid value.
1351: For `DMDA` objects this only works for "uniform refinement", that is the refined mesh was obtained `DMRefine()` or the coarse mesh was obtained by
1352: `DMCoarsen()`. The coordinates set into the `DMDA` are completely ignored in computing the injection.
1354: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMCreateInterpolation()`,
1355: `DMCreateRestriction()`, `MatRestrict()`, `MatInterpolate()`
1356: @*/
1357: PetscErrorCode DMCreateInjection(DM dac, DM daf, Mat *mat)
1358: {
1359: PetscFunctionBegin;
1362: PetscAssertPointer(mat, 3);
1363: PetscCall(PetscLogEventBegin(DM_CreateInjection, dac, daf, 0, 0));
1364: PetscUseTypeMethod(dac, createinjection, daf, mat);
1365: PetscCall(PetscLogEventEnd(DM_CreateInjection, dac, daf, 0, 0));
1366: PetscFunctionReturn(PETSC_SUCCESS);
1367: }
1369: /*@
1370: DMCreateMassMatrix - Gets the mass matrix between two `DM` objects, M_ij = \int \phi_i \psi_j where the \phi are Galerkin basis functions for a
1371: a Galerkin finite element model on the `DM`
1373: Collective
1375: Input Parameters:
1376: + dmc - the target `DM` object
1377: - dmf - the source `DM` object, can be `NULL`
1379: Output Parameter:
1380: . mat - the mass matrix
1382: Level: developer
1384: Notes:
1385: For `DMPLEX` the finite element model for the `DM` must have been already provided.
1387: if `dmc` is `dmf` or `NULL`, then x^t M x is an approximation to the L2 norm of the vector x which is obtained by `DMCreateGlobalVector()`
1389: .seealso: [](ch_dmbase), `DM`, `DMCreateMassMatrixLumped()`, `DMCreateMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateRestriction()`, `DMCreateInterpolation()`, `DMCreateInjection()`
1390: @*/
1391: PetscErrorCode DMCreateMassMatrix(DM dmc, DM dmf, Mat *mat)
1392: {
1393: PetscFunctionBegin;
1395: if (!dmf) dmf = dmc;
1397: PetscAssertPointer(mat, 3);
1398: PetscCall(PetscLogEventBegin(DM_CreateMassMatrix, dmc, dmf, 0, 0));
1399: PetscUseTypeMethod(dmc, createmassmatrix, dmf, mat);
1400: PetscCall(PetscLogEventEnd(DM_CreateMassMatrix, dmc, dmf, 0, 0));
1401: PetscFunctionReturn(PETSC_SUCCESS);
1402: }
1404: /*@
1405: DMCreateMassMatrixLumped - Gets the lumped mass matrix for a given `DM`
1407: Collective
1409: Input Parameter:
1410: . dm - the `DM` object
1412: Output Parameters:
1413: + llm - the local lumped mass matrix, which is a diagonal matrix, represented as a vector
1414: - lm - the global lumped mass matrix, which is a diagonal matrix, represented as a vector
1416: Level: developer
1418: Note:
1419: See `DMCreateMassMatrix()` for how to create the non-lumped version of the mass matrix.
1421: .seealso: [](ch_dmbase), `DM`, `DMCreateMassMatrix()`, `DMCreateMatrix()`, `DMRefine()`, `DMCoarsen()`, `DMCreateRestriction()`, `DMCreateInterpolation()`, `DMCreateInjection()`
1422: @*/
1423: PetscErrorCode DMCreateMassMatrixLumped(DM dm, Vec *llm, Vec *lm)
1424: {
1425: PetscFunctionBegin;
1427: if (llm) PetscAssertPointer(llm, 2);
1428: if (lm) PetscAssertPointer(lm, 3);
1429: if (llm || lm) PetscUseTypeMethod(dm, createmassmatrixlumped, llm, lm);
1430: PetscFunctionReturn(PETSC_SUCCESS);
1431: }
1433: /*@
1434: DMCreateColoring - Gets coloring of a graph associated with the `DM`. Often the graph represents the operator matrix associated with the discretization
1435: of a PDE on the `DM`.
1437: Collective
1439: Input Parameters:
1440: + dm - the `DM` object
1441: - ctype - `IS_COLORING_LOCAL` or `IS_COLORING_GLOBAL`
1443: Output Parameter:
1444: . coloring - the coloring
1446: Level: developer
1448: Notes:
1449: Coloring of matrices can also be computed directly from the sparse matrix nonzero structure via the `MatColoring` object or from the mesh from which the
1450: matrix comes from (what this function provides). In general using the mesh produces a more optimal coloring (fewer colors).
1452: This produces a coloring with the distance of 2, see `MatSetColoringDistance()` which can be used for efficiently computing Jacobians with `MatFDColoringCreate()`
1453: For `DMDA` in three dimensions with periodic boundary conditions the number of grid points in each dimension must be divisible by 2*stencil_width + 1,
1454: otherwise an error will be generated.
1456: .seealso: [](ch_dmbase), `DM`, `ISColoring`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatType()`, `MatColoring`, `MatFDColoringCreate()`
1457: @*/
1458: PetscErrorCode DMCreateColoring(DM dm, ISColoringType ctype, ISColoring *coloring)
1459: {
1460: PetscFunctionBegin;
1462: PetscAssertPointer(coloring, 3);
1463: PetscUseTypeMethod(dm, getcoloring, ctype, coloring);
1464: PetscFunctionReturn(PETSC_SUCCESS);
1465: }
1467: /*@
1468: DMCreateMatrix - Gets an empty matrix for a `DM` that is most commonly used to store the Jacobian of a discrete PDE operator.
1470: Collective
1472: Input Parameter:
1473: . dm - the `DM` object
1475: Output Parameter:
1476: . mat - the empty Jacobian
1478: Options Database Key:
1479: . -dm_preallocate_only - Only preallocate the matrix for `DMCreateMatrix()` and `DMCreateMassMatrix()`, but do not fill it with zeros
1481: Level: beginner
1483: Notes:
1484: This properly preallocates the number of nonzeros in the sparse matrix so you
1485: do not need to do it yourself.
1487: By default it also sets the nonzero structure and puts in the zero entries. To prevent setting
1488: the nonzero pattern call `DMSetMatrixPreallocateOnly()`
1490: For `DMDA`, when you call `MatView()` on this matrix it is displayed using the global natural ordering, NOT in the ordering used
1491: internally by PETSc.
1493: For `DMDA`, in general it is easiest to use `MatSetValuesStencil()` or `MatSetValuesLocal()` to put values into the matrix because
1494: `MatSetValues()` requires the indices for the global numbering for the `DMDA` which is complic`ated to compute
1496: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMSetMatType()`, `DMCreateMassMatrix()`
1497: @*/
1498: PetscErrorCode DMCreateMatrix(DM dm, Mat *mat)
1499: {
1500: PetscFunctionBegin;
1502: PetscAssertPointer(mat, 2);
1503: PetscCall(MatInitializePackage());
1504: PetscCall(PetscLogEventBegin(DM_CreateMatrix, 0, 0, 0, 0));
1505: PetscUseTypeMethod(dm, creatematrix, mat);
1506: if (PetscDefined(USE_DEBUG)) {
1507: DM mdm;
1509: PetscCall(MatGetDM(*mat, &mdm));
1510: PetscCheck(mdm, PETSC_COMM_SELF, PETSC_ERR_PLIB, "DM type '%s' did not attach the DM to the matrix", ((PetscObject)dm)->type_name);
1511: }
1512: /* Handle nullspace and near nullspace */
1513: if (dm->Nf) {
1514: MatNullSpace nullSpace;
1515: PetscInt Nf, f;
1517: PetscCall(DMGetNumFields(dm, &Nf));
1518: for (f = 0; f < Nf; ++f) {
1519: if (dm->nullspaceConstructors[f]) {
1520: PetscCall((*dm->nullspaceConstructors[f])(dm, f, f, &nullSpace));
1521: PetscCall(MatSetNullSpace(*mat, nullSpace));
1522: PetscCall(MatNullSpaceDestroy(&nullSpace));
1523: break;
1524: }
1525: }
1526: for (f = 0; f < Nf; ++f) {
1527: if (dm->nearnullspaceConstructors[f]) {
1528: PetscCall((*dm->nearnullspaceConstructors[f])(dm, f, f, &nullSpace));
1529: PetscCall(MatSetNearNullSpace(*mat, nullSpace));
1530: PetscCall(MatNullSpaceDestroy(&nullSpace));
1531: }
1532: }
1533: }
1534: PetscCall(PetscLogEventEnd(DM_CreateMatrix, 0, 0, 0, 0));
1535: PetscFunctionReturn(PETSC_SUCCESS);
1536: }
1538: /*@
1539: DMSetMatrixPreallocateSkip - When `DMCreateMatrix()` is called the matrix sizes and
1540: `ISLocalToGlobalMapping` will be properly set, but the data structures to store values in the
1541: matrices will not be preallocated.
1543: Logically Collective
1545: Input Parameters:
1546: + dm - the `DM`
1547: - skip - `PETSC_TRUE` to skip preallocation
1549: Level: developer
1551: Note:
1552: This is most useful to reduce initialization costs when `MatSetPreallocationCOO()` and
1553: `MatSetValuesCOO()` will be used.
1555: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `DMSetMatrixStructureOnly()`, `DMSetMatrixPreallocateOnly()`
1556: @*/
1557: PetscErrorCode DMSetMatrixPreallocateSkip(DM dm, PetscBool skip)
1558: {
1559: PetscFunctionBegin;
1561: dm->prealloc_skip = skip;
1562: PetscFunctionReturn(PETSC_SUCCESS);
1563: }
1565: /*@
1566: DMSetMatrixPreallocateOnly - When `DMCreateMatrix()` is called the matrix will be properly
1567: preallocated but the nonzero structure and zero values will not be set.
1569: Logically Collective
1571: Input Parameters:
1572: + dm - the `DM`
1573: - only - `PETSC_TRUE` if only want preallocation
1575: Options Database Key:
1576: . -dm_preallocate_only - Only preallocate the matrix for `DMCreateMatrix()`, `DMCreateMassMatrix()`, but do not fill it with zeros
1578: Level: developer
1580: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMSetMatrixStructureOnly()`, `DMSetMatrixPreallocateSkip()`
1581: @*/
1582: PetscErrorCode DMSetMatrixPreallocateOnly(DM dm, PetscBool only)
1583: {
1584: PetscFunctionBegin;
1586: dm->prealloc_only = only;
1587: PetscFunctionReturn(PETSC_SUCCESS);
1588: }
1590: /*@
1591: DMSetMatrixStructureOnly - When `DMCreateMatrix()` is called, the matrix nonzero structure will be created
1592: but the array for numerical values will not be allocated.
1594: Logically Collective
1596: Input Parameters:
1597: + dm - the `DM`
1598: - only - `PETSC_TRUE` if you only want matrix nonzero structure
1600: Level: developer
1602: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `DMSetMatrixPreallocateOnly()`, `DMSetMatrixPreallocateSkip()`
1603: @*/
1604: PetscErrorCode DMSetMatrixStructureOnly(DM dm, PetscBool only)
1605: {
1606: PetscFunctionBegin;
1608: dm->structure_only = only;
1609: PetscFunctionReturn(PETSC_SUCCESS);
1610: }
1612: /*@
1613: DMSetBlockingType - set the blocking granularity to be used for variable block size `DMCreateMatrix()` is called
1615: Logically Collective
1617: Input Parameters:
1618: + dm - the `DM`
1619: - btype - block by topological point or field node
1621: Options Database Key:
1622: . -dm_blocking_type [topological_point, field_node] - use topological point blocking or field node blocking
1624: Level: advanced
1626: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `MatSetVariableBlockSizes()`
1627: @*/
1628: PetscErrorCode DMSetBlockingType(DM dm, DMBlockingType btype)
1629: {
1630: PetscFunctionBegin;
1632: dm->blocking_type = btype;
1633: PetscFunctionReturn(PETSC_SUCCESS);
1634: }
1636: /*@
1637: DMGetBlockingType - get the blocking granularity to be used for variable block size `DMCreateMatrix()` is called
1639: Not Collective
1641: Input Parameter:
1642: . dm - the `DM`
1644: Output Parameter:
1645: . btype - block by topological point or field node
1647: Level: advanced
1649: .seealso: [](ch_dmbase), `DM`, `DMCreateMatrix()`, `MatSetVariableBlockSizes()`
1650: @*/
1651: PetscErrorCode DMGetBlockingType(DM dm, DMBlockingType *btype)
1652: {
1653: PetscFunctionBegin;
1655: PetscAssertPointer(btype, 2);
1656: *btype = dm->blocking_type;
1657: PetscFunctionReturn(PETSC_SUCCESS);
1658: }
1660: /*@C
1661: DMGetWorkArray - Gets a work array guaranteed to be at least the input size, restore with `DMRestoreWorkArray()`
1663: Not Collective
1665: Input Parameters:
1666: + dm - the `DM` object
1667: . count - The minimum size
1668: - dtype - MPI data type, often `MPIU_REAL`, `MPIU_SCALAR`, or `MPIU_INT`)
1670: Output Parameter:
1671: . mem - the work array
1673: Level: developer
1675: Notes:
1676: A `DM` may stash the array between instantiations so using this routine may be more efficient than calling `PetscMalloc()`
1678: The array may contain nonzero values
1680: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMCreate()`, `DMRestoreWorkArray()`, `PetscMalloc()`
1681: @*/
1682: PetscErrorCode DMGetWorkArray(DM dm, PetscInt count, MPI_Datatype dtype, void *mem)
1683: {
1684: DMWorkLink link;
1685: PetscMPIInt dsize;
1687: PetscFunctionBegin;
1689: PetscAssertPointer(mem, 4);
1690: if (!count) {
1691: *(void **)mem = NULL;
1692: PetscFunctionReturn(PETSC_SUCCESS);
1693: }
1694: if (dm->workin) {
1695: link = dm->workin;
1696: dm->workin = dm->workin->next;
1697: } else {
1698: PetscCall(PetscNew(&link));
1699: }
1700: /* Avoid MPI_Type_size for most used datatypes
1701: Get size directly */
1702: if (dtype == MPIU_INT) dsize = sizeof(PetscInt);
1703: else if (dtype == MPIU_REAL) dsize = sizeof(PetscReal);
1704: #if defined(PETSC_USE_64BIT_INDICES)
1705: else if (dtype == MPI_INT) dsize = sizeof(int);
1706: #endif
1707: #if defined(PETSC_USE_COMPLEX)
1708: else if (dtype == MPIU_SCALAR) dsize = sizeof(PetscScalar);
1709: #endif
1710: else PetscCallMPI(MPI_Type_size(dtype, &dsize));
1712: if (((size_t)dsize * count) > link->bytes) {
1713: PetscCall(PetscFree(link->mem));
1714: PetscCall(PetscMalloc(dsize * count, &link->mem));
1715: link->bytes = dsize * count;
1716: }
1717: link->next = dm->workout;
1718: dm->workout = link;
1719: *(void **)mem = link->mem;
1720: PetscFunctionReturn(PETSC_SUCCESS);
1721: }
1723: /*@C
1724: DMRestoreWorkArray - Restores a work array obtained with `DMCreateWorkArray()`
1726: Not Collective
1728: Input Parameters:
1729: + dm - the `DM` object
1730: . count - The minimum size
1731: - dtype - MPI data type, often `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_INT`
1733: Output Parameter:
1734: . mem - the work array
1736: Level: developer
1738: Developer Note:
1739: count and dtype are ignored, they are only needed for `DMGetWorkArray()`
1741: .seealso: [](ch_dmbase), `DM`, `DMDestroy()`, `DMCreate()`, `DMGetWorkArray()`
1742: @*/
1743: PetscErrorCode DMRestoreWorkArray(DM dm, PetscInt count, MPI_Datatype dtype, void *mem)
1744: {
1745: DMWorkLink *p, link;
1747: PetscFunctionBegin;
1748: PetscAssertPointer(mem, 4);
1749: (void)count;
1750: (void)dtype;
1751: if (!*(void **)mem) PetscFunctionReturn(PETSC_SUCCESS);
1752: for (p = &dm->workout; (link = *p); p = &link->next) {
1753: if (link->mem == *(void **)mem) {
1754: *p = link->next;
1755: link->next = dm->workin;
1756: dm->workin = link;
1757: *(void **)mem = NULL;
1758: PetscFunctionReturn(PETSC_SUCCESS);
1759: }
1760: }
1761: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Array was not checked out");
1762: }
1764: /*@C
1765: DMSetNullSpaceConstructor - Provide a callback function which constructs the nullspace for a given field, defined with `DMAddField()`, when function spaces
1766: are joined or split, such as in `DMCreateSubDM()`
1768: Logically Collective; No Fortran Support
1770: Input Parameters:
1771: + dm - The `DM`
1772: . field - The field number for the nullspace
1773: - nullsp - A callback to create the nullspace
1775: Calling sequence of `nullsp`:
1776: + dm - The present `DM`
1777: . origField - The field number given above, in the original `DM`
1778: . field - The field number in dm
1779: - nullSpace - The nullspace for the given field
1781: Level: intermediate
1783: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetNullSpaceConstructor()`, `DMSetNearNullSpaceConstructor()`, `DMGetNearNullSpaceConstructor()`, `DMCreateSubDM()`, `DMCreateSuperDM()`
1784: @*/
1785: PetscErrorCode DMSetNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (*nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1786: {
1787: PetscFunctionBegin;
1789: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1790: dm->nullspaceConstructors[field] = nullsp;
1791: PetscFunctionReturn(PETSC_SUCCESS);
1792: }
1794: /*@C
1795: DMGetNullSpaceConstructor - Return the callback function which constructs the nullspace for a given field, defined with `DMAddField()`
1797: Not Collective; No Fortran Support
1799: Input Parameters:
1800: + dm - The `DM`
1801: - field - The field number for the nullspace
1803: Output Parameter:
1804: . nullsp - A callback to create the nullspace
1806: Calling sequence of `nullsp`:
1807: + dm - The present DM
1808: . origField - The field number given above, in the original DM
1809: . field - The field number in dm
1810: - nullSpace - The nullspace for the given field
1812: Level: intermediate
1814: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`, `DMSetNullSpaceConstructor()`, `DMSetNearNullSpaceConstructor()`, `DMGetNearNullSpaceConstructor()`, `DMCreateSubDM()`, `DMCreateSuperDM()`
1815: @*/
1816: PetscErrorCode DMGetNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (**nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1817: {
1818: PetscFunctionBegin;
1820: PetscAssertPointer(nullsp, 3);
1821: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1822: *nullsp = dm->nullspaceConstructors[field];
1823: PetscFunctionReturn(PETSC_SUCCESS);
1824: }
1826: /*@C
1827: DMSetNearNullSpaceConstructor - Provide a callback function which constructs the near-nullspace for a given field, defined with `DMAddField()`
1829: Logically Collective; No Fortran Support
1831: Input Parameters:
1832: + dm - The `DM`
1833: . field - The field number for the nullspace
1834: - nullsp - A callback to create the near-nullspace
1836: Calling sequence of `nullsp`:
1837: + dm - The present `DM`
1838: . origField - The field number given above, in the original `DM`
1839: . field - The field number in dm
1840: - nullSpace - The nullspace for the given field
1842: Level: intermediate
1844: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetNearNullSpaceConstructor()`, `DMSetNullSpaceConstructor()`, `DMGetNullSpaceConstructor()`, `DMCreateSubDM()`, `DMCreateSuperDM()`,
1845: `MatNullSpace`
1846: @*/
1847: PetscErrorCode DMSetNearNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (*nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1848: {
1849: PetscFunctionBegin;
1851: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1852: dm->nearnullspaceConstructors[field] = nullsp;
1853: PetscFunctionReturn(PETSC_SUCCESS);
1854: }
1856: /*@C
1857: DMGetNearNullSpaceConstructor - Return the callback function which constructs the near-nullspace for a given field, defined with `DMAddField()`
1859: Not Collective; No Fortran Support
1861: Input Parameters:
1862: + dm - The `DM`
1863: - field - The field number for the nullspace
1865: Output Parameter:
1866: . nullsp - A callback to create the near-nullspace
1868: Calling sequence of `nullsp`:
1869: + dm - The present `DM`
1870: . origField - The field number given above, in the original `DM`
1871: . field - The field number in dm
1872: - nullSpace - The nullspace for the given field
1874: Level: intermediate
1876: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`, `DMSetNearNullSpaceConstructor()`, `DMSetNullSpaceConstructor()`, `DMGetNullSpaceConstructor()`, `DMCreateSubDM()`,
1877: `MatNullSpace`, `DMCreateSuperDM()`
1878: @*/
1879: PetscErrorCode DMGetNearNullSpaceConstructor(DM dm, PetscInt field, PetscErrorCode (**nullsp)(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullSpace))
1880: {
1881: PetscFunctionBegin;
1883: PetscAssertPointer(nullsp, 3);
1884: PetscCheck(field < 10, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle %" PetscInt_FMT " >= 10 fields", field);
1885: *nullsp = dm->nearnullspaceConstructors[field];
1886: PetscFunctionReturn(PETSC_SUCCESS);
1887: }
1889: /*@C
1890: DMCreateFieldIS - Creates a set of `IS` objects with the global indices of dofs for each field defined with `DMAddField()`
1892: Not Collective; No Fortran Support
1894: Input Parameter:
1895: . dm - the `DM` object
1897: Output Parameters:
1898: + numFields - The number of fields (or `NULL` if not requested)
1899: . fieldNames - The name of each field (or `NULL` if not requested)
1900: - fields - The global indices for each field (or `NULL` if not requested)
1902: Level: intermediate
1904: Note:
1905: The user is responsible for freeing all requested arrays. In particular, every entry of `fieldNames` should be freed with
1906: `PetscFree()`, every entry of `fields` should be destroyed with `ISDestroy()`, and both arrays should be freed with
1907: `PetscFree()`.
1909: Developer Note:
1910: It is not clear why both this function and `DMCreateFieldDecomposition()` exist. Having two seems redundant and confusing. This function should
1911: likely be removed.
1913: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`,
1914: `DMCreateFieldDecomposition()`
1915: @*/
1916: PetscErrorCode DMCreateFieldIS(DM dm, PetscInt *numFields, char ***fieldNames, IS *fields[])
1917: {
1918: PetscSection section, sectionGlobal;
1920: PetscFunctionBegin;
1922: if (numFields) {
1923: PetscAssertPointer(numFields, 2);
1924: *numFields = 0;
1925: }
1926: if (fieldNames) {
1927: PetscAssertPointer(fieldNames, 3);
1928: *fieldNames = NULL;
1929: }
1930: if (fields) {
1931: PetscAssertPointer(fields, 4);
1932: *fields = NULL;
1933: }
1934: PetscCall(DMGetLocalSection(dm, §ion));
1935: if (section) {
1936: PetscInt *fieldSizes, *fieldNc, **fieldIndices;
1937: PetscInt nF, f, pStart, pEnd, p;
1939: PetscCall(DMGetGlobalSection(dm, §ionGlobal));
1940: PetscCall(PetscSectionGetNumFields(section, &nF));
1941: PetscCall(PetscMalloc3(nF, &fieldSizes, nF, &fieldNc, nF, &fieldIndices));
1942: PetscCall(PetscSectionGetChart(sectionGlobal, &pStart, &pEnd));
1943: for (f = 0; f < nF; ++f) {
1944: fieldSizes[f] = 0;
1945: PetscCall(PetscSectionGetFieldComponents(section, f, &fieldNc[f]));
1946: }
1947: for (p = pStart; p < pEnd; ++p) {
1948: PetscInt gdof;
1950: PetscCall(PetscSectionGetDof(sectionGlobal, p, &gdof));
1951: if (gdof > 0) {
1952: for (f = 0; f < nF; ++f) {
1953: PetscInt fdof, fcdof, fpdof;
1955: PetscCall(PetscSectionGetFieldDof(section, p, f, &fdof));
1956: PetscCall(PetscSectionGetFieldConstraintDof(section, p, f, &fcdof));
1957: fpdof = fdof - fcdof;
1958: if (fpdof && fpdof != fieldNc[f]) {
1959: /* Layout does not admit a pointwise block size */
1960: fieldNc[f] = 1;
1961: }
1962: fieldSizes[f] += fpdof;
1963: }
1964: }
1965: }
1966: for (f = 0; f < nF; ++f) {
1967: PetscCall(PetscMalloc1(fieldSizes[f], &fieldIndices[f]));
1968: fieldSizes[f] = 0;
1969: }
1970: for (p = pStart; p < pEnd; ++p) {
1971: PetscInt gdof, goff;
1973: PetscCall(PetscSectionGetDof(sectionGlobal, p, &gdof));
1974: if (gdof > 0) {
1975: PetscCall(PetscSectionGetOffset(sectionGlobal, p, &goff));
1976: for (f = 0; f < nF; ++f) {
1977: PetscInt fdof, fcdof, fc;
1979: PetscCall(PetscSectionGetFieldDof(section, p, f, &fdof));
1980: PetscCall(PetscSectionGetFieldConstraintDof(section, p, f, &fcdof));
1981: for (fc = 0; fc < fdof - fcdof; ++fc, ++fieldSizes[f]) fieldIndices[f][fieldSizes[f]] = goff++;
1982: }
1983: }
1984: }
1985: if (numFields) *numFields = nF;
1986: if (fieldNames) {
1987: PetscCall(PetscMalloc1(nF, fieldNames));
1988: for (f = 0; f < nF; ++f) {
1989: const char *fieldName;
1991: PetscCall(PetscSectionGetFieldName(section, f, &fieldName));
1992: PetscCall(PetscStrallocpy(fieldName, &(*fieldNames)[f]));
1993: }
1994: }
1995: if (fields) {
1996: PetscCall(PetscMalloc1(nF, fields));
1997: for (f = 0; f < nF; ++f) {
1998: PetscInt bs, in[2], out[2];
2000: PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)dm), fieldSizes[f], fieldIndices[f], PETSC_OWN_POINTER, &(*fields)[f]));
2001: in[0] = -fieldNc[f];
2002: in[1] = fieldNc[f];
2003: PetscCallMPI(MPIU_Allreduce(in, out, 2, MPIU_INT, MPI_MAX, PetscObjectComm((PetscObject)dm)));
2004: bs = (-out[0] == out[1]) ? out[1] : 1;
2005: PetscCall(ISSetBlockSize((*fields)[f], bs));
2006: }
2007: }
2008: PetscCall(PetscFree3(fieldSizes, fieldNc, fieldIndices));
2009: } else PetscTryTypeMethod(dm, createfieldis, numFields, fieldNames, fields);
2010: PetscFunctionReturn(PETSC_SUCCESS);
2011: }
2013: /*@C
2014: DMCreateFieldDecomposition - Returns a list of `IS` objects defining a decomposition of a problem into subproblems
2015: corresponding to different fields.
2017: Not Collective; No Fortran Support
2019: Input Parameter:
2020: . dm - the `DM` object
2022: Output Parameters:
2023: + len - The number of fields (or `NULL` if not requested)
2024: . namelist - The name for each field (or `NULL` if not requested)
2025: . islist - The global indices for each field (or `NULL` if not requested)
2026: - dmlist - The `DM`s for each field subproblem (or `NULL`, if not requested; if `NULL` is returned, no `DM`s are defined)
2028: Level: intermediate
2030: Notes:
2031: Each `IS` contains the global indices of the dofs of the corresponding field, defined by
2032: `DMAddField()`. The optional list of `DM`s define the `DM` for each subproblem.
2034: The same as `DMCreateFieldIS()` but also returns a `DM` for each field.
2036: The user is responsible for freeing all requested arrays. In particular, every entry of `namelist` should be freed with
2037: `PetscFree()`, every entry of `islist` should be destroyed with `ISDestroy()`, every entry of `dmlist` should be destroyed with `DMDestroy()`,
2038: and all of the arrays should be freed with `PetscFree()`.
2040: Developer Notes:
2041: It is not clear why this function and `DMCreateFieldIS()` exist. Having two seems redundant and confusing.
2043: Unlike `DMRefine()`, `DMCoarsen()`, and `DMCreateDomainDecomposition()` this provides no mechanism to provide hooks that are called after the
2044: decomposition is computed.
2046: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMCreateFieldIS()`, `DMCreateSubDM()`, `DMCreateDomainDecomposition()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`
2047: @*/
2048: PetscErrorCode DMCreateFieldDecomposition(DM dm, PetscInt *len, char ***namelist, IS *islist[], DM *dmlist[])
2049: {
2050: PetscFunctionBegin;
2052: if (len) {
2053: PetscAssertPointer(len, 2);
2054: *len = 0;
2055: }
2056: if (namelist) {
2057: PetscAssertPointer(namelist, 3);
2058: *namelist = NULL;
2059: }
2060: if (islist) {
2061: PetscAssertPointer(islist, 4);
2062: *islist = NULL;
2063: }
2064: if (dmlist) {
2065: PetscAssertPointer(dmlist, 5);
2066: *dmlist = NULL;
2067: }
2068: /*
2069: Is it a good idea to apply the following check across all impls?
2070: Perhaps some impls can have a well-defined decomposition before DMSetUp?
2071: This, however, follows the general principle that accessors are not well-behaved until the object is set up.
2072: */
2073: PetscCheck(dm->setupcalled, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Decomposition defined only after DMSetUp");
2074: if (!dm->ops->createfielddecomposition) {
2075: PetscSection section;
2076: PetscInt numFields, f;
2078: PetscCall(DMGetLocalSection(dm, §ion));
2079: if (section) PetscCall(PetscSectionGetNumFields(section, &numFields));
2080: if (section && numFields && dm->ops->createsubdm) {
2081: if (len) *len = numFields;
2082: if (namelist) PetscCall(PetscMalloc1(numFields, namelist));
2083: if (islist) PetscCall(PetscMalloc1(numFields, islist));
2084: if (dmlist) PetscCall(PetscMalloc1(numFields, dmlist));
2085: for (f = 0; f < numFields; ++f) {
2086: const char *fieldName;
2088: PetscCall(DMCreateSubDM(dm, 1, &f, islist ? &(*islist)[f] : NULL, dmlist ? &(*dmlist)[f] : NULL));
2089: if (namelist) {
2090: PetscCall(PetscSectionGetFieldName(section, f, &fieldName));
2091: PetscCall(PetscStrallocpy(fieldName, &(*namelist)[f]));
2092: }
2093: }
2094: } else {
2095: PetscCall(DMCreateFieldIS(dm, len, namelist, islist));
2096: /* By default there are no DMs associated with subproblems. */
2097: if (dmlist) *dmlist = NULL;
2098: }
2099: } else PetscUseTypeMethod(dm, createfielddecomposition, len, namelist, islist, dmlist);
2100: PetscFunctionReturn(PETSC_SUCCESS);
2101: }
2103: /*@
2104: DMCreateSubDM - Returns an `IS` and `DM` encapsulating a subproblem defined by the fields passed in.
2105: The fields are defined by `DMCreateFieldIS()`.
2107: Not collective
2109: Input Parameters:
2110: + dm - The `DM` object
2111: . numFields - The number of fields to select
2112: - fields - The field numbers of the selected fields
2114: Output Parameters:
2115: + is - The global indices for all the degrees of freedom in the new sub `DM`, use `NULL` if not needed
2116: - subdm - The `DM` for the subproblem, use `NULL` if not needed
2118: Level: intermediate
2120: Note:
2121: You need to call `DMPlexSetMigrationSF()` on the original `DM` if you want the Global-To-Natural map to be automatically constructed
2123: .seealso: [](ch_dmbase), `DM`, `DMCreateFieldIS()`, `DMCreateFieldDecomposition()`, `DMAddField()`, `DMCreateSuperDM()`, `IS`, `DMPlexSetMigrationSF()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`
2124: @*/
2125: PetscErrorCode DMCreateSubDM(DM dm, PetscInt numFields, const PetscInt fields[], IS *is, DM *subdm)
2126: {
2127: PetscFunctionBegin;
2129: PetscAssertPointer(fields, 3);
2130: if (is) PetscAssertPointer(is, 4);
2131: if (subdm) PetscAssertPointer(subdm, 5);
2132: PetscUseTypeMethod(dm, createsubdm, numFields, fields, is, subdm);
2133: PetscFunctionReturn(PETSC_SUCCESS);
2134: }
2136: /*@C
2137: DMCreateSuperDM - Returns an arrays of `IS` and a single `DM` encapsulating a superproblem defined by multiple `DM`s passed in.
2139: Not collective
2141: Input Parameters:
2142: + dms - The `DM` objects
2143: - n - The number of `DM`s
2145: Output Parameters:
2146: + is - The global indices for each of subproblem within the super `DM`, or `NULL`, its length is `n`
2147: - superdm - The `DM` for the superproblem
2149: Level: intermediate
2151: Note:
2152: You need to call `DMPlexSetMigrationSF()` on the original `DM` if you want the Global-To-Natural map to be automatically constructed
2154: .seealso: [](ch_dmbase), `DM`, `DMCreateSubDM()`, `DMPlexSetMigrationSF()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMCreateFieldIS()`, `DMCreateDomainDecomposition()`
2155: @*/
2156: PetscErrorCode DMCreateSuperDM(DM dms[], PetscInt n, IS *is[], DM *superdm)
2157: {
2158: PetscInt i;
2160: PetscFunctionBegin;
2161: PetscAssertPointer(dms, 1);
2163: if (is) PetscAssertPointer(is, 3);
2164: PetscAssertPointer(superdm, 4);
2165: PetscCheck(n >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of DMs must be nonnegative: %" PetscInt_FMT, n);
2166: if (n) {
2167: DM dm = dms[0];
2168: PetscCheck(dm->ops->createsuperdm, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "No method createsuperdm for DM of type %s", ((PetscObject)dm)->type_name);
2169: PetscCall((*dm->ops->createsuperdm)(dms, n, is, superdm));
2170: }
2171: PetscFunctionReturn(PETSC_SUCCESS);
2172: }
2174: /*@C
2175: DMCreateDomainDecomposition - Returns lists of `IS` objects defining a decomposition of a
2176: problem into subproblems corresponding to restrictions to pairs of nested subdomains.
2178: Not Collective
2180: Input Parameter:
2181: . dm - the `DM` object
2183: Output Parameters:
2184: + n - The number of subproblems in the domain decomposition (or `NULL` if not requested), also the length of the four arrays below
2185: . namelist - The name for each subdomain (or `NULL` if not requested)
2186: . innerislist - The global indices for each inner subdomain (or `NULL`, if not requested)
2187: . outerislist - The global indices for each outer subdomain (or `NULL`, if not requested)
2188: - dmlist - The `DM`s for each subdomain subproblem (or `NULL`, if not requested; if `NULL` is returned, no `DM`s are defined)
2190: Level: intermediate
2192: Notes:
2193: Each `IS` contains the global indices of the dofs of the corresponding subdomains with in the
2194: dofs of the original `DM`. The inner subdomains conceptually define a nonoverlapping
2195: covering, while outer subdomains can overlap.
2197: The optional list of `DM`s define a `DM` for each subproblem.
2199: The user is responsible for freeing all requested arrays. In particular, every entry of `namelist` should be freed with
2200: `PetscFree()`, every entry of `innerislist` and `outerislist` should be destroyed with `ISDestroy()`, every entry of `dmlist` should be destroyed with `DMDestroy()`,
2201: and all of the arrays should be freed with `PetscFree()`.
2203: Developer Notes:
2204: The `dmlist` is for the inner subdomains or the outer subdomains or all subdomains?
2206: The names are inconsistent, the hooks use `DMSubDomainHook` which is nothing like `DMCreateDomainDecomposition()` while `DMRefineHook` is used for `DMRefine()`.
2208: .seealso: [](ch_dmbase), `DM`, `DMCreateFieldDecomposition()`, `DMDestroy()`, `DMCreateDomainDecompositionScatters()`, `DMView()`, `DMCreateInterpolation()`,
2209: `DMSubDomainHookAdd()`, `DMSubDomainHookRemove()`,`DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMRefine()`, `DMCoarsen()`
2210: @*/
2211: PetscErrorCode DMCreateDomainDecomposition(DM dm, PetscInt *n, char ***namelist, IS *innerislist[], IS *outerislist[], DM *dmlist[])
2212: {
2213: DMSubDomainHookLink link;
2214: PetscInt i, l;
2216: PetscFunctionBegin;
2218: if (n) {
2219: PetscAssertPointer(n, 2);
2220: *n = 0;
2221: }
2222: if (namelist) {
2223: PetscAssertPointer(namelist, 3);
2224: *namelist = NULL;
2225: }
2226: if (innerislist) {
2227: PetscAssertPointer(innerislist, 4);
2228: *innerislist = NULL;
2229: }
2230: if (outerislist) {
2231: PetscAssertPointer(outerislist, 5);
2232: *outerislist = NULL;
2233: }
2234: if (dmlist) {
2235: PetscAssertPointer(dmlist, 6);
2236: *dmlist = NULL;
2237: }
2238: /*
2239: Is it a good idea to apply the following check across all impls?
2240: Perhaps some impls can have a well-defined decomposition before DMSetUp?
2241: This, however, follows the general principle that accessors are not well-behaved until the object is set up.
2242: */
2243: PetscCheck(dm->setupcalled, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Decomposition defined only after DMSetUp");
2244: if (dm->ops->createdomaindecomposition) {
2245: PetscUseTypeMethod(dm, createdomaindecomposition, &l, namelist, innerislist, outerislist, dmlist);
2246: /* copy subdomain hooks and context over to the subdomain DMs */
2247: if (dmlist && *dmlist) {
2248: for (i = 0; i < l; i++) {
2249: for (link = dm->subdomainhook; link; link = link->next) {
2250: if (link->ddhook) PetscCall((*link->ddhook)(dm, (*dmlist)[i], link->ctx));
2251: }
2252: if (dm->ctx) (*dmlist)[i]->ctx = dm->ctx;
2253: }
2254: }
2255: if (n) *n = l;
2256: }
2257: PetscFunctionReturn(PETSC_SUCCESS);
2258: }
2260: /*@C
2261: DMCreateDomainDecompositionScatters - Returns scatters to the subdomain vectors from the global vector for subdomains created with
2262: `DMCreateDomainDecomposition()`
2264: Not Collective
2266: Input Parameters:
2267: + dm - the `DM` object
2268: . n - the number of subdomains
2269: - subdms - the local subdomains
2271: Output Parameters:
2272: + iscat - scatter from global vector to nonoverlapping global vector entries on subdomain
2273: . oscat - scatter from global vector to overlapping global vector entries on subdomain
2274: - gscat - scatter from global vector to local vector on subdomain (fills in ghosts)
2276: Level: developer
2278: Note:
2279: This is an alternative to the iis and ois arguments in `DMCreateDomainDecomposition()` that allow for the solution
2280: of general nonlinear problems with overlapping subdomain methods. While merely having index sets that enable subsets
2281: of the residual equations to be created is fine for linear problems, nonlinear problems require local assembly of
2282: solution and residual data.
2284: Developer Note:
2285: Can the subdms input be anything or are they exactly the `DM` obtained from
2286: `DMCreateDomainDecomposition()`?
2288: .seealso: [](ch_dmbase), `DM`, `DMCreateDomainDecomposition()`, `DMDestroy()`, `DMView()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMCreateFieldIS()`
2289: @*/
2290: PetscErrorCode DMCreateDomainDecompositionScatters(DM dm, PetscInt n, DM *subdms, VecScatter *iscat[], VecScatter *oscat[], VecScatter *gscat[])
2291: {
2292: PetscFunctionBegin;
2294: PetscAssertPointer(subdms, 3);
2295: PetscUseTypeMethod(dm, createddscatters, n, subdms, iscat, oscat, gscat);
2296: PetscFunctionReturn(PETSC_SUCCESS);
2297: }
2299: /*@
2300: DMRefine - Refines a `DM` object using a standard nonadaptive refinement of the underlying mesh
2302: Collective
2304: Input Parameters:
2305: + dm - the `DM` object
2306: - comm - the communicator to contain the new `DM` object (or `MPI_COMM_NULL`)
2308: Output Parameter:
2309: . dmf - the refined `DM`, or `NULL`
2311: Options Database Key:
2312: . -dm_plex_cell_refiner <strategy> - chooses the refinement strategy, e.g. regular, tohex
2314: Level: developer
2316: Note:
2317: If no refinement was done, the return value is `NULL`
2319: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateDomainDecomposition()`,
2320: `DMRefineHookAdd()`, `DMRefineHookRemove()`
2321: @*/
2322: PetscErrorCode DMRefine(DM dm, MPI_Comm comm, DM *dmf)
2323: {
2324: DMRefineHookLink link;
2326: PetscFunctionBegin;
2328: PetscCall(PetscLogEventBegin(DM_Refine, dm, 0, 0, 0));
2329: PetscUseTypeMethod(dm, refine, comm, dmf);
2330: if (*dmf) {
2331: (*dmf)->ops->creatematrix = dm->ops->creatematrix;
2333: PetscCall(PetscObjectCopyFortranFunctionPointers((PetscObject)dm, (PetscObject)*dmf));
2335: (*dmf)->ctx = dm->ctx;
2336: (*dmf)->leveldown = dm->leveldown;
2337: (*dmf)->levelup = dm->levelup + 1;
2339: PetscCall(DMSetMatType(*dmf, dm->mattype));
2340: for (link = dm->refinehook; link; link = link->next) {
2341: if (link->refinehook) PetscCall((*link->refinehook)(dm, *dmf, link->ctx));
2342: }
2343: }
2344: PetscCall(PetscLogEventEnd(DM_Refine, dm, 0, 0, 0));
2345: PetscFunctionReturn(PETSC_SUCCESS);
2346: }
2348: /*@C
2349: DMRefineHookAdd - adds a callback to be run when interpolating a nonlinear problem to a finer grid
2351: Logically Collective; No Fortran Support
2353: Input Parameters:
2354: + coarse - `DM` on which to run a hook when interpolating to a finer level
2355: . refinehook - function to run when setting up the finer level
2356: . interphook - function to run to update data on finer levels (once per `SNESSolve()`)
2357: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2359: Calling sequence of `refinehook`:
2360: + coarse - coarse level `DM`
2361: . fine - fine level `DM` to interpolate problem to
2362: - ctx - optional user-defined function context
2364: Calling sequence of `interphook`:
2365: + coarse - coarse level `DM`
2366: . interp - matrix interpolating a coarse-level solution to the finer grid
2367: . fine - fine level `DM` to update
2368: - ctx - optional user-defined function context
2370: Level: advanced
2372: Notes:
2373: This function is only needed if auxiliary data that is attached to the `DM`s via, for example, `PetscObjectCompose()`, needs to be
2374: passed to fine grids while grid sequencing.
2376: The actual interpolation is done when `DMInterpolate()` is called.
2378: If this function is called multiple times, the hooks will be run in the order they are added.
2380: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `DMInterpolate()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2381: @*/
2382: PetscErrorCode DMRefineHookAdd(DM coarse, PetscErrorCode (*refinehook)(DM coarse, DM fine, void *ctx), PetscErrorCode (*interphook)(DM coarse, Mat interp, DM fine, void *ctx), void *ctx)
2383: {
2384: DMRefineHookLink link, *p;
2386: PetscFunctionBegin;
2388: for (p = &coarse->refinehook; *p; p = &(*p)->next) { /* Scan to the end of the current list of hooks */
2389: if ((*p)->refinehook == refinehook && (*p)->interphook == interphook && (*p)->ctx == ctx) PetscFunctionReturn(PETSC_SUCCESS);
2390: }
2391: PetscCall(PetscNew(&link));
2392: link->refinehook = refinehook;
2393: link->interphook = interphook;
2394: link->ctx = ctx;
2395: link->next = NULL;
2396: *p = link;
2397: PetscFunctionReturn(PETSC_SUCCESS);
2398: }
2400: /*@C
2401: DMRefineHookRemove - remove a callback from the list of hooks, that have been set with `DMRefineHookAdd()`, to be run when interpolating
2402: a nonlinear problem to a finer grid
2404: Logically Collective; No Fortran Support
2406: Input Parameters:
2407: + coarse - the `DM` on which to run a hook when restricting to a coarser level
2408: . refinehook - function to run when setting up a finer level
2409: . interphook - function to run to update data on finer levels
2410: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2412: Level: advanced
2414: Note:
2415: This function does nothing if the hook is not in the list.
2417: .seealso: [](ch_dmbase), `DM`, `DMRefineHookAdd()`, `DMCoarsenHookRemove()`, `DMInterpolate()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2418: @*/
2419: PetscErrorCode DMRefineHookRemove(DM coarse, PetscErrorCode (*refinehook)(DM, DM, void *), PetscErrorCode (*interphook)(DM, Mat, DM, void *), void *ctx)
2420: {
2421: DMRefineHookLink link, *p;
2423: PetscFunctionBegin;
2425: for (p = &coarse->refinehook; *p; p = &(*p)->next) { /* Search the list of current hooks */
2426: if ((*p)->refinehook == refinehook && (*p)->interphook == interphook && (*p)->ctx == ctx) {
2427: link = *p;
2428: *p = link->next;
2429: PetscCall(PetscFree(link));
2430: break;
2431: }
2432: }
2433: PetscFunctionReturn(PETSC_SUCCESS);
2434: }
2436: /*@
2437: DMInterpolate - interpolates user-defined problem data attached to a `DM` to a finer `DM` by running hooks registered by `DMRefineHookAdd()`
2439: Collective if any hooks are
2441: Input Parameters:
2442: + coarse - coarser `DM` to use as a base
2443: . interp - interpolation matrix, apply using `MatInterpolate()`
2444: - fine - finer `DM` to update
2446: Level: developer
2448: Developer Note:
2449: This routine is called `DMInterpolate()` while the hook is called `DMRefineHookAdd()`. It would be better to have an
2450: an API with consistent terminology.
2452: .seealso: [](ch_dmbase), `DM`, `DMRefineHookAdd()`, `MatInterpolate()`
2453: @*/
2454: PetscErrorCode DMInterpolate(DM coarse, Mat interp, DM fine)
2455: {
2456: DMRefineHookLink link;
2458: PetscFunctionBegin;
2459: for (link = fine->refinehook; link; link = link->next) {
2460: if (link->interphook) PetscCall((*link->interphook)(coarse, interp, fine, link->ctx));
2461: }
2462: PetscFunctionReturn(PETSC_SUCCESS);
2463: }
2465: /*@
2466: DMInterpolateSolution - Interpolates a solution from a coarse mesh to a fine mesh.
2468: Collective
2470: Input Parameters:
2471: + coarse - coarse `DM`
2472: . fine - fine `DM`
2473: . interp - (optional) the matrix computed by `DMCreateInterpolation()`. Implementations may not need this, but if it
2474: is available it can avoid some recomputation. If it is provided, `MatInterpolate()` will be used if
2475: the coarse `DM` does not have a specialized implementation.
2476: - coarseSol - solution on the coarse mesh
2478: Output Parameter:
2479: . fineSol - the interpolation of coarseSol to the fine mesh
2481: Level: developer
2483: Note:
2484: This function exists because the interpolation of a solution vector between meshes is not always a linear
2485: map. For example, if a boundary value problem has an inhomogeneous Dirichlet boundary condition that is compressed
2486: out of the solution vector. Or if interpolation is inherently a nonlinear operation, such as a method using
2487: slope-limiting reconstruction.
2489: Developer Note:
2490: This doesn't just interpolate "solutions" so its API name is questionable.
2492: .seealso: [](ch_dmbase), `DM`, `DMInterpolate()`, `DMCreateInterpolation()`
2493: @*/
2494: PetscErrorCode DMInterpolateSolution(DM coarse, DM fine, Mat interp, Vec coarseSol, Vec fineSol)
2495: {
2496: PetscErrorCode (*interpsol)(DM, DM, Mat, Vec, Vec) = NULL;
2498: PetscFunctionBegin;
2504: PetscCall(PetscObjectQueryFunction((PetscObject)coarse, "DMInterpolateSolution_C", &interpsol));
2505: if (interpsol) {
2506: PetscCall((*interpsol)(coarse, fine, interp, coarseSol, fineSol));
2507: } else if (interp) {
2508: PetscCall(MatInterpolate(interp, coarseSol, fineSol));
2509: } else SETERRQ(PetscObjectComm((PetscObject)coarse), PETSC_ERR_SUP, "DM %s does not implement DMInterpolateSolution()", ((PetscObject)coarse)->type_name);
2510: PetscFunctionReturn(PETSC_SUCCESS);
2511: }
2513: /*@
2514: DMGetRefineLevel - Gets the number of refinements that have generated this `DM` from some initial `DM`.
2516: Not Collective
2518: Input Parameter:
2519: . dm - the `DM` object
2521: Output Parameter:
2522: . level - number of refinements
2524: Level: developer
2526: Note:
2527: This can be used, by example, to set the number of coarser levels associated with this `DM` for a multigrid solver.
2529: .seealso: [](ch_dmbase), `DM`, `DMRefine()`, `DMCoarsen()`, `DMGetCoarsenLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
2530: @*/
2531: PetscErrorCode DMGetRefineLevel(DM dm, PetscInt *level)
2532: {
2533: PetscFunctionBegin;
2535: *level = dm->levelup;
2536: PetscFunctionReturn(PETSC_SUCCESS);
2537: }
2539: /*@
2540: DMSetRefineLevel - Sets the number of refinements that have generated this `DM`.
2542: Not Collective
2544: Input Parameters:
2545: + dm - the `DM` object
2546: - level - number of refinements
2548: Level: advanced
2550: Notes:
2551: This value is used by `PCMG` to determine how many multigrid levels to use
2553: The values are usually set automatically by the process that is causing the refinements of an initial `DM` by calling this routine.
2555: .seealso: [](ch_dmbase), `DM`, `DMGetRefineLevel()`, `DMCoarsen()`, `DMGetCoarsenLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
2556: @*/
2557: PetscErrorCode DMSetRefineLevel(DM dm, PetscInt level)
2558: {
2559: PetscFunctionBegin;
2561: dm->levelup = level;
2562: PetscFunctionReturn(PETSC_SUCCESS);
2563: }
2565: /*@
2566: DMExtrude - Extrude a `DM` object from a surface
2568: Collective
2570: Input Parameters:
2571: + dm - the `DM` object
2572: - layers - the number of extruded cell layers
2574: Output Parameter:
2575: . dme - the extruded `DM`, or `NULL`
2577: Level: developer
2579: Note:
2580: If no extrusion was done, the return value is `NULL`
2582: .seealso: [](ch_dmbase), `DM`, `DMRefine()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`
2583: @*/
2584: PetscErrorCode DMExtrude(DM dm, PetscInt layers, DM *dme)
2585: {
2586: PetscFunctionBegin;
2588: PetscUseTypeMethod(dm, extrude, layers, dme);
2589: if (*dme) {
2590: (*dme)->ops->creatematrix = dm->ops->creatematrix;
2591: PetscCall(PetscObjectCopyFortranFunctionPointers((PetscObject)dm, (PetscObject)*dme));
2592: (*dme)->ctx = dm->ctx;
2593: PetscCall(DMSetMatType(*dme, dm->mattype));
2594: }
2595: PetscFunctionReturn(PETSC_SUCCESS);
2596: }
2598: PetscErrorCode DMGetBasisTransformDM_Internal(DM dm, DM *tdm)
2599: {
2600: PetscFunctionBegin;
2602: PetscAssertPointer(tdm, 2);
2603: *tdm = dm->transformDM;
2604: PetscFunctionReturn(PETSC_SUCCESS);
2605: }
2607: PetscErrorCode DMGetBasisTransformVec_Internal(DM dm, Vec *tv)
2608: {
2609: PetscFunctionBegin;
2611: PetscAssertPointer(tv, 2);
2612: *tv = dm->transform;
2613: PetscFunctionReturn(PETSC_SUCCESS);
2614: }
2616: /*@
2617: DMHasBasisTransform - Whether the `DM` employs a basis transformation from functions in global vectors to functions in local vectors
2619: Input Parameter:
2620: . dm - The `DM`
2622: Output Parameter:
2623: . flg - `PETSC_TRUE` if a basis transformation should be done
2625: Level: developer
2627: .seealso: [](ch_dmbase), `DM`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`, `DMPlexCreateBasisRotation()`
2628: @*/
2629: PetscErrorCode DMHasBasisTransform(DM dm, PetscBool *flg)
2630: {
2631: Vec tv;
2633: PetscFunctionBegin;
2635: PetscAssertPointer(flg, 2);
2636: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
2637: *flg = tv ? PETSC_TRUE : PETSC_FALSE;
2638: PetscFunctionReturn(PETSC_SUCCESS);
2639: }
2641: PetscErrorCode DMConstructBasisTransform_Internal(DM dm)
2642: {
2643: PetscSection s, ts;
2644: PetscScalar *ta;
2645: PetscInt cdim, pStart, pEnd, p, Nf, f, Nc, dof;
2647: PetscFunctionBegin;
2648: PetscCall(DMGetCoordinateDim(dm, &cdim));
2649: PetscCall(DMGetLocalSection(dm, &s));
2650: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
2651: PetscCall(PetscSectionGetNumFields(s, &Nf));
2652: PetscCall(DMClone(dm, &dm->transformDM));
2653: PetscCall(DMGetLocalSection(dm->transformDM, &ts));
2654: PetscCall(PetscSectionSetNumFields(ts, Nf));
2655: PetscCall(PetscSectionSetChart(ts, pStart, pEnd));
2656: for (f = 0; f < Nf; ++f) {
2657: PetscCall(PetscSectionGetFieldComponents(s, f, &Nc));
2658: /* We could start to label fields by their transformation properties */
2659: if (Nc != cdim) continue;
2660: for (p = pStart; p < pEnd; ++p) {
2661: PetscCall(PetscSectionGetFieldDof(s, p, f, &dof));
2662: if (!dof) continue;
2663: PetscCall(PetscSectionSetFieldDof(ts, p, f, PetscSqr(cdim)));
2664: PetscCall(PetscSectionAddDof(ts, p, PetscSqr(cdim)));
2665: }
2666: }
2667: PetscCall(PetscSectionSetUp(ts));
2668: PetscCall(DMCreateLocalVector(dm->transformDM, &dm->transform));
2669: PetscCall(VecGetArray(dm->transform, &ta));
2670: for (p = pStart; p < pEnd; ++p) {
2671: for (f = 0; f < Nf; ++f) {
2672: PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
2673: if (dof) {
2674: PetscReal x[3] = {0.0, 0.0, 0.0};
2675: PetscScalar *tva;
2676: const PetscScalar *A;
2678: /* TODO Get quadrature point for this dual basis vector for coordinate */
2679: PetscCall((*dm->transformGetMatrix)(dm, x, PETSC_TRUE, &A, dm->transformCtx));
2680: PetscCall(DMPlexPointLocalFieldRef(dm->transformDM, p, f, ta, (void *)&tva));
2681: PetscCall(PetscArraycpy(tva, A, PetscSqr(cdim)));
2682: }
2683: }
2684: }
2685: PetscCall(VecRestoreArray(dm->transform, &ta));
2686: PetscFunctionReturn(PETSC_SUCCESS);
2687: }
2689: PetscErrorCode DMCopyTransform(DM dm, DM newdm)
2690: {
2691: PetscFunctionBegin;
2694: newdm->transformCtx = dm->transformCtx;
2695: newdm->transformSetUp = dm->transformSetUp;
2696: newdm->transformDestroy = NULL;
2697: newdm->transformGetMatrix = dm->transformGetMatrix;
2698: if (newdm->transformSetUp) PetscCall(DMConstructBasisTransform_Internal(newdm));
2699: PetscFunctionReturn(PETSC_SUCCESS);
2700: }
2702: /*@C
2703: DMGlobalToLocalHookAdd - adds a callback to be run when `DMGlobalToLocal()` is called
2705: Logically Collective
2707: Input Parameters:
2708: + dm - the `DM`
2709: . beginhook - function to run at the beginning of `DMGlobalToLocalBegin()`
2710: . endhook - function to run after `DMGlobalToLocalEnd()` has completed
2711: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2713: Calling sequence of `beginhook`:
2714: + dm - global `DM`
2715: . g - global vector
2716: . mode - mode
2717: . l - local vector
2718: - ctx - optional user-defined function context
2720: Calling sequence of `endhook`:
2721: + dm - global `DM`
2722: . g - global vector
2723: . mode - mode
2724: . l - local vector
2725: - ctx - optional user-defined function context
2727: Level: advanced
2729: Note:
2730: The hook may be used to provide, for example, values that represent boundary conditions in the local vectors that do not exist on the global vector.
2732: .seealso: [](ch_dmbase), `DM`, `DMGlobalToLocal()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2733: @*/
2734: PetscErrorCode DMGlobalToLocalHookAdd(DM dm, PetscErrorCode (*beginhook)(DM dm, Vec g, InsertMode mode, Vec l, void *ctx), PetscErrorCode (*endhook)(DM dm, Vec g, InsertMode mode, Vec l, void *ctx), void *ctx)
2735: {
2736: DMGlobalToLocalHookLink link, *p;
2738: PetscFunctionBegin;
2740: for (p = &dm->gtolhook; *p; p = &(*p)->next) { } /* Scan to the end of the current list of hooks */
2741: PetscCall(PetscNew(&link));
2742: link->beginhook = beginhook;
2743: link->endhook = endhook;
2744: link->ctx = ctx;
2745: link->next = NULL;
2746: *p = link;
2747: PetscFunctionReturn(PETSC_SUCCESS);
2748: }
2750: static PetscErrorCode DMGlobalToLocalHook_Constraints(DM dm, Vec g, InsertMode mode, Vec l, void *ctx)
2751: {
2752: Mat cMat;
2753: Vec cVec, cBias;
2754: PetscSection section, cSec;
2755: PetscInt pStart, pEnd, p, dof;
2757: PetscFunctionBegin;
2758: (void)g;
2759: (void)ctx;
2761: PetscCall(DMGetDefaultConstraints(dm, &cSec, &cMat, &cBias));
2762: if (cMat && (mode == INSERT_VALUES || mode == INSERT_ALL_VALUES || mode == INSERT_BC_VALUES)) {
2763: PetscInt nRows;
2765: PetscCall(MatGetSize(cMat, &nRows, NULL));
2766: if (nRows <= 0) PetscFunctionReturn(PETSC_SUCCESS);
2767: PetscCall(DMGetLocalSection(dm, §ion));
2768: PetscCall(MatCreateVecs(cMat, NULL, &cVec));
2769: PetscCall(MatMult(cMat, l, cVec));
2770: if (cBias) PetscCall(VecAXPY(cVec, 1., cBias));
2771: PetscCall(PetscSectionGetChart(cSec, &pStart, &pEnd));
2772: for (p = pStart; p < pEnd; p++) {
2773: PetscCall(PetscSectionGetDof(cSec, p, &dof));
2774: if (dof) {
2775: PetscScalar *vals;
2776: PetscCall(VecGetValuesSection(cVec, cSec, p, &vals));
2777: PetscCall(VecSetValuesSection(l, section, p, vals, INSERT_ALL_VALUES));
2778: }
2779: }
2780: PetscCall(VecDestroy(&cVec));
2781: }
2782: PetscFunctionReturn(PETSC_SUCCESS);
2783: }
2785: /*@
2786: DMGlobalToLocal - update local vectors from global vector
2788: Neighbor-wise Collective
2790: Input Parameters:
2791: + dm - the `DM` object
2792: . g - the global vector
2793: . mode - `INSERT_VALUES` or `ADD_VALUES`
2794: - l - the local vector
2796: Level: beginner
2798: Notes:
2799: The communication involved in this update can be overlapped with computation by instead using
2800: `DMGlobalToLocalBegin()` and `DMGlobalToLocalEnd()`.
2802: `DMGlobalToLocalHookAdd()` may be used to provide additional operations that are performed during the update process.
2804: .seealso: [](ch_dmbase), `DM`, `DMGlobalToLocalHookAdd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`,
2805: `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`,
2806: `DMGlobalToLocalBegin()` `DMGlobalToLocalEnd()`
2807: @*/
2808: PetscErrorCode DMGlobalToLocal(DM dm, Vec g, InsertMode mode, Vec l)
2809: {
2810: PetscFunctionBegin;
2811: PetscCall(DMGlobalToLocalBegin(dm, g, mode, l));
2812: PetscCall(DMGlobalToLocalEnd(dm, g, mode, l));
2813: PetscFunctionReturn(PETSC_SUCCESS);
2814: }
2816: /*@
2817: DMGlobalToLocalBegin - Begins updating local vectors from global vector
2819: Neighbor-wise Collective
2821: Input Parameters:
2822: + dm - the `DM` object
2823: . g - the global vector
2824: . mode - `INSERT_VALUES` or `ADD_VALUES`
2825: - l - the local vector
2827: Level: intermediate
2829: Notes:
2830: The operation is completed with `DMGlobalToLocalEnd()`
2832: One can perform local computations between the `DMGlobalToLocalBegin()` and `DMGlobalToLocalEnd()` to overlap communication and computation
2834: `DMGlobalToLocal()` is a short form of `DMGlobalToLocalBegin()` and `DMGlobalToLocalEnd()`
2836: `DMGlobalToLocalHookAdd()` may be used to provide additional operations that are performed during the update process.
2838: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`
2839: @*/
2840: PetscErrorCode DMGlobalToLocalBegin(DM dm, Vec g, InsertMode mode, Vec l)
2841: {
2842: PetscSF sf;
2843: DMGlobalToLocalHookLink link;
2845: PetscFunctionBegin;
2847: for (link = dm->gtolhook; link; link = link->next) {
2848: if (link->beginhook) PetscCall((*link->beginhook)(dm, g, mode, l, link->ctx));
2849: }
2850: PetscCall(DMGetSectionSF(dm, &sf));
2851: if (sf) {
2852: const PetscScalar *gArray;
2853: PetscScalar *lArray;
2854: PetscMemType lmtype, gmtype;
2856: PetscCheck(mode != ADD_VALUES, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", (int)mode);
2857: PetscCall(VecGetArrayAndMemType(l, &lArray, &lmtype));
2858: PetscCall(VecGetArrayReadAndMemType(g, &gArray, &gmtype));
2859: PetscCall(PetscSFBcastWithMemTypeBegin(sf, MPIU_SCALAR, gmtype, gArray, lmtype, lArray, MPI_REPLACE));
2860: PetscCall(VecRestoreArrayAndMemType(l, &lArray));
2861: PetscCall(VecRestoreArrayReadAndMemType(g, &gArray));
2862: } else {
2863: PetscUseTypeMethod(dm, globaltolocalbegin, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
2864: }
2865: PetscFunctionReturn(PETSC_SUCCESS);
2866: }
2868: /*@
2869: DMGlobalToLocalEnd - Ends updating local vectors from global vector
2871: Neighbor-wise Collective
2873: Input Parameters:
2874: + dm - the `DM` object
2875: . g - the global vector
2876: . mode - `INSERT_VALUES` or `ADD_VALUES`
2877: - l - the local vector
2879: Level: intermediate
2881: Note:
2882: See `DMGlobalToLocalBegin()` for details.
2884: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMLocalToGlobalBegin()`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`
2885: @*/
2886: PetscErrorCode DMGlobalToLocalEnd(DM dm, Vec g, InsertMode mode, Vec l)
2887: {
2888: PetscSF sf;
2889: const PetscScalar *gArray;
2890: PetscScalar *lArray;
2891: PetscBool transform;
2892: DMGlobalToLocalHookLink link;
2893: PetscMemType lmtype, gmtype;
2895: PetscFunctionBegin;
2897: PetscCall(DMGetSectionSF(dm, &sf));
2898: PetscCall(DMHasBasisTransform(dm, &transform));
2899: if (sf) {
2900: PetscCheck(mode != ADD_VALUES, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", (int)mode);
2902: PetscCall(VecGetArrayAndMemType(l, &lArray, &lmtype));
2903: PetscCall(VecGetArrayReadAndMemType(g, &gArray, &gmtype));
2904: PetscCall(PetscSFBcastEnd(sf, MPIU_SCALAR, gArray, lArray, MPI_REPLACE));
2905: PetscCall(VecRestoreArrayAndMemType(l, &lArray));
2906: PetscCall(VecRestoreArrayReadAndMemType(g, &gArray));
2907: if (transform) PetscCall(DMPlexGlobalToLocalBasis(dm, l));
2908: } else {
2909: PetscUseTypeMethod(dm, globaltolocalend, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
2910: }
2911: PetscCall(DMGlobalToLocalHook_Constraints(dm, g, mode, l, NULL));
2912: for (link = dm->gtolhook; link; link = link->next) {
2913: if (link->endhook) PetscCall((*link->endhook)(dm, g, mode, l, link->ctx));
2914: }
2915: PetscFunctionReturn(PETSC_SUCCESS);
2916: }
2918: /*@C
2919: DMLocalToGlobalHookAdd - adds a callback to be run when a local to global is called
2921: Logically Collective
2923: Input Parameters:
2924: + dm - the `DM`
2925: . beginhook - function to run at the beginning of `DMLocalToGlobalBegin()`
2926: . endhook - function to run after `DMLocalToGlobalEnd()` has completed
2927: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
2929: Calling sequence of `beginhook`:
2930: + global - global `DM`
2931: . l - local vector
2932: . mode - mode
2933: . g - global vector
2934: - ctx - optional user-defined function context
2936: Calling sequence of `endhook`:
2937: + global - global `DM`
2938: . l - local vector
2939: . mode - mode
2940: . g - global vector
2941: - ctx - optional user-defined function context
2943: Level: advanced
2945: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobal()`, `DMRefineHookAdd()`, `DMGlobalToLocalHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
2946: @*/
2947: PetscErrorCode DMLocalToGlobalHookAdd(DM dm, PetscErrorCode (*beginhook)(DM global, Vec l, InsertMode mode, Vec g, void *ctx), PetscErrorCode (*endhook)(DM global, Vec l, InsertMode mode, Vec g, void *ctx), void *ctx)
2948: {
2949: DMLocalToGlobalHookLink link, *p;
2951: PetscFunctionBegin;
2953: for (p = &dm->ltoghook; *p; p = &(*p)->next) { } /* Scan to the end of the current list of hooks */
2954: PetscCall(PetscNew(&link));
2955: link->beginhook = beginhook;
2956: link->endhook = endhook;
2957: link->ctx = ctx;
2958: link->next = NULL;
2959: *p = link;
2960: PetscFunctionReturn(PETSC_SUCCESS);
2961: }
2963: static PetscErrorCode DMLocalToGlobalHook_Constraints(DM dm, Vec l, InsertMode mode, Vec g, void *ctx)
2964: {
2965: PetscFunctionBegin;
2966: (void)g;
2967: (void)ctx;
2969: if (mode == ADD_VALUES || mode == ADD_ALL_VALUES || mode == ADD_BC_VALUES) {
2970: Mat cMat;
2971: Vec cVec;
2972: PetscInt nRows;
2973: PetscSection section, cSec;
2974: PetscInt pStart, pEnd, p, dof;
2976: PetscCall(DMGetDefaultConstraints(dm, &cSec, &cMat, NULL));
2977: if (!cMat) PetscFunctionReturn(PETSC_SUCCESS);
2979: PetscCall(MatGetSize(cMat, &nRows, NULL));
2980: if (nRows <= 0) PetscFunctionReturn(PETSC_SUCCESS);
2981: PetscCall(DMGetLocalSection(dm, §ion));
2982: PetscCall(MatCreateVecs(cMat, NULL, &cVec));
2983: PetscCall(PetscSectionGetChart(cSec, &pStart, &pEnd));
2984: for (p = pStart; p < pEnd; p++) {
2985: PetscCall(PetscSectionGetDof(cSec, p, &dof));
2986: if (dof) {
2987: PetscInt d;
2988: PetscScalar *vals;
2989: PetscCall(VecGetValuesSection(l, section, p, &vals));
2990: PetscCall(VecSetValuesSection(cVec, cSec, p, vals, mode));
2991: /* for this to be the true transpose, we have to zero the values that
2992: * we just extracted */
2993: for (d = 0; d < dof; d++) vals[d] = 0.;
2994: }
2995: }
2996: PetscCall(MatMultTransposeAdd(cMat, cVec, l, l));
2997: PetscCall(VecDestroy(&cVec));
2998: }
2999: PetscFunctionReturn(PETSC_SUCCESS);
3000: }
3001: /*@
3002: DMLocalToGlobal - updates global vectors from local vectors
3004: Neighbor-wise Collective
3006: Input Parameters:
3007: + dm - the `DM` object
3008: . l - the local vector
3009: . mode - if `INSERT_VALUES` then no parallel communication is used, if `ADD_VALUES` then all ghost points from the same base point accumulate into that base point.
3010: - g - the global vector
3012: Level: beginner
3014: Notes:
3015: The communication involved in this update can be overlapped with computation by using
3016: `DMLocalToGlobalBegin()` and `DMLocalToGlobalEnd()`.
3018: In the `ADD_VALUES` case you normally would zero the receiving vector before beginning this operation.
3020: `INSERT_VALUES` is not supported for `DMDA`; in that case simply compute the values directly into a global vector instead of a local one.
3022: Use `DMLocalToGlobalHookAdd()` to add additional operations that are performed on the data during the update process
3024: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobalBegin()`, `DMLocalToGlobalEnd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMGlobalToLocalEnd()`, `DMGlobalToLocalBegin()`, `DMLocalToGlobalHookAdd()`, `DMGlobaToLocallHookAdd()`
3025: @*/
3026: PetscErrorCode DMLocalToGlobal(DM dm, Vec l, InsertMode mode, Vec g)
3027: {
3028: PetscFunctionBegin;
3029: PetscCall(DMLocalToGlobalBegin(dm, l, mode, g));
3030: PetscCall(DMLocalToGlobalEnd(dm, l, mode, g));
3031: PetscFunctionReturn(PETSC_SUCCESS);
3032: }
3034: /*@
3035: DMLocalToGlobalBegin - begins updating global vectors from local vectors
3037: Neighbor-wise Collective
3039: Input Parameters:
3040: + dm - the `DM` object
3041: . l - the local vector
3042: . mode - if `INSERT_VALUES` then no parallel communication is used, if `ADD_VALUES` then all ghost points from the same base point accumulate into that base point.
3043: - g - the global vector
3045: Level: intermediate
3047: Notes:
3048: In the `ADD_VALUES` case you normally would zero the receiving vector before beginning this operation.
3050: `INSERT_VALUES is` not supported for `DMDA`, in that case simply compute the values directly into a global vector instead of a local one.
3052: Use `DMLocalToGlobalEnd()` to complete the communication process.
3054: `DMLocalToGlobal()` is a short form of `DMLocalToGlobalBegin()` and `DMLocalToGlobalEnd()`
3056: `DMLocalToGlobalHookAdd()` may be used to provide additional operations that are performed during the update process.
3058: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobal()`, `DMLocalToGlobalEnd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocal()`, `DMGlobalToLocalEnd()`, `DMGlobalToLocalBegin()`
3059: @*/
3060: PetscErrorCode DMLocalToGlobalBegin(DM dm, Vec l, InsertMode mode, Vec g)
3061: {
3062: PetscSF sf;
3063: PetscSection s, gs;
3064: DMLocalToGlobalHookLink link;
3065: Vec tmpl;
3066: const PetscScalar *lArray;
3067: PetscScalar *gArray;
3068: PetscBool isInsert, transform, l_inplace = PETSC_FALSE, g_inplace = PETSC_FALSE;
3069: PetscMemType lmtype = PETSC_MEMTYPE_HOST, gmtype = PETSC_MEMTYPE_HOST;
3071: PetscFunctionBegin;
3073: for (link = dm->ltoghook; link; link = link->next) {
3074: if (link->beginhook) PetscCall((*link->beginhook)(dm, l, mode, g, link->ctx));
3075: }
3076: PetscCall(DMLocalToGlobalHook_Constraints(dm, l, mode, g, NULL));
3077: PetscCall(DMGetSectionSF(dm, &sf));
3078: PetscCall(DMGetLocalSection(dm, &s));
3079: switch (mode) {
3080: case INSERT_VALUES:
3081: case INSERT_ALL_VALUES:
3082: case INSERT_BC_VALUES:
3083: isInsert = PETSC_TRUE;
3084: break;
3085: case ADD_VALUES:
3086: case ADD_ALL_VALUES:
3087: case ADD_BC_VALUES:
3088: isInsert = PETSC_FALSE;
3089: break;
3090: default:
3091: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", mode);
3092: }
3093: if ((sf && !isInsert) || (s && isInsert)) {
3094: PetscCall(DMHasBasisTransform(dm, &transform));
3095: if (transform) {
3096: PetscCall(DMGetNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3097: PetscCall(VecCopy(l, tmpl));
3098: PetscCall(DMPlexLocalToGlobalBasis(dm, tmpl));
3099: PetscCall(VecGetArrayRead(tmpl, &lArray));
3100: } else if (isInsert) {
3101: PetscCall(VecGetArrayRead(l, &lArray));
3102: } else {
3103: PetscCall(VecGetArrayReadAndMemType(l, &lArray, &lmtype));
3104: l_inplace = PETSC_TRUE;
3105: }
3106: if (s && isInsert) {
3107: PetscCall(VecGetArray(g, &gArray));
3108: } else {
3109: PetscCall(VecGetArrayAndMemType(g, &gArray, &gmtype));
3110: g_inplace = PETSC_TRUE;
3111: }
3112: if (sf && !isInsert) {
3113: PetscCall(PetscSFReduceWithMemTypeBegin(sf, MPIU_SCALAR, lmtype, lArray, gmtype, gArray, MPIU_SUM));
3114: } else if (s && isInsert) {
3115: PetscInt gStart, pStart, pEnd, p;
3117: PetscCall(DMGetGlobalSection(dm, &gs));
3118: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
3119: PetscCall(VecGetOwnershipRange(g, &gStart, NULL));
3120: for (p = pStart; p < pEnd; ++p) {
3121: PetscInt dof, gdof, cdof, gcdof, off, goff, d, e;
3123: PetscCall(PetscSectionGetDof(s, p, &dof));
3124: PetscCall(PetscSectionGetDof(gs, p, &gdof));
3125: PetscCall(PetscSectionGetConstraintDof(s, p, &cdof));
3126: PetscCall(PetscSectionGetConstraintDof(gs, p, &gcdof));
3127: PetscCall(PetscSectionGetOffset(s, p, &off));
3128: PetscCall(PetscSectionGetOffset(gs, p, &goff));
3129: /* Ignore off-process data and points with no global data */
3130: if (!gdof || goff < 0) continue;
3131: PetscCheck(dof == gdof, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Inconsistent sizes, p: %" PetscInt_FMT " dof: %" PetscInt_FMT " gdof: %" PetscInt_FMT " cdof: %" PetscInt_FMT " gcdof: %" PetscInt_FMT, p, dof, gdof, cdof, gcdof);
3132: /* If no constraints are enforced in the global vector */
3133: if (!gcdof) {
3134: for (d = 0; d < dof; ++d) gArray[goff - gStart + d] = lArray[off + d];
3135: /* If constraints are enforced in the global vector */
3136: } else if (cdof == gcdof) {
3137: const PetscInt *cdofs;
3138: PetscInt cind = 0;
3140: PetscCall(PetscSectionGetConstraintIndices(s, p, &cdofs));
3141: for (d = 0, e = 0; d < dof; ++d) {
3142: if ((cind < cdof) && (d == cdofs[cind])) {
3143: ++cind;
3144: continue;
3145: }
3146: gArray[goff - gStart + e++] = lArray[off + d];
3147: }
3148: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Inconsistent sizes, p: %" PetscInt_FMT " dof: %" PetscInt_FMT " gdof: %" PetscInt_FMT " cdof: %" PetscInt_FMT " gcdof: %" PetscInt_FMT, p, dof, gdof, cdof, gcdof);
3149: }
3150: }
3151: if (g_inplace) {
3152: PetscCall(VecRestoreArrayAndMemType(g, &gArray));
3153: } else {
3154: PetscCall(VecRestoreArray(g, &gArray));
3155: }
3156: if (transform) {
3157: PetscCall(VecRestoreArrayRead(tmpl, &lArray));
3158: PetscCall(DMRestoreNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3159: } else if (l_inplace) {
3160: PetscCall(VecRestoreArrayReadAndMemType(l, &lArray));
3161: } else {
3162: PetscCall(VecRestoreArrayRead(l, &lArray));
3163: }
3164: } else {
3165: PetscUseTypeMethod(dm, localtoglobalbegin, l, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), g);
3166: }
3167: PetscFunctionReturn(PETSC_SUCCESS);
3168: }
3170: /*@
3171: DMLocalToGlobalEnd - updates global vectors from local vectors
3173: Neighbor-wise Collective
3175: Input Parameters:
3176: + dm - the `DM` object
3177: . l - the local vector
3178: . mode - `INSERT_VALUES` or `ADD_VALUES`
3179: - g - the global vector
3181: Level: intermediate
3183: Note:
3184: See `DMLocalToGlobalBegin()` for full details
3186: .seealso: [](ch_dmbase), `DM`, `DMLocalToGlobalBegin()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocalEnd()`
3187: @*/
3188: PetscErrorCode DMLocalToGlobalEnd(DM dm, Vec l, InsertMode mode, Vec g)
3189: {
3190: PetscSF sf;
3191: PetscSection s;
3192: DMLocalToGlobalHookLink link;
3193: PetscBool isInsert, transform;
3195: PetscFunctionBegin;
3197: PetscCall(DMGetSectionSF(dm, &sf));
3198: PetscCall(DMGetLocalSection(dm, &s));
3199: switch (mode) {
3200: case INSERT_VALUES:
3201: case INSERT_ALL_VALUES:
3202: isInsert = PETSC_TRUE;
3203: break;
3204: case ADD_VALUES:
3205: case ADD_ALL_VALUES:
3206: isInsert = PETSC_FALSE;
3207: break;
3208: default:
3209: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid insertion mode %d", mode);
3210: }
3211: if (sf && !isInsert) {
3212: const PetscScalar *lArray;
3213: PetscScalar *gArray;
3214: Vec tmpl;
3216: PetscCall(DMHasBasisTransform(dm, &transform));
3217: if (transform) {
3218: PetscCall(DMGetNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3219: PetscCall(VecGetArrayRead(tmpl, &lArray));
3220: } else {
3221: PetscCall(VecGetArrayReadAndMemType(l, &lArray, NULL));
3222: }
3223: PetscCall(VecGetArrayAndMemType(g, &gArray, NULL));
3224: PetscCall(PetscSFReduceEnd(sf, MPIU_SCALAR, lArray, gArray, MPIU_SUM));
3225: if (transform) {
3226: PetscCall(VecRestoreArrayRead(tmpl, &lArray));
3227: PetscCall(DMRestoreNamedLocalVector(dm, "__petsc_dm_transform_local_copy", &tmpl));
3228: } else {
3229: PetscCall(VecRestoreArrayReadAndMemType(l, &lArray));
3230: }
3231: PetscCall(VecRestoreArrayAndMemType(g, &gArray));
3232: } else if (s && isInsert) {
3233: } else {
3234: PetscUseTypeMethod(dm, localtoglobalend, l, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), g);
3235: }
3236: for (link = dm->ltoghook; link; link = link->next) {
3237: if (link->endhook) PetscCall((*link->endhook)(dm, g, mode, l, link->ctx));
3238: }
3239: PetscFunctionReturn(PETSC_SUCCESS);
3240: }
3242: /*@
3243: DMLocalToLocalBegin - Begins the process of mapping values from a local vector (that include
3244: ghost points that contain irrelevant values) to another local vector where the ghost points
3245: in the second are set correctly from values on other MPI ranks.
3247: Neighbor-wise Collective
3249: Input Parameters:
3250: + dm - the `DM` object
3251: . g - the original local vector
3252: - mode - one of `INSERT_VALUES` or `ADD_VALUES`
3254: Output Parameter:
3255: . l - the local vector with correct ghost values
3257: Level: intermediate
3259: Note:
3260: Must be followed by `DMLocalToLocalEnd()`.
3262: .seealso: [](ch_dmbase), `DM`, `DMLocalToLocalEnd()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`
3263: @*/
3264: PetscErrorCode DMLocalToLocalBegin(DM dm, Vec g, InsertMode mode, Vec l)
3265: {
3266: PetscFunctionBegin;
3270: PetscUseTypeMethod(dm, localtolocalbegin, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
3271: PetscFunctionReturn(PETSC_SUCCESS);
3272: }
3274: /*@
3275: DMLocalToLocalEnd - Maps from a local vector to another local vector where the ghost
3276: points in the second are set correctly. Must be preceded by `DMLocalToLocalBegin()`.
3278: Neighbor-wise Collective
3280: Input Parameters:
3281: + dm - the `DM` object
3282: . g - the original local vector
3283: - mode - one of `INSERT_VALUES` or `ADD_VALUES`
3285: Output Parameter:
3286: . l - the local vector with correct ghost values
3288: Level: intermediate
3290: .seealso: [](ch_dmbase), `DM`, `DMLocalToLocalBegin()`, `DMCoarsen()`, `DMDestroy()`, `DMView()`, `DMCreateLocalVector()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`
3291: @*/
3292: PetscErrorCode DMLocalToLocalEnd(DM dm, Vec g, InsertMode mode, Vec l)
3293: {
3294: PetscFunctionBegin;
3298: PetscUseTypeMethod(dm, localtolocalend, g, mode == INSERT_ALL_VALUES ? INSERT_VALUES : (mode == ADD_ALL_VALUES ? ADD_VALUES : mode), l);
3299: PetscFunctionReturn(PETSC_SUCCESS);
3300: }
3302: /*@
3303: DMCoarsen - Coarsens a `DM` object using a standard, non-adaptive coarsening of the underlying mesh
3305: Collective
3307: Input Parameters:
3308: + dm - the `DM` object
3309: - comm - the communicator to contain the new `DM` object (or `MPI_COMM_NULL`)
3311: Output Parameter:
3312: . dmc - the coarsened `DM`
3314: Level: developer
3316: .seealso: [](ch_dmbase), `DM`, `DMRefine()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateDomainDecomposition()`,
3317: `DMCoarsenHookAdd()`, `DMCoarsenHookRemove()`
3318: @*/
3319: PetscErrorCode DMCoarsen(DM dm, MPI_Comm comm, DM *dmc)
3320: {
3321: DMCoarsenHookLink link;
3323: PetscFunctionBegin;
3325: PetscCall(PetscLogEventBegin(DM_Coarsen, dm, 0, 0, 0));
3326: PetscUseTypeMethod(dm, coarsen, comm, dmc);
3327: if (*dmc) {
3328: (*dmc)->bind_below = dm->bind_below; /* Propagate this from parent DM; otherwise -dm_bind_below will be useless for multigrid cases. */
3329: PetscCall(DMSetCoarseDM(dm, *dmc));
3330: (*dmc)->ops->creatematrix = dm->ops->creatematrix;
3331: PetscCall(PetscObjectCopyFortranFunctionPointers((PetscObject)dm, (PetscObject)*dmc));
3332: (*dmc)->ctx = dm->ctx;
3333: (*dmc)->levelup = dm->levelup;
3334: (*dmc)->leveldown = dm->leveldown + 1;
3335: PetscCall(DMSetMatType(*dmc, dm->mattype));
3336: for (link = dm->coarsenhook; link; link = link->next) {
3337: if (link->coarsenhook) PetscCall((*link->coarsenhook)(dm, *dmc, link->ctx));
3338: }
3339: }
3340: PetscCall(PetscLogEventEnd(DM_Coarsen, dm, 0, 0, 0));
3341: PetscCheck(*dmc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "NULL coarse mesh produced");
3342: PetscFunctionReturn(PETSC_SUCCESS);
3343: }
3345: /*@C
3346: DMCoarsenHookAdd - adds a callback to be run when restricting a nonlinear problem to the coarse grid
3348: Logically Collective; No Fortran Support
3350: Input Parameters:
3351: + fine - `DM` on which to run a hook when restricting to a coarser level
3352: . coarsenhook - function to run when setting up a coarser level
3353: . restricthook - function to run to update data on coarser levels (called once per `SNESSolve()`)
3354: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3356: Calling sequence of `coarsenhook`:
3357: + fine - fine level `DM`
3358: . coarse - coarse level `DM` to restrict problem to
3359: - ctx - optional user-defined function context
3361: Calling sequence of `restricthook`:
3362: + fine - fine level `DM`
3363: . mrestrict - matrix restricting a fine-level solution to the coarse grid, usually the transpose of the interpolation
3364: . rscale - scaling vector for restriction
3365: . inject - matrix restricting by injection
3366: . coarse - coarse level DM to update
3367: - ctx - optional user-defined function context
3369: Level: advanced
3371: Notes:
3372: This function is only needed if auxiliary data, attached to the `DM` with `PetscObjectCompose()`, needs to be set up or passed from the fine `DM` to the coarse `DM`.
3374: If this function is called multiple times, the hooks will be run in the order they are added.
3376: In order to compose with nonlinear preconditioning without duplicating storage, the hook should be implemented to
3377: extract the finest level information from its context (instead of from the `SNES`).
3379: The hooks are automatically called by `DMRestrict()`
3381: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookRemove()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
3382: @*/
3383: PetscErrorCode DMCoarsenHookAdd(DM fine, PetscErrorCode (*coarsenhook)(DM fine, DM coarse, void *ctx), PetscErrorCode (*restricthook)(DM fine, Mat mrestrict, Vec rscale, Mat inject, DM coarse, void *ctx), void *ctx)
3384: {
3385: DMCoarsenHookLink link, *p;
3387: PetscFunctionBegin;
3389: for (p = &fine->coarsenhook; *p; p = &(*p)->next) { /* Scan to the end of the current list of hooks */
3390: if ((*p)->coarsenhook == coarsenhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) PetscFunctionReturn(PETSC_SUCCESS);
3391: }
3392: PetscCall(PetscNew(&link));
3393: link->coarsenhook = coarsenhook;
3394: link->restricthook = restricthook;
3395: link->ctx = ctx;
3396: link->next = NULL;
3397: *p = link;
3398: PetscFunctionReturn(PETSC_SUCCESS);
3399: }
3401: /*@C
3402: DMCoarsenHookRemove - remove a callback set with `DMCoarsenHookAdd()`
3404: Logically Collective; No Fortran Support
3406: Input Parameters:
3407: + fine - `DM` on which to run a hook when restricting to a coarser level
3408: . coarsenhook - function to run when setting up a coarser level
3409: . restricthook - function to run to update data on coarser levels
3410: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3412: Level: advanced
3414: Notes:
3415: This function does nothing if the `coarsenhook` is not in the list.
3417: See `DMCoarsenHookAdd()` for the calling sequence of `coarsenhook` and `restricthook`
3419: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`
3420: @*/
3421: PetscErrorCode DMCoarsenHookRemove(DM fine, PetscErrorCode (*coarsenhook)(DM, DM, void *), PetscErrorCode (*restricthook)(DM, Mat, Vec, Mat, DM, void *), void *ctx)
3422: {
3423: DMCoarsenHookLink link, *p;
3425: PetscFunctionBegin;
3427: for (p = &fine->coarsenhook; *p; p = &(*p)->next) { /* Search the list of current hooks */
3428: if ((*p)->coarsenhook == coarsenhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) {
3429: link = *p;
3430: *p = link->next;
3431: PetscCall(PetscFree(link));
3432: break;
3433: }
3434: }
3435: PetscFunctionReturn(PETSC_SUCCESS);
3436: }
3438: /*@
3439: DMRestrict - restricts user-defined problem data to a coarser `DM` by running hooks registered by `DMCoarsenHookAdd()`
3441: Collective if any hooks are
3443: Input Parameters:
3444: + fine - finer `DM` from which the data is obtained
3445: . restrct - restriction matrix, apply using `MatRestrict()`, usually the transpose of the interpolation
3446: . rscale - scaling vector for restriction
3447: . inject - injection matrix, also use `MatRestrict()`
3448: - coarse - coarser `DM` to update
3450: Level: developer
3452: Developer Note:
3453: Though this routine is called `DMRestrict()` the hooks are added with `DMCoarsenHookAdd()`, a consistent terminology would be better
3455: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `MatRestrict()`, `DMInterpolate()`, `DMRefineHookAdd()`
3456: @*/
3457: PetscErrorCode DMRestrict(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse)
3458: {
3459: DMCoarsenHookLink link;
3461: PetscFunctionBegin;
3462: for (link = fine->coarsenhook; link; link = link->next) {
3463: if (link->restricthook) PetscCall((*link->restricthook)(fine, restrct, rscale, inject, coarse, link->ctx));
3464: }
3465: PetscFunctionReturn(PETSC_SUCCESS);
3466: }
3468: /*@C
3469: DMSubDomainHookAdd - adds a callback to be run when restricting a problem to subdomain `DM`s with `DMCreateDomainDecomposition()`
3471: Logically Collective; No Fortran Support
3473: Input Parameters:
3474: + global - global `DM`
3475: . ddhook - function to run to pass data to the decomposition `DM` upon its creation
3476: . restricthook - function to run to update data on block solve (at the beginning of the block solve)
3477: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3479: Calling sequence of `ddhook`:
3480: + global - global `DM`
3481: . block - subdomain `DM`
3482: - ctx - optional user-defined function context
3484: Calling sequence of `restricthook`:
3485: + global - global `DM`
3486: . out - scatter to the outer (with ghost and overlap points) sub vector
3487: . in - scatter to sub vector values only owned locally
3488: . block - subdomain `DM`
3489: - ctx - optional user-defined function context
3491: Level: advanced
3493: Notes:
3494: This function can be used if auxiliary data needs to be set up on subdomain `DM`s.
3496: If this function is called multiple times, the hooks will be run in the order they are added.
3498: In order to compose with nonlinear preconditioning without duplicating storage, the hook should be implemented to
3499: extract the global information from its context (instead of from the `SNES`).
3501: Developer Note:
3502: It is unclear what "block solve" means within the definition of `restricthook`
3504: .seealso: [](ch_dmbase), `DM`, `DMSubDomainHookRemove()`, `DMRefineHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`, `DMCreateDomainDecomposition()`
3505: @*/
3506: PetscErrorCode DMSubDomainHookAdd(DM global, PetscErrorCode (*ddhook)(DM global, DM block, void *ctx), PetscErrorCode (*restricthook)(DM global, VecScatter out, VecScatter in, DM block, void *ctx), void *ctx)
3507: {
3508: DMSubDomainHookLink link, *p;
3510: PetscFunctionBegin;
3512: for (p = &global->subdomainhook; *p; p = &(*p)->next) { /* Scan to the end of the current list of hooks */
3513: if ((*p)->ddhook == ddhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) PetscFunctionReturn(PETSC_SUCCESS);
3514: }
3515: PetscCall(PetscNew(&link));
3516: link->restricthook = restricthook;
3517: link->ddhook = ddhook;
3518: link->ctx = ctx;
3519: link->next = NULL;
3520: *p = link;
3521: PetscFunctionReturn(PETSC_SUCCESS);
3522: }
3524: /*@C
3525: DMSubDomainHookRemove - remove a callback from the list to be run when restricting a problem to subdomain `DM`s with `DMCreateDomainDecomposition()`
3527: Logically Collective; No Fortran Support
3529: Input Parameters:
3530: + global - global `DM`
3531: . ddhook - function to run to pass data to the decomposition `DM` upon its creation
3532: . restricthook - function to run to update data on block solve (at the beginning of the block solve)
3533: - ctx - [optional] user-defined context for provide data for the hooks (may be `NULL`)
3535: Level: advanced
3537: Note:
3538: See `DMSubDomainHookAdd()` for the calling sequences of `ddhook` and `restricthook`
3540: .seealso: [](ch_dmbase), `DM`, `DMSubDomainHookAdd()`, `SNESFASGetInterpolation()`, `SNESFASGetInjection()`, `PetscObjectCompose()`, `PetscContainerCreate()`,
3541: `DMCreateDomainDecomposition()`
3542: @*/
3543: PetscErrorCode DMSubDomainHookRemove(DM global, PetscErrorCode (*ddhook)(DM, DM, void *), PetscErrorCode (*restricthook)(DM, VecScatter, VecScatter, DM, void *), void *ctx)
3544: {
3545: DMSubDomainHookLink link, *p;
3547: PetscFunctionBegin;
3549: for (p = &global->subdomainhook; *p; p = &(*p)->next) { /* Search the list of current hooks */
3550: if ((*p)->ddhook == ddhook && (*p)->restricthook == restricthook && (*p)->ctx == ctx) {
3551: link = *p;
3552: *p = link->next;
3553: PetscCall(PetscFree(link));
3554: break;
3555: }
3556: }
3557: PetscFunctionReturn(PETSC_SUCCESS);
3558: }
3560: /*@
3561: DMSubDomainRestrict - restricts user-defined problem data to a subdomain `DM` by running hooks registered by `DMSubDomainHookAdd()`
3563: Collective if any hooks are
3565: Input Parameters:
3566: + global - The global `DM` to use as a base
3567: . oscatter - The scatter from domain global vector filling subdomain global vector with overlap
3568: . gscatter - The scatter from domain global vector filling subdomain local vector with ghosts
3569: - subdm - The subdomain `DM` to update
3571: Level: developer
3573: .seealso: [](ch_dmbase), `DM`, `DMCoarsenHookAdd()`, `MatRestrict()`, `DMCreateDomainDecomposition()`
3574: @*/
3575: PetscErrorCode DMSubDomainRestrict(DM global, VecScatter oscatter, VecScatter gscatter, DM subdm)
3576: {
3577: DMSubDomainHookLink link;
3579: PetscFunctionBegin;
3580: for (link = global->subdomainhook; link; link = link->next) {
3581: if (link->restricthook) PetscCall((*link->restricthook)(global, oscatter, gscatter, subdm, link->ctx));
3582: }
3583: PetscFunctionReturn(PETSC_SUCCESS);
3584: }
3586: /*@
3587: DMGetCoarsenLevel - Gets the number of coarsenings that have generated this `DM`.
3589: Not Collective
3591: Input Parameter:
3592: . dm - the `DM` object
3594: Output Parameter:
3595: . level - number of coarsenings
3597: Level: developer
3599: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMSetCoarsenLevel()`, `DMGetRefineLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3600: @*/
3601: PetscErrorCode DMGetCoarsenLevel(DM dm, PetscInt *level)
3602: {
3603: PetscFunctionBegin;
3605: PetscAssertPointer(level, 2);
3606: *level = dm->leveldown;
3607: PetscFunctionReturn(PETSC_SUCCESS);
3608: }
3610: /*@
3611: DMSetCoarsenLevel - Sets the number of coarsenings that have generated this `DM`.
3613: Collective
3615: Input Parameters:
3616: + dm - the `DM` object
3617: - level - number of coarsenings
3619: Level: developer
3621: Note:
3622: This is rarely used directly, the information is automatically set when a `DM` is created with `DMCoarsen()`
3624: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMGetCoarsenLevel()`, `DMGetRefineLevel()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3625: @*/
3626: PetscErrorCode DMSetCoarsenLevel(DM dm, PetscInt level)
3627: {
3628: PetscFunctionBegin;
3630: dm->leveldown = level;
3631: PetscFunctionReturn(PETSC_SUCCESS);
3632: }
3634: /*@
3635: DMRefineHierarchy - Refines a `DM` object, all levels at once
3637: Collective
3639: Input Parameters:
3640: + dm - the `DM` object
3641: - nlevels - the number of levels of refinement
3643: Output Parameter:
3644: . dmf - the refined `DM` hierarchy
3646: Level: developer
3648: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMCoarsenHierarchy()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3649: @*/
3650: PetscErrorCode DMRefineHierarchy(DM dm, PetscInt nlevels, DM dmf[])
3651: {
3652: PetscFunctionBegin;
3654: PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
3655: if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
3656: PetscAssertPointer(dmf, 3);
3657: if (dm->ops->refine && !dm->ops->refinehierarchy) {
3658: PetscInt i;
3660: PetscCall(DMRefine(dm, PetscObjectComm((PetscObject)dm), &dmf[0]));
3661: for (i = 1; i < nlevels; i++) PetscCall(DMRefine(dmf[i - 1], PetscObjectComm((PetscObject)dm), &dmf[i]));
3662: } else PetscUseTypeMethod(dm, refinehierarchy, nlevels, dmf);
3663: PetscFunctionReturn(PETSC_SUCCESS);
3664: }
3666: /*@
3667: DMCoarsenHierarchy - Coarsens a `DM` object, all levels at once
3669: Collective
3671: Input Parameters:
3672: + dm - the `DM` object
3673: - nlevels - the number of levels of coarsening
3675: Output Parameter:
3676: . dmc - the coarsened `DM` hierarchy
3678: Level: developer
3680: .seealso: [](ch_dmbase), `DM`, `DMCoarsen()`, `DMRefineHierarchy()`, `DMDestroy()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`
3681: @*/
3682: PetscErrorCode DMCoarsenHierarchy(DM dm, PetscInt nlevels, DM dmc[])
3683: {
3684: PetscFunctionBegin;
3686: PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
3687: if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
3688: PetscAssertPointer(dmc, 3);
3689: if (dm->ops->coarsen && !dm->ops->coarsenhierarchy) {
3690: PetscInt i;
3692: PetscCall(DMCoarsen(dm, PetscObjectComm((PetscObject)dm), &dmc[0]));
3693: for (i = 1; i < nlevels; i++) PetscCall(DMCoarsen(dmc[i - 1], PetscObjectComm((PetscObject)dm), &dmc[i]));
3694: } else PetscUseTypeMethod(dm, coarsenhierarchy, nlevels, dmc);
3695: PetscFunctionReturn(PETSC_SUCCESS);
3696: }
3698: /*@C
3699: DMSetApplicationContextDestroy - Sets a user function that will be called to destroy the application context when the `DM` is destroyed
3701: Logically Collective if the function is collective
3703: Input Parameters:
3704: + dm - the `DM` object
3705: - destroy - the destroy function, see `PetscCtxDestroyFn` for the calling sequence
3707: Level: intermediate
3709: .seealso: [](ch_dmbase), `DM`, `DMSetApplicationContext()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`,
3710: `DMGetApplicationContext()`, `PetscCtxDestroyFn`
3711: @*/
3712: PetscErrorCode DMSetApplicationContextDestroy(DM dm, PetscCtxDestroyFn *destroy)
3713: {
3714: PetscFunctionBegin;
3716: dm->ctxdestroy = destroy;
3717: PetscFunctionReturn(PETSC_SUCCESS);
3718: }
3720: /*@
3721: DMSetApplicationContext - Set a user context into a `DM` object
3723: Not Collective
3725: Input Parameters:
3726: + dm - the `DM` object
3727: - ctx - the user context
3729: Level: intermediate
3731: Note:
3732: A user context is a way to pass problem specific information that is accessible whenever the `DM` is available
3733: In a multilevel solver, the user context is shared by all the `DM` in the hierarchy; it is thus not advisable
3734: to store objects that represent discretized quantities inside the context.
3736: Fortran Note:
3737: This only works when `ctx` is a Fortran derived type (it cannot be a `PetscObject`), we recommend writing a Fortran interface definition for this
3738: function that tells the Fortran compiler the derived data type that is passed in as the `ctx` argument. See `DMGetApplicationContext()` for
3739: an example.
3741: .seealso: [](ch_dmbase), `DM`, `DMGetApplicationContext()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`
3742: @*/
3743: PetscErrorCode DMSetApplicationContext(DM dm, void *ctx)
3744: {
3745: PetscFunctionBegin;
3747: dm->ctx = ctx;
3748: PetscFunctionReturn(PETSC_SUCCESS);
3749: }
3751: /*@
3752: DMGetApplicationContext - Gets a user context from a `DM` object provided with `DMSetApplicationContext()`
3754: Not Collective
3756: Input Parameter:
3757: . dm - the `DM` object
3759: Output Parameter:
3760: . ctx - a pointer to the user context
3762: Level: intermediate
3764: Note:
3765: A user context is a way to pass problem specific information that is accessible whenever the `DM` is available
3767: Fortran Notes:
3768: This only works when the context is a Fortran derived type (it cannot be a `PetscObject`) and you **must** write a Fortran interface definition for this
3769: function that tells the Fortran compiler the derived data type that is returned as the `ctx` argument. For example,
3770: .vb
3771: Interface DMGetApplicationContext
3772: Subroutine DMGetApplicationContext(dm,ctx,ierr)
3773: #include <petsc/finclude/petscdm.h>
3774: use petscdm
3775: DM dm
3776: type(tUsertype), pointer :: ctx
3777: PetscErrorCode ierr
3778: End Subroutine
3779: End Interface DMGetApplicationContext
3780: .ve
3782: The prototype for `ctx` must be
3783: .vb
3784: type(tUsertype), pointer :: ctx
3785: .ve
3787: .seealso: [](ch_dmbase), `DM`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`
3788: @*/
3789: PetscErrorCode DMGetApplicationContext(DM dm, PeCtx ctx)
3790: {
3791: PetscFunctionBegin;
3793: *(void **)ctx = dm->ctx;
3794: PetscFunctionReturn(PETSC_SUCCESS);
3795: }
3797: /*@C
3798: DMSetVariableBounds - sets a function to compute the lower and upper bound vectors for `SNESVI`.
3800: Logically Collective
3802: Input Parameters:
3803: + dm - the DM object
3804: - f - the function that computes variable bounds used by `SNESVI` (use `NULL` to cancel a previous function that was set)
3806: Level: intermediate
3808: Developer Note:
3809: Should be called `DMSetComputeVIBounds()` or something similar
3811: .seealso: [](ch_dmbase), `DM`, `DMComputeVariableBounds()`, `DMHasVariableBounds()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMGetApplicationContext()`,
3812: `DMSetJacobian()`
3813: @*/
3814: PetscErrorCode DMSetVariableBounds(DM dm, PetscErrorCode (*f)(DM, Vec, Vec))
3815: {
3816: PetscFunctionBegin;
3818: dm->ops->computevariablebounds = f;
3819: PetscFunctionReturn(PETSC_SUCCESS);
3820: }
3822: /*@
3823: DMHasVariableBounds - does the `DM` object have a variable bounds function?
3825: Not Collective
3827: Input Parameter:
3828: . dm - the `DM` object to destroy
3830: Output Parameter:
3831: . flg - `PETSC_TRUE` if the variable bounds function exists
3833: Level: developer
3835: .seealso: [](ch_dmbase), `DM`, `DMComputeVariableBounds()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMGetApplicationContext()`
3836: @*/
3837: PetscErrorCode DMHasVariableBounds(DM dm, PetscBool *flg)
3838: {
3839: PetscFunctionBegin;
3841: PetscAssertPointer(flg, 2);
3842: *flg = (dm->ops->computevariablebounds) ? PETSC_TRUE : PETSC_FALSE;
3843: PetscFunctionReturn(PETSC_SUCCESS);
3844: }
3846: /*@
3847: DMComputeVariableBounds - compute variable bounds used by `SNESVI`.
3849: Logically Collective
3851: Input Parameter:
3852: . dm - the `DM` object
3854: Output Parameters:
3855: + xl - lower bound
3856: - xu - upper bound
3858: Level: advanced
3860: Note:
3861: This is generally not called by users. It calls the function provided by the user with DMSetVariableBounds()
3863: .seealso: [](ch_dmbase), `DM`, `DMHasVariableBounds()`, `DMView()`, `DMCreateGlobalVector()`, `DMCreateInterpolation()`, `DMCreateColoring()`, `DMCreateMatrix()`, `DMCreateMassMatrix()`, `DMGetApplicationContext()`
3864: @*/
3865: PetscErrorCode DMComputeVariableBounds(DM dm, Vec xl, Vec xu)
3866: {
3867: PetscFunctionBegin;
3871: PetscUseTypeMethod(dm, computevariablebounds, xl, xu);
3872: PetscFunctionReturn(PETSC_SUCCESS);
3873: }
3875: /*@
3876: DMHasColoring - does the `DM` object have a method of providing a coloring?
3878: Not Collective
3880: Input Parameter:
3881: . dm - the DM object
3883: Output Parameter:
3884: . flg - `PETSC_TRUE` if the `DM` has facilities for `DMCreateColoring()`.
3886: Level: developer
3888: .seealso: [](ch_dmbase), `DM`, `DMCreateColoring()`
3889: @*/
3890: PetscErrorCode DMHasColoring(DM dm, PetscBool *flg)
3891: {
3892: PetscFunctionBegin;
3894: PetscAssertPointer(flg, 2);
3895: *flg = (dm->ops->getcoloring) ? PETSC_TRUE : PETSC_FALSE;
3896: PetscFunctionReturn(PETSC_SUCCESS);
3897: }
3899: /*@
3900: DMHasCreateRestriction - does the `DM` object have a method of providing a restriction?
3902: Not Collective
3904: Input Parameter:
3905: . dm - the `DM` object
3907: Output Parameter:
3908: . flg - `PETSC_TRUE` if the `DM` has facilities for `DMCreateRestriction()`.
3910: Level: developer
3912: .seealso: [](ch_dmbase), `DM`, `DMCreateRestriction()`, `DMHasCreateInterpolation()`, `DMHasCreateInjection()`
3913: @*/
3914: PetscErrorCode DMHasCreateRestriction(DM dm, PetscBool *flg)
3915: {
3916: PetscFunctionBegin;
3918: PetscAssertPointer(flg, 2);
3919: *flg = (dm->ops->createrestriction) ? PETSC_TRUE : PETSC_FALSE;
3920: PetscFunctionReturn(PETSC_SUCCESS);
3921: }
3923: /*@
3924: DMHasCreateInjection - does the `DM` object have a method of providing an injection?
3926: Not Collective
3928: Input Parameter:
3929: . dm - the `DM` object
3931: Output Parameter:
3932: . flg - `PETSC_TRUE` if the `DM` has facilities for `DMCreateInjection()`.
3934: Level: developer
3936: .seealso: [](ch_dmbase), `DM`, `DMCreateInjection()`, `DMHasCreateRestriction()`, `DMHasCreateInterpolation()`
3937: @*/
3938: PetscErrorCode DMHasCreateInjection(DM dm, PetscBool *flg)
3939: {
3940: PetscFunctionBegin;
3942: PetscAssertPointer(flg, 2);
3943: if (dm->ops->hascreateinjection) PetscUseTypeMethod(dm, hascreateinjection, flg);
3944: else *flg = (dm->ops->createinjection) ? PETSC_TRUE : PETSC_FALSE;
3945: PetscFunctionReturn(PETSC_SUCCESS);
3946: }
3948: PetscFunctionList DMList = NULL;
3949: PetscBool DMRegisterAllCalled = PETSC_FALSE;
3951: /*@
3952: DMSetType - Builds a `DM`, for a particular `DM` implementation.
3954: Collective
3956: Input Parameters:
3957: + dm - The `DM` object
3958: - method - The name of the `DMType`, for example `DMDA`, `DMPLEX`
3960: Options Database Key:
3961: . -dm_type <type> - Sets the `DM` type; use -help for a list of available types
3963: Level: intermediate
3965: Note:
3966: Of the `DM` is constructed by directly calling a function to construct a particular `DM`, for example, `DMDACreate2d()` or `DMPlexCreateBoxMesh()`
3968: .seealso: [](ch_dmbase), `DM`, `DMType`, `DMDA`, `DMPLEX`, `DMGetType()`, `DMCreate()`, `DMDACreate2d()`
3969: @*/
3970: PetscErrorCode DMSetType(DM dm, DMType method)
3971: {
3972: PetscErrorCode (*r)(DM);
3973: PetscBool match;
3975: PetscFunctionBegin;
3977: PetscCall(PetscObjectTypeCompare((PetscObject)dm, method, &match));
3978: if (match) PetscFunctionReturn(PETSC_SUCCESS);
3980: PetscCall(DMRegisterAll());
3981: PetscCall(PetscFunctionListFind(DMList, method, &r));
3982: PetscCheck(r, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown DM type: %s", method);
3984: PetscTryTypeMethod(dm, destroy);
3985: PetscCall(PetscMemzero(dm->ops, sizeof(*dm->ops)));
3986: PetscCall(PetscObjectChangeTypeName((PetscObject)dm, method));
3987: PetscCall((*r)(dm));
3988: PetscFunctionReturn(PETSC_SUCCESS);
3989: }
3991: /*@
3992: DMGetType - Gets the `DM` type name (as a string) from the `DM`.
3994: Not Collective
3996: Input Parameter:
3997: . dm - The `DM`
3999: Output Parameter:
4000: . type - The `DMType` name
4002: Level: intermediate
4004: .seealso: [](ch_dmbase), `DM`, `DMType`, `DMDA`, `DMPLEX`, `DMSetType()`, `DMCreate()`
4005: @*/
4006: PetscErrorCode DMGetType(DM dm, DMType *type)
4007: {
4008: PetscFunctionBegin;
4010: PetscAssertPointer(type, 2);
4011: PetscCall(DMRegisterAll());
4012: *type = ((PetscObject)dm)->type_name;
4013: PetscFunctionReturn(PETSC_SUCCESS);
4014: }
4016: /*@
4017: DMConvert - Converts a `DM` to another `DM`, either of the same or different type.
4019: Collective
4021: Input Parameters:
4022: + dm - the `DM`
4023: - newtype - new `DM` type (use "same" for the same type)
4025: Output Parameter:
4026: . M - pointer to new `DM`
4028: Level: intermediate
4030: Note:
4031: Cannot be used to convert a sequential `DM` to a parallel or a parallel to sequential,
4032: the MPI communicator of the generated `DM` is always the same as the communicator
4033: of the input `DM`.
4035: .seealso: [](ch_dmbase), `DM`, `DMSetType()`, `DMCreate()`, `DMClone()`
4036: @*/
4037: PetscErrorCode DMConvert(DM dm, DMType newtype, DM *M)
4038: {
4039: DM B;
4040: char convname[256];
4041: PetscBool sametype /*, issame */;
4043: PetscFunctionBegin;
4046: PetscAssertPointer(M, 3);
4047: PetscCall(PetscObjectTypeCompare((PetscObject)dm, newtype, &sametype));
4048: /* PetscCall(PetscStrcmp(newtype, "same", &issame)); */
4049: if (sametype) {
4050: *M = dm;
4051: PetscCall(PetscObjectReference((PetscObject)dm));
4052: PetscFunctionReturn(PETSC_SUCCESS);
4053: } else {
4054: PetscErrorCode (*conv)(DM, DMType, DM *) = NULL;
4056: /*
4057: Order of precedence:
4058: 1) See if a specialized converter is known to the current DM.
4059: 2) See if a specialized converter is known to the desired DM class.
4060: 3) See if a good general converter is registered for the desired class
4061: 4) See if a good general converter is known for the current matrix.
4062: 5) Use a really basic converter.
4063: */
4065: /* 1) See if a specialized converter is known to the current DM and the desired class */
4066: PetscCall(PetscStrncpy(convname, "DMConvert_", sizeof(convname)));
4067: PetscCall(PetscStrlcat(convname, ((PetscObject)dm)->type_name, sizeof(convname)));
4068: PetscCall(PetscStrlcat(convname, "_", sizeof(convname)));
4069: PetscCall(PetscStrlcat(convname, newtype, sizeof(convname)));
4070: PetscCall(PetscStrlcat(convname, "_C", sizeof(convname)));
4071: PetscCall(PetscObjectQueryFunction((PetscObject)dm, convname, &conv));
4072: if (conv) goto foundconv;
4074: /* 2) See if a specialized converter is known to the desired DM class. */
4075: PetscCall(DMCreate(PetscObjectComm((PetscObject)dm), &B));
4076: PetscCall(DMSetType(B, newtype));
4077: PetscCall(PetscStrncpy(convname, "DMConvert_", sizeof(convname)));
4078: PetscCall(PetscStrlcat(convname, ((PetscObject)dm)->type_name, sizeof(convname)));
4079: PetscCall(PetscStrlcat(convname, "_", sizeof(convname)));
4080: PetscCall(PetscStrlcat(convname, newtype, sizeof(convname)));
4081: PetscCall(PetscStrlcat(convname, "_C", sizeof(convname)));
4082: PetscCall(PetscObjectQueryFunction((PetscObject)B, convname, &conv));
4083: if (conv) {
4084: PetscCall(DMDestroy(&B));
4085: goto foundconv;
4086: }
4088: #if 0
4089: /* 3) See if a good general converter is registered for the desired class */
4090: conv = B->ops->convertfrom;
4091: PetscCall(DMDestroy(&B));
4092: if (conv) goto foundconv;
4094: /* 4) See if a good general converter is known for the current matrix */
4095: if (dm->ops->convert) {
4096: conv = dm->ops->convert;
4097: }
4098: if (conv) goto foundconv;
4099: #endif
4101: /* 5) Use a really basic converter. */
4102: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "No conversion possible between DM types %s and %s", ((PetscObject)dm)->type_name, newtype);
4104: foundconv:
4105: PetscCall(PetscLogEventBegin(DM_Convert, dm, 0, 0, 0));
4106: PetscCall((*conv)(dm, newtype, M));
4107: /* Things that are independent of DM type: We should consult DMClone() here */
4108: {
4109: const PetscReal *maxCell, *Lstart, *L;
4111: PetscCall(DMGetPeriodicity(dm, &maxCell, &Lstart, &L));
4112: PetscCall(DMSetPeriodicity(*M, maxCell, Lstart, L));
4113: (*M)->prealloc_only = dm->prealloc_only;
4114: PetscCall(PetscFree((*M)->vectype));
4115: PetscCall(PetscStrallocpy(dm->vectype, (char **)&(*M)->vectype));
4116: PetscCall(PetscFree((*M)->mattype));
4117: PetscCall(PetscStrallocpy(dm->mattype, (char **)&(*M)->mattype));
4118: }
4119: PetscCall(PetscLogEventEnd(DM_Convert, dm, 0, 0, 0));
4120: }
4121: PetscCall(PetscObjectStateIncrease((PetscObject)*M));
4122: PetscFunctionReturn(PETSC_SUCCESS);
4123: }
4125: /*@C
4126: DMRegister - Adds a new `DM` type implementation
4128: Not Collective, No Fortran Support
4130: Input Parameters:
4131: + sname - The name of a new user-defined creation routine
4132: - function - The creation routine itself
4134: Level: advanced
4136: Note:
4137: `DMRegister()` may be called multiple times to add several user-defined `DM`s
4139: Example Usage:
4140: .vb
4141: DMRegister("my_da", MyDMCreate);
4142: .ve
4144: Then, your `DM` type can be chosen with the procedural interface via
4145: .vb
4146: DMCreate(MPI_Comm, DM *);
4147: DMSetType(DM,"my_da");
4148: .ve
4149: or at runtime via the option
4150: .vb
4151: -da_type my_da
4152: .ve
4154: .seealso: [](ch_dmbase), `DM`, `DMType`, `DMSetType()`, `DMRegisterAll()`, `DMRegisterDestroy()`
4155: @*/
4156: PetscErrorCode DMRegister(const char sname[], PetscErrorCode (*function)(DM))
4157: {
4158: PetscFunctionBegin;
4159: PetscCall(DMInitializePackage());
4160: PetscCall(PetscFunctionListAdd(&DMList, sname, function));
4161: PetscFunctionReturn(PETSC_SUCCESS);
4162: }
4164: /*@
4165: DMLoad - Loads a DM that has been stored in binary with `DMView()`.
4167: Collective
4169: Input Parameters:
4170: + newdm - the newly loaded `DM`, this needs to have been created with `DMCreate()` or
4171: some related function before a call to `DMLoad()`.
4172: - viewer - binary file viewer, obtained from `PetscViewerBinaryOpen()` or
4173: `PETSCVIEWERHDF5` file viewer, obtained from `PetscViewerHDF5Open()`
4175: Level: intermediate
4177: Notes:
4178: The type is determined by the data in the file, any type set into the DM before this call is ignored.
4180: Using `PETSCVIEWERHDF5` type with `PETSC_VIEWER_HDF5_PETSC` format, one can save multiple `DMPLEX`
4181: meshes in a single HDF5 file. This in turn requires one to name the `DMPLEX` object with `PetscObjectSetName()`
4182: before saving it with `DMView()` and before loading it with `DMLoad()` for identification of the mesh object.
4184: .seealso: [](ch_dmbase), `DM`, `PetscViewerBinaryOpen()`, `DMView()`, `MatLoad()`, `VecLoad()`
4185: @*/
4186: PetscErrorCode DMLoad(DM newdm, PetscViewer viewer)
4187: {
4188: PetscBool isbinary, ishdf5;
4190: PetscFunctionBegin;
4193: PetscCall(PetscViewerCheckReadable(viewer));
4194: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
4195: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
4196: PetscCall(PetscLogEventBegin(DM_Load, viewer, 0, 0, 0));
4197: if (isbinary) {
4198: PetscInt classid;
4199: char type[256];
4201: PetscCall(PetscViewerBinaryRead(viewer, &classid, 1, NULL, PETSC_INT));
4202: PetscCheck(classid == DM_FILE_CLASSID, PetscObjectComm((PetscObject)newdm), PETSC_ERR_ARG_WRONG, "Not DM next in file, classid found %" PetscInt_FMT, classid);
4203: PetscCall(PetscViewerBinaryRead(viewer, type, 256, NULL, PETSC_CHAR));
4204: PetscCall(DMSetType(newdm, type));
4205: PetscTryTypeMethod(newdm, load, viewer);
4206: } else if (ishdf5) {
4207: PetscTryTypeMethod(newdm, load, viewer);
4208: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerBinaryOpen() or PetscViewerHDF5Open()");
4209: PetscCall(PetscLogEventEnd(DM_Load, viewer, 0, 0, 0));
4210: PetscFunctionReturn(PETSC_SUCCESS);
4211: }
4213: /* FEM Support */
4215: PetscErrorCode DMPrintCellIndices(PetscInt c, const char name[], PetscInt len, const PetscInt x[])
4216: {
4217: PetscInt f;
4219: PetscFunctionBegin;
4220: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4221: for (f = 0; f < len; ++f) PetscCall(PetscPrintf(PETSC_COMM_SELF, " | %" PetscInt_FMT " |\n", x[f]));
4222: PetscFunctionReturn(PETSC_SUCCESS);
4223: }
4225: PetscErrorCode DMPrintCellVector(PetscInt c, const char name[], PetscInt len, const PetscScalar x[])
4226: {
4227: PetscInt f;
4229: PetscFunctionBegin;
4230: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4231: for (f = 0; f < len; ++f) PetscCall(PetscPrintf(PETSC_COMM_SELF, " | %g |\n", (double)PetscRealPart(x[f])));
4232: PetscFunctionReturn(PETSC_SUCCESS);
4233: }
4235: PetscErrorCode DMPrintCellVectorReal(PetscInt c, const char name[], PetscInt len, const PetscReal x[])
4236: {
4237: PetscInt f;
4239: PetscFunctionBegin;
4240: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4241: for (f = 0; f < len; ++f) PetscCall(PetscPrintf(PETSC_COMM_SELF, " | %g |\n", (double)x[f]));
4242: PetscFunctionReturn(PETSC_SUCCESS);
4243: }
4245: PetscErrorCode DMPrintCellMatrix(PetscInt c, const char name[], PetscInt rows, PetscInt cols, const PetscScalar A[])
4246: {
4247: PetscInt f, g;
4249: PetscFunctionBegin;
4250: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Cell %" PetscInt_FMT " Element %s\n", c, name));
4251: for (f = 0; f < rows; ++f) {
4252: PetscCall(PetscPrintf(PETSC_COMM_SELF, " |"));
4253: for (g = 0; g < cols; ++g) PetscCall(PetscPrintf(PETSC_COMM_SELF, " % 9.5g", (double)PetscRealPart(A[f * cols + g])));
4254: PetscCall(PetscPrintf(PETSC_COMM_SELF, " |\n"));
4255: }
4256: PetscFunctionReturn(PETSC_SUCCESS);
4257: }
4259: PetscErrorCode DMPrintLocalVec(DM dm, const char name[], PetscReal tol, Vec X)
4260: {
4261: PetscInt localSize, bs;
4262: PetscMPIInt size;
4263: Vec x, xglob;
4264: const PetscScalar *xarray;
4266: PetscFunctionBegin;
4267: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)dm), &size));
4268: PetscCall(VecDuplicate(X, &x));
4269: PetscCall(VecCopy(X, x));
4270: PetscCall(VecFilter(x, tol));
4271: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "%s:\n", name));
4272: if (size > 1) {
4273: PetscCall(VecGetLocalSize(x, &localSize));
4274: PetscCall(VecGetArrayRead(x, &xarray));
4275: PetscCall(VecGetBlockSize(x, &bs));
4276: PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)dm), bs, localSize, PETSC_DETERMINE, xarray, &xglob));
4277: } else {
4278: xglob = x;
4279: }
4280: PetscCall(VecView(xglob, PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm))));
4281: if (size > 1) {
4282: PetscCall(VecDestroy(&xglob));
4283: PetscCall(VecRestoreArrayRead(x, &xarray));
4284: }
4285: PetscCall(VecDestroy(&x));
4286: PetscFunctionReturn(PETSC_SUCCESS);
4287: }
4289: /*@
4290: DMGetLocalSection - Get the `PetscSection` encoding the local data layout for the `DM`.
4292: Input Parameter:
4293: . dm - The `DM`
4295: Output Parameter:
4296: . section - The `PetscSection`
4298: Options Database Key:
4299: . -dm_petscsection_view - View the section created by the `DM`
4301: Level: intermediate
4303: Note:
4304: This gets a borrowed reference, so the user should not destroy this `PetscSection`.
4306: .seealso: [](ch_dmbase), `DM`, `DMSetLocalSection()`, `DMGetGlobalSection()`
4307: @*/
4308: PetscErrorCode DMGetLocalSection(DM dm, PetscSection *section)
4309: {
4310: PetscFunctionBegin;
4312: PetscAssertPointer(section, 2);
4313: if (!dm->localSection && dm->ops->createlocalsection) {
4314: PetscInt d;
4316: if (dm->setfromoptionscalled) {
4317: PetscObject obj = (PetscObject)dm;
4318: PetscViewer viewer;
4319: PetscViewerFormat format;
4320: PetscBool flg;
4322: PetscCall(PetscOptionsCreateViewer(PetscObjectComm(obj), obj->options, obj->prefix, "-dm_petscds_view", &viewer, &format, &flg));
4323: if (flg) PetscCall(PetscViewerPushFormat(viewer, format));
4324: for (d = 0; d < dm->Nds; ++d) {
4325: PetscCall(PetscDSSetFromOptions(dm->probs[d].ds));
4326: if (flg) PetscCall(PetscDSView(dm->probs[d].ds, viewer));
4327: }
4328: if (flg) {
4329: PetscCall(PetscViewerFlush(viewer));
4330: PetscCall(PetscViewerPopFormat(viewer));
4331: PetscCall(PetscViewerDestroy(&viewer));
4332: }
4333: }
4334: PetscUseTypeMethod(dm, createlocalsection);
4335: if (dm->localSection) PetscCall(PetscObjectViewFromOptions((PetscObject)dm->localSection, NULL, "-dm_petscsection_view"));
4336: }
4337: *section = dm->localSection;
4338: PetscFunctionReturn(PETSC_SUCCESS);
4339: }
4341: /*@
4342: DMSetLocalSection - Set the `PetscSection` encoding the local data layout for the `DM`.
4344: Input Parameters:
4345: + dm - The `DM`
4346: - section - The `PetscSection`
4348: Level: intermediate
4350: Note:
4351: Any existing Section will be destroyed
4353: .seealso: [](ch_dmbase), `DM`, `PetscSection`, `DMGetLocalSection()`, `DMSetGlobalSection()`
4354: @*/
4355: PetscErrorCode DMSetLocalSection(DM dm, PetscSection section)
4356: {
4357: PetscInt numFields = 0;
4358: PetscInt f;
4360: PetscFunctionBegin;
4363: PetscCall(PetscObjectReference((PetscObject)section));
4364: PetscCall(PetscSectionDestroy(&dm->localSection));
4365: dm->localSection = section;
4366: if (section) PetscCall(PetscSectionGetNumFields(dm->localSection, &numFields));
4367: if (numFields) {
4368: PetscCall(DMSetNumFields(dm, numFields));
4369: for (f = 0; f < numFields; ++f) {
4370: PetscObject disc;
4371: const char *name;
4373: PetscCall(PetscSectionGetFieldName(dm->localSection, f, &name));
4374: PetscCall(DMGetField(dm, f, NULL, &disc));
4375: PetscCall(PetscObjectSetName(disc, name));
4376: }
4377: }
4378: /* The global section and the SectionSF will be rebuilt
4379: in the next call to DMGetGlobalSection() and DMGetSectionSF(). */
4380: PetscCall(PetscSectionDestroy(&dm->globalSection));
4381: PetscCall(PetscSFDestroy(&dm->sectionSF));
4382: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &dm->sectionSF));
4384: /* Clear scratch vectors */
4385: PetscCall(DMClearGlobalVectors(dm));
4386: PetscCall(DMClearLocalVectors(dm));
4387: PetscCall(DMClearNamedGlobalVectors(dm));
4388: PetscCall(DMClearNamedLocalVectors(dm));
4389: PetscFunctionReturn(PETSC_SUCCESS);
4390: }
4392: /*@C
4393: DMCreateSectionPermutation - Create a permutation of the `PetscSection` chart and optionally a block structure.
4395: Input Parameter:
4396: . dm - The `DM`
4398: Output Parameters:
4399: + perm - A permutation of the mesh points in the chart
4400: - blockStarts - A high bit is set for the point that begins every block, or `NULL` for default blocking
4402: Level: developer
4404: .seealso: [](ch_dmbase), `DM`, `PetscSection`, `DMGetLocalSection()`, `DMGetGlobalSection()`
4405: @*/
4406: PetscErrorCode DMCreateSectionPermutation(DM dm, IS *perm, PetscBT *blockStarts)
4407: {
4408: PetscFunctionBegin;
4409: *perm = NULL;
4410: *blockStarts = NULL;
4411: PetscTryTypeMethod(dm, createsectionpermutation, perm, blockStarts);
4412: PetscFunctionReturn(PETSC_SUCCESS);
4413: }
4415: /*@
4416: DMGetDefaultConstraints - Get the `PetscSection` and `Mat` that specify the local constraint interpolation. See `DMSetDefaultConstraints()` for a description of the purpose of constraint interpolation.
4418: not Collective
4420: Input Parameter:
4421: . dm - The `DM`
4423: Output Parameters:
4424: + section - The `PetscSection` describing the range of the constraint matrix: relates rows of the constraint matrix to dofs of the default section. Returns `NULL` if there are no local constraints.
4425: . mat - The `Mat` that interpolates local constraints: its width should be the layout size of the default section. Returns `NULL` if there are no local constraints.
4426: - bias - Vector containing bias to be added to constrained dofs
4428: Level: advanced
4430: Note:
4431: This gets borrowed references, so the user should not destroy the `PetscSection`, `Mat`, or `Vec`.
4433: .seealso: [](ch_dmbase), `DM`, `DMSetDefaultConstraints()`
4434: @*/
4435: PetscErrorCode DMGetDefaultConstraints(DM dm, PetscSection *section, Mat *mat, Vec *bias)
4436: {
4437: PetscFunctionBegin;
4439: if (!dm->defaultConstraint.section && !dm->defaultConstraint.mat && dm->ops->createdefaultconstraints) PetscUseTypeMethod(dm, createdefaultconstraints);
4440: if (section) *section = dm->defaultConstraint.section;
4441: if (mat) *mat = dm->defaultConstraint.mat;
4442: if (bias) *bias = dm->defaultConstraint.bias;
4443: PetscFunctionReturn(PETSC_SUCCESS);
4444: }
4446: /*@
4447: DMSetDefaultConstraints - Set the `PetscSection` and `Mat` that specify the local constraint interpolation.
4449: Collective
4451: Input Parameters:
4452: + dm - The `DM`
4453: . section - The `PetscSection` describing the range of the constraint matrix: relates rows of the constraint matrix to dofs of the default section. Must have a local communicator (`PETSC_COMM_SELF` or derivative).
4454: . mat - The `Mat` that interpolates local constraints: its width should be the layout size of the default section: `NULL` indicates no constraints. Must have a local communicator (`PETSC_COMM_SELF` or derivative).
4455: - bias - A bias vector to be added to constrained values in the local vector. `NULL` indicates no bias. Must have a local communicator (`PETSC_COMM_SELF` or derivative).
4457: Level: advanced
4459: Notes:
4460: If a constraint matrix is specified, then it is applied during `DMGlobalToLocalEnd()` when mode is `INSERT_VALUES`, `INSERT_BC_VALUES`, or `INSERT_ALL_VALUES`. Without a constraint matrix, the local vector l returned by `DMGlobalToLocalEnd()` contains values that have been scattered from a global vector without modification; with a constraint matrix A, l is modified by computing c = A * l + bias, l[s[i]] = c[i], where the scatter s is defined by the `PetscSection` returned by `DMGetDefaultConstraints()`.
4462: If a constraint matrix is specified, then its adjoint is applied during `DMLocalToGlobalBegin()` when mode is `ADD_VALUES`, `ADD_BC_VALUES`, or `ADD_ALL_VALUES`. Without a constraint matrix, the local vector l is accumulated into a global vector without modification; with a constraint matrix A, l is first modified by computing c[i] = l[s[i]], l[s[i]] = 0, l = l + A'*c, which is the adjoint of the operation described above. Any bias, if specified, is ignored when accumulating.
4464: This increments the references of the `PetscSection`, `Mat`, and `Vec`, so they user can destroy them.
4466: .seealso: [](ch_dmbase), `DM`, `DMGetDefaultConstraints()`
4467: @*/
4468: PetscErrorCode DMSetDefaultConstraints(DM dm, PetscSection section, Mat mat, Vec bias)
4469: {
4470: PetscMPIInt result;
4472: PetscFunctionBegin;
4474: if (section) {
4476: PetscCallMPI(MPI_Comm_compare(PETSC_COMM_SELF, PetscObjectComm((PetscObject)section), &result));
4477: PetscCheck(result == MPI_CONGRUENT || result == MPI_IDENT, PETSC_COMM_SELF, PETSC_ERR_ARG_NOTSAMECOMM, "constraint section must have local communicator");
4478: }
4479: if (mat) {
4481: PetscCallMPI(MPI_Comm_compare(PETSC_COMM_SELF, PetscObjectComm((PetscObject)mat), &result));
4482: PetscCheck(result == MPI_CONGRUENT || result == MPI_IDENT, PETSC_COMM_SELF, PETSC_ERR_ARG_NOTSAMECOMM, "constraint matrix must have local communicator");
4483: }
4484: if (bias) {
4486: PetscCallMPI(MPI_Comm_compare(PETSC_COMM_SELF, PetscObjectComm((PetscObject)bias), &result));
4487: PetscCheck(result == MPI_CONGRUENT || result == MPI_IDENT, PETSC_COMM_SELF, PETSC_ERR_ARG_NOTSAMECOMM, "constraint bias must have local communicator");
4488: }
4489: PetscCall(PetscObjectReference((PetscObject)section));
4490: PetscCall(PetscSectionDestroy(&dm->defaultConstraint.section));
4491: dm->defaultConstraint.section = section;
4492: PetscCall(PetscObjectReference((PetscObject)mat));
4493: PetscCall(MatDestroy(&dm->defaultConstraint.mat));
4494: dm->defaultConstraint.mat = mat;
4495: PetscCall(PetscObjectReference((PetscObject)bias));
4496: PetscCall(VecDestroy(&dm->defaultConstraint.bias));
4497: dm->defaultConstraint.bias = bias;
4498: PetscFunctionReturn(PETSC_SUCCESS);
4499: }
4501: #if defined(PETSC_USE_DEBUG)
4502: /*
4503: DMDefaultSectionCheckConsistency - Check the consistentcy of the global and local sections. Generates and error if they are not consistent.
4505: Input Parameters:
4506: + dm - The `DM`
4507: . localSection - `PetscSection` describing the local data layout
4508: - globalSection - `PetscSection` describing the global data layout
4510: Level: intermediate
4512: .seealso: [](ch_dmbase), `DM`, `DMGetSectionSF()`, `DMSetSectionSF()`
4513: */
4514: static PetscErrorCode DMDefaultSectionCheckConsistency_Internal(DM dm, PetscSection localSection, PetscSection globalSection)
4515: {
4516: MPI_Comm comm;
4517: PetscLayout layout;
4518: const PetscInt *ranges;
4519: PetscInt pStart, pEnd, p, nroots;
4520: PetscMPIInt size, rank;
4521: PetscBool valid = PETSC_TRUE, gvalid;
4523: PetscFunctionBegin;
4524: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
4526: PetscCallMPI(MPI_Comm_size(comm, &size));
4527: PetscCallMPI(MPI_Comm_rank(comm, &rank));
4528: PetscCall(PetscSectionGetChart(globalSection, &pStart, &pEnd));
4529: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &nroots));
4530: PetscCall(PetscLayoutCreate(comm, &layout));
4531: PetscCall(PetscLayoutSetBlockSize(layout, 1));
4532: PetscCall(PetscLayoutSetLocalSize(layout, nroots));
4533: PetscCall(PetscLayoutSetUp(layout));
4534: PetscCall(PetscLayoutGetRanges(layout, &ranges));
4535: for (p = pStart; p < pEnd; ++p) {
4536: PetscInt dof, cdof, off, gdof, gcdof, goff, gsize, d;
4538: PetscCall(PetscSectionGetDof(localSection, p, &dof));
4539: PetscCall(PetscSectionGetOffset(localSection, p, &off));
4540: PetscCall(PetscSectionGetConstraintDof(localSection, p, &cdof));
4541: PetscCall(PetscSectionGetDof(globalSection, p, &gdof));
4542: PetscCall(PetscSectionGetConstraintDof(globalSection, p, &gcdof));
4543: PetscCall(PetscSectionGetOffset(globalSection, p, &goff));
4544: if (!gdof) continue; /* Censored point */
4545: if ((gdof < 0 ? -(gdof + 1) : gdof) != dof) {
4546: PetscCall(PetscSynchronizedPrintf(comm, "[%d]Global dof %" PetscInt_FMT " for point %" PetscInt_FMT " not equal to local dof %" PetscInt_FMT "\n", rank, gdof, p, dof));
4547: valid = PETSC_FALSE;
4548: }
4549: if (gcdof && (gcdof != cdof)) {
4550: PetscCall(PetscSynchronizedPrintf(comm, "[%d]Global constraints %" PetscInt_FMT " for point %" PetscInt_FMT " not equal to local constraints %" PetscInt_FMT "\n", rank, gcdof, p, cdof));
4551: valid = PETSC_FALSE;
4552: }
4553: if (gdof < 0) {
4554: gsize = gdof < 0 ? -(gdof + 1) - gcdof : gdof - gcdof;
4555: for (d = 0; d < gsize; ++d) {
4556: PetscInt offset = -(goff + 1) + d, r;
4558: PetscCall(PetscFindInt(offset, size + 1, ranges, &r));
4559: if (r < 0) r = -(r + 2);
4560: if ((r < 0) || (r >= size)) {
4561: PetscCall(PetscSynchronizedPrintf(comm, "[%d]Point %" PetscInt_FMT " mapped to invalid process %" PetscInt_FMT " (%" PetscInt_FMT ", %" PetscInt_FMT ")\n", rank, p, r, gdof, goff));
4562: valid = PETSC_FALSE;
4563: break;
4564: }
4565: }
4566: }
4567: }
4568: PetscCall(PetscLayoutDestroy(&layout));
4569: PetscCall(PetscSynchronizedFlush(comm, NULL));
4570: PetscCallMPI(MPIU_Allreduce(&valid, &gvalid, 1, MPIU_BOOL, MPI_LAND, comm));
4571: if (!gvalid) {
4572: PetscCall(DMView(dm, NULL));
4573: SETERRQ(comm, PETSC_ERR_ARG_WRONG, "Inconsistent local and global sections");
4574: }
4575: PetscFunctionReturn(PETSC_SUCCESS);
4576: }
4577: #endif
4579: PetscErrorCode DMGetIsoperiodicPointSF_Internal(DM dm, PetscSF *sf)
4580: {
4581: PetscErrorCode (*f)(DM, PetscSF *);
4583: PetscFunctionBegin;
4585: PetscAssertPointer(sf, 2);
4586: PetscCall(PetscObjectQueryFunction((PetscObject)dm, "DMGetIsoperiodicPointSF_C", &f));
4587: if (f) PetscCall(f(dm, sf));
4588: else *sf = dm->sf;
4589: PetscFunctionReturn(PETSC_SUCCESS);
4590: }
4592: /*@
4593: DMGetGlobalSection - Get the `PetscSection` encoding the global data layout for the `DM`.
4595: Collective
4597: Input Parameter:
4598: . dm - The `DM`
4600: Output Parameter:
4601: . section - The `PetscSection`
4603: Level: intermediate
4605: Note:
4606: This gets a borrowed reference, so the user should not destroy this `PetscSection`.
4608: .seealso: [](ch_dmbase), `DM`, `DMSetLocalSection()`, `DMGetLocalSection()`
4609: @*/
4610: PetscErrorCode DMGetGlobalSection(DM dm, PetscSection *section)
4611: {
4612: PetscFunctionBegin;
4614: PetscAssertPointer(section, 2);
4615: if (!dm->globalSection) {
4616: PetscSection s;
4617: PetscSF sf;
4619: PetscCall(DMGetLocalSection(dm, &s));
4620: PetscCheck(s, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "DM must have a default PetscSection in order to create a global PetscSection");
4621: PetscCheck(dm->sf, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "DM must have a point PetscSF in order to create a global PetscSection");
4622: PetscCall(DMGetIsoperiodicPointSF_Internal(dm, &sf));
4623: PetscCall(PetscSectionCreateGlobalSection(s, sf, PETSC_TRUE, PETSC_FALSE, PETSC_FALSE, &dm->globalSection));
4624: PetscCall(PetscLayoutDestroy(&dm->map));
4625: PetscCall(PetscSectionGetValueLayout(PetscObjectComm((PetscObject)dm), dm->globalSection, &dm->map));
4626: PetscCall(PetscSectionViewFromOptions(dm->globalSection, NULL, "-global_section_view"));
4627: }
4628: *section = dm->globalSection;
4629: PetscFunctionReturn(PETSC_SUCCESS);
4630: }
4632: /*@
4633: DMSetGlobalSection - Set the `PetscSection` encoding the global data layout for the `DM`.
4635: Input Parameters:
4636: + dm - The `DM`
4637: - section - The PetscSection, or `NULL`
4639: Level: intermediate
4641: Note:
4642: Any existing `PetscSection` will be destroyed
4644: .seealso: [](ch_dmbase), `DM`, `DMGetGlobalSection()`, `DMSetLocalSection()`
4645: @*/
4646: PetscErrorCode DMSetGlobalSection(DM dm, PetscSection section)
4647: {
4648: PetscFunctionBegin;
4651: PetscCall(PetscObjectReference((PetscObject)section));
4652: PetscCall(PetscSectionDestroy(&dm->globalSection));
4653: dm->globalSection = section;
4654: #if defined(PETSC_USE_DEBUG)
4655: if (section) PetscCall(DMDefaultSectionCheckConsistency_Internal(dm, dm->localSection, section));
4656: #endif
4657: /* Clear global scratch vectors and sectionSF */
4658: PetscCall(PetscSFDestroy(&dm->sectionSF));
4659: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &dm->sectionSF));
4660: PetscCall(DMClearGlobalVectors(dm));
4661: PetscCall(DMClearNamedGlobalVectors(dm));
4662: PetscFunctionReturn(PETSC_SUCCESS);
4663: }
4665: /*@
4666: DMGetSectionSF - Get the `PetscSF` encoding the parallel dof overlap for the `DM`. If it has not been set,
4667: it is created from the default `PetscSection` layouts in the `DM`.
4669: Input Parameter:
4670: . dm - The `DM`
4672: Output Parameter:
4673: . sf - The `PetscSF`
4675: Level: intermediate
4677: Note:
4678: This gets a borrowed reference, so the user should not destroy this `PetscSF`.
4680: .seealso: [](ch_dmbase), `DM`, `DMSetSectionSF()`, `DMCreateSectionSF()`
4681: @*/
4682: PetscErrorCode DMGetSectionSF(DM dm, PetscSF *sf)
4683: {
4684: PetscInt nroots;
4686: PetscFunctionBegin;
4688: PetscAssertPointer(sf, 2);
4689: if (!dm->sectionSF) PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &dm->sectionSF));
4690: PetscCall(PetscSFGetGraph(dm->sectionSF, &nroots, NULL, NULL, NULL));
4691: if (nroots < 0) {
4692: PetscSection section, gSection;
4694: PetscCall(DMGetLocalSection(dm, §ion));
4695: if (section) {
4696: PetscCall(DMGetGlobalSection(dm, &gSection));
4697: PetscCall(DMCreateSectionSF(dm, section, gSection));
4698: } else {
4699: *sf = NULL;
4700: PetscFunctionReturn(PETSC_SUCCESS);
4701: }
4702: }
4703: *sf = dm->sectionSF;
4704: PetscFunctionReturn(PETSC_SUCCESS);
4705: }
4707: /*@
4708: DMSetSectionSF - Set the `PetscSF` encoding the parallel dof overlap for the `DM`
4710: Input Parameters:
4711: + dm - The `DM`
4712: - sf - The `PetscSF`
4714: Level: intermediate
4716: Note:
4717: Any previous `PetscSF` is destroyed
4719: .seealso: [](ch_dmbase), `DM`, `DMGetSectionSF()`, `DMCreateSectionSF()`
4720: @*/
4721: PetscErrorCode DMSetSectionSF(DM dm, PetscSF sf)
4722: {
4723: PetscFunctionBegin;
4726: PetscCall(PetscObjectReference((PetscObject)sf));
4727: PetscCall(PetscSFDestroy(&dm->sectionSF));
4728: dm->sectionSF = sf;
4729: PetscFunctionReturn(PETSC_SUCCESS);
4730: }
4732: /*@
4733: DMCreateSectionSF - Create the `PetscSF` encoding the parallel dof overlap for the `DM` based upon the `PetscSection`s
4734: describing the data layout.
4736: Input Parameters:
4737: + dm - The `DM`
4738: . localSection - `PetscSection` describing the local data layout
4739: - globalSection - `PetscSection` describing the global data layout
4741: Level: developer
4743: Note:
4744: One usually uses `DMGetSectionSF()` to obtain the `PetscSF`
4746: Developer Note:
4747: Since this routine has for arguments the two sections from the `DM` and puts the resulting `PetscSF`
4748: directly into the `DM`, perhaps this function should not take the local and global sections as
4749: input and should just obtain them from the `DM`? Plus PETSc creation functions return the thing
4750: they create, this returns nothing
4752: .seealso: [](ch_dmbase), `DM`, `DMGetSectionSF()`, `DMSetSectionSF()`, `DMGetLocalSection()`, `DMGetGlobalSection()`
4753: @*/
4754: PetscErrorCode DMCreateSectionSF(DM dm, PetscSection localSection, PetscSection globalSection)
4755: {
4756: PetscFunctionBegin;
4758: PetscCall(PetscSFSetGraphSection(dm->sectionSF, localSection, globalSection));
4759: PetscFunctionReturn(PETSC_SUCCESS);
4760: }
4762: /*@
4763: DMGetPointSF - Get the `PetscSF` encoding the parallel section point overlap for the `DM`.
4765: Not collective but the resulting `PetscSF` is collective
4767: Input Parameter:
4768: . dm - The `DM`
4770: Output Parameter:
4771: . sf - The `PetscSF`
4773: Level: intermediate
4775: Note:
4776: This gets a borrowed reference, so the user should not destroy this `PetscSF`.
4778: .seealso: [](ch_dmbase), `DM`, `DMSetPointSF()`, `DMGetSectionSF()`, `DMSetSectionSF()`, `DMCreateSectionSF()`
4779: @*/
4780: PetscErrorCode DMGetPointSF(DM dm, PetscSF *sf)
4781: {
4782: PetscFunctionBegin;
4784: PetscAssertPointer(sf, 2);
4785: *sf = dm->sf;
4786: PetscFunctionReturn(PETSC_SUCCESS);
4787: }
4789: /*@
4790: DMSetPointSF - Set the `PetscSF` encoding the parallel section point overlap for the `DM`.
4792: Collective
4794: Input Parameters:
4795: + dm - The `DM`
4796: - sf - The `PetscSF`
4798: Level: intermediate
4800: .seealso: [](ch_dmbase), `DM`, `DMGetPointSF()`, `DMGetSectionSF()`, `DMSetSectionSF()`, `DMCreateSectionSF()`
4801: @*/
4802: PetscErrorCode DMSetPointSF(DM dm, PetscSF sf)
4803: {
4804: PetscFunctionBegin;
4807: PetscCall(PetscObjectReference((PetscObject)sf));
4808: PetscCall(PetscSFDestroy(&dm->sf));
4809: dm->sf = sf;
4810: PetscFunctionReturn(PETSC_SUCCESS);
4811: }
4813: /*@
4814: DMGetNaturalSF - Get the `PetscSF` encoding the map back to the original mesh ordering
4816: Input Parameter:
4817: . dm - The `DM`
4819: Output Parameter:
4820: . sf - The `PetscSF`
4822: Level: intermediate
4824: Note:
4825: This gets a borrowed reference, so the user should not destroy this `PetscSF`.
4827: .seealso: [](ch_dmbase), `DM`, `DMSetNaturalSF()`, `DMSetUseNatural()`, `DMGetUseNatural()`, `DMPlexCreateGlobalToNaturalSF()`, `DMPlexDistribute()`
4828: @*/
4829: PetscErrorCode DMGetNaturalSF(DM dm, PetscSF *sf)
4830: {
4831: PetscFunctionBegin;
4833: PetscAssertPointer(sf, 2);
4834: *sf = dm->sfNatural;
4835: PetscFunctionReturn(PETSC_SUCCESS);
4836: }
4838: /*@
4839: DMSetNaturalSF - Set the PetscSF encoding the map back to the original mesh ordering
4841: Input Parameters:
4842: + dm - The DM
4843: - sf - The PetscSF
4845: Level: intermediate
4847: .seealso: [](ch_dmbase), `DM`, `DMGetNaturalSF()`, `DMSetUseNatural()`, `DMGetUseNatural()`, `DMPlexCreateGlobalToNaturalSF()`, `DMPlexDistribute()`
4848: @*/
4849: PetscErrorCode DMSetNaturalSF(DM dm, PetscSF sf)
4850: {
4851: PetscFunctionBegin;
4854: PetscCall(PetscObjectReference((PetscObject)sf));
4855: PetscCall(PetscSFDestroy(&dm->sfNatural));
4856: dm->sfNatural = sf;
4857: PetscFunctionReturn(PETSC_SUCCESS);
4858: }
4860: static PetscErrorCode DMSetDefaultAdjacency_Private(DM dm, PetscInt f, PetscObject disc)
4861: {
4862: PetscClassId id;
4864: PetscFunctionBegin;
4865: PetscCall(PetscObjectGetClassId(disc, &id));
4866: if (id == PETSCFE_CLASSID) {
4867: PetscCall(DMSetAdjacency(dm, f, PETSC_FALSE, PETSC_TRUE));
4868: } else if (id == PETSCFV_CLASSID) {
4869: PetscCall(DMSetAdjacency(dm, f, PETSC_TRUE, PETSC_FALSE));
4870: } else {
4871: PetscCall(DMSetAdjacency(dm, f, PETSC_FALSE, PETSC_TRUE));
4872: }
4873: PetscFunctionReturn(PETSC_SUCCESS);
4874: }
4876: static PetscErrorCode DMFieldEnlarge_Static(DM dm, PetscInt NfNew)
4877: {
4878: RegionField *tmpr;
4879: PetscInt Nf = dm->Nf, f;
4881: PetscFunctionBegin;
4882: if (Nf >= NfNew) PetscFunctionReturn(PETSC_SUCCESS);
4883: PetscCall(PetscMalloc1(NfNew, &tmpr));
4884: for (f = 0; f < Nf; ++f) tmpr[f] = dm->fields[f];
4885: for (f = Nf; f < NfNew; ++f) {
4886: tmpr[f].disc = NULL;
4887: tmpr[f].label = NULL;
4888: tmpr[f].avoidTensor = PETSC_FALSE;
4889: }
4890: PetscCall(PetscFree(dm->fields));
4891: dm->Nf = NfNew;
4892: dm->fields = tmpr;
4893: PetscFunctionReturn(PETSC_SUCCESS);
4894: }
4896: /*@
4897: DMClearFields - Remove all fields from the `DM`
4899: Logically Collective
4901: Input Parameter:
4902: . dm - The `DM`
4904: Level: intermediate
4906: .seealso: [](ch_dmbase), `DM`, `DMGetNumFields()`, `DMSetNumFields()`, `DMSetField()`
4907: @*/
4908: PetscErrorCode DMClearFields(DM dm)
4909: {
4910: PetscInt f;
4912: PetscFunctionBegin;
4914: for (f = 0; f < dm->Nf; ++f) {
4915: PetscCall(PetscObjectDestroy(&dm->fields[f].disc));
4916: PetscCall(DMLabelDestroy(&dm->fields[f].label));
4917: }
4918: PetscCall(PetscFree(dm->fields));
4919: dm->fields = NULL;
4920: dm->Nf = 0;
4921: PetscFunctionReturn(PETSC_SUCCESS);
4922: }
4924: /*@
4925: DMGetNumFields - Get the number of fields in the `DM`
4927: Not Collective
4929: Input Parameter:
4930: . dm - The `DM`
4932: Output Parameter:
4933: . numFields - The number of fields
4935: Level: intermediate
4937: .seealso: [](ch_dmbase), `DM`, `DMSetNumFields()`, `DMSetField()`
4938: @*/
4939: PetscErrorCode DMGetNumFields(DM dm, PetscInt *numFields)
4940: {
4941: PetscFunctionBegin;
4943: PetscAssertPointer(numFields, 2);
4944: *numFields = dm->Nf;
4945: PetscFunctionReturn(PETSC_SUCCESS);
4946: }
4948: /*@
4949: DMSetNumFields - Set the number of fields in the `DM`
4951: Logically Collective
4953: Input Parameters:
4954: + dm - The `DM`
4955: - numFields - The number of fields
4957: Level: intermediate
4959: .seealso: [](ch_dmbase), `DM`, `DMGetNumFields()`, `DMSetField()`
4960: @*/
4961: PetscErrorCode DMSetNumFields(DM dm, PetscInt numFields)
4962: {
4963: PetscInt Nf, f;
4965: PetscFunctionBegin;
4967: PetscCall(DMGetNumFields(dm, &Nf));
4968: for (f = Nf; f < numFields; ++f) {
4969: PetscContainer obj;
4971: PetscCall(PetscContainerCreate(PetscObjectComm((PetscObject)dm), &obj));
4972: PetscCall(DMAddField(dm, NULL, (PetscObject)obj));
4973: PetscCall(PetscContainerDestroy(&obj));
4974: }
4975: PetscFunctionReturn(PETSC_SUCCESS);
4976: }
4978: /*@
4979: DMGetField - Return the `DMLabel` and discretization object for a given `DM` field
4981: Not Collective
4983: Input Parameters:
4984: + dm - The `DM`
4985: - f - The field number
4987: Output Parameters:
4988: + label - The label indicating the support of the field, or `NULL` for the entire mesh (pass in `NULL` if not needed)
4989: - disc - The discretization object (pass in `NULL` if not needed)
4991: Level: intermediate
4993: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMSetField()`
4994: @*/
4995: PetscErrorCode DMGetField(DM dm, PetscInt f, DMLabel *label, PetscObject *disc)
4996: {
4997: PetscFunctionBegin;
4999: PetscAssertPointer(disc, 4);
5000: PetscCheck((f >= 0) && (f < dm->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, dm->Nf);
5001: if (label) *label = dm->fields[f].label;
5002: if (disc) *disc = dm->fields[f].disc;
5003: PetscFunctionReturn(PETSC_SUCCESS);
5004: }
5006: /* Does not clear the DS */
5007: PetscErrorCode DMSetField_Internal(DM dm, PetscInt f, DMLabel label, PetscObject disc)
5008: {
5009: PetscFunctionBegin;
5010: PetscCall(DMFieldEnlarge_Static(dm, f + 1));
5011: PetscCall(DMLabelDestroy(&dm->fields[f].label));
5012: PetscCall(PetscObjectDestroy(&dm->fields[f].disc));
5013: dm->fields[f].label = label;
5014: dm->fields[f].disc = disc;
5015: PetscCall(PetscObjectReference((PetscObject)label));
5016: PetscCall(PetscObjectReference(disc));
5017: PetscFunctionReturn(PETSC_SUCCESS);
5018: }
5020: /*@
5021: DMSetField - Set the discretization object for a given `DM` field. Usually one would call `DMAddField()` which automatically handles
5022: the field numbering.
5024: Logically Collective
5026: Input Parameters:
5027: + dm - The `DM`
5028: . f - The field number
5029: . label - The label indicating the support of the field, or `NULL` for the entire mesh
5030: - disc - The discretization object
5032: Level: intermediate
5034: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMGetField()`
5035: @*/
5036: PetscErrorCode DMSetField(DM dm, PetscInt f, DMLabel label, PetscObject disc)
5037: {
5038: PetscFunctionBegin;
5042: PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
5043: PetscCall(DMSetField_Internal(dm, f, label, disc));
5044: PetscCall(DMSetDefaultAdjacency_Private(dm, f, disc));
5045: PetscCall(DMClearDS(dm));
5046: PetscFunctionReturn(PETSC_SUCCESS);
5047: }
5049: /*@
5050: DMAddField - Add a field to a `DM` object. A field is a function space defined by of a set of discretization points (geometric entities)
5051: and a discretization object that defines the function space associated with those points.
5053: Logically Collective
5055: Input Parameters:
5056: + dm - The `DM`
5057: . label - The label indicating the support of the field, or `NULL` for the entire mesh
5058: - disc - The discretization object
5060: Level: intermediate
5062: Notes:
5063: The label already exists or will be added to the `DM` with `DMSetLabel()`.
5065: For example, a piecewise continuous pressure field can be defined by coefficients at the cell centers of a mesh and piecewise constant functions
5066: within each cell. Thus a specific function in the space is defined by the combination of a `Vec` containing the coefficients, a `DM` defining the
5067: geometry entities, a `DMLabel` indicating a subset of those geometric entities, and a discretization object, such as a `PetscFE`.
5069: Fortran Note:
5070: Use the argument `PetscObjectCast(disc)` as the second argument
5072: .seealso: [](ch_dmbase), `DM`, `DMSetLabel()`, `DMSetField()`, `DMGetField()`, `PetscFE`
5073: @*/
5074: PetscErrorCode DMAddField(DM dm, DMLabel label, PetscObject disc)
5075: {
5076: PetscInt Nf = dm->Nf;
5078: PetscFunctionBegin;
5082: PetscCall(DMFieldEnlarge_Static(dm, Nf + 1));
5083: dm->fields[Nf].label = label;
5084: dm->fields[Nf].disc = disc;
5085: PetscCall(PetscObjectReference((PetscObject)label));
5086: PetscCall(PetscObjectReference(disc));
5087: PetscCall(DMSetDefaultAdjacency_Private(dm, Nf, disc));
5088: PetscCall(DMClearDS(dm));
5089: PetscFunctionReturn(PETSC_SUCCESS);
5090: }
5092: /*@
5093: DMSetFieldAvoidTensor - Set flag to avoid defining the field on tensor cells
5095: Logically Collective
5097: Input Parameters:
5098: + dm - The `DM`
5099: . f - The field index
5100: - avoidTensor - `PETSC_TRUE` to skip defining the field on tensor cells
5102: Level: intermediate
5104: .seealso: [](ch_dmbase), `DM`, `DMGetFieldAvoidTensor()`, `DMSetField()`, `DMGetField()`
5105: @*/
5106: PetscErrorCode DMSetFieldAvoidTensor(DM dm, PetscInt f, PetscBool avoidTensor)
5107: {
5108: PetscFunctionBegin;
5109: PetscCheck((f >= 0) && (f < dm->Nf), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", f, dm->Nf);
5110: dm->fields[f].avoidTensor = avoidTensor;
5111: PetscFunctionReturn(PETSC_SUCCESS);
5112: }
5114: /*@
5115: DMGetFieldAvoidTensor - Get flag to avoid defining the field on tensor cells
5117: Not Collective
5119: Input Parameters:
5120: + dm - The `DM`
5121: - f - The field index
5123: Output Parameter:
5124: . avoidTensor - The flag to avoid defining the field on tensor cells
5126: Level: intermediate
5128: .seealso: [](ch_dmbase), `DM`, `DMAddField()`, `DMSetField()`, `DMGetField()`, `DMSetFieldAvoidTensor()`
5129: @*/
5130: PetscErrorCode DMGetFieldAvoidTensor(DM dm, PetscInt f, PetscBool *avoidTensor)
5131: {
5132: PetscFunctionBegin;
5133: PetscCheck((f >= 0) && (f < dm->Nf), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", f, dm->Nf);
5134: *avoidTensor = dm->fields[f].avoidTensor;
5135: PetscFunctionReturn(PETSC_SUCCESS);
5136: }
5138: /*@
5139: DMCopyFields - Copy the discretizations for the `DM` into another `DM`
5141: Collective
5143: Input Parameters:
5144: + dm - The `DM`
5145: . minDegree - Minimum degree for a discretization, or `PETSC_DETERMINE` for no limit
5146: - maxDegree - Maximum degree for a discretization, or `PETSC_DETERMINE` for no limit
5148: Output Parameter:
5149: . newdm - The `DM`
5151: Level: advanced
5153: .seealso: [](ch_dmbase), `DM`, `DMGetField()`, `DMSetField()`, `DMAddField()`, `DMCopyDS()`, `DMGetDS()`, `DMGetCellDS()`
5154: @*/
5155: PetscErrorCode DMCopyFields(DM dm, PetscInt minDegree, PetscInt maxDegree, DM newdm)
5156: {
5157: PetscInt Nf, f;
5159: PetscFunctionBegin;
5160: if (dm == newdm) PetscFunctionReturn(PETSC_SUCCESS);
5161: PetscCall(DMGetNumFields(dm, &Nf));
5162: PetscCall(DMClearFields(newdm));
5163: for (f = 0; f < Nf; ++f) {
5164: DMLabel label;
5165: PetscObject field;
5166: PetscClassId id;
5167: PetscBool useCone, useClosure;
5169: PetscCall(DMGetField(dm, f, &label, &field));
5170: PetscCall(PetscObjectGetClassId(field, &id));
5171: if (id == PETSCFE_CLASSID) {
5172: PetscFE newfe;
5174: PetscCall(PetscFELimitDegree((PetscFE)field, minDegree, maxDegree, &newfe));
5175: PetscCall(DMSetField(newdm, f, label, (PetscObject)newfe));
5176: PetscCall(PetscFEDestroy(&newfe));
5177: } else {
5178: PetscCall(DMSetField(newdm, f, label, field));
5179: }
5180: PetscCall(DMGetAdjacency(dm, f, &useCone, &useClosure));
5181: PetscCall(DMSetAdjacency(newdm, f, useCone, useClosure));
5182: }
5183: PetscFunctionReturn(PETSC_SUCCESS);
5184: }
5186: /*@
5187: DMGetAdjacency - Returns the flags for determining variable influence
5189: Not Collective
5191: Input Parameters:
5192: + dm - The `DM` object
5193: - f - The field number, or `PETSC_DEFAULT` for the default adjacency
5195: Output Parameters:
5196: + useCone - Flag for variable influence starting with the cone operation
5197: - useClosure - Flag for variable influence using transitive closure
5199: Level: developer
5201: Notes:
5202: .vb
5203: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5204: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5205: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5206: .ve
5207: Further explanation can be found in the User's Manual Section on the Influence of Variables on One Another.
5209: .seealso: [](ch_dmbase), `DM`, `DMSetAdjacency()`, `DMGetField()`, `DMSetField()`
5210: @*/
5211: PetscErrorCode DMGetAdjacency(DM dm, PetscInt f, PetscBool *useCone, PetscBool *useClosure)
5212: {
5213: PetscFunctionBegin;
5215: if (useCone) PetscAssertPointer(useCone, 3);
5216: if (useClosure) PetscAssertPointer(useClosure, 4);
5217: if (f < 0) {
5218: if (useCone) *useCone = dm->adjacency[0];
5219: if (useClosure) *useClosure = dm->adjacency[1];
5220: } else {
5221: PetscInt Nf;
5223: PetscCall(DMGetNumFields(dm, &Nf));
5224: PetscCheck(f < Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, Nf);
5225: if (useCone) *useCone = dm->fields[f].adjacency[0];
5226: if (useClosure) *useClosure = dm->fields[f].adjacency[1];
5227: }
5228: PetscFunctionReturn(PETSC_SUCCESS);
5229: }
5231: /*@
5232: DMSetAdjacency - Set the flags for determining variable influence
5234: Not Collective
5236: Input Parameters:
5237: + dm - The `DM` object
5238: . f - The field number
5239: . useCone - Flag for variable influence starting with the cone operation
5240: - useClosure - Flag for variable influence using transitive closure
5242: Level: developer
5244: Notes:
5245: .vb
5246: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5247: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5248: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5249: .ve
5250: Further explanation can be found in the User's Manual Section on the Influence of Variables on One Another.
5252: .seealso: [](ch_dmbase), `DM`, `DMGetAdjacency()`, `DMGetField()`, `DMSetField()`
5253: @*/
5254: PetscErrorCode DMSetAdjacency(DM dm, PetscInt f, PetscBool useCone, PetscBool useClosure)
5255: {
5256: PetscFunctionBegin;
5258: if (f < 0) {
5259: dm->adjacency[0] = useCone;
5260: dm->adjacency[1] = useClosure;
5261: } else {
5262: PetscInt Nf;
5264: PetscCall(DMGetNumFields(dm, &Nf));
5265: PetscCheck(f < Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, Nf);
5266: dm->fields[f].adjacency[0] = useCone;
5267: dm->fields[f].adjacency[1] = useClosure;
5268: }
5269: PetscFunctionReturn(PETSC_SUCCESS);
5270: }
5272: /*@
5273: DMGetBasicAdjacency - Returns the flags for determining variable influence, using either the default or field 0 if it is defined
5275: Not collective
5277: Input Parameter:
5278: . dm - The `DM` object
5280: Output Parameters:
5281: + useCone - Flag for variable influence starting with the cone operation
5282: - useClosure - Flag for variable influence using transitive closure
5284: Level: developer
5286: Notes:
5287: .vb
5288: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5289: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5290: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5291: .ve
5293: .seealso: [](ch_dmbase), `DM`, `DMSetBasicAdjacency()`, `DMGetField()`, `DMSetField()`
5294: @*/
5295: PetscErrorCode DMGetBasicAdjacency(DM dm, PetscBool *useCone, PetscBool *useClosure)
5296: {
5297: PetscInt Nf;
5299: PetscFunctionBegin;
5301: if (useCone) PetscAssertPointer(useCone, 2);
5302: if (useClosure) PetscAssertPointer(useClosure, 3);
5303: PetscCall(DMGetNumFields(dm, &Nf));
5304: if (!Nf) {
5305: PetscCall(DMGetAdjacency(dm, PETSC_DEFAULT, useCone, useClosure));
5306: } else {
5307: PetscCall(DMGetAdjacency(dm, 0, useCone, useClosure));
5308: }
5309: PetscFunctionReturn(PETSC_SUCCESS);
5310: }
5312: /*@
5313: DMSetBasicAdjacency - Set the flags for determining variable influence, using either the default or field 0 if it is defined
5315: Not Collective
5317: Input Parameters:
5318: + dm - The `DM` object
5319: . useCone - Flag for variable influence starting with the cone operation
5320: - useClosure - Flag for variable influence using transitive closure
5322: Level: developer
5324: Notes:
5325: .vb
5326: FEM: Two points p and q are adjacent if q \in closure(star(p)), useCone = PETSC_FALSE, useClosure = PETSC_TRUE
5327: FVM: Two points p and q are adjacent if q \in support(p+cone(p)), useCone = PETSC_TRUE, useClosure = PETSC_FALSE
5328: FVM++: Two points p and q are adjacent if q \in star(closure(p)), useCone = PETSC_TRUE, useClosure = PETSC_TRUE
5329: .ve
5331: .seealso: [](ch_dmbase), `DM`, `DMGetBasicAdjacency()`, `DMGetField()`, `DMSetField()`
5332: @*/
5333: PetscErrorCode DMSetBasicAdjacency(DM dm, PetscBool useCone, PetscBool useClosure)
5334: {
5335: PetscInt Nf;
5337: PetscFunctionBegin;
5339: PetscCall(DMGetNumFields(dm, &Nf));
5340: if (!Nf) {
5341: PetscCall(DMSetAdjacency(dm, PETSC_DEFAULT, useCone, useClosure));
5342: } else {
5343: PetscCall(DMSetAdjacency(dm, 0, useCone, useClosure));
5344: }
5345: PetscFunctionReturn(PETSC_SUCCESS);
5346: }
5348: PetscErrorCode DMCompleteBCLabels_Internal(DM dm)
5349: {
5350: DM plex;
5351: DMLabel *labels, *glabels;
5352: const char **names;
5353: char *sendNames, *recvNames;
5354: PetscInt Nds, s, maxLabels = 0, maxLen = 0, gmaxLen, Nl = 0, gNl, l, gl, m;
5355: size_t len;
5356: MPI_Comm comm;
5357: PetscMPIInt rank, size, p, *counts, *displs;
5359: PetscFunctionBegin;
5360: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
5361: PetscCallMPI(MPI_Comm_size(comm, &size));
5362: PetscCallMPI(MPI_Comm_rank(comm, &rank));
5363: PetscCall(DMGetNumDS(dm, &Nds));
5364: for (s = 0; s < Nds; ++s) {
5365: PetscDS dsBC;
5366: PetscInt numBd;
5368: PetscCall(DMGetRegionNumDS(dm, s, NULL, NULL, &dsBC, NULL));
5369: PetscCall(PetscDSGetNumBoundary(dsBC, &numBd));
5370: maxLabels += numBd;
5371: }
5372: PetscCall(PetscCalloc1(maxLabels, &labels));
5373: /* Get list of labels to be completed */
5374: for (s = 0; s < Nds; ++s) {
5375: PetscDS dsBC;
5376: PetscInt numBd, bd;
5378: PetscCall(DMGetRegionNumDS(dm, s, NULL, NULL, &dsBC, NULL));
5379: PetscCall(PetscDSGetNumBoundary(dsBC, &numBd));
5380: for (bd = 0; bd < numBd; ++bd) {
5381: DMLabel label;
5382: PetscInt field;
5383: PetscObject obj;
5384: PetscClassId id;
5386: PetscCall(PetscDSGetBoundary(dsBC, bd, NULL, NULL, NULL, &label, NULL, NULL, &field, NULL, NULL, NULL, NULL, NULL));
5387: PetscCall(DMGetField(dm, field, NULL, &obj));
5388: PetscCall(PetscObjectGetClassId(obj, &id));
5389: if (id != PETSCFE_CLASSID || !label) continue;
5390: for (l = 0; l < Nl; ++l)
5391: if (labels[l] == label) break;
5392: if (l == Nl) labels[Nl++] = label;
5393: }
5394: }
5395: /* Get label names */
5396: PetscCall(PetscMalloc1(Nl, &names));
5397: for (l = 0; l < Nl; ++l) PetscCall(PetscObjectGetName((PetscObject)labels[l], &names[l]));
5398: for (l = 0; l < Nl; ++l) {
5399: PetscCall(PetscStrlen(names[l], &len));
5400: maxLen = PetscMax(maxLen, (PetscInt)len + 2);
5401: }
5402: PetscCall(PetscFree(labels));
5403: PetscCallMPI(MPIU_Allreduce(&maxLen, &gmaxLen, 1, MPIU_INT, MPI_MAX, comm));
5404: PetscCall(PetscCalloc1(Nl * gmaxLen, &sendNames));
5405: for (l = 0; l < Nl; ++l) PetscCall(PetscStrncpy(&sendNames[gmaxLen * l], names[l], gmaxLen));
5406: PetscCall(PetscFree(names));
5407: /* Put all names on all processes */
5408: PetscCall(PetscCalloc2(size, &counts, size + 1, &displs));
5409: PetscCallMPI(MPI_Allgather(&Nl, 1, MPI_INT, counts, 1, MPI_INT, comm));
5410: for (p = 0; p < size; ++p) displs[p + 1] = displs[p] + counts[p];
5411: gNl = displs[size];
5412: for (p = 0; p < size; ++p) {
5413: counts[p] *= gmaxLen;
5414: displs[p] *= gmaxLen;
5415: }
5416: PetscCall(PetscCalloc2(gNl * gmaxLen, &recvNames, gNl, &glabels));
5417: PetscCallMPI(MPI_Allgatherv(sendNames, counts[rank], MPI_CHAR, recvNames, counts, displs, MPI_CHAR, comm));
5418: PetscCall(PetscFree2(counts, displs));
5419: PetscCall(PetscFree(sendNames));
5420: for (l = 0, gl = 0; l < gNl; ++l) {
5421: PetscCall(DMGetLabel(dm, &recvNames[l * gmaxLen], &glabels[gl]));
5422: PetscCheck(glabels[gl], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Label %s missing on rank %d", &recvNames[l * gmaxLen], rank);
5423: for (m = 0; m < gl; ++m)
5424: if (glabels[m] == glabels[gl]) goto next_label;
5425: PetscCall(DMConvert(dm, DMPLEX, &plex));
5426: PetscCall(DMPlexLabelComplete(plex, glabels[gl]));
5427: PetscCall(DMDestroy(&plex));
5428: ++gl;
5429: next_label:
5430: continue;
5431: }
5432: PetscCall(PetscFree2(recvNames, glabels));
5433: PetscFunctionReturn(PETSC_SUCCESS);
5434: }
5436: static PetscErrorCode DMDSEnlarge_Static(DM dm, PetscInt NdsNew)
5437: {
5438: DMSpace *tmpd;
5439: PetscInt Nds = dm->Nds, s;
5441: PetscFunctionBegin;
5442: if (Nds >= NdsNew) PetscFunctionReturn(PETSC_SUCCESS);
5443: PetscCall(PetscMalloc1(NdsNew, &tmpd));
5444: for (s = 0; s < Nds; ++s) tmpd[s] = dm->probs[s];
5445: for (s = Nds; s < NdsNew; ++s) {
5446: tmpd[s].ds = NULL;
5447: tmpd[s].label = NULL;
5448: tmpd[s].fields = NULL;
5449: }
5450: PetscCall(PetscFree(dm->probs));
5451: dm->Nds = NdsNew;
5452: dm->probs = tmpd;
5453: PetscFunctionReturn(PETSC_SUCCESS);
5454: }
5456: /*@
5457: DMGetNumDS - Get the number of discrete systems in the `DM`
5459: Not Collective
5461: Input Parameter:
5462: . dm - The `DM`
5464: Output Parameter:
5465: . Nds - The number of `PetscDS` objects
5467: Level: intermediate
5469: .seealso: [](ch_dmbase), `DM`, `DMGetDS()`, `DMGetCellDS()`
5470: @*/
5471: PetscErrorCode DMGetNumDS(DM dm, PetscInt *Nds)
5472: {
5473: PetscFunctionBegin;
5475: PetscAssertPointer(Nds, 2);
5476: *Nds = dm->Nds;
5477: PetscFunctionReturn(PETSC_SUCCESS);
5478: }
5480: /*@
5481: DMClearDS - Remove all discrete systems from the `DM`
5483: Logically Collective
5485: Input Parameter:
5486: . dm - The `DM`
5488: Level: intermediate
5490: .seealso: [](ch_dmbase), `DM`, `DMGetNumDS()`, `DMGetDS()`, `DMSetField()`
5491: @*/
5492: PetscErrorCode DMClearDS(DM dm)
5493: {
5494: PetscInt s;
5496: PetscFunctionBegin;
5498: for (s = 0; s < dm->Nds; ++s) {
5499: PetscCall(PetscDSDestroy(&dm->probs[s].ds));
5500: PetscCall(PetscDSDestroy(&dm->probs[s].dsIn));
5501: PetscCall(DMLabelDestroy(&dm->probs[s].label));
5502: PetscCall(ISDestroy(&dm->probs[s].fields));
5503: }
5504: PetscCall(PetscFree(dm->probs));
5505: dm->probs = NULL;
5506: dm->Nds = 0;
5507: PetscFunctionReturn(PETSC_SUCCESS);
5508: }
5510: /*@
5511: DMGetDS - Get the default `PetscDS`
5513: Not Collective
5515: Input Parameter:
5516: . dm - The `DM`
5518: Output Parameter:
5519: . ds - The default `PetscDS`
5521: Level: intermediate
5523: Note:
5524: The `ds` is owned by the `dm` and should not be destroyed directly.
5526: .seealso: [](ch_dmbase), `DM`, `DMGetCellDS()`, `DMGetRegionDS()`
5527: @*/
5528: PetscErrorCode DMGetDS(DM dm, PetscDS *ds)
5529: {
5530: PetscFunctionBeginHot;
5532: PetscAssertPointer(ds, 2);
5533: PetscCheck(dm->Nds > 0, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Need to call DMCreateDS() before calling DMGetDS()");
5534: *ds = dm->probs[0].ds;
5535: PetscFunctionReturn(PETSC_SUCCESS);
5536: }
5538: /*@
5539: DMGetCellDS - Get the `PetscDS` defined on a given cell
5541: Not Collective
5543: Input Parameters:
5544: + dm - The `DM`
5545: - point - Cell for the `PetscDS`
5547: Output Parameters:
5548: + ds - The `PetscDS` defined on the given cell
5549: - dsIn - The `PetscDS` for input on the given cell, or NULL if the same ds
5551: Level: developer
5553: .seealso: [](ch_dmbase), `DM`, `DMGetDS()`, `DMSetRegionDS()`
5554: @*/
5555: PetscErrorCode DMGetCellDS(DM dm, PetscInt point, PetscDS *ds, PetscDS *dsIn)
5556: {
5557: PetscDS dsDef = NULL;
5558: PetscInt s;
5560: PetscFunctionBeginHot;
5562: if (ds) PetscAssertPointer(ds, 3);
5563: if (dsIn) PetscAssertPointer(dsIn, 4);
5564: PetscCheck(point >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Mesh point cannot be negative: %" PetscInt_FMT, point);
5565: if (ds) *ds = NULL;
5566: if (dsIn) *dsIn = NULL;
5567: for (s = 0; s < dm->Nds; ++s) {
5568: PetscInt val;
5570: if (!dm->probs[s].label) {
5571: dsDef = dm->probs[s].ds;
5572: } else {
5573: PetscCall(DMLabelGetValue(dm->probs[s].label, point, &val));
5574: if (val >= 0) {
5575: if (ds) *ds = dm->probs[s].ds;
5576: if (dsIn) *dsIn = dm->probs[s].dsIn;
5577: break;
5578: }
5579: }
5580: }
5581: if (ds && !*ds) *ds = dsDef;
5582: PetscFunctionReturn(PETSC_SUCCESS);
5583: }
5585: /*@
5586: DMGetRegionDS - Get the `PetscDS` for a given mesh region, defined by a `DMLabel`
5588: Not Collective
5590: Input Parameters:
5591: + dm - The `DM`
5592: - label - The `DMLabel` defining the mesh region, or `NULL` for the entire mesh
5594: Output Parameters:
5595: + fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL`
5596: . ds - The `PetscDS` defined on the given region, or `NULL`
5597: - dsIn - The `PetscDS` for input in the given region, or `NULL`
5599: Level: advanced
5601: Note:
5602: If a non-`NULL` label is given, but there is no `PetscDS` on that specific label,
5603: the `PetscDS` for the full domain (if present) is returned. Returns with
5604: fields = `NULL` and ds = `NULL` if there is no `PetscDS` for the full domain.
5606: .seealso: [](ch_dmbase), `DM`, `DMGetRegionNumDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5607: @*/
5608: PetscErrorCode DMGetRegionDS(DM dm, DMLabel label, IS *fields, PetscDS *ds, PetscDS *dsIn)
5609: {
5610: PetscInt Nds = dm->Nds, s;
5612: PetscFunctionBegin;
5615: if (fields) {
5616: PetscAssertPointer(fields, 3);
5617: *fields = NULL;
5618: }
5619: if (ds) {
5620: PetscAssertPointer(ds, 4);
5621: *ds = NULL;
5622: }
5623: if (dsIn) {
5624: PetscAssertPointer(dsIn, 5);
5625: *dsIn = NULL;
5626: }
5627: for (s = 0; s < Nds; ++s) {
5628: if (dm->probs[s].label == label || !dm->probs[s].label) {
5629: if (fields) *fields = dm->probs[s].fields;
5630: if (ds) *ds = dm->probs[s].ds;
5631: if (dsIn) *dsIn = dm->probs[s].dsIn;
5632: if (dm->probs[s].label) PetscFunctionReturn(PETSC_SUCCESS);
5633: }
5634: }
5635: PetscFunctionReturn(PETSC_SUCCESS);
5636: }
5638: /*@
5639: DMSetRegionDS - Set the `PetscDS` for a given mesh region, defined by a `DMLabel`
5641: Collective
5643: Input Parameters:
5644: + dm - The `DM`
5645: . label - The `DMLabel` defining the mesh region, or `NULL` for the entire mesh
5646: . fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL` for all fields
5647: . ds - The `PetscDS` defined on the given region
5648: - dsIn - The `PetscDS` for input on the given cell, or `NULL` if it is the same `PetscDS`
5650: Level: advanced
5652: Note:
5653: If the label has a `PetscDS` defined, it will be replaced. Otherwise, it will be added to the `DM`. If the `PetscDS` is replaced,
5654: the fields argument is ignored.
5656: .seealso: [](ch_dmbase), `DM`, `DMGetRegionDS()`, `DMSetRegionNumDS()`, `DMGetDS()`, `DMGetCellDS()`
5657: @*/
5658: PetscErrorCode DMSetRegionDS(DM dm, DMLabel label, IS fields, PetscDS ds, PetscDS dsIn)
5659: {
5660: PetscInt Nds = dm->Nds, s;
5662: PetscFunctionBegin;
5668: for (s = 0; s < Nds; ++s) {
5669: if (dm->probs[s].label == label) {
5670: PetscCall(PetscDSDestroy(&dm->probs[s].ds));
5671: PetscCall(PetscDSDestroy(&dm->probs[s].dsIn));
5672: dm->probs[s].ds = ds;
5673: dm->probs[s].dsIn = dsIn;
5674: PetscFunctionReturn(PETSC_SUCCESS);
5675: }
5676: }
5677: PetscCall(DMDSEnlarge_Static(dm, Nds + 1));
5678: PetscCall(PetscObjectReference((PetscObject)label));
5679: PetscCall(PetscObjectReference((PetscObject)fields));
5680: PetscCall(PetscObjectReference((PetscObject)ds));
5681: PetscCall(PetscObjectReference((PetscObject)dsIn));
5682: if (!label) {
5683: /* Put the NULL label at the front, so it is returned as the default */
5684: for (s = Nds - 1; s >= 0; --s) dm->probs[s + 1] = dm->probs[s];
5685: Nds = 0;
5686: }
5687: dm->probs[Nds].label = label;
5688: dm->probs[Nds].fields = fields;
5689: dm->probs[Nds].ds = ds;
5690: dm->probs[Nds].dsIn = dsIn;
5691: PetscFunctionReturn(PETSC_SUCCESS);
5692: }
5694: /*@
5695: DMGetRegionNumDS - Get the `PetscDS` for a given mesh region, defined by the region number
5697: Not Collective
5699: Input Parameters:
5700: + dm - The `DM`
5701: - num - The region number, in [0, Nds)
5703: Output Parameters:
5704: + label - The region label, or `NULL`
5705: . fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL`
5706: . ds - The `PetscDS` defined on the given region, or `NULL`
5707: - dsIn - The `PetscDS` for input in the given region, or `NULL`
5709: Level: advanced
5711: .seealso: [](ch_dmbase), `DM`, `DMGetRegionDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5712: @*/
5713: PetscErrorCode DMGetRegionNumDS(DM dm, PetscInt num, DMLabel *label, IS *fields, PetscDS *ds, PetscDS *dsIn)
5714: {
5715: PetscInt Nds;
5717: PetscFunctionBegin;
5719: PetscCall(DMGetNumDS(dm, &Nds));
5720: PetscCheck((num >= 0) && (num < Nds), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Region number %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", num, Nds);
5721: if (label) {
5722: PetscAssertPointer(label, 3);
5723: *label = dm->probs[num].label;
5724: }
5725: if (fields) {
5726: PetscAssertPointer(fields, 4);
5727: *fields = dm->probs[num].fields;
5728: }
5729: if (ds) {
5730: PetscAssertPointer(ds, 5);
5731: *ds = dm->probs[num].ds;
5732: }
5733: if (dsIn) {
5734: PetscAssertPointer(dsIn, 6);
5735: *dsIn = dm->probs[num].dsIn;
5736: }
5737: PetscFunctionReturn(PETSC_SUCCESS);
5738: }
5740: /*@
5741: DMSetRegionNumDS - Set the `PetscDS` for a given mesh region, defined by the region number
5743: Not Collective
5745: Input Parameters:
5746: + dm - The `DM`
5747: . num - The region number, in [0, Nds)
5748: . label - The region label, or `NULL`
5749: . fields - The `IS` containing the `DM` field numbers for the fields in this `PetscDS`, or `NULL` to prevent setting
5750: . ds - The `PetscDS` defined on the given region, or `NULL` to prevent setting
5751: - dsIn - The `PetscDS` for input on the given cell, or `NULL` if it is the same `PetscDS`
5753: Level: advanced
5755: .seealso: [](ch_dmbase), `DM`, `DMGetRegionDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5756: @*/
5757: PetscErrorCode DMSetRegionNumDS(DM dm, PetscInt num, DMLabel label, IS fields, PetscDS ds, PetscDS dsIn)
5758: {
5759: PetscInt Nds;
5761: PetscFunctionBegin;
5764: PetscCall(DMGetNumDS(dm, &Nds));
5765: PetscCheck((num >= 0) && (num < Nds), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Region number %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", num, Nds);
5766: PetscCall(PetscObjectReference((PetscObject)label));
5767: PetscCall(DMLabelDestroy(&dm->probs[num].label));
5768: dm->probs[num].label = label;
5769: if (fields) {
5771: PetscCall(PetscObjectReference((PetscObject)fields));
5772: PetscCall(ISDestroy(&dm->probs[num].fields));
5773: dm->probs[num].fields = fields;
5774: }
5775: if (ds) {
5777: PetscCall(PetscObjectReference((PetscObject)ds));
5778: PetscCall(PetscDSDestroy(&dm->probs[num].ds));
5779: dm->probs[num].ds = ds;
5780: }
5781: if (dsIn) {
5783: PetscCall(PetscObjectReference((PetscObject)dsIn));
5784: PetscCall(PetscDSDestroy(&dm->probs[num].dsIn));
5785: dm->probs[num].dsIn = dsIn;
5786: }
5787: PetscFunctionReturn(PETSC_SUCCESS);
5788: }
5790: /*@
5791: DMFindRegionNum - Find the region number for a given `PetscDS`, or -1 if it is not found.
5793: Not Collective
5795: Input Parameters:
5796: + dm - The `DM`
5797: - ds - The `PetscDS` defined on the given region
5799: Output Parameter:
5800: . num - The region number, in [0, Nds), or -1 if not found
5802: Level: advanced
5804: .seealso: [](ch_dmbase), `DM`, `DMGetRegionNumDS()`, `DMGetRegionDS()`, `DMSetRegionDS()`, `DMGetDS()`, `DMGetCellDS()`
5805: @*/
5806: PetscErrorCode DMFindRegionNum(DM dm, PetscDS ds, PetscInt *num)
5807: {
5808: PetscInt Nds, n;
5810: PetscFunctionBegin;
5813: PetscAssertPointer(num, 3);
5814: PetscCall(DMGetNumDS(dm, &Nds));
5815: for (n = 0; n < Nds; ++n)
5816: if (ds == dm->probs[n].ds) break;
5817: if (n >= Nds) *num = -1;
5818: else *num = n;
5819: PetscFunctionReturn(PETSC_SUCCESS);
5820: }
5822: /*@
5823: DMCreateFEDefault - Create a `PetscFE` based on the celltype for the mesh
5825: Not Collective
5827: Input Parameters:
5828: + dm - The `DM`
5829: . Nc - The number of components for the field
5830: . prefix - The options prefix for the output `PetscFE`, or `NULL`
5831: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
5833: Output Parameter:
5834: . fem - The `PetscFE`
5836: Level: intermediate
5838: Note:
5839: This is a convenience method that just calls `PetscFECreateByCell()` underneath.
5841: .seealso: [](ch_dmbase), `DM`, `PetscFECreateByCell()`, `DMAddField()`, `DMCreateDS()`, `DMGetCellDS()`, `DMGetRegionDS()`
5842: @*/
5843: PetscErrorCode DMCreateFEDefault(DM dm, PetscInt Nc, const char prefix[], PetscInt qorder, PetscFE *fem)
5844: {
5845: DMPolytopeType ct;
5846: PetscInt dim, cStart;
5848: PetscFunctionBegin;
5851: if (prefix) PetscAssertPointer(prefix, 3);
5853: PetscAssertPointer(fem, 5);
5854: PetscCall(DMGetDimension(dm, &dim));
5855: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
5856: PetscCall(DMPlexGetCellType(dm, cStart, &ct));
5857: PetscCall(PetscFECreateByCell(PETSC_COMM_SELF, dim, Nc, ct, prefix, qorder, fem));
5858: PetscFunctionReturn(PETSC_SUCCESS);
5859: }
5861: /*@
5862: DMCreateDS - Create the discrete systems for the `DM` based upon the fields added to the `DM`
5864: Collective
5866: Input Parameter:
5867: . dm - The `DM`
5869: Options Database Key:
5870: . -dm_petscds_view - View all the `PetscDS` objects in this `DM`
5872: Level: intermediate
5874: Developer Note:
5875: The name of this function is wrong. Create functions always return the created object as one of the arguments.
5877: .seealso: [](ch_dmbase), `DM`, `DMSetField`, `DMAddField()`, `DMGetDS()`, `DMGetCellDS()`, `DMGetRegionDS()`, `DMSetRegionDS()`
5878: @*/
5879: PetscErrorCode DMCreateDS(DM dm)
5880: {
5881: MPI_Comm comm;
5882: PetscDS dsDef;
5883: DMLabel *labelSet;
5884: PetscInt dE, Nf = dm->Nf, f, s, Nl, l, Ndef, k;
5885: PetscBool doSetup = PETSC_TRUE, flg;
5887: PetscFunctionBegin;
5889: if (!dm->fields) PetscFunctionReturn(PETSC_SUCCESS);
5890: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
5891: PetscCall(DMGetCoordinateDim(dm, &dE));
5892: /* Determine how many regions we have */
5893: PetscCall(PetscMalloc1(Nf, &labelSet));
5894: Nl = 0;
5895: Ndef = 0;
5896: for (f = 0; f < Nf; ++f) {
5897: DMLabel label = dm->fields[f].label;
5898: PetscInt l;
5900: #ifdef PETSC_HAVE_LIBCEED
5901: /* Move CEED context to discretizations */
5902: {
5903: PetscClassId id;
5905: PetscCall(PetscObjectGetClassId(dm->fields[f].disc, &id));
5906: if (id == PETSCFE_CLASSID) {
5907: Ceed ceed;
5909: PetscCall(DMGetCeed(dm, &ceed));
5910: PetscCall(PetscFESetCeed((PetscFE)dm->fields[f].disc, ceed));
5911: }
5912: }
5913: #endif
5914: if (!label) {
5915: ++Ndef;
5916: continue;
5917: }
5918: for (l = 0; l < Nl; ++l)
5919: if (label == labelSet[l]) break;
5920: if (l < Nl) continue;
5921: labelSet[Nl++] = label;
5922: }
5923: /* Create default DS if there are no labels to intersect with */
5924: PetscCall(DMGetRegionDS(dm, NULL, NULL, &dsDef, NULL));
5925: if (!dsDef && Ndef && !Nl) {
5926: IS fields;
5927: PetscInt *fld, nf;
5929: for (f = 0, nf = 0; f < Nf; ++f)
5930: if (!dm->fields[f].label) ++nf;
5931: PetscCheck(nf, comm, PETSC_ERR_PLIB, "All fields have labels, but we are trying to create a default DS");
5932: PetscCall(PetscMalloc1(nf, &fld));
5933: for (f = 0, nf = 0; f < Nf; ++f)
5934: if (!dm->fields[f].label) fld[nf++] = f;
5935: PetscCall(ISCreate(PETSC_COMM_SELF, &fields));
5936: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)fields, "dm_fields_"));
5937: PetscCall(ISSetType(fields, ISGENERAL));
5938: PetscCall(ISGeneralSetIndices(fields, nf, fld, PETSC_OWN_POINTER));
5940: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &dsDef));
5941: PetscCall(DMSetRegionDS(dm, NULL, fields, dsDef, NULL));
5942: PetscCall(PetscDSDestroy(&dsDef));
5943: PetscCall(ISDestroy(&fields));
5944: }
5945: PetscCall(DMGetRegionDS(dm, NULL, NULL, &dsDef, NULL));
5946: if (dsDef) PetscCall(PetscDSSetCoordinateDimension(dsDef, dE));
5947: /* Intersect labels with default fields */
5948: if (Ndef && Nl) {
5949: DM plex;
5950: DMLabel cellLabel;
5951: IS fieldIS, allcellIS, defcellIS = NULL;
5952: PetscInt *fields;
5953: const PetscInt *cells;
5954: PetscInt depth, nf = 0, n, c;
5956: PetscCall(DMConvert(dm, DMPLEX, &plex));
5957: PetscCall(DMPlexGetDepth(plex, &depth));
5958: PetscCall(DMGetStratumIS(plex, "dim", depth, &allcellIS));
5959: if (!allcellIS) PetscCall(DMGetStratumIS(plex, "depth", depth, &allcellIS));
5960: /* TODO This looks like it only works for one label */
5961: for (l = 0; l < Nl; ++l) {
5962: DMLabel label = labelSet[l];
5963: IS pointIS;
5965: PetscCall(ISDestroy(&defcellIS));
5966: PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
5967: PetscCall(ISDifference(allcellIS, pointIS, &defcellIS));
5968: PetscCall(ISDestroy(&pointIS));
5969: }
5970: PetscCall(ISDestroy(&allcellIS));
5972: PetscCall(DMLabelCreate(PETSC_COMM_SELF, "defaultCells", &cellLabel));
5973: PetscCall(ISGetLocalSize(defcellIS, &n));
5974: PetscCall(ISGetIndices(defcellIS, &cells));
5975: for (c = 0; c < n; ++c) PetscCall(DMLabelSetValue(cellLabel, cells[c], 1));
5976: PetscCall(ISRestoreIndices(defcellIS, &cells));
5977: PetscCall(ISDestroy(&defcellIS));
5978: PetscCall(DMPlexLabelComplete(plex, cellLabel));
5980: PetscCall(PetscMalloc1(Ndef, &fields));
5981: for (f = 0; f < Nf; ++f)
5982: if (!dm->fields[f].label) fields[nf++] = f;
5983: PetscCall(ISCreate(PETSC_COMM_SELF, &fieldIS));
5984: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)fieldIS, "dm_fields_"));
5985: PetscCall(ISSetType(fieldIS, ISGENERAL));
5986: PetscCall(ISGeneralSetIndices(fieldIS, nf, fields, PETSC_OWN_POINTER));
5988: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &dsDef));
5989: PetscCall(DMSetRegionDS(dm, cellLabel, fieldIS, dsDef, NULL));
5990: PetscCall(PetscDSSetCoordinateDimension(dsDef, dE));
5991: PetscCall(DMLabelDestroy(&cellLabel));
5992: PetscCall(PetscDSDestroy(&dsDef));
5993: PetscCall(ISDestroy(&fieldIS));
5994: PetscCall(DMDestroy(&plex));
5995: }
5996: /* Create label DSes
5997: - WE ONLY SUPPORT IDENTICAL OR DISJOINT LABELS
5998: */
5999: /* TODO Should check that labels are disjoint */
6000: for (l = 0; l < Nl; ++l) {
6001: DMLabel label = labelSet[l];
6002: PetscDS ds, dsIn = NULL;
6003: IS fields;
6004: PetscInt *fld, nf;
6006: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &ds));
6007: for (f = 0, nf = 0; f < Nf; ++f)
6008: if (label == dm->fields[f].label || !dm->fields[f].label) ++nf;
6009: PetscCall(PetscMalloc1(nf, &fld));
6010: for (f = 0, nf = 0; f < Nf; ++f)
6011: if (label == dm->fields[f].label || !dm->fields[f].label) fld[nf++] = f;
6012: PetscCall(ISCreate(PETSC_COMM_SELF, &fields));
6013: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)fields, "dm_fields_"));
6014: PetscCall(ISSetType(fields, ISGENERAL));
6015: PetscCall(ISGeneralSetIndices(fields, nf, fld, PETSC_OWN_POINTER));
6016: PetscCall(PetscDSSetCoordinateDimension(ds, dE));
6017: {
6018: DMPolytopeType ct;
6019: PetscInt lStart, lEnd;
6020: PetscBool isCohesiveLocal = PETSC_FALSE, isCohesive;
6022: PetscCall(DMLabelGetBounds(label, &lStart, &lEnd));
6023: if (lStart >= 0) {
6024: PetscCall(DMPlexGetCellType(dm, lStart, &ct));
6025: switch (ct) {
6026: case DM_POLYTOPE_POINT_PRISM_TENSOR:
6027: case DM_POLYTOPE_SEG_PRISM_TENSOR:
6028: case DM_POLYTOPE_TRI_PRISM_TENSOR:
6029: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
6030: isCohesiveLocal = PETSC_TRUE;
6031: break;
6032: default:
6033: break;
6034: }
6035: }
6036: PetscCallMPI(MPIU_Allreduce(&isCohesiveLocal, &isCohesive, 1, MPIU_BOOL, MPI_LOR, comm));
6037: if (isCohesive) {
6038: PetscCall(PetscDSCreate(PETSC_COMM_SELF, &dsIn));
6039: PetscCall(PetscDSSetCoordinateDimension(dsIn, dE));
6040: }
6041: for (f = 0, nf = 0; f < Nf; ++f) {
6042: if (label == dm->fields[f].label || !dm->fields[f].label) {
6043: if (label == dm->fields[f].label) {
6044: PetscCall(PetscDSSetDiscretization(ds, nf, NULL));
6045: PetscCall(PetscDSSetCohesive(ds, nf, isCohesive));
6046: if (dsIn) {
6047: PetscCall(PetscDSSetDiscretization(dsIn, nf, NULL));
6048: PetscCall(PetscDSSetCohesive(dsIn, nf, isCohesive));
6049: }
6050: }
6051: ++nf;
6052: }
6053: }
6054: }
6055: PetscCall(DMSetRegionDS(dm, label, fields, ds, dsIn));
6056: PetscCall(ISDestroy(&fields));
6057: PetscCall(PetscDSDestroy(&ds));
6058: PetscCall(PetscDSDestroy(&dsIn));
6059: }
6060: PetscCall(PetscFree(labelSet));
6061: /* Set fields in DSes */
6062: for (s = 0; s < dm->Nds; ++s) {
6063: PetscDS ds = dm->probs[s].ds;
6064: PetscDS dsIn = dm->probs[s].dsIn;
6065: IS fields = dm->probs[s].fields;
6066: const PetscInt *fld;
6067: PetscInt nf, dsnf;
6068: PetscBool isCohesive;
6070: PetscCall(PetscDSGetNumFields(ds, &dsnf));
6071: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
6072: PetscCall(ISGetLocalSize(fields, &nf));
6073: PetscCall(ISGetIndices(fields, &fld));
6074: for (f = 0; f < nf; ++f) {
6075: PetscObject disc = dm->fields[fld[f]].disc;
6076: PetscBool isCohesiveField;
6077: PetscClassId id;
6079: /* Handle DS with no fields */
6080: if (dsnf) PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
6081: /* If this is a cohesive cell, then regular fields need the lower dimensional discretization */
6082: if (isCohesive) {
6083: if (!isCohesiveField) {
6084: PetscObject bdDisc;
6086: PetscCall(PetscFEGetHeightSubspace((PetscFE)disc, 1, (PetscFE *)&bdDisc));
6087: PetscCall(PetscDSSetDiscretization(ds, f, bdDisc));
6088: PetscCall(PetscDSSetDiscretization(dsIn, f, disc));
6089: } else {
6090: PetscCall(PetscDSSetDiscretization(ds, f, disc));
6091: PetscCall(PetscDSSetDiscretization(dsIn, f, disc));
6092: }
6093: } else {
6094: PetscCall(PetscDSSetDiscretization(ds, f, disc));
6095: }
6096: /* We allow people to have placeholder fields and construct the Section by hand */
6097: PetscCall(PetscObjectGetClassId(disc, &id));
6098: if ((id != PETSCFE_CLASSID) && (id != PETSCFV_CLASSID)) doSetup = PETSC_FALSE;
6099: }
6100: PetscCall(ISRestoreIndices(fields, &fld));
6101: }
6102: /* Allow k-jet tabulation */
6103: PetscCall(PetscOptionsGetInt(NULL, ((PetscObject)dm)->prefix, "-dm_ds_jet_degree", &k, &flg));
6104: if (flg) {
6105: for (s = 0; s < dm->Nds; ++s) {
6106: PetscDS ds = dm->probs[s].ds;
6107: PetscDS dsIn = dm->probs[s].dsIn;
6108: PetscInt Nf, f;
6110: PetscCall(PetscDSGetNumFields(ds, &Nf));
6111: for (f = 0; f < Nf; ++f) {
6112: PetscCall(PetscDSSetJetDegree(ds, f, k));
6113: if (dsIn) PetscCall(PetscDSSetJetDegree(dsIn, f, k));
6114: }
6115: }
6116: }
6117: /* Setup DSes */
6118: if (doSetup) {
6119: for (s = 0; s < dm->Nds; ++s) {
6120: if (dm->setfromoptionscalled) {
6121: PetscCall(PetscDSSetFromOptions(dm->probs[s].ds));
6122: if (dm->probs[s].dsIn) PetscCall(PetscDSSetFromOptions(dm->probs[s].dsIn));
6123: }
6124: PetscCall(PetscDSSetUp(dm->probs[s].ds));
6125: if (dm->probs[s].dsIn) PetscCall(PetscDSSetUp(dm->probs[s].dsIn));
6126: }
6127: }
6128: PetscFunctionReturn(PETSC_SUCCESS);
6129: }
6131: /*@
6132: DMUseTensorOrder - Use a tensor product closure ordering for the default section
6134: Input Parameters:
6135: + dm - The DM
6136: - tensor - Flag for tensor order
6138: Level: developer
6140: .seealso: `DMPlexSetClosurePermutationTensor()`, `PetscSectionResetClosurePermutation()`
6141: @*/
6142: PetscErrorCode DMUseTensorOrder(DM dm, PetscBool tensor)
6143: {
6144: PetscInt Nf;
6145: PetscBool reorder = PETSC_TRUE, isPlex;
6147: PetscFunctionBegin;
6148: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
6149: PetscCall(DMGetNumFields(dm, &Nf));
6150: for (PetscInt f = 0; f < Nf; ++f) {
6151: PetscObject obj;
6152: PetscClassId id;
6154: PetscCall(DMGetField(dm, f, NULL, &obj));
6155: PetscCall(PetscObjectGetClassId(obj, &id));
6156: if (id == PETSCFE_CLASSID) {
6157: PetscSpace sp;
6158: PetscBool tensor;
6160: PetscCall(PetscFEGetBasisSpace((PetscFE)obj, &sp));
6161: PetscCall(PetscSpacePolynomialGetTensor(sp, &tensor));
6162: reorder = reorder && tensor ? PETSC_TRUE : PETSC_FALSE;
6163: } else reorder = PETSC_FALSE;
6164: }
6165: if (tensor) {
6166: if (reorder && isPlex) PetscCall(DMPlexSetClosurePermutationTensor(dm, PETSC_DETERMINE, NULL));
6167: } else {
6168: PetscSection s;
6170: PetscCall(DMGetLocalSection(dm, &s));
6171: if (s) PetscCall(PetscSectionResetClosurePermutation(s));
6172: }
6173: PetscFunctionReturn(PETSC_SUCCESS);
6174: }
6176: /*@
6177: DMComputeExactSolution - Compute the exact solution for a given `DM`, using the `PetscDS` information.
6179: Collective
6181: Input Parameters:
6182: + dm - The `DM`
6183: - time - The time
6185: Output Parameters:
6186: + u - The vector will be filled with exact solution values, or `NULL`
6187: - u_t - The vector will be filled with the time derivative of exact solution values, or `NULL`
6189: Level: developer
6191: Note:
6192: The user must call `PetscDSSetExactSolution()` before using this routine
6194: .seealso: [](ch_dmbase), `DM`, `PetscDSSetExactSolution()`
6195: @*/
6196: PetscErrorCode DMComputeExactSolution(DM dm, PetscReal time, Vec u, Vec u_t)
6197: {
6198: PetscErrorCode (**exacts)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
6199: void **ectxs;
6200: Vec locu, locu_t;
6201: PetscInt Nf, Nds, s;
6203: PetscFunctionBegin;
6205: if (u) {
6207: PetscCall(DMGetLocalVector(dm, &locu));
6208: PetscCall(VecSet(locu, 0.));
6209: }
6210: if (u_t) {
6212: PetscCall(DMGetLocalVector(dm, &locu_t));
6213: PetscCall(VecSet(locu_t, 0.));
6214: }
6215: PetscCall(DMGetNumFields(dm, &Nf));
6216: PetscCall(PetscMalloc2(Nf, &exacts, Nf, &ectxs));
6217: PetscCall(DMGetNumDS(dm, &Nds));
6218: for (s = 0; s < Nds; ++s) {
6219: PetscDS ds;
6220: DMLabel label;
6221: IS fieldIS;
6222: const PetscInt *fields, id = 1;
6223: PetscInt dsNf, f;
6225: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
6226: PetscCall(PetscDSGetNumFields(ds, &dsNf));
6227: PetscCall(ISGetIndices(fieldIS, &fields));
6228: PetscCall(PetscArrayzero(exacts, Nf));
6229: PetscCall(PetscArrayzero(ectxs, Nf));
6230: if (u) {
6231: for (f = 0; f < dsNf; ++f) PetscCall(PetscDSGetExactSolution(ds, fields[f], &exacts[fields[f]], &ectxs[fields[f]]));
6232: if (label) PetscCall(DMProjectFunctionLabelLocal(dm, time, label, 1, &id, 0, NULL, exacts, ectxs, INSERT_ALL_VALUES, locu));
6233: else PetscCall(DMProjectFunctionLocal(dm, time, exacts, ectxs, INSERT_ALL_VALUES, locu));
6234: }
6235: if (u_t) {
6236: PetscCall(PetscArrayzero(exacts, Nf));
6237: PetscCall(PetscArrayzero(ectxs, Nf));
6238: for (f = 0; f < dsNf; ++f) PetscCall(PetscDSGetExactSolutionTimeDerivative(ds, fields[f], &exacts[fields[f]], &ectxs[fields[f]]));
6239: if (label) PetscCall(DMProjectFunctionLabelLocal(dm, time, label, 1, &id, 0, NULL, exacts, ectxs, INSERT_ALL_VALUES, locu_t));
6240: else PetscCall(DMProjectFunctionLocal(dm, time, exacts, ectxs, INSERT_ALL_VALUES, locu_t));
6241: }
6242: PetscCall(ISRestoreIndices(fieldIS, &fields));
6243: }
6244: if (u) {
6245: PetscCall(PetscObjectSetName((PetscObject)u, "Exact Solution"));
6246: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)u, "exact_"));
6247: }
6248: if (u_t) {
6249: PetscCall(PetscObjectSetName((PetscObject)u, "Exact Solution Time Derivative"));
6250: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)u_t, "exact_t_"));
6251: }
6252: PetscCall(PetscFree2(exacts, ectxs));
6253: if (u) {
6254: PetscCall(DMLocalToGlobalBegin(dm, locu, INSERT_ALL_VALUES, u));
6255: PetscCall(DMLocalToGlobalEnd(dm, locu, INSERT_ALL_VALUES, u));
6256: PetscCall(DMRestoreLocalVector(dm, &locu));
6257: }
6258: if (u_t) {
6259: PetscCall(DMLocalToGlobalBegin(dm, locu_t, INSERT_ALL_VALUES, u_t));
6260: PetscCall(DMLocalToGlobalEnd(dm, locu_t, INSERT_ALL_VALUES, u_t));
6261: PetscCall(DMRestoreLocalVector(dm, &locu_t));
6262: }
6263: PetscFunctionReturn(PETSC_SUCCESS);
6264: }
6266: static PetscErrorCode DMTransferDS_Internal(DM dm, DMLabel label, IS fields, PetscInt minDegree, PetscInt maxDegree, PetscDS ds, PetscDS dsIn)
6267: {
6268: PetscDS dsNew, dsInNew = NULL;
6270: PetscFunctionBegin;
6271: PetscCall(PetscDSCreate(PetscObjectComm((PetscObject)ds), &dsNew));
6272: PetscCall(PetscDSCopy(ds, minDegree, maxDegree, dm, dsNew));
6273: if (dsIn) {
6274: PetscCall(PetscDSCreate(PetscObjectComm((PetscObject)dsIn), &dsInNew));
6275: PetscCall(PetscDSCopy(dsIn, minDegree, maxDegree, dm, dsInNew));
6276: }
6277: PetscCall(DMSetRegionDS(dm, label, fields, dsNew, dsInNew));
6278: PetscCall(PetscDSDestroy(&dsNew));
6279: PetscCall(PetscDSDestroy(&dsInNew));
6280: PetscFunctionReturn(PETSC_SUCCESS);
6281: }
6283: /*@
6284: DMCopyDS - Copy the discrete systems for the `DM` into another `DM`
6286: Collective
6288: Input Parameters:
6289: + dm - The `DM`
6290: . minDegree - Minimum degree for a discretization, or `PETSC_DETERMINE` for no limit
6291: - maxDegree - Maximum degree for a discretization, or `PETSC_DETERMINE` for no limit
6293: Output Parameter:
6294: . newdm - The `DM`
6296: Level: advanced
6298: .seealso: [](ch_dmbase), `DM`, `DMCopyFields()`, `DMAddField()`, `DMGetDS()`, `DMGetCellDS()`, `DMGetRegionDS()`, `DMSetRegionDS()`
6299: @*/
6300: PetscErrorCode DMCopyDS(DM dm, PetscInt minDegree, PetscInt maxDegree, DM newdm)
6301: {
6302: PetscInt Nds, s;
6304: PetscFunctionBegin;
6305: if (dm == newdm) PetscFunctionReturn(PETSC_SUCCESS);
6306: PetscCall(DMGetNumDS(dm, &Nds));
6307: PetscCall(DMClearDS(newdm));
6308: for (s = 0; s < Nds; ++s) {
6309: DMLabel label;
6310: IS fields;
6311: PetscDS ds, dsIn, newds;
6312: PetscInt Nbd, bd;
6314: PetscCall(DMGetRegionNumDS(dm, s, &label, &fields, &ds, &dsIn));
6315: /* TODO: We need to change all keys from labels in the old DM to labels in the new DM */
6316: PetscCall(DMTransferDS_Internal(newdm, label, fields, minDegree, maxDegree, ds, dsIn));
6317: /* Complete new labels in the new DS */
6318: PetscCall(DMGetRegionDS(newdm, label, NULL, &newds, NULL));
6319: PetscCall(PetscDSGetNumBoundary(newds, &Nbd));
6320: for (bd = 0; bd < Nbd; ++bd) {
6321: PetscWeakForm wf;
6322: DMLabel label;
6323: PetscInt field;
6325: PetscCall(PetscDSGetBoundary(newds, bd, &wf, NULL, NULL, &label, NULL, NULL, &field, NULL, NULL, NULL, NULL, NULL));
6326: PetscCall(PetscWeakFormReplaceLabel(wf, label));
6327: }
6328: }
6329: PetscCall(DMCompleteBCLabels_Internal(newdm));
6330: PetscFunctionReturn(PETSC_SUCCESS);
6331: }
6333: /*@
6334: DMCopyDisc - Copy the fields and discrete systems for the `DM` into another `DM`
6336: Collective
6338: Input Parameter:
6339: . dm - The `DM`
6341: Output Parameter:
6342: . newdm - The `DM`
6344: Level: advanced
6346: Developer Note:
6347: Really ugly name, nothing in PETSc is called a `Disc` plus it is an ugly abbreviation
6349: .seealso: [](ch_dmbase), `DM`, `DMCopyFields()`, `DMCopyDS()`
6350: @*/
6351: PetscErrorCode DMCopyDisc(DM dm, DM newdm)
6352: {
6353: PetscFunctionBegin;
6354: PetscCall(DMCopyFields(dm, PETSC_DETERMINE, PETSC_DETERMINE, newdm));
6355: PetscCall(DMCopyDS(dm, PETSC_DETERMINE, PETSC_DETERMINE, newdm));
6356: PetscFunctionReturn(PETSC_SUCCESS);
6357: }
6359: /*@
6360: DMGetDimension - Return the topological dimension of the `DM`
6362: Not Collective
6364: Input Parameter:
6365: . dm - The `DM`
6367: Output Parameter:
6368: . dim - The topological dimension
6370: Level: beginner
6372: .seealso: [](ch_dmbase), `DM`, `DMSetDimension()`, `DMCreate()`
6373: @*/
6374: PetscErrorCode DMGetDimension(DM dm, PetscInt *dim)
6375: {
6376: PetscFunctionBegin;
6378: PetscAssertPointer(dim, 2);
6379: *dim = dm->dim;
6380: PetscFunctionReturn(PETSC_SUCCESS);
6381: }
6383: /*@
6384: DMSetDimension - Set the topological dimension of the `DM`
6386: Collective
6388: Input Parameters:
6389: + dm - The `DM`
6390: - dim - The topological dimension
6392: Level: beginner
6394: .seealso: [](ch_dmbase), `DM`, `DMGetDimension()`, `DMCreate()`
6395: @*/
6396: PetscErrorCode DMSetDimension(DM dm, PetscInt dim)
6397: {
6398: PetscDS ds;
6399: PetscInt Nds, n;
6401: PetscFunctionBegin;
6404: dm->dim = dim;
6405: if (dm->dim >= 0) {
6406: PetscCall(DMGetNumDS(dm, &Nds));
6407: for (n = 0; n < Nds; ++n) {
6408: PetscCall(DMGetRegionNumDS(dm, n, NULL, NULL, &ds, NULL));
6409: if (ds->dimEmbed < 0) PetscCall(PetscDSSetCoordinateDimension(ds, dim));
6410: }
6411: }
6412: PetscFunctionReturn(PETSC_SUCCESS);
6413: }
6415: /*@
6416: DMGetDimPoints - Get the half-open interval for all points of a given dimension
6418: Collective
6420: Input Parameters:
6421: + dm - the `DM`
6422: - dim - the dimension
6424: Output Parameters:
6425: + pStart - The first point of the given dimension
6426: - pEnd - The first point following points of the given dimension
6428: Level: intermediate
6430: Note:
6431: The points are vertices in the Hasse diagram encoding the topology. This is explained in
6432: https://arxiv.org/abs/0908.4427. If no points exist of this dimension in the storage scheme,
6433: then the interval is empty.
6435: .seealso: [](ch_dmbase), `DM`, `DMPLEX`, `DMPlexGetDepthStratum()`, `DMPlexGetHeightStratum()`
6436: @*/
6437: PetscErrorCode DMGetDimPoints(DM dm, PetscInt dim, PetscInt *pStart, PetscInt *pEnd)
6438: {
6439: PetscInt d;
6441: PetscFunctionBegin;
6443: PetscCall(DMGetDimension(dm, &d));
6444: PetscCheck((dim >= 0) && (dim <= d), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
6445: PetscUseTypeMethod(dm, getdimpoints, dim, pStart, pEnd);
6446: PetscFunctionReturn(PETSC_SUCCESS);
6447: }
6449: /*@
6450: DMGetOutputDM - Retrieve the `DM` associated with the layout for output
6452: Collective
6454: Input Parameter:
6455: . dm - The original `DM`
6457: Output Parameter:
6458: . odm - The `DM` which provides the layout for output
6460: Level: intermediate
6462: Note:
6463: In some situations the vector obtained with `DMCreateGlobalVector()` excludes points for degrees of freedom that are associated with fixed (Dirichelet) boundary
6464: conditions since the algebraic solver does not solve for those variables. The output `DM` includes these excluded points and its global vector contains the
6465: locations for those dof so that they can be output to a file or other viewer along with the unconstrained dof.
6467: .seealso: [](ch_dmbase), `DM`, `VecView()`, `DMGetGlobalSection()`, `DMCreateGlobalVector()`, `PetscSectionHasConstraints()`, `DMSetGlobalSection()`
6468: @*/
6469: PetscErrorCode DMGetOutputDM(DM dm, DM *odm)
6470: {
6471: PetscSection section;
6472: IS perm;
6473: PetscBool hasConstraints, newDM, gnewDM;
6474: PetscInt num_face_sfs = 0;
6476: PetscFunctionBegin;
6478: PetscAssertPointer(odm, 2);
6479: PetscCall(DMGetLocalSection(dm, §ion));
6480: PetscCall(PetscSectionHasConstraints(section, &hasConstraints));
6481: PetscCall(PetscSectionGetPermutation(section, &perm));
6482: PetscCall(DMPlexGetIsoperiodicFaceSF(dm, &num_face_sfs, NULL));
6483: newDM = hasConstraints || perm || (num_face_sfs > 0) ? PETSC_TRUE : PETSC_FALSE;
6484: PetscCallMPI(MPIU_Allreduce(&newDM, &gnewDM, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
6485: if (!gnewDM) {
6486: *odm = dm;
6487: PetscFunctionReturn(PETSC_SUCCESS);
6488: }
6489: if (!dm->dmBC) {
6490: PetscSection newSection, gsection;
6491: PetscSF sf, sfNatural;
6492: PetscBool usePerm = dm->ignorePermOutput ? PETSC_FALSE : PETSC_TRUE;
6494: PetscCall(DMClone(dm, &dm->dmBC));
6495: PetscCall(DMCopyDisc(dm, dm->dmBC));
6496: PetscCall(PetscSectionClone(section, &newSection));
6497: PetscCall(DMSetLocalSection(dm->dmBC, newSection));
6498: PetscCall(PetscSectionDestroy(&newSection));
6499: PetscCall(DMGetNaturalSF(dm, &sfNatural));
6500: PetscCall(DMSetNaturalSF(dm->dmBC, sfNatural));
6501: PetscCall(DMGetPointSF(dm->dmBC, &sf));
6502: PetscCall(PetscSectionCreateGlobalSection(section, sf, usePerm, PETSC_TRUE, PETSC_FALSE, &gsection));
6503: PetscCall(DMSetGlobalSection(dm->dmBC, gsection));
6504: PetscCall(PetscSectionDestroy(&gsection));
6505: }
6506: *odm = dm->dmBC;
6507: PetscFunctionReturn(PETSC_SUCCESS);
6508: }
6510: /*@
6511: DMGetOutputSequenceNumber - Retrieve the sequence number/value for output
6513: Input Parameter:
6514: . dm - The original `DM`
6516: Output Parameters:
6517: + num - The output sequence number
6518: - val - The output sequence value
6520: Level: intermediate
6522: Note:
6523: This is intended for output that should appear in sequence, for instance
6524: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6526: Developer Note:
6527: The `DM` serves as a convenient place to store the current iteration value. The iteration is not
6528: not directly related to the `DM`.
6530: .seealso: [](ch_dmbase), `DM`, `VecView()`
6531: @*/
6532: PetscErrorCode DMGetOutputSequenceNumber(DM dm, PetscInt *num, PetscReal *val)
6533: {
6534: PetscFunctionBegin;
6536: if (num) {
6537: PetscAssertPointer(num, 2);
6538: *num = dm->outputSequenceNum;
6539: }
6540: if (val) {
6541: PetscAssertPointer(val, 3);
6542: *val = dm->outputSequenceVal;
6543: }
6544: PetscFunctionReturn(PETSC_SUCCESS);
6545: }
6547: /*@
6548: DMSetOutputSequenceNumber - Set the sequence number/value for output
6550: Input Parameters:
6551: + dm - The original `DM`
6552: . num - The output sequence number
6553: - val - The output sequence value
6555: Level: intermediate
6557: Note:
6558: This is intended for output that should appear in sequence, for instance
6559: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6561: .seealso: [](ch_dmbase), `DM`, `VecView()`
6562: @*/
6563: PetscErrorCode DMSetOutputSequenceNumber(DM dm, PetscInt num, PetscReal val)
6564: {
6565: PetscFunctionBegin;
6567: dm->outputSequenceNum = num;
6568: dm->outputSequenceVal = val;
6569: PetscFunctionReturn(PETSC_SUCCESS);
6570: }
6572: /*@
6573: DMOutputSequenceLoad - Retrieve the sequence value from a `PetscViewer`
6575: Input Parameters:
6576: + dm - The original `DM`
6577: . viewer - The `PetscViewer` to get it from
6578: . name - The sequence name
6579: - num - The output sequence number
6581: Output Parameter:
6582: . val - The output sequence value
6584: Level: intermediate
6586: Note:
6587: This is intended for output that should appear in sequence, for instance
6588: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6590: Developer Note:
6591: It is unclear at the user API level why a `DM` is needed as input
6593: .seealso: [](ch_dmbase), `DM`, `DMGetOutputSequenceNumber()`, `DMSetOutputSequenceNumber()`, `VecView()`
6594: @*/
6595: PetscErrorCode DMOutputSequenceLoad(DM dm, PetscViewer viewer, const char name[], PetscInt num, PetscReal *val)
6596: {
6597: PetscBool ishdf5;
6599: PetscFunctionBegin;
6602: PetscAssertPointer(name, 3);
6603: PetscAssertPointer(val, 5);
6604: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
6605: if (ishdf5) {
6606: #if defined(PETSC_HAVE_HDF5)
6607: PetscScalar value;
6609: PetscCall(DMSequenceLoad_HDF5_Internal(dm, name, num, &value, viewer));
6610: *val = PetscRealPart(value);
6611: #endif
6612: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerHDF5Open()");
6613: PetscFunctionReturn(PETSC_SUCCESS);
6614: }
6616: /*@
6617: DMGetOutputSequenceLength - Retrieve the number of sequence values from a `PetscViewer`
6619: Input Parameters:
6620: + dm - The original `DM`
6621: . viewer - The `PetscViewer` to get it from
6622: - name - The sequence name
6624: Output Parameter:
6625: . len - The length of the output sequence
6627: Level: intermediate
6629: Note:
6630: This is intended for output that should appear in sequence, for instance
6631: a set of timesteps in an `PETSCVIEWERHDF5` file, or a set of realizations of a stochastic system.
6633: Developer Note:
6634: It is unclear at the user API level why a `DM` is needed as input
6636: .seealso: [](ch_dmbase), `DM`, `DMGetOutputSequenceNumber()`, `DMSetOutputSequenceNumber()`, `VecView()`
6637: @*/
6638: PetscErrorCode DMGetOutputSequenceLength(DM dm, PetscViewer viewer, const char name[], PetscInt *len)
6639: {
6640: PetscBool ishdf5;
6642: PetscFunctionBegin;
6645: PetscAssertPointer(name, 3);
6646: PetscAssertPointer(len, 4);
6647: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
6648: if (ishdf5) {
6649: #if defined(PETSC_HAVE_HDF5)
6650: PetscCall(DMSequenceGetLength_HDF5_Internal(dm, name, len, viewer));
6651: #endif
6652: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerHDF5Open()");
6653: PetscFunctionReturn(PETSC_SUCCESS);
6654: }
6656: /*@
6657: DMGetUseNatural - Get the flag for creating a mapping to the natural order when a `DM` is (re)distributed in parallel
6659: Not Collective
6661: Input Parameter:
6662: . dm - The `DM`
6664: Output Parameter:
6665: . useNatural - `PETSC_TRUE` to build the mapping to a natural order during distribution
6667: Level: beginner
6669: .seealso: [](ch_dmbase), `DM`, `DMSetUseNatural()`, `DMCreate()`
6670: @*/
6671: PetscErrorCode DMGetUseNatural(DM dm, PetscBool *useNatural)
6672: {
6673: PetscFunctionBegin;
6675: PetscAssertPointer(useNatural, 2);
6676: *useNatural = dm->useNatural;
6677: PetscFunctionReturn(PETSC_SUCCESS);
6678: }
6680: /*@
6681: DMSetUseNatural - Set the flag for creating a mapping to the natural order when a `DM` is (re)distributed in parallel
6683: Collective
6685: Input Parameters:
6686: + dm - The `DM`
6687: - useNatural - `PETSC_TRUE` to build the mapping to a natural order during distribution
6689: Level: beginner
6691: Note:
6692: This also causes the map to be build after `DMCreateSubDM()` and `DMCreateSuperDM()`
6694: .seealso: [](ch_dmbase), `DM`, `DMGetUseNatural()`, `DMCreate()`, `DMPlexDistribute()`, `DMCreateSubDM()`, `DMCreateSuperDM()`
6695: @*/
6696: PetscErrorCode DMSetUseNatural(DM dm, PetscBool useNatural)
6697: {
6698: PetscFunctionBegin;
6701: dm->useNatural = useNatural;
6702: PetscFunctionReturn(PETSC_SUCCESS);
6703: }
6705: /*@
6706: DMCreateLabel - Create a label of the given name if it does not already exist in the `DM`
6708: Not Collective
6710: Input Parameters:
6711: + dm - The `DM` object
6712: - name - The label name
6714: Level: intermediate
6716: .seealso: [](ch_dmbase), `DM`, `DMLabelCreate()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6717: @*/
6718: PetscErrorCode DMCreateLabel(DM dm, const char name[])
6719: {
6720: PetscBool flg;
6721: DMLabel label;
6723: PetscFunctionBegin;
6725: PetscAssertPointer(name, 2);
6726: PetscCall(DMHasLabel(dm, name, &flg));
6727: if (!flg) {
6728: PetscCall(DMLabelCreate(PETSC_COMM_SELF, name, &label));
6729: PetscCall(DMAddLabel(dm, label));
6730: PetscCall(DMLabelDestroy(&label));
6731: }
6732: PetscFunctionReturn(PETSC_SUCCESS);
6733: }
6735: /*@
6736: DMCreateLabelAtIndex - Create a label of the given name at the given index. If it already exists in the `DM`, move it to this index.
6738: Not Collective
6740: Input Parameters:
6741: + dm - The `DM` object
6742: . l - The index for the label
6743: - name - The label name
6745: Level: intermediate
6747: .seealso: [](ch_dmbase), `DM`, `DMCreateLabel()`, `DMLabelCreate()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6748: @*/
6749: PetscErrorCode DMCreateLabelAtIndex(DM dm, PetscInt l, const char name[])
6750: {
6751: DMLabelLink orig, prev = NULL;
6752: DMLabel label;
6753: PetscInt Nl, m;
6754: PetscBool flg, match;
6755: const char *lname;
6757: PetscFunctionBegin;
6759: PetscAssertPointer(name, 3);
6760: PetscCall(DMHasLabel(dm, name, &flg));
6761: if (!flg) {
6762: PetscCall(DMLabelCreate(PETSC_COMM_SELF, name, &label));
6763: PetscCall(DMAddLabel(dm, label));
6764: PetscCall(DMLabelDestroy(&label));
6765: }
6766: PetscCall(DMGetNumLabels(dm, &Nl));
6767: PetscCheck(l < Nl, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label index %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", l, Nl);
6768: for (m = 0, orig = dm->labels; m < Nl; ++m, prev = orig, orig = orig->next) {
6769: PetscCall(PetscObjectGetName((PetscObject)orig->label, &lname));
6770: PetscCall(PetscStrcmp(name, lname, &match));
6771: if (match) break;
6772: }
6773: if (m == l) PetscFunctionReturn(PETSC_SUCCESS);
6774: if (!m) dm->labels = orig->next;
6775: else prev->next = orig->next;
6776: if (!l) {
6777: orig->next = dm->labels;
6778: dm->labels = orig;
6779: } else {
6780: for (m = 0, prev = dm->labels; m < l - 1; ++m, prev = prev->next);
6781: orig->next = prev->next;
6782: prev->next = orig;
6783: }
6784: PetscFunctionReturn(PETSC_SUCCESS);
6785: }
6787: /*@
6788: DMGetLabelValue - Get the value in a `DMLabel` for the given point, with -1 as the default
6790: Not Collective
6792: Input Parameters:
6793: + dm - The `DM` object
6794: . name - The label name
6795: - point - The mesh point
6797: Output Parameter:
6798: . value - The label value for this point, or -1 if the point is not in the label
6800: Level: beginner
6802: .seealso: [](ch_dmbase), `DM`, `DMLabelGetValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6803: @*/
6804: PetscErrorCode DMGetLabelValue(DM dm, const char name[], PetscInt point, PetscInt *value)
6805: {
6806: DMLabel label;
6808: PetscFunctionBegin;
6810: PetscAssertPointer(name, 2);
6811: PetscCall(DMGetLabel(dm, name, &label));
6812: PetscCheck(label, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "No label named %s was found", name);
6813: PetscCall(DMLabelGetValue(label, point, value));
6814: PetscFunctionReturn(PETSC_SUCCESS);
6815: }
6817: /*@
6818: DMSetLabelValue - Add a point to a `DMLabel` with given value
6820: Not Collective
6822: Input Parameters:
6823: + dm - The `DM` object
6824: . name - The label name
6825: . point - The mesh point
6826: - value - The label value for this point
6828: Output Parameter:
6830: Level: beginner
6832: .seealso: [](ch_dmbase), `DM`, `DMLabelSetValue()`, `DMGetStratumIS()`, `DMClearLabelValue()`
6833: @*/
6834: PetscErrorCode DMSetLabelValue(DM dm, const char name[], PetscInt point, PetscInt value)
6835: {
6836: DMLabel label;
6838: PetscFunctionBegin;
6840: PetscAssertPointer(name, 2);
6841: PetscCall(DMGetLabel(dm, name, &label));
6842: if (!label) {
6843: PetscCall(DMCreateLabel(dm, name));
6844: PetscCall(DMGetLabel(dm, name, &label));
6845: }
6846: PetscCall(DMLabelSetValue(label, point, value));
6847: PetscFunctionReturn(PETSC_SUCCESS);
6848: }
6850: /*@
6851: DMClearLabelValue - Remove a point from a `DMLabel` with given value
6853: Not Collective
6855: Input Parameters:
6856: + dm - The `DM` object
6857: . name - The label name
6858: . point - The mesh point
6859: - value - The label value for this point
6861: Level: beginner
6863: .seealso: [](ch_dmbase), `DM`, `DMLabelClearValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
6864: @*/
6865: PetscErrorCode DMClearLabelValue(DM dm, const char name[], PetscInt point, PetscInt value)
6866: {
6867: DMLabel label;
6869: PetscFunctionBegin;
6871: PetscAssertPointer(name, 2);
6872: PetscCall(DMGetLabel(dm, name, &label));
6873: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
6874: PetscCall(DMLabelClearValue(label, point, value));
6875: PetscFunctionReturn(PETSC_SUCCESS);
6876: }
6878: /*@
6879: DMGetLabelSize - Get the value of `DMLabelGetNumValues()` of a `DMLabel` in the `DM`
6881: Not Collective
6883: Input Parameters:
6884: + dm - The `DM` object
6885: - name - The label name
6887: Output Parameter:
6888: . size - The number of different integer ids, or 0 if the label does not exist
6890: Level: beginner
6892: Developer Note:
6893: This should be renamed to something like `DMGetLabelNumValues()` or removed.
6895: .seealso: [](ch_dmbase), `DM`, `DMLabelGetNumValues()`, `DMSetLabelValue()`, `DMGetLabel()`
6896: @*/
6897: PetscErrorCode DMGetLabelSize(DM dm, const char name[], PetscInt *size)
6898: {
6899: DMLabel label;
6901: PetscFunctionBegin;
6903: PetscAssertPointer(name, 2);
6904: PetscAssertPointer(size, 3);
6905: PetscCall(DMGetLabel(dm, name, &label));
6906: *size = 0;
6907: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
6908: PetscCall(DMLabelGetNumValues(label, size));
6909: PetscFunctionReturn(PETSC_SUCCESS);
6910: }
6912: /*@
6913: DMGetLabelIdIS - Get the `DMLabelGetValueIS()` from a `DMLabel` in the `DM`
6915: Not Collective
6917: Input Parameters:
6918: + dm - The `DM` object
6919: - name - The label name
6921: Output Parameter:
6922: . ids - The integer ids, or `NULL` if the label does not exist
6924: Level: beginner
6926: .seealso: [](ch_dmbase), `DM`, `DMLabelGetValueIS()`, `DMGetLabelSize()`
6927: @*/
6928: PetscErrorCode DMGetLabelIdIS(DM dm, const char name[], IS *ids)
6929: {
6930: DMLabel label;
6932: PetscFunctionBegin;
6934: PetscAssertPointer(name, 2);
6935: PetscAssertPointer(ids, 3);
6936: PetscCall(DMGetLabel(dm, name, &label));
6937: *ids = NULL;
6938: if (label) {
6939: PetscCall(DMLabelGetValueIS(label, ids));
6940: } else {
6941: /* returning an empty IS */
6942: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 0, NULL, PETSC_USE_POINTER, ids));
6943: }
6944: PetscFunctionReturn(PETSC_SUCCESS);
6945: }
6947: /*@
6948: DMGetStratumSize - Get the number of points in a label stratum
6950: Not Collective
6952: Input Parameters:
6953: + dm - The `DM` object
6954: . name - The label name of the stratum
6955: - value - The stratum value
6957: Output Parameter:
6958: . size - The number of points, also called the stratum size
6960: Level: beginner
6962: .seealso: [](ch_dmbase), `DM`, `DMLabelGetStratumSize()`, `DMGetLabelSize()`, `DMGetLabelIds()`
6963: @*/
6964: PetscErrorCode DMGetStratumSize(DM dm, const char name[], PetscInt value, PetscInt *size)
6965: {
6966: DMLabel label;
6968: PetscFunctionBegin;
6970: PetscAssertPointer(name, 2);
6971: PetscAssertPointer(size, 4);
6972: PetscCall(DMGetLabel(dm, name, &label));
6973: *size = 0;
6974: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
6975: PetscCall(DMLabelGetStratumSize(label, value, size));
6976: PetscFunctionReturn(PETSC_SUCCESS);
6977: }
6979: /*@
6980: DMGetStratumIS - Get the points in a label stratum
6982: Not Collective
6984: Input Parameters:
6985: + dm - The `DM` object
6986: . name - The label name
6987: - value - The stratum value
6989: Output Parameter:
6990: . points - The stratum points, or `NULL` if the label does not exist or does not have that value
6992: Level: beginner
6994: .seealso: [](ch_dmbase), `DM`, `DMLabelGetStratumIS()`, `DMGetStratumSize()`
6995: @*/
6996: PetscErrorCode DMGetStratumIS(DM dm, const char name[], PetscInt value, IS *points)
6997: {
6998: DMLabel label;
7000: PetscFunctionBegin;
7002: PetscAssertPointer(name, 2);
7003: PetscAssertPointer(points, 4);
7004: PetscCall(DMGetLabel(dm, name, &label));
7005: *points = NULL;
7006: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
7007: PetscCall(DMLabelGetStratumIS(label, value, points));
7008: PetscFunctionReturn(PETSC_SUCCESS);
7009: }
7011: /*@
7012: DMSetStratumIS - Set the points in a label stratum
7014: Not Collective
7016: Input Parameters:
7017: + dm - The `DM` object
7018: . name - The label name
7019: . value - The stratum value
7020: - points - The stratum points
7022: Level: beginner
7024: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMClearLabelStratum()`, `DMLabelClearStratum()`, `DMLabelSetStratumIS()`, `DMGetStratumSize()`
7025: @*/
7026: PetscErrorCode DMSetStratumIS(DM dm, const char name[], PetscInt value, IS points)
7027: {
7028: DMLabel label;
7030: PetscFunctionBegin;
7032: PetscAssertPointer(name, 2);
7034: PetscCall(DMGetLabel(dm, name, &label));
7035: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
7036: PetscCall(DMLabelSetStratumIS(label, value, points));
7037: PetscFunctionReturn(PETSC_SUCCESS);
7038: }
7040: /*@
7041: DMClearLabelStratum - Remove all points from a stratum from a `DMLabel`
7043: Not Collective
7045: Input Parameters:
7046: + dm - The `DM` object
7047: . name - The label name
7048: - value - The label value for this point
7050: Output Parameter:
7052: Level: beginner
7054: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMLabelClearStratum()`, `DMSetLabelValue()`, `DMGetStratumIS()`, `DMClearLabelValue()`
7055: @*/
7056: PetscErrorCode DMClearLabelStratum(DM dm, const char name[], PetscInt value)
7057: {
7058: DMLabel label;
7060: PetscFunctionBegin;
7062: PetscAssertPointer(name, 2);
7063: PetscCall(DMGetLabel(dm, name, &label));
7064: if (!label) PetscFunctionReturn(PETSC_SUCCESS);
7065: PetscCall(DMLabelClearStratum(label, value));
7066: PetscFunctionReturn(PETSC_SUCCESS);
7067: }
7069: /*@
7070: DMGetNumLabels - Return the number of labels defined by on the `DM`
7072: Not Collective
7074: Input Parameter:
7075: . dm - The `DM` object
7077: Output Parameter:
7078: . numLabels - the number of Labels
7080: Level: intermediate
7082: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetLabelByNum()`, `DMGetLabelName()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7083: @*/
7084: PetscErrorCode DMGetNumLabels(DM dm, PetscInt *numLabels)
7085: {
7086: DMLabelLink next = dm->labels;
7087: PetscInt n = 0;
7089: PetscFunctionBegin;
7091: PetscAssertPointer(numLabels, 2);
7092: while (next) {
7093: ++n;
7094: next = next->next;
7095: }
7096: *numLabels = n;
7097: PetscFunctionReturn(PETSC_SUCCESS);
7098: }
7100: /*@
7101: DMGetLabelName - Return the name of nth label
7103: Not Collective
7105: Input Parameters:
7106: + dm - The `DM` object
7107: - n - the label number
7109: Output Parameter:
7110: . name - the label name
7112: Level: intermediate
7114: Developer Note:
7115: Some of the functions that appropriate on labels using their number have the suffix ByNum, others do not.
7117: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetLabelByNum()`, `DMGetLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7118: @*/
7119: PetscErrorCode DMGetLabelName(DM dm, PetscInt n, const char *name[])
7120: {
7121: DMLabelLink next = dm->labels;
7122: PetscInt l = 0;
7124: PetscFunctionBegin;
7126: PetscAssertPointer(name, 3);
7127: while (next) {
7128: if (l == n) {
7129: PetscCall(PetscObjectGetName((PetscObject)next->label, name));
7130: PetscFunctionReturn(PETSC_SUCCESS);
7131: }
7132: ++l;
7133: next = next->next;
7134: }
7135: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label %" PetscInt_FMT " does not exist in this DM", n);
7136: }
7138: /*@
7139: DMHasLabel - Determine whether the `DM` has a label of a given name
7141: Not Collective
7143: Input Parameters:
7144: + dm - The `DM` object
7145: - name - The label name
7147: Output Parameter:
7148: . hasLabel - `PETSC_TRUE` if the label is present
7150: Level: intermediate
7152: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetLabel()`, `DMGetLabelByNum()`, `DMCreateLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7153: @*/
7154: PetscErrorCode DMHasLabel(DM dm, const char name[], PetscBool *hasLabel)
7155: {
7156: DMLabelLink next = dm->labels;
7157: const char *lname;
7159: PetscFunctionBegin;
7161: PetscAssertPointer(name, 2);
7162: PetscAssertPointer(hasLabel, 3);
7163: *hasLabel = PETSC_FALSE;
7164: while (next) {
7165: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7166: PetscCall(PetscStrcmp(name, lname, hasLabel));
7167: if (*hasLabel) break;
7168: next = next->next;
7169: }
7170: PetscFunctionReturn(PETSC_SUCCESS);
7171: }
7173: // PetscClangLinter pragma ignore: -fdoc-section-header-unknown
7174: /*@
7175: DMGetLabel - Return the label of a given name, or `NULL`, from a `DM`
7177: Not Collective
7179: Input Parameters:
7180: + dm - The `DM` object
7181: - name - The label name
7183: Output Parameter:
7184: . label - The `DMLabel`, or `NULL` if the label is absent
7186: Default labels in a `DMPLEX`:
7187: + "depth" - Holds the depth (co-dimension) of each mesh point
7188: . "celltype" - Holds the topological type of each cell
7189: . "ghost" - If the DM is distributed with overlap, this marks the cells and faces in the overlap
7190: . "Cell Sets" - Mirrors the cell sets defined by GMsh and ExodusII
7191: . "Face Sets" - Mirrors the face sets defined by GMsh and ExodusII
7192: - "Vertex Sets" - Mirrors the vertex sets defined by GMsh
7194: Level: intermediate
7196: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMHasLabel()`, `DMGetLabelByNum()`, `DMAddLabel()`, `DMCreateLabel()`, `DMPlexGetDepthLabel()`, `DMPlexGetCellType()`
7197: @*/
7198: PetscErrorCode DMGetLabel(DM dm, const char name[], DMLabel *label)
7199: {
7200: DMLabelLink next = dm->labels;
7201: PetscBool hasLabel;
7202: const char *lname;
7204: PetscFunctionBegin;
7206: PetscAssertPointer(name, 2);
7207: PetscAssertPointer(label, 3);
7208: *label = NULL;
7209: while (next) {
7210: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7211: PetscCall(PetscStrcmp(name, lname, &hasLabel));
7212: if (hasLabel) {
7213: *label = next->label;
7214: break;
7215: }
7216: next = next->next;
7217: }
7218: PetscFunctionReturn(PETSC_SUCCESS);
7219: }
7221: /*@
7222: DMGetLabelByNum - Return the nth label on a `DM`
7224: Not Collective
7226: Input Parameters:
7227: + dm - The `DM` object
7228: - n - the label number
7230: Output Parameter:
7231: . label - the label
7233: Level: intermediate
7235: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMAddLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7236: @*/
7237: PetscErrorCode DMGetLabelByNum(DM dm, PetscInt n, DMLabel *label)
7238: {
7239: DMLabelLink next = dm->labels;
7240: PetscInt l = 0;
7242: PetscFunctionBegin;
7244: PetscAssertPointer(label, 3);
7245: while (next) {
7246: if (l == n) {
7247: *label = next->label;
7248: PetscFunctionReturn(PETSC_SUCCESS);
7249: }
7250: ++l;
7251: next = next->next;
7252: }
7253: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label %" PetscInt_FMT " does not exist in this DM", n);
7254: }
7256: /*@
7257: DMAddLabel - Add the label to this `DM`
7259: Not Collective
7261: Input Parameters:
7262: + dm - The `DM` object
7263: - label - The `DMLabel`
7265: Level: developer
7267: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7268: @*/
7269: PetscErrorCode DMAddLabel(DM dm, DMLabel label)
7270: {
7271: DMLabelLink l, *p, tmpLabel;
7272: PetscBool hasLabel;
7273: const char *lname;
7274: PetscBool flg;
7276: PetscFunctionBegin;
7278: PetscCall(PetscObjectGetName((PetscObject)label, &lname));
7279: PetscCall(DMHasLabel(dm, lname, &hasLabel));
7280: PetscCheck(!hasLabel, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Label %s already exists in this DM", lname);
7281: PetscCall(PetscCalloc1(1, &tmpLabel));
7282: tmpLabel->label = label;
7283: tmpLabel->output = PETSC_TRUE;
7284: for (p = &dm->labels; (l = *p); p = &l->next) { }
7285: *p = tmpLabel;
7286: PetscCall(PetscObjectReference((PetscObject)label));
7287: PetscCall(PetscStrcmp(lname, "depth", &flg));
7288: if (flg) dm->depthLabel = label;
7289: PetscCall(PetscStrcmp(lname, "celltype", &flg));
7290: if (flg) dm->celltypeLabel = label;
7291: PetscFunctionReturn(PETSC_SUCCESS);
7292: }
7294: // PetscClangLinter pragma ignore: -fdoc-section-header-unknown
7295: /*@
7296: DMSetLabel - Replaces the label of a given name, or ignores it if the name is not present
7298: Not Collective
7300: Input Parameters:
7301: + dm - The `DM` object
7302: - label - The `DMLabel`, having the same name, to substitute
7304: Default labels in a `DMPLEX`:
7305: + "depth" - Holds the depth (co-dimension) of each mesh point
7306: . "celltype" - Holds the topological type of each cell
7307: . "ghost" - If the DM is distributed with overlap, this marks the cells and faces in the overlap
7308: . "Cell Sets" - Mirrors the cell sets defined by GMsh and ExodusII
7309: . "Face Sets" - Mirrors the face sets defined by GMsh and ExodusII
7310: - "Vertex Sets" - Mirrors the vertex sets defined by GMsh
7312: Level: intermediate
7314: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMPlexGetDepthLabel()`, `DMPlexGetCellType()`
7315: @*/
7316: PetscErrorCode DMSetLabel(DM dm, DMLabel label)
7317: {
7318: DMLabelLink next = dm->labels;
7319: PetscBool hasLabel, flg;
7320: const char *name, *lname;
7322: PetscFunctionBegin;
7325: PetscCall(PetscObjectGetName((PetscObject)label, &name));
7326: while (next) {
7327: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7328: PetscCall(PetscStrcmp(name, lname, &hasLabel));
7329: if (hasLabel) {
7330: PetscCall(PetscObjectReference((PetscObject)label));
7331: PetscCall(PetscStrcmp(lname, "depth", &flg));
7332: if (flg) dm->depthLabel = label;
7333: PetscCall(PetscStrcmp(lname, "celltype", &flg));
7334: if (flg) dm->celltypeLabel = label;
7335: PetscCall(DMLabelDestroy(&next->label));
7336: next->label = label;
7337: break;
7338: }
7339: next = next->next;
7340: }
7341: PetscFunctionReturn(PETSC_SUCCESS);
7342: }
7344: /*@
7345: DMRemoveLabel - Remove the label given by name from this `DM`
7347: Not Collective
7349: Input Parameters:
7350: + dm - The `DM` object
7351: - name - The label name
7353: Output Parameter:
7354: . label - The `DMLabel`, or `NULL` if the label is absent. Pass in `NULL` to call `DMLabelDestroy()` on the label, otherwise the
7355: caller is responsible for calling `DMLabelDestroy()`.
7357: Level: developer
7359: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMLabelDestroy()`, `DMRemoveLabelBySelf()`
7360: @*/
7361: PetscErrorCode DMRemoveLabel(DM dm, const char name[], DMLabel *label)
7362: {
7363: DMLabelLink link, *pnext;
7364: PetscBool hasLabel;
7365: const char *lname;
7367: PetscFunctionBegin;
7369: PetscAssertPointer(name, 2);
7370: if (label) {
7371: PetscAssertPointer(label, 3);
7372: *label = NULL;
7373: }
7374: for (pnext = &dm->labels; (link = *pnext); pnext = &link->next) {
7375: PetscCall(PetscObjectGetName((PetscObject)link->label, &lname));
7376: PetscCall(PetscStrcmp(name, lname, &hasLabel));
7377: if (hasLabel) {
7378: *pnext = link->next; /* Remove from list */
7379: PetscCall(PetscStrcmp(name, "depth", &hasLabel));
7380: if (hasLabel) dm->depthLabel = NULL;
7381: PetscCall(PetscStrcmp(name, "celltype", &hasLabel));
7382: if (hasLabel) dm->celltypeLabel = NULL;
7383: if (label) *label = link->label;
7384: else PetscCall(DMLabelDestroy(&link->label));
7385: PetscCall(PetscFree(link));
7386: break;
7387: }
7388: }
7389: PetscFunctionReturn(PETSC_SUCCESS);
7390: }
7392: /*@
7393: DMRemoveLabelBySelf - Remove the label from this `DM`
7395: Not Collective
7397: Input Parameters:
7398: + dm - The `DM` object
7399: . label - The `DMLabel` to be removed from the `DM`
7400: - failNotFound - Should it fail if the label is not found in the `DM`?
7402: Level: developer
7404: Note:
7405: Only exactly the same instance is removed if found, name match is ignored.
7406: If the `DM` has an exclusive reference to the label, the label gets destroyed and
7407: *label nullified.
7409: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabel()` `DMGetLabelValue()`, `DMSetLabelValue()`, `DMLabelDestroy()`, `DMRemoveLabel()`
7410: @*/
7411: PetscErrorCode DMRemoveLabelBySelf(DM dm, DMLabel *label, PetscBool failNotFound)
7412: {
7413: DMLabelLink link, *pnext;
7414: PetscBool hasLabel = PETSC_FALSE;
7416: PetscFunctionBegin;
7418: PetscAssertPointer(label, 2);
7419: if (!*label && !failNotFound) PetscFunctionReturn(PETSC_SUCCESS);
7422: for (pnext = &dm->labels; (link = *pnext); pnext = &link->next) {
7423: if (*label == link->label) {
7424: hasLabel = PETSC_TRUE;
7425: *pnext = link->next; /* Remove from list */
7426: if (*label == dm->depthLabel) dm->depthLabel = NULL;
7427: if (*label == dm->celltypeLabel) dm->celltypeLabel = NULL;
7428: if (((PetscObject)link->label)->refct < 2) *label = NULL; /* nullify if exclusive reference */
7429: PetscCall(DMLabelDestroy(&link->label));
7430: PetscCall(PetscFree(link));
7431: break;
7432: }
7433: }
7434: PetscCheck(hasLabel || !failNotFound, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Given label not found in DM");
7435: PetscFunctionReturn(PETSC_SUCCESS);
7436: }
7438: /*@
7439: DMGetLabelOutput - Get the output flag for a given label
7441: Not Collective
7443: Input Parameters:
7444: + dm - The `DM` object
7445: - name - The label name
7447: Output Parameter:
7448: . output - The flag for output
7450: Level: developer
7452: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMSetLabelOutput()`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7453: @*/
7454: PetscErrorCode DMGetLabelOutput(DM dm, const char name[], PetscBool *output)
7455: {
7456: DMLabelLink next = dm->labels;
7457: const char *lname;
7459: PetscFunctionBegin;
7461: PetscAssertPointer(name, 2);
7462: PetscAssertPointer(output, 3);
7463: while (next) {
7464: PetscBool flg;
7466: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7467: PetscCall(PetscStrcmp(name, lname, &flg));
7468: if (flg) {
7469: *output = next->output;
7470: PetscFunctionReturn(PETSC_SUCCESS);
7471: }
7472: next = next->next;
7473: }
7474: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No label named %s was present in this dm", name);
7475: }
7477: /*@
7478: DMSetLabelOutput - Set if a given label should be saved to a `PetscViewer` in calls to `DMView()`
7480: Not Collective
7482: Input Parameters:
7483: + dm - The `DM` object
7484: . name - The label name
7485: - output - `PETSC_TRUE` to save the label to the viewer
7487: Level: developer
7489: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMGetOutputFlag()`, `DMGetLabelOutput()`, `DMCreateLabel()`, `DMHasLabel()`, `DMGetLabelValue()`, `DMSetLabelValue()`, `DMGetStratumIS()`
7490: @*/
7491: PetscErrorCode DMSetLabelOutput(DM dm, const char name[], PetscBool output)
7492: {
7493: DMLabelLink next = dm->labels;
7494: const char *lname;
7496: PetscFunctionBegin;
7498: PetscAssertPointer(name, 2);
7499: while (next) {
7500: PetscBool flg;
7502: PetscCall(PetscObjectGetName((PetscObject)next->label, &lname));
7503: PetscCall(PetscStrcmp(name, lname, &flg));
7504: if (flg) {
7505: next->output = output;
7506: PetscFunctionReturn(PETSC_SUCCESS);
7507: }
7508: next = next->next;
7509: }
7510: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No label named %s was present in this dm", name);
7511: }
7513: /*@
7514: DMCopyLabels - Copy labels from one `DM` mesh to another `DM` with a superset of the points
7516: Collective
7518: Input Parameters:
7519: + dmA - The `DM` object with initial labels
7520: . dmB - The `DM` object to which labels are copied
7521: . mode - Copy labels by pointers (`PETSC_OWN_POINTER`) or duplicate them (`PETSC_COPY_VALUES`)
7522: . all - Copy all labels including "depth", "dim", and "celltype" (`PETSC_TRUE`) which are otherwise ignored (`PETSC_FALSE`)
7523: - emode - How to behave when a `DMLabel` in the source and destination `DM`s with the same name is encountered (see `DMCopyLabelsMode`)
7525: Level: intermediate
7527: Note:
7528: This is typically used when interpolating or otherwise adding to a mesh, or testing.
7530: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMAddLabel()`, `DMCopyLabelsMode`
7531: @*/
7532: PetscErrorCode DMCopyLabels(DM dmA, DM dmB, PetscCopyMode mode, PetscBool all, DMCopyLabelsMode emode)
7533: {
7534: DMLabel label, labelNew, labelOld;
7535: const char *name;
7536: PetscBool flg;
7537: DMLabelLink link;
7539: PetscFunctionBegin;
7544: PetscCheck(mode != PETSC_USE_POINTER, PetscObjectComm((PetscObject)dmA), PETSC_ERR_SUP, "PETSC_USE_POINTER not supported for objects");
7545: if (dmA == dmB) PetscFunctionReturn(PETSC_SUCCESS);
7546: for (link = dmA->labels; link; link = link->next) {
7547: label = link->label;
7548: PetscCall(PetscObjectGetName((PetscObject)label, &name));
7549: if (!all) {
7550: PetscCall(PetscStrcmp(name, "depth", &flg));
7551: if (flg) continue;
7552: PetscCall(PetscStrcmp(name, "dim", &flg));
7553: if (flg) continue;
7554: PetscCall(PetscStrcmp(name, "celltype", &flg));
7555: if (flg) continue;
7556: }
7557: PetscCall(DMGetLabel(dmB, name, &labelOld));
7558: if (labelOld) {
7559: switch (emode) {
7560: case DM_COPY_LABELS_KEEP:
7561: continue;
7562: case DM_COPY_LABELS_REPLACE:
7563: PetscCall(DMRemoveLabelBySelf(dmB, &labelOld, PETSC_TRUE));
7564: break;
7565: case DM_COPY_LABELS_FAIL:
7566: SETERRQ(PetscObjectComm((PetscObject)dmA), PETSC_ERR_ARG_OUTOFRANGE, "Label %s already exists in destination DM", name);
7567: default:
7568: SETERRQ(PetscObjectComm((PetscObject)dmA), PETSC_ERR_ARG_OUTOFRANGE, "Unhandled DMCopyLabelsMode %d", (int)emode);
7569: }
7570: }
7571: if (mode == PETSC_COPY_VALUES) {
7572: PetscCall(DMLabelDuplicate(label, &labelNew));
7573: } else {
7574: labelNew = label;
7575: }
7576: PetscCall(DMAddLabel(dmB, labelNew));
7577: if (mode == PETSC_COPY_VALUES) PetscCall(DMLabelDestroy(&labelNew));
7578: }
7579: PetscFunctionReturn(PETSC_SUCCESS);
7580: }
7582: /*@C
7583: DMCompareLabels - Compare labels between two `DM` objects
7585: Collective; No Fortran Support
7587: Input Parameters:
7588: + dm0 - First `DM` object
7589: - dm1 - Second `DM` object
7591: Output Parameters:
7592: + equal - (Optional) Flag whether labels of `dm0` and `dm1` are the same
7593: - message - (Optional) Message describing the difference, or `NULL` if there is no difference
7595: Level: intermediate
7597: Notes:
7598: The output flag equal will be the same on all processes.
7600: If equal is passed as `NULL` and difference is found, an error is thrown on all processes.
7602: Make sure to pass equal is `NULL` on all processes or none of them.
7604: The output message is set independently on each rank.
7606: message must be freed with `PetscFree()`
7608: If message is passed as `NULL` and a difference is found, the difference description is printed to `stderr` in synchronized manner.
7610: Make sure to pass message as `NULL` on all processes or no processes.
7612: Labels are matched by name. If the number of labels and their names are equal,
7613: `DMLabelCompare()` is used to compare each pair of labels with the same name.
7615: Developer Note:
7616: Cannot automatically generate the Fortran stub because `message` must be freed with `PetscFree()`
7618: .seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMAddLabel()`, `DMCopyLabelsMode`, `DMLabelCompare()`
7619: @*/
7620: PetscErrorCode DMCompareLabels(DM dm0, DM dm1, PetscBool *equal, char *message[]) PeNS
7621: {
7622: PetscInt n, i;
7623: char msg[PETSC_MAX_PATH_LEN] = "";
7624: PetscBool eq;
7625: MPI_Comm comm;
7626: PetscMPIInt rank;
7628: PetscFunctionBegin;
7631: PetscCheckSameComm(dm0, 1, dm1, 2);
7632: if (equal) PetscAssertPointer(equal, 3);
7633: if (message) PetscAssertPointer(message, 4);
7634: PetscCall(PetscObjectGetComm((PetscObject)dm0, &comm));
7635: PetscCallMPI(MPI_Comm_rank(comm, &rank));
7636: {
7637: PetscInt n1;
7639: PetscCall(DMGetNumLabels(dm0, &n));
7640: PetscCall(DMGetNumLabels(dm1, &n1));
7641: eq = (PetscBool)(n == n1);
7642: if (!eq) PetscCall(PetscSNPrintf(msg, sizeof(msg), "Number of labels in dm0 = %" PetscInt_FMT " != %" PetscInt_FMT " = Number of labels in dm1", n, n1));
7643: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &eq, 1, MPIU_BOOL, MPI_LAND, comm));
7644: if (!eq) goto finish;
7645: }
7646: for (i = 0; i < n; i++) {
7647: DMLabel l0, l1;
7648: const char *name;
7649: char *msgInner;
7651: /* Ignore label order */
7652: PetscCall(DMGetLabelByNum(dm0, i, &l0));
7653: PetscCall(PetscObjectGetName((PetscObject)l0, &name));
7654: PetscCall(DMGetLabel(dm1, name, &l1));
7655: if (!l1) {
7656: PetscCall(PetscSNPrintf(msg, sizeof(msg), "Label \"%s\" (#%" PetscInt_FMT " in dm0) not found in dm1", name, i));
7657: eq = PETSC_FALSE;
7658: break;
7659: }
7660: PetscCall(DMLabelCompare(comm, l0, l1, &eq, &msgInner));
7661: PetscCall(PetscStrncpy(msg, msgInner, sizeof(msg)));
7662: PetscCall(PetscFree(msgInner));
7663: if (!eq) break;
7664: }
7665: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &eq, 1, MPIU_BOOL, MPI_LAND, comm));
7666: finish:
7667: /* If message output arg not set, print to stderr */
7668: if (message) {
7669: *message = NULL;
7670: if (msg[0]) PetscCall(PetscStrallocpy(msg, message));
7671: } else {
7672: if (msg[0]) PetscCall(PetscSynchronizedFPrintf(comm, PETSC_STDERR, "[%d] %s\n", rank, msg));
7673: PetscCall(PetscSynchronizedFlush(comm, PETSC_STDERR));
7674: }
7675: /* If same output arg not ser and labels are not equal, throw error */
7676: if (equal) *equal = eq;
7677: else PetscCheck(eq, comm, PETSC_ERR_ARG_INCOMP, "DMLabels are not the same in dm0 and dm1");
7678: PetscFunctionReturn(PETSC_SUCCESS);
7679: }
7681: PetscErrorCode DMSetLabelValue_Fast(DM dm, DMLabel *label, const char name[], PetscInt point, PetscInt value)
7682: {
7683: PetscFunctionBegin;
7684: PetscAssertPointer(label, 2);
7685: if (!*label) {
7686: PetscCall(DMCreateLabel(dm, name));
7687: PetscCall(DMGetLabel(dm, name, label));
7688: }
7689: PetscCall(DMLabelSetValue(*label, point, value));
7690: PetscFunctionReturn(PETSC_SUCCESS);
7691: }
7693: /*
7694: Many mesh programs, such as Triangle and TetGen, allow only a single label for each mesh point. Therefore, we would
7695: like to encode all label IDs using a single, universal label. We can do this by assigning an integer to every
7696: (label, id) pair in the DM.
7698: However, a mesh point can have multiple labels, so we must separate all these values. We will assign a bit range to
7699: each label.
7700: */
7701: PetscErrorCode DMUniversalLabelCreate(DM dm, DMUniversalLabel *universal)
7702: {
7703: DMUniversalLabel ul;
7704: PetscBool *active;
7705: PetscInt pStart, pEnd, p, Nl, l, m;
7707: PetscFunctionBegin;
7708: PetscCall(PetscMalloc1(1, &ul));
7709: PetscCall(DMLabelCreate(PETSC_COMM_SELF, "universal", &ul->label));
7710: PetscCall(DMGetNumLabels(dm, &Nl));
7711: PetscCall(PetscCalloc1(Nl, &active));
7712: ul->Nl = 0;
7713: for (l = 0; l < Nl; ++l) {
7714: PetscBool isdepth, iscelltype;
7715: const char *name;
7717: PetscCall(DMGetLabelName(dm, l, &name));
7718: PetscCall(PetscStrncmp(name, "depth", 6, &isdepth));
7719: PetscCall(PetscStrncmp(name, "celltype", 9, &iscelltype));
7720: active[l] = !(isdepth || iscelltype) ? PETSC_TRUE : PETSC_FALSE;
7721: if (active[l]) ++ul->Nl;
7722: }
7723: PetscCall(PetscCalloc5(ul->Nl, &ul->names, ul->Nl, &ul->indices, ul->Nl + 1, &ul->offsets, ul->Nl + 1, &ul->bits, ul->Nl, &ul->masks));
7724: ul->Nv = 0;
7725: for (l = 0, m = 0; l < Nl; ++l) {
7726: DMLabel label;
7727: PetscInt nv;
7728: const char *name;
7730: if (!active[l]) continue;
7731: PetscCall(DMGetLabelName(dm, l, &name));
7732: PetscCall(DMGetLabelByNum(dm, l, &label));
7733: PetscCall(DMLabelGetNumValues(label, &nv));
7734: PetscCall(PetscStrallocpy(name, &ul->names[m]));
7735: ul->indices[m] = l;
7736: ul->Nv += nv;
7737: ul->offsets[m + 1] = nv;
7738: ul->bits[m + 1] = PetscCeilReal(PetscLog2Real(nv + 1));
7739: ++m;
7740: }
7741: for (l = 1; l <= ul->Nl; ++l) {
7742: ul->offsets[l] = ul->offsets[l - 1] + ul->offsets[l];
7743: ul->bits[l] = ul->bits[l - 1] + ul->bits[l];
7744: }
7745: for (l = 0; l < ul->Nl; ++l) {
7746: PetscInt b;
7748: ul->masks[l] = 0;
7749: for (b = ul->bits[l]; b < ul->bits[l + 1]; ++b) ul->masks[l] |= 1 << b;
7750: }
7751: PetscCall(PetscMalloc1(ul->Nv, &ul->values));
7752: for (l = 0, m = 0; l < Nl; ++l) {
7753: DMLabel label;
7754: IS valueIS;
7755: const PetscInt *varr;
7756: PetscInt nv, v;
7758: if (!active[l]) continue;
7759: PetscCall(DMGetLabelByNum(dm, l, &label));
7760: PetscCall(DMLabelGetNumValues(label, &nv));
7761: PetscCall(DMLabelGetValueIS(label, &valueIS));
7762: PetscCall(ISGetIndices(valueIS, &varr));
7763: for (v = 0; v < nv; ++v) ul->values[ul->offsets[m] + v] = varr[v];
7764: PetscCall(ISRestoreIndices(valueIS, &varr));
7765: PetscCall(ISDestroy(&valueIS));
7766: PetscCall(PetscSortInt(nv, &ul->values[ul->offsets[m]]));
7767: ++m;
7768: }
7769: PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
7770: for (p = pStart; p < pEnd; ++p) {
7771: PetscInt uval = 0;
7772: PetscBool marked = PETSC_FALSE;
7774: for (l = 0, m = 0; l < Nl; ++l) {
7775: DMLabel label;
7776: PetscInt val, defval, loc, nv;
7778: if (!active[l]) continue;
7779: PetscCall(DMGetLabelByNum(dm, l, &label));
7780: PetscCall(DMLabelGetValue(label, p, &val));
7781: PetscCall(DMLabelGetDefaultValue(label, &defval));
7782: if (val == defval) {
7783: ++m;
7784: continue;
7785: }
7786: nv = ul->offsets[m + 1] - ul->offsets[m];
7787: marked = PETSC_TRUE;
7788: PetscCall(PetscFindInt(val, nv, &ul->values[ul->offsets[m]], &loc));
7789: PetscCheck(loc >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Label value %" PetscInt_FMT " not found in compression array", val);
7790: uval += (loc + 1) << ul->bits[m];
7791: ++m;
7792: }
7793: if (marked) PetscCall(DMLabelSetValue(ul->label, p, uval));
7794: }
7795: PetscCall(PetscFree(active));
7796: *universal = ul;
7797: PetscFunctionReturn(PETSC_SUCCESS);
7798: }
7800: PetscErrorCode DMUniversalLabelDestroy(DMUniversalLabel *universal)
7801: {
7802: PetscInt l;
7804: PetscFunctionBegin;
7805: for (l = 0; l < (*universal)->Nl; ++l) PetscCall(PetscFree((*universal)->names[l]));
7806: PetscCall(DMLabelDestroy(&(*universal)->label));
7807: PetscCall(PetscFree5((*universal)->names, (*universal)->indices, (*universal)->offsets, (*universal)->bits, (*universal)->masks));
7808: PetscCall(PetscFree((*universal)->values));
7809: PetscCall(PetscFree(*universal));
7810: *universal = NULL;
7811: PetscFunctionReturn(PETSC_SUCCESS);
7812: }
7814: PetscErrorCode DMUniversalLabelGetLabel(DMUniversalLabel ul, DMLabel *ulabel)
7815: {
7816: PetscFunctionBegin;
7817: PetscAssertPointer(ulabel, 2);
7818: *ulabel = ul->label;
7819: PetscFunctionReturn(PETSC_SUCCESS);
7820: }
7822: PetscErrorCode DMUniversalLabelCreateLabels(DMUniversalLabel ul, PetscBool preserveOrder, DM dm)
7823: {
7824: PetscInt Nl = ul->Nl, l;
7826: PetscFunctionBegin;
7828: for (l = 0; l < Nl; ++l) {
7829: if (preserveOrder) PetscCall(DMCreateLabelAtIndex(dm, ul->indices[l], ul->names[l]));
7830: else PetscCall(DMCreateLabel(dm, ul->names[l]));
7831: }
7832: if (preserveOrder) {
7833: for (l = 0; l < ul->Nl; ++l) {
7834: const char *name;
7835: PetscBool match;
7837: PetscCall(DMGetLabelName(dm, ul->indices[l], &name));
7838: PetscCall(PetscStrcmp(name, ul->names[l], &match));
7839: PetscCheck(match, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Label %" PetscInt_FMT " name %s does not match new name %s", l, name, ul->names[l]);
7840: }
7841: }
7842: PetscFunctionReturn(PETSC_SUCCESS);
7843: }
7845: PetscErrorCode DMUniversalLabelSetLabelValue(DMUniversalLabel ul, DM dm, PetscBool useIndex, PetscInt p, PetscInt value)
7846: {
7847: PetscInt l;
7849: PetscFunctionBegin;
7850: for (l = 0; l < ul->Nl; ++l) {
7851: DMLabel label;
7852: PetscInt lval = (value & ul->masks[l]) >> ul->bits[l];
7854: if (lval) {
7855: if (useIndex) PetscCall(DMGetLabelByNum(dm, ul->indices[l], &label));
7856: else PetscCall(DMGetLabel(dm, ul->names[l], &label));
7857: PetscCall(DMLabelSetValue(label, p, ul->values[ul->offsets[l] + lval - 1]));
7858: }
7859: }
7860: PetscFunctionReturn(PETSC_SUCCESS);
7861: }
7863: /*@
7864: DMGetCoarseDM - Get the coarse `DM`from which this `DM` was obtained by refinement
7866: Not Collective
7868: Input Parameter:
7869: . dm - The `DM` object
7871: Output Parameter:
7872: . cdm - The coarse `DM`
7874: Level: intermediate
7876: .seealso: [](ch_dmbase), `DM`, `DMSetCoarseDM()`, `DMCoarsen()`
7877: @*/
7878: PetscErrorCode DMGetCoarseDM(DM dm, DM *cdm)
7879: {
7880: PetscFunctionBegin;
7882: PetscAssertPointer(cdm, 2);
7883: *cdm = dm->coarseMesh;
7884: PetscFunctionReturn(PETSC_SUCCESS);
7885: }
7887: /*@
7888: DMSetCoarseDM - Set the coarse `DM` from which this `DM` was obtained by refinement
7890: Input Parameters:
7891: + dm - The `DM` object
7892: - cdm - The coarse `DM`
7894: Level: intermediate
7896: Note:
7897: Normally this is set automatically by `DMRefine()`
7899: .seealso: [](ch_dmbase), `DM`, `DMGetCoarseDM()`, `DMCoarsen()`, `DMSetRefine()`, `DMSetFineDM()`
7900: @*/
7901: PetscErrorCode DMSetCoarseDM(DM dm, DM cdm)
7902: {
7903: PetscFunctionBegin;
7906: if (dm == cdm) cdm = NULL;
7907: PetscCall(PetscObjectReference((PetscObject)cdm));
7908: PetscCall(DMDestroy(&dm->coarseMesh));
7909: dm->coarseMesh = cdm;
7910: PetscFunctionReturn(PETSC_SUCCESS);
7911: }
7913: /*@
7914: DMGetFineDM - Get the fine mesh from which this `DM` was obtained by coarsening
7916: Input Parameter:
7917: . dm - The `DM` object
7919: Output Parameter:
7920: . fdm - The fine `DM`
7922: Level: intermediate
7924: .seealso: [](ch_dmbase), `DM`, `DMSetFineDM()`, `DMCoarsen()`, `DMRefine()`
7925: @*/
7926: PetscErrorCode DMGetFineDM(DM dm, DM *fdm)
7927: {
7928: PetscFunctionBegin;
7930: PetscAssertPointer(fdm, 2);
7931: *fdm = dm->fineMesh;
7932: PetscFunctionReturn(PETSC_SUCCESS);
7933: }
7935: /*@
7936: DMSetFineDM - Set the fine mesh from which this was obtained by coarsening
7938: Input Parameters:
7939: + dm - The `DM` object
7940: - fdm - The fine `DM`
7942: Level: developer
7944: Note:
7945: Normally this is set automatically by `DMCoarsen()`
7947: .seealso: [](ch_dmbase), `DM`, `DMGetFineDM()`, `DMCoarsen()`, `DMRefine()`
7948: @*/
7949: PetscErrorCode DMSetFineDM(DM dm, DM fdm)
7950: {
7951: PetscFunctionBegin;
7954: if (dm == fdm) fdm = NULL;
7955: PetscCall(PetscObjectReference((PetscObject)fdm));
7956: PetscCall(DMDestroy(&dm->fineMesh));
7957: dm->fineMesh = fdm;
7958: PetscFunctionReturn(PETSC_SUCCESS);
7959: }
7961: /*@C
7962: DMAddBoundary - Add a boundary condition to a model represented by a `DM`
7964: Collective
7966: Input Parameters:
7967: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
7968: . type - The type of condition, e.g. `DM_BC_ESSENTIAL_ANALYTIC`, `DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
7969: . name - The BC name
7970: . label - The label defining constrained points
7971: . Nv - The number of `DMLabel` values for constrained points
7972: . values - An array of values for constrained points
7973: . field - The field to constrain
7974: . Nc - The number of constrained field components (0 will constrain all components)
7975: . comps - An array of constrained component numbers
7976: . bcFunc - A pointwise function giving boundary values
7977: . bcFunc_t - A pointwise function giving the time deriative of the boundary values, or NULL
7978: - ctx - An optional user context for bcFunc
7980: Output Parameter:
7981: . bd - (Optional) Boundary number
7983: Options Database Keys:
7984: + -bc_<boundary name> <num> - Overrides the boundary ids
7985: - -bc_<boundary name>_comp <num> - Overrides the boundary components
7987: Level: intermediate
7989: Notes:
7990: If the `DM` is of type `DMPLEX` and the field is of type `PetscFE`, then this function completes the label using `DMPlexLabelComplete()`.
7992: Both bcFunc and bcFunc_t will depend on the boundary condition type. If the type if `DM_BC_ESSENTIAL`, then the calling sequence is\:
7993: .vb
7994: void bcFunc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar bcval[])
7995: .ve
7997: If the type is `DM_BC_ESSENTIAL_FIELD` or other _FIELD value, then the calling sequence is\:
7999: .vb
8000: void bcFunc(PetscInt dim, PetscInt Nf, PetscInt NfAux,
8001: const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
8002: const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
8003: PetscReal time, const PetscReal x[], PetscScalar bcval[])
8004: .ve
8005: + dim - the spatial dimension
8006: . Nf - the number of fields
8007: . uOff - the offset into u[] and u_t[] for each field
8008: . uOff_x - the offset into u_x[] for each field
8009: . u - each field evaluated at the current point
8010: . u_t - the time derivative of each field evaluated at the current point
8011: . u_x - the gradient of each field evaluated at the current point
8012: . aOff - the offset into a[] and a_t[] for each auxiliary field
8013: . aOff_x - the offset into a_x[] for each auxiliary field
8014: . a - each auxiliary field evaluated at the current point
8015: . a_t - the time derivative of each auxiliary field evaluated at the current point
8016: . a_x - the gradient of auxiliary each field evaluated at the current point
8017: . t - current time
8018: . x - coordinates of the current point
8019: . numConstants - number of constant parameters
8020: . constants - constant parameters
8021: - bcval - output values at the current point
8023: .seealso: [](ch_dmbase), `DM`, `DSGetBoundary()`, `PetscDSAddBoundary()`
8024: @*/
8025: PetscErrorCode DMAddBoundary(DM dm, DMBoundaryConditionType type, const char name[], DMLabel label, PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx, PetscInt *bd)
8026: {
8027: PetscDS ds;
8029: PetscFunctionBegin;
8036: PetscCheck(!dm->localSection, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONGSTATE, "Cannot add boundary to DM after creating local section");
8037: PetscCall(DMGetDS(dm, &ds));
8038: /* Complete label */
8039: if (label) {
8040: PetscObject obj;
8041: PetscClassId id;
8043: PetscCall(DMGetField(dm, field, NULL, &obj));
8044: PetscCall(PetscObjectGetClassId(obj, &id));
8045: if (id == PETSCFE_CLASSID) {
8046: DM plex;
8048: PetscCall(DMConvert(dm, DMPLEX, &plex));
8049: if (plex) PetscCall(DMPlexLabelComplete(plex, label));
8050: PetscCall(DMDestroy(&plex));
8051: }
8052: }
8053: PetscCall(PetscDSAddBoundary(ds, type, name, label, Nv, values, field, Nc, comps, bcFunc, bcFunc_t, ctx, bd));
8054: PetscFunctionReturn(PETSC_SUCCESS);
8055: }
8057: /* TODO Remove this since now the structures are the same */
8058: static PetscErrorCode DMPopulateBoundary(DM dm)
8059: {
8060: PetscDS ds;
8061: DMBoundary *lastnext;
8062: DSBoundary dsbound;
8064: PetscFunctionBegin;
8065: PetscCall(DMGetDS(dm, &ds));
8066: dsbound = ds->boundary;
8067: if (dm->boundary) {
8068: DMBoundary next = dm->boundary;
8070: /* quick check to see if the PetscDS has changed */
8071: if (next->dsboundary == dsbound) PetscFunctionReturn(PETSC_SUCCESS);
8072: /* the PetscDS has changed: tear down and rebuild */
8073: while (next) {
8074: DMBoundary b = next;
8076: next = b->next;
8077: PetscCall(PetscFree(b));
8078: }
8079: dm->boundary = NULL;
8080: }
8082: lastnext = &dm->boundary;
8083: while (dsbound) {
8084: DMBoundary dmbound;
8086: PetscCall(PetscNew(&dmbound));
8087: dmbound->dsboundary = dsbound;
8088: dmbound->label = dsbound->label;
8089: /* push on the back instead of the front so that it is in the same order as in the PetscDS */
8090: *lastnext = dmbound;
8091: lastnext = &dmbound->next;
8092: dsbound = dsbound->next;
8093: }
8094: PetscFunctionReturn(PETSC_SUCCESS);
8095: }
8097: /* TODO: missing manual page */
8098: PetscErrorCode DMIsBoundaryPoint(DM dm, PetscInt point, PetscBool *isBd)
8099: {
8100: DMBoundary b;
8102: PetscFunctionBegin;
8104: PetscAssertPointer(isBd, 3);
8105: *isBd = PETSC_FALSE;
8106: PetscCall(DMPopulateBoundary(dm));
8107: b = dm->boundary;
8108: while (b && !*isBd) {
8109: DMLabel label = b->label;
8110: DSBoundary dsb = b->dsboundary;
8111: PetscInt i;
8113: if (label) {
8114: for (i = 0; i < dsb->Nv && !*isBd; ++i) PetscCall(DMLabelStratumHasPoint(label, dsb->values[i], point, isBd));
8115: }
8116: b = b->next;
8117: }
8118: PetscFunctionReturn(PETSC_SUCCESS);
8119: }
8121: /*@C
8122: DMProjectFunction - This projects the given function into the function space provided by a `DM`, putting the coefficients in a global vector.
8124: Collective
8126: Input Parameters:
8127: + dm - The `DM`
8128: . time - The time
8129: . funcs - The coordinate functions to evaluate, one per field
8130: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs itself may be null.
8131: - mode - The insertion mode for values
8133: Output Parameter:
8134: . X - vector
8136: Calling sequence of `funcs`:
8137: + dim - The spatial dimension
8138: . time - The time at which to sample
8139: . x - The coordinates
8140: . Nc - The number of components
8141: . u - The output field values
8142: - ctx - optional user-defined function context
8144: Level: developer
8146: Developer Notes:
8147: This API is specific to only particular usage of `DM`
8149: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8151: .seealso: [](ch_dmbase), `DM`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabel()`, `DMComputeL2Diff()`
8152: @*/
8153: PetscErrorCode DMProjectFunction(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec X)
8154: {
8155: Vec localX;
8157: PetscFunctionBegin;
8159: PetscCall(PetscLogEventBegin(DM_ProjectFunction, dm, X, 0, 0));
8160: PetscCall(DMGetLocalVector(dm, &localX));
8161: PetscCall(VecSet(localX, 0.));
8162: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, mode, localX));
8163: PetscCall(DMLocalToGlobalBegin(dm, localX, mode, X));
8164: PetscCall(DMLocalToGlobalEnd(dm, localX, mode, X));
8165: PetscCall(DMRestoreLocalVector(dm, &localX));
8166: PetscCall(PetscLogEventEnd(DM_ProjectFunction, dm, X, 0, 0));
8167: PetscFunctionReturn(PETSC_SUCCESS);
8168: }
8170: /*@C
8171: DMProjectFunctionLocal - This projects the given function into the function space provided by a `DM`, putting the coefficients in a local vector.
8173: Not Collective
8175: Input Parameters:
8176: + dm - The `DM`
8177: . time - The time
8178: . funcs - The coordinate functions to evaluate, one per field
8179: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs itself may be null.
8180: - mode - The insertion mode for values
8182: Output Parameter:
8183: . localX - vector
8185: Calling sequence of `funcs`:
8186: + dim - The spatial dimension
8187: . time - The current timestep
8188: . x - The coordinates
8189: . Nc - The number of components
8190: . u - The output field values
8191: - ctx - optional user-defined function context
8193: Level: developer
8195: Developer Notes:
8196: This API is specific to only particular usage of `DM`
8198: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8200: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMProjectFunctionLabel()`, `DMComputeL2Diff()`
8201: @*/
8202: PetscErrorCode DMProjectFunctionLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec localX)
8203: {
8204: PetscFunctionBegin;
8207: PetscUseTypeMethod(dm, projectfunctionlocal, time, funcs, ctxs, mode, localX);
8208: PetscFunctionReturn(PETSC_SUCCESS);
8209: }
8211: /*@C
8212: DMProjectFunctionLabel - This projects the given function into the function space provided by the `DM`, putting the coefficients in a global vector, setting values only for points in the given label.
8214: Collective
8216: Input Parameters:
8217: + dm - The `DM`
8218: . time - The time
8219: . numIds - The number of ids
8220: . ids - The ids
8221: . Nc - The number of components
8222: . comps - The components
8223: . label - The `DMLabel` selecting the portion of the mesh for projection
8224: . funcs - The coordinate functions to evaluate, one per field
8225: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs may be null.
8226: - mode - The insertion mode for values
8228: Output Parameter:
8229: . X - vector
8231: Calling sequence of `funcs`:
8232: + dim - The spatial dimension
8233: . time - The current timestep
8234: . x - The coordinates
8235: . Nc - The number of components
8236: . u - The output field values
8237: - ctx - optional user-defined function context
8239: Level: developer
8241: Developer Notes:
8242: This API is specific to only particular usage of `DM`
8244: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8246: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`, `DMComputeL2Diff()`
8247: @*/
8248: PetscErrorCode DMProjectFunctionLabel(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec X)
8249: {
8250: Vec localX;
8252: PetscFunctionBegin;
8254: PetscCall(DMGetLocalVector(dm, &localX));
8255: PetscCall(VecSet(localX, 0.));
8256: PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numIds, ids, Nc, comps, funcs, ctxs, mode, localX));
8257: PetscCall(DMLocalToGlobalBegin(dm, localX, mode, X));
8258: PetscCall(DMLocalToGlobalEnd(dm, localX, mode, X));
8259: PetscCall(DMRestoreLocalVector(dm, &localX));
8260: PetscFunctionReturn(PETSC_SUCCESS);
8261: }
8263: /*@C
8264: DMProjectFunctionLabelLocal - This projects the given function into the function space provided by the `DM`, putting the coefficients in a local vector, setting values only for points in the given label.
8266: Not Collective
8268: Input Parameters:
8269: + dm - The `DM`
8270: . time - The time
8271: . label - The `DMLabel` selecting the portion of the mesh for projection
8272: . numIds - The number of ids
8273: . ids - The ids
8274: . Nc - The number of components
8275: . comps - The components
8276: . funcs - The coordinate functions to evaluate, one per field
8277: . ctxs - Optional array of contexts to pass to each coordinate function. ctxs itself may be null.
8278: - mode - The insertion mode for values
8280: Output Parameter:
8281: . localX - vector
8283: Calling sequence of `funcs`:
8284: + dim - The spatial dimension
8285: . time - The current time
8286: . x - The coordinates
8287: . Nc - The number of components
8288: . u - The output field values
8289: - ctx - optional user-defined function context
8291: Level: developer
8293: Developer Notes:
8294: This API is specific to only particular usage of `DM`
8296: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8298: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabel()`, `DMComputeL2Diff()`
8299: @*/
8300: PetscErrorCode DMProjectFunctionLabelLocal(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], PetscErrorCode (**funcs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx), void **ctxs, InsertMode mode, Vec localX)
8301: {
8302: PetscFunctionBegin;
8305: PetscUseTypeMethod(dm, projectfunctionlabellocal, time, label, numIds, ids, Nc, comps, funcs, ctxs, mode, localX);
8306: PetscFunctionReturn(PETSC_SUCCESS);
8307: }
8309: /*@C
8310: DMProjectFieldLocal - This projects the given function of the input fields into the function space provided by the `DM`, putting the coefficients in a local vector.
8312: Not Collective
8314: Input Parameters:
8315: + dm - The `DM`
8316: . time - The time
8317: . localU - The input field vector; may be `NULL` if projection is defined purely by coordinates
8318: . funcs - The functions to evaluate, one per field
8319: - mode - The insertion mode for values
8321: Output Parameter:
8322: . localX - The output vector
8324: Calling sequence of `funcs`:
8325: + dim - The spatial dimension
8326: . Nf - The number of input fields
8327: . NfAux - The number of input auxiliary fields
8328: . uOff - The offset of each field in u[]
8329: . uOff_x - The offset of each field in u_x[]
8330: . u - The field values at this point in space
8331: . u_t - The field time derivative at this point in space (or NULL)
8332: . u_x - The field derivatives at this point in space
8333: . aOff - The offset of each auxiliary field in u[]
8334: . aOff_x - The offset of each auxiliary field in u_x[]
8335: . a - The auxiliary field values at this point in space
8336: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8337: . a_x - The auxiliary field derivatives at this point in space
8338: . t - The current time
8339: . x - The coordinates of this point
8340: . numConstants - The number of constants
8341: . constants - The value of each constant
8342: - f - The value of the function at this point in space
8344: Level: intermediate
8346: Note:
8347: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8348: The input `DM`, attached to U, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8349: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8350: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8352: Developer Notes:
8353: This API is specific to only particular usage of `DM`
8355: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8357: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabelLocal()`,
8358: `DMProjectFunction()`, `DMComputeL2Diff()`
8359: @*/
8360: PetscErrorCode DMProjectFieldLocal(DM dm, PetscReal time, Vec localU, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec localX)
8361: {
8362: PetscFunctionBegin;
8366: PetscUseTypeMethod(dm, projectfieldlocal, time, localU, funcs, mode, localX);
8367: PetscFunctionReturn(PETSC_SUCCESS);
8368: }
8370: /*@C
8371: DMProjectFieldLabelLocal - This projects the given function of the input fields into the function space provided, putting the coefficients in a local vector, calculating only over the portion of the domain specified by the label.
8373: Not Collective
8375: Input Parameters:
8376: + dm - The `DM`
8377: . time - The time
8378: . label - The `DMLabel` marking the portion of the domain to output
8379: . numIds - The number of label ids to use
8380: . ids - The label ids to use for marking
8381: . Nc - The number of components to set in the output, or `PETSC_DETERMINE` for all components
8382: . comps - The components to set in the output, or `NULL` for all components
8383: . localU - The input field vector
8384: . funcs - The functions to evaluate, one per field
8385: - mode - The insertion mode for values
8387: Output Parameter:
8388: . localX - The output vector
8390: Calling sequence of `funcs`:
8391: + dim - The spatial dimension
8392: . Nf - The number of input fields
8393: . NfAux - The number of input auxiliary fields
8394: . uOff - The offset of each field in u[]
8395: . uOff_x - The offset of each field in u_x[]
8396: . u - The field values at this point in space
8397: . u_t - The field time derivative at this point in space (or NULL)
8398: . u_x - The field derivatives at this point in space
8399: . aOff - The offset of each auxiliary field in u[]
8400: . aOff_x - The offset of each auxiliary field in u_x[]
8401: . a - The auxiliary field values at this point in space
8402: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8403: . a_x - The auxiliary field derivatives at this point in space
8404: . t - The current time
8405: . x - The coordinates of this point
8406: . numConstants - The number of constants
8407: . constants - The value of each constant
8408: - f - The value of the function at this point in space
8410: Level: intermediate
8412: Note:
8413: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8414: The input `DM`, attached to localU, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8415: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8416: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8418: Developer Notes:
8419: This API is specific to only particular usage of `DM`
8421: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8423: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabel()`, `DMProjectFunction()`, `DMComputeL2Diff()`
8424: @*/
8425: PetscErrorCode DMProjectFieldLabelLocal(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec localX)
8426: {
8427: PetscFunctionBegin;
8431: PetscUseTypeMethod(dm, projectfieldlabellocal, time, label, numIds, ids, Nc, comps, localU, funcs, mode, localX);
8432: PetscFunctionReturn(PETSC_SUCCESS);
8433: }
8435: /*@C
8436: DMProjectFieldLabel - This projects the given function of the input fields into the function space provided, putting the coefficients in a global vector, calculating only over the portion of the domain specified by the label.
8438: Not Collective
8440: Input Parameters:
8441: + dm - The `DM`
8442: . time - The time
8443: . label - The `DMLabel` marking the portion of the domain to output
8444: . numIds - The number of label ids to use
8445: . ids - The label ids to use for marking
8446: . Nc - The number of components to set in the output, or `PETSC_DETERMINE` for all components
8447: . comps - The components to set in the output, or `NULL` for all components
8448: . U - The input field vector
8449: . funcs - The functions to evaluate, one per field
8450: - mode - The insertion mode for values
8452: Output Parameter:
8453: . X - The output vector
8455: Calling sequence of `funcs`:
8456: + dim - The spatial dimension
8457: . Nf - The number of input fields
8458: . NfAux - The number of input auxiliary fields
8459: . uOff - The offset of each field in u[]
8460: . uOff_x - The offset of each field in u_x[]
8461: . u - The field values at this point in space
8462: . u_t - The field time derivative at this point in space (or NULL)
8463: . u_x - The field derivatives at this point in space
8464: . aOff - The offset of each auxiliary field in u[]
8465: . aOff_x - The offset of each auxiliary field in u_x[]
8466: . a - The auxiliary field values at this point in space
8467: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8468: . a_x - The auxiliary field derivatives at this point in space
8469: . t - The current time
8470: . x - The coordinates of this point
8471: . numConstants - The number of constants
8472: . constants - The value of each constant
8473: - f - The value of the function at this point in space
8475: Level: intermediate
8477: Note:
8478: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8479: The input `DM`, attached to U, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8480: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8481: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8483: Developer Notes:
8484: This API is specific to only particular usage of `DM`
8486: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8488: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabelLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`
8489: @*/
8490: PetscErrorCode DMProjectFieldLabel(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], Vec U, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec X)
8491: {
8492: DM dmIn;
8493: Vec localU, localX;
8495: PetscFunctionBegin;
8497: PetscCall(VecGetDM(U, &dmIn));
8498: PetscCall(DMGetLocalVector(dmIn, &localU));
8499: PetscCall(DMGetLocalVector(dm, &localX));
8500: PetscCall(VecSet(localX, 0.));
8501: PetscCall(DMGlobalToLocalBegin(dmIn, U, mode, localU));
8502: PetscCall(DMGlobalToLocalEnd(dmIn, U, mode, localU));
8503: PetscCall(DMProjectFieldLabelLocal(dm, time, label, numIds, ids, Nc, comps, localU, funcs, mode, localX));
8504: PetscCall(DMLocalToGlobalBegin(dm, localX, mode, X));
8505: PetscCall(DMLocalToGlobalEnd(dm, localX, mode, X));
8506: PetscCall(DMRestoreLocalVector(dm, &localX));
8507: PetscCall(DMRestoreLocalVector(dmIn, &localU));
8508: PetscFunctionReturn(PETSC_SUCCESS);
8509: }
8511: /*@C
8512: DMProjectBdFieldLabelLocal - This projects the given function of the input fields into the function space provided, putting the coefficients in a local vector, calculating only over the portion of the domain boundary specified by the label.
8514: Not Collective
8516: Input Parameters:
8517: + dm - The `DM`
8518: . time - The time
8519: . label - The `DMLabel` marking the portion of the domain boundary to output
8520: . numIds - The number of label ids to use
8521: . ids - The label ids to use for marking
8522: . Nc - The number of components to set in the output, or `PETSC_DETERMINE` for all components
8523: . comps - The components to set in the output, or `NULL` for all components
8524: . localU - The input field vector
8525: . funcs - The functions to evaluate, one per field
8526: - mode - The insertion mode for values
8528: Output Parameter:
8529: . localX - The output vector
8531: Calling sequence of `funcs`:
8532: + dim - The spatial dimension
8533: . Nf - The number of input fields
8534: . NfAux - The number of input auxiliary fields
8535: . uOff - The offset of each field in u[]
8536: . uOff_x - The offset of each field in u_x[]
8537: . u - The field values at this point in space
8538: . u_t - The field time derivative at this point in space (or NULL)
8539: . u_x - The field derivatives at this point in space
8540: . aOff - The offset of each auxiliary field in u[]
8541: . aOff_x - The offset of each auxiliary field in u_x[]
8542: . a - The auxiliary field values at this point in space
8543: . a_t - The auxiliary field time derivative at this point in space (or NULL)
8544: . a_x - The auxiliary field derivatives at this point in space
8545: . t - The current time
8546: . x - The coordinates of this point
8547: . n - The face normal
8548: . numConstants - The number of constants
8549: . constants - The value of each constant
8550: - f - The value of the function at this point in space
8552: Level: intermediate
8554: Note:
8555: There are three different `DM`s that potentially interact in this function. The output `DM`, dm, specifies the layout of the values calculates by funcs.
8556: The input `DM`, attached to U, may be different. For example, you can input the solution over the full domain, but output over a piece of the boundary, or
8557: a subdomain. You can also output a different number of fields than the input, with different discretizations. Last the auxiliary `DM`, attached to the
8558: auxiliary field vector, which is attached to dm, can also be different. It can have a different topology, number of fields, and discretizations.
8560: Developer Notes:
8561: This API is specific to only particular usage of `DM`
8563: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8565: .seealso: [](ch_dmbase), `DM`, `DMProjectField()`, `DMProjectFieldLabelLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`
8566: @*/
8567: PetscErrorCode DMProjectBdFieldLabelLocal(DM dm, PetscReal time, DMLabel label, PetscInt numIds, const PetscInt ids[], PetscInt Nc, const PetscInt comps[], Vec localU, void (**funcs)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]), InsertMode mode, Vec localX)
8568: {
8569: PetscFunctionBegin;
8573: PetscUseTypeMethod(dm, projectbdfieldlabellocal, time, label, numIds, ids, Nc, comps, localU, funcs, mode, localX);
8574: PetscFunctionReturn(PETSC_SUCCESS);
8575: }
8577: /*@C
8578: DMComputeL2Diff - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.
8580: Collective
8582: Input Parameters:
8583: + dm - The `DM`
8584: . time - The time
8585: . funcs - The functions to evaluate for each field component
8586: . ctxs - Optional array of contexts to pass to each function, or NULL.
8587: - X - The coefficient vector u_h, a global vector
8589: Output Parameter:
8590: . diff - The diff ||u - u_h||_2
8592: Level: developer
8594: Developer Notes:
8595: This API is specific to only particular usage of `DM`
8597: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8599: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
8600: @*/
8601: PetscErrorCode DMComputeL2Diff(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
8602: {
8603: PetscFunctionBegin;
8606: PetscUseTypeMethod(dm, computel2diff, time, funcs, ctxs, X, diff);
8607: PetscFunctionReturn(PETSC_SUCCESS);
8608: }
8610: /*@C
8611: DMComputeL2GradientDiff - This function computes the L_2 difference between the gradient of a function u and an FEM interpolant solution grad u_h.
8613: Collective
8615: Input Parameters:
8616: + dm - The `DM`
8617: . time - The time
8618: . funcs - The gradient functions to evaluate for each field component
8619: . ctxs - Optional array of contexts to pass to each function, or NULL.
8620: . X - The coefficient vector u_h, a global vector
8621: - n - The vector to project along
8623: Output Parameter:
8624: . diff - The diff ||(grad u - grad u_h) . n||_2
8626: Level: developer
8628: Developer Notes:
8629: This API is specific to only particular usage of `DM`
8631: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8633: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMComputeL2FieldDiff()`
8634: @*/
8635: PetscErrorCode DMComputeL2GradientDiff(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
8636: {
8637: PetscFunctionBegin;
8640: PetscUseTypeMethod(dm, computel2gradientdiff, time, funcs, ctxs, X, n, diff);
8641: PetscFunctionReturn(PETSC_SUCCESS);
8642: }
8644: /*@C
8645: DMComputeL2FieldDiff - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h, separated into field components.
8647: Collective
8649: Input Parameters:
8650: + dm - The `DM`
8651: . time - The time
8652: . funcs - The functions to evaluate for each field component
8653: . ctxs - Optional array of contexts to pass to each function, or NULL.
8654: - X - The coefficient vector u_h, a global vector
8656: Output Parameter:
8657: . diff - The array of differences, ||u^f - u^f_h||_2
8659: Level: developer
8661: Developer Notes:
8662: This API is specific to only particular usage of `DM`
8664: The notes need to provide some information about what has to be provided to the `DM` to be able to perform the computation.
8666: .seealso: [](ch_dmbase), `DM`, `DMProjectFunction()`, `DMComputeL2GradientDiff()`
8667: @*/
8668: PetscErrorCode DMComputeL2FieldDiff(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal diff[])
8669: {
8670: PetscFunctionBegin;
8673: PetscUseTypeMethod(dm, computel2fielddiff, time, funcs, ctxs, X, diff);
8674: PetscFunctionReturn(PETSC_SUCCESS);
8675: }
8677: /*@C
8678: DMGetNeighbors - Gets an array containing the MPI ranks of all the processes neighbors
8680: Not Collective
8682: Input Parameter:
8683: . dm - The `DM`
8685: Output Parameters:
8686: + nranks - the number of neighbours
8687: - ranks - the neighbors ranks
8689: Level: beginner
8691: Note:
8692: Do not free the array, it is freed when the `DM` is destroyed.
8694: .seealso: [](ch_dmbase), `DM`, `DMDAGetNeighbors()`, `PetscSFGetRootRanks()`
8695: @*/
8696: PetscErrorCode DMGetNeighbors(DM dm, PetscInt *nranks, const PetscMPIInt *ranks[])
8697: {
8698: PetscFunctionBegin;
8700: PetscUseTypeMethod(dm, getneighbors, nranks, ranks);
8701: PetscFunctionReturn(PETSC_SUCCESS);
8702: }
8704: #include <petsc/private/matimpl.h>
8706: /*
8707: Converts the input vector to a ghosted vector and then calls the standard coloring code.
8708: This must be a different function because it requires DM which is not defined in the Mat library
8709: */
8710: static PetscErrorCode MatFDColoringApply_AIJDM(Mat J, MatFDColoring coloring, Vec x1, void *sctx)
8711: {
8712: PetscFunctionBegin;
8713: if (coloring->ctype == IS_COLORING_LOCAL) {
8714: Vec x1local;
8715: DM dm;
8716: PetscCall(MatGetDM(J, &dm));
8717: PetscCheck(dm, PetscObjectComm((PetscObject)J), PETSC_ERR_ARG_INCOMP, "IS_COLORING_LOCAL requires a DM");
8718: PetscCall(DMGetLocalVector(dm, &x1local));
8719: PetscCall(DMGlobalToLocalBegin(dm, x1, INSERT_VALUES, x1local));
8720: PetscCall(DMGlobalToLocalEnd(dm, x1, INSERT_VALUES, x1local));
8721: x1 = x1local;
8722: }
8723: PetscCall(MatFDColoringApply_AIJ(J, coloring, x1, sctx));
8724: if (coloring->ctype == IS_COLORING_LOCAL) {
8725: DM dm;
8726: PetscCall(MatGetDM(J, &dm));
8727: PetscCall(DMRestoreLocalVector(dm, &x1));
8728: }
8729: PetscFunctionReturn(PETSC_SUCCESS);
8730: }
8732: /*@
8733: MatFDColoringUseDM - allows a `MatFDColoring` object to use the `DM` associated with the matrix to compute a `IS_COLORING_LOCAL` coloring
8735: Input Parameters:
8736: + coloring - The matrix to get the `DM` from
8737: - fdcoloring - the `MatFDColoring` object
8739: Level: advanced
8741: Developer Note:
8742: This routine exists because the PETSc `Mat` library does not know about the `DM` objects
8744: .seealso: [](ch_dmbase), `DM`, `MatFDColoring`, `MatFDColoringCreate()`, `ISColoringType`
8745: @*/
8746: PetscErrorCode MatFDColoringUseDM(Mat coloring, MatFDColoring fdcoloring)
8747: {
8748: PetscFunctionBegin;
8749: coloring->ops->fdcoloringapply = MatFDColoringApply_AIJDM;
8750: PetscFunctionReturn(PETSC_SUCCESS);
8751: }
8753: /*@
8754: DMGetCompatibility - determine if two `DM`s are compatible
8756: Collective
8758: Input Parameters:
8759: + dm1 - the first `DM`
8760: - dm2 - the second `DM`
8762: Output Parameters:
8763: + compatible - whether or not the two `DM`s are compatible
8764: - set - whether or not the compatible value was actually determined and set
8766: Level: advanced
8768: Notes:
8769: Two `DM`s are deemed compatible if they represent the same parallel decomposition
8770: of the same topology. This implies that the section (field data) on one
8771: "makes sense" with respect to the topology and parallel decomposition of the other.
8772: Loosely speaking, compatible `DM`s represent the same domain and parallel
8773: decomposition, but hold different data.
8775: Typically, one would confirm compatibility if intending to simultaneously iterate
8776: over a pair of vectors obtained from different `DM`s.
8778: For example, two `DMDA` objects are compatible if they have the same local
8779: and global sizes and the same stencil width. They can have different numbers
8780: of degrees of freedom per node. Thus, one could use the node numbering from
8781: either `DM` in bounds for a loop over vectors derived from either `DM`.
8783: Consider the operation of summing data living on a 2-dof `DMDA` to data living
8784: on a 1-dof `DMDA`, which should be compatible, as in the following snippet.
8785: .vb
8786: ...
8787: PetscCall(DMGetCompatibility(da1,da2,&compatible,&set));
8788: if (set && compatible) {
8789: PetscCall(DMDAVecGetArrayDOF(da1,vec1,&arr1));
8790: PetscCall(DMDAVecGetArrayDOF(da2,vec2,&arr2));
8791: PetscCall(DMDAGetCorners(da1,&x,&y,NULL,&m,&n,NULL));
8792: for (j=y; j<y+n; ++j) {
8793: for (i=x; i<x+m, ++i) {
8794: arr1[j][i][0] = arr2[j][i][0] + arr2[j][i][1];
8795: }
8796: }
8797: PetscCall(DMDAVecRestoreArrayDOF(da1,vec1,&arr1));
8798: PetscCall(DMDAVecRestoreArrayDOF(da2,vec2,&arr2));
8799: } else {
8800: SETERRQ(PetscObjectComm((PetscObject)da1,PETSC_ERR_ARG_INCOMP,"DMDA objects incompatible");
8801: }
8802: ...
8803: .ve
8805: Checking compatibility might be expensive for a given implementation of `DM`,
8806: or might be impossible to unambiguously confirm or deny. For this reason,
8807: this function may decline to determine compatibility, and hence users should
8808: always check the "set" output parameter.
8810: A `DM` is always compatible with itself.
8812: In the current implementation, `DM`s which live on "unequal" communicators
8813: (MPI_UNEQUAL in the terminology of MPI_Comm_compare()) are always deemed
8814: incompatible.
8816: This function is labeled "Collective," as information about all subdomains
8817: is required on each rank. However, in `DM` implementations which store all this
8818: information locally, this function may be merely "Logically Collective".
8820: Developer Note:
8821: Compatibility is assumed to be a symmetric concept; `DM` A is compatible with `DM` B
8822: iff B is compatible with A. Thus, this function checks the implementations
8823: of both dm and dmc (if they are of different types), attempting to determine
8824: compatibility. It is left to `DM` implementers to ensure that symmetry is
8825: preserved. The simplest way to do this is, when implementing type-specific
8826: logic for this function, is to check for existing logic in the implementation
8827: of other `DM` types and let *set = PETSC_FALSE if found.
8829: .seealso: [](ch_dmbase), `DM`, `DMDACreateCompatibleDMDA()`, `DMStagCreateCompatibleDMStag()`
8830: @*/
8831: PetscErrorCode DMGetCompatibility(DM dm1, DM dm2, PetscBool *compatible, PetscBool *set)
8832: {
8833: PetscMPIInt compareResult;
8834: DMType type, type2;
8835: PetscBool sameType;
8837: PetscFunctionBegin;
8841: /* Declare a DM compatible with itself */
8842: if (dm1 == dm2) {
8843: *set = PETSC_TRUE;
8844: *compatible = PETSC_TRUE;
8845: PetscFunctionReturn(PETSC_SUCCESS);
8846: }
8848: /* Declare a DM incompatible with a DM that lives on an "unequal"
8849: communicator. Note that this does not preclude compatibility with
8850: DMs living on "congruent" or "similar" communicators, but this must be
8851: determined by the implementation-specific logic */
8852: PetscCallMPI(MPI_Comm_compare(PetscObjectComm((PetscObject)dm1), PetscObjectComm((PetscObject)dm2), &compareResult));
8853: if (compareResult == MPI_UNEQUAL) {
8854: *set = PETSC_TRUE;
8855: *compatible = PETSC_FALSE;
8856: PetscFunctionReturn(PETSC_SUCCESS);
8857: }
8859: /* Pass to the implementation-specific routine, if one exists. */
8860: if (dm1->ops->getcompatibility) {
8861: PetscUseTypeMethod(dm1, getcompatibility, dm2, compatible, set);
8862: if (*set) PetscFunctionReturn(PETSC_SUCCESS);
8863: }
8865: /* If dm1 and dm2 are of different types, then attempt to check compatibility
8866: with an implementation of this function from dm2 */
8867: PetscCall(DMGetType(dm1, &type));
8868: PetscCall(DMGetType(dm2, &type2));
8869: PetscCall(PetscStrcmp(type, type2, &sameType));
8870: if (!sameType && dm2->ops->getcompatibility) {
8871: PetscUseTypeMethod(dm2, getcompatibility, dm1, compatible, set); /* Note argument order */
8872: } else {
8873: *set = PETSC_FALSE;
8874: }
8875: PetscFunctionReturn(PETSC_SUCCESS);
8876: }
8878: /*@C
8879: DMMonitorSet - Sets an additional monitor function that is to be used after a solve to monitor discretization performance.
8881: Logically Collective
8883: Input Parameters:
8884: + dm - the `DM`
8885: . f - the monitor function
8886: . mctx - [optional] user-defined context for private data for the monitor routine (use `NULL` if no context is desired)
8887: - monitordestroy - [optional] routine that frees monitor context (may be `NULL`), see `PetscCtxDestroyFn` for the calling sequence
8889: Options Database Key:
8890: . -dm_monitor_cancel - cancels all monitors that have been hardwired into a code by calls to `DMMonitorSet()`, but
8891: does not cancel those set via the options database.
8893: Level: intermediate
8895: Note:
8896: Several different monitoring routines may be set by calling
8897: `DMMonitorSet()` multiple times or with `DMMonitorSetFromOptions()`; all will be called in the
8898: order in which they were set.
8900: Fortran Note:
8901: Only a single monitor function can be set for each `DM` object
8903: Developer Note:
8904: This API has a generic name but seems specific to a very particular aspect of the use of `DM`
8906: .seealso: [](ch_dmbase), `DM`, `DMMonitorCancel()`, `DMMonitorSetFromOptions()`, `DMMonitor()`, `PetscCtxDestroyFn`
8907: @*/
8908: PetscErrorCode DMMonitorSet(DM dm, PetscErrorCode (*f)(DM, void *), void *mctx, PetscCtxDestroyFn *monitordestroy)
8909: {
8910: PetscInt m;
8912: PetscFunctionBegin;
8914: for (m = 0; m < dm->numbermonitors; ++m) {
8915: PetscBool identical;
8917: PetscCall(PetscMonitorCompare((PetscErrorCode (*)(void))f, mctx, monitordestroy, (PetscErrorCode (*)(void))dm->monitor[m], dm->monitorcontext[m], dm->monitordestroy[m], &identical));
8918: if (identical) PetscFunctionReturn(PETSC_SUCCESS);
8919: }
8920: PetscCheck(dm->numbermonitors < MAXDMMONITORS, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Too many monitors set");
8921: dm->monitor[dm->numbermonitors] = f;
8922: dm->monitordestroy[dm->numbermonitors] = monitordestroy;
8923: dm->monitorcontext[dm->numbermonitors++] = mctx;
8924: PetscFunctionReturn(PETSC_SUCCESS);
8925: }
8927: /*@
8928: DMMonitorCancel - Clears all the monitor functions for a `DM` object.
8930: Logically Collective
8932: Input Parameter:
8933: . dm - the DM
8935: Options Database Key:
8936: . -dm_monitor_cancel - cancels all monitors that have been hardwired
8937: into a code by calls to `DMonitorSet()`, but does not cancel those
8938: set via the options database
8940: Level: intermediate
8942: Note:
8943: There is no way to clear one specific monitor from a `DM` object.
8945: .seealso: [](ch_dmbase), `DM`, `DMMonitorSet()`, `DMMonitorSetFromOptions()`, `DMMonitor()`
8946: @*/
8947: PetscErrorCode DMMonitorCancel(DM dm)
8948: {
8949: PetscInt m;
8951: PetscFunctionBegin;
8953: for (m = 0; m < dm->numbermonitors; ++m) {
8954: if (dm->monitordestroy[m]) PetscCall((*dm->monitordestroy[m])(&dm->monitorcontext[m]));
8955: }
8956: dm->numbermonitors = 0;
8957: PetscFunctionReturn(PETSC_SUCCESS);
8958: }
8960: /*@C
8961: DMMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
8963: Collective
8965: Input Parameters:
8966: + dm - `DM` object you wish to monitor
8967: . name - the monitor type one is seeking
8968: . help - message indicating what monitoring is done
8969: . manual - manual page for the monitor
8970: . monitor - the monitor function, this must use a `PetscViewerFormat` as its context
8971: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the `DM` or `PetscViewer` objects
8973: Output Parameter:
8974: . flg - Flag set if the monitor was created
8976: Level: developer
8978: .seealso: [](ch_dmbase), `DM`, `PetscOptionsCreateViewer()`, `PetscOptionsGetReal()`, `PetscOptionsHasName()`, `PetscOptionsGetString()`,
8979: `PetscOptionsGetIntArray()`, `PetscOptionsGetRealArray()`, `PetscOptionsBool()`
8980: `PetscOptionsInt()`, `PetscOptionsString()`, `PetscOptionsReal()`,
8981: `PetscOptionsName()`, `PetscOptionsBegin()`, `PetscOptionsEnd()`, `PetscOptionsHeadBegin()`,
8982: `PetscOptionsStringArray()`, `PetscOptionsRealArray()`, `PetscOptionsScalar()`,
8983: `PetscOptionsBoolGroupBegin()`, `PetscOptionsBoolGroup()`, `PetscOptionsBoolGroupEnd()`,
8984: `PetscOptionsFList()`, `PetscOptionsEList()`, `DMMonitor()`, `DMMonitorSet()`
8985: @*/
8986: PetscErrorCode DMMonitorSetFromOptions(DM dm, const char name[], const char help[], const char manual[], PetscErrorCode (*monitor)(DM, void *), PetscErrorCode (*monitorsetup)(DM, PetscViewerAndFormat *), PetscBool *flg)
8987: {
8988: PetscViewer viewer;
8989: PetscViewerFormat format;
8991: PetscFunctionBegin;
8993: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)dm), ((PetscObject)dm)->options, ((PetscObject)dm)->prefix, name, &viewer, &format, flg));
8994: if (*flg) {
8995: PetscViewerAndFormat *vf;
8997: PetscCall(PetscViewerAndFormatCreate(viewer, format, &vf));
8998: PetscCall(PetscViewerDestroy(&viewer));
8999: if (monitorsetup) PetscCall((*monitorsetup)(dm, vf));
9000: PetscCall(DMMonitorSet(dm, monitor, vf, (PetscCtxDestroyFn *)PetscViewerAndFormatDestroy));
9001: }
9002: PetscFunctionReturn(PETSC_SUCCESS);
9003: }
9005: /*@
9006: DMMonitor - runs the user provided monitor routines, if they exist
9008: Collective
9010: Input Parameter:
9011: . dm - The `DM`
9013: Level: developer
9015: Developer Note:
9016: Note should indicate when during the life of the `DM` the monitor is run. It appears to be
9017: related to the discretization process seems rather specialized since some `DM` have no
9018: concept of discretization.
9020: .seealso: [](ch_dmbase), `DM`, `DMMonitorSet()`, `DMMonitorSetFromOptions()`
9021: @*/
9022: PetscErrorCode DMMonitor(DM dm)
9023: {
9024: PetscInt m;
9026: PetscFunctionBegin;
9027: if (!dm) PetscFunctionReturn(PETSC_SUCCESS);
9029: for (m = 0; m < dm->numbermonitors; ++m) PetscCall((*dm->monitor[m])(dm, dm->monitorcontext[m]));
9030: PetscFunctionReturn(PETSC_SUCCESS);
9031: }
9033: /*@
9034: DMComputeError - Computes the error assuming the user has provided the exact solution functions
9036: Collective
9038: Input Parameters:
9039: + dm - The `DM`
9040: - sol - The solution vector
9042: Input/Output Parameter:
9043: . errors - An array of length Nf, the number of fields, or `NULL` for no output; on output
9044: contains the error in each field
9046: Output Parameter:
9047: . errorVec - A vector to hold the cellwise error (may be `NULL`)
9049: Level: developer
9051: Note:
9052: The exact solutions come from the `PetscDS` object, and the time comes from `DMGetOutputSequenceNumber()`.
9054: .seealso: [](ch_dmbase), `DM`, `DMMonitorSet()`, `DMGetRegionNumDS()`, `PetscDSGetExactSolution()`, `DMGetOutputSequenceNumber()`
9055: @*/
9056: PetscErrorCode DMComputeError(DM dm, Vec sol, PetscReal errors[], Vec *errorVec)
9057: {
9058: PetscErrorCode (**exactSol)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *);
9059: void **ctxs;
9060: PetscReal time;
9061: PetscInt Nf, f, Nds, s;
9063: PetscFunctionBegin;
9064: PetscCall(DMGetNumFields(dm, &Nf));
9065: PetscCall(PetscCalloc2(Nf, &exactSol, Nf, &ctxs));
9066: PetscCall(DMGetNumDS(dm, &Nds));
9067: for (s = 0; s < Nds; ++s) {
9068: PetscDS ds;
9069: DMLabel label;
9070: IS fieldIS;
9071: const PetscInt *fields;
9072: PetscInt dsNf;
9074: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
9075: PetscCall(PetscDSGetNumFields(ds, &dsNf));
9076: if (fieldIS) PetscCall(ISGetIndices(fieldIS, &fields));
9077: for (f = 0; f < dsNf; ++f) {
9078: const PetscInt field = fields[f];
9079: PetscCall(PetscDSGetExactSolution(ds, field, &exactSol[field], &ctxs[field]));
9080: }
9081: if (fieldIS) PetscCall(ISRestoreIndices(fieldIS, &fields));
9082: }
9083: for (f = 0; f < Nf; ++f) PetscCheck(exactSol[f], PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "DS must contain exact solution functions in order to calculate error, missing for field %" PetscInt_FMT, f);
9084: PetscCall(DMGetOutputSequenceNumber(dm, NULL, &time));
9085: if (errors) PetscCall(DMComputeL2FieldDiff(dm, time, exactSol, ctxs, sol, errors));
9086: if (errorVec) {
9087: DM edm;
9088: DMPolytopeType ct;
9089: PetscBool simplex;
9090: PetscInt dim, cStart, Nf;
9092: PetscCall(DMClone(dm, &edm));
9093: PetscCall(DMGetDimension(edm, &dim));
9094: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
9095: PetscCall(DMPlexGetCellType(dm, cStart, &ct));
9096: simplex = DMPolytopeTypeGetNumVertices(ct) == DMPolytopeTypeGetDim(ct) + 1 ? PETSC_TRUE : PETSC_FALSE;
9097: PetscCall(DMGetNumFields(dm, &Nf));
9098: for (f = 0; f < Nf; ++f) {
9099: PetscFE fe, efe;
9100: PetscQuadrature q;
9101: const char *name;
9103: PetscCall(DMGetField(dm, f, NULL, (PetscObject *)&fe));
9104: PetscCall(PetscFECreateLagrange(PETSC_COMM_SELF, dim, Nf, simplex, 0, PETSC_DETERMINE, &efe));
9105: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
9106: PetscCall(PetscObjectSetName((PetscObject)efe, name));
9107: PetscCall(PetscFEGetQuadrature(fe, &q));
9108: PetscCall(PetscFESetQuadrature(efe, q));
9109: PetscCall(DMSetField(edm, f, NULL, (PetscObject)efe));
9110: PetscCall(PetscFEDestroy(&efe));
9111: }
9112: PetscCall(DMCreateDS(edm));
9114: PetscCall(DMCreateGlobalVector(edm, errorVec));
9115: PetscCall(PetscObjectSetName((PetscObject)*errorVec, "Error"));
9116: PetscCall(DMPlexComputeL2DiffVec(dm, time, exactSol, ctxs, sol, *errorVec));
9117: PetscCall(DMDestroy(&edm));
9118: }
9119: PetscCall(PetscFree2(exactSol, ctxs));
9120: PetscFunctionReturn(PETSC_SUCCESS);
9121: }
9123: /*@
9124: DMGetNumAuxiliaryVec - Get the number of auxiliary vectors associated with this `DM`
9126: Not Collective
9128: Input Parameter:
9129: . dm - The `DM`
9131: Output Parameter:
9132: . numAux - The number of auxiliary data vectors
9134: Level: advanced
9136: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMSetAuxiliaryVec()`, `DMGetAuxiliaryLabels()`, `DMGetAuxiliaryVec()`
9137: @*/
9138: PetscErrorCode DMGetNumAuxiliaryVec(DM dm, PetscInt *numAux)
9139: {
9140: PetscFunctionBegin;
9142: PetscCall(PetscHMapAuxGetSize(dm->auxData, numAux));
9143: PetscFunctionReturn(PETSC_SUCCESS);
9144: }
9146: /*@
9147: DMGetAuxiliaryVec - Get the auxiliary vector for region specified by the given label and value, and equation part
9149: Not Collective
9151: Input Parameters:
9152: + dm - The `DM`
9153: . label - The `DMLabel`
9154: . value - The label value indicating the region
9155: - part - The equation part, or 0 if unused
9157: Output Parameter:
9158: . aux - The `Vec` holding auxiliary field data
9160: Level: advanced
9162: Note:
9163: If no auxiliary vector is found for this (label, value), (NULL, 0, 0) is checked as well.
9165: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMSetAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryLabels()`
9166: @*/
9167: PetscErrorCode DMGetAuxiliaryVec(DM dm, DMLabel label, PetscInt value, PetscInt part, Vec *aux)
9168: {
9169: PetscHashAuxKey key, wild = {NULL, 0, 0};
9170: PetscBool has;
9172: PetscFunctionBegin;
9175: key.label = label;
9176: key.value = value;
9177: key.part = part;
9178: PetscCall(PetscHMapAuxHas(dm->auxData, key, &has));
9179: if (has) PetscCall(PetscHMapAuxGet(dm->auxData, key, aux));
9180: else PetscCall(PetscHMapAuxGet(dm->auxData, wild, aux));
9181: PetscFunctionReturn(PETSC_SUCCESS);
9182: }
9184: /*@
9185: DMSetAuxiliaryVec - Set an auxiliary vector for region specified by the given label and value, and equation part
9187: Not Collective because auxiliary vectors are not parallel
9189: Input Parameters:
9190: + dm - The `DM`
9191: . label - The `DMLabel`
9192: . value - The label value indicating the region
9193: . part - The equation part, or 0 if unused
9194: - aux - The `Vec` holding auxiliary field data
9196: Level: advanced
9198: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMGetAuxiliaryLabels()`, `DMCopyAuxiliaryVec()`
9199: @*/
9200: PetscErrorCode DMSetAuxiliaryVec(DM dm, DMLabel label, PetscInt value, PetscInt part, Vec aux)
9201: {
9202: Vec old;
9203: PetscHashAuxKey key;
9205: PetscFunctionBegin;
9208: key.label = label;
9209: key.value = value;
9210: key.part = part;
9211: PetscCall(PetscHMapAuxGet(dm->auxData, key, &old));
9212: PetscCall(PetscObjectReference((PetscObject)aux));
9213: if (!aux) PetscCall(PetscHMapAuxDel(dm->auxData, key));
9214: else PetscCall(PetscHMapAuxSet(dm->auxData, key, aux));
9215: PetscCall(VecDestroy(&old));
9216: PetscFunctionReturn(PETSC_SUCCESS);
9217: }
9219: /*@
9220: DMGetAuxiliaryLabels - Get the labels, values, and parts for all auxiliary vectors in this `DM`
9222: Not Collective
9224: Input Parameter:
9225: . dm - The `DM`
9227: Output Parameters:
9228: + labels - The `DMLabel`s for each `Vec`
9229: . values - The label values for each `Vec`
9230: - parts - The equation parts for each `Vec`
9232: Level: advanced
9234: Note:
9235: The arrays passed in must be at least as large as `DMGetNumAuxiliaryVec()`.
9237: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMSetAuxiliaryVec()`, `DMCopyAuxiliaryVec()`
9238: @*/
9239: PetscErrorCode DMGetAuxiliaryLabels(DM dm, DMLabel labels[], PetscInt values[], PetscInt parts[])
9240: {
9241: PetscHashAuxKey *keys;
9242: PetscInt n, i, off = 0;
9244: PetscFunctionBegin;
9246: PetscAssertPointer(labels, 2);
9247: PetscAssertPointer(values, 3);
9248: PetscAssertPointer(parts, 4);
9249: PetscCall(DMGetNumAuxiliaryVec(dm, &n));
9250: PetscCall(PetscMalloc1(n, &keys));
9251: PetscCall(PetscHMapAuxGetKeys(dm->auxData, &off, keys));
9252: for (i = 0; i < n; ++i) {
9253: labels[i] = keys[i].label;
9254: values[i] = keys[i].value;
9255: parts[i] = keys[i].part;
9256: }
9257: PetscCall(PetscFree(keys));
9258: PetscFunctionReturn(PETSC_SUCCESS);
9259: }
9261: /*@
9262: DMCopyAuxiliaryVec - Copy the auxiliary vector data on a `DM` to a new `DM`
9264: Not Collective
9266: Input Parameter:
9267: . dm - The `DM`
9269: Output Parameter:
9270: . dmNew - The new `DM`, now with the same auxiliary data
9272: Level: advanced
9274: Note:
9275: This is a shallow copy of the auxiliary vectors
9277: .seealso: [](ch_dmbase), `DM`, `DMClearAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMSetAuxiliaryVec()`
9278: @*/
9279: PetscErrorCode DMCopyAuxiliaryVec(DM dm, DM dmNew)
9280: {
9281: PetscFunctionBegin;
9284: if (dm == dmNew) PetscFunctionReturn(PETSC_SUCCESS);
9285: PetscCall(DMClearAuxiliaryVec(dmNew));
9287: PetscCall(PetscHMapAuxDestroy(&dmNew->auxData));
9288: PetscCall(PetscHMapAuxDuplicate(dm->auxData, &dmNew->auxData));
9289: {
9290: Vec *auxData;
9291: PetscInt n, i, off = 0;
9293: PetscCall(PetscHMapAuxGetSize(dmNew->auxData, &n));
9294: PetscCall(PetscMalloc1(n, &auxData));
9295: PetscCall(PetscHMapAuxGetVals(dmNew->auxData, &off, auxData));
9296: for (i = 0; i < n; ++i) PetscCall(PetscObjectReference((PetscObject)auxData[i]));
9297: PetscCall(PetscFree(auxData));
9298: }
9299: PetscFunctionReturn(PETSC_SUCCESS);
9300: }
9302: /*@
9303: DMClearAuxiliaryVec - Destroys the auxiliary vector information and creates a new empty one
9305: Not Collective
9307: Input Parameter:
9308: . dm - The `DM`
9310: Level: advanced
9312: .seealso: [](ch_dmbase), `DM`, `DMCopyAuxiliaryVec()`, `DMGetNumAuxiliaryVec()`, `DMGetAuxiliaryVec()`, `DMSetAuxiliaryVec()`
9313: @*/
9314: PetscErrorCode DMClearAuxiliaryVec(DM dm)
9315: {
9316: Vec *auxData;
9317: PetscInt n, i, off = 0;
9319: PetscFunctionBegin;
9320: PetscCall(PetscHMapAuxGetSize(dm->auxData, &n));
9321: PetscCall(PetscMalloc1(n, &auxData));
9322: PetscCall(PetscHMapAuxGetVals(dm->auxData, &off, auxData));
9323: for (i = 0; i < n; ++i) PetscCall(VecDestroy(&auxData[i]));
9324: PetscCall(PetscFree(auxData));
9325: PetscCall(PetscHMapAuxDestroy(&dm->auxData));
9326: PetscCall(PetscHMapAuxCreate(&dm->auxData));
9327: PetscFunctionReturn(PETSC_SUCCESS);
9328: }
9330: /*@
9331: DMPolytopeMatchOrientation - Determine an orientation (transformation) that takes the source face arrangement to the target face arrangement
9333: Not Collective
9335: Input Parameters:
9336: + ct - The `DMPolytopeType`
9337: . sourceCone - The source arrangement of faces
9338: - targetCone - The target arrangement of faces
9340: Output Parameters:
9341: + ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9342: - found - Flag indicating that a suitable orientation was found
9344: Level: advanced
9346: Note:
9347: An arrangement is a face order combined with an orientation for each face
9349: Each orientation (transformation) is labeled with an integer from negative `DMPolytopeTypeGetNumArrangements(ct)`/2 to `DMPolytopeTypeGetNumArrangements(ct)`/2
9350: that labels each arrangement (face ordering plus orientation for each face).
9352: See `DMPolytopeMatchVertexOrientation()` to find a new vertex orientation that takes the source vertex arrangement to the target vertex arrangement
9354: .seealso: [](ch_dmbase), `DM`, `DMPolytopeGetOrientation()`, `DMPolytopeMatchVertexOrientation()`, `DMPolytopeGetVertexOrientation()`
9355: @*/
9356: PetscErrorCode DMPolytopeMatchOrientation(DMPolytopeType ct, const PetscInt sourceCone[], const PetscInt targetCone[], PetscInt *ornt, PetscBool *found)
9357: {
9358: const PetscInt cS = DMPolytopeTypeGetConeSize(ct);
9359: const PetscInt nO = DMPolytopeTypeGetNumArrangements(ct) / 2;
9360: PetscInt o, c;
9362: PetscFunctionBegin;
9363: if (!nO) {
9364: *ornt = 0;
9365: *found = PETSC_TRUE;
9366: PetscFunctionReturn(PETSC_SUCCESS);
9367: }
9368: for (o = -nO; o < nO; ++o) {
9369: const PetscInt *arr = DMPolytopeTypeGetArrangement(ct, o);
9371: for (c = 0; c < cS; ++c)
9372: if (sourceCone[arr[c * 2]] != targetCone[c]) break;
9373: if (c == cS) {
9374: *ornt = o;
9375: break;
9376: }
9377: }
9378: *found = o == nO ? PETSC_FALSE : PETSC_TRUE;
9379: PetscFunctionReturn(PETSC_SUCCESS);
9380: }
9382: /*@
9383: DMPolytopeGetOrientation - Determine an orientation (transformation) that takes the source face arrangement to the target face arrangement
9385: Not Collective
9387: Input Parameters:
9388: + ct - The `DMPolytopeType`
9389: . sourceCone - The source arrangement of faces
9390: - targetCone - The target arrangement of faces
9392: Output Parameter:
9393: . ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9395: Level: advanced
9397: Note:
9398: This function is the same as `DMPolytopeMatchOrientation()` except it will generate an error if no suitable orientation can be found.
9400: Developer Note:
9401: It is unclear why this function needs to exist since one can simply call `DMPolytopeMatchOrientation()` and error if none is found
9403: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMPolytopeMatchOrientation()`, `DMPolytopeGetVertexOrientation()`, `DMPolytopeMatchVertexOrientation()`
9404: @*/
9405: PetscErrorCode DMPolytopeGetOrientation(DMPolytopeType ct, const PetscInt sourceCone[], const PetscInt targetCone[], PetscInt *ornt)
9406: {
9407: PetscBool found;
9409: PetscFunctionBegin;
9410: PetscCall(DMPolytopeMatchOrientation(ct, sourceCone, targetCone, ornt, &found));
9411: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not find orientation for %s", DMPolytopeTypes[ct]);
9412: PetscFunctionReturn(PETSC_SUCCESS);
9413: }
9415: /*@
9416: DMPolytopeMatchVertexOrientation - Determine an orientation (transformation) that takes the source vertex arrangement to the target vertex arrangement
9418: Not Collective
9420: Input Parameters:
9421: + ct - The `DMPolytopeType`
9422: . sourceVert - The source arrangement of vertices
9423: - targetVert - The target arrangement of vertices
9425: Output Parameters:
9426: + ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9427: - found - Flag indicating that a suitable orientation was found
9429: Level: advanced
9431: Notes:
9432: An arrangement is a vertex order
9434: Each orientation (transformation) is labeled with an integer from negative `DMPolytopeTypeGetNumArrangements(ct)`/2 to `DMPolytopeTypeGetNumArrangements(ct)`/2
9435: that labels each arrangement (vertex ordering).
9437: See `DMPolytopeMatchOrientation()` to find a new face orientation that takes the source face arrangement to the target face arrangement
9439: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMPolytopeGetOrientation()`, `DMPolytopeMatchOrientation()`, `DMPolytopeTypeGetNumVertices()`, `DMPolytopeTypeGetVertexArrangement()`
9440: @*/
9441: PetscErrorCode DMPolytopeMatchVertexOrientation(DMPolytopeType ct, const PetscInt sourceVert[], const PetscInt targetVert[], PetscInt *ornt, PetscBool *found)
9442: {
9443: const PetscInt cS = DMPolytopeTypeGetNumVertices(ct);
9444: const PetscInt nO = DMPolytopeTypeGetNumArrangements(ct) / 2;
9445: PetscInt o, c;
9447: PetscFunctionBegin;
9448: if (!nO) {
9449: *ornt = 0;
9450: *found = PETSC_TRUE;
9451: PetscFunctionReturn(PETSC_SUCCESS);
9452: }
9453: for (o = -nO; o < nO; ++o) {
9454: const PetscInt *arr = DMPolytopeTypeGetVertexArrangement(ct, o);
9456: for (c = 0; c < cS; ++c)
9457: if (sourceVert[arr[c]] != targetVert[c]) break;
9458: if (c == cS) {
9459: *ornt = o;
9460: break;
9461: }
9462: }
9463: *found = o == nO ? PETSC_FALSE : PETSC_TRUE;
9464: PetscFunctionReturn(PETSC_SUCCESS);
9465: }
9467: /*@
9468: DMPolytopeGetVertexOrientation - Determine an orientation (transformation) that takes the source vertex arrangement to the target vertex arrangement
9470: Not Collective
9472: Input Parameters:
9473: + ct - The `DMPolytopeType`
9474: . sourceCone - The source arrangement of vertices
9475: - targetCone - The target arrangement of vertices
9477: Output Parameter:
9478: . ornt - The orientation (transformation) which will take the source arrangement to the target arrangement
9480: Level: advanced
9482: Note:
9483: This function is the same as `DMPolytopeMatchVertexOrientation()` except it errors if not orientation is possible.
9485: Developer Note:
9486: It is unclear why this function needs to exist since one can simply call `DMPolytopeMatchVertexOrientation()` and error if none is found
9488: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMPolytopeMatchVertexOrientation()`, `DMPolytopeGetOrientation()`
9489: @*/
9490: PetscErrorCode DMPolytopeGetVertexOrientation(DMPolytopeType ct, const PetscInt sourceCone[], const PetscInt targetCone[], PetscInt *ornt)
9491: {
9492: PetscBool found;
9494: PetscFunctionBegin;
9495: PetscCall(DMPolytopeMatchVertexOrientation(ct, sourceCone, targetCone, ornt, &found));
9496: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not find orientation for %s", DMPolytopeTypes[ct]);
9497: PetscFunctionReturn(PETSC_SUCCESS);
9498: }
9500: /*@
9501: DMPolytopeInCellTest - Check whether a point lies inside the reference cell of given type
9503: Not Collective
9505: Input Parameters:
9506: + ct - The `DMPolytopeType`
9507: - point - Coordinates of the point
9509: Output Parameter:
9510: . inside - Flag indicating whether the point is inside the reference cell of given type
9512: Level: advanced
9514: .seealso: [](ch_dmbase), `DM`, `DMPolytopeType`, `DMLocatePoints()`
9515: @*/
9516: PetscErrorCode DMPolytopeInCellTest(DMPolytopeType ct, const PetscReal point[], PetscBool *inside)
9517: {
9518: PetscReal sum = 0.0;
9519: PetscInt d;
9521: PetscFunctionBegin;
9522: *inside = PETSC_TRUE;
9523: switch (ct) {
9524: case DM_POLYTOPE_TRIANGLE:
9525: case DM_POLYTOPE_TETRAHEDRON:
9526: for (d = 0; d < DMPolytopeTypeGetDim(ct); ++d) {
9527: if (point[d] < -1.0) {
9528: *inside = PETSC_FALSE;
9529: break;
9530: }
9531: sum += point[d];
9532: }
9533: if (sum > PETSC_SMALL) {
9534: *inside = PETSC_FALSE;
9535: break;
9536: }
9537: break;
9538: case DM_POLYTOPE_QUADRILATERAL:
9539: case DM_POLYTOPE_HEXAHEDRON:
9540: for (d = 0; d < DMPolytopeTypeGetDim(ct); ++d)
9541: if (PetscAbsReal(point[d]) > 1. + PETSC_SMALL) {
9542: *inside = PETSC_FALSE;
9543: break;
9544: }
9545: break;
9546: default:
9547: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unsupported polytope type %s", DMPolytopeTypes[ct]);
9548: }
9549: PetscFunctionReturn(PETSC_SUCCESS);
9550: }
9552: /*@
9553: DMReorderSectionSetDefault - Set flag indicating whether the local section should be reordered by default
9555: Logically collective
9557: Input Parameters:
9558: + dm - The DM
9559: - reorder - Flag for reordering
9561: Level: intermediate
9563: .seealso: `DMReorderSectionGetDefault()`
9564: @*/
9565: PetscErrorCode DMReorderSectionSetDefault(DM dm, DMReorderDefaultFlag reorder)
9566: {
9567: PetscFunctionBegin;
9569: PetscTryMethod(dm, "DMReorderSectionSetDefault_C", (DM, DMReorderDefaultFlag), (dm, reorder));
9570: PetscFunctionReturn(PETSC_SUCCESS);
9571: }
9573: /*@
9574: DMReorderSectionGetDefault - Get flag indicating whether the local section should be reordered by default
9576: Not collective
9578: Input Parameter:
9579: . dm - The DM
9581: Output Parameter:
9582: . reorder - Flag for reordering
9584: Level: intermediate
9586: .seealso: `DMReorderSetDefault()`
9587: @*/
9588: PetscErrorCode DMReorderSectionGetDefault(DM dm, DMReorderDefaultFlag *reorder)
9589: {
9590: PetscFunctionBegin;
9592: PetscAssertPointer(reorder, 2);
9593: *reorder = DM_REORDER_DEFAULT_NOTSET;
9594: PetscTryMethod(dm, "DMReorderSectionGetDefault_C", (DM, DMReorderDefaultFlag *), (dm, reorder));
9595: PetscFunctionReturn(PETSC_SUCCESS);
9596: }
9598: /*@
9599: DMReorderSectionSetType - Set the type of local section reordering
9601: Logically collective
9603: Input Parameters:
9604: + dm - The DM
9605: - reorder - The reordering method
9607: Level: intermediate
9609: .seealso: `DMReorderSectionGetType()`, `DMReorderSectionSetDefault()`
9610: @*/
9611: PetscErrorCode DMReorderSectionSetType(DM dm, MatOrderingType reorder)
9612: {
9613: PetscFunctionBegin;
9615: PetscTryMethod(dm, "DMReorderSectionSetType_C", (DM, MatOrderingType), (dm, reorder));
9616: PetscFunctionReturn(PETSC_SUCCESS);
9617: }
9619: /*@
9620: DMReorderSectionGetType - Get the reordering type for the local section
9622: Not collective
9624: Input Parameter:
9625: . dm - The DM
9627: Output Parameter:
9628: . reorder - The reordering method
9630: Level: intermediate
9632: .seealso: `DMReorderSetDefault()`, `DMReorderSectionGetDefault()`
9633: @*/
9634: PetscErrorCode DMReorderSectionGetType(DM dm, MatOrderingType *reorder)
9635: {
9636: PetscFunctionBegin;
9638: PetscAssertPointer(reorder, 2);
9639: *reorder = NULL;
9640: PetscTryMethod(dm, "DMReorderSectionGetType_C", (DM, MatOrderingType *), (dm, reorder));
9641: PetscFunctionReturn(PETSC_SUCCESS);
9642: }