Actual source code: hypre.c

  1: /*
  2:    Provides an interface to the LLNL package hypre
  3: */

  5: #include <petscpkg_version.h>
  6: #include <petsc/private/pcimpl.h>
  7: /* this include is needed ONLY to allow access to the private data inside the Mat object specific to hypre */
  8: #include <petsc/private/matimpl.h>
  9: #include <petsc/private/vecimpl.h>
 10: #include <../src/vec/vec/impls/hypre/vhyp.h>
 11: #include <../src/mat/impls/hypre/mhypre.h>
 12: #include <../src/dm/impls/da/hypre/mhyp.h>
 13: #include <_hypre_parcsr_ls.h>
 14: #include <petscmathypre.h>

 16: #if defined(PETSC_HAVE_HYPRE_DEVICE)
 17: #include <petsc/private/deviceimpl.h>
 18: #endif

 20: static PetscBool  cite            = PETSC_FALSE;
 21: static const char hypreCitation[] = "@manual{hypre-web-page,\n  title  = {{\\sl hypre}: High Performance Preconditioners},\n  organization = {Lawrence Livermore National Laboratory},\n  note  = "
 22:                                     "{\\url{https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods}}\n}\n";

 24: /*
 25:    Private context (data structure) for the  preconditioner.
 26: */
 27: typedef struct {
 28:   HYPRE_Solver hsolver;
 29:   Mat          hpmat; /* MatHYPRE */

 31:   HYPRE_Int (*destroy)(HYPRE_Solver);
 32:   HYPRE_Int (*solve)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
 33:   HYPRE_Int (*setup)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);

 35:   MPI_Comm comm_hypre;
 36:   char    *hypre_type;

 38:   /* options for Pilut and BoomerAMG*/
 39:   PetscInt  maxiter;
 40:   PetscReal tol;

 42:   /* options for Pilut */
 43:   PetscInt factorrowsize;

 45:   /* options for ParaSails */
 46:   PetscInt  nlevels;
 47:   PetscReal threshold;
 48:   PetscReal filter;
 49:   PetscReal loadbal;
 50:   PetscInt  logging;
 51:   PetscInt  ruse;
 52:   PetscInt  symt;

 54:   /* options for BoomerAMG */
 55:   PetscBool printstatistics;

 57:   /* options for BoomerAMG */
 58:   PetscInt  cycletype;
 59:   PetscInt  maxlevels;
 60:   PetscReal strongthreshold;
 61:   PetscReal maxrowsum;
 62:   PetscInt  gridsweeps[3];
 63:   PetscInt  coarsentype;
 64:   PetscInt  measuretype;
 65:   PetscInt  smoothtype;
 66:   PetscInt  smoothnumlevels;
 67:   PetscInt  eu_level;         /* Number of levels for ILU(k) in Euclid */
 68:   PetscReal eu_droptolerance; /* Drop tolerance for ILU(k) in Euclid */
 69:   PetscInt  eu_bj;            /* Defines use of Block Jacobi ILU in Euclid */
 70:   PetscInt  relaxtype[3];
 71:   PetscReal relaxweight;
 72:   PetscReal outerrelaxweight;
 73:   PetscInt  relaxorder;
 74:   PetscReal truncfactor;
 75:   PetscBool applyrichardson;
 76:   PetscInt  pmax;
 77:   PetscInt  interptype;
 78:   PetscInt  maxc;
 79:   PetscInt  minc;
 80: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
 81:   char *spgemm_type; // this is a global hypre parameter but is closely associated with BoomerAMG
 82: #endif
 83:   /* GPU */
 84:   PetscBool keeptranspose;
 85:   PetscInt  rap2;
 86:   PetscInt  mod_rap2;

 88:   /* AIR */
 89:   PetscInt  Rtype;
 90:   PetscReal Rstrongthreshold;
 91:   PetscReal Rfilterthreshold;
 92:   PetscInt  Adroptype;
 93:   PetscReal Adroptol;

 95:   PetscInt  agg_nl;
 96:   PetscInt  agg_interptype;
 97:   PetscInt  agg_num_paths;
 98:   PetscBool nodal_relax;
 99:   PetscInt  nodal_relax_levels;

101:   PetscInt  nodal_coarsening;
102:   PetscInt  nodal_coarsening_diag;
103:   PetscInt  vec_interp_variant;
104:   PetscInt  vec_interp_qmax;
105:   PetscBool vec_interp_smooth;
106:   PetscInt  interp_refine;

108:   /* NearNullSpace support */
109:   VecHYPRE_IJVector *hmnull;
110:   HYPRE_ParVector   *phmnull;
111:   PetscInt           n_hmnull;
112:   Vec                hmnull_constant;

114:   /* options for AS (Auxiliary Space preconditioners) */
115:   PetscInt  as_print;
116:   PetscInt  as_max_iter;
117:   PetscReal as_tol;
118:   PetscInt  as_relax_type;
119:   PetscInt  as_relax_times;
120:   PetscReal as_relax_weight;
121:   PetscReal as_omega;
122:   PetscInt  as_amg_alpha_opts[5]; /* AMG coarsen type, agg_levels, relax_type, interp_type, Pmax for vector Poisson (AMS) or Curl problem (ADS) */
123:   PetscReal as_amg_alpha_theta;   /* AMG strength for vector Poisson (AMS) or Curl problem (ADS) */
124:   PetscInt  as_amg_beta_opts[5];  /* AMG coarsen type, agg_levels, relax_type, interp_type, Pmax for scalar Poisson (AMS) or vector Poisson (ADS) */
125:   PetscReal as_amg_beta_theta;    /* AMG strength for scalar Poisson (AMS) or vector Poisson (ADS)  */
126:   PetscInt  ams_cycle_type;
127:   PetscInt  ads_cycle_type;

129:   /* additional data */
130:   Mat G;             /* MatHYPRE */
131:   Mat C;             /* MatHYPRE */
132:   Mat alpha_Poisson; /* MatHYPRE */
133:   Mat beta_Poisson;  /* MatHYPRE */

135:   /* extra information for AMS */
136:   PetscInt          dim; /* geometrical dimension */
137:   VecHYPRE_IJVector coords[3];
138:   VecHYPRE_IJVector constants[3];
139:   VecHYPRE_IJVector interior;
140:   Mat               RT_PiFull, RT_Pi[3];
141:   Mat               ND_PiFull, ND_Pi[3];
142:   PetscBool         ams_beta_is_zero;
143:   PetscBool         ams_beta_is_zero_part;
144:   PetscInt          ams_proj_freq;
145: } PC_HYPRE;

147: PetscErrorCode PCHYPREGetSolver(PC pc, HYPRE_Solver *hsolver)
148: {
149:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

151:   PetscFunctionBegin;
152:   *hsolver = jac->hsolver;
153:   PetscFunctionReturn(PETSC_SUCCESS);
154: }

156: /*
157:   Matrices with AIJ format are created IN PLACE with using (I,J,data) from BoomerAMG. Since the data format in hypre_ParCSRMatrix
158:   is different from that used in PETSc, the original hypre_ParCSRMatrix can not be used any more after call this routine.
159:   It is used in PCHMG. Other users should avoid using this function.
160: */
161: static PetscErrorCode PCGetCoarseOperators_BoomerAMG(PC pc, PetscInt *nlevels, Mat *operators[])
162: {
163:   PC_HYPRE            *jac  = (PC_HYPRE *)pc->data;
164:   PetscBool            same = PETSC_FALSE;
165:   PetscInt             num_levels, l;
166:   Mat                 *mattmp;
167:   hypre_ParCSRMatrix **A_array;

169:   PetscFunctionBegin;
170:   PetscCall(PetscStrcmp(jac->hypre_type, "boomeramg", &same));
171:   PetscCheck(same, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_NOTSAMETYPE, "Hypre type is not BoomerAMG ");
172:   num_levels = hypre_ParAMGDataNumLevels((hypre_ParAMGData *)(jac->hsolver));
173:   PetscCall(PetscMalloc1(num_levels, &mattmp));
174:   A_array = hypre_ParAMGDataAArray((hypre_ParAMGData *)(jac->hsolver));
175:   for (l = 1; l < num_levels; l++) {
176:     PetscCall(MatCreateFromParCSR(A_array[l], MATAIJ, PETSC_OWN_POINTER, &(mattmp[num_levels - 1 - l])));
177:     /* We want to own the data, and HYPRE can not touch this matrix any more */
178:     A_array[l] = NULL;
179:   }
180:   *nlevels   = num_levels;
181:   *operators = mattmp;
182:   PetscFunctionReturn(PETSC_SUCCESS);
183: }

185: /*
186:   Matrices with AIJ format are created IN PLACE with using (I,J,data) from BoomerAMG. Since the data format in hypre_ParCSRMatrix
187:   is different from that used in PETSc, the original hypre_ParCSRMatrix can not be used any more after call this routine.
188:   It is used in PCHMG. Other users should avoid using this function.
189: */
190: static PetscErrorCode PCGetInterpolations_BoomerAMG(PC pc, PetscInt *nlevels, Mat *interpolations[])
191: {
192:   PC_HYPRE            *jac  = (PC_HYPRE *)pc->data;
193:   PetscBool            same = PETSC_FALSE;
194:   PetscInt             num_levels, l;
195:   Mat                 *mattmp;
196:   hypre_ParCSRMatrix **P_array;

198:   PetscFunctionBegin;
199:   PetscCall(PetscStrcmp(jac->hypre_type, "boomeramg", &same));
200:   PetscCheck(same, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_NOTSAMETYPE, "Hypre type is not BoomerAMG ");
201:   num_levels = hypre_ParAMGDataNumLevels((hypre_ParAMGData *)(jac->hsolver));
202:   PetscCall(PetscMalloc1(num_levels, &mattmp));
203:   P_array = hypre_ParAMGDataPArray((hypre_ParAMGData *)(jac->hsolver));
204:   for (l = 1; l < num_levels; l++) {
205:     PetscCall(MatCreateFromParCSR(P_array[num_levels - 1 - l], MATAIJ, PETSC_OWN_POINTER, &(mattmp[l - 1])));
206:     /* We want to own the data, and HYPRE can not touch this matrix any more */
207:     P_array[num_levels - 1 - l] = NULL;
208:   }
209:   *nlevels        = num_levels;
210:   *interpolations = mattmp;
211:   PetscFunctionReturn(PETSC_SUCCESS);
212: }

214: /* Resets (frees) Hypre's representation of the near null space */
215: static PetscErrorCode PCHYPREResetNearNullSpace_Private(PC pc)
216: {
217:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
218:   PetscInt  i;

220:   PetscFunctionBegin;
221:   for (i = 0; i < jac->n_hmnull; i++) PetscCall(VecHYPRE_IJVectorDestroy(&jac->hmnull[i]));
222:   PetscCall(PetscFree(jac->hmnull));
223:   PetscCall(PetscFree(jac->phmnull));
224:   PetscCall(VecDestroy(&jac->hmnull_constant));
225:   jac->n_hmnull = 0;
226:   PetscFunctionReturn(PETSC_SUCCESS);
227: }

229: static PetscErrorCode PCSetUp_HYPRE(PC pc)
230: {
231:   PC_HYPRE          *jac = (PC_HYPRE *)pc->data;
232:   Mat_HYPRE         *hjac;
233:   HYPRE_ParCSRMatrix hmat;
234:   HYPRE_ParVector    bv, xv;
235:   PetscBool          ishypre;

237:   PetscFunctionBegin;
238:   if (!jac->hypre_type) PetscCall(PCHYPRESetType(pc, "boomeramg"));

240:   PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRE, &ishypre));
241:   if (!ishypre) {
242:     PetscCall(MatDestroy(&jac->hpmat));
243:     PetscCall(MatConvert(pc->pmat, MATHYPRE, MAT_INITIAL_MATRIX, &jac->hpmat));
244:   } else {
245:     PetscCall(PetscObjectReference((PetscObject)pc->pmat));
246:     PetscCall(MatDestroy(&jac->hpmat));
247:     jac->hpmat = pc->pmat;
248:   }
249:   /* allow debug */
250:   PetscCall(MatViewFromOptions(jac->hpmat, NULL, "-pc_hypre_mat_view"));
251:   hjac = (Mat_HYPRE *)(jac->hpmat->data);

253:   /* special case for BoomerAMG */
254:   if (jac->setup == HYPRE_BoomerAMGSetup) {
255:     MatNullSpace mnull;
256:     PetscBool    has_const;
257:     PetscInt     bs, nvec, i;
258:     const Vec   *vecs;

260:     PetscCall(MatGetBlockSize(pc->pmat, &bs));
261:     if (bs > 1) PetscCallExternal(HYPRE_BoomerAMGSetNumFunctions, jac->hsolver, bs);
262:     PetscCall(MatGetNearNullSpace(pc->mat, &mnull));
263:     if (mnull) {
264:       PetscCall(PCHYPREResetNearNullSpace_Private(pc));
265:       PetscCall(MatNullSpaceGetVecs(mnull, &has_const, &nvec, &vecs));
266:       PetscCall(PetscMalloc1(nvec + 1, &jac->hmnull));
267:       PetscCall(PetscMalloc1(nvec + 1, &jac->phmnull));
268:       for (i = 0; i < nvec; i++) {
269:         PetscCall(VecHYPRE_IJVectorCreate(vecs[i]->map, &jac->hmnull[i]));
270:         PetscCall(VecHYPRE_IJVectorCopy(vecs[i], jac->hmnull[i]));
271:         PetscCallExternal(HYPRE_IJVectorGetObject, jac->hmnull[i]->ij, (void **)&jac->phmnull[i]);
272:       }
273:       if (has_const) {
274:         PetscCall(MatCreateVecs(pc->pmat, &jac->hmnull_constant, NULL));
275:         PetscCall(VecSet(jac->hmnull_constant, 1));
276:         PetscCall(VecNormalize(jac->hmnull_constant, NULL));
277:         PetscCall(VecHYPRE_IJVectorCreate(jac->hmnull_constant->map, &jac->hmnull[nvec]));
278:         PetscCall(VecHYPRE_IJVectorCopy(jac->hmnull_constant, jac->hmnull[nvec]));
279:         PetscCallExternal(HYPRE_IJVectorGetObject, jac->hmnull[nvec]->ij, (void **)&jac->phmnull[nvec]);
280:         nvec++;
281:       }
282:       PetscCallExternal(HYPRE_BoomerAMGSetInterpVectors, jac->hsolver, nvec, jac->phmnull);
283:       jac->n_hmnull = nvec;
284:     }
285:   }

287:   /* special case for AMS */
288:   if (jac->setup == HYPRE_AMSSetup) {
289:     Mat_HYPRE         *hm;
290:     HYPRE_ParCSRMatrix parcsr;
291:     if (!jac->coords[0] && !jac->constants[0] && !(jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1]))) {
292:       SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE AMS preconditioner needs either the coordinate vectors via PCSetCoordinates() or the edge constant vectors via PCHYPRESetEdgeConstantVectors() or the interpolation matrix via PCHYPRESetInterpolations()");
293:     }
294:     if (jac->dim) PetscCallExternal(HYPRE_AMSSetDimension, jac->hsolver, jac->dim);
295:     if (jac->constants[0]) {
296:       HYPRE_ParVector ozz, zoz, zzo = NULL;
297:       PetscCallExternal(HYPRE_IJVectorGetObject, jac->constants[0]->ij, (void **)(&ozz));
298:       PetscCallExternal(HYPRE_IJVectorGetObject, jac->constants[1]->ij, (void **)(&zoz));
299:       if (jac->constants[2]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->constants[2]->ij, (void **)(&zzo));
300:       PetscCallExternal(HYPRE_AMSSetEdgeConstantVectors, jac->hsolver, ozz, zoz, zzo);
301:     }
302:     if (jac->coords[0]) {
303:       HYPRE_ParVector coords[3];
304:       coords[0] = NULL;
305:       coords[1] = NULL;
306:       coords[2] = NULL;
307:       if (jac->coords[0]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[0]->ij, (void **)(&coords[0]));
308:       if (jac->coords[1]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[1]->ij, (void **)(&coords[1]));
309:       if (jac->coords[2]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[2]->ij, (void **)(&coords[2]));
310:       PetscCallExternal(HYPRE_AMSSetCoordinateVectors, jac->hsolver, coords[0], coords[1], coords[2]);
311:     }
312:     PetscCheck(jac->G, PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE AMS preconditioner needs the discrete gradient operator via PCHYPRESetDiscreteGradient");
313:     hm = (Mat_HYPRE *)(jac->G->data);
314:     PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
315:     PetscCallExternal(HYPRE_AMSSetDiscreteGradient, jac->hsolver, parcsr);
316:     if (jac->alpha_Poisson) {
317:       hm = (Mat_HYPRE *)(jac->alpha_Poisson->data);
318:       PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
319:       PetscCallExternal(HYPRE_AMSSetAlphaPoissonMatrix, jac->hsolver, parcsr);
320:     }
321:     if (jac->ams_beta_is_zero) {
322:       PetscCallExternal(HYPRE_AMSSetBetaPoissonMatrix, jac->hsolver, NULL);
323:     } else if (jac->beta_Poisson) {
324:       hm = (Mat_HYPRE *)(jac->beta_Poisson->data);
325:       PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
326:       PetscCallExternal(HYPRE_AMSSetBetaPoissonMatrix, jac->hsolver, parcsr);
327:     } else if (jac->ams_beta_is_zero_part) {
328:       if (jac->interior) {
329:         HYPRE_ParVector interior = NULL;
330:         PetscCallExternal(HYPRE_IJVectorGetObject, jac->interior->ij, (void **)(&interior));
331:         PetscCallExternal(HYPRE_AMSSetInteriorNodes, jac->hsolver, interior);
332:       } else {
333:         jac->ams_beta_is_zero_part = PETSC_FALSE;
334:       }
335:     }
336:     if (jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1])) {
337:       PetscInt           i;
338:       HYPRE_ParCSRMatrix nd_parcsrfull, nd_parcsr[3];
339:       if (jac->ND_PiFull) {
340:         hm = (Mat_HYPRE *)(jac->ND_PiFull->data);
341:         PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsrfull));
342:       } else {
343:         nd_parcsrfull = NULL;
344:       }
345:       for (i = 0; i < 3; ++i) {
346:         if (jac->ND_Pi[i]) {
347:           hm = (Mat_HYPRE *)(jac->ND_Pi[i]->data);
348:           PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsr[i]));
349:         } else {
350:           nd_parcsr[i] = NULL;
351:         }
352:       }
353:       PetscCallExternal(HYPRE_AMSSetInterpolations, jac->hsolver, nd_parcsrfull, nd_parcsr[0], nd_parcsr[1], nd_parcsr[2]);
354:     }
355:   }
356:   /* special case for ADS */
357:   if (jac->setup == HYPRE_ADSSetup) {
358:     Mat_HYPRE         *hm;
359:     HYPRE_ParCSRMatrix parcsr;
360:     if (!jac->coords[0] && !((jac->RT_PiFull || (jac->RT_Pi[0] && jac->RT_Pi[1])) && (jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1])))) {
361:       SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner needs either the coordinate vectors via PCSetCoordinates() or the interpolation matrices via PCHYPRESetInterpolations");
362:     } else PetscCheck(jac->coords[1] && jac->coords[2], PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner has been designed for three dimensional problems! For two dimensional problems, use HYPRE AMS instead");
363:     PetscCheck(jac->G, PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner needs the discrete gradient operator via PCHYPRESetDiscreteGradient");
364:     PetscCheck(jac->C, PetscObjectComm((PetscObject)pc), PETSC_ERR_USER, "HYPRE ADS preconditioner needs the discrete curl operator via PCHYPRESetDiscreteGradient");
365:     if (jac->coords[0]) {
366:       HYPRE_ParVector coords[3];
367:       coords[0] = NULL;
368:       coords[1] = NULL;
369:       coords[2] = NULL;
370:       if (jac->coords[0]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[0]->ij, (void **)(&coords[0]));
371:       if (jac->coords[1]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[1]->ij, (void **)(&coords[1]));
372:       if (jac->coords[2]) PetscCallExternal(HYPRE_IJVectorGetObject, jac->coords[2]->ij, (void **)(&coords[2]));
373:       PetscCallExternal(HYPRE_ADSSetCoordinateVectors, jac->hsolver, coords[0], coords[1], coords[2]);
374:     }
375:     hm = (Mat_HYPRE *)(jac->G->data);
376:     PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
377:     PetscCallExternal(HYPRE_ADSSetDiscreteGradient, jac->hsolver, parcsr);
378:     hm = (Mat_HYPRE *)(jac->C->data);
379:     PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&parcsr));
380:     PetscCallExternal(HYPRE_ADSSetDiscreteCurl, jac->hsolver, parcsr);
381:     if ((jac->RT_PiFull || (jac->RT_Pi[0] && jac->RT_Pi[1])) && (jac->ND_PiFull || (jac->ND_Pi[0] && jac->ND_Pi[1]))) {
382:       PetscInt           i;
383:       HYPRE_ParCSRMatrix rt_parcsrfull, rt_parcsr[3];
384:       HYPRE_ParCSRMatrix nd_parcsrfull, nd_parcsr[3];
385:       if (jac->RT_PiFull) {
386:         hm = (Mat_HYPRE *)(jac->RT_PiFull->data);
387:         PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&rt_parcsrfull));
388:       } else {
389:         rt_parcsrfull = NULL;
390:       }
391:       for (i = 0; i < 3; ++i) {
392:         if (jac->RT_Pi[i]) {
393:           hm = (Mat_HYPRE *)(jac->RT_Pi[i]->data);
394:           PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&rt_parcsr[i]));
395:         } else {
396:           rt_parcsr[i] = NULL;
397:         }
398:       }
399:       if (jac->ND_PiFull) {
400:         hm = (Mat_HYPRE *)(jac->ND_PiFull->data);
401:         PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsrfull));
402:       } else {
403:         nd_parcsrfull = NULL;
404:       }
405:       for (i = 0; i < 3; ++i) {
406:         if (jac->ND_Pi[i]) {
407:           hm = (Mat_HYPRE *)(jac->ND_Pi[i]->data);
408:           PetscCallExternal(HYPRE_IJMatrixGetObject, hm->ij, (void **)(&nd_parcsr[i]));
409:         } else {
410:           nd_parcsr[i] = NULL;
411:         }
412:       }
413:       PetscCallExternal(HYPRE_ADSSetInterpolations, jac->hsolver, rt_parcsrfull, rt_parcsr[0], rt_parcsr[1], rt_parcsr[2], nd_parcsrfull, nd_parcsr[0], nd_parcsr[1], nd_parcsr[2]);
414:     }
415:   }
416:   PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&hmat);
417:   PetscCallExternal(HYPRE_IJVectorGetObject, hjac->b->ij, (void **)&bv);
418:   PetscCallExternal(HYPRE_IJVectorGetObject, hjac->x->ij, (void **)&xv);
419:   PetscCallExternal(jac->setup, jac->hsolver, hmat, bv, xv);
420:   PetscFunctionReturn(PETSC_SUCCESS);
421: }

423: static PetscErrorCode PCApply_HYPRE(PC pc, Vec b, Vec x)
424: {
425:   PC_HYPRE          *jac  = (PC_HYPRE *)pc->data;
426:   Mat_HYPRE         *hjac = (Mat_HYPRE *)(jac->hpmat->data);
427:   HYPRE_ParCSRMatrix hmat;
428:   HYPRE_ParVector    jbv, jxv;

430:   PetscFunctionBegin;
431:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
432:   if (!jac->applyrichardson) PetscCall(VecSet(x, 0.0));
433:   PetscCall(VecHYPRE_IJVectorPushVecRead(hjac->b, b));
434:   if (jac->applyrichardson) PetscCall(VecHYPRE_IJVectorPushVec(hjac->x, x));
435:   else PetscCall(VecHYPRE_IJVectorPushVecWrite(hjac->x, x));
436:   PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&hmat);
437:   PetscCallExternal(HYPRE_IJVectorGetObject, hjac->b->ij, (void **)&jbv);
438:   PetscCallExternal(HYPRE_IJVectorGetObject, hjac->x->ij, (void **)&jxv);
439:   PetscStackCallExternalVoid(
440:     "Hypre solve", do {
441:       HYPRE_Int hierr = (*jac->solve)(jac->hsolver, hmat, jbv, jxv);
442:       if (hierr) {
443:         PetscCheck(hierr == HYPRE_ERROR_CONV, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error in HYPRE solver, error code %d", (int)hierr);
444:         hypre__global_error = 0;
445:       }
446:     } while (0));

448:   if (jac->setup == HYPRE_AMSSetup && jac->ams_beta_is_zero_part) PetscCallExternal(HYPRE_AMSProjectOutGradients, jac->hsolver, jxv);
449:   PetscCall(VecHYPRE_IJVectorPopVec(hjac->x));
450:   PetscCall(VecHYPRE_IJVectorPopVec(hjac->b));
451:   PetscFunctionReturn(PETSC_SUCCESS);
452: }

454: static PetscErrorCode PCReset_HYPRE(PC pc)
455: {
456:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

458:   PetscFunctionBegin;
459:   PetscCall(MatDestroy(&jac->hpmat));
460:   PetscCall(MatDestroy(&jac->G));
461:   PetscCall(MatDestroy(&jac->C));
462:   PetscCall(MatDestroy(&jac->alpha_Poisson));
463:   PetscCall(MatDestroy(&jac->beta_Poisson));
464:   PetscCall(MatDestroy(&jac->RT_PiFull));
465:   PetscCall(MatDestroy(&jac->RT_Pi[0]));
466:   PetscCall(MatDestroy(&jac->RT_Pi[1]));
467:   PetscCall(MatDestroy(&jac->RT_Pi[2]));
468:   PetscCall(MatDestroy(&jac->ND_PiFull));
469:   PetscCall(MatDestroy(&jac->ND_Pi[0]));
470:   PetscCall(MatDestroy(&jac->ND_Pi[1]));
471:   PetscCall(MatDestroy(&jac->ND_Pi[2]));
472:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[0]));
473:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[1]));
474:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[2]));
475:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[0]));
476:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[1]));
477:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[2]));
478:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->interior));
479:   PetscCall(PCHYPREResetNearNullSpace_Private(pc));
480:   jac->ams_beta_is_zero      = PETSC_FALSE;
481:   jac->ams_beta_is_zero_part = PETSC_FALSE;
482:   jac->dim                   = 0;
483:   PetscFunctionReturn(PETSC_SUCCESS);
484: }

486: static PetscErrorCode PCDestroy_HYPRE(PC pc)
487: {
488:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

490:   PetscFunctionBegin;
491:   PetscCall(PCReset_HYPRE(pc));
492:   if (jac->destroy) PetscCallExternal(jac->destroy, jac->hsolver);
493:   PetscCall(PetscFree(jac->hypre_type));
494: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
495:   PetscCall(PetscFree(jac->spgemm_type));
496: #endif
497:   if (jac->comm_hypre != MPI_COMM_NULL) PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
498:   PetscCall(PetscFree(pc->data));

500:   PetscCall(PetscObjectChangeTypeName((PetscObject)pc, 0));
501:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetType_C", NULL));
502:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREGetType_C", NULL));
503:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteGradient_C", NULL));
504:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteCurl_C", NULL));
505:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetInterpolations_C", NULL));
506:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetConstantEdgeVectors_C", NULL));
507:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetPoissonMatrix_C", NULL));
508:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetEdgeConstantVectors_C", NULL));
509:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREAMSSetInteriorNodes_C", NULL));
510:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", NULL));
511:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", NULL));
512:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinSetMatProductAlgorithm_C", NULL));
513:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinGetMatProductAlgorithm_C", NULL));
514:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCSetCoordinates_C", NULL));
515:   PetscFunctionReturn(PETSC_SUCCESS);
516: }

518: static PetscErrorCode PCSetFromOptions_HYPRE_Pilut(PC pc, PetscOptionItems *PetscOptionsObject)
519: {
520:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
521:   PetscBool flag;

523:   PetscFunctionBegin;
524:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE Pilut Options");
525:   PetscCall(PetscOptionsInt("-pc_hypre_pilut_maxiter", "Number of iterations", "None", jac->maxiter, &jac->maxiter, &flag));
526:   if (flag) PetscCallExternal(HYPRE_ParCSRPilutSetMaxIter, jac->hsolver, jac->maxiter);
527:   PetscCall(PetscOptionsReal("-pc_hypre_pilut_tol", "Drop tolerance", "None", jac->tol, &jac->tol, &flag));
528:   if (flag) PetscCallExternal(HYPRE_ParCSRPilutSetDropTolerance, jac->hsolver, jac->tol);
529:   PetscCall(PetscOptionsInt("-pc_hypre_pilut_factorrowsize", "FactorRowSize", "None", jac->factorrowsize, &jac->factorrowsize, &flag));
530:   if (flag) PetscCallExternal(HYPRE_ParCSRPilutSetFactorRowSize, jac->hsolver, jac->factorrowsize);
531:   PetscOptionsHeadEnd();
532:   PetscFunctionReturn(PETSC_SUCCESS);
533: }

535: static PetscErrorCode PCView_HYPRE_Pilut(PC pc, PetscViewer viewer)
536: {
537:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
538:   PetscBool iascii;

540:   PetscFunctionBegin;
541:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
542:   if (iascii) {
543:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE Pilut preconditioning\n"));
544:     if (jac->maxiter != PETSC_DEFAULT) {
545:       PetscCall(PetscViewerASCIIPrintf(viewer, "    maximum number of iterations %" PetscInt_FMT "\n", jac->maxiter));
546:     } else {
547:       PetscCall(PetscViewerASCIIPrintf(viewer, "    default maximum number of iterations \n"));
548:     }
549:     if (jac->tol != PETSC_DEFAULT) {
550:       PetscCall(PetscViewerASCIIPrintf(viewer, "    drop tolerance %g\n", (double)jac->tol));
551:     } else {
552:       PetscCall(PetscViewerASCIIPrintf(viewer, "    default drop tolerance \n"));
553:     }
554:     if (jac->factorrowsize != PETSC_DEFAULT) {
555:       PetscCall(PetscViewerASCIIPrintf(viewer, "    factor row size %" PetscInt_FMT "\n", jac->factorrowsize));
556:     } else {
557:       PetscCall(PetscViewerASCIIPrintf(viewer, "    default factor row size \n"));
558:     }
559:   }
560:   PetscFunctionReturn(PETSC_SUCCESS);
561: }

563: static PetscErrorCode PCSetFromOptions_HYPRE_Euclid(PC pc, PetscOptionItems *PetscOptionsObject)
564: {
565:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
566:   PetscBool flag, eu_bj = jac->eu_bj ? PETSC_TRUE : PETSC_FALSE;

568:   PetscFunctionBegin;
569:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE Euclid Options");
570:   PetscCall(PetscOptionsInt("-pc_hypre_euclid_level", "Factorization levels", "None", jac->eu_level, &jac->eu_level, &flag));
571:   if (flag) PetscCallExternal(HYPRE_EuclidSetLevel, jac->hsolver, jac->eu_level);

573:   PetscCall(PetscOptionsReal("-pc_hypre_euclid_droptolerance", "Drop tolerance for ILU(k) in Euclid", "None", jac->eu_droptolerance, &jac->eu_droptolerance, &flag));
574:   if (flag) {
575:     PetscMPIInt size;

577:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
578:     PetscCheck(size == 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "hypre's Euclid does not support a parallel drop tolerance");
579:     PetscCallExternal(HYPRE_EuclidSetILUT, jac->hsolver, jac->eu_droptolerance);
580:   }

582:   PetscCall(PetscOptionsBool("-pc_hypre_euclid_bj", "Use Block Jacobi for ILU in Euclid", "None", eu_bj, &eu_bj, &flag));
583:   if (flag) {
584:     jac->eu_bj = eu_bj ? 1 : 0;
585:     PetscCallExternal(HYPRE_EuclidSetBJ, jac->hsolver, jac->eu_bj);
586:   }
587:   PetscOptionsHeadEnd();
588:   PetscFunctionReturn(PETSC_SUCCESS);
589: }

591: static PetscErrorCode PCView_HYPRE_Euclid(PC pc, PetscViewer viewer)
592: {
593:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
594:   PetscBool iascii;

596:   PetscFunctionBegin;
597:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
598:   if (iascii) {
599:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE Euclid preconditioning\n"));
600:     if (jac->eu_level != PETSC_DEFAULT) {
601:       PetscCall(PetscViewerASCIIPrintf(viewer, "    factorization levels %" PetscInt_FMT "\n", jac->eu_level));
602:     } else {
603:       PetscCall(PetscViewerASCIIPrintf(viewer, "    default factorization levels \n"));
604:     }
605:     PetscCall(PetscViewerASCIIPrintf(viewer, "    drop tolerance %g\n", (double)jac->eu_droptolerance));
606:     PetscCall(PetscViewerASCIIPrintf(viewer, "    use Block-Jacobi? %" PetscInt_FMT "\n", jac->eu_bj));
607:   }
608:   PetscFunctionReturn(PETSC_SUCCESS);
609: }

611: static PetscErrorCode PCApplyTranspose_HYPRE_BoomerAMG(PC pc, Vec b, Vec x)
612: {
613:   PC_HYPRE          *jac  = (PC_HYPRE *)pc->data;
614:   Mat_HYPRE         *hjac = (Mat_HYPRE *)(jac->hpmat->data);
615:   HYPRE_ParCSRMatrix hmat;
616:   HYPRE_ParVector    jbv, jxv;

618:   PetscFunctionBegin;
619:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
620:   PetscCall(VecSet(x, 0.0));
621:   PetscCall(VecHYPRE_IJVectorPushVecRead(hjac->x, b));
622:   PetscCall(VecHYPRE_IJVectorPushVecWrite(hjac->b, x));

624:   PetscCallExternal(HYPRE_IJMatrixGetObject, hjac->ij, (void **)&hmat);
625:   PetscCallExternal(HYPRE_IJVectorGetObject, hjac->b->ij, (void **)&jbv);
626:   PetscCallExternal(HYPRE_IJVectorGetObject, hjac->x->ij, (void **)&jxv);

628:   PetscStackCallExternalVoid(
629:     "Hypre Transpose solve", do {
630:       HYPRE_Int hierr = HYPRE_BoomerAMGSolveT(jac->hsolver, hmat, jbv, jxv);
631:       if (hierr) {
632:         /* error code of 1 in BoomerAMG merely means convergence not achieved */
633:         PetscCheck(hierr == 1, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error in HYPRE solver, error code %d", (int)hierr);
634:         hypre__global_error = 0;
635:       }
636:     } while (0));

638:   PetscCall(VecHYPRE_IJVectorPopVec(hjac->x));
639:   PetscCall(VecHYPRE_IJVectorPopVec(hjac->b));
640:   PetscFunctionReturn(PETSC_SUCCESS);
641: }

643: static PetscErrorCode PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG(PC pc, const char name[])
644: {
645:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
646:   PetscBool flag;

648: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
649:   PetscFunctionBegin;
650:   if (jac->spgemm_type) {
651:     PetscCall(PetscStrcmp(jac->spgemm_type, name, &flag));
652:     PetscCheck(flag, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Cannot reset the HYPRE SpGEMM (really we can)");
653:     PetscFunctionReturn(PETSC_SUCCESS);
654:   } else {
655:     PetscCall(PetscStrallocpy(name, &jac->spgemm_type));
656:   }
657:   PetscCall(PetscStrcmp("cusparse", jac->spgemm_type, &flag));
658:   if (flag) {
659:     PetscCallExternal(HYPRE_SetSpGemmUseCusparse, 1);
660:     PetscFunctionReturn(PETSC_SUCCESS);
661:   }
662:   PetscCall(PetscStrcmp("hypre", jac->spgemm_type, &flag));
663:   if (flag) {
664:     PetscCallExternal(HYPRE_SetSpGemmUseCusparse, 0);
665:     PetscFunctionReturn(PETSC_SUCCESS);
666:   }
667:   jac->spgemm_type = NULL;
668:   SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown HYPRE SpGEM type %s; Choices are cusparse, hypre", name);
669: #endif
670: }

672: static PetscErrorCode PCMGGalerkinGetMatProductAlgorithm_HYPRE_BoomerAMG(PC pc, const char *spgemm[])
673: {
674:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

676:   PetscFunctionBegin;
678: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
679:   *spgemm = jac->spgemm_type;
680: #endif
681:   PetscFunctionReturn(PETSC_SUCCESS);
682: }

684: static const char *HYPREBoomerAMGCycleType[]   = {"", "V", "W"};
685: static const char *HYPREBoomerAMGCoarsenType[] = {"CLJP", "Ruge-Stueben", "", "modifiedRuge-Stueben", "", "", "Falgout", "", "PMIS", "", "HMIS"};
686: static const char *HYPREBoomerAMGMeasureType[] = {"local", "global"};
687: /* The following corresponds to HYPRE_BoomerAMGSetRelaxType which has many missing numbers in the enum */
688: static const char *HYPREBoomerAMGSmoothType[] = {"Schwarz-smoothers", "Pilut", "ParaSails", "Euclid"};
689: static const char *HYPREBoomerAMGRelaxType[] = {"Jacobi", "sequential-Gauss-Seidel", "seqboundary-Gauss-Seidel", "SOR/Jacobi", "backward-SOR/Jacobi", "" /* [5] hybrid chaotic Gauss-Seidel (works only with OpenMP) */, "symmetric-SOR/Jacobi", "" /* 7 */, "l1scaled-SOR/Jacobi", "Gaussian-elimination", "" /* 10 */, "" /* 11 */, "" /* 12 */, "l1-Gauss-Seidel" /* nonsymmetric */, "backward-l1-Gauss-Seidel" /* nonsymmetric */, "CG" /* non-stationary */, "Chebyshev", "FCF-Jacobi", "l1scaled-Jacobi"};
690: static const char    *HYPREBoomerAMGInterpType[] = {"classical", "", "", "direct", "multipass", "multipass-wts", "ext+i", "ext+i-cc", "standard", "standard-wts", "block", "block-wtd", "FF", "FF1", "ext", "ad-wts", "ext-mm", "ext+i-mm", "ext+e-mm"};
691: static PetscErrorCode PCSetFromOptions_HYPRE_BoomerAMG(PC pc, PetscOptionItems *PetscOptionsObject)
692: {
693:   PC_HYPRE   *jac = (PC_HYPRE *)pc->data;
694:   PetscInt    bs, n, indx, level;
695:   PetscBool   flg, tmp_truth;
696:   double      tmpdbl, twodbl[2];
697:   const char *symtlist[]           = {"nonsymmetric", "SPD", "nonsymmetric,SPD"};
698:   const char *PCHYPRESpgemmTypes[] = {"cusparse", "hypre"};

700:   PetscFunctionBegin;
701:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE BoomerAMG Options");
702:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_cycle_type", "Cycle type", "None", HYPREBoomerAMGCycleType + 1, 2, HYPREBoomerAMGCycleType[jac->cycletype], &indx, &flg));
703:   if (flg) {
704:     jac->cycletype = indx + 1;
705:     PetscCallExternal(HYPRE_BoomerAMGSetCycleType, jac->hsolver, jac->cycletype);
706:   }
707:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_max_levels", "Number of levels (of grids) allowed", "None", jac->maxlevels, &jac->maxlevels, &flg));
708:   if (flg) {
709:     PetscCheck(jac->maxlevels >= 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Number of levels %" PetscInt_FMT " must be at least two", jac->maxlevels);
710:     PetscCallExternal(HYPRE_BoomerAMGSetMaxLevels, jac->hsolver, jac->maxlevels);
711:   }
712:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_max_iter", "Maximum iterations used PER hypre call", "None", jac->maxiter, &jac->maxiter, &flg));
713:   if (flg) {
714:     PetscCheck(jac->maxiter >= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Number of iterations %" PetscInt_FMT " must be at least one", jac->maxiter);
715:     PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, jac->maxiter);
716:   }
717:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_tol", "Convergence tolerance PER hypre call (0.0 = use a fixed number of iterations)", "None", jac->tol, &jac->tol, &flg));
718:   if (flg) {
719:     PetscCheck(jac->tol >= 0.0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Tolerance %g must be greater than or equal to zero", (double)jac->tol);
720:     PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, jac->tol);
721:   }
722:   bs = 1;
723:   if (pc->pmat) PetscCall(MatGetBlockSize(pc->pmat, &bs));
724:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_numfunctions", "Number of functions", "HYPRE_BoomerAMGSetNumFunctions", bs, &bs, &flg));
725:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNumFunctions, jac->hsolver, bs);

727:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_truncfactor", "Truncation factor for interpolation (0=no truncation)", "None", jac->truncfactor, &jac->truncfactor, &flg));
728:   if (flg) {
729:     PetscCheck(jac->truncfactor >= 0.0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Truncation factor %g must be great than or equal zero", (double)jac->truncfactor);
730:     PetscCallExternal(HYPRE_BoomerAMGSetTruncFactor, jac->hsolver, jac->truncfactor);
731:   }

733:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_P_max", "Max elements per row for interpolation operator (0=unlimited)", "None", jac->pmax, &jac->pmax, &flg));
734:   if (flg) {
735:     PetscCheck(jac->pmax >= 0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "P_max %" PetscInt_FMT " must be greater than or equal to zero", jac->pmax);
736:     PetscCallExternal(HYPRE_BoomerAMGSetPMaxElmts, jac->hsolver, jac->pmax);
737:   }

739:   PetscCall(PetscOptionsRangeInt("-pc_hypre_boomeramg_agg_nl", "Number of levels of aggressive coarsening", "None", jac->agg_nl, &jac->agg_nl, &flg, 0, jac->maxlevels));
740:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetAggNumLevels, jac->hsolver, jac->agg_nl);

742:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_agg_num_paths", "Number of paths for aggressive coarsening", "None", jac->agg_num_paths, &jac->agg_num_paths, &flg));
743:   if (flg) {
744:     PetscCheck(jac->agg_num_paths >= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Number of paths %" PetscInt_FMT " must be greater than or equal to 1", jac->agg_num_paths);
745:     PetscCallExternal(HYPRE_BoomerAMGSetNumPaths, jac->hsolver, jac->agg_num_paths);
746:   }

748:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_strong_threshold", "Threshold for being strongly connected", "None", jac->strongthreshold, &jac->strongthreshold, &flg));
749:   if (flg) {
750:     PetscCheck(jac->strongthreshold >= 0.0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Strong threshold %g must be great than or equal zero", (double)jac->strongthreshold);
751:     PetscCallExternal(HYPRE_BoomerAMGSetStrongThreshold, jac->hsolver, jac->strongthreshold);
752:   }
753:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_max_row_sum", "Maximum row sum", "None", jac->maxrowsum, &jac->maxrowsum, &flg));
754:   if (flg) {
755:     PetscCheck(jac->maxrowsum >= 0.0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Maximum row sum %g must be greater than zero", (double)jac->maxrowsum);
756:     PetscCheck(jac->maxrowsum <= 1.0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Maximum row sum %g must be less than or equal one", (double)jac->maxrowsum);
757:     PetscCallExternal(HYPRE_BoomerAMGSetMaxRowSum, jac->hsolver, jac->maxrowsum);
758:   }

760:   /* Grid sweeps */
761:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_all", "Number of sweeps for the up and down grid levels", "None", jac->gridsweeps[0], &indx, &flg));
762:   if (flg) {
763:     PetscCallExternal(HYPRE_BoomerAMGSetNumSweeps, jac->hsolver, indx);
764:     /* modify the jac structure so we can view the updated options with PC_View */
765:     jac->gridsweeps[0] = indx;
766:     jac->gridsweeps[1] = indx;
767:     /*defaults coarse to 1 */
768:     jac->gridsweeps[2] = 1;
769:   }
770:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_nodal_coarsen", "Use a nodal based coarsening 1-6", "HYPRE_BoomerAMGSetNodal", jac->nodal_coarsening, &jac->nodal_coarsening, &flg));
771:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNodal, jac->hsolver, jac->nodal_coarsening);
772:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_nodal_coarsen_diag", "Diagonal in strength matrix for nodal based coarsening 0-2", "HYPRE_BoomerAMGSetNodalDiag", jac->nodal_coarsening_diag, &jac->nodal_coarsening_diag, &flg));
773:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetNodalDiag, jac->hsolver, jac->nodal_coarsening_diag);
774:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_vec_interp_variant", "Variant of algorithm 1-3", "HYPRE_BoomerAMGSetInterpVecVariant", jac->vec_interp_variant, &jac->vec_interp_variant, &flg));
775:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetInterpVecVariant, jac->hsolver, jac->vec_interp_variant);
776:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_vec_interp_qmax", "Max elements per row for each Q", "HYPRE_BoomerAMGSetInterpVecQMax", jac->vec_interp_qmax, &jac->vec_interp_qmax, &flg));
777:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetInterpVecQMax, jac->hsolver, jac->vec_interp_qmax);
778:   PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_vec_interp_smooth", "Whether to smooth the interpolation vectors", "HYPRE_BoomerAMGSetSmoothInterpVectors", jac->vec_interp_smooth, &jac->vec_interp_smooth, &flg));
779:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetSmoothInterpVectors, jac->hsolver, jac->vec_interp_smooth);
780:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_interp_refine", "Preprocess the interpolation matrix through iterative weight refinement", "HYPRE_BoomerAMGSetInterpRefine", jac->interp_refine, &jac->interp_refine, &flg));
781:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetInterpRefine, jac->hsolver, jac->interp_refine);
782:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_down", "Number of sweeps for the down cycles", "None", jac->gridsweeps[0], &indx, &flg));
783:   if (flg) {
784:     PetscCallExternal(HYPRE_BoomerAMGSetCycleNumSweeps, jac->hsolver, indx, 1);
785:     jac->gridsweeps[0] = indx;
786:   }
787:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_up", "Number of sweeps for the up cycles", "None", jac->gridsweeps[1], &indx, &flg));
788:   if (flg) {
789:     PetscCallExternal(HYPRE_BoomerAMGSetCycleNumSweeps, jac->hsolver, indx, 2);
790:     jac->gridsweeps[1] = indx;
791:   }
792:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_grid_sweeps_coarse", "Number of sweeps for the coarse level", "None", jac->gridsweeps[2], &indx, &flg));
793:   if (flg) {
794:     PetscCallExternal(HYPRE_BoomerAMGSetCycleNumSweeps, jac->hsolver, indx, 3);
795:     jac->gridsweeps[2] = indx;
796:   }

798:   /* Smooth type */
799:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_smooth_type", "Enable more complex smoothers", "None", HYPREBoomerAMGSmoothType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGSmoothType), HYPREBoomerAMGSmoothType[0], &indx, &flg));
800:   if (flg) {
801:     jac->smoothtype = indx;
802:     PetscCallExternal(HYPRE_BoomerAMGSetSmoothType, jac->hsolver, indx + 6);
803:     jac->smoothnumlevels = 25;
804:     PetscCallExternal(HYPRE_BoomerAMGSetSmoothNumLevels, jac->hsolver, 25);
805:   }

807:   /* Number of smoothing levels */
808:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_smooth_num_levels", "Number of levels on which more complex smoothers are used", "None", 25, &indx, &flg));
809:   if (flg && (jac->smoothtype != -1)) {
810:     jac->smoothnumlevels = indx;
811:     PetscCallExternal(HYPRE_BoomerAMGSetSmoothNumLevels, jac->hsolver, indx);
812:   }

814:   /* Number of levels for ILU(k) for Euclid */
815:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_eu_level", "Number of levels for ILU(k) in Euclid smoother", "None", 0, &indx, &flg));
816:   if (flg && (jac->smoothtype == 3)) {
817:     jac->eu_level = indx;
818:     PetscCallExternal(HYPRE_BoomerAMGSetEuLevel, jac->hsolver, indx);
819:   }

821:   /* Filter for ILU(k) for Euclid */
822:   double droptolerance;
823:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_eu_droptolerance", "Drop tolerance for ILU(k) in Euclid smoother", "None", 0, &droptolerance, &flg));
824:   if (flg && (jac->smoothtype == 3)) {
825:     jac->eu_droptolerance = droptolerance;
826:     PetscCallExternal(HYPRE_BoomerAMGSetEuLevel, jac->hsolver, droptolerance);
827:   }

829:   /* Use Block Jacobi ILUT for Euclid */
830:   PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_eu_bj", "Use Block Jacobi for ILU in Euclid smoother?", "None", PETSC_FALSE, &tmp_truth, &flg));
831:   if (flg && (jac->smoothtype == 3)) {
832:     jac->eu_bj = tmp_truth;
833:     PetscCallExternal(HYPRE_BoomerAMGSetEuBJ, jac->hsolver, jac->eu_bj);
834:   }

836:   /* Relax type */
837:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_all", "Relax type for the up and down cycles", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[6], &indx, &flg));
838:   if (flg) {
839:     jac->relaxtype[0] = jac->relaxtype[1] = indx;
840:     PetscCallExternal(HYPRE_BoomerAMGSetRelaxType, jac->hsolver, indx);
841:     /* by default, coarse type set to 9 */
842:     jac->relaxtype[2] = 9;
843:     PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, 9, 3);
844:   }
845:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_down", "Relax type for the down cycles", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[6], &indx, &flg));
846:   if (flg) {
847:     jac->relaxtype[0] = indx;
848:     PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, indx, 1);
849:   }
850:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_up", "Relax type for the up cycles", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[6], &indx, &flg));
851:   if (flg) {
852:     jac->relaxtype[1] = indx;
853:     PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, indx, 2);
854:   }
855:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_relax_type_coarse", "Relax type on coarse grid", "None", HYPREBoomerAMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGRelaxType), HYPREBoomerAMGRelaxType[9], &indx, &flg));
856:   if (flg) {
857:     jac->relaxtype[2] = indx;
858:     PetscCallExternal(HYPRE_BoomerAMGSetCycleRelaxType, jac->hsolver, indx, 3);
859:   }

861:   /* Relaxation Weight */
862:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_relax_weight_all", "Relaxation weight for all levels (0 = hypre estimates, -k = determined with k CG steps)", "None", jac->relaxweight, &tmpdbl, &flg));
863:   if (flg) {
864:     PetscCallExternal(HYPRE_BoomerAMGSetRelaxWt, jac->hsolver, tmpdbl);
865:     jac->relaxweight = tmpdbl;
866:   }

868:   n         = 2;
869:   twodbl[0] = twodbl[1] = 1.0;
870:   PetscCall(PetscOptionsRealArray("-pc_hypre_boomeramg_relax_weight_level", "Set the relaxation weight for a particular level (weight,level)", "None", twodbl, &n, &flg));
871:   if (flg) {
872:     PetscCheck(n == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Relax weight level: you must provide 2 values separated by a comma (and no space), you provided %" PetscInt_FMT, n);
873:     indx = (int)PetscAbsReal(twodbl[1]);
874:     PetscCallExternal(HYPRE_BoomerAMGSetLevelRelaxWt, jac->hsolver, twodbl[0], indx);
875:   }

877:   /* Outer relaxation Weight */
878:   PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_outer_relax_weight_all", "Outer relaxation weight for all levels (-k = determined with k CG steps)", "None", jac->outerrelaxweight, &tmpdbl, &flg));
879:   if (flg) {
880:     PetscCallExternal(HYPRE_BoomerAMGSetOuterWt, jac->hsolver, tmpdbl);
881:     jac->outerrelaxweight = tmpdbl;
882:   }

884:   n         = 2;
885:   twodbl[0] = twodbl[1] = 1.0;
886:   PetscCall(PetscOptionsRealArray("-pc_hypre_boomeramg_outer_relax_weight_level", "Set the outer relaxation weight for a particular level (weight,level)", "None", twodbl, &n, &flg));
887:   if (flg) {
888:     PetscCheck(n == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Relax weight outer level: You must provide 2 values separated by a comma (and no space), you provided %" PetscInt_FMT, n);
889:     indx = (int)PetscAbsReal(twodbl[1]);
890:     PetscCallExternal(HYPRE_BoomerAMGSetLevelOuterWt, jac->hsolver, twodbl[0], indx);
891:   }

893:   /* the Relax Order */
894:   PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_no_CF", "Do not use CF-relaxation", "None", PETSC_FALSE, &tmp_truth, &flg));

896:   if (flg && tmp_truth) {
897:     jac->relaxorder = 0;
898:     PetscCallExternal(HYPRE_BoomerAMGSetRelaxOrder, jac->hsolver, jac->relaxorder);
899:   }
900:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_measure_type", "Measure type", "None", HYPREBoomerAMGMeasureType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGMeasureType), HYPREBoomerAMGMeasureType[0], &indx, &flg));
901:   if (flg) {
902:     jac->measuretype = indx;
903:     PetscCallExternal(HYPRE_BoomerAMGSetMeasureType, jac->hsolver, jac->measuretype);
904:   }
905:   /* update list length 3/07 */
906:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_coarsen_type", "Coarsen type", "None", HYPREBoomerAMGCoarsenType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGCoarsenType), HYPREBoomerAMGCoarsenType[6], &indx, &flg));
907:   if (flg) {
908:     jac->coarsentype = indx;
909:     PetscCallExternal(HYPRE_BoomerAMGSetCoarsenType, jac->hsolver, jac->coarsentype);
910:   }

912:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_max_coarse_size", "Maximum size of coarsest grid", "None", jac->maxc, &jac->maxc, &flg));
913:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMaxCoarseSize, jac->hsolver, jac->maxc);
914:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_min_coarse_size", "Minimum size of coarsest grid", "None", jac->minc, &jac->minc, &flg));
915:   if (flg) PetscCallExternal(HYPRE_BoomerAMGSetMinCoarseSize, jac->hsolver, jac->minc);
916: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
917:   // global parameter but is closely associated with BoomerAMG
918:   PetscCall(PetscOptionsEList("-pc_mg_galerkin_mat_product_algorithm", "Type of SpGEMM to use in hypre (only for now)", "PCMGGalerkinSetMatProductAlgorithm", PCHYPRESpgemmTypes, PETSC_STATIC_ARRAY_LENGTH(PCHYPRESpgemmTypes), PCHYPRESpgemmTypes[0], &indx, &flg));
919:   if (!flg) indx = 0;
920:   PetscCall(PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG(pc, PCHYPRESpgemmTypes[indx]));
921: #endif
922:   /* AIR */
923: #if PETSC_PKG_HYPRE_VERSION_GE(2, 18, 0)
924:   PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_restriction_type", "Type of AIR method (distance 1 or 2, 0 means no AIR)", "None", jac->Rtype, &jac->Rtype, NULL));
925:   PetscCallExternal(HYPRE_BoomerAMGSetRestriction, jac->hsolver, jac->Rtype);
926:   if (jac->Rtype) {
927:     jac->interptype = 100; /* no way we can pass this with strings... Set it as default as in MFEM, then users can still customize it back to a different one */

929:     PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_strongthresholdR", "Threshold for R", "None", jac->Rstrongthreshold, &jac->Rstrongthreshold, NULL));
930:     PetscCallExternal(HYPRE_BoomerAMGSetStrongThresholdR, jac->hsolver, jac->Rstrongthreshold);

932:     PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_filterthresholdR", "Filter threshold for R", "None", jac->Rfilterthreshold, &jac->Rfilterthreshold, NULL));
933:     PetscCallExternal(HYPRE_BoomerAMGSetFilterThresholdR, jac->hsolver, jac->Rfilterthreshold);

935:     PetscCall(PetscOptionsReal("-pc_hypre_boomeramg_Adroptol", "Defines the drop tolerance for the A-matrices from the 2nd level of AMG", "None", jac->Adroptol, &jac->Adroptol, NULL));
936:     PetscCallExternal(HYPRE_BoomerAMGSetADropTol, jac->hsolver, jac->Adroptol);

938:     PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_Adroptype", "Drops the entries that are not on the diagonal and smaller than its row norm: type 1: 1-norm, 2: 2-norm, -1: infinity norm", "None", jac->Adroptype, &jac->Adroptype, NULL));
939:     PetscCallExternal(HYPRE_BoomerAMGSetADropType, jac->hsolver, jac->Adroptype);
940:   }
941: #endif

943: #if PETSC_PKG_HYPRE_VERSION_LE(9, 9, 9)
944:   PetscCheck(!jac->Rtype || !jac->agg_nl, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "-pc_hypre_boomeramg_restriction_type (%" PetscInt_FMT ") and -pc_hypre_boomeramg_agg_nl (%" PetscInt_FMT ")", jac->Rtype, jac->agg_nl);
945: #endif

947:   /* new 3/07 */
948:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_interp_type", "Interpolation type", "None", HYPREBoomerAMGInterpType, PETSC_STATIC_ARRAY_LENGTH(HYPREBoomerAMGInterpType), HYPREBoomerAMGInterpType[0], &indx, &flg));
949:   if (flg || jac->Rtype) {
950:     if (flg) jac->interptype = indx;
951:     PetscCallExternal(HYPRE_BoomerAMGSetInterpType, jac->hsolver, jac->interptype);
952:   }

954:   PetscCall(PetscOptionsName("-pc_hypre_boomeramg_print_statistics", "Print statistics", "None", &flg));
955:   if (flg) {
956:     level = 3;
957:     PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_print_statistics", "Print statistics", "None", level, &level, NULL));

959:     jac->printstatistics = PETSC_TRUE;
960:     PetscCallExternal(HYPRE_BoomerAMGSetPrintLevel, jac->hsolver, level);
961:   }

963:   PetscCall(PetscOptionsName("-pc_hypre_boomeramg_print_debug", "Print debug information", "None", &flg));
964:   if (flg) {
965:     level = 3;
966:     PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_print_debug", "Print debug information", "None", level, &level, NULL));

968:     jac->printstatistics = PETSC_TRUE;
969:     PetscCallExternal(HYPRE_BoomerAMGSetDebugFlag, jac->hsolver, level);
970:   }

972:   PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_nodal_relaxation", "Nodal relaxation via Schwarz", "None", PETSC_FALSE, &tmp_truth, &flg));
973:   if (flg && tmp_truth) {
974:     PetscInt tmp_int;
975:     PetscCall(PetscOptionsInt("-pc_hypre_boomeramg_nodal_relaxation", "Nodal relaxation via Schwarz", "None", jac->nodal_relax_levels, &tmp_int, &flg));
976:     if (flg) jac->nodal_relax_levels = tmp_int;
977:     PetscCallExternal(HYPRE_BoomerAMGSetSmoothType, jac->hsolver, 6);
978:     PetscCallExternal(HYPRE_BoomerAMGSetDomainType, jac->hsolver, 1);
979:     PetscCallExternal(HYPRE_BoomerAMGSetOverlap, jac->hsolver, 0);
980:     PetscCallExternal(HYPRE_BoomerAMGSetSmoothNumLevels, jac->hsolver, jac->nodal_relax_levels);
981:   }

983:   PetscCall(PetscOptionsBool("-pc_hypre_boomeramg_keeptranspose", "Avoid transpose matvecs in preconditioner application", "None", jac->keeptranspose, &jac->keeptranspose, NULL));
984:   PetscCallExternal(HYPRE_BoomerAMGSetKeepTranspose, jac->hsolver, jac->keeptranspose ? 1 : 0);

986:   /* options for ParaSails solvers */
987:   PetscCall(PetscOptionsEList("-pc_hypre_boomeramg_parasails_sym", "Symmetry of matrix and preconditioner", "None", symtlist, PETSC_STATIC_ARRAY_LENGTH(symtlist), symtlist[0], &indx, &flg));
988:   if (flg) {
989:     jac->symt = indx;
990:     PetscCallExternal(HYPRE_BoomerAMGSetSym, jac->hsolver, jac->symt);
991:   }

993:   PetscOptionsHeadEnd();
994:   PetscFunctionReturn(PETSC_SUCCESS);
995: }

997: static PetscErrorCode PCApplyRichardson_HYPRE_BoomerAMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
998: {
999:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1000:   HYPRE_Int oits;

1002:   PetscFunctionBegin;
1003:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
1004:   PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, its * jac->maxiter);
1005:   PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, rtol);
1006:   jac->applyrichardson = PETSC_TRUE;
1007:   PetscCall(PCApply_HYPRE(pc, b, y));
1008:   jac->applyrichardson = PETSC_FALSE;
1009:   PetscCallExternal(HYPRE_BoomerAMGGetNumIterations, jac->hsolver, &oits);
1010:   *outits = oits;
1011:   if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
1012:   else *reason = PCRICHARDSON_CONVERGED_RTOL;
1013:   PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, jac->tol);
1014:   PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, jac->maxiter);
1015:   PetscFunctionReturn(PETSC_SUCCESS);
1016: }

1018: static PetscErrorCode PCView_HYPRE_BoomerAMG(PC pc, PetscViewer viewer)
1019: {
1020:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1021:   PetscBool iascii;

1023:   PetscFunctionBegin;
1024:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1025:   if (iascii) {
1026:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE BoomerAMG preconditioning\n"));
1027:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Cycle type %s\n", HYPREBoomerAMGCycleType[jac->cycletype]));
1028:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Maximum number of levels %" PetscInt_FMT "\n", jac->maxlevels));
1029:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Maximum number of iterations PER hypre call %" PetscInt_FMT "\n", jac->maxiter));
1030:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Convergence tolerance PER hypre call %g\n", (double)jac->tol));
1031:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Threshold for strong coupling %g\n", (double)jac->strongthreshold));
1032:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Interpolation truncation factor %g\n", (double)jac->truncfactor));
1033:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Interpolation: max elements per row %" PetscInt_FMT "\n", jac->pmax));
1034:     if (jac->interp_refine) PetscCall(PetscViewerASCIIPrintf(viewer, "    Interpolation: number of steps of weighted refinement %" PetscInt_FMT "\n", jac->interp_refine));
1035:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Number of levels of aggressive coarsening %" PetscInt_FMT "\n", jac->agg_nl));
1036:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Number of paths for aggressive coarsening %" PetscInt_FMT "\n", jac->agg_num_paths));

1038:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Maximum row sums %g\n", (double)jac->maxrowsum));

1040:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Sweeps down         %" PetscInt_FMT "\n", jac->gridsweeps[0]));
1041:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Sweeps up           %" PetscInt_FMT "\n", jac->gridsweeps[1]));
1042:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Sweeps on coarse    %" PetscInt_FMT "\n", jac->gridsweeps[2]));

1044:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Relax down          %s\n", HYPREBoomerAMGRelaxType[jac->relaxtype[0]]));
1045:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Relax up            %s\n", HYPREBoomerAMGRelaxType[jac->relaxtype[1]]));
1046:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Relax on coarse     %s\n", HYPREBoomerAMGRelaxType[jac->relaxtype[2]]));

1048:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Relax weight  (all)      %g\n", (double)jac->relaxweight));
1049:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Outer relax weight (all) %g\n", (double)jac->outerrelaxweight));

1051:     if (jac->relaxorder) {
1052:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Using CF-relaxation\n"));
1053:     } else {
1054:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Not using CF-relaxation\n"));
1055:     }
1056:     if (jac->smoothtype != -1) {
1057:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Smooth type          %s\n", HYPREBoomerAMGSmoothType[jac->smoothtype]));
1058:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Smooth num levels    %" PetscInt_FMT "\n", jac->smoothnumlevels));
1059:     } else {
1060:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Not using more complex smoothers.\n"));
1061:     }
1062:     if (jac->smoothtype == 3) {
1063:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Euclid ILU(k) levels %" PetscInt_FMT "\n", jac->eu_level));
1064:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Euclid ILU(k) drop tolerance %g\n", (double)jac->eu_droptolerance));
1065:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Euclid ILU use Block-Jacobi? %" PetscInt_FMT "\n", jac->eu_bj));
1066:     }
1067:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Measure type        %s\n", HYPREBoomerAMGMeasureType[jac->measuretype]));
1068:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Coarsen type        %s\n", HYPREBoomerAMGCoarsenType[jac->coarsentype]));
1069:     PetscCall(PetscViewerASCIIPrintf(viewer, "    Interpolation type  %s\n", jac->interptype != 100 ? HYPREBoomerAMGInterpType[jac->interptype] : "1pt"));
1070:     if (jac->nodal_coarsening) PetscCall(PetscViewerASCIIPrintf(viewer, "    Using nodal coarsening with HYPRE_BOOMERAMGSetNodal() %" PetscInt_FMT "\n", jac->nodal_coarsening));
1071:     if (jac->vec_interp_variant) {
1072:       PetscCall(PetscViewerASCIIPrintf(viewer, "    HYPRE_BoomerAMGSetInterpVecVariant() %" PetscInt_FMT "\n", jac->vec_interp_variant));
1073:       PetscCall(PetscViewerASCIIPrintf(viewer, "    HYPRE_BoomerAMGSetInterpVecQMax() %" PetscInt_FMT "\n", jac->vec_interp_qmax));
1074:       PetscCall(PetscViewerASCIIPrintf(viewer, "    HYPRE_BoomerAMGSetSmoothInterpVectors() %d\n", jac->vec_interp_smooth));
1075:     }
1076:     if (jac->nodal_relax) PetscCall(PetscViewerASCIIPrintf(viewer, "    Using nodal relaxation via Schwarz smoothing on levels %" PetscInt_FMT "\n", jac->nodal_relax_levels));
1077: #if PETSC_PKG_HYPRE_VERSION_GE(2, 23, 0)
1078:     PetscCall(PetscViewerASCIIPrintf(viewer, "    SpGEMM type         %s\n", jac->spgemm_type));
1079: #endif
1080:     /* AIR */
1081:     if (jac->Rtype) {
1082:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Using approximate ideal restriction type %" PetscInt_FMT "\n", jac->Rtype));
1083:       PetscCall(PetscViewerASCIIPrintf(viewer, "      Threshold for R %g\n", (double)jac->Rstrongthreshold));
1084:       PetscCall(PetscViewerASCIIPrintf(viewer, "      Filter for R %g\n", (double)jac->Rfilterthreshold));
1085:       PetscCall(PetscViewerASCIIPrintf(viewer, "      A drop tolerance %g\n", (double)jac->Adroptol));
1086:       PetscCall(PetscViewerASCIIPrintf(viewer, "      A drop type %" PetscInt_FMT "\n", jac->Adroptype));
1087:     }
1088:   }
1089:   PetscFunctionReturn(PETSC_SUCCESS);
1090: }

1092: static PetscErrorCode PCSetFromOptions_HYPRE_ParaSails(PC pc, PetscOptionItems *PetscOptionsObject)
1093: {
1094:   PC_HYPRE   *jac = (PC_HYPRE *)pc->data;
1095:   PetscInt    indx;
1096:   PetscBool   flag;
1097:   const char *symtlist[] = {"nonsymmetric", "SPD", "nonsymmetric,SPD"};

1099:   PetscFunctionBegin;
1100:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE ParaSails Options");
1101:   PetscCall(PetscOptionsInt("-pc_hypre_parasails_nlevels", "Number of number of levels", "None", jac->nlevels, &jac->nlevels, 0));
1102:   PetscCall(PetscOptionsReal("-pc_hypre_parasails_thresh", "Threshold", "None", jac->threshold, &jac->threshold, &flag));
1103:   if (flag) PetscCallExternal(HYPRE_ParaSailsSetParams, jac->hsolver, jac->threshold, jac->nlevels);

1105:   PetscCall(PetscOptionsReal("-pc_hypre_parasails_filter", "filter", "None", jac->filter, &jac->filter, &flag));
1106:   if (flag) PetscCallExternal(HYPRE_ParaSailsSetFilter, jac->hsolver, jac->filter);

1108:   PetscCall(PetscOptionsReal("-pc_hypre_parasails_loadbal", "Load balance", "None", jac->loadbal, &jac->loadbal, &flag));
1109:   if (flag) PetscCallExternal(HYPRE_ParaSailsSetLoadbal, jac->hsolver, jac->loadbal);

1111:   PetscCall(PetscOptionsBool("-pc_hypre_parasails_logging", "Print info to screen", "None", (PetscBool)jac->logging, (PetscBool *)&jac->logging, &flag));
1112:   if (flag) PetscCallExternal(HYPRE_ParaSailsSetLogging, jac->hsolver, jac->logging);

1114:   PetscCall(PetscOptionsBool("-pc_hypre_parasails_reuse", "Reuse nonzero pattern in preconditioner", "None", (PetscBool)jac->ruse, (PetscBool *)&jac->ruse, &flag));
1115:   if (flag) PetscCallExternal(HYPRE_ParaSailsSetReuse, jac->hsolver, jac->ruse);

1117:   PetscCall(PetscOptionsEList("-pc_hypre_parasails_sym", "Symmetry of matrix and preconditioner", "None", symtlist, PETSC_STATIC_ARRAY_LENGTH(symtlist), symtlist[0], &indx, &flag));
1118:   if (flag) {
1119:     jac->symt = indx;
1120:     PetscCallExternal(HYPRE_ParaSailsSetSym, jac->hsolver, jac->symt);
1121:   }

1123:   PetscOptionsHeadEnd();
1124:   PetscFunctionReturn(PETSC_SUCCESS);
1125: }

1127: static PetscErrorCode PCView_HYPRE_ParaSails(PC pc, PetscViewer viewer)
1128: {
1129:   PC_HYPRE   *jac = (PC_HYPRE *)pc->data;
1130:   PetscBool   iascii;
1131:   const char *symt = 0;

1133:   PetscFunctionBegin;
1134:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1135:   if (iascii) {
1136:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE ParaSails preconditioning\n"));
1137:     PetscCall(PetscViewerASCIIPrintf(viewer, "    nlevels %" PetscInt_FMT "\n", jac->nlevels));
1138:     PetscCall(PetscViewerASCIIPrintf(viewer, "    threshold %g\n", (double)jac->threshold));
1139:     PetscCall(PetscViewerASCIIPrintf(viewer, "    filter %g\n", (double)jac->filter));
1140:     PetscCall(PetscViewerASCIIPrintf(viewer, "    load balance %g\n", (double)jac->loadbal));
1141:     PetscCall(PetscViewerASCIIPrintf(viewer, "    reuse nonzero structure %s\n", PetscBools[jac->ruse]));
1142:     PetscCall(PetscViewerASCIIPrintf(viewer, "    print info to screen %s\n", PetscBools[jac->logging]));
1143:     if (!jac->symt) symt = "nonsymmetric matrix and preconditioner";
1144:     else if (jac->symt == 1) symt = "SPD matrix and preconditioner";
1145:     else if (jac->symt == 2) symt = "nonsymmetric matrix but SPD preconditioner";
1146:     else SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Unknown HYPRE ParaSails symmetric option %" PetscInt_FMT, jac->symt);
1147:     PetscCall(PetscViewerASCIIPrintf(viewer, "    %s\n", symt));
1148:   }
1149:   PetscFunctionReturn(PETSC_SUCCESS);
1150: }

1152: static PetscErrorCode PCSetFromOptions_HYPRE_AMS(PC pc, PetscOptionItems *PetscOptionsObject)
1153: {
1154:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1155:   PetscInt  n;
1156:   PetscBool flag, flag2, flag3, flag4;

1158:   PetscFunctionBegin;
1159:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE AMS Options");
1160:   PetscCall(PetscOptionsInt("-pc_hypre_ams_print_level", "Debugging output level for AMS", "None", jac->as_print, &jac->as_print, &flag));
1161:   if (flag) PetscCallExternal(HYPRE_AMSSetPrintLevel, jac->hsolver, jac->as_print);
1162:   PetscCall(PetscOptionsInt("-pc_hypre_ams_max_iter", "Maximum number of AMS multigrid iterations within PCApply", "None", jac->as_max_iter, &jac->as_max_iter, &flag));
1163:   if (flag) PetscCallExternal(HYPRE_AMSSetMaxIter, jac->hsolver, jac->as_max_iter);
1164:   PetscCall(PetscOptionsInt("-pc_hypre_ams_cycle_type", "Cycle type for AMS multigrid", "None", jac->ams_cycle_type, &jac->ams_cycle_type, &flag));
1165:   if (flag) PetscCallExternal(HYPRE_AMSSetCycleType, jac->hsolver, jac->ams_cycle_type);
1166:   PetscCall(PetscOptionsReal("-pc_hypre_ams_tol", "Error tolerance for AMS multigrid", "None", jac->as_tol, &jac->as_tol, &flag));
1167:   if (flag) PetscCallExternal(HYPRE_AMSSetTol, jac->hsolver, jac->as_tol);
1168:   PetscCall(PetscOptionsInt("-pc_hypre_ams_relax_type", "Relaxation type for AMS smoother", "None", jac->as_relax_type, &jac->as_relax_type, &flag));
1169:   PetscCall(PetscOptionsInt("-pc_hypre_ams_relax_times", "Number of relaxation steps for AMS smoother", "None", jac->as_relax_times, &jac->as_relax_times, &flag2));
1170:   PetscCall(PetscOptionsReal("-pc_hypre_ams_relax_weight", "Relaxation weight for AMS smoother", "None", jac->as_relax_weight, &jac->as_relax_weight, &flag3));
1171:   PetscCall(PetscOptionsReal("-pc_hypre_ams_omega", "SSOR coefficient for AMS smoother", "None", jac->as_omega, &jac->as_omega, &flag4));
1172:   if (flag || flag2 || flag3 || flag4) PetscCallExternal(HYPRE_AMSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
1173:   PetscCall(PetscOptionsReal("-pc_hypre_ams_amg_alpha_theta", "Threshold for strong coupling of vector Poisson AMG solver", "None", jac->as_amg_alpha_theta, &jac->as_amg_alpha_theta, &flag));
1174:   n = 5;
1175:   PetscCall(PetscOptionsIntArray("-pc_hypre_ams_amg_alpha_options", "AMG options for vector Poisson", "None", jac->as_amg_alpha_opts, &n, &flag2));
1176:   if (flag || flag2) {
1177:     PetscCallExternal(HYPRE_AMSSetAlphaAMGOptions, jac->hsolver, jac->as_amg_alpha_opts[0], /* AMG coarsen type */
1178:                       jac->as_amg_alpha_opts[1],                                            /* AMG agg_levels */
1179:                       jac->as_amg_alpha_opts[2],                                            /* AMG relax_type */
1180:                       jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3],                   /* AMG interp_type */
1181:                       jac->as_amg_alpha_opts[4]);                                           /* AMG Pmax */
1182:   }
1183:   PetscCall(PetscOptionsReal("-pc_hypre_ams_amg_beta_theta", "Threshold for strong coupling of scalar Poisson AMG solver", "None", jac->as_amg_beta_theta, &jac->as_amg_beta_theta, &flag));
1184:   n = 5;
1185:   PetscCall(PetscOptionsIntArray("-pc_hypre_ams_amg_beta_options", "AMG options for scalar Poisson solver", "None", jac->as_amg_beta_opts, &n, &flag2));
1186:   if (flag || flag2) {
1187:     PetscCallExternal(HYPRE_AMSSetBetaAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
1188:                       jac->as_amg_beta_opts[1],                                           /* AMG agg_levels */
1189:                       jac->as_amg_beta_opts[2],                                           /* AMG relax_type */
1190:                       jac->as_amg_beta_theta, jac->as_amg_beta_opts[3],                   /* AMG interp_type */
1191:                       jac->as_amg_beta_opts[4]);                                          /* AMG Pmax */
1192:   }
1193:   PetscCall(PetscOptionsInt("-pc_hypre_ams_projection_frequency", "Frequency at which a projection onto the compatible subspace for problems with zero conductivity regions is performed", "None", jac->ams_proj_freq, &jac->ams_proj_freq, &flag));
1194:   if (flag) { /* override HYPRE's default only if the options is used */
1195:     PetscCallExternal(HYPRE_AMSSetProjectionFrequency, jac->hsolver, jac->ams_proj_freq);
1196:   }
1197:   PetscOptionsHeadEnd();
1198:   PetscFunctionReturn(PETSC_SUCCESS);
1199: }

1201: static PetscErrorCode PCView_HYPRE_AMS(PC pc, PetscViewer viewer)
1202: {
1203:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1204:   PetscBool iascii;

1206:   PetscFunctionBegin;
1207:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1208:   if (iascii) {
1209:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE AMS preconditioning\n"));
1210:     PetscCall(PetscViewerASCIIPrintf(viewer, "    subspace iterations per application %" PetscInt_FMT "\n", jac->as_max_iter));
1211:     PetscCall(PetscViewerASCIIPrintf(viewer, "    subspace cycle type %" PetscInt_FMT "\n", jac->ams_cycle_type));
1212:     PetscCall(PetscViewerASCIIPrintf(viewer, "    subspace iteration tolerance %g\n", (double)jac->as_tol));
1213:     PetscCall(PetscViewerASCIIPrintf(viewer, "    smoother type %" PetscInt_FMT "\n", jac->as_relax_type));
1214:     PetscCall(PetscViewerASCIIPrintf(viewer, "    number of smoothing steps %" PetscInt_FMT "\n", jac->as_relax_times));
1215:     PetscCall(PetscViewerASCIIPrintf(viewer, "    smoother weight %g\n", (double)jac->as_relax_weight));
1216:     PetscCall(PetscViewerASCIIPrintf(viewer, "    smoother omega %g\n", (double)jac->as_omega));
1217:     if (jac->alpha_Poisson) {
1218:       PetscCall(PetscViewerASCIIPrintf(viewer, "    vector Poisson solver (passed in by user)\n"));
1219:     } else {
1220:       PetscCall(PetscViewerASCIIPrintf(viewer, "    vector Poisson solver (computed) \n"));
1221:     }
1222:     PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG coarsening type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[0]));
1223:     PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[1]));
1224:     PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG relaxation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[2]));
1225:     PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG interpolation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[3]));
1226:     PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[4]));
1227:     PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG strength threshold %g\n", (double)jac->as_amg_alpha_theta));
1228:     if (!jac->ams_beta_is_zero) {
1229:       if (jac->beta_Poisson) {
1230:         PetscCall(PetscViewerASCIIPrintf(viewer, "    scalar Poisson solver (passed in by user)\n"));
1231:       } else {
1232:         PetscCall(PetscViewerASCIIPrintf(viewer, "    scalar Poisson solver (computed) \n"));
1233:       }
1234:       PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG coarsening type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[0]));
1235:       PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_beta_opts[1]));
1236:       PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG relaxation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[2]));
1237:       PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG interpolation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[3]));
1238:       PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_beta_opts[4]));
1239:       PetscCall(PetscViewerASCIIPrintf(viewer, "        boomerAMG strength threshold %g\n", (double)jac->as_amg_beta_theta));
1240:       if (jac->ams_beta_is_zero_part) PetscCall(PetscViewerASCIIPrintf(viewer, "        compatible subspace projection frequency %" PetscInt_FMT " (-1 HYPRE uses default)\n", jac->ams_proj_freq));
1241:     } else {
1242:       PetscCall(PetscViewerASCIIPrintf(viewer, "    scalar Poisson solver not used (zero-conductivity everywhere) \n"));
1243:     }
1244:   }
1245:   PetscFunctionReturn(PETSC_SUCCESS);
1246: }

1248: static PetscErrorCode PCSetFromOptions_HYPRE_ADS(PC pc, PetscOptionItems *PetscOptionsObject)
1249: {
1250:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1251:   PetscInt  n;
1252:   PetscBool flag, flag2, flag3, flag4;

1254:   PetscFunctionBegin;
1255:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE ADS Options");
1256:   PetscCall(PetscOptionsInt("-pc_hypre_ads_print_level", "Debugging output level for ADS", "None", jac->as_print, &jac->as_print, &flag));
1257:   if (flag) PetscCallExternal(HYPRE_ADSSetPrintLevel, jac->hsolver, jac->as_print);
1258:   PetscCall(PetscOptionsInt("-pc_hypre_ads_max_iter", "Maximum number of ADS multigrid iterations within PCApply", "None", jac->as_max_iter, &jac->as_max_iter, &flag));
1259:   if (flag) PetscCallExternal(HYPRE_ADSSetMaxIter, jac->hsolver, jac->as_max_iter);
1260:   PetscCall(PetscOptionsInt("-pc_hypre_ads_cycle_type", "Cycle type for ADS multigrid", "None", jac->ads_cycle_type, &jac->ads_cycle_type, &flag));
1261:   if (flag) PetscCallExternal(HYPRE_ADSSetCycleType, jac->hsolver, jac->ads_cycle_type);
1262:   PetscCall(PetscOptionsReal("-pc_hypre_ads_tol", "Error tolerance for ADS multigrid", "None", jac->as_tol, &jac->as_tol, &flag));
1263:   if (flag) PetscCallExternal(HYPRE_ADSSetTol, jac->hsolver, jac->as_tol);
1264:   PetscCall(PetscOptionsInt("-pc_hypre_ads_relax_type", "Relaxation type for ADS smoother", "None", jac->as_relax_type, &jac->as_relax_type, &flag));
1265:   PetscCall(PetscOptionsInt("-pc_hypre_ads_relax_times", "Number of relaxation steps for ADS smoother", "None", jac->as_relax_times, &jac->as_relax_times, &flag2));
1266:   PetscCall(PetscOptionsReal("-pc_hypre_ads_relax_weight", "Relaxation weight for ADS smoother", "None", jac->as_relax_weight, &jac->as_relax_weight, &flag3));
1267:   PetscCall(PetscOptionsReal("-pc_hypre_ads_omega", "SSOR coefficient for ADS smoother", "None", jac->as_omega, &jac->as_omega, &flag4));
1268:   if (flag || flag2 || flag3 || flag4) PetscCallExternal(HYPRE_ADSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
1269:   PetscCall(PetscOptionsReal("-pc_hypre_ads_ams_theta", "Threshold for strong coupling of AMS solver inside ADS", "None", jac->as_amg_alpha_theta, &jac->as_amg_alpha_theta, &flag));
1270:   n = 5;
1271:   PetscCall(PetscOptionsIntArray("-pc_hypre_ads_ams_options", "AMG options for AMS solver inside ADS", "None", jac->as_amg_alpha_opts, &n, &flag2));
1272:   PetscCall(PetscOptionsInt("-pc_hypre_ads_ams_cycle_type", "Cycle type for AMS solver inside ADS", "None", jac->ams_cycle_type, &jac->ams_cycle_type, &flag3));
1273:   if (flag || flag2 || flag3) {
1274:     PetscCallExternal(HYPRE_ADSSetAMSOptions, jac->hsolver, jac->ams_cycle_type, /* AMS cycle type */
1275:                       jac->as_amg_alpha_opts[0],                                 /* AMG coarsen type */
1276:                       jac->as_amg_alpha_opts[1],                                 /* AMG agg_levels */
1277:                       jac->as_amg_alpha_opts[2],                                 /* AMG relax_type */
1278:                       jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3],        /* AMG interp_type */
1279:                       jac->as_amg_alpha_opts[4]);                                /* AMG Pmax */
1280:   }
1281:   PetscCall(PetscOptionsReal("-pc_hypre_ads_amg_theta", "Threshold for strong coupling of vector AMG solver inside ADS", "None", jac->as_amg_beta_theta, &jac->as_amg_beta_theta, &flag));
1282:   n = 5;
1283:   PetscCall(PetscOptionsIntArray("-pc_hypre_ads_amg_options", "AMG options for vector AMG solver inside ADS", "None", jac->as_amg_beta_opts, &n, &flag2));
1284:   if (flag || flag2) {
1285:     PetscCallExternal(HYPRE_ADSSetAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
1286:                       jac->as_amg_beta_opts[1],                                       /* AMG agg_levels */
1287:                       jac->as_amg_beta_opts[2],                                       /* AMG relax_type */
1288:                       jac->as_amg_beta_theta, jac->as_amg_beta_opts[3],               /* AMG interp_type */
1289:                       jac->as_amg_beta_opts[4]);                                      /* AMG Pmax */
1290:   }
1291:   PetscOptionsHeadEnd();
1292:   PetscFunctionReturn(PETSC_SUCCESS);
1293: }

1295: static PetscErrorCode PCView_HYPRE_ADS(PC pc, PetscViewer viewer)
1296: {
1297:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1298:   PetscBool iascii;

1300:   PetscFunctionBegin;
1301:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1302:   if (iascii) {
1303:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE ADS preconditioning\n"));
1304:     PetscCall(PetscViewerASCIIPrintf(viewer, "    subspace iterations per application %" PetscInt_FMT "\n", jac->as_max_iter));
1305:     PetscCall(PetscViewerASCIIPrintf(viewer, "    subspace cycle type %" PetscInt_FMT "\n", jac->ads_cycle_type));
1306:     PetscCall(PetscViewerASCIIPrintf(viewer, "    subspace iteration tolerance %g\n", (double)jac->as_tol));
1307:     PetscCall(PetscViewerASCIIPrintf(viewer, "    smoother type %" PetscInt_FMT "\n", jac->as_relax_type));
1308:     PetscCall(PetscViewerASCIIPrintf(viewer, "    number of smoothing steps %" PetscInt_FMT "\n", jac->as_relax_times));
1309:     PetscCall(PetscViewerASCIIPrintf(viewer, "    smoother weight %g\n", (double)jac->as_relax_weight));
1310:     PetscCall(PetscViewerASCIIPrintf(viewer, "    smoother omega %g\n", (double)jac->as_omega));
1311:     PetscCall(PetscViewerASCIIPrintf(viewer, "    AMS solver using boomerAMG\n"));
1312:     PetscCall(PetscViewerASCIIPrintf(viewer, "        subspace cycle type %" PetscInt_FMT "\n", jac->ams_cycle_type));
1313:     PetscCall(PetscViewerASCIIPrintf(viewer, "        coarsening type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[0]));
1314:     PetscCall(PetscViewerASCIIPrintf(viewer, "        levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[1]));
1315:     PetscCall(PetscViewerASCIIPrintf(viewer, "        relaxation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[2]));
1316:     PetscCall(PetscViewerASCIIPrintf(viewer, "        interpolation type %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[3]));
1317:     PetscCall(PetscViewerASCIIPrintf(viewer, "        max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_alpha_opts[4]));
1318:     PetscCall(PetscViewerASCIIPrintf(viewer, "        strength threshold %g\n", (double)jac->as_amg_alpha_theta));
1319:     PetscCall(PetscViewerASCIIPrintf(viewer, "    vector Poisson solver using boomerAMG\n"));
1320:     PetscCall(PetscViewerASCIIPrintf(viewer, "        coarsening type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[0]));
1321:     PetscCall(PetscViewerASCIIPrintf(viewer, "        levels of aggressive coarsening %" PetscInt_FMT "\n", jac->as_amg_beta_opts[1]));
1322:     PetscCall(PetscViewerASCIIPrintf(viewer, "        relaxation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[2]));
1323:     PetscCall(PetscViewerASCIIPrintf(viewer, "        interpolation type %" PetscInt_FMT "\n", jac->as_amg_beta_opts[3]));
1324:     PetscCall(PetscViewerASCIIPrintf(viewer, "        max nonzero elements in interpolation rows %" PetscInt_FMT "\n", jac->as_amg_beta_opts[4]));
1325:     PetscCall(PetscViewerASCIIPrintf(viewer, "        strength threshold %g\n", (double)jac->as_amg_beta_theta));
1326:   }
1327:   PetscFunctionReturn(PETSC_SUCCESS);
1328: }

1330: static PetscErrorCode PCHYPRESetDiscreteGradient_HYPRE(PC pc, Mat G)
1331: {
1332:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1333:   PetscBool ishypre;

1335:   PetscFunctionBegin;
1336:   PetscCall(PetscObjectTypeCompare((PetscObject)G, MATHYPRE, &ishypre));
1337:   if (ishypre) {
1338:     PetscCall(PetscObjectReference((PetscObject)G));
1339:     PetscCall(MatDestroy(&jac->G));
1340:     jac->G = G;
1341:   } else {
1342:     PetscCall(MatDestroy(&jac->G));
1343:     PetscCall(MatConvert(G, MATHYPRE, MAT_INITIAL_MATRIX, &jac->G));
1344:   }
1345:   PetscFunctionReturn(PETSC_SUCCESS);
1346: }

1348: /*@
1349:    PCHYPRESetDiscreteGradient - Set discrete gradient matrix for `PCHYPRE` type of ams or ads

1351:    Collective

1353:    Input Parameters:
1354: +  pc - the preconditioning context
1355: -  G - the discrete gradient

1357:    Level: intermediate

1359:    Notes:
1360:     G should have as many rows as the number of edges and as many columns as the number of vertices in the mesh

1362:     Each row of G has 2 nonzeros, with column indexes being the global indexes of edge's endpoints: matrix entries are +1 and -1 depending on edge orientation

1364:    Developer Note:
1365:    This automatically converts the matrix to `MATHYPRE` if it is not already of that type

1367: .seealso: `PCHYPRE`, `PCHYPRESetDiscreteCurl()`
1368: @*/
1369: PetscErrorCode PCHYPRESetDiscreteGradient(PC pc, Mat G)
1370: {
1371:   PetscFunctionBegin;
1374:   PetscCheckSameComm(pc, 1, G, 2);
1375:   PetscTryMethod(pc, "PCHYPRESetDiscreteGradient_C", (PC, Mat), (pc, G));
1376:   PetscFunctionReturn(PETSC_SUCCESS);
1377: }

1379: static PetscErrorCode PCHYPRESetDiscreteCurl_HYPRE(PC pc, Mat C)
1380: {
1381:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1382:   PetscBool ishypre;

1384:   PetscFunctionBegin;
1385:   PetscCall(PetscObjectTypeCompare((PetscObject)C, MATHYPRE, &ishypre));
1386:   if (ishypre) {
1387:     PetscCall(PetscObjectReference((PetscObject)C));
1388:     PetscCall(MatDestroy(&jac->C));
1389:     jac->C = C;
1390:   } else {
1391:     PetscCall(MatDestroy(&jac->C));
1392:     PetscCall(MatConvert(C, MATHYPRE, MAT_INITIAL_MATRIX, &jac->C));
1393:   }
1394:   PetscFunctionReturn(PETSC_SUCCESS);
1395: }

1397: /*@
1398:    PCHYPRESetDiscreteCurl - Set discrete curl matrx for `PCHYPRE` type of ads

1400:    Collective

1402:    Input Parameters:
1403: +  pc - the preconditioning context
1404: -  C - the discrete curl

1406:    Level: intermediate

1408:    Notes:
1409:     C should have as many rows as the number of faces and as many columns as the number of edges in the mesh

1411:     Each row of G has as many nonzeros as the number of edges of a face, with column indexes being the global indexes of the corresponding edge: matrix entries are +1 and -1 depending on edge orientation with respect to the face orientation

1413:    Developer Note:
1414:    This automatically converts the matrix to `MATHYPRE` if it is not already of that type

1416:    If this is only for  `PCHYPRE` type of ads it should be called `PCHYPREADSSetDiscreteCurl()`

1418: .seealso: `PCHYPRE`, `PCHYPRESetDiscreteGradient()`
1419: @*/
1420: PetscErrorCode PCHYPRESetDiscreteCurl(PC pc, Mat C)
1421: {
1422:   PetscFunctionBegin;
1425:   PetscCheckSameComm(pc, 1, C, 2);
1426:   PetscTryMethod(pc, "PCHYPRESetDiscreteCurl_C", (PC, Mat), (pc, C));
1427:   PetscFunctionReturn(PETSC_SUCCESS);
1428: }

1430: static PetscErrorCode PCHYPRESetInterpolations_HYPRE(PC pc, PetscInt dim, Mat RT_PiFull, Mat RT_Pi[], Mat ND_PiFull, Mat ND_Pi[])
1431: {
1432:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1433:   PetscBool ishypre;
1434:   PetscInt  i;
1435:   PetscFunctionBegin;

1437:   PetscCall(MatDestroy(&jac->RT_PiFull));
1438:   PetscCall(MatDestroy(&jac->ND_PiFull));
1439:   for (i = 0; i < 3; ++i) {
1440:     PetscCall(MatDestroy(&jac->RT_Pi[i]));
1441:     PetscCall(MatDestroy(&jac->ND_Pi[i]));
1442:   }

1444:   jac->dim = dim;
1445:   if (RT_PiFull) {
1446:     PetscCall(PetscObjectTypeCompare((PetscObject)RT_PiFull, MATHYPRE, &ishypre));
1447:     if (ishypre) {
1448:       PetscCall(PetscObjectReference((PetscObject)RT_PiFull));
1449:       jac->RT_PiFull = RT_PiFull;
1450:     } else {
1451:       PetscCall(MatConvert(RT_PiFull, MATHYPRE, MAT_INITIAL_MATRIX, &jac->RT_PiFull));
1452:     }
1453:   }
1454:   if (RT_Pi) {
1455:     for (i = 0; i < dim; ++i) {
1456:       if (RT_Pi[i]) {
1457:         PetscCall(PetscObjectTypeCompare((PetscObject)RT_Pi[i], MATHYPRE, &ishypre));
1458:         if (ishypre) {
1459:           PetscCall(PetscObjectReference((PetscObject)RT_Pi[i]));
1460:           jac->RT_Pi[i] = RT_Pi[i];
1461:         } else {
1462:           PetscCall(MatConvert(RT_Pi[i], MATHYPRE, MAT_INITIAL_MATRIX, &jac->RT_Pi[i]));
1463:         }
1464:       }
1465:     }
1466:   }
1467:   if (ND_PiFull) {
1468:     PetscCall(PetscObjectTypeCompare((PetscObject)ND_PiFull, MATHYPRE, &ishypre));
1469:     if (ishypre) {
1470:       PetscCall(PetscObjectReference((PetscObject)ND_PiFull));
1471:       jac->ND_PiFull = ND_PiFull;
1472:     } else {
1473:       PetscCall(MatConvert(ND_PiFull, MATHYPRE, MAT_INITIAL_MATRIX, &jac->ND_PiFull));
1474:     }
1475:   }
1476:   if (ND_Pi) {
1477:     for (i = 0; i < dim; ++i) {
1478:       if (ND_Pi[i]) {
1479:         PetscCall(PetscObjectTypeCompare((PetscObject)ND_Pi[i], MATHYPRE, &ishypre));
1480:         if (ishypre) {
1481:           PetscCall(PetscObjectReference((PetscObject)ND_Pi[i]));
1482:           jac->ND_Pi[i] = ND_Pi[i];
1483:         } else {
1484:           PetscCall(MatConvert(ND_Pi[i], MATHYPRE, MAT_INITIAL_MATRIX, &jac->ND_Pi[i]));
1485:         }
1486:       }
1487:     }
1488:   }

1490:   PetscFunctionReturn(PETSC_SUCCESS);
1491: }

1493: /*@
1494:    PCHYPRESetInterpolations - Set interpolation matrices for `PCHYPRE` type of ams or ads

1496:    Collective

1498:    Input Parameters:
1499: +  pc - the preconditioning context
1500: -  dim - the dimension of the problem, only used in AMS
1501: -  RT_PiFull - Raviart-Thomas interpolation matrix
1502: -  RT_Pi - x/y/z component of Raviart-Thomas interpolation matrix
1503: -  ND_PiFull - Nedelec interpolation matrix
1504: -  ND_Pi - x/y/z component of Nedelec interpolation matrix

1506:    Level: intermediate

1508:    Notes:
1509:     For AMS, only Nedelec interpolation matrices are needed, the Raviart-Thomas interpolation matrices can be set to NULL.

1511:     For ADS, both type of interpolation matrices are needed.

1513:    Developer Note:
1514:    This automatically converts the matrix to `MATHYPRE` if it is not already of that type

1516: .seealso: `PCHYPRE`
1517: @*/
1518: PetscErrorCode PCHYPRESetInterpolations(PC pc, PetscInt dim, Mat RT_PiFull, Mat RT_Pi[], Mat ND_PiFull, Mat ND_Pi[])
1519: {
1520:   PetscInt i;

1522:   PetscFunctionBegin;
1524:   if (RT_PiFull) {
1526:     PetscCheckSameComm(pc, 1, RT_PiFull, 3);
1527:   }
1528:   if (RT_Pi) {
1530:     for (i = 0; i < dim; ++i) {
1531:       if (RT_Pi[i]) {
1533:         PetscCheckSameComm(pc, 1, RT_Pi[i], 4);
1534:       }
1535:     }
1536:   }
1537:   if (ND_PiFull) {
1539:     PetscCheckSameComm(pc, 1, ND_PiFull, 5);
1540:   }
1541:   if (ND_Pi) {
1543:     for (i = 0; i < dim; ++i) {
1544:       if (ND_Pi[i]) {
1546:         PetscCheckSameComm(pc, 1, ND_Pi[i], 6);
1547:       }
1548:     }
1549:   }
1550:   PetscTryMethod(pc, "PCHYPRESetInterpolations_C", (PC, PetscInt, Mat, Mat[], Mat, Mat[]), (pc, dim, RT_PiFull, RT_Pi, ND_PiFull, ND_Pi));
1551:   PetscFunctionReturn(PETSC_SUCCESS);
1552: }

1554: static PetscErrorCode PCHYPRESetPoissonMatrix_HYPRE(PC pc, Mat A, PetscBool isalpha)
1555: {
1556:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1557:   PetscBool ishypre;

1559:   PetscFunctionBegin;
1560:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATHYPRE, &ishypre));
1561:   if (ishypre) {
1562:     if (isalpha) {
1563:       PetscCall(PetscObjectReference((PetscObject)A));
1564:       PetscCall(MatDestroy(&jac->alpha_Poisson));
1565:       jac->alpha_Poisson = A;
1566:     } else {
1567:       if (A) {
1568:         PetscCall(PetscObjectReference((PetscObject)A));
1569:       } else {
1570:         jac->ams_beta_is_zero = PETSC_TRUE;
1571:       }
1572:       PetscCall(MatDestroy(&jac->beta_Poisson));
1573:       jac->beta_Poisson = A;
1574:     }
1575:   } else {
1576:     if (isalpha) {
1577:       PetscCall(MatDestroy(&jac->alpha_Poisson));
1578:       PetscCall(MatConvert(A, MATHYPRE, MAT_INITIAL_MATRIX, &jac->alpha_Poisson));
1579:     } else {
1580:       if (A) {
1581:         PetscCall(MatDestroy(&jac->beta_Poisson));
1582:         PetscCall(MatConvert(A, MATHYPRE, MAT_INITIAL_MATRIX, &jac->beta_Poisson));
1583:       } else {
1584:         PetscCall(MatDestroy(&jac->beta_Poisson));
1585:         jac->ams_beta_is_zero = PETSC_TRUE;
1586:       }
1587:     }
1588:   }
1589:   PetscFunctionReturn(PETSC_SUCCESS);
1590: }

1592: /*@
1593:    PCHYPRESetAlphaPoissonMatrix - Set vector Poisson matrix for `PCHYPRE` of type ams

1595:    Collective

1597:    Input Parameters:
1598: +  pc - the preconditioning context
1599: -  A - the matrix

1601:    Level: intermediate

1603:    Note:
1604:     A should be obtained by discretizing the vector valued Poisson problem with linear finite elements

1606:    Developer Note:
1607:    This automatically converts the matrix to `MATHYPRE` if it is not already of that type

1609:    If this is only for  `PCHYPRE` type of ams it should be called `PCHYPREAMSSetAlphaPoissonMatrix()`

1611: .seealso: `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetBetaPoissonMatrix()`
1612: @*/
1613: PetscErrorCode PCHYPRESetAlphaPoissonMatrix(PC pc, Mat A)
1614: {
1615:   PetscFunctionBegin;
1618:   PetscCheckSameComm(pc, 1, A, 2);
1619:   PetscTryMethod(pc, "PCHYPRESetPoissonMatrix_C", (PC, Mat, PetscBool), (pc, A, PETSC_TRUE));
1620:   PetscFunctionReturn(PETSC_SUCCESS);
1621: }

1623: /*@
1624:    PCHYPRESetBetaPoissonMatrix - Set Poisson matrix for `PCHYPRE` of type ams

1626:    Collective

1628:    Input Parameters:
1629: +  pc - the preconditioning context
1630: -  A - the matrix, or NULL to turn it off

1632:    Level: intermediate

1634:    Note:
1635:    A should be obtained by discretizing the Poisson problem with linear finite elements.

1637:    Developer Note:
1638:    This automatically converts the matrix to `MATHYPRE` if it is not already of that type

1640:    If this is only for  `PCHYPRE` type of ams it should be called `PCHYPREAMSPCHYPRESetBetaPoissonMatrix()`

1642: .seealso: `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetAlphaPoissonMatrix()`
1643: @*/
1644: PetscErrorCode PCHYPRESetBetaPoissonMatrix(PC pc, Mat A)
1645: {
1646:   PetscFunctionBegin;
1648:   if (A) {
1650:     PetscCheckSameComm(pc, 1, A, 2);
1651:   }
1652:   PetscTryMethod(pc, "PCHYPRESetPoissonMatrix_C", (PC, Mat, PetscBool), (pc, A, PETSC_FALSE));
1653:   PetscFunctionReturn(PETSC_SUCCESS);
1654: }

1656: static PetscErrorCode PCHYPRESetEdgeConstantVectors_HYPRE(PC pc, Vec ozz, Vec zoz, Vec zzo)
1657: {
1658:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

1660:   PetscFunctionBegin;
1661:   /* throw away any vector if already set */
1662:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[0]));
1663:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[1]));
1664:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->constants[2]));
1665:   PetscCall(VecHYPRE_IJVectorCreate(ozz->map, &jac->constants[0]));
1666:   PetscCall(VecHYPRE_IJVectorCopy(ozz, jac->constants[0]));
1667:   PetscCall(VecHYPRE_IJVectorCreate(zoz->map, &jac->constants[1]));
1668:   PetscCall(VecHYPRE_IJVectorCopy(zoz, jac->constants[1]));
1669:   jac->dim = 2;
1670:   if (zzo) {
1671:     PetscCall(VecHYPRE_IJVectorCreate(zzo->map, &jac->constants[2]));
1672:     PetscCall(VecHYPRE_IJVectorCopy(zzo, jac->constants[2]));
1673:     jac->dim++;
1674:   }
1675:   PetscFunctionReturn(PETSC_SUCCESS);
1676: }

1678: /*@
1679:    PCHYPRESetEdgeConstantVectors - Set the representation of the constant vector fields in the edge element basis for `PCHYPRE` of type ams

1681:    Collective

1683:    Input Parameters:
1684: +  pc - the preconditioning context
1685: -  ozz - vector representing (1,0,0) (or (1,0) in 2D)
1686: -  zoz - vector representing (0,1,0) (or (0,1) in 2D)
1687: -  zzo - vector representing (0,0,1) (use NULL in 2D)

1689:    Level: intermediate

1691:    Developer Note:
1692:    If this is only for  `PCHYPRE` type of ams it should be called `PCHYPREAMSSetEdgeConstantVectors()`

1694: .seealso: `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetAlphaPoissonMatrix()`
1695: @*/
1696: PetscErrorCode PCHYPRESetEdgeConstantVectors(PC pc, Vec ozz, Vec zoz, Vec zzo)
1697: {
1698:   PetscFunctionBegin;
1703:   PetscCheckSameComm(pc, 1, ozz, 2);
1704:   PetscCheckSameComm(pc, 1, zoz, 3);
1705:   if (zzo) PetscCheckSameComm(pc, 1, zzo, 4);
1706:   PetscTryMethod(pc, "PCHYPRESetEdgeConstantVectors_C", (PC, Vec, Vec, Vec), (pc, ozz, zoz, zzo));
1707:   PetscFunctionReturn(PETSC_SUCCESS);
1708: }

1710: static PetscErrorCode PCHYPREAMSSetInteriorNodes_HYPRE(PC pc, Vec interior)
1711: {
1712:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

1714:   PetscFunctionBegin;
1715:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->interior));
1716:   PetscCall(VecHYPRE_IJVectorCreate(interior->map, &jac->interior));
1717:   PetscCall(VecHYPRE_IJVectorCopy(interior, jac->interior));
1718:   jac->ams_beta_is_zero_part = PETSC_TRUE;
1719:   PetscFunctionReturn(PETSC_SUCCESS);
1720: }

1722: /*@
1723:   PCHYPREAMSSetInteriorNodes - Set the list of interior nodes to a zero-conductivity region for `PCHYPRE` of type ams

1725:    Collective

1727:    Input Parameters:
1728: +  pc - the preconditioning context
1729: -  interior - vector. node is interior if its entry in the array is 1.0.

1731:    Level: intermediate

1733:    Note:
1734:    This calls `HYPRE_AMSSetInteriorNodes()`

1736:    Developer Note:
1737:    If this is only for  `PCHYPRE` type of ams it should be called `PCHYPREAMSSetInteriorNodes()`

1739: .seealso: `PCHYPRE`, `PCHYPRESetDiscreteGradient()`, `PCHYPRESetDiscreteCurl()`, `PCHYPRESetAlphaPoissonMatrix()`
1740: @*/
1741: PetscErrorCode PCHYPREAMSSetInteriorNodes(PC pc, Vec interior)
1742: {
1743:   PetscFunctionBegin;
1746:   PetscCheckSameComm(pc, 1, interior, 2);
1747:   PetscTryMethod(pc, "PCHYPREAMSSetInteriorNodes_C", (PC, Vec), (pc, interior));
1748:   PetscFunctionReturn(PETSC_SUCCESS);
1749: }

1751: static PetscErrorCode PCSetCoordinates_HYPRE(PC pc, PetscInt dim, PetscInt nloc, PetscReal *coords)
1752: {
1753:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1754:   Vec       tv;
1755:   PetscInt  i;

1757:   PetscFunctionBegin;
1758:   /* throw away any coordinate vector if already set */
1759:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[0]));
1760:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[1]));
1761:   PetscCall(VecHYPRE_IJVectorDestroy(&jac->coords[2]));
1762:   jac->dim = dim;

1764:   /* compute IJ vector for coordinates */
1765:   PetscCall(VecCreate(PetscObjectComm((PetscObject)pc), &tv));
1766:   PetscCall(VecSetType(tv, VECSTANDARD));
1767:   PetscCall(VecSetSizes(tv, nloc, PETSC_DECIDE));
1768:   for (i = 0; i < dim; i++) {
1769:     PetscScalar *array;
1770:     PetscInt     j;

1772:     PetscCall(VecHYPRE_IJVectorCreate(tv->map, &jac->coords[i]));
1773:     PetscCall(VecGetArrayWrite(tv, &array));
1774:     for (j = 0; j < nloc; j++) array[j] = coords[j * dim + i];
1775:     PetscCall(VecRestoreArrayWrite(tv, &array));
1776:     PetscCall(VecHYPRE_IJVectorCopy(tv, jac->coords[i]));
1777:   }
1778:   PetscCall(VecDestroy(&tv));
1779:   PetscFunctionReturn(PETSC_SUCCESS);
1780: }

1782: static PetscErrorCode PCHYPREGetType_HYPRE(PC pc, const char *name[])
1783: {
1784:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;

1786:   PetscFunctionBegin;
1787:   *name = jac->hypre_type;
1788:   PetscFunctionReturn(PETSC_SUCCESS);
1789: }

1791: static PetscErrorCode PCHYPRESetType_HYPRE(PC pc, const char name[])
1792: {
1793:   PC_HYPRE *jac = (PC_HYPRE *)pc->data;
1794:   PetscBool flag;

1796:   PetscFunctionBegin;
1797:   if (jac->hypre_type) {
1798:     PetscCall(PetscStrcmp(jac->hypre_type, name, &flag));
1799:     PetscCheck(flag, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Cannot reset the HYPRE preconditioner type once it has been set");
1800:     PetscFunctionReturn(PETSC_SUCCESS);
1801:   } else {
1802:     PetscCall(PetscStrallocpy(name, &jac->hypre_type));
1803:   }

1805:   jac->maxiter         = PETSC_DEFAULT;
1806:   jac->tol             = PETSC_DEFAULT;
1807:   jac->printstatistics = PetscLogPrintInfo;

1809:   PetscCall(PetscStrcmp("pilut", jac->hypre_type, &flag));
1810:   if (flag) {
1811:     PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
1812:     PetscCallExternal(HYPRE_ParCSRPilutCreate, jac->comm_hypre, &jac->hsolver);
1813:     pc->ops->setfromoptions = PCSetFromOptions_HYPRE_Pilut;
1814:     pc->ops->view           = PCView_HYPRE_Pilut;
1815:     jac->destroy            = HYPRE_ParCSRPilutDestroy;
1816:     jac->setup              = HYPRE_ParCSRPilutSetup;
1817:     jac->solve              = HYPRE_ParCSRPilutSolve;
1818:     jac->factorrowsize      = PETSC_DEFAULT;
1819:     PetscFunctionReturn(PETSC_SUCCESS);
1820:   }
1821:   PetscCall(PetscStrcmp("euclid", jac->hypre_type, &flag));
1822:   if (flag) {
1823: #if defined(PETSC_USE_64BIT_INDICES)
1824:     SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Hypre Euclid does not support 64 bit indices");
1825: #endif
1826:     PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
1827:     PetscCallExternal(HYPRE_EuclidCreate, jac->comm_hypre, &jac->hsolver);
1828:     pc->ops->setfromoptions = PCSetFromOptions_HYPRE_Euclid;
1829:     pc->ops->view           = PCView_HYPRE_Euclid;
1830:     jac->destroy            = HYPRE_EuclidDestroy;
1831:     jac->setup              = HYPRE_EuclidSetup;
1832:     jac->solve              = HYPRE_EuclidSolve;
1833:     jac->factorrowsize      = PETSC_DEFAULT;
1834:     jac->eu_level           = PETSC_DEFAULT; /* default */
1835:     PetscFunctionReturn(PETSC_SUCCESS);
1836:   }
1837:   PetscCall(PetscStrcmp("parasails", jac->hypre_type, &flag));
1838:   if (flag) {
1839:     PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &jac->comm_hypre));
1840:     PetscCallExternal(HYPRE_ParaSailsCreate, jac->comm_hypre, &jac->hsolver);
1841:     pc->ops->setfromoptions = PCSetFromOptions_HYPRE_ParaSails;
1842:     pc->ops->view           = PCView_HYPRE_ParaSails;
1843:     jac->destroy            = HYPRE_ParaSailsDestroy;
1844:     jac->setup              = HYPRE_ParaSailsSetup;
1845:     jac->solve              = HYPRE_ParaSailsSolve;
1846:     /* initialize */
1847:     jac->nlevels   = 1;
1848:     jac->threshold = .1;
1849:     jac->filter    = .1;
1850:     jac->loadbal   = 0;
1851:     if (PetscLogPrintInfo) jac->logging = (int)PETSC_TRUE;
1852:     else jac->logging = (int)PETSC_FALSE;

1854:     jac->ruse = (int)PETSC_FALSE;
1855:     jac->symt = 0;
1856:     PetscCallExternal(HYPRE_ParaSailsSetParams, jac->hsolver, jac->threshold, jac->nlevels);
1857:     PetscCallExternal(HYPRE_ParaSailsSetFilter, jac->hsolver, jac->filter);
1858:     PetscCallExternal(HYPRE_ParaSailsSetLoadbal, jac->hsolver, jac->loadbal);
1859:     PetscCallExternal(HYPRE_ParaSailsSetLogging, jac->hsolver, jac->logging);
1860:     PetscCallExternal(HYPRE_ParaSailsSetReuse, jac->hsolver, jac->ruse);
1861:     PetscCallExternal(HYPRE_ParaSailsSetSym, jac->hsolver, jac->symt);
1862:     PetscFunctionReturn(PETSC_SUCCESS);
1863:   }
1864:   PetscCall(PetscStrcmp("boomeramg", jac->hypre_type, &flag));
1865:   if (flag) {
1866:     PetscCallExternal(HYPRE_BoomerAMGCreate, &jac->hsolver);
1867:     pc->ops->setfromoptions  = PCSetFromOptions_HYPRE_BoomerAMG;
1868:     pc->ops->view            = PCView_HYPRE_BoomerAMG;
1869:     pc->ops->applytranspose  = PCApplyTranspose_HYPRE_BoomerAMG;
1870:     pc->ops->applyrichardson = PCApplyRichardson_HYPRE_BoomerAMG;
1871:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", PCGetInterpolations_BoomerAMG));
1872:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", PCGetCoarseOperators_BoomerAMG));
1873:     jac->destroy         = HYPRE_BoomerAMGDestroy;
1874:     jac->setup           = HYPRE_BoomerAMGSetup;
1875:     jac->solve           = HYPRE_BoomerAMGSolve;
1876:     jac->applyrichardson = PETSC_FALSE;
1877:     /* these defaults match the hypre defaults */
1878:     jac->cycletype       = 1;
1879:     jac->maxlevels       = 25;
1880:     jac->maxiter         = 1;
1881:     jac->tol             = 0.0; /* tolerance of zero indicates use as preconditioner (suppresses convergence errors) */
1882:     jac->truncfactor     = 0.0;
1883:     jac->strongthreshold = .25;
1884:     jac->maxrowsum       = .9;
1885:     jac->coarsentype     = 6;
1886:     jac->measuretype     = 0;
1887:     jac->gridsweeps[0] = jac->gridsweeps[1] = jac->gridsweeps[2] = 1;
1888:     jac->smoothtype                                              = -1; /* Not set by default */
1889:     jac->smoothnumlevels                                         = 25;
1890:     jac->eu_level                                                = 0;
1891:     jac->eu_droptolerance                                        = 0;
1892:     jac->eu_bj                                                   = 0;
1893:     jac->relaxtype[0] = jac->relaxtype[1] = 6; /* Defaults to SYMMETRIC since in PETSc we are using a PC - most likely with CG */
1894:     jac->relaxtype[2]                     = 9; /*G.E. */
1895:     jac->relaxweight                      = 1.0;
1896:     jac->outerrelaxweight                 = 1.0;
1897:     jac->relaxorder                       = 1;
1898:     jac->interptype                       = 0;
1899:     jac->Rtype                            = 0;
1900:     jac->Rstrongthreshold                 = 0.25;
1901:     jac->Rfilterthreshold                 = 0.0;
1902:     jac->Adroptype                        = -1;
1903:     jac->Adroptol                         = 0.0;
1904:     jac->agg_nl                           = 0;
1905:     jac->agg_interptype                   = 4;
1906:     jac->pmax                             = 0;
1907:     jac->truncfactor                      = 0.0;
1908:     jac->agg_num_paths                    = 1;
1909:     jac->maxc                             = 9;
1910:     jac->minc                             = 1;
1911:     jac->nodal_coarsening                 = 0;
1912:     jac->nodal_coarsening_diag            = 0;
1913:     jac->vec_interp_variant               = 0;
1914:     jac->vec_interp_qmax                  = 0;
1915:     jac->vec_interp_smooth                = PETSC_FALSE;
1916:     jac->interp_refine                    = 0;
1917:     jac->nodal_relax                      = PETSC_FALSE;
1918:     jac->nodal_relax_levels               = 1;
1919:     jac->rap2                             = 0;

1921:     /* GPU defaults
1922:          from https://hypre.readthedocs.io/en/latest/solvers-boomeramg.html#gpu-supported-options
1923:          and /src/parcsr_ls/par_amg.c */
1924: #if defined(PETSC_HAVE_HYPRE_DEVICE)
1925:     jac->keeptranspose  = PETSC_TRUE;
1926:     jac->mod_rap2       = 1;
1927:     jac->coarsentype    = 8;
1928:     jac->relaxorder     = 0;
1929:     jac->interptype     = 6;
1930:     jac->relaxtype[0]   = 18;
1931:     jac->relaxtype[1]   = 18;
1932:     jac->agg_interptype = 7;
1933: #else
1934:     jac->keeptranspose = PETSC_FALSE;
1935:     jac->mod_rap2      = 0;
1936: #endif
1937:     PetscCallExternal(HYPRE_BoomerAMGSetCycleType, jac->hsolver, jac->cycletype);
1938:     PetscCallExternal(HYPRE_BoomerAMGSetMaxLevels, jac->hsolver, jac->maxlevels);
1939:     PetscCallExternal(HYPRE_BoomerAMGSetMaxIter, jac->hsolver, jac->maxiter);
1940:     PetscCallExternal(HYPRE_BoomerAMGSetTol, jac->hsolver, jac->tol);
1941:     PetscCallExternal(HYPRE_BoomerAMGSetTruncFactor, jac->hsolver, jac->truncfactor);
1942:     PetscCallExternal(HYPRE_BoomerAMGSetStrongThreshold, jac->hsolver, jac->strongthreshold);
1943:     PetscCallExternal(HYPRE_BoomerAMGSetMaxRowSum, jac->hsolver, jac->maxrowsum);
1944:     PetscCallExternal(HYPRE_BoomerAMGSetCoarsenType, jac->hsolver, jac->coarsentype);
1945:     PetscCallExternal(HYPRE_BoomerAMGSetMeasureType, jac->hsolver, jac->measuretype);
1946:     PetscCallExternal(HYPRE_BoomerAMGSetRelaxOrder, jac->hsolver, jac->relaxorder);
1947:     PetscCallExternal(HYPRE_BoomerAMGSetInterpType, jac->hsolver, jac->interptype);
1948:     PetscCallExternal(HYPRE_BoomerAMGSetAggNumLevels, jac->hsolver, jac->agg_nl);
1949:     PetscCallExternal(HYPRE_BoomerAMGSetAggInterpType, jac->hsolver, jac->agg_interptype);
1950:     PetscCallExternal(HYPRE_BoomerAMGSetPMaxElmts, jac->hsolver, jac->pmax);
1951:     PetscCallExternal(HYPRE_BoomerAMGSetNumPaths, jac->hsolver, jac->agg_num_paths);
1952:     PetscCallExternal(HYPRE_BoomerAMGSetRelaxType, jac->hsolver, jac->relaxtype[0]);  /* defaults coarse to 9 */
1953:     PetscCallExternal(HYPRE_BoomerAMGSetNumSweeps, jac->hsolver, jac->gridsweeps[0]); /* defaults coarse to 1 */
1954:     PetscCallExternal(HYPRE_BoomerAMGSetMaxCoarseSize, jac->hsolver, jac->maxc);
1955:     PetscCallExternal(HYPRE_BoomerAMGSetMinCoarseSize, jac->hsolver, jac->minc);
1956:     /* GPU */
1957: #if PETSC_PKG_HYPRE_VERSION_GE(2, 18, 0)
1958:     PetscCallExternal(HYPRE_BoomerAMGSetKeepTranspose, jac->hsolver, jac->keeptranspose ? 1 : 0);
1959:     PetscCallExternal(HYPRE_BoomerAMGSetRAP2, jac->hsolver, jac->rap2);
1960:     PetscCallExternal(HYPRE_BoomerAMGSetModuleRAP2, jac->hsolver, jac->mod_rap2);
1961: #endif

1963:     /* AIR */
1964: #if PETSC_PKG_HYPRE_VERSION_GE(2, 18, 0)
1965:     PetscCallExternal(HYPRE_BoomerAMGSetRestriction, jac->hsolver, jac->Rtype);
1966:     PetscCallExternal(HYPRE_BoomerAMGSetStrongThresholdR, jac->hsolver, jac->Rstrongthreshold);
1967:     PetscCallExternal(HYPRE_BoomerAMGSetFilterThresholdR, jac->hsolver, jac->Rfilterthreshold);
1968:     PetscCallExternal(HYPRE_BoomerAMGSetADropTol, jac->hsolver, jac->Adroptol);
1969:     PetscCallExternal(HYPRE_BoomerAMGSetADropType, jac->hsolver, jac->Adroptype);
1970: #endif
1971:     PetscFunctionReturn(PETSC_SUCCESS);
1972:   }
1973:   PetscCall(PetscStrcmp("ams", jac->hypre_type, &flag));
1974:   if (flag) {
1975:     PetscCallExternal(HYPRE_AMSCreate, &jac->hsolver);
1976:     pc->ops->setfromoptions = PCSetFromOptions_HYPRE_AMS;
1977:     pc->ops->view           = PCView_HYPRE_AMS;
1978:     jac->destroy            = HYPRE_AMSDestroy;
1979:     jac->setup              = HYPRE_AMSSetup;
1980:     jac->solve              = HYPRE_AMSSolve;
1981:     jac->coords[0]          = NULL;
1982:     jac->coords[1]          = NULL;
1983:     jac->coords[2]          = NULL;
1984:     jac->interior           = NULL;
1985:     /* solver parameters: these are borrowed from mfem package, and they are not the default values from HYPRE AMS */
1986:     jac->as_print       = 0;
1987:     jac->as_max_iter    = 1;  /* used as a preconditioner */
1988:     jac->as_tol         = 0.; /* used as a preconditioner */
1989:     jac->ams_cycle_type = 13;
1990:     /* Smoothing options */
1991:     jac->as_relax_type   = 2;
1992:     jac->as_relax_times  = 1;
1993:     jac->as_relax_weight = 1.0;
1994:     jac->as_omega        = 1.0;
1995:     /* Vector valued Poisson AMG solver parameters: coarsen type, agg_levels, relax_type, interp_type, Pmax */
1996:     jac->as_amg_alpha_opts[0] = 10;
1997:     jac->as_amg_alpha_opts[1] = 1;
1998:     jac->as_amg_alpha_opts[2] = 6;
1999:     jac->as_amg_alpha_opts[3] = 6;
2000:     jac->as_amg_alpha_opts[4] = 4;
2001:     jac->as_amg_alpha_theta   = 0.25;
2002:     /* Scalar Poisson AMG solver parameters: coarsen type, agg_levels, relax_type, interp_type, Pmax */
2003:     jac->as_amg_beta_opts[0] = 10;
2004:     jac->as_amg_beta_opts[1] = 1;
2005:     jac->as_amg_beta_opts[2] = 6;
2006:     jac->as_amg_beta_opts[3] = 6;
2007:     jac->as_amg_beta_opts[4] = 4;
2008:     jac->as_amg_beta_theta   = 0.25;
2009:     PetscCallExternal(HYPRE_AMSSetPrintLevel, jac->hsolver, jac->as_print);
2010:     PetscCallExternal(HYPRE_AMSSetMaxIter, jac->hsolver, jac->as_max_iter);
2011:     PetscCallExternal(HYPRE_AMSSetCycleType, jac->hsolver, jac->ams_cycle_type);
2012:     PetscCallExternal(HYPRE_AMSSetTol, jac->hsolver, jac->as_tol);
2013:     PetscCallExternal(HYPRE_AMSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
2014:     PetscCallExternal(HYPRE_AMSSetAlphaAMGOptions, jac->hsolver, jac->as_amg_alpha_opts[0], /* AMG coarsen type */
2015:                       jac->as_amg_alpha_opts[1],                                            /* AMG agg_levels */
2016:                       jac->as_amg_alpha_opts[2],                                            /* AMG relax_type */
2017:                       jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3],                   /* AMG interp_type */
2018:                       jac->as_amg_alpha_opts[4]);                                           /* AMG Pmax */
2019:     PetscCallExternal(HYPRE_AMSSetBetaAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0],   /* AMG coarsen type */
2020:                       jac->as_amg_beta_opts[1],                                             /* AMG agg_levels */
2021:                       jac->as_amg_beta_opts[2],                                             /* AMG relax_type */
2022:                       jac->as_amg_beta_theta, jac->as_amg_beta_opts[3],                     /* AMG interp_type */
2023:                       jac->as_amg_beta_opts[4]);                                            /* AMG Pmax */
2024:     /* Zero conductivity */
2025:     jac->ams_beta_is_zero      = PETSC_FALSE;
2026:     jac->ams_beta_is_zero_part = PETSC_FALSE;
2027:     PetscFunctionReturn(PETSC_SUCCESS);
2028:   }
2029:   PetscCall(PetscStrcmp("ads", jac->hypre_type, &flag));
2030:   if (flag) {
2031:     PetscCallExternal(HYPRE_ADSCreate, &jac->hsolver);
2032:     pc->ops->setfromoptions = PCSetFromOptions_HYPRE_ADS;
2033:     pc->ops->view           = PCView_HYPRE_ADS;
2034:     jac->destroy            = HYPRE_ADSDestroy;
2035:     jac->setup              = HYPRE_ADSSetup;
2036:     jac->solve              = HYPRE_ADSSolve;
2037:     jac->coords[0]          = NULL;
2038:     jac->coords[1]          = NULL;
2039:     jac->coords[2]          = NULL;
2040:     /* solver parameters: these are borrowed from mfem package, and they are not the default values from HYPRE ADS */
2041:     jac->as_print       = 0;
2042:     jac->as_max_iter    = 1;  /* used as a preconditioner */
2043:     jac->as_tol         = 0.; /* used as a preconditioner */
2044:     jac->ads_cycle_type = 13;
2045:     /* Smoothing options */
2046:     jac->as_relax_type   = 2;
2047:     jac->as_relax_times  = 1;
2048:     jac->as_relax_weight = 1.0;
2049:     jac->as_omega        = 1.0;
2050:     /* AMS solver parameters: cycle_type, coarsen type, agg_levels, relax_type, interp_type, Pmax */
2051:     jac->ams_cycle_type       = 14;
2052:     jac->as_amg_alpha_opts[0] = 10;
2053:     jac->as_amg_alpha_opts[1] = 1;
2054:     jac->as_amg_alpha_opts[2] = 6;
2055:     jac->as_amg_alpha_opts[3] = 6;
2056:     jac->as_amg_alpha_opts[4] = 4;
2057:     jac->as_amg_alpha_theta   = 0.25;
2058:     /* Vector Poisson AMG solver parameters: coarsen type, agg_levels, relax_type, interp_type, Pmax */
2059:     jac->as_amg_beta_opts[0] = 10;
2060:     jac->as_amg_beta_opts[1] = 1;
2061:     jac->as_amg_beta_opts[2] = 6;
2062:     jac->as_amg_beta_opts[3] = 6;
2063:     jac->as_amg_beta_opts[4] = 4;
2064:     jac->as_amg_beta_theta   = 0.25;
2065:     PetscCallExternal(HYPRE_ADSSetPrintLevel, jac->hsolver, jac->as_print);
2066:     PetscCallExternal(HYPRE_ADSSetMaxIter, jac->hsolver, jac->as_max_iter);
2067:     PetscCallExternal(HYPRE_ADSSetCycleType, jac->hsolver, jac->ams_cycle_type);
2068:     PetscCallExternal(HYPRE_ADSSetTol, jac->hsolver, jac->as_tol);
2069:     PetscCallExternal(HYPRE_ADSSetSmoothingOptions, jac->hsolver, jac->as_relax_type, jac->as_relax_times, jac->as_relax_weight, jac->as_omega);
2070:     PetscCallExternal(HYPRE_ADSSetAMSOptions, jac->hsolver, jac->ams_cycle_type,      /* AMG coarsen type */
2071:                       jac->as_amg_alpha_opts[0],                                      /* AMG coarsen type */
2072:                       jac->as_amg_alpha_opts[1],                                      /* AMG agg_levels */
2073:                       jac->as_amg_alpha_opts[2],                                      /* AMG relax_type */
2074:                       jac->as_amg_alpha_theta, jac->as_amg_alpha_opts[3],             /* AMG interp_type */
2075:                       jac->as_amg_alpha_opts[4]);                                     /* AMG Pmax */
2076:     PetscCallExternal(HYPRE_ADSSetAMGOptions, jac->hsolver, jac->as_amg_beta_opts[0], /* AMG coarsen type */
2077:                       jac->as_amg_beta_opts[1],                                       /* AMG agg_levels */
2078:                       jac->as_amg_beta_opts[2],                                       /* AMG relax_type */
2079:                       jac->as_amg_beta_theta, jac->as_amg_beta_opts[3],               /* AMG interp_type */
2080:                       jac->as_amg_beta_opts[4]);                                      /* AMG Pmax */
2081:     PetscFunctionReturn(PETSC_SUCCESS);
2082:   }
2083:   PetscCall(PetscFree(jac->hypre_type));

2085:   jac->hypre_type = NULL;
2086:   SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown HYPRE preconditioner %s; Choices are euclid, pilut, parasails, boomeramg, ams", name);
2087: }

2089: /*
2090:     It only gets here if the HYPRE type has not been set before the call to
2091:    ...SetFromOptions() which actually is most of the time
2092: */
2093: PetscErrorCode PCSetFromOptions_HYPRE(PC pc, PetscOptionItems *PetscOptionsObject)
2094: {
2095:   PetscInt    indx;
2096:   const char *type[] = {"euclid", "pilut", "parasails", "boomeramg", "ams", "ads"};
2097:   PetscBool   flg;

2099:   PetscFunctionBegin;
2100:   PetscOptionsHeadBegin(PetscOptionsObject, "HYPRE preconditioner options");
2101:   PetscCall(PetscOptionsEList("-pc_hypre_type", "HYPRE preconditioner type", "PCHYPRESetType", type, PETSC_STATIC_ARRAY_LENGTH(type), "boomeramg", &indx, &flg));
2102:   if (flg) {
2103:     PetscCall(PCHYPRESetType_HYPRE(pc, type[indx]));
2104:   } else {
2105:     PetscCall(PCHYPRESetType_HYPRE(pc, "boomeramg"));
2106:   }
2107:   PetscTryTypeMethod(pc, setfromoptions, PetscOptionsObject);
2108:   PetscOptionsHeadEnd();
2109:   PetscFunctionReturn(PETSC_SUCCESS);
2110: }

2112: /*@C
2113:      PCHYPRESetType - Sets which hypre preconditioner you wish to use

2115:    Input Parameters:
2116: +     pc - the preconditioner context
2117: -     name - either  euclid, pilut, parasails, boomeramg, ams, ads

2119:    Options Database Key:
2120:    -pc_hypre_type - One of euclid, pilut, parasails, boomeramg, ams, ads

2122:    Level: intermediate

2124: .seealso: `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCHYPRE`
2125: @*/
2126: PetscErrorCode PCHYPRESetType(PC pc, const char name[])
2127: {
2128:   PetscFunctionBegin;
2131:   PetscTryMethod(pc, "PCHYPRESetType_C", (PC, const char[]), (pc, name));
2132:   PetscFunctionReturn(PETSC_SUCCESS);
2133: }

2135: /*@C
2136:      PCHYPREGetType - Gets which hypre preconditioner you are using

2138:    Input Parameter:
2139: .     pc - the preconditioner context

2141:    Output Parameter:
2142: .     name - either  euclid, pilut, parasails, boomeramg, ams, ads

2144:    Level: intermediate

2146: .seealso: `PCCreate()`, `PCHYPRESetType()`, `PCType`, `PC`, `PCHYPRE`
2147: @*/
2148: PetscErrorCode PCHYPREGetType(PC pc, const char *name[])
2149: {
2150:   PetscFunctionBegin;
2153:   PetscTryMethod(pc, "PCHYPREGetType_C", (PC, const char *[]), (pc, name));
2154:   PetscFunctionReturn(PETSC_SUCCESS);
2155: }

2157: /*@C
2158:    PCMGGalerkinSetMatProductAlgorithm - Set type of SpGEMM for hypre to use on GPUs

2160:    Logically Collective

2162:    Input Parameters:
2163: +  pc - the hypre context
2164: -  type - one of 'cusparse', 'hypre'

2166:    Options Database Key:
2167: .  -pc_mg_galerkin_mat_product_algorithm <cusparse,hypre> - Type of SpGEMM to use in hypre

2169:    Level: intermediate

2171:    Developer Note:
2172:    How the name starts with `PCMG`, should it not be `PCHYPREBoomerAMG`?

2174: .seealso: `PCHYPRE`, `PCMGGalerkinGetMatProductAlgorithm()`
2175: @*/
2176: PetscErrorCode PCMGGalerkinSetMatProductAlgorithm(PC pc, const char name[])
2177: {
2178:   PetscFunctionBegin;
2180:   PetscTryMethod(pc, "PCMGGalerkinSetMatProductAlgorithm_C", (PC, const char[]), (pc, name));
2181:   PetscFunctionReturn(PETSC_SUCCESS);
2182: }

2184: /*@C
2185:    PCMGGalerkinGetMatProductAlgorithm - Get type of SpGEMM for hypre to use on GPUs

2187:    Not Collective

2189:    Input Parameter:
2190: .  pc - the multigrid context

2192:    Output Parameter:
2193: .  name - one of 'cusparse', 'hypre'

2195:    Level: intermediate

2197: .seealso: `PCHYPRE`, ``PCMGGalerkinSetMatProductAlgorithm()`
2198: @*/
2199: PetscErrorCode PCMGGalerkinGetMatProductAlgorithm(PC pc, const char *name[])
2200: {
2201:   PetscFunctionBegin;
2203:   PetscTryMethod(pc, "PCMGGalerkinGetMatProductAlgorithm_C", (PC, const char *[]), (pc, name));
2204:   PetscFunctionReturn(PETSC_SUCCESS);
2205: }

2207: /*MC
2208:      PCHYPRE - Allows you to use the matrix element based preconditioners in the LLNL package hypre as PETSc `PC`

2210:    Options Database Keys:
2211: +   -pc_hypre_type - One of euclid, pilut, parasails, boomeramg, ams, ads
2212: .   -pc_hypre_boomeramg_nodal_coarsen <n> - where n is from 1 to 6 (see `HYPRE_BOOMERAMGSetNodal()`)
2213: .   -pc_hypre_boomeramg_vec_interp_variant <v> - where v is from 1 to 3 (see `HYPRE_BoomerAMGSetInterpVecVariant()`)
2214: -   Many others, run with -pc_type hypre -pc_hypre_type XXX -help to see options for the XXX preconditioner

2216:    Level: intermediate

2218:    Notes:
2219:     Apart from pc_hypre_type (for which there is `PCHYPRESetType()`),
2220:           the many hypre options can ONLY be set via the options database (e.g. the command line
2221:           or with `PetscOptionsSetValue()`, there are no functions to set them)

2223:           The options -pc_hypre_boomeramg_max_iter and -pc_hypre_boomeramg_tol refer to the number of iterations
2224:           (V-cycles) and tolerance that boomeramg does EACH time it is called. So for example, if
2225:           -pc_hypre_boomeramg_max_iter is set to 2 then 2-V-cycles are being used to define the preconditioner
2226:           (-pc_hypre_boomeramg_tol should be set to 0.0 - the default - to strictly use a fixed number of
2227:           iterations per hypre call). -ksp_max_it and -ksp_rtol STILL determine the total number of iterations
2228:           and tolerance for the Krylov solver. For example, if -pc_hypre_boomeramg_max_iter is 2 and -ksp_max_it is 10
2229:           then AT MOST twenty V-cycles of boomeramg will be called.

2231:            Note that the option -pc_hypre_boomeramg_relax_type_all defaults to symmetric relaxation
2232:            (symmetric-SOR/Jacobi), which is required for Krylov solvers like CG that expect symmetry.
2233:            Otherwise, you may want to use -pc_hypre_boomeramg_relax_type_all SOR/Jacobi.
2234:           If you wish to use BoomerAMG WITHOUT a Krylov method use -ksp_type richardson NOT -ksp_type preonly
2235:           and use -ksp_max_it to control the number of V-cycles.
2236:           (see the PETSc FAQ.html at the PETSc website under the Documentation tab).

2238:           `MatSetNearNullSpace()` - if you provide a near null space to your matrix it is ignored by hypre UNLESS you also use
2239:           the following two options: ``-pc_hypre_boomeramg_nodal_coarsen <n> -pc_hypre_boomeramg_vec_interp_variant <v>``

2241:           See `PCPFMG`, `PCSMG`, and `PCSYSPFMG` for access to hypre's other (nonalgebraic) multigrid solvers

2243:           For `PCHYPRE` type of ams or ads auxiliary data must be provided to the preconditioner with `PCHYPRESetDiscreteGradient()`,
2244:           `PCHYPRESetDiscreteCurl()`, `PCHYPRESetInterpolations()`, `PCHYPRESetAlphaPoissonMatrix()`, `PCHYPRESetBetaPoissonMatrix()`, `PCHYPRESetEdgeConstantVectors()`,
2245:           `PCHYPREAMSSetInteriorNodes()`

2247:    PETSc provides its own geometric and algebraic multigrid solvers `PCMG` and `PCGAMG`, also see `PCHMG` which is useful for certain multicomponent problems

2249:    GPU Notes:
2250:      To configure hypre BoomerAMG so that it can utilize NVIDIA GPUs run ./configure --download-hypre --with-cuda
2251:      Then pass `VECCUDA` vectors and `MATAIJCUSPARSE` matrices to the solvers and PETSc will automatically utilize hypre's GPU solvers.

2253:      To configure hypre BoomerAMG so that it can utilize AMD GPUs run ./configure --download-hypre --with-hip
2254:      Then pass `VECHIP` vectors to the solvers and PETSc will automatically utilize hypre's GPU solvers.

2256: .seealso: `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCHYPRESetType()`, `PCPFMG`, `PCGAMG`, `PCSYSPFMG`, `PCSMG`, `PCHYPRESetDiscreteGradient()`,
2257:           `PCHYPRESetDiscreteCurl()`, `PCHYPRESetInterpolations()`, `PCHYPRESetAlphaPoissonMatrix()`, `PCHYPRESetBetaPoissonMatrix()`, `PCHYPRESetEdgeConstantVectors()`,
2258:           PCHYPREAMSSetInteriorNodes()
2259: M*/

2261: PETSC_EXTERN PetscErrorCode PCCreate_HYPRE(PC pc)
2262: {
2263:   PC_HYPRE *jac;

2265:   PetscFunctionBegin;
2266:   PetscCall(PetscNew(&jac));

2268:   pc->data                = jac;
2269:   pc->ops->reset          = PCReset_HYPRE;
2270:   pc->ops->destroy        = PCDestroy_HYPRE;
2271:   pc->ops->setfromoptions = PCSetFromOptions_HYPRE;
2272:   pc->ops->setup          = PCSetUp_HYPRE;
2273:   pc->ops->apply          = PCApply_HYPRE;
2274:   jac->comm_hypre         = MPI_COMM_NULL;
2275:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetType_C", PCHYPRESetType_HYPRE));
2276:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREGetType_C", PCHYPREGetType_HYPRE));
2277:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCSetCoordinates_C", PCSetCoordinates_HYPRE));
2278:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteGradient_C", PCHYPRESetDiscreteGradient_HYPRE));
2279:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetDiscreteCurl_C", PCHYPRESetDiscreteCurl_HYPRE));
2280:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetInterpolations_C", PCHYPRESetInterpolations_HYPRE));
2281:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetEdgeConstantVectors_C", PCHYPRESetEdgeConstantVectors_HYPRE));
2282:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPREAMSSetInteriorNodes_C", PCHYPREAMSSetInteriorNodes_HYPRE));
2283:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCHYPRESetPoissonMatrix_C", PCHYPRESetPoissonMatrix_HYPRE));
2284:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinSetMatProductAlgorithm_C", PCMGGalerkinSetMatProductAlgorithm_HYPRE_BoomerAMG));
2285:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGalerkinGetMatProductAlgorithm_C", PCMGGalerkinGetMatProductAlgorithm_HYPRE_BoomerAMG));
2286: #if defined(PETSC_HAVE_HYPRE_DEVICE)
2287:   #if defined(HYPRE_USING_HIP)
2288:   PetscCall(PetscDeviceInitialize(PETSC_DEVICE_HIP));
2289:   #endif
2290:   #if defined(HYPRE_USING_CUDA)
2291:   PetscCall(PetscDeviceInitialize(PETSC_DEVICE_CUDA));
2292:   #endif
2293: #endif
2294:   PetscFunctionReturn(PETSC_SUCCESS);
2295: }

2297: typedef struct {
2298:   MPI_Comm           hcomm; /* does not share comm with HYPRE_StructMatrix because need to create solver before getting matrix */
2299:   HYPRE_StructSolver hsolver;

2301:   /* keep copy of PFMG options used so may view them */
2302:   PetscInt  its;
2303:   double    tol;
2304:   PetscInt  relax_type;
2305:   PetscInt  rap_type;
2306:   PetscInt  num_pre_relax, num_post_relax;
2307:   PetscInt  max_levels;
2308:   PetscInt  skip_relax;
2309:   PetscBool print_statistics;
2310: } PC_PFMG;

2312: PetscErrorCode PCDestroy_PFMG(PC pc)
2313: {
2314:   PC_PFMG *ex = (PC_PFMG *)pc->data;

2316:   PetscFunctionBegin;
2317:   if (ex->hsolver) PetscCallExternal(HYPRE_StructPFMGDestroy, ex->hsolver);
2318:   PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2319:   PetscCall(PetscFree(pc->data));
2320:   PetscFunctionReturn(PETSC_SUCCESS);
2321: }

2323: static const char *PFMGRelaxType[] = {"Jacobi", "Weighted-Jacobi", "symmetric-Red/Black-Gauss-Seidel", "Red/Black-Gauss-Seidel"};
2324: static const char *PFMGRAPType[]   = {"Galerkin", "non-Galerkin"};

2326: PetscErrorCode PCView_PFMG(PC pc, PetscViewer viewer)
2327: {
2328:   PetscBool iascii;
2329:   PC_PFMG  *ex = (PC_PFMG *)pc->data;

2331:   PetscFunctionBegin;
2332:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
2333:   if (iascii) {
2334:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE PFMG preconditioning\n"));
2335:     PetscCall(PetscViewerASCIIPrintf(viewer, "    max iterations %" PetscInt_FMT "\n", ex->its));
2336:     PetscCall(PetscViewerASCIIPrintf(viewer, "    tolerance %g\n", ex->tol));
2337:     PetscCall(PetscViewerASCIIPrintf(viewer, "    relax type %s\n", PFMGRelaxType[ex->relax_type]));
2338:     PetscCall(PetscViewerASCIIPrintf(viewer, "    RAP type %s\n", PFMGRAPType[ex->rap_type]));
2339:     PetscCall(PetscViewerASCIIPrintf(viewer, "    number pre-relax %" PetscInt_FMT " post-relax %" PetscInt_FMT "\n", ex->num_pre_relax, ex->num_post_relax));
2340:     PetscCall(PetscViewerASCIIPrintf(viewer, "    max levels %" PetscInt_FMT "\n", ex->max_levels));
2341:     PetscCall(PetscViewerASCIIPrintf(viewer, "    skip relax %" PetscInt_FMT "\n", ex->skip_relax));
2342:   }
2343:   PetscFunctionReturn(PETSC_SUCCESS);
2344: }

2346: PetscErrorCode PCSetFromOptions_PFMG(PC pc, PetscOptionItems *PetscOptionsObject)
2347: {
2348:   PC_PFMG *ex = (PC_PFMG *)pc->data;

2350:   PetscFunctionBegin;
2351:   PetscOptionsHeadBegin(PetscOptionsObject, "PFMG options");
2352:   PetscCall(PetscOptionsBool("-pc_pfmg_print_statistics", "Print statistics", "HYPRE_StructPFMGSetPrintLevel", ex->print_statistics, &ex->print_statistics, NULL));
2353:   PetscCall(PetscOptionsInt("-pc_pfmg_its", "Number of iterations of PFMG to use as preconditioner", "HYPRE_StructPFMGSetMaxIter", ex->its, &ex->its, NULL));
2354:   PetscCallExternal(HYPRE_StructPFMGSetMaxIter, ex->hsolver, ex->its);
2355:   PetscCall(PetscOptionsInt("-pc_pfmg_num_pre_relax", "Number of smoothing steps before coarse grid", "HYPRE_StructPFMGSetNumPreRelax", ex->num_pre_relax, &ex->num_pre_relax, NULL));
2356:   PetscCallExternal(HYPRE_StructPFMGSetNumPreRelax, ex->hsolver, ex->num_pre_relax);
2357:   PetscCall(PetscOptionsInt("-pc_pfmg_num_post_relax", "Number of smoothing steps after coarse grid", "HYPRE_StructPFMGSetNumPostRelax", ex->num_post_relax, &ex->num_post_relax, NULL));
2358:   PetscCallExternal(HYPRE_StructPFMGSetNumPostRelax, ex->hsolver, ex->num_post_relax);

2360:   PetscCall(PetscOptionsInt("-pc_pfmg_max_levels", "Max Levels for MG hierarchy", "HYPRE_StructPFMGSetMaxLevels", ex->max_levels, &ex->max_levels, NULL));
2361:   PetscCallExternal(HYPRE_StructPFMGSetMaxLevels, ex->hsolver, ex->max_levels);

2363:   PetscCall(PetscOptionsReal("-pc_pfmg_tol", "Tolerance of PFMG", "HYPRE_StructPFMGSetTol", ex->tol, &ex->tol, NULL));
2364:   PetscCallExternal(HYPRE_StructPFMGSetTol, ex->hsolver, ex->tol);
2365:   PetscCall(PetscOptionsEList("-pc_pfmg_relax_type", "Relax type for the up and down cycles", "HYPRE_StructPFMGSetRelaxType", PFMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(PFMGRelaxType), PFMGRelaxType[ex->relax_type], &ex->relax_type, NULL));
2366:   PetscCallExternal(HYPRE_StructPFMGSetRelaxType, ex->hsolver, ex->relax_type);
2367:   PetscCall(PetscOptionsEList("-pc_pfmg_rap_type", "RAP type", "HYPRE_StructPFMGSetRAPType", PFMGRAPType, PETSC_STATIC_ARRAY_LENGTH(PFMGRAPType), PFMGRAPType[ex->rap_type], &ex->rap_type, NULL));
2368:   PetscCallExternal(HYPRE_StructPFMGSetRAPType, ex->hsolver, ex->rap_type);
2369:   PetscCall(PetscOptionsInt("-pc_pfmg_skip_relax", "Skip relaxation on certain grids for isotropic problems. This can greatly improve efficiency by eliminating unnecessary relaxations when the underlying problem is isotropic", "HYPRE_StructPFMGSetSkipRelax", ex->skip_relax, &ex->skip_relax, NULL));
2370:   PetscCallExternal(HYPRE_StructPFMGSetSkipRelax, ex->hsolver, ex->skip_relax);
2371:   PetscOptionsHeadEnd();
2372:   PetscFunctionReturn(PETSC_SUCCESS);
2373: }

2375: PetscErrorCode PCApply_PFMG(PC pc, Vec x, Vec y)
2376: {
2377:   PC_PFMG           *ex = (PC_PFMG *)pc->data;
2378:   PetscScalar       *yy;
2379:   const PetscScalar *xx;
2380:   PetscInt           ilower[3], iupper[3];
2381:   HYPRE_Int          hlower[3], hupper[3];
2382:   Mat_HYPREStruct   *mx = (Mat_HYPREStruct *)(pc->pmat->data);

2384:   PetscFunctionBegin;
2385:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2386:   PetscCall(DMDAGetCorners(mx->da, &ilower[0], &ilower[1], &ilower[2], &iupper[0], &iupper[1], &iupper[2]));
2387:   /* when HYPRE_MIXEDINT is defined, sizeof(HYPRE_Int) == 32 */
2388:   iupper[0] += ilower[0] - 1;
2389:   iupper[1] += ilower[1] - 1;
2390:   iupper[2] += ilower[2] - 1;
2391:   hlower[0] = (HYPRE_Int)ilower[0];
2392:   hlower[1] = (HYPRE_Int)ilower[1];
2393:   hlower[2] = (HYPRE_Int)ilower[2];
2394:   hupper[0] = (HYPRE_Int)iupper[0];
2395:   hupper[1] = (HYPRE_Int)iupper[1];
2396:   hupper[2] = (HYPRE_Int)iupper[2];

2398:   /* copy x values over to hypre */
2399:   PetscCallExternal(HYPRE_StructVectorSetConstantValues, mx->hb, 0.0);
2400:   PetscCall(VecGetArrayRead(x, &xx));
2401:   PetscCallExternal(HYPRE_StructVectorSetBoxValues, mx->hb, hlower, hupper, (HYPRE_Complex *)xx);
2402:   PetscCall(VecRestoreArrayRead(x, &xx));
2403:   PetscCallExternal(HYPRE_StructVectorAssemble, mx->hb);
2404:   PetscCallExternal(HYPRE_StructPFMGSolve, ex->hsolver, mx->hmat, mx->hb, mx->hx);

2406:   /* copy solution values back to PETSc */
2407:   PetscCall(VecGetArray(y, &yy));
2408:   PetscCallExternal(HYPRE_StructVectorGetBoxValues, mx->hx, hlower, hupper, (HYPRE_Complex *)yy);
2409:   PetscCall(VecRestoreArray(y, &yy));
2410:   PetscFunctionReturn(PETSC_SUCCESS);
2411: }

2413: static PetscErrorCode PCApplyRichardson_PFMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
2414: {
2415:   PC_PFMG  *jac = (PC_PFMG *)pc->data;
2416:   HYPRE_Int oits;

2418:   PetscFunctionBegin;
2419:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2420:   PetscCallExternal(HYPRE_StructPFMGSetMaxIter, jac->hsolver, its * jac->its);
2421:   PetscCallExternal(HYPRE_StructPFMGSetTol, jac->hsolver, rtol);

2423:   PetscCall(PCApply_PFMG(pc, b, y));
2424:   PetscCallExternal(HYPRE_StructPFMGGetNumIterations, jac->hsolver, &oits);
2425:   *outits = oits;
2426:   if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
2427:   else *reason = PCRICHARDSON_CONVERGED_RTOL;
2428:   PetscCallExternal(HYPRE_StructPFMGSetTol, jac->hsolver, jac->tol);
2429:   PetscCallExternal(HYPRE_StructPFMGSetMaxIter, jac->hsolver, jac->its);
2430:   PetscFunctionReturn(PETSC_SUCCESS);
2431: }

2433: PetscErrorCode PCSetUp_PFMG(PC pc)
2434: {
2435:   PC_PFMG         *ex = (PC_PFMG *)pc->data;
2436:   Mat_HYPREStruct *mx = (Mat_HYPREStruct *)(pc->pmat->data);
2437:   PetscBool        flg;

2439:   PetscFunctionBegin;
2440:   PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRESTRUCT, &flg));
2441:   PetscCheck(flg, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use MATHYPRESTRUCT with this preconditioner");

2443:   /* create the hypre solver object and set its information */
2444:   if (ex->hsolver) PetscCallExternal(HYPRE_StructPFMGDestroy, ex->hsolver);
2445:   PetscCallExternal(HYPRE_StructPFMGCreate, ex->hcomm, &ex->hsolver);

2447:   // Print Hypre statistics about the solve process
2448:   if (ex->print_statistics) PetscCallExternal(HYPRE_StructPFMGSetPrintLevel, ex->hsolver, 3);

2450:   // The hypre options must be repeated here because the StructPFMG was destroyed and recreated
2451:   PetscCallExternal(HYPRE_StructPFMGSetMaxIter, ex->hsolver, ex->its);
2452:   PetscCallExternal(HYPRE_StructPFMGSetNumPreRelax, ex->hsolver, ex->num_pre_relax);
2453:   PetscCallExternal(HYPRE_StructPFMGSetNumPostRelax, ex->hsolver, ex->num_post_relax);
2454:   PetscCallExternal(HYPRE_StructPFMGSetMaxLevels, ex->hsolver, ex->max_levels);
2455:   PetscCallExternal(HYPRE_StructPFMGSetTol, ex->hsolver, ex->tol);
2456:   PetscCallExternal(HYPRE_StructPFMGSetRelaxType, ex->hsolver, ex->relax_type);
2457:   PetscCallExternal(HYPRE_StructPFMGSetRAPType, ex->hsolver, ex->rap_type);

2459:   PetscCallExternal(HYPRE_StructPFMGSetup, ex->hsolver, mx->hmat, mx->hb, mx->hx);
2460:   PetscCallExternal(HYPRE_StructPFMGSetZeroGuess, ex->hsolver);
2461:   PetscFunctionReturn(PETSC_SUCCESS);
2462: }

2464: /*MC
2465:      PCPFMG - the hypre PFMG multigrid solver

2467:    Options Database Keys:
2468: + -pc_pfmg_its <its> - number of iterations of PFMG to use as preconditioner
2469: . -pc_pfmg_num_pre_relax <steps> - number of smoothing steps before coarse grid solve
2470: . -pc_pfmg_num_post_relax <steps> - number of smoothing steps after coarse grid solve
2471: . -pc_pfmg_tol <tol> - tolerance of PFMG
2472: . -pc_pfmg_relax_type - relaxation type for the up and down cycles, one of Jacobi,Weighted-Jacobi,symmetric-Red/Black-Gauss-Seidel,Red/Black-Gauss-Seidel
2473: . -pc_pfmg_rap_type - type of coarse matrix generation, one of Galerkin,non-Galerkin
2474: - -pc_pfmg_skip_relax - skip relaxation on certain grids for isotropic problems. This can greatly improve efficiency by eliminating unnecessary relaxations
2475:                         when the underlying problem is isotropic, one of 0,1

2477:    Level: advanced

2479:    Notes:
2480:    This is for CELL-centered descretizations

2482:    See `PCSYSPFMG` for a version suitable for systems of PDEs, and `PCSMG`

2484:    See `PCHYPRE` for hypre's BoomerAMG algebraic multigrid solver

2486:    This must be used with the `MATHYPRESTRUCT` matrix type.

2488:    This provides only some of the functionality of PFMG, it supports only one block per process defined by a PETSc `DMDA`.

2490: .seealso: `PCMG`, `MATHYPRESTRUCT`, `PCHYPRE`, `PCGAMG`, `PCSYSPFMG`, `PCSMG`
2491: M*/

2493: PETSC_EXTERN PetscErrorCode PCCreate_PFMG(PC pc)
2494: {
2495:   PC_PFMG *ex;

2497:   PetscFunctionBegin;
2498:   PetscCall(PetscNew(&ex));
2499:   pc->data = ex;

2501:   ex->its              = 1;
2502:   ex->tol              = 1.e-8;
2503:   ex->relax_type       = 1;
2504:   ex->rap_type         = 0;
2505:   ex->num_pre_relax    = 1;
2506:   ex->num_post_relax   = 1;
2507:   ex->max_levels       = 0;
2508:   ex->skip_relax       = 0;
2509:   ex->print_statistics = PETSC_FALSE;

2511:   pc->ops->setfromoptions  = PCSetFromOptions_PFMG;
2512:   pc->ops->view            = PCView_PFMG;
2513:   pc->ops->destroy         = PCDestroy_PFMG;
2514:   pc->ops->apply           = PCApply_PFMG;
2515:   pc->ops->applyrichardson = PCApplyRichardson_PFMG;
2516:   pc->ops->setup           = PCSetUp_PFMG;

2518:   PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2519:   PetscCallExternal(HYPRE_StructPFMGCreate, ex->hcomm, &ex->hsolver);
2520:   PetscFunctionReturn(PETSC_SUCCESS);
2521: }

2523: /* we know we are working with a HYPRE_SStructMatrix */
2524: typedef struct {
2525:   MPI_Comm            hcomm; /* does not share comm with HYPRE_SStructMatrix because need to create solver before getting matrix */
2526:   HYPRE_SStructSolver ss_solver;

2528:   /* keep copy of SYSPFMG options used so may view them */
2529:   PetscInt its;
2530:   double   tol;
2531:   PetscInt relax_type;
2532:   PetscInt num_pre_relax, num_post_relax;
2533: } PC_SysPFMG;

2535: PetscErrorCode PCDestroy_SysPFMG(PC pc)
2536: {
2537:   PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;

2539:   PetscFunctionBegin;
2540:   if (ex->ss_solver) PetscCallExternal(HYPRE_SStructSysPFMGDestroy, ex->ss_solver);
2541:   PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2542:   PetscCall(PetscFree(pc->data));
2543:   PetscFunctionReturn(PETSC_SUCCESS);
2544: }

2546: static const char *SysPFMGRelaxType[] = {"Weighted-Jacobi", "Red/Black-Gauss-Seidel"};

2548: PetscErrorCode PCView_SysPFMG(PC pc, PetscViewer viewer)
2549: {
2550:   PetscBool   iascii;
2551:   PC_SysPFMG *ex = (PC_SysPFMG *)pc->data;

2553:   PetscFunctionBegin;
2554:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
2555:   if (iascii) {
2556:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE SysPFMG preconditioning\n"));
2557:     PetscCall(PetscViewerASCIIPrintf(viewer, "  max iterations %" PetscInt_FMT "\n", ex->its));
2558:     PetscCall(PetscViewerASCIIPrintf(viewer, "  tolerance %g\n", ex->tol));
2559:     PetscCall(PetscViewerASCIIPrintf(viewer, "  relax type %s\n", PFMGRelaxType[ex->relax_type]));
2560:     PetscCall(PetscViewerASCIIPrintf(viewer, "  number pre-relax %" PetscInt_FMT " post-relax %" PetscInt_FMT "\n", ex->num_pre_relax, ex->num_post_relax));
2561:   }
2562:   PetscFunctionReturn(PETSC_SUCCESS);
2563: }

2565: PetscErrorCode PCSetFromOptions_SysPFMG(PC pc, PetscOptionItems *PetscOptionsObject)
2566: {
2567:   PC_SysPFMG *ex  = (PC_SysPFMG *)pc->data;
2568:   PetscBool   flg = PETSC_FALSE;

2570:   PetscFunctionBegin;
2571:   PetscOptionsHeadBegin(PetscOptionsObject, "SysPFMG options");
2572:   PetscCall(PetscOptionsBool("-pc_syspfmg_print_statistics", "Print statistics", "HYPRE_SStructSysPFMGSetPrintLevel", flg, &flg, NULL));
2573:   if (flg) PetscCallExternal(HYPRE_SStructSysPFMGSetPrintLevel, ex->ss_solver, 3);
2574:   PetscCall(PetscOptionsInt("-pc_syspfmg_its", "Number of iterations of SysPFMG to use as preconditioner", "HYPRE_SStructSysPFMGSetMaxIter", ex->its, &ex->its, NULL));
2575:   PetscCallExternal(HYPRE_SStructSysPFMGSetMaxIter, ex->ss_solver, ex->its);
2576:   PetscCall(PetscOptionsInt("-pc_syspfmg_num_pre_relax", "Number of smoothing steps before coarse grid", "HYPRE_SStructSysPFMGSetNumPreRelax", ex->num_pre_relax, &ex->num_pre_relax, NULL));
2577:   PetscCallExternal(HYPRE_SStructSysPFMGSetNumPreRelax, ex->ss_solver, ex->num_pre_relax);
2578:   PetscCall(PetscOptionsInt("-pc_syspfmg_num_post_relax", "Number of smoothing steps after coarse grid", "HYPRE_SStructSysPFMGSetNumPostRelax", ex->num_post_relax, &ex->num_post_relax, NULL));
2579:   PetscCallExternal(HYPRE_SStructSysPFMGSetNumPostRelax, ex->ss_solver, ex->num_post_relax);

2581:   PetscCall(PetscOptionsReal("-pc_syspfmg_tol", "Tolerance of SysPFMG", "HYPRE_SStructSysPFMGSetTol", ex->tol, &ex->tol, NULL));
2582:   PetscCallExternal(HYPRE_SStructSysPFMGSetTol, ex->ss_solver, ex->tol);
2583:   PetscCall(PetscOptionsEList("-pc_syspfmg_relax_type", "Relax type for the up and down cycles", "HYPRE_SStructSysPFMGSetRelaxType", SysPFMGRelaxType, PETSC_STATIC_ARRAY_LENGTH(SysPFMGRelaxType), SysPFMGRelaxType[ex->relax_type], &ex->relax_type, NULL));
2584:   PetscCallExternal(HYPRE_SStructSysPFMGSetRelaxType, ex->ss_solver, ex->relax_type);
2585:   PetscOptionsHeadEnd();
2586:   PetscFunctionReturn(PETSC_SUCCESS);
2587: }

2589: PetscErrorCode PCApply_SysPFMG(PC pc, Vec x, Vec y)
2590: {
2591:   PC_SysPFMG        *ex = (PC_SysPFMG *)pc->data;
2592:   PetscScalar       *yy;
2593:   const PetscScalar *xx;
2594:   PetscInt           ilower[3], iupper[3];
2595:   HYPRE_Int          hlower[3], hupper[3];
2596:   Mat_HYPRESStruct  *mx       = (Mat_HYPRESStruct *)(pc->pmat->data);
2597:   PetscInt           ordering = mx->dofs_order;
2598:   PetscInt           nvars    = mx->nvars;
2599:   PetscInt           part     = 0;
2600:   PetscInt           size;
2601:   PetscInt           i;

2603:   PetscFunctionBegin;
2604:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2605:   PetscCall(DMDAGetCorners(mx->da, &ilower[0], &ilower[1], &ilower[2], &iupper[0], &iupper[1], &iupper[2]));
2606:   /* when HYPRE_MIXEDINT is defined, sizeof(HYPRE_Int) == 32 */
2607:   iupper[0] += ilower[0] - 1;
2608:   iupper[1] += ilower[1] - 1;
2609:   iupper[2] += ilower[2] - 1;
2610:   hlower[0] = (HYPRE_Int)ilower[0];
2611:   hlower[1] = (HYPRE_Int)ilower[1];
2612:   hlower[2] = (HYPRE_Int)ilower[2];
2613:   hupper[0] = (HYPRE_Int)iupper[0];
2614:   hupper[1] = (HYPRE_Int)iupper[1];
2615:   hupper[2] = (HYPRE_Int)iupper[2];

2617:   size = 1;
2618:   for (i = 0; i < 3; i++) size *= (iupper[i] - ilower[i] + 1);

2620:   /* copy x values over to hypre for variable ordering */
2621:   if (ordering) {
2622:     PetscCallExternal(HYPRE_SStructVectorSetConstantValues, mx->ss_b, 0.0);
2623:     PetscCall(VecGetArrayRead(x, &xx));
2624:     for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorSetBoxValues, mx->ss_b, part, hlower, hupper, i, (HYPRE_Complex *)(xx + (size * i)));
2625:     PetscCall(VecRestoreArrayRead(x, &xx));
2626:     PetscCallExternal(HYPRE_SStructVectorAssemble, mx->ss_b);
2627:     PetscCallExternal(HYPRE_SStructMatrixMatvec, 1.0, mx->ss_mat, mx->ss_b, 0.0, mx->ss_x);
2628:     PetscCallExternal(HYPRE_SStructSysPFMGSolve, ex->ss_solver, mx->ss_mat, mx->ss_b, mx->ss_x);

2630:     /* copy solution values back to PETSc */
2631:     PetscCall(VecGetArray(y, &yy));
2632:     for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorGetBoxValues, mx->ss_x, part, hlower, hupper, i, (HYPRE_Complex *)(yy + (size * i)));
2633:     PetscCall(VecRestoreArray(y, &yy));
2634:   } else { /* nodal ordering must be mapped to variable ordering for sys_pfmg */
2635:     PetscScalar *z;
2636:     PetscInt     j, k;

2638:     PetscCall(PetscMalloc1(nvars * size, &z));
2639:     PetscCallExternal(HYPRE_SStructVectorSetConstantValues, mx->ss_b, 0.0);
2640:     PetscCall(VecGetArrayRead(x, &xx));

2642:     /* transform nodal to hypre's variable ordering for sys_pfmg */
2643:     for (i = 0; i < size; i++) {
2644:       k = i * nvars;
2645:       for (j = 0; j < nvars; j++) z[j * size + i] = xx[k + j];
2646:     }
2647:     for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorSetBoxValues, mx->ss_b, part, hlower, hupper, i, (HYPRE_Complex *)(z + (size * i)));
2648:     PetscCall(VecRestoreArrayRead(x, &xx));
2649:     PetscCallExternal(HYPRE_SStructVectorAssemble, mx->ss_b);
2650:     PetscCallExternal(HYPRE_SStructSysPFMGSolve, ex->ss_solver, mx->ss_mat, mx->ss_b, mx->ss_x);

2652:     /* copy solution values back to PETSc */
2653:     PetscCall(VecGetArray(y, &yy));
2654:     for (i = 0; i < nvars; i++) PetscCallExternal(HYPRE_SStructVectorGetBoxValues, mx->ss_x, part, hlower, hupper, i, (HYPRE_Complex *)(z + (size * i)));
2655:     /* transform hypre's variable ordering for sys_pfmg to nodal ordering */
2656:     for (i = 0; i < size; i++) {
2657:       k = i * nvars;
2658:       for (j = 0; j < nvars; j++) yy[k + j] = z[j * size + i];
2659:     }
2660:     PetscCall(VecRestoreArray(y, &yy));
2661:     PetscCall(PetscFree(z));
2662:   }
2663:   PetscFunctionReturn(PETSC_SUCCESS);
2664: }

2666: static PetscErrorCode PCApplyRichardson_SysPFMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
2667: {
2668:   PC_SysPFMG *jac = (PC_SysPFMG *)pc->data;
2669:   HYPRE_Int   oits;

2671:   PetscFunctionBegin;
2672:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2673:   PetscCallExternal(HYPRE_SStructSysPFMGSetMaxIter, jac->ss_solver, its * jac->its);
2674:   PetscCallExternal(HYPRE_SStructSysPFMGSetTol, jac->ss_solver, rtol);
2675:   PetscCall(PCApply_SysPFMG(pc, b, y));
2676:   PetscCallExternal(HYPRE_SStructSysPFMGGetNumIterations, jac->ss_solver, &oits);
2677:   *outits = oits;
2678:   if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
2679:   else *reason = PCRICHARDSON_CONVERGED_RTOL;
2680:   PetscCallExternal(HYPRE_SStructSysPFMGSetTol, jac->ss_solver, jac->tol);
2681:   PetscCallExternal(HYPRE_SStructSysPFMGSetMaxIter, jac->ss_solver, jac->its);
2682:   PetscFunctionReturn(PETSC_SUCCESS);
2683: }

2685: PetscErrorCode PCSetUp_SysPFMG(PC pc)
2686: {
2687:   PC_SysPFMG       *ex = (PC_SysPFMG *)pc->data;
2688:   Mat_HYPRESStruct *mx = (Mat_HYPRESStruct *)(pc->pmat->data);
2689:   PetscBool         flg;

2691:   PetscFunctionBegin;
2692:   PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRESSTRUCT, &flg));
2693:   PetscCheck(flg, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use MATHYPRESSTRUCT with this preconditioner");

2695:   /* create the hypre sstruct solver object and set its information */
2696:   if (ex->ss_solver) PetscCallExternal(HYPRE_SStructSysPFMGDestroy, ex->ss_solver);
2697:   PetscCallExternal(HYPRE_SStructSysPFMGCreate, ex->hcomm, &ex->ss_solver);
2698:   PetscCallExternal(HYPRE_SStructSysPFMGSetZeroGuess, ex->ss_solver);
2699:   PetscCallExternal(HYPRE_SStructSysPFMGSetup, ex->ss_solver, mx->ss_mat, mx->ss_b, mx->ss_x);
2700:   PetscFunctionReturn(PETSC_SUCCESS);
2701: }

2703: /*MC
2704:      PCSYSPFMG - the hypre SysPFMG multigrid solver

2706:    Level: advanced

2708:    Options Database Keys:
2709: + -pc_syspfmg_its <its> - number of iterations of SysPFMG to use as preconditioner
2710: . -pc_syspfmg_num_pre_relax <steps> - number of smoothing steps before coarse grid
2711: . -pc_syspfmg_num_post_relax <steps> - number of smoothing steps after coarse grid
2712: . -pc_syspfmg_tol <tol> - tolerance of SysPFMG
2713: - -pc_syspfmg_relax_type <Weighted-Jacobi,Red/Black-Gauss-Seidel> - relaxation type for the up and down cycles

2715:    Notes:
2716:    See `PCPFMG` for hypre's PFMG that works for a scalar PDE and `PCSMG`

2718:    See `PCHYPRE` for hypre's BoomerAMG algebraic multigrid solver

2720:    This is for CELL-centered descretizations

2722:    This must be used with the `MATHYPRESSTRUCT` matrix type.

2724:    This does not give access to all the functionality of hypres SysPFMG, it supports only one part, and one block per process defined by a PETSc `DMDA`.

2726: .seealso: `PCMG`, `MATHYPRESSTRUCT`, `PCPFMG`, `PCHYPRE`, `PCGAMG`, `PCSMG`
2727: M*/

2729: PETSC_EXTERN PetscErrorCode PCCreate_SysPFMG(PC pc)
2730: {
2731:   PC_SysPFMG *ex;

2733:   PetscFunctionBegin;
2734:   PetscCall(PetscNew(&ex));
2735:   pc->data = ex;

2737:   ex->its            = 1;
2738:   ex->tol            = 1.e-8;
2739:   ex->relax_type     = 1;
2740:   ex->num_pre_relax  = 1;
2741:   ex->num_post_relax = 1;

2743:   pc->ops->setfromoptions  = PCSetFromOptions_SysPFMG;
2744:   pc->ops->view            = PCView_SysPFMG;
2745:   pc->ops->destroy         = PCDestroy_SysPFMG;
2746:   pc->ops->apply           = PCApply_SysPFMG;
2747:   pc->ops->applyrichardson = PCApplyRichardson_SysPFMG;
2748:   pc->ops->setup           = PCSetUp_SysPFMG;

2750:   PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2751:   PetscCallExternal(HYPRE_SStructSysPFMGCreate, ex->hcomm, &ex->ss_solver);
2752:   PetscFunctionReturn(PETSC_SUCCESS);
2753: }

2755: /* PC SMG */
2756: typedef struct {
2757:   MPI_Comm           hcomm; /* does not share comm with HYPRE_StructMatrix because need to create solver before getting matrix */
2758:   HYPRE_StructSolver hsolver;
2759:   PetscInt           its; /* keep copy of SMG options used so may view them */
2760:   double             tol;
2761:   PetscBool          print_statistics;
2762:   PetscInt           num_pre_relax, num_post_relax;
2763: } PC_SMG;

2765: PetscErrorCode PCDestroy_SMG(PC pc)
2766: {
2767:   PC_SMG *ex = (PC_SMG *)pc->data;

2769:   PetscFunctionBegin;
2770:   if (ex->hsolver) PetscCallExternal(HYPRE_StructSMGDestroy, ex->hsolver);
2771:   PetscCall(PetscCommRestoreComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2772:   PetscCall(PetscFree(pc->data));
2773:   PetscFunctionReturn(PETSC_SUCCESS);
2774: }

2776: PetscErrorCode PCView_SMG(PC pc, PetscViewer viewer)
2777: {
2778:   PetscBool iascii;
2779:   PC_SMG   *ex = (PC_SMG *)pc->data;

2781:   PetscFunctionBegin;
2782:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
2783:   if (iascii) {
2784:     PetscCall(PetscViewerASCIIPrintf(viewer, "  HYPRE SMG preconditioning\n"));
2785:     PetscCall(PetscViewerASCIIPrintf(viewer, "    max iterations %" PetscInt_FMT "\n", ex->its));
2786:     PetscCall(PetscViewerASCIIPrintf(viewer, "    tolerance %g\n", ex->tol));
2787:     PetscCall(PetscViewerASCIIPrintf(viewer, "    number pre-relax %" PetscInt_FMT " post-relax %" PetscInt_FMT "\n", ex->num_pre_relax, ex->num_post_relax));
2788:   }
2789:   PetscFunctionReturn(PETSC_SUCCESS);
2790: }

2792: PetscErrorCode PCSetFromOptions_SMG(PC pc, PetscOptionItems *PetscOptionsObject)
2793: {
2794:   PC_SMG *ex = (PC_SMG *)pc->data;

2796:   PetscFunctionBegin;
2797:   PetscOptionsHeadBegin(PetscOptionsObject, "SMG options");

2799:   PetscCall(PetscOptionsInt("-pc_smg_its", "Number of iterations of SMG to use as preconditioner", "HYPRE_StructSMGSetMaxIter", ex->its, &ex->its, NULL));
2800:   PetscCall(PetscOptionsInt("-pc_smg_num_pre_relax", "Number of smoothing steps before coarse grid", "HYPRE_StructSMGSetNumPreRelax", ex->num_pre_relax, &ex->num_pre_relax, NULL));
2801:   PetscCall(PetscOptionsInt("-pc_smg_num_post_relax", "Number of smoothing steps after coarse grid", "HYPRE_StructSMGSetNumPostRelax", ex->num_post_relax, &ex->num_post_relax, NULL));
2802:   PetscCall(PetscOptionsReal("-pc_smg_tol", "Tolerance of SMG", "HYPRE_StructSMGSetTol", ex->tol, &ex->tol, NULL));

2804:   PetscOptionsHeadEnd();
2805:   PetscFunctionReturn(PETSC_SUCCESS);
2806: }

2808: PetscErrorCode PCApply_SMG(PC pc, Vec x, Vec y)
2809: {
2810:   PC_SMG            *ex = (PC_SMG *)pc->data;
2811:   PetscScalar       *yy;
2812:   const PetscScalar *xx;
2813:   PetscInt           ilower[3], iupper[3];
2814:   HYPRE_Int          hlower[3], hupper[3];
2815:   Mat_HYPREStruct   *mx = (Mat_HYPREStruct *)(pc->pmat->data);

2817:   PetscFunctionBegin;
2818:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2819:   PetscCall(DMDAGetCorners(mx->da, &ilower[0], &ilower[1], &ilower[2], &iupper[0], &iupper[1], &iupper[2]));
2820:   /* when HYPRE_MIXEDINT is defined, sizeof(HYPRE_Int) == 32 */
2821:   iupper[0] += ilower[0] - 1;
2822:   iupper[1] += ilower[1] - 1;
2823:   iupper[2] += ilower[2] - 1;
2824:   hlower[0] = (HYPRE_Int)ilower[0];
2825:   hlower[1] = (HYPRE_Int)ilower[1];
2826:   hlower[2] = (HYPRE_Int)ilower[2];
2827:   hupper[0] = (HYPRE_Int)iupper[0];
2828:   hupper[1] = (HYPRE_Int)iupper[1];
2829:   hupper[2] = (HYPRE_Int)iupper[2];

2831:   /* copy x values over to hypre */
2832:   PetscCallExternal(HYPRE_StructVectorSetConstantValues, mx->hb, 0.0);
2833:   PetscCall(VecGetArrayRead(x, &xx));
2834:   PetscCallExternal(HYPRE_StructVectorSetBoxValues, mx->hb, hlower, hupper, (HYPRE_Complex *)xx);
2835:   PetscCall(VecRestoreArrayRead(x, &xx));
2836:   PetscCallExternal(HYPRE_StructVectorAssemble, mx->hb);
2837:   PetscCallExternal(HYPRE_StructSMGSolve, ex->hsolver, mx->hmat, mx->hb, mx->hx);

2839:   /* copy solution values back to PETSc */
2840:   PetscCall(VecGetArray(y, &yy));
2841:   PetscCallExternal(HYPRE_StructVectorGetBoxValues, mx->hx, hlower, hupper, (HYPRE_Complex *)yy);
2842:   PetscCall(VecRestoreArray(y, &yy));
2843:   PetscFunctionReturn(PETSC_SUCCESS);
2844: }

2846: static PetscErrorCode PCApplyRichardson_SMG(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
2847: {
2848:   PC_SMG   *jac = (PC_SMG *)pc->data;
2849:   HYPRE_Int oits;

2851:   PetscFunctionBegin;
2852:   PetscCall(PetscCitationsRegister(hypreCitation, &cite));
2853:   PetscCallExternal(HYPRE_StructSMGSetMaxIter, jac->hsolver, its * jac->its);
2854:   PetscCallExternal(HYPRE_StructSMGSetTol, jac->hsolver, rtol);

2856:   PetscCall(PCApply_SMG(pc, b, y));
2857:   PetscCallExternal(HYPRE_StructSMGGetNumIterations, jac->hsolver, &oits);
2858:   *outits = oits;
2859:   if (oits == its) *reason = PCRICHARDSON_CONVERGED_ITS;
2860:   else *reason = PCRICHARDSON_CONVERGED_RTOL;
2861:   PetscCallExternal(HYPRE_StructSMGSetTol, jac->hsolver, jac->tol);
2862:   PetscCallExternal(HYPRE_StructSMGSetMaxIter, jac->hsolver, jac->its);
2863:   PetscFunctionReturn(PETSC_SUCCESS);
2864: }

2866: PetscErrorCode PCSetUp_SMG(PC pc)
2867: {
2868:   PetscInt         i, dim;
2869:   PC_SMG          *ex = (PC_SMG *)pc->data;
2870:   Mat_HYPREStruct *mx = (Mat_HYPREStruct *)(pc->pmat->data);
2871:   PetscBool        flg;
2872:   DMBoundaryType   p[3];
2873:   PetscInt         M[3];

2875:   PetscFunctionBegin;
2876:   PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATHYPRESTRUCT, &flg));
2877:   PetscCheck(flg, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use MATHYPRESTRUCT with this preconditioner");

2879:   PetscCall(DMDAGetInfo(mx->da, &dim, &M[0], &M[1], &M[2], 0, 0, 0, 0, 0, &p[0], &p[1], &p[2], 0));
2880:   // Check if power of 2 in periodic directions
2881:   for (i = 0; i < dim; i++) {
2882:     if (((M[i] & (M[i] - 1)) != 0) && (p[i] == DM_BOUNDARY_PERIODIC)) {
2883:       SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "With SMG, the number of points in a periodic direction must be a power of 2, but is here %" PetscInt_FMT ".", M[i]);
2884:     }
2885:   }

2887:   /* create the hypre solver object and set its information */
2888:   if (ex->hsolver) PetscCallExternal(HYPRE_StructSMGDestroy, (ex->hsolver));
2889:   PetscCallExternal(HYPRE_StructSMGCreate, ex->hcomm, &ex->hsolver);
2890:   // The hypre options must be set here and not in SetFromOptions because it is created here!
2891:   PetscCallExternal(HYPRE_StructSMGSetMaxIter, ex->hsolver, ex->its);
2892:   PetscCallExternal(HYPRE_StructSMGSetNumPreRelax, ex->hsolver, ex->num_pre_relax);
2893:   PetscCallExternal(HYPRE_StructSMGSetNumPostRelax, ex->hsolver, ex->num_post_relax);
2894:   PetscCallExternal(HYPRE_StructSMGSetTol, ex->hsolver, ex->tol);

2896:   PetscCallExternal(HYPRE_StructSMGSetup, ex->hsolver, mx->hmat, mx->hb, mx->hx);
2897:   PetscCallExternal(HYPRE_StructSMGSetZeroGuess, ex->hsolver);
2898:   PetscFunctionReturn(PETSC_SUCCESS);
2899: }

2901: /*MC
2902:      PCSMG - the hypre (structured grid) SMG multigrid solver

2904:    Level: advanced

2906:    Options Database Keys:
2907: + -pc_smg_its <its> - number of iterations of SMG to use as preconditioner
2908: . -pc_smg_num_pre_relax <steps> - number of smoothing steps before coarse grid
2909: . -pc_smg_num_post_relax <steps> - number of smoothing steps after coarse grid
2910: - -pc_smg_tol <tol> - tolerance of SMG

2912:    Notes:
2913:    This is for CELL-centered descretizations

2915:    This must be used with the `MATHYPRESTRUCT` `MatType`.

2917:    This does not provide all the functionality of  hypre's SMG solver, it supports only one block per process defined by a PETSc `DMDA`.

2919:    See `PCSYSPFMG`, `PCSMG`, `PCPFMG`, and `PCHYPRE` for access to hypre's other preconditioners

2921: .seealso:  `PCMG`, `MATHYPRESTRUCT`, `PCPFMG`, `PCSYSPFMG`, `PCHYPRE`, `PCGAMG`
2922: M*/

2924: PETSC_EXTERN PetscErrorCode PCCreate_SMG(PC pc)
2925: {
2926:   PC_SMG *ex;

2928:   PetscFunctionBegin;
2929:   PetscCall(PetscNew(&ex));
2930:   pc->data = ex;

2932:   ex->its            = 1;
2933:   ex->tol            = 1.e-8;
2934:   ex->num_pre_relax  = 1;
2935:   ex->num_post_relax = 1;

2937:   pc->ops->setfromoptions  = PCSetFromOptions_SMG;
2938:   pc->ops->view            = PCView_SMG;
2939:   pc->ops->destroy         = PCDestroy_SMG;
2940:   pc->ops->apply           = PCApply_SMG;
2941:   pc->ops->applyrichardson = PCApplyRichardson_SMG;
2942:   pc->ops->setup           = PCSetUp_SMG;

2944:   PetscCall(PetscCommGetComm(PetscObjectComm((PetscObject)pc), &ex->hcomm));
2945:   PetscCallExternal(HYPRE_StructSMGCreate, ex->hcomm, &ex->hsolver);
2946:   PetscFunctionReturn(PETSC_SUCCESS);
2947: }