Actual source code: ex52.c

  1: static char help[] = "Solves a linear system in parallel with KSP. Modified from ex2.c \n\
  2:                       Illustrate how to use external packages MUMPS, SUPERLU and STRUMPACK \n\
  3: Input parameters include:\n\
  4:   -random_exact_sol : use a random exact solution vector\n\
  5:   -view_exact_sol   : write exact solution vector to stdout\n\
  6:   -m <mesh_x>       : number of mesh points in x-direction\n\
  7:   -n <mesh_y>       : number of mesh points in y-direction\n\n";

  9: #include <petscksp.h>

 11: #if defined(PETSC_HAVE_MUMPS)
 12: /* Subroutine contributed by Varun Hiremath */
 13: PetscErrorCode printMumpsMemoryInfo(Mat F)
 14: {
 15:   PetscInt maxMem, sumMem;

 17:   PetscFunctionBeginUser;
 18:   PetscCall(MatMumpsGetInfog(F, 16, &maxMem));
 19:   PetscCall(MatMumpsGetInfog(F, 17, &sumMem));
 20:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n MUMPS INFOG(16) :: Max memory in MB = %" PetscInt_FMT, maxMem));
 21:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n MUMPS INFOG(17) :: Sum memory in MB = %" PetscInt_FMT "\n", sumMem));
 22:   PetscFunctionReturn(PETSC_SUCCESS);
 23: }
 24: #endif

 26: int main(int argc, char **args)
 27: {
 28:   Vec         x, b, u; /* approx solution, RHS, exact solution */
 29:   Mat         A, F;
 30:   KSP         ksp; /* linear solver context */
 31:   PC          pc;
 32:   PetscRandom rctx; /* random number generator context */
 33:   PetscReal   norm; /* norm of solution error */
 34:   PetscInt    i, j, Ii, J, Istart, Iend, m = 8, n = 7, its;
 35:   PetscBool   flg = PETSC_FALSE, flg_ilu = PETSC_FALSE, flg_ch = PETSC_FALSE;
 36: #if defined(PETSC_HAVE_MUMPS)
 37:   char      tmpdir[PETSC_MAX_PATH_LEN];
 38:   PetscBool flg_mumps = PETSC_FALSE, flg_mumps_ch = PETSC_FALSE, test_mumps_ooc_api = PETSC_FALSE;
 39: #endif
 40: #if defined(PETSC_HAVE_SUPERLU) || defined(PETSC_HAVE_SUPERLU_DIST)
 41:   PetscBool flg_superlu = PETSC_FALSE;
 42: #endif
 43: #if defined(PETSC_HAVE_STRUMPACK)
 44:   PetscBool flg_strumpack = PETSC_FALSE;
 45: #endif
 46:   PetscScalar   v;
 47:   PetscMPIInt   rank, size;
 48:   PetscLogStage stage;

 50: #if defined(PETSC_HAVE_STRUMPACK) && defined(PETSC_HAVE_SLATE)
 51:   PETSC_MPI_THREAD_REQUIRED = MPI_THREAD_MULTIPLE;
 52: #endif
 53:   PetscFunctionBeginUser;
 54:   PetscCall(PetscInitialize(&argc, &args, NULL, help));
 55:   PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
 56:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
 57:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-m", &m, NULL));
 58:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-n", &n, NULL));
 59:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 60:          Compute the matrix and right-hand-side vector that define
 61:          the linear system, Ax = b.
 62:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 63:   PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
 64:   PetscCall(MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, m * n, m * n));
 65:   PetscCall(MatSetFromOptions(A));
 66:   PetscCall(MatMPIAIJSetPreallocation(A, 5, NULL, 5, NULL));
 67:   PetscCall(MatSeqAIJSetPreallocation(A, 5, NULL));
 68:   PetscCall(MatSetUp(A));

 70:   /*
 71:      Currently, all PETSc parallel matrix formats are partitioned by
 72:      contiguous chunks of rows across the processors.  Determine which
 73:      rows of the matrix are locally owned.
 74:   */
 75:   PetscCall(MatGetOwnershipRange(A, &Istart, &Iend));

 77:   /*
 78:      Set matrix elements for the 2-D, five-point stencil in parallel.
 79:       - Each processor needs to insert only elements that it owns
 80:         locally (but any non-local elements will be sent to the
 81:         appropriate processor during matrix assembly).
 82:       - Always specify global rows and columns of matrix entries.

 84:      Note: this uses the less common natural ordering that orders first
 85:      all the unknowns for x = h then for x = 2h etc; Hence you see J = Ii +- n
 86:      instead of J = I +- m as you might expect. The more standard ordering
 87:      would first do all variables for y = h, then y = 2h etc.

 89:    */
 90:   PetscCall(PetscLogStageRegister("Assembly", &stage));
 91:   PetscCall(PetscLogStagePush(stage));
 92:   for (Ii = Istart; Ii < Iend; Ii++) {
 93:     v = -1.0;
 94:     i = Ii / n;
 95:     j = Ii - i * n;
 96:     if (i > 0) {
 97:       J = Ii - n;
 98:       PetscCall(MatSetValues(A, 1, &Ii, 1, &J, &v, INSERT_VALUES));
 99:     }
100:     if (i < m - 1) {
101:       J = Ii + n;
102:       PetscCall(MatSetValues(A, 1, &Ii, 1, &J, &v, INSERT_VALUES));
103:     }
104:     if (j > 0) {
105:       J = Ii - 1;
106:       PetscCall(MatSetValues(A, 1, &Ii, 1, &J, &v, INSERT_VALUES));
107:     }
108:     if (j < n - 1) {
109:       J = Ii + 1;
110:       PetscCall(MatSetValues(A, 1, &Ii, 1, &J, &v, INSERT_VALUES));
111:     }
112:     v = 4.0;
113:     PetscCall(MatSetValues(A, 1, &Ii, 1, &Ii, &v, INSERT_VALUES));
114:   }

116:   /*
117:      Assemble matrix, using the 2-step process:
118:        MatAssemblyBegin(), MatAssemblyEnd()
119:      Computations can be done while messages are in transition
120:      by placing code between these two statements.
121:   */
122:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
123:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
124:   PetscCall(PetscLogStagePop());

126:   /* A is symmetric. Set symmetric flag to enable ICC/Cholesky preconditioner */
127:   PetscCall(MatSetOption(A, MAT_SYMMETRIC, PETSC_TRUE));

129:   /* Create parallel vectors */
130:   PetscCall(MatCreateVecs(A, &u, &b));
131:   PetscCall(VecDuplicate(u, &x));

133:   /*
134:      Set exact solution; then compute right-hand-side vector.
135:      By default we use an exact solution of a vector with all
136:      elements of 1.0;  Alternatively, using the runtime option
137:      -random_sol forms a solution vector with random components.
138:   */
139:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-random_exact_sol", &flg, NULL));
140:   if (flg) {
141:     PetscCall(PetscRandomCreate(PETSC_COMM_WORLD, &rctx));
142:     PetscCall(PetscRandomSetFromOptions(rctx));
143:     PetscCall(VecSetRandom(u, rctx));
144:     PetscCall(PetscRandomDestroy(&rctx));
145:   } else {
146:     PetscCall(VecSet(u, 1.0));
147:   }
148:   PetscCall(MatMult(A, u, b));

150:   /*
151:      View the exact solution vector if desired
152:   */
153:   flg = PETSC_FALSE;
154:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-view_exact_sol", &flg, NULL));
155:   if (flg) PetscCall(VecView(u, PETSC_VIEWER_STDOUT_WORLD));

157:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
158:                 Create the linear solver and set various options
159:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

161:   /*
162:      Create linear solver context
163:   */
164:   PetscCall(KSPCreate(PETSC_COMM_WORLD, &ksp));
165:   PetscCall(KSPSetOperators(ksp, A, A));

167:   /*
168:     Example of how to use external package MUMPS
169:     Note: runtime options
170:           '-ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps -mat_mumps_icntl_7 3 -mat_mumps_icntl_1 0.0'
171:           are equivalent to these procedural calls
172:   */
173: #if defined(PETSC_HAVE_MUMPS)
174:   flg_mumps    = PETSC_FALSE;
175:   flg_mumps_ch = PETSC_FALSE;
176:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_mumps_lu", &flg_mumps, NULL));
177:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_mumps_ch", &flg_mumps_ch, NULL));
178:   if (flg_mumps || flg_mumps_ch) {
179:     PetscCall(KSPSetType(ksp, KSPPREONLY));
180:     PetscInt  ival, icntl;
181:     PetscReal val;
182:     PetscCall(KSPGetPC(ksp, &pc));
183:     if (flg_mumps) {
184:       PetscCall(PCSetType(pc, PCLU));
185:     } else if (flg_mumps_ch) {
186:       PetscCall(MatSetOption(A, MAT_SPD, PETSC_TRUE)); /* set MUMPS id%SYM=1 */
187:       PetscCall(PCSetType(pc, PCCHOLESKY));
188:     }
189:     PetscCall(PCFactorSetMatSolverType(pc, MATSOLVERMUMPS));
190:     PetscCall(PCFactorSetUpMatSolverType(pc)); /* call MatGetFactor() to create F */
191:     PetscCall(PCFactorGetMatrix(pc, &F));
192:     PetscCall(MatMumpsSetIcntl(F, 24, 1));
193:     PetscCall(MatMumpsGetIcntl(F, 24, &ival));
194:     PetscCheck(ival == 1, PetscObjectComm((PetscObject)F), PETSC_ERR_LIB, "ICNTL(24) = %" PetscInt_FMT " (!= 1)", ival);
195:     PetscCall(MatMumpsSetCntl(F, 3, 1e-6));
196:     PetscCall(MatMumpsGetCntl(F, 3, &val));
197:     PetscCheck(PetscEqualReal(val, 1e-6), PetscObjectComm((PetscObject)F), PETSC_ERR_LIB, "CNTL(3) = %g (!= %g)", (double)val, 1e-6);
198:     if (flg_mumps) {
199:       /* Zero the first and last rows in the rank, they should then show up in corresponding null pivot rows output via
200:          MatMumpsGetNullPivots */
201:       flg = PETSC_FALSE;
202:       PetscCall(PetscOptionsGetBool(NULL, NULL, "-zero_first_and_last_rows", &flg, NULL));
203:       if (flg) {
204:         PetscInt rows[2];
205:         rows[0] = Istart;   /* first row of the rank */
206:         rows[1] = Iend - 1; /* last row of the rank */
207:         PetscCall(MatZeroRows(A, 2, rows, 0.0, NULL, NULL));
208:       }
209:       /* Get memory estimates from MUMPS' MatLUFactorSymbolic(), e.g. INFOG(16), INFOG(17).
210:          KSPSetUp() below will do nothing inside MatLUFactorSymbolic() */
211:       MatFactorInfo info;
212:       PetscCall(MatLUFactorSymbolic(F, A, NULL, NULL, &info));
213:       flg = PETSC_FALSE;
214:       PetscCall(PetscOptionsGetBool(NULL, NULL, "-print_mumps_memory", &flg, NULL));
215:       if (flg) PetscCall(printMumpsMemoryInfo(F));
216:     }

218:     /* sequential ordering */
219:     icntl = 7;
220:     ival  = 2;
221:     PetscCall(MatMumpsSetIcntl(F, icntl, ival));

223:     /* threshold for row pivot detection */
224:     PetscCall(MatMumpsGetIcntl(F, 24, &ival));
225:     PetscCheck(ival == 1, PetscObjectComm((PetscObject)F), PETSC_ERR_LIB, "ICNTL(24) = %" PetscInt_FMT " (!= 1)", ival);
226:     icntl = 3;
227:     PetscCall(MatMumpsGetCntl(F, icntl, &val));
228:     PetscCheck(PetscEqualReal(val, 1e-6), PetscObjectComm((PetscObject)F), PETSC_ERR_LIB, "CNTL(3) = %g (!= %g)", (double)val, 1e-6);

230:     /* compute determinant of A */
231:     PetscCall(MatMumpsSetIcntl(F, 33, 1));
232:   }
233: #endif

235:   /*
236:     Example of how to use external package SuperLU
237:     Note: runtime options
238:           '-ksp_type preonly -pc_type ilu -pc_factor_mat_solver_type superlu -mat_superlu_ilu_droptol 1.e-8'
239:           are equivalent to these procedual calls
240:   */
241: #if defined(PETSC_HAVE_SUPERLU) || defined(PETSC_HAVE_SUPERLU_DIST)
242:   flg_ilu     = PETSC_FALSE;
243:   flg_superlu = PETSC_FALSE;
244:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_superlu_lu", &flg_superlu, NULL));
245:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_superlu_ilu", &flg_ilu, NULL));
246:   if (flg_superlu || flg_ilu) {
247:     PetscCall(KSPSetType(ksp, KSPPREONLY));
248:     PetscCall(KSPGetPC(ksp, &pc));
249:     if (flg_superlu) PetscCall(PCSetType(pc, PCLU));
250:     else if (flg_ilu) PetscCall(PCSetType(pc, PCILU));
251:     if (size == 1) {
252:   #if !defined(PETSC_HAVE_SUPERLU)
253:       SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_SUP, "This test requires SUPERLU");
254:   #else
255:       PetscCall(PCFactorSetMatSolverType(pc, MATSOLVERSUPERLU));
256:   #endif
257:     } else {
258:   #if !defined(PETSC_HAVE_SUPERLU_DIST)
259:       SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_SUP, "This test requires SUPERLU_DIST");
260:   #else
261:       PetscCall(PCFactorSetMatSolverType(pc, MATSOLVERSUPERLU_DIST));
262:   #endif
263:     }
264:     PetscCall(PCFactorSetUpMatSolverType(pc)); /* call MatGetFactor() to create F */
265:     PetscCall(PCFactorGetMatrix(pc, &F));
266:   #if defined(PETSC_HAVE_SUPERLU)
267:     if (size == 1) PetscCall(MatSuperluSetILUDropTol(F, 1.e-8));
268:   #endif
269:   }
270: #endif

272:   /*
273:     Example of how to use external package STRUMPACK
274:     Note: runtime options
275:           '-pc_type lu/ilu \
276:            -pc_factor_mat_solver_type strumpack \
277:            -mat_strumpack_reordering GEOMETRIC \
278:            -mat_strumpack_geometric_xyz n,m \
279:            -mat_strumpack_colperm 0 \
280:            -mat_strumpack_compression_rel_tol 1.e-3 \
281:            -mat_strumpack_compression_min_sep_size 15 \
282:            -mat_strumpack_leaf_size 4'
283:        are equivalent to these procedural calls

285:     We refer to the STRUMPACK manual for more info on
286:     how to tune the preconditioner, see for instance:
287:      https://portal.nersc.gov/project/sparse/strumpack/master/prec.html
288:   */
289: #if defined(PETSC_HAVE_STRUMPACK)
290:   flg_ilu       = PETSC_FALSE;
291:   flg_strumpack = PETSC_FALSE;
292:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_strumpack_lu", &flg_strumpack, NULL));
293:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_strumpack_ilu", &flg_ilu, NULL));
294:   if (flg_strumpack || flg_ilu) {
295:     PetscCall(KSPSetType(ksp, KSPPREONLY));
296:     PetscCall(KSPGetPC(ksp, &pc));
297:     if (flg_strumpack) PetscCall(PCSetType(pc, PCLU));
298:     else if (flg_ilu) PetscCall(PCSetType(pc, PCILU));
299:   #if !defined(PETSC_HAVE_STRUMPACK)
300:     SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_SUP, "This test requires STRUMPACK");
301:   #endif
302:     PetscCall(PCFactorSetMatSolverType(pc, MATSOLVERSTRUMPACK));
303:     PetscCall(PCFactorSetUpMatSolverType(pc)); /* call MatGetFactor() to create F */
304:     PetscCall(PCFactorGetMatrix(pc, &F));

306:     /* Set the fill-reducing reordering, MAT_STRUMPACK_METIS is       */
307:     /* always supported, but is sequential. Parallel alternatives are */
308:     /* MAT_STRUMPACK_PARMETIS and MAT_STRUMPACK_PTSCOTCH, but         */
309:     /* strumpack needs to be configured with support for these.       */
310:     /*PetscCall(MatSTRUMPACKSetReordering(F, MAT_STRUMPACK_METIS));   */
311:     /* However, since this is a problem on a regular grid, we can use */
312:     /* a simple geometric nested dissection implementation, which     */
313:     /* requires passing the grid dimensions to strumpack.             */
314:     PetscCall(MatSTRUMPACKSetReordering(F, MAT_STRUMPACK_GEOMETRIC));
315:     PetscCall(MatSTRUMPACKSetGeometricNxyz(F, n, m, PETSC_DECIDE));
316:     /* These are optional, defaults are 1                             */
317:     PetscCall(MatSTRUMPACKSetGeometricComponents(F, 1));
318:     PetscCall(MatSTRUMPACKSetGeometricWidth(F, 1));

320:     /* Since this is a simple discretization, the diagonal is always  */
321:     /* nonzero, and there is no need for the extra MC64 permutation.  */
322:     PetscCall(MatSTRUMPACKSetColPerm(F, PETSC_FALSE));

324:     if (flg_ilu) {
325:       /* The compression tolerance used when doing low-rank compression */
326:       /* in the preconditioner. This is problem specific!               */
327:       PetscCall(MatSTRUMPACKSetCompRelTol(F, 1.e-3));

329:       /* Set a small minimum (dense) matrix size for compression to     */
330:       /* demonstrate the preconditioner on small problems.              */
331:       /* For performance the default value should be better.            */
332:       /* This size corresponds to the size of separators in the graph.  */
333:       /* For instance on an m x n mesh, the top level separator is of   */
334:       /* size m (if m <= n)                                             */
335:       /*PetscCall(MatSTRUMPACKSetCompMinSepSize(F,15));*/

337:       /* Set the size of the diagonal blocks (the leafs) in the HSS     */
338:       /* approximation. The default value should be better for real     */
339:       /* problems. This is mostly for illustration on a small problem.  */
340:       /*PetscCall(MatSTRUMPACKSetCompLeafSize(F,4));*/
341:     }
342:   }
343: #endif

345:   /*
346:     Example of how to use procedural calls that are equivalent to
347:           '-ksp_type preonly -pc_type lu/ilu -pc_factor_mat_solver_type petsc'
348:   */
349:   flg     = PETSC_FALSE;
350:   flg_ilu = PETSC_FALSE;
351:   flg_ch  = PETSC_FALSE;
352:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_petsc_lu", &flg, NULL));
353:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_petsc_ilu", &flg_ilu, NULL));
354:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_petsc_ch", &flg_ch, NULL));
355:   if (flg || flg_ilu || flg_ch) {
356:     Vec diag;

358:     PetscCall(KSPSetType(ksp, KSPPREONLY));
359:     PetscCall(KSPGetPC(ksp, &pc));
360:     if (flg) PetscCall(PCSetType(pc, PCLU));
361:     else if (flg_ilu) PetscCall(PCSetType(pc, PCILU));
362:     else if (flg_ch) PetscCall(PCSetType(pc, PCCHOLESKY));
363:     PetscCall(PCFactorSetMatSolverType(pc, MATSOLVERPETSC));
364:     PetscCall(PCFactorSetUpMatSolverType(pc)); /* call MatGetFactor() to create F */
365:     PetscCall(PCFactorGetMatrix(pc, &F));

367:     /* Test MatGetDiagonal() */
368:     PetscCall(KSPSetUp(ksp));
369:     PetscCall(VecDuplicate(x, &diag));
370:     PetscCall(MatGetDiagonal(F, diag));
371:     /* PetscCall(VecView(diag,PETSC_VIEWER_STDOUT_WORLD)); */
372:     PetscCall(VecDestroy(&diag));
373:   }

375:   PetscCall(KSPSetFromOptions(ksp));

377: #if defined(PETSC_HAVE_MUMPS)
378:   // The OOC options must be set before PCSetUp()/KSPSetUp(), as MUMPS requires them be set after the initialization phase and before the (numeric) factorization phase.
379:   if (flg_mumps || flg_mumps_ch) {
380:     PetscCall(PetscOptionsGetBool(NULL, NULL, "-test_mumps_ooc_api", &test_mumps_ooc_api, NULL));
381:     if (test_mumps_ooc_api) {
382:       PetscCall(PetscStrncpy(tmpdir, "OOC_XXXXXX", sizeof(tmpdir)));
383:       if (rank == 0) PetscCall(PetscMkdtemp(tmpdir));
384:       PetscCallMPI(MPI_Bcast(tmpdir, 11, MPI_CHAR, 0, PETSC_COMM_WORLD));
385:       PetscCall(MatMumpsSetIcntl(F, 22, 1)); // enable out-of-core
386:       PetscCall(MatMumpsSetOocTmpDir(F, tmpdir));
387:     }
388:   }
389: #endif

391:   /* Get info from matrix factors */
392:   PetscCall(KSPSetUp(ksp));

394: #if defined(PETSC_HAVE_MUMPS)
395:   if (flg_mumps || flg_mumps_ch) {
396:     PetscInt  icntl, infog34, num_null_pivots, *null_pivots;
397:     PetscReal cntl, rinfo12, rinfo13;
398:     icntl = 3;
399:     PetscCall(MatMumpsGetCntl(F, icntl, &cntl));

401:     /* compute determinant and check for any null pivots*/
402:     if (rank == 0) {
403:       PetscCall(MatMumpsGetInfog(F, 34, &infog34));
404:       PetscCall(MatMumpsGetRinfog(F, 12, &rinfo12));
405:       PetscCall(MatMumpsGetRinfog(F, 13, &rinfo13));
406:       PetscCall(MatMumpsGetNullPivots(F, &num_null_pivots, &null_pivots));
407:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "  Mumps row pivot threshold = %g\n", (double)cntl));
408:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "  Mumps determinant = (%g, %g) * 2^%" PetscInt_FMT " \n", (double)rinfo12, (double)rinfo13, infog34));
409:       if (num_null_pivots > 0) {
410:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  Mumps num of null pivots detected = %" PetscInt_FMT "\n", num_null_pivots));
411:         PetscCall(PetscSortInt(num_null_pivots, null_pivots)); /* just make the printf deterministic */
412:         for (j = 0; j < num_null_pivots; j++) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  Mumps row with null pivots is = %" PetscInt_FMT "\n", null_pivots[j]));
413:       }
414:       PetscCall(PetscFree(null_pivots));
415:     }
416:   }
417: #endif

419:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
420:                       Solve the linear system
421:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
422:   PetscCall(KSPSolve(ksp, b, x));

424:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
425:                       Check solution and clean up
426:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
427:   PetscCall(VecAXPY(x, -1.0, u));
428:   PetscCall(VecNorm(x, NORM_2, &norm));
429:   PetscCall(KSPGetIterationNumber(ksp, &its));

431:   /*
432:      Print convergence information.  PetscPrintf() produces a single
433:      print statement from all processes that share a communicator.
434:      An alternative is PetscFPrintf(), which prints to a file.
435:   */
436:   if (norm < 1.e-12) {
437:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Norm of error < 1.e-12 iterations %" PetscInt_FMT "\n", its));
438:   } else {
439:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Norm of error %g iterations %" PetscInt_FMT "\n", (double)norm, its));
440:   }

442: #if defined(PETSC_HAVE_MUMPS)
443:   // Get the OCC tmpdir via F before it is destroyed in KSPDestroy().
444:   if (test_mumps_ooc_api) {
445:     const char *dir;

447:     PetscCall(MatMumpsGetOocTmpDir(F, &dir));
448:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, " OOC_TMPDIR = %s\n", dir));
449:   }
450: #endif

452:   /*
453:      Free work space.  All PETSc objects should be destroyed when they
454:      are no longer needed.
455:   */
456:   PetscCall(KSPDestroy(&ksp));

458: #if defined(PETSC_HAVE_MUMPS)
459:   // Files created by MUMPS under the OOC tmpdir were automatically deleted by MUMPS with JOB_END (-2)
460:   // during KSP/PCDestroy(), but we need to remove the tmpdir created by us.
461:   if (test_mumps_ooc_api && rank == 0) PetscCall(PetscRMTree(tmpdir));
462: #endif

464:   PetscCall(VecDestroy(&u));
465:   PetscCall(VecDestroy(&x));
466:   PetscCall(VecDestroy(&b));
467:   PetscCall(MatDestroy(&A));

469:   /*
470:      Always call PetscFinalize() before exiting a program.  This routine
471:        - finalizes the PETSc libraries as well as MPI
472:        - provides summary and diagnostic information if certain runtime
473:          options are chosen (e.g., -log_view).
474:   */
475:   PetscCall(PetscFinalize());
476:   return 0;
477: }

479: /*TEST

481:    test:
482:       args: -use_petsc_lu
483:       output_file: output/ex52_2.out

485:    testset:
486:       suffix: mumps
487:       nsize: 3
488:       requires: mumps
489:       output_file: output/ex52_1.out
490:       args: -use_mumps_lu

492:       test:
493:         suffix: mumps

495:       test:
496:         suffix: mumps_ooc
497:         args: -mat_mumps_icntl_22 1 -mat_mumps_ooc_tmpdir /tmp

499:       test:
500:         suffix: mumps_ooc_api
501:         args: -mat_mumps_icntl_22 1 -test_mumps_ooc_api
502:         filter: grep -v "OOC_TMPDIR"

504:    test:
505:       suffix: mumps_2
506:       nsize: 3
507:       requires: mumps
508:       args: -use_mumps_ch
509:       output_file: output/ex52_1.out

511:    test:
512:       suffix: mumps_3
513:       nsize: 3
514:       requires: mumps
515:       args: -use_mumps_ch -mat_type sbaij
516:       output_file: output/ex52_1.out

518:    test:
519:       suffix: mumps_4
520:       nsize: 3
521:       requires: mumps !complex !single
522:       args: -use_mumps_lu -m 50 -n 50 -print_mumps_memory
523:       output_file: output/ex52_4.out

525:    test:
526:       suffix: mumps_5
527:       nsize: 3
528:       requires: mumps !complex !single
529:       args: -use_mumps_lu -m 50 -n 50 -zero_first_and_last_rows
530:       output_file: output/ex52_5.out

532:    test:
533:       suffix: mumps_omp_2
534:       nsize: 4
535:       requires: mumps hwloc openmp pthread defined(PETSC_HAVE_MPI_PROCESS_SHARED_MEMORY)
536:       args: -use_mumps_lu -mat_mumps_use_omp_threads 2
537:       output_file: output/ex52_1.out

539:    test:
540:       suffix: mumps_omp_3
541:       nsize: 4
542:       requires: mumps hwloc openmp pthread defined(PETSC_HAVE_MPI_PROCESS_SHARED_MEMORY)
543:       args: -use_mumps_ch -mat_mumps_use_omp_threads 3 -mat_mumps_icntl_48 0
544:       # Ignore the warning since we are intentionally testing the imbalanced case
545:       filter: grep -v "Warning: number of OpenMP threads"
546:       output_file: output/ex52_1.out

548:    test:
549:       suffix: mumps_omp_4
550:       nsize: 4
551:       requires: mumps hwloc openmp pthread defined(PETSC_HAVE_MPI_PROCESS_SHARED_MEMORY)
552:       # let PETSc guess a proper number for threads
553:       args: -use_mumps_ch -mat_type sbaij -mat_mumps_use_omp_threads
554:       output_file: output/ex52_1.out

556:    testset:
557:       suffix: strumpack_2
558:       nsize: {{1 2}}
559:       requires: strumpack
560:       args: -use_strumpack_lu
561:       output_file: output/ex52_3.out

563:       test:
564:         suffix: aij
565:         args: -mat_type aij

567:       test:
568:         requires: kokkos_kernels
569:         suffix: kok
570:         args: -mat_type aijkokkos

572:       test:
573:         requires: cuda
574:         suffix: cuda
575:         args: -mat_type aijcusparse

577:       test:
578:         requires: hip
579:         suffix: hip
580:         args: -mat_type aijhipsparse

582:    test:
583:       suffix: strumpack_ilu
584:       nsize: {{1 2}}
585:       requires: strumpack
586:       args: -use_strumpack_ilu
587:       output_file: output/ex52_3.out

589:    testset:
590:       suffix: superlu_dist
591:       nsize: {{1 2}}
592:       requires: superlu superlu_dist
593:       args: -use_superlu_lu
594:       output_file: output/ex52_2.out

596:       test:
597:         suffix: aij
598:         args: -mat_type aij

600:       test:
601:         requires: kokkos_kernels
602:         suffix: kok
603:         args: -mat_type aijkokkos

605:       test:
606:         requires: cuda
607:         suffix: cuda
608:         args: -mat_type aijcusparse

610:       test:
611:         requires: hip
612:         suffix: hip
613:         args: -mat_type aijhipsparse

615:    test:
616:       suffix: superlu_ilu
617:       requires: superlu superlu_dist
618:       args: -use_superlu_ilu
619:       output_file: output/ex52_2.out

621: TEST*/