Actual source code: cr.c

  1: #include <petsc/private/kspimpl.h>

  3: static PetscErrorCode KSPSetUp_CR(KSP ksp)
  4: {
  5:   PetscFunctionBegin;
  6:   PetscCall(KSPSetWorkVecs(ksp, 6));
  7:   PetscFunctionReturn(PETSC_SUCCESS);
  8: }

 10: static PetscErrorCode KSPSolve_CR(KSP ksp)
 11: {
 12:   PetscInt    i = 0;
 13:   PetscReal   dp;
 14:   PetscScalar ai, bi;
 15:   PetscScalar apq, btop, bbot;
 16:   Vec         X, B, R, RT, P, AP, ART, Q;
 17:   Mat         Amat, Pmat;

 19:   PetscFunctionBegin;
 20:   X   = ksp->vec_sol;
 21:   B   = ksp->vec_rhs;
 22:   R   = ksp->work[0];
 23:   RT  = ksp->work[1];
 24:   P   = ksp->work[2];
 25:   AP  = ksp->work[3];
 26:   ART = ksp->work[4];
 27:   Q   = ksp->work[5];

 29:   /* R is the true residual norm, RT is the preconditioned residual norm */
 30:   PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));
 31:   if (!ksp->guess_zero) {
 32:     PetscCall(KSP_MatMult(ksp, Amat, X, R)); /*   R <- A*X           */
 33:     PetscCall(VecAYPX(R, -1.0, B));          /*   R <- B-R == B-A*X  */
 34:   } else {
 35:     PetscCall(VecCopy(B, R)); /*   R <- B (X is 0)    */
 36:   }
 37:   /* This may be true only on a subset of MPI ranks; setting it here so it will be detected by the first norm computation below */
 38:   PetscCall(VecFlag(R, ksp->reason == KSP_DIVERGED_PC_FAILED));
 39:   PetscCall(KSP_PCApply(ksp, R, P));        /*   P   <- B*R         */
 40:   PetscCall(KSP_MatMult(ksp, Amat, P, AP)); /*   AP  <- A*P         */
 41:   PetscCall(VecCopy(P, RT));                /*   RT  <- P           */
 42:   PetscCall(VecCopy(AP, ART));              /*   ART <- AP          */
 43:   PetscCall(VecDotBegin(RT, ART, &btop));   /*   (RT,ART)           */

 45:   if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
 46:     PetscCall(VecNormBegin(RT, NORM_2, &dp)); /*   dp <- RT'*RT       */
 47:     PetscCall(VecDotEnd(RT, ART, &btop));     /*   (RT,ART)           */
 48:     PetscCall(VecNormEnd(RT, NORM_2, &dp));   /*   dp <- RT'*RT       */
 49:     KSPCheckNorm(ksp, dp);
 50:   } else if (ksp->normtype == KSP_NORM_NONE) {
 51:     dp = 0.0;                             /* meaningless value that is passed to monitor and convergence test */
 52:     PetscCall(VecDotEnd(RT, ART, &btop)); /*   (RT,ART)           */
 53:   } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
 54:     PetscCall(VecNormBegin(R, NORM_2, &dp)); /*   dp <- R'*R         */
 55:     PetscCall(VecDotEnd(RT, ART, &btop));    /*   (RT,ART)           */
 56:     PetscCall(VecNormEnd(R, NORM_2, &dp));   /*   dp <- RT'*RT       */
 57:     KSPCheckNorm(ksp, dp);
 58:   } else if (ksp->normtype == KSP_NORM_NATURAL) {
 59:     PetscCall(VecDotEnd(RT, ART, &btop));     /*   (RT,ART)           */
 60:     dp = PetscSqrtReal(PetscAbsScalar(btop)); /* dp = sqrt(R,AR)      */
 61:   } else SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "KSPNormType of %d not supported", (int)ksp->normtype);
 62:   if (PetscAbsScalar(btop) < 0.0) {
 63:     ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
 64:     PetscCall(PetscInfo(ksp, "diverging due to indefinite or negative definite matrix\n"));
 65:     PetscFunctionReturn(PETSC_SUCCESS);
 66:   }

 68:   ksp->its = 0;
 69:   PetscCall(KSPMonitor(ksp, 0, dp));
 70:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp));
 71:   ksp->rnorm = dp;
 72:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp));
 73:   PetscCall(KSPLogResidualHistory(ksp, dp));
 74:   PetscCall((*ksp->converged)(ksp, 0, dp, &ksp->reason, ksp->cnvP));
 75:   if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);

 77:   i = 0;
 78:   do {
 79:     PetscCall(KSP_PCApply(ksp, AP, Q)); /*   Q <- B* AP          */

 81:     PetscCall(VecDot(AP, Q, &apq));
 82:     KSPCheckDot(ksp, apq);
 83:     if (PetscRealPart(apq) <= 0.0) {
 84:       ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
 85:       PetscCall(PetscInfo(ksp, "KSPSolve_CR:diverging due to indefinite or negative definite PC\n"));
 86:       break;
 87:     }
 88:     ai = btop / apq; /* ai = (RT,ART)/(AP,Q)  */

 90:     PetscCall(VecAXPY(X, ai, P));               /*   X   <- X + ai*P     */
 91:     PetscCall(VecAXPY(RT, -ai, Q));             /*   RT  <- RT - ai*Q    */
 92:     PetscCall(KSP_MatMult(ksp, Amat, RT, ART)); /*   ART <-   A*RT       */
 93:     bbot = btop;
 94:     PetscCall(VecDotBegin(RT, ART, &btop));

 96:     if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
 97:       PetscCall(VecNormBegin(RT, NORM_2, &dp)); /*   dp <- || RT ||      */
 98:       PetscCall(VecDotEnd(RT, ART, &btop));
 99:       PetscCall(VecNormEnd(RT, NORM_2, &dp)); /*   dp <- || RT ||      */
100:       KSPCheckNorm(ksp, dp);
101:     } else if (ksp->normtype == KSP_NORM_NATURAL) {
102:       PetscCall(VecDotEnd(RT, ART, &btop));
103:       dp = PetscSqrtReal(PetscAbsScalar(btop)); /* dp = sqrt(R,AR)       */
104:     } else if (ksp->normtype == KSP_NORM_NONE) {
105:       PetscCall(VecDotEnd(RT, ART, &btop));
106:       dp = 0.0; /* meaningless value that is passed to monitor and convergence test */
107:     } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
108:       PetscCall(VecAXPY(R, ai, AP));           /*   R   <- R - ai*AP    */
109:       PetscCall(VecNormBegin(R, NORM_2, &dp)); /*   dp <- R'*R          */
110:       PetscCall(VecDotEnd(RT, ART, &btop));
111:       PetscCall(VecNormEnd(R, NORM_2, &dp)); /*   dp <- R'*R          */
112:       KSPCheckNorm(ksp, dp);
113:     } else SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "KSPNormType of %d not supported", (int)ksp->normtype);
114:     if (PetscAbsScalar(btop) < 0.0) {
115:       ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
116:       PetscCall(PetscInfo(ksp, "diverging due to indefinite or negative definite PC\n"));
117:       break;
118:     }

120:     PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp));
121:     ksp->its++;
122:     ksp->rnorm = dp;
123:     PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp));

125:     PetscCall(KSPLogResidualHistory(ksp, dp));
126:     PetscCall(KSPMonitor(ksp, i + 1, dp));
127:     PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));
128:     if (ksp->reason) break;

130:     bi = btop / bbot;
131:     PetscCall(VecAYPX(P, bi, RT));   /*   P <- RT + Bi P     */
132:     PetscCall(VecAYPX(AP, bi, ART)); /*   AP <- ART + Bi AP  */
133:     i++;
134:   } while (i < ksp->max_it);
135:   if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
136:   PetscFunctionReturn(PETSC_SUCCESS);
137: }

139: /*MC
140:      KSPCR - This code implements the (preconditioned) conjugate residuals method {cite}`hs:52`

142:    Level: beginner

144:    Notes:
145:    The operator and the preconditioner must be symmetric for this method.

147:    The preconditioner must be POSITIVE-DEFINITE and the operator POSITIVE-SEMIDEFINITE.

149:    Support only for left preconditioning.

151: .seealso: [](ch_ksp), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `KSPCG`
152: M*/
153: PETSC_EXTERN PetscErrorCode KSPCreate_CR(KSP ksp)
154: {
155:   PetscFunctionBegin;
156:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_PRECONDITIONED, PC_LEFT, 3));
157:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_LEFT, 2));
158:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NATURAL, PC_LEFT, 2));
159:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_LEFT, 1));

161:   ksp->ops->setup          = KSPSetUp_CR;
162:   ksp->ops->solve          = KSPSolve_CR;
163:   ksp->ops->destroy        = KSPDestroyDefault;
164:   ksp->ops->buildsolution  = KSPBuildSolutionDefault;
165:   ksp->ops->buildresidual  = KSPBuildResidualDefault;
166:   ksp->ops->setfromoptions = NULL;
167:   ksp->ops->view           = NULL;
168:   PetscFunctionReturn(PETSC_SUCCESS);
169: }