Actual source code: classical.c

  1: #include <../src/ksp/pc/impls/gamg/gamg.h>
  2: #include <petscsf.h>

  4: static PetscFunctionList PCGAMGClassicalProlongatorList    = NULL;
  5: static PetscBool         PCGAMGClassicalPackageInitialized = PETSC_FALSE;

  7: typedef struct {
  8:   PetscReal interp_threshold; /* interpolation threshold */
  9:   char      prolongtype[256];
 10:   PetscInt  nsmooths; /* number of jacobi smoothings on the prolongator */
 11: } PC_GAMG_Classical;

 13: /*@
 14:   PCGAMGClassicalSetType - Sets the type of classical interpolation to use with `PCGAMG`

 16:   Collective

 18:   Input Parameters:
 19: + pc   - the preconditioner context
 20: - type - the interpolation to use, see `PCGAMGClassicalType()`

 22:   Options Database Key:
 23: . -pc_gamg_classical_type <direct,standard> - set type of classical AMG prolongation

 25:   Level: intermediate

 27: .seealso: [](ch_ksp), `PCGAMG`, `PCGAMGClassicalType`, `PCGAMGClassicalGetType()`
 28: @*/
 29: PetscErrorCode PCGAMGClassicalSetType(PC pc, PCGAMGClassicalType type)
 30: {
 31:   PetscFunctionBegin;
 33:   PetscTryMethod(pc, "PCGAMGClassicalSetType_C", (PC, PCGAMGClassicalType), (pc, type));
 34:   PetscFunctionReturn(PETSC_SUCCESS);
 35: }

 37: /*@
 38:   PCGAMGClassicalGetType - Gets the type of classical interpolation to use with `PCGAMG`

 40:   Collective

 42:   Input Parameter:
 43: . pc - the preconditioner context

 45:   Output Parameter:
 46: . type - the type used, see `PCGAMGClassicalType()`

 48:   Level: intermediate

 50: .seealso: [](ch_ksp), `PCGAMG`, `PCGAMGClassicalType`, `PCGAMGClassicalSetType()`
 51: @*/
 52: PetscErrorCode PCGAMGClassicalGetType(PC pc, PCGAMGClassicalType *type)
 53: {
 54:   PetscFunctionBegin;
 56:   PetscUseMethod(pc, "PCGAMGClassicalGetType_C", (PC, PCGAMGClassicalType *), (pc, type));
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: static PetscErrorCode PCGAMGClassicalSetType_GAMG(PC pc, PCGAMGClassicalType type)
 61: {
 62:   PC_MG             *mg      = (PC_MG *)pc->data;
 63:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
 64:   PC_GAMG_Classical *cls     = (PC_GAMG_Classical *)pc_gamg->subctx;

 66:   PetscFunctionBegin;
 67:   PetscCall(PetscStrncpy(cls->prolongtype, type, sizeof(cls->prolongtype)));
 68:   PetscFunctionReturn(PETSC_SUCCESS);
 69: }

 71: static PetscErrorCode PCGAMGClassicalGetType_GAMG(PC pc, PCGAMGClassicalType *type)
 72: {
 73:   PC_MG             *mg      = (PC_MG *)pc->data;
 74:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
 75:   PC_GAMG_Classical *cls     = (PC_GAMG_Classical *)pc_gamg->subctx;

 77:   PetscFunctionBegin;
 78:   *type = cls->prolongtype;
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: static PetscErrorCode PCGAMGCreateGraph_Classical(PC pc, Mat A, Mat *G)
 83: {
 84:   PetscInt           s, f, n, idx, lidx, gidx;
 85:   PetscInt           r, c, ncols;
 86:   const PetscInt    *rcol;
 87:   const PetscScalar *rval;
 88:   PetscInt          *gcol;
 89:   PetscScalar       *gval;
 90:   PetscReal          rmax;
 91:   PetscInt           cmax = 0;
 92:   PC_MG             *mg   = (PC_MG *)pc->data;
 93:   PC_GAMG           *gamg = (PC_GAMG *)mg->innerctx;
 94:   PetscInt          *gsparse, *lsparse;
 95:   PetscScalar       *Amax;
 96:   MatType            mtype;

 98:   PetscFunctionBegin;
 99:   PetscCall(MatGetOwnershipRange(A, &s, &f));
100:   n = f - s;
101:   PetscCall(PetscMalloc3(n, &lsparse, n, &gsparse, n, &Amax));

103:   for (r = 0; r < n; r++) {
104:     lsparse[r] = 0;
105:     gsparse[r] = 0;
106:   }

108:   for (r = s; r < f; r++) {
109:     /* determine the maximum off-diagonal in each row */
110:     rmax = 0.;
111:     PetscCall(MatGetRow(A, r, &ncols, &rcol, &rval));
112:     for (c = 0; c < ncols; c++) {
113:       if (PetscRealPart(-rval[c]) > rmax && rcol[c] != r) rmax = PetscRealPart(-rval[c]);
114:     }
115:     Amax[r - s] = rmax;
116:     if (ncols > cmax) cmax = ncols;
117:     lidx = 0;
118:     gidx = 0;
119:     /* create the local and global sparsity patterns */
120:     for (c = 0; c < ncols; c++) {
121:       if (PetscRealPart(-rval[c]) > gamg->threshold[0] * PetscRealPart(Amax[r - s]) || rcol[c] == r) {
122:         if (rcol[c] < f && rcol[c] >= s) {
123:           lidx++;
124:         } else {
125:           gidx++;
126:         }
127:       }
128:     }
129:     PetscCall(MatRestoreRow(A, r, &ncols, &rcol, &rval));
130:     lsparse[r - s] = lidx;
131:     gsparse[r - s] = gidx;
132:   }
133:   PetscCall(PetscMalloc2(cmax, &gval, cmax, &gcol));

135:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), G));
136:   PetscCall(MatGetType(A, &mtype));
137:   PetscCall(MatSetType(*G, mtype));
138:   PetscCall(MatSetSizes(*G, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
139:   PetscCall(MatMPIAIJSetPreallocation(*G, 0, lsparse, 0, gsparse));
140:   PetscCall(MatSeqAIJSetPreallocation(*G, 0, lsparse));
141:   for (r = s; r < f; r++) {
142:     PetscCall(MatGetRow(A, r, &ncols, &rcol, &rval));
143:     idx = 0;
144:     for (c = 0; c < ncols; c++) {
145:       /* classical strength of connection */
146:       if (PetscRealPart(-rval[c]) > gamg->threshold[0] * PetscRealPart(Amax[r - s]) || rcol[c] == r) {
147:         gcol[idx] = rcol[c];
148:         gval[idx] = rval[c];
149:         idx++;
150:       }
151:     }
152:     PetscCall(MatSetValues(*G, 1, &r, idx, gcol, gval, INSERT_VALUES));
153:     PetscCall(MatRestoreRow(A, r, &ncols, &rcol, &rval));
154:   }
155:   PetscCall(MatAssemblyBegin(*G, MAT_FINAL_ASSEMBLY));
156:   PetscCall(MatAssemblyEnd(*G, MAT_FINAL_ASSEMBLY));

158:   PetscCall(PetscFree2(gval, gcol));
159:   PetscCall(PetscFree3(lsparse, gsparse, Amax));
160:   PetscFunctionReturn(PETSC_SUCCESS);
161: }

163: static PetscErrorCode PCGAMGCoarsen_Classical(PC pc, Mat *G, PetscCoarsenData **agg_lists)
164: {
165:   MatCoarsen crs;
166:   MPI_Comm   fcomm = ((PetscObject)pc)->comm;

168:   PetscFunctionBegin;
169:   PetscCheck(G, fcomm, PETSC_ERR_ARG_WRONGSTATE, "Must set Graph in PC in PCGAMG before coarsening");

171:   PetscCall(MatCoarsenCreate(fcomm, &crs));
172:   PetscCall(MatCoarsenSetFromOptions(crs));
173:   PetscCall(MatCoarsenSetAdjacency(crs, *G));
174:   PetscCall(MatCoarsenSetStrictAggs(crs, PETSC_TRUE));
175:   PetscCall(MatCoarsenApply(crs));
176:   PetscCall(MatCoarsenGetData(crs, agg_lists));
177:   PetscCall(MatCoarsenDestroy(&crs));
178:   PetscFunctionReturn(PETSC_SUCCESS);
179: }

181: static PetscErrorCode PCGAMGProlongator_Classical_Direct(PC pc, Mat A, PetscCoarsenData *agg_lists, Mat *P)
182: {
183:   PC_MG             *mg   = (PC_MG *)pc->data;
184:   PC_GAMG           *gamg = (PC_GAMG *)mg->innerctx;
185:   PetscBool          iscoarse, isMPIAIJ, isSEQAIJ;
186:   PetscInt           fn, cn, fs, fe, cs, ce, i, j, ncols, col, row_f, row_c, cmax = 0, idx, noff;
187:   PetscInt          *lcid, *gcid, *lsparse, *gsparse, *colmap, *pcols;
188:   const PetscInt    *rcol;
189:   PetscReal         *Amax_pos, *Amax_neg;
190:   PetscScalar        g_pos, g_neg, a_pos, a_neg, diag, invdiag, alpha, beta, pij;
191:   PetscScalar       *pvals;
192:   const PetscScalar *rval;
193:   Mat                lA, gA = NULL;
194:   MatType            mtype;
195:   Vec                C, lvec;
196:   PetscLayout        clayout;
197:   PetscSF            sf;
198:   Mat_MPIAIJ        *mpiaij;

200:   PetscFunctionBegin;
201:   PetscCall(MatGetOwnershipRange(A, &fs, &fe));
202:   fn = fe - fs;
203:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIAIJ, &isMPIAIJ));
204:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATSEQAIJ, &isSEQAIJ));
205:   PetscCheck(isMPIAIJ || isSEQAIJ, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Classical AMG requires MPIAIJ matrix");
206:   if (isMPIAIJ) {
207:     mpiaij = (Mat_MPIAIJ *)A->data;
208:     lA     = mpiaij->A;
209:     gA     = mpiaij->B;
210:     lvec   = mpiaij->lvec;
211:     PetscCall(VecGetSize(lvec, &noff));
212:     colmap = mpiaij->garray;
213:     PetscCall(MatGetLayouts(A, NULL, &clayout));
214:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
215:     PetscCall(PetscSFSetGraphLayout(sf, clayout, noff, NULL, PETSC_COPY_VALUES, colmap));
216:     PetscCall(PetscMalloc1(noff, &gcid));
217:   } else {
218:     lA = A;
219:   }
220:   PetscCall(PetscMalloc5(fn, &lsparse, fn, &gsparse, fn, &lcid, fn, &Amax_pos, fn, &Amax_neg));

222:   /* count the number of coarse unknowns */
223:   cn = 0;
224:   for (i = 0; i < fn; i++) {
225:     /* filter out singletons */
226:     PetscCall(PetscCDIsEmptyAt(agg_lists, i, &iscoarse));
227:     lcid[i] = -1;
228:     if (!iscoarse) cn++;
229:   }

231:   /* create the coarse vector */
232:   PetscCall(VecCreateMPI(PetscObjectComm((PetscObject)A), cn, PETSC_DECIDE, &C));
233:   PetscCall(VecGetOwnershipRange(C, &cs, &ce));

235:   cn = 0;
236:   for (i = 0; i < fn; i++) {
237:     PetscCall(PetscCDIsEmptyAt(agg_lists, i, &iscoarse));
238:     if (!iscoarse) {
239:       lcid[i] = cs + cn;
240:       cn++;
241:     } else {
242:       lcid[i] = -1;
243:     }
244:   }

246:   if (gA) {
247:     PetscCall(PetscSFBcastBegin(sf, MPIU_INT, lcid, gcid, MPI_REPLACE));
248:     PetscCall(PetscSFBcastEnd(sf, MPIU_INT, lcid, gcid, MPI_REPLACE));
249:   }

251:   /* determine the largest off-diagonal entries in each row */
252:   for (i = fs; i < fe; i++) {
253:     Amax_pos[i - fs] = 0.;
254:     Amax_neg[i - fs] = 0.;
255:     PetscCall(MatGetRow(A, i, &ncols, &rcol, &rval));
256:     for (j = 0; j < ncols; j++) {
257:       if ((PetscRealPart(-rval[j]) > Amax_neg[i - fs]) && i != rcol[j]) Amax_neg[i - fs] = PetscAbsScalar(rval[j]);
258:       if ((PetscRealPart(rval[j]) > Amax_pos[i - fs]) && i != rcol[j]) Amax_pos[i - fs] = PetscAbsScalar(rval[j]);
259:     }
260:     if (ncols > cmax) cmax = ncols;
261:     PetscCall(MatRestoreRow(A, i, &ncols, &rcol, &rval));
262:   }
263:   PetscCall(PetscMalloc2(cmax, &pcols, cmax, &pvals));
264:   PetscCall(VecDestroy(&C));

266:   /* count the on and off processor sparsity patterns for the prolongator */
267:   for (i = 0; i < fn; i++) {
268:     /* on */
269:     lsparse[i] = 0;
270:     gsparse[i] = 0;
271:     if (lcid[i] >= 0) {
272:       lsparse[i] = 1;
273:       gsparse[i] = 0;
274:     } else {
275:       PetscCall(MatGetRow(lA, i, &ncols, &rcol, &rval));
276:       for (j = 0; j < ncols; j++) {
277:         col = rcol[j];
278:         if (lcid[col] >= 0 && (PetscRealPart(rval[j]) > gamg->threshold[0] * Amax_pos[i] || PetscRealPart(-rval[j]) > gamg->threshold[0] * Amax_neg[i])) lsparse[i] += 1;
279:       }
280:       PetscCall(MatRestoreRow(lA, i, &ncols, &rcol, &rval));
281:       /* off */
282:       if (gA) {
283:         PetscCall(MatGetRow(gA, i, &ncols, &rcol, &rval));
284:         for (j = 0; j < ncols; j++) {
285:           col = rcol[j];
286:           if (gcid[col] >= 0 && (PetscRealPart(rval[j]) > gamg->threshold[0] * Amax_pos[i] || PetscRealPart(-rval[j]) > gamg->threshold[0] * Amax_neg[i])) gsparse[i] += 1;
287:         }
288:         PetscCall(MatRestoreRow(gA, i, &ncols, &rcol, &rval));
289:       }
290:     }
291:   }

293:   /* preallocate and create the prolongator */
294:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), P));
295:   PetscCall(MatGetType(A, &mtype));
296:   PetscCall(MatSetType(*P, mtype));
297:   PetscCall(MatSetSizes(*P, fn, cn, PETSC_DETERMINE, PETSC_DETERMINE));
298:   PetscCall(MatMPIAIJSetPreallocation(*P, 0, lsparse, 0, gsparse));
299:   PetscCall(MatSeqAIJSetPreallocation(*P, 0, lsparse));

301:   /* loop over local fine nodes -- get the diagonal, the sum of positive and negative strong and weak weights, and set up the row */
302:   for (i = 0; i < fn; i++) {
303:     /* determine on or off */
304:     row_f = i + fs;
305:     row_c = lcid[i];
306:     if (row_c >= 0) {
307:       pij = 1.;
308:       PetscCall(MatSetValues(*P, 1, &row_f, 1, &row_c, &pij, INSERT_VALUES));
309:     } else {
310:       g_pos = 0.;
311:       g_neg = 0.;
312:       a_pos = 0.;
313:       a_neg = 0.;
314:       diag  = 0.;

316:       /* local connections */
317:       PetscCall(MatGetRow(lA, i, &ncols, &rcol, &rval));
318:       for (j = 0; j < ncols; j++) {
319:         col = rcol[j];
320:         if (lcid[col] >= 0 && (PetscRealPart(rval[j]) > gamg->threshold[0] * Amax_pos[i] || PetscRealPart(-rval[j]) > gamg->threshold[0] * Amax_neg[i])) {
321:           if (PetscRealPart(rval[j]) > 0.) {
322:             g_pos += rval[j];
323:           } else {
324:             g_neg += rval[j];
325:           }
326:         }
327:         if (col != i) {
328:           if (PetscRealPart(rval[j]) > 0.) {
329:             a_pos += rval[j];
330:           } else {
331:             a_neg += rval[j];
332:           }
333:         } else {
334:           diag = rval[j];
335:         }
336:       }
337:       PetscCall(MatRestoreRow(lA, i, &ncols, &rcol, &rval));

339:       /* ghosted connections */
340:       if (gA) {
341:         PetscCall(MatGetRow(gA, i, &ncols, &rcol, &rval));
342:         for (j = 0; j < ncols; j++) {
343:           col = rcol[j];
344:           if (gcid[col] >= 0 && (PetscRealPart(rval[j]) > gamg->threshold[0] * Amax_pos[i] || PetscRealPart(-rval[j]) > gamg->threshold[0] * Amax_neg[i])) {
345:             if (PetscRealPart(rval[j]) > 0.) {
346:               g_pos += rval[j];
347:             } else {
348:               g_neg += rval[j];
349:             }
350:           }
351:           if (PetscRealPart(rval[j]) > 0.) {
352:             a_pos += rval[j];
353:           } else {
354:             a_neg += rval[j];
355:           }
356:         }
357:         PetscCall(MatRestoreRow(gA, i, &ncols, &rcol, &rval));
358:       }

360:       if (g_neg == 0.) {
361:         alpha = 0.;
362:       } else {
363:         alpha = -a_neg / g_neg;
364:       }

366:       if (g_pos == 0.) {
367:         diag += a_pos;
368:         beta = 0.;
369:       } else {
370:         beta = -a_pos / g_pos;
371:       }
372:       if (diag == 0.) {
373:         invdiag = 0.;
374:       } else invdiag = 1. / diag;
375:       /* on */
376:       PetscCall(MatGetRow(lA, i, &ncols, &rcol, &rval));
377:       idx = 0;
378:       for (j = 0; j < ncols; j++) {
379:         col = rcol[j];
380:         if (lcid[col] >= 0 && (PetscRealPart(rval[j]) > gamg->threshold[0] * Amax_pos[i] || PetscRealPart(-rval[j]) > gamg->threshold[0] * Amax_neg[i])) {
381:           row_f = i + fs;
382:           row_c = lcid[col];
383:           /* set the values for on-processor ones */
384:           if (PetscRealPart(rval[j]) < 0.) {
385:             pij = rval[j] * alpha * invdiag;
386:           } else {
387:             pij = rval[j] * beta * invdiag;
388:           }
389:           if (PetscAbsScalar(pij) != 0.) {
390:             pvals[idx] = pij;
391:             pcols[idx] = row_c;
392:             idx++;
393:           }
394:         }
395:       }
396:       PetscCall(MatRestoreRow(lA, i, &ncols, &rcol, &rval));
397:       /* off */
398:       if (gA) {
399:         PetscCall(MatGetRow(gA, i, &ncols, &rcol, &rval));
400:         for (j = 0; j < ncols; j++) {
401:           col = rcol[j];
402:           if (gcid[col] >= 0 && (PetscRealPart(rval[j]) > gamg->threshold[0] * Amax_pos[i] || PetscRealPart(-rval[j]) > gamg->threshold[0] * Amax_neg[i])) {
403:             row_f = i + fs;
404:             row_c = gcid[col];
405:             /* set the values for on-processor ones */
406:             if (PetscRealPart(rval[j]) < 0.) {
407:               pij = rval[j] * alpha * invdiag;
408:             } else {
409:               pij = rval[j] * beta * invdiag;
410:             }
411:             if (PetscAbsScalar(pij) != 0.) {
412:               pvals[idx] = pij;
413:               pcols[idx] = row_c;
414:               idx++;
415:             }
416:           }
417:         }
418:         PetscCall(MatRestoreRow(gA, i, &ncols, &rcol, &rval));
419:       }
420:       PetscCall(MatSetValues(*P, 1, &row_f, idx, pcols, pvals, INSERT_VALUES));
421:     }
422:   }

424:   PetscCall(MatAssemblyBegin(*P, MAT_FINAL_ASSEMBLY));
425:   PetscCall(MatAssemblyEnd(*P, MAT_FINAL_ASSEMBLY));

427:   PetscCall(PetscFree5(lsparse, gsparse, lcid, Amax_pos, Amax_neg));

429:   PetscCall(PetscFree2(pcols, pvals));
430:   if (gA) {
431:     PetscCall(PetscSFDestroy(&sf));
432:     PetscCall(PetscFree(gcid));
433:   }
434:   PetscFunctionReturn(PETSC_SUCCESS);
435: }

437: static PetscErrorCode PCGAMGTruncateProlongator_Private(PC pc, Mat *P)
438: {
439:   PetscInt           j, i, ps, pf, pn, pcs, pcf, pcn, idx, cmax;
440:   const PetscScalar *pval;
441:   const PetscInt    *pcol;
442:   PetscScalar       *pnval;
443:   PetscInt          *pncol;
444:   PetscInt           ncols;
445:   Mat                Pnew;
446:   PetscInt          *lsparse, *gsparse;
447:   PetscReal          pmax_pos, pmax_neg, ptot_pos, ptot_neg, pthresh_pos, pthresh_neg;
448:   PC_MG             *mg      = (PC_MG *)pc->data;
449:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
450:   PC_GAMG_Classical *cls     = (PC_GAMG_Classical *)pc_gamg->subctx;
451:   MatType            mtype;

453:   PetscFunctionBegin;
454:   /* trim and rescale with reallocation */
455:   PetscCall(MatGetOwnershipRange(*P, &ps, &pf));
456:   PetscCall(MatGetOwnershipRangeColumn(*P, &pcs, &pcf));
457:   pn  = pf - ps;
458:   pcn = pcf - pcs;
459:   PetscCall(PetscMalloc2(pn, &lsparse, pn, &gsparse));
460:   /* allocate */
461:   cmax = 0;
462:   for (i = ps; i < pf; i++) {
463:     lsparse[i - ps] = 0;
464:     gsparse[i - ps] = 0;
465:     PetscCall(MatGetRow(*P, i, &ncols, &pcol, &pval));
466:     if (ncols > cmax) cmax = ncols;
467:     pmax_pos = 0.;
468:     pmax_neg = 0.;
469:     for (j = 0; j < ncols; j++) {
470:       if (PetscRealPart(pval[j]) > pmax_pos) {
471:         pmax_pos = PetscRealPart(pval[j]);
472:       } else if (PetscRealPart(pval[j]) < pmax_neg) {
473:         pmax_neg = PetscRealPart(pval[j]);
474:       }
475:     }
476:     for (j = 0; j < ncols; j++) {
477:       if (PetscRealPart(pval[j]) >= pmax_pos * cls->interp_threshold || PetscRealPart(pval[j]) <= pmax_neg * cls->interp_threshold) {
478:         if (pcol[j] >= pcs && pcol[j] < pcf) {
479:           lsparse[i - ps]++;
480:         } else {
481:           gsparse[i - ps]++;
482:         }
483:       }
484:     }
485:     PetscCall(MatRestoreRow(*P, i, &ncols, &pcol, &pval));
486:   }

488:   PetscCall(PetscMalloc2(cmax, &pnval, cmax, &pncol));

490:   PetscCall(MatGetType(*P, &mtype));
491:   PetscCall(MatCreate(PetscObjectComm((PetscObject)*P), &Pnew));
492:   PetscCall(MatSetType(Pnew, mtype));
493:   PetscCall(MatSetSizes(Pnew, pn, pcn, PETSC_DETERMINE, PETSC_DETERMINE));
494:   PetscCall(MatSeqAIJSetPreallocation(Pnew, 0, lsparse));
495:   PetscCall(MatMPIAIJSetPreallocation(Pnew, 0, lsparse, 0, gsparse));

497:   for (i = ps; i < pf; i++) {
498:     PetscCall(MatGetRow(*P, i, &ncols, &pcol, &pval));
499:     pmax_pos = 0.;
500:     pmax_neg = 0.;
501:     for (j = 0; j < ncols; j++) {
502:       if (PetscRealPart(pval[j]) > pmax_pos) {
503:         pmax_pos = PetscRealPart(pval[j]);
504:       } else if (PetscRealPart(pval[j]) < pmax_neg) {
505:         pmax_neg = PetscRealPart(pval[j]);
506:       }
507:     }
508:     pthresh_pos = 0.;
509:     pthresh_neg = 0.;
510:     ptot_pos    = 0.;
511:     ptot_neg    = 0.;
512:     for (j = 0; j < ncols; j++) {
513:       if (PetscRealPart(pval[j]) >= cls->interp_threshold * pmax_pos) {
514:         pthresh_pos += PetscRealPart(pval[j]);
515:       } else if (PetscRealPart(pval[j]) <= cls->interp_threshold * pmax_neg) {
516:         pthresh_neg += PetscRealPart(pval[j]);
517:       }
518:       if (PetscRealPart(pval[j]) > 0.) {
519:         ptot_pos += PetscRealPart(pval[j]);
520:       } else {
521:         ptot_neg += PetscRealPart(pval[j]);
522:       }
523:     }
524:     if (PetscAbsReal(pthresh_pos) > 0.) ptot_pos /= pthresh_pos;
525:     if (PetscAbsReal(pthresh_neg) > 0.) ptot_neg /= pthresh_neg;
526:     idx = 0;
527:     for (j = 0; j < ncols; j++) {
528:       if (PetscRealPart(pval[j]) >= pmax_pos * cls->interp_threshold) {
529:         pnval[idx] = ptot_pos * pval[j];
530:         pncol[idx] = pcol[j];
531:         idx++;
532:       } else if (PetscRealPart(pval[j]) <= pmax_neg * cls->interp_threshold) {
533:         pnval[idx] = ptot_neg * pval[j];
534:         pncol[idx] = pcol[j];
535:         idx++;
536:       }
537:     }
538:     PetscCall(MatRestoreRow(*P, i, &ncols, &pcol, &pval));
539:     PetscCall(MatSetValues(Pnew, 1, &i, idx, pncol, pnval, INSERT_VALUES));
540:   }

542:   PetscCall(MatAssemblyBegin(Pnew, MAT_FINAL_ASSEMBLY));
543:   PetscCall(MatAssemblyEnd(Pnew, MAT_FINAL_ASSEMBLY));
544:   PetscCall(MatDestroy(P));

546:   *P = Pnew;
547:   PetscCall(PetscFree2(lsparse, gsparse));
548:   PetscCall(PetscFree2(pnval, pncol));
549:   PetscFunctionReturn(PETSC_SUCCESS);
550: }

552: static PetscErrorCode PCGAMGProlongator_Classical_Standard(PC pc, Mat A, PetscCoarsenData *agg_lists, Mat *P)
553: {
554:   Mat                lA, *lAs;
555:   MatType            mtype;
556:   Vec                cv;
557:   PetscInt          *gcid, *lcid, *lsparse, *gsparse, *picol;
558:   PetscInt           fs, fe, cs, ce, nl, i, j, k, li, lni, ci, ncols, maxcols, fn, cn, cid;
559:   PetscMPIInt        size;
560:   const PetscInt    *lidx, *icol, *gidx;
561:   PetscBool          iscoarse;
562:   PetscScalar        vi, pentry, pjentry;
563:   PetscScalar       *pcontrib, *pvcol;
564:   const PetscScalar *vcol;
565:   PetscReal          diag, jdiag, jwttotal;
566:   PetscInt           pncols;
567:   PetscSF            sf;
568:   PetscLayout        clayout;
569:   IS                 lis;

571:   PetscFunctionBegin;
572:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
573:   PetscCall(MatGetOwnershipRange(A, &fs, &fe));
574:   fn = fe - fs;
575:   PetscCall(ISCreateStride(PETSC_COMM_SELF, fe - fs, fs, 1, &lis));
576:   if (size > 1) {
577:     PetscCall(MatGetLayouts(A, NULL, &clayout));
578:     /* increase the overlap by two to get neighbors of neighbors */
579:     PetscCall(MatIncreaseOverlap(A, 1, &lis, 2));
580:     PetscCall(ISSort(lis));
581:     /* get the local part of A */
582:     PetscCall(MatCreateSubMatrices(A, 1, &lis, &lis, MAT_INITIAL_MATRIX, &lAs));
583:     lA = lAs[0];
584:     /* build an SF out of it */
585:     PetscCall(ISGetLocalSize(lis, &nl));
586:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
587:     PetscCall(ISGetIndices(lis, &lidx));
588:     PetscCall(PetscSFSetGraphLayout(sf, clayout, nl, NULL, PETSC_COPY_VALUES, lidx));
589:     PetscCall(ISRestoreIndices(lis, &lidx));
590:   } else {
591:     lA = A;
592:     nl = fn;
593:   }
594:   /* create a communication structure for the overlapped portion and transmit coarse indices */
595:   PetscCall(PetscMalloc3(fn, &lsparse, fn, &gsparse, nl, &pcontrib));
596:   /* create coarse vector */
597:   cn = 0;
598:   for (i = 0; i < fn; i++) {
599:     PetscCall(PetscCDIsEmptyAt(agg_lists, i, &iscoarse));
600:     if (!iscoarse) cn++;
601:   }
602:   PetscCall(PetscMalloc1(fn, &gcid));
603:   PetscCall(VecCreateMPI(PetscObjectComm((PetscObject)A), cn, PETSC_DECIDE, &cv));
604:   PetscCall(VecGetOwnershipRange(cv, &cs, &ce));
605:   cn = 0;
606:   for (i = 0; i < fn; i++) {
607:     PetscCall(PetscCDIsEmptyAt(agg_lists, i, &iscoarse));
608:     if (!iscoarse) {
609:       gcid[i] = cs + cn;
610:       cn++;
611:     } else {
612:       gcid[i] = -1;
613:     }
614:   }
615:   if (size > 1) {
616:     PetscCall(PetscMalloc1(nl, &lcid));
617:     PetscCall(PetscSFBcastBegin(sf, MPIU_INT, gcid, lcid, MPI_REPLACE));
618:     PetscCall(PetscSFBcastEnd(sf, MPIU_INT, gcid, lcid, MPI_REPLACE));
619:   } else {
620:     lcid = gcid;
621:   }
622:   /* count to preallocate the prolongator */
623:   PetscCall(ISGetIndices(lis, &gidx));
624:   maxcols = 0;
625:   /* count the number of unique contributing coarse cells for each fine */
626:   for (i = 0; i < nl; i++) {
627:     pcontrib[i] = 0.;
628:     PetscCall(MatGetRow(lA, i, &ncols, &icol, NULL));
629:     if (gidx[i] >= fs && gidx[i] < fe) {
630:       li          = gidx[i] - fs;
631:       lsparse[li] = 0;
632:       gsparse[li] = 0;
633:       cid         = lcid[i];
634:       if (cid >= 0) {
635:         lsparse[li] = 1;
636:       } else {
637:         for (j = 0; j < ncols; j++) {
638:           if (lcid[icol[j]] >= 0) {
639:             pcontrib[icol[j]] = 1.;
640:           } else {
641:             ci = icol[j];
642:             PetscCall(MatRestoreRow(lA, i, &ncols, &icol, NULL));
643:             PetscCall(MatGetRow(lA, ci, &ncols, &icol, NULL));
644:             for (k = 0; k < ncols; k++) {
645:               if (lcid[icol[k]] >= 0) pcontrib[icol[k]] = 1.;
646:             }
647:             PetscCall(MatRestoreRow(lA, ci, &ncols, &icol, NULL));
648:             PetscCall(MatGetRow(lA, i, &ncols, &icol, NULL));
649:           }
650:         }
651:         for (j = 0; j < ncols; j++) {
652:           if (lcid[icol[j]] >= 0 && pcontrib[icol[j]] != 0.) {
653:             lni = lcid[icol[j]];
654:             if (lni >= cs && lni < ce) {
655:               lsparse[li]++;
656:             } else {
657:               gsparse[li]++;
658:             }
659:             pcontrib[icol[j]] = 0.;
660:           } else {
661:             ci = icol[j];
662:             PetscCall(MatRestoreRow(lA, i, &ncols, &icol, NULL));
663:             PetscCall(MatGetRow(lA, ci, &ncols, &icol, NULL));
664:             for (k = 0; k < ncols; k++) {
665:               if (lcid[icol[k]] >= 0 && pcontrib[icol[k]] != 0.) {
666:                 lni = lcid[icol[k]];
667:                 if (lni >= cs && lni < ce) {
668:                   lsparse[li]++;
669:                 } else {
670:                   gsparse[li]++;
671:                 }
672:                 pcontrib[icol[k]] = 0.;
673:               }
674:             }
675:             PetscCall(MatRestoreRow(lA, ci, &ncols, &icol, NULL));
676:             PetscCall(MatGetRow(lA, i, &ncols, &icol, NULL));
677:           }
678:         }
679:       }
680:       if (lsparse[li] + gsparse[li] > maxcols) maxcols = lsparse[li] + gsparse[li];
681:     }
682:     PetscCall(MatRestoreRow(lA, i, &ncols, &icol, &vcol));
683:   }
684:   PetscCall(PetscMalloc2(maxcols, &picol, maxcols, &pvcol));
685:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), P));
686:   PetscCall(MatGetType(A, &mtype));
687:   PetscCall(MatSetType(*P, mtype));
688:   PetscCall(MatSetSizes(*P, fn, cn, PETSC_DETERMINE, PETSC_DETERMINE));
689:   PetscCall(MatMPIAIJSetPreallocation(*P, 0, lsparse, 0, gsparse));
690:   PetscCall(MatSeqAIJSetPreallocation(*P, 0, lsparse));
691:   for (i = 0; i < nl; i++) {
692:     diag = 0.;
693:     if (gidx[i] >= fs && gidx[i] < fe) {
694:       pncols = 0;
695:       cid    = lcid[i];
696:       if (cid >= 0) {
697:         pncols   = 1;
698:         picol[0] = cid;
699:         pvcol[0] = 1.;
700:       } else {
701:         PetscCall(MatGetRow(lA, i, &ncols, &icol, &vcol));
702:         for (j = 0; j < ncols; j++) {
703:           pentry = vcol[j];
704:           if (lcid[icol[j]] >= 0) {
705:             /* coarse neighbor */
706:             pcontrib[icol[j]] += pentry;
707:           } else if (icol[j] != i) {
708:             /* the neighbor is a strongly connected fine node */
709:             ci = icol[j];
710:             vi = vcol[j];
711:             PetscCall(MatRestoreRow(lA, i, &ncols, &icol, &vcol));
712:             PetscCall(MatGetRow(lA, ci, &ncols, &icol, &vcol));
713:             jwttotal = 0.;
714:             jdiag    = 0.;
715:             for (k = 0; k < ncols; k++) {
716:               if (ci == icol[k]) jdiag = PetscRealPart(vcol[k]);
717:             }
718:             for (k = 0; k < ncols; k++) {
719:               if (lcid[icol[k]] >= 0 && jdiag * PetscRealPart(vcol[k]) < 0.) {
720:                 pjentry = vcol[k];
721:                 jwttotal += PetscRealPart(pjentry);
722:               }
723:             }
724:             if (jwttotal != 0.) {
725:               jwttotal = PetscRealPart(vi) / jwttotal;
726:               for (k = 0; k < ncols; k++) {
727:                 if (lcid[icol[k]] >= 0 && jdiag * PetscRealPart(vcol[k]) < 0.) {
728:                   pjentry = vcol[k] * jwttotal;
729:                   pcontrib[icol[k]] += pjentry;
730:                 }
731:               }
732:             } else {
733:               diag += PetscRealPart(vi);
734:             }
735:             PetscCall(MatRestoreRow(lA, ci, &ncols, &icol, &vcol));
736:             PetscCall(MatGetRow(lA, i, &ncols, &icol, &vcol));
737:           } else {
738:             diag += PetscRealPart(vcol[j]);
739:           }
740:         }
741:         if (diag != 0.) {
742:           diag = 1. / diag;
743:           for (j = 0; j < ncols; j++) {
744:             if (lcid[icol[j]] >= 0 && pcontrib[icol[j]] != 0.) {
745:               /* the neighbor is a coarse node */
746:               if (PetscAbsScalar(pcontrib[icol[j]]) > 0.0) {
747:                 lni           = lcid[icol[j]];
748:                 pvcol[pncols] = -pcontrib[icol[j]] * diag;
749:                 picol[pncols] = lni;
750:                 pncols++;
751:               }
752:               pcontrib[icol[j]] = 0.;
753:             } else {
754:               /* the neighbor is a strongly connected fine node */
755:               ci = icol[j];
756:               PetscCall(MatRestoreRow(lA, i, &ncols, &icol, &vcol));
757:               PetscCall(MatGetRow(lA, ci, &ncols, &icol, &vcol));
758:               for (k = 0; k < ncols; k++) {
759:                 if (lcid[icol[k]] >= 0 && pcontrib[icol[k]] != 0.) {
760:                   if (PetscAbsScalar(pcontrib[icol[k]]) > 0.0) {
761:                     lni           = lcid[icol[k]];
762:                     pvcol[pncols] = -pcontrib[icol[k]] * diag;
763:                     picol[pncols] = lni;
764:                     pncols++;
765:                   }
766:                   pcontrib[icol[k]] = 0.;
767:                 }
768:               }
769:               PetscCall(MatRestoreRow(lA, ci, &ncols, &icol, &vcol));
770:               PetscCall(MatGetRow(lA, i, &ncols, &icol, &vcol));
771:             }
772:             pcontrib[icol[j]] = 0.;
773:           }
774:           PetscCall(MatRestoreRow(lA, i, &ncols, &icol, &vcol));
775:         }
776:       }
777:       ci = gidx[i];
778:       if (pncols > 0) PetscCall(MatSetValues(*P, 1, &ci, pncols, picol, pvcol, INSERT_VALUES));
779:     }
780:   }
781:   PetscCall(ISRestoreIndices(lis, &gidx));
782:   PetscCall(PetscFree2(picol, pvcol));
783:   PetscCall(PetscFree3(lsparse, gsparse, pcontrib));
784:   PetscCall(ISDestroy(&lis));
785:   PetscCall(PetscFree(gcid));
786:   if (size > 1) {
787:     PetscCall(PetscFree(lcid));
788:     PetscCall(MatDestroyMatrices(1, &lAs));
789:     PetscCall(PetscSFDestroy(&sf));
790:   }
791:   PetscCall(VecDestroy(&cv));
792:   PetscCall(MatAssemblyBegin(*P, MAT_FINAL_ASSEMBLY));
793:   PetscCall(MatAssemblyEnd(*P, MAT_FINAL_ASSEMBLY));
794:   PetscFunctionReturn(PETSC_SUCCESS);
795: }

797: static PetscErrorCode PCGAMGOptProlongator_Classical_Jacobi(PC pc, Mat A, Mat *P)
798: {
799:   PetscInt           f, s, n, cf, cs, i, idx;
800:   PetscInt          *coarserows;
801:   PetscInt           ncols;
802:   const PetscInt    *pcols;
803:   const PetscScalar *pvals;
804:   Mat                Pnew;
805:   Vec                diag;
806:   PC_MG             *mg      = (PC_MG *)pc->data;
807:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
808:   PC_GAMG_Classical *cls     = (PC_GAMG_Classical *)pc_gamg->subctx;

810:   PetscFunctionBegin;
811:   if (cls->nsmooths == 0) {
812:     PetscCall(PCGAMGTruncateProlongator_Private(pc, P));
813:     PetscFunctionReturn(PETSC_SUCCESS);
814:   }
815:   PetscCall(MatGetOwnershipRange(*P, &s, &f));
816:   n = f - s;
817:   PetscCall(MatGetOwnershipRangeColumn(*P, &cs, &cf));
818:   PetscCall(PetscMalloc1(n, &coarserows));
819:   /* identify the rows corresponding to coarse unknowns */
820:   idx = 0;
821:   for (i = s; i < f; i++) {
822:     PetscCall(MatGetRow(*P, i, &ncols, &pcols, &pvals));
823:     /* assume, for now, that it's a coarse unknown if it has a single unit entry */
824:     if (ncols == 1) {
825:       if (pvals[0] == 1.) {
826:         coarserows[idx] = i;
827:         idx++;
828:       }
829:     }
830:     PetscCall(MatRestoreRow(*P, i, &ncols, &pcols, &pvals));
831:   }
832:   PetscCall(MatCreateVecs(A, &diag, NULL));
833:   PetscCall(MatGetDiagonal(A, diag));
834:   PetscCall(VecReciprocal(diag));
835:   for (i = 0; i < cls->nsmooths; i++) {
836:     PetscCall(MatMatMult(A, *P, MAT_INITIAL_MATRIX, PETSC_DEFAULT, &Pnew));
837:     PetscCall(MatZeroRows(Pnew, idx, coarserows, 0., NULL, NULL));
838:     PetscCall(MatDiagonalScale(Pnew, diag, NULL));
839:     PetscCall(MatAYPX(Pnew, -1.0, *P, DIFFERENT_NONZERO_PATTERN));
840:     PetscCall(MatDestroy(P));
841:     *P   = Pnew;
842:     Pnew = NULL;
843:   }
844:   PetscCall(VecDestroy(&diag));
845:   PetscCall(PetscFree(coarserows));
846:   PetscCall(PCGAMGTruncateProlongator_Private(pc, P));
847:   PetscFunctionReturn(PETSC_SUCCESS);
848: }

850: static PetscErrorCode PCGAMGProlongator_Classical(PC pc, Mat A, PetscCoarsenData *agg_lists, Mat *P)
851: {
852:   PetscErrorCode (*f)(PC, Mat, PetscCoarsenData *, Mat *);
853:   PC_MG             *mg      = (PC_MG *)pc->data;
854:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
855:   PC_GAMG_Classical *cls     = (PC_GAMG_Classical *)pc_gamg->subctx;

857:   PetscFunctionBegin;
858:   PetscCall(PetscFunctionListFind(PCGAMGClassicalProlongatorList, cls->prolongtype, &f));
859:   PetscCheck(f, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Cannot find PCGAMG Classical prolongator type");
860:   PetscCall((*f)(pc, A, agg_lists, P));
861:   PetscFunctionReturn(PETSC_SUCCESS);
862: }

864: static PetscErrorCode PCGAMGDestroy_Classical(PC pc)
865: {
866:   PC_MG   *mg      = (PC_MG *)pc->data;
867:   PC_GAMG *pc_gamg = (PC_GAMG *)mg->innerctx;

869:   PetscFunctionBegin;
870:   PetscCall(PetscFree(pc_gamg->subctx));
871:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGAMGClassicalSetType_C", NULL));
872:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGAMGClassicalGetType_C", NULL));
873:   PetscFunctionReturn(PETSC_SUCCESS);
874: }

876: static PetscErrorCode PCGAMGSetFromOptions_Classical(PC pc, PetscOptionItems *PetscOptionsObject)
877: {
878:   PC_MG             *mg      = (PC_MG *)pc->data;
879:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
880:   PC_GAMG_Classical *cls     = (PC_GAMG_Classical *)pc_gamg->subctx;
881:   char               tname[256];
882:   PetscBool          flg;

884:   PetscFunctionBegin;
885:   PetscOptionsHeadBegin(PetscOptionsObject, "GAMG-Classical options");
886:   PetscCall(PetscOptionsFList("-pc_gamg_classical_type", "Type of Classical AMG prolongation", "PCGAMGClassicalSetType", PCGAMGClassicalProlongatorList, cls->prolongtype, tname, sizeof(tname), &flg));
887:   if (flg) PetscCall(PCGAMGClassicalSetType(pc, tname));
888:   PetscCall(PetscOptionsReal("-pc_gamg_classical_interp_threshold", "Threshold for classical interpolator entries", "", cls->interp_threshold, &cls->interp_threshold, NULL));
889:   PetscCall(PetscOptionsInt("-pc_gamg_classical_nsmooths", "Threshold for classical interpolator entries", "", cls->nsmooths, &cls->nsmooths, NULL));
890:   PetscOptionsHeadEnd();
891:   PetscFunctionReturn(PETSC_SUCCESS);
892: }

894: static PetscErrorCode PCGAMGSetData_Classical(PC pc, Mat A)
895: {
896:   PC_MG   *mg      = (PC_MG *)pc->data;
897:   PC_GAMG *pc_gamg = (PC_GAMG *)mg->innerctx;

899:   PetscFunctionBegin;
900:   /* no data for classical AMG */
901:   pc_gamg->data           = NULL;
902:   pc_gamg->data_cell_cols = 0;
903:   pc_gamg->data_cell_rows = 0;
904:   pc_gamg->data_sz        = 0;
905:   PetscFunctionReturn(PETSC_SUCCESS);
906: }

908: static PetscErrorCode PCGAMGClassicalFinalizePackage(void)
909: {
910:   PetscFunctionBegin;
911:   PCGAMGClassicalPackageInitialized = PETSC_FALSE;
912:   PetscCall(PetscFunctionListDestroy(&PCGAMGClassicalProlongatorList));
913:   PetscFunctionReturn(PETSC_SUCCESS);
914: }

916: static PetscErrorCode PCGAMGClassicalInitializePackage(void)
917: {
918:   PetscFunctionBegin;
919:   if (PCGAMGClassicalPackageInitialized) PetscFunctionReturn(PETSC_SUCCESS);
920:   PetscCall(PetscFunctionListAdd(&PCGAMGClassicalProlongatorList, PCGAMGCLASSICALDIRECT, PCGAMGProlongator_Classical_Direct));
921:   PetscCall(PetscFunctionListAdd(&PCGAMGClassicalProlongatorList, PCGAMGCLASSICALSTANDARD, PCGAMGProlongator_Classical_Standard));
922:   PetscCall(PetscRegisterFinalize(PCGAMGClassicalFinalizePackage));
923:   PetscFunctionReturn(PETSC_SUCCESS);
924: }

926: PetscErrorCode PCCreateGAMG_Classical(PC pc)
927: {
928:   PC_MG             *mg      = (PC_MG *)pc->data;
929:   PC_GAMG           *pc_gamg = (PC_GAMG *)mg->innerctx;
930:   PC_GAMG_Classical *pc_gamg_classical;

932:   PetscFunctionBegin;
933:   PetscCall(PCGAMGClassicalInitializePackage());
934:   if (pc_gamg->subctx) {
935:     /* call base class */
936:     PetscCall(PCDestroy_GAMG(pc));
937:   }

939:   /* create sub context for SA */
940:   PetscCall(PetscNew(&pc_gamg_classical));
941:   pc_gamg->subctx         = pc_gamg_classical;
942:   pc->ops->setfromoptions = PCGAMGSetFromOptions_Classical;
943:   /* reset does not do anything; setup not virtual */

945:   /* set internal function pointers */
946:   pc_gamg->ops->destroy        = PCGAMGDestroy_Classical;
947:   pc_gamg->ops->creategraph    = PCGAMGCreateGraph_Classical;
948:   pc_gamg->ops->coarsen        = PCGAMGCoarsen_Classical;
949:   pc_gamg->ops->prolongator    = PCGAMGProlongator_Classical;
950:   pc_gamg->ops->optprolongator = PCGAMGOptProlongator_Classical_Jacobi;
951:   pc_gamg->ops->setfromoptions = PCGAMGSetFromOptions_Classical;

953:   pc_gamg->ops->createdefaultdata     = PCGAMGSetData_Classical;
954:   pc_gamg_classical->interp_threshold = 0.2;
955:   pc_gamg_classical->nsmooths         = 0;
956:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGAMGClassicalSetType_C", PCGAMGClassicalSetType_GAMG));
957:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGAMGClassicalGetType_C", PCGAMGClassicalGetType_GAMG));
958:   PetscCall(PCGAMGClassicalSetType(pc, PCGAMGCLASSICALSTANDARD));
959:   PetscFunctionReturn(PETSC_SUCCESS);
960: }