Actual source code: mg.c

  1: /*
  2:     Defines the multigrid preconditioner interface.
  3: */
  4: #include <petsc/private/pcmgimpl.h>
  5: #include <petsc/private/kspimpl.h>
  6: #include <petscdm.h>
  7: PETSC_INTERN PetscErrorCode PCPreSolveChangeRHS(PC, PetscBool *);

  9: /*
 10:    Contains the list of registered coarse space construction routines
 11: */
 12: PetscFunctionList PCMGCoarseList = NULL;

 14: PetscErrorCode PCMGMCycle_Private(PC pc, PC_MG_Levels **mglevelsin, PetscBool transpose, PetscBool matapp, PCRichardsonConvergedReason *reason)
 15: {
 16:   PC_MG        *mg = (PC_MG *)pc->data;
 17:   PC_MG_Levels *mgc, *mglevels = *mglevelsin;
 18:   PetscInt      cycles = (mglevels->level == 1) ? 1 : mglevels->cycles;

 20:   PetscFunctionBegin;
 21:   if (mglevels->eventsmoothsolve) PetscCall(PetscLogEventBegin(mglevels->eventsmoothsolve, 0, 0, 0, 0));
 22:   if (!transpose) {
 23:     if (matapp) {
 24:       PetscCall(KSPMatSolve(mglevels->smoothd, mglevels->B, mglevels->X)); /* pre-smooth */
 25:       PetscCall(KSPCheckSolve(mglevels->smoothd, pc, NULL));
 26:     } else {
 27:       PetscCall(KSPSolve(mglevels->smoothd, mglevels->b, mglevels->x)); /* pre-smooth */
 28:       PetscCall(KSPCheckSolve(mglevels->smoothd, pc, mglevels->x));
 29:     }
 30:   } else {
 31:     PetscCheck(!matapp, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Not supported");
 32:     PetscCall(KSPSolveTranspose(mglevels->smoothu, mglevels->b, mglevels->x)); /* transpose of post-smooth */
 33:     PetscCall(KSPCheckSolve(mglevels->smoothu, pc, mglevels->x));
 34:   }
 35:   if (mglevels->eventsmoothsolve) PetscCall(PetscLogEventEnd(mglevels->eventsmoothsolve, 0, 0, 0, 0));
 36:   if (mglevels->level) { /* not the coarsest grid */
 37:     if (mglevels->eventresidual) PetscCall(PetscLogEventBegin(mglevels->eventresidual, 0, 0, 0, 0));
 38:     if (matapp && !mglevels->R) PetscCall(MatDuplicate(mglevels->B, MAT_DO_NOT_COPY_VALUES, &mglevels->R));
 39:     if (!transpose) {
 40:       if (matapp) PetscCall((*mglevels->matresidual)(mglevels->A, mglevels->B, mglevels->X, mglevels->R));
 41:       else PetscCall((*mglevels->residual)(mglevels->A, mglevels->b, mglevels->x, mglevels->r));
 42:     } else {
 43:       if (matapp) PetscCall((*mglevels->matresidualtranspose)(mglevels->A, mglevels->B, mglevels->X, mglevels->R));
 44:       else PetscCall((*mglevels->residualtranspose)(mglevels->A, mglevels->b, mglevels->x, mglevels->r));
 45:     }
 46:     if (mglevels->eventresidual) PetscCall(PetscLogEventEnd(mglevels->eventresidual, 0, 0, 0, 0));

 48:     /* if on finest level and have convergence criteria set */
 49:     if (mglevels->level == mglevels->levels - 1 && mg->ttol && reason) {
 50:       PetscReal rnorm;
 51:       PetscCall(VecNorm(mglevels->r, NORM_2, &rnorm));
 52:       if (rnorm <= mg->ttol) {
 53:         if (rnorm < mg->abstol) {
 54:           *reason = PCRICHARDSON_CONVERGED_ATOL;
 55:           PetscCall(PetscInfo(pc, "Linear solver has converged. Residual norm %g is less than absolute tolerance %g\n", (double)rnorm, (double)mg->abstol));
 56:         } else {
 57:           *reason = PCRICHARDSON_CONVERGED_RTOL;
 58:           PetscCall(PetscInfo(pc, "Linear solver has converged. Residual norm %g is less than relative tolerance times initial residual norm %g\n", (double)rnorm, (double)mg->ttol));
 59:         }
 60:         PetscFunctionReturn(PETSC_SUCCESS);
 61:       }
 62:     }

 64:     mgc = *(mglevelsin - 1);
 65:     if (mglevels->eventinterprestrict) PetscCall(PetscLogEventBegin(mglevels->eventinterprestrict, 0, 0, 0, 0));
 66:     if (!transpose) {
 67:       if (matapp) PetscCall(MatMatRestrict(mglevels->restrct, mglevels->R, &mgc->B));
 68:       else PetscCall(MatRestrict(mglevels->restrct, mglevels->r, mgc->b));
 69:     } else {
 70:       if (matapp) PetscCall(MatMatRestrict(mglevels->interpolate, mglevels->R, &mgc->B));
 71:       else PetscCall(MatRestrict(mglevels->interpolate, mglevels->r, mgc->b));
 72:     }
 73:     if (mglevels->eventinterprestrict) PetscCall(PetscLogEventEnd(mglevels->eventinterprestrict, 0, 0, 0, 0));
 74:     if (matapp) {
 75:       if (!mgc->X) {
 76:         PetscCall(MatDuplicate(mgc->B, MAT_DO_NOT_COPY_VALUES, &mgc->X));
 77:       } else {
 78:         PetscCall(MatZeroEntries(mgc->X));
 79:       }
 80:     } else {
 81:       PetscCall(VecZeroEntries(mgc->x));
 82:     }
 83:     while (cycles--) PetscCall(PCMGMCycle_Private(pc, mglevelsin - 1, transpose, matapp, reason));
 84:     if (mglevels->eventinterprestrict) PetscCall(PetscLogEventBegin(mglevels->eventinterprestrict, 0, 0, 0, 0));
 85:     if (!transpose) {
 86:       if (matapp) PetscCall(MatMatInterpolateAdd(mglevels->interpolate, mgc->X, mglevels->X, &mglevels->X));
 87:       else PetscCall(MatInterpolateAdd(mglevels->interpolate, mgc->x, mglevels->x, mglevels->x));
 88:     } else {
 89:       PetscCall(MatInterpolateAdd(mglevels->restrct, mgc->x, mglevels->x, mglevels->x));
 90:     }
 91:     if (mglevels->eventinterprestrict) PetscCall(PetscLogEventEnd(mglevels->eventinterprestrict, 0, 0, 0, 0));
 92:     if (mglevels->eventsmoothsolve) PetscCall(PetscLogEventBegin(mglevels->eventsmoothsolve, 0, 0, 0, 0));
 93:     if (!transpose) {
 94:       if (matapp) {
 95:         PetscCall(KSPMatSolve(mglevels->smoothu, mglevels->B, mglevels->X)); /* post smooth */
 96:         PetscCall(KSPCheckSolve(mglevels->smoothu, pc, NULL));
 97:       } else {
 98:         PetscCall(KSPSolve(mglevels->smoothu, mglevels->b, mglevels->x)); /* post smooth */
 99:         PetscCall(KSPCheckSolve(mglevels->smoothu, pc, mglevels->x));
100:       }
101:     } else {
102:       PetscCheck(!matapp, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Not supported");
103:       PetscCall(KSPSolveTranspose(mglevels->smoothd, mglevels->b, mglevels->x)); /* post smooth */
104:       PetscCall(KSPCheckSolve(mglevels->smoothd, pc, mglevels->x));
105:     }
106:     if (mglevels->cr) {
107:       Mat crA;

109:       PetscCheck(!matapp, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Not supported");
110:       /* TODO Turn on copy and turn off noisy if we have an exact solution
111:       PetscCall(VecCopy(mglevels->x, mglevels->crx));
112:       PetscCall(VecCopy(mglevels->b, mglevels->crb)); */
113:       PetscCall(KSPGetOperators(mglevels->cr, &crA, NULL));
114:       PetscCall(KSPSetNoisy_Private(crA, mglevels->crx));
115:       PetscCall(KSPSolve(mglevels->cr, mglevels->crb, mglevels->crx)); /* compatible relaxation */
116:       PetscCall(KSPCheckSolve(mglevels->cr, pc, mglevels->crx));
117:     }
118:     if (mglevels->eventsmoothsolve) PetscCall(PetscLogEventEnd(mglevels->eventsmoothsolve, 0, 0, 0, 0));
119:   }
120:   PetscFunctionReturn(PETSC_SUCCESS);
121: }

123: static PetscErrorCode PCApplyRichardson_MG(PC pc, Vec b, Vec x, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool zeroguess, PetscInt *outits, PCRichardsonConvergedReason *reason)
124: {
125:   PC_MG         *mg       = (PC_MG *)pc->data;
126:   PC_MG_Levels **mglevels = mg->levels;
127:   PC             tpc;
128:   PetscBool      changeu, changed;
129:   PetscInt       levels = mglevels[0]->levels, i;

131:   PetscFunctionBegin;
132:   /* When the DM is supplying the matrix then it will not exist until here */
133:   for (i = 0; i < levels; i++) {
134:     if (!mglevels[i]->A) {
135:       PetscCall(KSPGetOperators(mglevels[i]->smoothu, &mglevels[i]->A, NULL));
136:       PetscCall(PetscObjectReference((PetscObject)mglevels[i]->A));
137:     }
138:   }

140:   PetscCall(KSPGetPC(mglevels[levels - 1]->smoothd, &tpc));
141:   PetscCall(PCPreSolveChangeRHS(tpc, &changed));
142:   PetscCall(KSPGetPC(mglevels[levels - 1]->smoothu, &tpc));
143:   PetscCall(PCPreSolveChangeRHS(tpc, &changeu));
144:   if (!changed && !changeu) {
145:     PetscCall(VecDestroy(&mglevels[levels - 1]->b));
146:     mglevels[levels - 1]->b = b;
147:   } else { /* if the smoother changes the rhs during PreSolve, we cannot use the input vector */
148:     if (!mglevels[levels - 1]->b) {
149:       Vec *vec;

151:       PetscCall(KSPCreateVecs(mglevels[levels - 1]->smoothd, 1, &vec, 0, NULL));
152:       mglevels[levels - 1]->b = *vec;
153:       PetscCall(PetscFree(vec));
154:     }
155:     PetscCall(VecCopy(b, mglevels[levels - 1]->b));
156:   }
157:   mglevels[levels - 1]->x = x;

159:   mg->rtol   = rtol;
160:   mg->abstol = abstol;
161:   mg->dtol   = dtol;
162:   if (rtol) {
163:     /* compute initial residual norm for relative convergence test */
164:     PetscReal rnorm;
165:     if (zeroguess) {
166:       PetscCall(VecNorm(b, NORM_2, &rnorm));
167:     } else {
168:       PetscCall((*mglevels[levels - 1]->residual)(mglevels[levels - 1]->A, b, x, w));
169:       PetscCall(VecNorm(w, NORM_2, &rnorm));
170:     }
171:     mg->ttol = PetscMax(rtol * rnorm, abstol);
172:   } else if (abstol) mg->ttol = abstol;
173:   else mg->ttol = 0.0;

175:   /* since smoother is applied to full system, not just residual we need to make sure that smoothers don't
176:      stop prematurely due to small residual */
177:   for (i = 1; i < levels; i++) {
178:     PetscCall(KSPSetTolerances(mglevels[i]->smoothu, 0, PETSC_CURRENT, PETSC_CURRENT, PETSC_CURRENT));
179:     if (mglevels[i]->smoothu != mglevels[i]->smoothd) {
180:       /* For Richardson the initial guess is nonzero since it is solving in each cycle the original system not just applying as a preconditioner */
181:       PetscCall(KSPSetInitialGuessNonzero(mglevels[i]->smoothd, PETSC_TRUE));
182:       PetscCall(KSPSetTolerances(mglevels[i]->smoothd, 0, PETSC_CURRENT, PETSC_CURRENT, PETSC_CURRENT));
183:     }
184:   }

186:   *reason = PCRICHARDSON_NOT_SET;
187:   for (i = 0; i < its; i++) {
188:     PetscCall(PCMGMCycle_Private(pc, mglevels + levels - 1, PETSC_FALSE, PETSC_FALSE, reason));
189:     if (*reason) break;
190:   }
191:   if (*reason == PCRICHARDSON_NOT_SET) *reason = PCRICHARDSON_CONVERGED_ITS;
192:   *outits = i;
193:   if (!changed && !changeu) mglevels[levels - 1]->b = NULL;
194:   PetscFunctionReturn(PETSC_SUCCESS);
195: }

197: PetscErrorCode PCReset_MG(PC pc)
198: {
199:   PC_MG         *mg       = (PC_MG *)pc->data;
200:   PC_MG_Levels **mglevels = mg->levels;
201:   PetscInt       i, n;

203:   PetscFunctionBegin;
204:   if (mglevels) {
205:     n = mglevels[0]->levels;
206:     for (i = 0; i < n - 1; i++) {
207:       PetscCall(VecDestroy(&mglevels[i + 1]->r));
208:       PetscCall(VecDestroy(&mglevels[i]->b));
209:       PetscCall(VecDestroy(&mglevels[i]->x));
210:       PetscCall(MatDestroy(&mglevels[i + 1]->R));
211:       PetscCall(MatDestroy(&mglevels[i]->B));
212:       PetscCall(MatDestroy(&mglevels[i]->X));
213:       PetscCall(VecDestroy(&mglevels[i]->crx));
214:       PetscCall(VecDestroy(&mglevels[i]->crb));
215:       PetscCall(MatDestroy(&mglevels[i + 1]->restrct));
216:       PetscCall(MatDestroy(&mglevels[i + 1]->interpolate));
217:       PetscCall(MatDestroy(&mglevels[i + 1]->inject));
218:       PetscCall(VecDestroy(&mglevels[i + 1]->rscale));
219:     }
220:     PetscCall(VecDestroy(&mglevels[n - 1]->crx));
221:     PetscCall(VecDestroy(&mglevels[n - 1]->crb));
222:     /* this is not null only if the smoother on the finest level
223:        changes the rhs during PreSolve */
224:     PetscCall(VecDestroy(&mglevels[n - 1]->b));
225:     PetscCall(MatDestroy(&mglevels[n - 1]->B));

227:     for (i = 0; i < n; i++) {
228:       PetscCall(MatDestroy(&mglevels[i]->coarseSpace));
229:       PetscCall(MatDestroy(&mglevels[i]->A));
230:       if (mglevels[i]->smoothd != mglevels[i]->smoothu) PetscCall(KSPReset(mglevels[i]->smoothd));
231:       PetscCall(KSPReset(mglevels[i]->smoothu));
232:       if (mglevels[i]->cr) PetscCall(KSPReset(mglevels[i]->cr));
233:     }
234:     mg->Nc = 0;
235:   }
236:   PetscFunctionReturn(PETSC_SUCCESS);
237: }

239: /* Implementing CR

241: We only want to make corrections that ``do not change'' the coarse solution. What we mean by not changing is that if I prolong my coarse solution to the fine grid and then inject that fine solution back to the coarse grid, I get the same answer. Injection is what Brannick calls R. We want the complementary projector to Inj, which we will call S, after Brannick, so that Inj S = 0. Now the orthogonal projector onto the range of Inj^T is

243:   Inj^T (Inj Inj^T)^{-1} Inj

245: and if Inj is a VecScatter, as it is now in PETSc, we have

247:   Inj^T Inj

249: and

251:   S = I - Inj^T Inj

253: since

255:   Inj S = Inj - (Inj Inj^T) Inj = 0.

257: Brannick suggests

259:   A \to S^T A S  \qquad\mathrm{and}\qquad M \to S^T M S

261: but I do not think his :math:`S^T S = I` is correct. Our S is an orthogonal projector, so :math:`S^T S = S^2 = S`. We will use

263:   M^{-1} A \to S M^{-1} A S

265: In fact, since it is somewhat hard in PETSc to do the symmetric application, we will just apply S on the left.

267:   Check: || Inj P - I ||_F < tol
268:   Check: In general, Inj Inj^T = I
269: */

271: typedef struct {
272:   PC       mg;  /* The PCMG object */
273:   PetscInt l;   /* The multigrid level for this solver */
274:   Mat      Inj; /* The injection matrix */
275:   Mat      S;   /* I - Inj^T Inj */
276: } CRContext;

278: static PetscErrorCode CRSetup_Private(PC pc)
279: {
280:   CRContext *ctx;
281:   Mat        It;

283:   PetscFunctionBeginUser;
284:   PetscCall(PCShellGetContext(pc, &ctx));
285:   PetscCall(PCMGGetInjection(ctx->mg, ctx->l, &It));
286:   PetscCheck(It, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "CR requires that injection be defined for this PCMG");
287:   PetscCall(MatCreateTranspose(It, &ctx->Inj));
288:   PetscCall(MatCreateNormal(ctx->Inj, &ctx->S));
289:   PetscCall(MatScale(ctx->S, -1.0));
290:   PetscCall(MatShift(ctx->S, 1.0));
291:   PetscFunctionReturn(PETSC_SUCCESS);
292: }

294: static PetscErrorCode CRApply_Private(PC pc, Vec x, Vec y)
295: {
296:   CRContext *ctx;

298:   PetscFunctionBeginUser;
299:   PetscCall(PCShellGetContext(pc, &ctx));
300:   PetscCall(MatMult(ctx->S, x, y));
301:   PetscFunctionReturn(PETSC_SUCCESS);
302: }

304: static PetscErrorCode CRDestroy_Private(PC pc)
305: {
306:   CRContext *ctx;

308:   PetscFunctionBeginUser;
309:   PetscCall(PCShellGetContext(pc, &ctx));
310:   PetscCall(MatDestroy(&ctx->Inj));
311:   PetscCall(MatDestroy(&ctx->S));
312:   PetscCall(PetscFree(ctx));
313:   PetscCall(PCShellSetContext(pc, NULL));
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: static PetscErrorCode CreateCR_Private(PC pc, PetscInt l, PC *cr)
318: {
319:   CRContext *ctx;

321:   PetscFunctionBeginUser;
322:   PetscCall(PCCreate(PetscObjectComm((PetscObject)pc), cr));
323:   PetscCall(PetscObjectSetName((PetscObject)*cr, "S (complementary projector to injection)"));
324:   PetscCall(PetscCalloc1(1, &ctx));
325:   ctx->mg = pc;
326:   ctx->l  = l;
327:   PetscCall(PCSetType(*cr, PCSHELL));
328:   PetscCall(PCShellSetContext(*cr, ctx));
329:   PetscCall(PCShellSetApply(*cr, CRApply_Private));
330:   PetscCall(PCShellSetSetUp(*cr, CRSetup_Private));
331:   PetscCall(PCShellSetDestroy(*cr, CRDestroy_Private));
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }

335: PETSC_EXTERN PetscErrorCode PetscOptionsFindPairPrefix_Private(PetscOptions, const char[], const char[], const char *[], const char *[], PetscBool *);

337: PetscErrorCode PCMGSetLevels_MG(PC pc, PetscInt levels, MPI_Comm *comms)
338: {
339:   PC_MG         *mg = (PC_MG *)pc->data;
340:   MPI_Comm       comm;
341:   PC_MG_Levels **mglevels = mg->levels;
342:   PCMGType       mgtype   = mg->am;
343:   PetscInt       mgctype  = (PetscInt)PC_MG_CYCLE_V;
344:   PetscInt       i;
345:   PetscMPIInt    size;
346:   const char    *prefix;
347:   PC             ipc;
348:   PetscInt       n;

350:   PetscFunctionBegin;
353:   if (mg->nlevels == levels) PetscFunctionReturn(PETSC_SUCCESS);
354:   PetscCall(PetscObjectGetComm((PetscObject)pc, &comm));
355:   if (mglevels) {
356:     mgctype = mglevels[0]->cycles;
357:     /* changing the number of levels so free up the previous stuff */
358:     PetscCall(PCReset_MG(pc));
359:     n = mglevels[0]->levels;
360:     for (i = 0; i < n; i++) {
361:       if (mglevels[i]->smoothd != mglevels[i]->smoothu) PetscCall(KSPDestroy(&mglevels[i]->smoothd));
362:       PetscCall(KSPDestroy(&mglevels[i]->smoothu));
363:       PetscCall(KSPDestroy(&mglevels[i]->cr));
364:       PetscCall(PetscFree(mglevels[i]));
365:     }
366:     PetscCall(PetscFree(mg->levels));
367:   }

369:   mg->nlevels = levels;

371:   PetscCall(PetscMalloc1(levels, &mglevels));

373:   PetscCall(PCGetOptionsPrefix(pc, &prefix));

375:   mg->stageApply = 0;
376:   for (i = 0; i < levels; i++) {
377:     PetscCall(PetscNew(&mglevels[i]));

379:     mglevels[i]->level               = i;
380:     mglevels[i]->levels              = levels;
381:     mglevels[i]->cycles              = mgctype;
382:     mg->default_smoothu              = 2;
383:     mg->default_smoothd              = 2;
384:     mglevels[i]->eventsmoothsetup    = 0;
385:     mglevels[i]->eventsmoothsolve    = 0;
386:     mglevels[i]->eventresidual       = 0;
387:     mglevels[i]->eventinterprestrict = 0;

389:     if (comms) comm = comms[i];
390:     if (comm != MPI_COMM_NULL) {
391:       PetscCall(KSPCreate(comm, &mglevels[i]->smoothd));
392:       PetscCall(KSPSetNestLevel(mglevels[i]->smoothd, pc->kspnestlevel));
393:       PetscCall(KSPSetErrorIfNotConverged(mglevels[i]->smoothd, pc->erroriffailure));
394:       PetscCall(PetscObjectIncrementTabLevel((PetscObject)mglevels[i]->smoothd, (PetscObject)pc, levels - i));
395:       PetscCall(KSPSetOptionsPrefix(mglevels[i]->smoothd, prefix));
396:       PetscCall(PetscObjectComposedDataSetInt((PetscObject)mglevels[i]->smoothd, PetscMGLevelId, mglevels[i]->level));
397:       if (i == 0 && levels > 1) { // coarse grid
398:         PetscCall(KSPAppendOptionsPrefix(mglevels[0]->smoothd, "mg_coarse_"));

400:         /* coarse solve is (redundant) LU by default; set shifttype NONZERO to avoid annoying zero-pivot in LU preconditioner */
401:         PetscCall(KSPSetType(mglevels[0]->smoothd, KSPPREONLY));
402:         PetscCall(KSPGetPC(mglevels[0]->smoothd, &ipc));
403:         PetscCallMPI(MPI_Comm_size(comm, &size));
404:         if (size > 1) {
405:           PetscCall(PCSetType(ipc, PCREDUNDANT));
406:         } else {
407:           PetscCall(PCSetType(ipc, PCLU));
408:         }
409:         PetscCall(PCFactorSetShiftType(ipc, MAT_SHIFT_INBLOCKS));
410:       } else {
411:         char tprefix[128];

413:         PetscCall(KSPSetType(mglevels[i]->smoothd, KSPCHEBYSHEV));
414:         PetscCall(KSPSetConvergenceTest(mglevels[i]->smoothd, KSPConvergedSkip, NULL, NULL));
415:         PetscCall(KSPSetNormType(mglevels[i]->smoothd, KSP_NORM_NONE));
416:         PetscCall(KSPGetPC(mglevels[i]->smoothd, &ipc));
417:         PetscCall(PCSetType(ipc, PCSOR));
418:         PetscCall(KSPSetTolerances(mglevels[i]->smoothd, PETSC_CURRENT, PETSC_CURRENT, PETSC_CURRENT, mg->default_smoothd));

420:         if (i == levels - 1 && levels > 1) { // replace 'mg_finegrid_' with 'mg_levels_X_'
421:           PetscBool set;
422:           PetscCall(PetscOptionsFindPairPrefix_Private(((PetscObject)mglevels[i]->smoothd)->options, ((PetscObject)mglevels[i]->smoothd)->prefix, "-mg_fine_", NULL, NULL, &set));
423:           if (set) {
424:             if (prefix) PetscCall(PetscSNPrintf(tprefix, 128, "%smg_fine_", prefix));
425:             else PetscCall(PetscSNPrintf(tprefix, 128, "mg_fine_"));
426:             PetscCall(KSPSetOptionsPrefix(mglevels[i]->smoothd, tprefix));
427:           } else {
428:             PetscCall(PetscSNPrintf(tprefix, 128, "mg_levels_%" PetscInt_FMT "_", i));
429:             PetscCall(KSPAppendOptionsPrefix(mglevels[i]->smoothd, tprefix));
430:           }
431:         } else {
432:           PetscCall(PetscSNPrintf(tprefix, 128, "mg_levels_%" PetscInt_FMT "_", i));
433:           PetscCall(KSPAppendOptionsPrefix(mglevels[i]->smoothd, tprefix));
434:         }
435:       }
436:     }
437:     mglevels[i]->smoothu = mglevels[i]->smoothd;
438:     mg->rtol             = 0.0;
439:     mg->abstol           = 0.0;
440:     mg->dtol             = 0.0;
441:     mg->ttol             = 0.0;
442:     mg->cyclesperpcapply = 1;
443:   }
444:   mg->levels = mglevels;
445:   PetscCall(PCMGSetType(pc, mgtype));
446:   PetscFunctionReturn(PETSC_SUCCESS);
447: }

449: /*@C
450:   PCMGSetLevels - Sets the number of levels to use with `PCMG`.
451:   Must be called before any other `PCMG` routine.

453:   Logically Collective

455:   Input Parameters:
456: + pc     - the preconditioner context
457: . levels - the number of levels
458: - comms  - optional communicators for each level; this is to allow solving the coarser problems
459:            on smaller sets of processes. For processes that are not included in the computation
460:            you must pass `MPI_COMM_NULL`. Use comms = `NULL` to specify that all processes
461:            should participate in each level of problem.

463:   Level: intermediate

465:   Notes:
466:   If the number of levels is one then the multigrid uses the `-mg_levels` prefix
467:   for setting the level options rather than the `-mg_coarse` or `-mg_fine` prefix.

469:   You can free the information in comms after this routine is called.

471:   The array of MPI communicators must contain `MPI_COMM_NULL` for those ranks that at each level
472:   are not participating in the coarser solve. For example, with 2 levels and 1 and 2 ranks on
473:   the two levels, rank 0 in the original communicator will pass in an array of 2 communicators
474:   of size 2 and 1, while rank 1 in the original communicator will pass in array of 2 communicators
475:   the first of size 2 and the second of value `MPI_COMM_NULL` since the rank 1 does not participate
476:   in the coarse grid solve.

478:   Since each coarser level may have a new `MPI_Comm` with fewer ranks than the previous, one
479:   must take special care in providing the restriction and interpolation operation. We recommend
480:   providing these as two step operations; first perform a standard restriction or interpolation on
481:   the full number of ranks for that level and then use an MPI call to copy the resulting vector
482:   array entries (after calls to VecGetArray()) to the smaller or larger number of ranks, note in both
483:   cases the MPI calls must be made on the larger of the two communicators. Traditional MPI send and
484:   receives or `MPI_AlltoAllv()` could be used to do the reshuffling of the vector entries.

486:   Fortran Notes:
487:   Use comms = `PETSC_NULL_MPI_COMM` as the equivalent of `NULL` in the C interface. Note `PETSC_NULL_MPI_COMM`
488:   is not `MPI_COMM_NULL`. It is more like `PETSC_NULL_INTEGER`, `PETSC_NULL_REAL` etc.

490: .seealso: [](ch_ksp), `PCMGSetType()`, `PCMGGetLevels()`
491: @*/
492: PetscErrorCode PCMGSetLevels(PC pc, PetscInt levels, MPI_Comm *comms)
493: {
494:   PetscFunctionBegin;
496:   if (comms) PetscAssertPointer(comms, 3);
497:   PetscTryMethod(pc, "PCMGSetLevels_C", (PC, PetscInt, MPI_Comm *), (pc, levels, comms));
498:   PetscFunctionReturn(PETSC_SUCCESS);
499: }

501: PetscErrorCode PCDestroy_MG(PC pc)
502: {
503:   PC_MG         *mg       = (PC_MG *)pc->data;
504:   PC_MG_Levels **mglevels = mg->levels;
505:   PetscInt       i, n;

507:   PetscFunctionBegin;
508:   PetscCall(PCReset_MG(pc));
509:   if (mglevels) {
510:     n = mglevels[0]->levels;
511:     for (i = 0; i < n; i++) {
512:       if (mglevels[i]->smoothd != mglevels[i]->smoothu) PetscCall(KSPDestroy(&mglevels[i]->smoothd));
513:       PetscCall(KSPDestroy(&mglevels[i]->smoothu));
514:       PetscCall(KSPDestroy(&mglevels[i]->cr));
515:       PetscCall(PetscFree(mglevels[i]));
516:     }
517:     PetscCall(PetscFree(mg->levels));
518:   }
519:   PetscCall(PetscFree(pc->data));
520:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", NULL));
521:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", NULL));
522:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetGalerkin_C", NULL));
523:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetLevels_C", NULL));
524:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetLevels_C", NULL));
525:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", NULL));
526:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", NULL));
527:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetAdaptInterpolation_C", NULL));
528:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetAdaptInterpolation_C", NULL));
529:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetAdaptCR_C", NULL));
530:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetAdaptCR_C", NULL));
531:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetAdaptCoarseSpaceType_C", NULL));
532:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetAdaptCoarseSpaceType_C", NULL));
533:   PetscFunctionReturn(PETSC_SUCCESS);
534: }

536: /*
537:    PCApply_MG - Runs either an additive, multiplicative, Kaskadic
538:              or full cycle of multigrid.

540:   Note:
541:   A simple wrapper which calls PCMGMCycle(),PCMGACycle(), or PCMGFCycle().
542: */
543: static PetscErrorCode PCApply_MG_Internal(PC pc, Vec b, Vec x, Mat B, Mat X, PetscBool transpose)
544: {
545:   PC_MG         *mg       = (PC_MG *)pc->data;
546:   PC_MG_Levels **mglevels = mg->levels;
547:   PC             tpc;
548:   PetscInt       levels = mglevels[0]->levels, i;
549:   PetscBool      changeu, changed, matapp;

551:   PetscFunctionBegin;
552:   matapp = (PetscBool)(B && X);
553:   if (mg->stageApply) PetscCall(PetscLogStagePush(mg->stageApply));
554:   /* When the DM is supplying the matrix then it will not exist until here */
555:   for (i = 0; i < levels; i++) {
556:     if (!mglevels[i]->A) {
557:       PetscCall(KSPGetOperators(mglevels[i]->smoothu, &mglevels[i]->A, NULL));
558:       PetscCall(PetscObjectReference((PetscObject)mglevels[i]->A));
559:     }
560:   }

562:   PetscCall(KSPGetPC(mglevels[levels - 1]->smoothd, &tpc));
563:   PetscCall(PCPreSolveChangeRHS(tpc, &changed));
564:   PetscCall(KSPGetPC(mglevels[levels - 1]->smoothu, &tpc));
565:   PetscCall(PCPreSolveChangeRHS(tpc, &changeu));
566:   if (!changeu && !changed) {
567:     if (matapp) {
568:       PetscCall(MatDestroy(&mglevels[levels - 1]->B));
569:       mglevels[levels - 1]->B = B;
570:     } else {
571:       PetscCall(VecDestroy(&mglevels[levels - 1]->b));
572:       mglevels[levels - 1]->b = b;
573:     }
574:   } else { /* if the smoother changes the rhs during PreSolve, we cannot use the input vector */
575:     if (matapp) {
576:       if (mglevels[levels - 1]->B) {
577:         PetscInt  N1, N2;
578:         PetscBool flg;

580:         PetscCall(MatGetSize(mglevels[levels - 1]->B, NULL, &N1));
581:         PetscCall(MatGetSize(B, NULL, &N2));
582:         PetscCall(PetscObjectTypeCompare((PetscObject)mglevels[levels - 1]->B, ((PetscObject)B)->type_name, &flg));
583:         if (N1 != N2 || !flg) PetscCall(MatDestroy(&mglevels[levels - 1]->B));
584:       }
585:       if (!mglevels[levels - 1]->B) {
586:         PetscCall(MatDuplicate(B, MAT_COPY_VALUES, &mglevels[levels - 1]->B));
587:       } else {
588:         PetscCall(MatCopy(B, mglevels[levels - 1]->B, SAME_NONZERO_PATTERN));
589:       }
590:     } else {
591:       if (!mglevels[levels - 1]->b) {
592:         Vec *vec;

594:         PetscCall(KSPCreateVecs(mglevels[levels - 1]->smoothd, 1, &vec, 0, NULL));
595:         mglevels[levels - 1]->b = *vec;
596:         PetscCall(PetscFree(vec));
597:       }
598:       PetscCall(VecCopy(b, mglevels[levels - 1]->b));
599:     }
600:   }
601:   if (matapp) {
602:     mglevels[levels - 1]->X = X;
603:   } else {
604:     mglevels[levels - 1]->x = x;
605:   }

607:   /* If coarser Xs are present, it means we have already block applied the PC at least once
608:      Reset operators if sizes/type do no match */
609:   if (matapp && levels > 1 && mglevels[levels - 2]->X) {
610:     PetscInt  Xc, Bc;
611:     PetscBool flg;

613:     PetscCall(MatGetSize(mglevels[levels - 2]->X, NULL, &Xc));
614:     PetscCall(MatGetSize(mglevels[levels - 1]->B, NULL, &Bc));
615:     PetscCall(PetscObjectTypeCompare((PetscObject)mglevels[levels - 2]->X, ((PetscObject)mglevels[levels - 1]->X)->type_name, &flg));
616:     if (Xc != Bc || !flg) {
617:       PetscCall(MatDestroy(&mglevels[levels - 1]->R));
618:       for (i = 0; i < levels - 1; i++) {
619:         PetscCall(MatDestroy(&mglevels[i]->R));
620:         PetscCall(MatDestroy(&mglevels[i]->B));
621:         PetscCall(MatDestroy(&mglevels[i]->X));
622:       }
623:     }
624:   }

626:   if (mg->am == PC_MG_MULTIPLICATIVE) {
627:     if (matapp) PetscCall(MatZeroEntries(X));
628:     else PetscCall(VecZeroEntries(x));
629:     for (i = 0; i < mg->cyclesperpcapply; i++) PetscCall(PCMGMCycle_Private(pc, mglevels + levels - 1, transpose, matapp, NULL));
630:   } else if (mg->am == PC_MG_ADDITIVE) {
631:     PetscCall(PCMGACycle_Private(pc, mglevels, transpose, matapp));
632:   } else if (mg->am == PC_MG_KASKADE) {
633:     PetscCall(PCMGKCycle_Private(pc, mglevels, transpose, matapp));
634:   } else {
635:     PetscCall(PCMGFCycle_Private(pc, mglevels, transpose, matapp));
636:   }
637:   if (mg->stageApply) PetscCall(PetscLogStagePop());
638:   if (!changeu && !changed) {
639:     if (matapp) {
640:       mglevels[levels - 1]->B = NULL;
641:     } else {
642:       mglevels[levels - 1]->b = NULL;
643:     }
644:   }
645:   PetscFunctionReturn(PETSC_SUCCESS);
646: }

648: static PetscErrorCode PCApply_MG(PC pc, Vec b, Vec x)
649: {
650:   PetscFunctionBegin;
651:   PetscCall(PCApply_MG_Internal(pc, b, x, NULL, NULL, PETSC_FALSE));
652:   PetscFunctionReturn(PETSC_SUCCESS);
653: }

655: static PetscErrorCode PCApplyTranspose_MG(PC pc, Vec b, Vec x)
656: {
657:   PetscFunctionBegin;
658:   PetscCall(PCApply_MG_Internal(pc, b, x, NULL, NULL, PETSC_TRUE));
659:   PetscFunctionReturn(PETSC_SUCCESS);
660: }

662: static PetscErrorCode PCMatApply_MG(PC pc, Mat b, Mat x)
663: {
664:   PetscFunctionBegin;
665:   PetscCall(PCApply_MG_Internal(pc, NULL, NULL, b, x, PETSC_FALSE));
666:   PetscFunctionReturn(PETSC_SUCCESS);
667: }

669: PetscErrorCode PCSetFromOptions_MG(PC pc, PetscOptionItems PetscOptionsObject)
670: {
671:   PetscInt            levels, cycles;
672:   PetscBool           flg, flg2;
673:   PC_MG              *mg = (PC_MG *)pc->data;
674:   PC_MG_Levels      **mglevels;
675:   PCMGType            mgtype;
676:   PCMGCycleType       mgctype;
677:   PCMGGalerkinType    gtype;
678:   PCMGCoarseSpaceType coarseSpaceType;

680:   PetscFunctionBegin;
681:   levels = PetscMax(mg->nlevels, 1);
682:   PetscOptionsHeadBegin(PetscOptionsObject, "Multigrid options");
683:   PetscCall(PetscOptionsInt("-pc_mg_levels", "Number of Levels", "PCMGSetLevels", levels, &levels, &flg));
684:   if (!flg && !mg->levels && pc->dm) {
685:     PetscCall(DMGetRefineLevel(pc->dm, &levels));
686:     levels++;
687:     mg->usedmfornumberoflevels = PETSC_TRUE;
688:   }
689:   PetscCall(PCMGSetLevels(pc, levels, NULL));
690:   mglevels = mg->levels;

692:   mgctype = (PCMGCycleType)mglevels[0]->cycles;
693:   PetscCall(PetscOptionsEnum("-pc_mg_cycle_type", "V cycle or for W-cycle", "PCMGSetCycleType", PCMGCycleTypes, (PetscEnum)mgctype, (PetscEnum *)&mgctype, &flg));
694:   if (flg) PetscCall(PCMGSetCycleType(pc, mgctype));
695:   coarseSpaceType = mg->coarseSpaceType;
696:   PetscCall(PetscOptionsEnum("-pc_mg_adapt_interp_coarse_space", "Type of adaptive coarse space: none, polynomial, harmonic, eigenvector, generalized_eigenvector, gdsw", "PCMGSetAdaptCoarseSpaceType", PCMGCoarseSpaceTypes, (PetscEnum)coarseSpaceType, (PetscEnum *)&coarseSpaceType, &flg));
697:   if (flg) PetscCall(PCMGSetAdaptCoarseSpaceType(pc, coarseSpaceType));
698:   PetscCall(PetscOptionsInt("-pc_mg_adapt_interp_n", "Size of the coarse space for adaptive interpolation", "PCMGSetCoarseSpace", mg->Nc, &mg->Nc, &flg));
699:   PetscCall(PetscOptionsBool("-pc_mg_mesp_monitor", "Monitor the multilevel eigensolver", "PCMGSetAdaptInterpolation", PETSC_FALSE, &mg->mespMonitor, &flg));
700:   flg2 = PETSC_FALSE;
701:   PetscCall(PetscOptionsBool("-pc_mg_adapt_cr", "Monitor coarse space quality using Compatible Relaxation (CR)", "PCMGSetAdaptCR", PETSC_FALSE, &flg2, &flg));
702:   if (flg) PetscCall(PCMGSetAdaptCR(pc, flg2));
703:   flg = PETSC_FALSE;
704:   PetscCall(PetscOptionsBool("-pc_mg_distinct_smoothup", "Create separate smoothup KSP and append the prefix _up", "PCMGSetDistinctSmoothUp", PETSC_FALSE, &flg, NULL));
705:   if (flg) PetscCall(PCMGSetDistinctSmoothUp(pc));
706:   PetscCall(PetscOptionsEnum("-pc_mg_galerkin", "Use Galerkin process to compute coarser operators", "PCMGSetGalerkin", PCMGGalerkinTypes, (PetscEnum)mg->galerkin, (PetscEnum *)&gtype, &flg));
707:   if (flg) PetscCall(PCMGSetGalerkin(pc, gtype));
708:   mgtype = mg->am;
709:   PetscCall(PetscOptionsEnum("-pc_mg_type", "Multigrid type", "PCMGSetType", PCMGTypes, (PetscEnum)mgtype, (PetscEnum *)&mgtype, &flg));
710:   if (flg) PetscCall(PCMGSetType(pc, mgtype));
711:   if (mg->am == PC_MG_MULTIPLICATIVE) {
712:     PetscCall(PetscOptionsInt("-pc_mg_multiplicative_cycles", "Number of cycles for each preconditioner step", "PCMGMultiplicativeSetCycles", mg->cyclesperpcapply, &cycles, &flg));
713:     if (flg) PetscCall(PCMGMultiplicativeSetCycles(pc, cycles));
714:   }
715:   flg = PETSC_FALSE;
716:   PetscCall(PetscOptionsBool("-pc_mg_log", "Log times for each multigrid level", "None", flg, &flg, NULL));
717:   if (flg) {
718:     PetscInt i;
719:     char     eventname[128];

721:     levels = mglevels[0]->levels;
722:     for (i = 0; i < levels; i++) {
723:       PetscCall(PetscSNPrintf(eventname, PETSC_STATIC_ARRAY_LENGTH(eventname), "MGSetup Level %" PetscInt_FMT, i));
724:       PetscCall(PetscLogEventRegister(eventname, ((PetscObject)pc)->classid, &mglevels[i]->eventsmoothsetup));
725:       PetscCall(PetscSNPrintf(eventname, PETSC_STATIC_ARRAY_LENGTH(eventname), "MGSmooth Level %" PetscInt_FMT, i));
726:       PetscCall(PetscLogEventRegister(eventname, ((PetscObject)pc)->classid, &mglevels[i]->eventsmoothsolve));
727:       if (i) {
728:         PetscCall(PetscSNPrintf(eventname, PETSC_STATIC_ARRAY_LENGTH(eventname), "MGResid Level %" PetscInt_FMT, i));
729:         PetscCall(PetscLogEventRegister(eventname, ((PetscObject)pc)->classid, &mglevels[i]->eventresidual));
730:         PetscCall(PetscSNPrintf(eventname, PETSC_STATIC_ARRAY_LENGTH(eventname), "MGInterp Level %" PetscInt_FMT, i));
731:         PetscCall(PetscLogEventRegister(eventname, ((PetscObject)pc)->classid, &mglevels[i]->eventinterprestrict));
732:       }
733:     }

735:     if (PetscDefined(USE_LOG)) {
736:       const char sname[] = "MG Apply";

738:       PetscCall(PetscLogStageGetId(sname, &mg->stageApply));
739:       if (mg->stageApply < 0) PetscCall(PetscLogStageRegister(sname, &mg->stageApply));
740:     }
741:   }
742:   PetscOptionsHeadEnd();
743:   /* Check option consistency */
744:   PetscCall(PCMGGetGalerkin(pc, &gtype));
745:   PetscCall(PCMGGetAdaptInterpolation(pc, &flg));
746:   PetscCheck(!flg || !(gtype >= PC_MG_GALERKIN_NONE), PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "Must use Galerkin coarse operators when adapting the interpolator");
747:   PetscFunctionReturn(PETSC_SUCCESS);
748: }

750: const char *const PCMGTypes[]            = {"MULTIPLICATIVE", "ADDITIVE", "FULL", "KASKADE", "PCMGType", "PC_MG", NULL};
751: const char *const PCMGCycleTypes[]       = {"invalid", "v", "w", "PCMGCycleType", "PC_MG_CYCLE", NULL};
752: const char *const PCMGGalerkinTypes[]    = {"both", "pmat", "mat", "none", "external", "PCMGGalerkinType", "PC_MG_GALERKIN", NULL};
753: const char *const PCMGCoarseSpaceTypes[] = {"none", "polynomial", "harmonic", "eigenvector", "generalized_eigenvector", "gdsw", "PCMGCoarseSpaceType", "PCMG_ADAPT_NONE", NULL};

755: #include <petscdraw.h>
756: PetscErrorCode PCView_MG(PC pc, PetscViewer viewer)
757: {
758:   PC_MG         *mg       = (PC_MG *)pc->data;
759:   PC_MG_Levels **mglevels = mg->levels;
760:   PetscInt       levels   = mglevels ? mglevels[0]->levels : 0, i;
761:   PetscBool      iascii, isbinary, isdraw;

763:   PetscFunctionBegin;
764:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
765:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
766:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
767:   if (iascii) {
768:     const char *cyclename = levels ? (mglevels[0]->cycles == PC_MG_CYCLE_V ? "v" : "w") : "unknown";
769:     PetscCall(PetscViewerASCIIPrintf(viewer, "  type is %s, levels=%" PetscInt_FMT " cycles=%s\n", PCMGTypes[mg->am], levels, cyclename));
770:     if (mg->am == PC_MG_MULTIPLICATIVE) PetscCall(PetscViewerASCIIPrintf(viewer, "    Cycles per PCApply=%" PetscInt_FMT "\n", mg->cyclesperpcapply));
771:     if (mg->galerkin == PC_MG_GALERKIN_BOTH) {
772:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Using Galerkin computed coarse grid matrices\n"));
773:     } else if (mg->galerkin == PC_MG_GALERKIN_PMAT) {
774:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Using Galerkin computed coarse grid matrices for pmat\n"));
775:     } else if (mg->galerkin == PC_MG_GALERKIN_MAT) {
776:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Using Galerkin computed coarse grid matrices for mat\n"));
777:     } else if (mg->galerkin == PC_MG_GALERKIN_EXTERNAL) {
778:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Using externally compute Galerkin coarse grid matrices\n"));
779:     } else {
780:       PetscCall(PetscViewerASCIIPrintf(viewer, "    Not using Galerkin computed coarse grid matrices\n"));
781:     }
782:     if (mg->view) PetscCall((*mg->view)(pc, viewer));
783:     for (i = 0; i < levels; i++) {
784:       if (i) {
785:         PetscCall(PetscViewerASCIIPrintf(viewer, "Down solver (pre-smoother) on level %" PetscInt_FMT " -------------------------------\n", i));
786:       } else {
787:         PetscCall(PetscViewerASCIIPrintf(viewer, "Coarse grid solver -- level %" PetscInt_FMT " -------------------------------\n", i));
788:       }
789:       PetscCall(PetscViewerASCIIPushTab(viewer));
790:       PetscCall(KSPView(mglevels[i]->smoothd, viewer));
791:       PetscCall(PetscViewerASCIIPopTab(viewer));
792:       if (i && mglevels[i]->smoothd == mglevels[i]->smoothu) {
793:         PetscCall(PetscViewerASCIIPrintf(viewer, "Up solver (post-smoother) same as down solver (pre-smoother)\n"));
794:       } else if (i) {
795:         PetscCall(PetscViewerASCIIPrintf(viewer, "Up solver (post-smoother) on level %" PetscInt_FMT " -------------------------------\n", i));
796:         PetscCall(PetscViewerASCIIPushTab(viewer));
797:         PetscCall(KSPView(mglevels[i]->smoothu, viewer));
798:         PetscCall(PetscViewerASCIIPopTab(viewer));
799:       }
800:       if (i && mglevels[i]->cr) {
801:         PetscCall(PetscViewerASCIIPrintf(viewer, "CR solver on level %" PetscInt_FMT " -------------------------------\n", i));
802:         PetscCall(PetscViewerASCIIPushTab(viewer));
803:         PetscCall(KSPView(mglevels[i]->cr, viewer));
804:         PetscCall(PetscViewerASCIIPopTab(viewer));
805:       }
806:     }
807:   } else if (isbinary) {
808:     for (i = levels - 1; i >= 0; i--) {
809:       PetscCall(KSPView(mglevels[i]->smoothd, viewer));
810:       if (i && mglevels[i]->smoothd != mglevels[i]->smoothu) PetscCall(KSPView(mglevels[i]->smoothu, viewer));
811:     }
812:   } else if (isdraw) {
813:     PetscDraw draw;
814:     PetscReal x, w, y, bottom, th;
815:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
816:     PetscCall(PetscDrawGetCurrentPoint(draw, &x, &y));
817:     PetscCall(PetscDrawStringGetSize(draw, NULL, &th));
818:     bottom = y - th;
819:     for (i = levels - 1; i >= 0; i--) {
820:       if (!mglevels[i]->smoothu || (mglevels[i]->smoothu == mglevels[i]->smoothd)) {
821:         PetscCall(PetscDrawPushCurrentPoint(draw, x, bottom));
822:         PetscCall(KSPView(mglevels[i]->smoothd, viewer));
823:         PetscCall(PetscDrawPopCurrentPoint(draw));
824:       } else {
825:         w = 0.5 * PetscMin(1.0 - x, x);
826:         PetscCall(PetscDrawPushCurrentPoint(draw, x + w, bottom));
827:         PetscCall(KSPView(mglevels[i]->smoothd, viewer));
828:         PetscCall(PetscDrawPopCurrentPoint(draw));
829:         PetscCall(PetscDrawPushCurrentPoint(draw, x - w, bottom));
830:         PetscCall(KSPView(mglevels[i]->smoothu, viewer));
831:         PetscCall(PetscDrawPopCurrentPoint(draw));
832:       }
833:       PetscCall(PetscDrawGetBoundingBox(draw, NULL, &bottom, NULL, NULL));
834:       bottom -= th;
835:     }
836:   }
837:   PetscFunctionReturn(PETSC_SUCCESS);
838: }

840: #include <petsc/private/kspimpl.h>

842: /*
843:     Calls setup for the KSP on each level
844: */
845: PetscErrorCode PCSetUp_MG(PC pc)
846: {
847:   PC_MG         *mg       = (PC_MG *)pc->data;
848:   PC_MG_Levels **mglevels = mg->levels;
849:   PetscInt       i, n;
850:   PC             cpc;
851:   PetscBool      dump = PETSC_FALSE, opsset, use_amat, missinginterpolate = PETSC_FALSE;
852:   Mat            dA, dB;
853:   Vec            tvec;
854:   DM            *dms;
855:   PetscViewer    viewer = NULL;
856:   PetscBool      dAeqdB = PETSC_FALSE, needRestricts = PETSC_FALSE, doCR = PETSC_FALSE;
857:   PetscBool      adaptInterpolation = mg->adaptInterpolation;

859:   PetscFunctionBegin;
860:   PetscCheck(mglevels, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must set MG levels with PCMGSetLevels() before setting up");
861:   n = mglevels[0]->levels;
862:   /* FIX: Move this to PCSetFromOptions_MG? */
863:   if (mg->usedmfornumberoflevels) {
864:     PetscInt levels;
865:     PetscCall(DMGetRefineLevel(pc->dm, &levels));
866:     levels++;
867:     if (levels > n) { /* the problem is now being solved on a finer grid */
868:       PetscCall(PCMGSetLevels(pc, levels, NULL));
869:       n = levels;
870:       PetscCall(PCSetFromOptions(pc)); /* it is bad to call this here, but otherwise will never be called for the new hierarchy */
871:       mglevels = mg->levels;
872:     }
873:   }
874:   PetscCall(KSPGetPC(mglevels[0]->smoothd, &cpc));

876:   /* If user did not provide fine grid operators OR operator was not updated since last global KSPSetOperators() */
877:   /* so use those from global PC */
878:   /* Is this what we always want? What if user wants to keep old one? */
879:   PetscCall(KSPGetOperatorsSet(mglevels[n - 1]->smoothd, NULL, &opsset));
880:   if (opsset) {
881:     Mat mmat;
882:     PetscCall(KSPGetOperators(mglevels[n - 1]->smoothd, NULL, &mmat));
883:     if (mmat == pc->pmat) opsset = PETSC_FALSE;
884:   }

886:   /* Create CR solvers */
887:   PetscCall(PCMGGetAdaptCR(pc, &doCR));
888:   if (doCR) {
889:     const char *prefix;

891:     PetscCall(PCGetOptionsPrefix(pc, &prefix));
892:     for (i = 1; i < n; ++i) {
893:       PC   ipc, cr;
894:       char crprefix[128];

896:       PetscCall(KSPCreate(PetscObjectComm((PetscObject)pc), &mglevels[i]->cr));
897:       PetscCall(KSPSetNestLevel(mglevels[i]->cr, pc->kspnestlevel));
898:       PetscCall(KSPSetErrorIfNotConverged(mglevels[i]->cr, PETSC_FALSE));
899:       PetscCall(PetscObjectIncrementTabLevel((PetscObject)mglevels[i]->cr, (PetscObject)pc, n - i));
900:       PetscCall(KSPSetOptionsPrefix(mglevels[i]->cr, prefix));
901:       PetscCall(PetscObjectComposedDataSetInt((PetscObject)mglevels[i]->cr, PetscMGLevelId, mglevels[i]->level));
902:       PetscCall(KSPSetType(mglevels[i]->cr, KSPCHEBYSHEV));
903:       PetscCall(KSPSetConvergenceTest(mglevels[i]->cr, KSPConvergedSkip, NULL, NULL));
904:       PetscCall(KSPSetNormType(mglevels[i]->cr, KSP_NORM_PRECONDITIONED));
905:       PetscCall(KSPGetPC(mglevels[i]->cr, &ipc));

907:       PetscCall(PCSetType(ipc, PCCOMPOSITE));
908:       PetscCall(PCCompositeSetType(ipc, PC_COMPOSITE_MULTIPLICATIVE));
909:       PetscCall(PCCompositeAddPCType(ipc, PCSOR));
910:       PetscCall(CreateCR_Private(pc, i, &cr));
911:       PetscCall(PCCompositeAddPC(ipc, cr));
912:       PetscCall(PCDestroy(&cr));

914:       PetscCall(KSPSetTolerances(mglevels[i]->cr, PETSC_CURRENT, PETSC_CURRENT, PETSC_CURRENT, mg->default_smoothd));
915:       PetscCall(KSPSetInitialGuessNonzero(mglevels[i]->cr, PETSC_TRUE));
916:       PetscCall(PetscSNPrintf(crprefix, 128, "mg_levels_%" PetscInt_FMT "_cr_", i));
917:       PetscCall(KSPAppendOptionsPrefix(mglevels[i]->cr, crprefix));
918:     }
919:   }

921:   if (!opsset) {
922:     PetscCall(PCGetUseAmat(pc, &use_amat));
923:     if (use_amat) {
924:       PetscCall(PetscInfo(pc, "Using outer operators to define finest grid operator \n  because PCMGGetSmoother(pc,nlevels-1,&ksp);KSPSetOperators(ksp,...); was not called.\n"));
925:       PetscCall(KSPSetOperators(mglevels[n - 1]->smoothd, pc->mat, pc->pmat));
926:     } else {
927:       PetscCall(PetscInfo(pc, "Using matrix (pmat) operators to define finest grid operator \n  because PCMGGetSmoother(pc,nlevels-1,&ksp);KSPSetOperators(ksp,...); was not called.\n"));
928:       PetscCall(KSPSetOperators(mglevels[n - 1]->smoothd, pc->pmat, pc->pmat));
929:     }
930:   }

932:   for (i = n - 1; i > 0; i--) {
933:     if (!(mglevels[i]->interpolate || mglevels[i]->restrct)) {
934:       missinginterpolate = PETSC_TRUE;
935:       break;
936:     }
937:   }

939:   PetscCall(KSPGetOperators(mglevels[n - 1]->smoothd, &dA, &dB));
940:   if (dA == dB) dAeqdB = PETSC_TRUE;
941:   if (mg->galerkin == PC_MG_GALERKIN_NONE || ((mg->galerkin == PC_MG_GALERKIN_PMAT || mg->galerkin == PC_MG_GALERKIN_MAT) && !dAeqdB)) {
942:     needRestricts = PETSC_TRUE; /* user must compute either mat, pmat, or both so must restrict x to coarser levels */
943:   }

945:   if (pc->dm && !pc->setupcalled) {
946:     /* finest smoother also gets DM but it is not active, independent of whether galerkin==PC_MG_GALERKIN_EXTERNAL */
947:     PetscCall(KSPSetDM(mglevels[n - 1]->smoothd, pc->dm));
948:     PetscCall(KSPSetDMActive(mglevels[n - 1]->smoothd, PETSC_FALSE));
949:     if (mglevels[n - 1]->smoothd != mglevels[n - 1]->smoothu) {
950:       PetscCall(KSPSetDM(mglevels[n - 1]->smoothu, pc->dm));
951:       PetscCall(KSPSetDMActive(mglevels[n - 1]->smoothu, PETSC_FALSE));
952:     }
953:     if (mglevels[n - 1]->cr) {
954:       PetscCall(KSPSetDM(mglevels[n - 1]->cr, pc->dm));
955:       PetscCall(KSPSetDMActive(mglevels[n - 1]->cr, PETSC_FALSE));
956:     }
957:   }

959:   /*
960:    Skipping if user has provided all interpolation/restriction needed (since DM might not be able to produce them (when coming from SNES/TS)
961:    Skipping for externally managed hierarchy (such as ML and GAMG). Cleaner logic here would be great. Wrap ML/GAMG as DMs?
962:   */
963:   if (missinginterpolate && mg->galerkin != PC_MG_GALERKIN_EXTERNAL && !pc->setupcalled) {
964:     /* first see if we can compute a coarse space */
965:     if (mg->coarseSpaceType == PCMG_ADAPT_GDSW) {
966:       for (i = n - 2; i > -1; i--) {
967:         if (!mglevels[i + 1]->restrct && !mglevels[i + 1]->interpolate) {
968:           PetscCall(PCMGComputeCoarseSpace_Internal(pc, i + 1, mg->coarseSpaceType, mg->Nc, NULL, &mglevels[i + 1]->coarseSpace));
969:           PetscCall(PCMGSetInterpolation(pc, i + 1, mglevels[i + 1]->coarseSpace));
970:         }
971:       }
972:     } else { /* construct the interpolation from the DMs */
973:       Mat p;
974:       Vec rscale;
975:       PetscCall(PetscMalloc1(n, &dms));
976:       dms[n - 1] = pc->dm;
977:       /* Separately create them so we do not get DMKSP interference between levels */
978:       for (i = n - 2; i > -1; i--) PetscCall(DMCoarsen(dms[i + 1], MPI_COMM_NULL, &dms[i]));
979:       for (i = n - 2; i > -1; i--) {
980:         DMKSP     kdm;
981:         PetscBool dmhasrestrict, dmhasinject;
982:         PetscCall(KSPSetDM(mglevels[i]->smoothd, dms[i]));
983:         if (!needRestricts) PetscCall(KSPSetDMActive(mglevels[i]->smoothd, PETSC_FALSE));
984:         if (mglevels[i]->smoothd != mglevels[i]->smoothu) {
985:           PetscCall(KSPSetDM(mglevels[i]->smoothu, dms[i]));
986:           if (!needRestricts) PetscCall(KSPSetDMActive(mglevels[i]->smoothu, PETSC_FALSE));
987:         }
988:         if (mglevels[i]->cr) {
989:           PetscCall(KSPSetDM(mglevels[i]->cr, dms[i]));
990:           if (!needRestricts) PetscCall(KSPSetDMActive(mglevels[i]->cr, PETSC_FALSE));
991:         }
992:         PetscCall(DMGetDMKSPWrite(dms[i], &kdm));
993:         /* Ugly hack so that the next KSPSetUp() will use the RHS that we set. A better fix is to change dmActive to take
994:          * a bitwise OR of computing the matrix, RHS, and initial iterate. */
995:         kdm->ops->computerhs = NULL;
996:         kdm->rhsctx          = NULL;
997:         if (!mglevels[i + 1]->interpolate) {
998:           PetscCall(DMCreateInterpolation(dms[i], dms[i + 1], &p, &rscale));
999:           PetscCall(PCMGSetInterpolation(pc, i + 1, p));
1000:           if (rscale) PetscCall(PCMGSetRScale(pc, i + 1, rscale));
1001:           PetscCall(VecDestroy(&rscale));
1002:           PetscCall(MatDestroy(&p));
1003:         }
1004:         PetscCall(DMHasCreateRestriction(dms[i], &dmhasrestrict));
1005:         if (dmhasrestrict && !mglevels[i + 1]->restrct) {
1006:           PetscCall(DMCreateRestriction(dms[i], dms[i + 1], &p));
1007:           PetscCall(PCMGSetRestriction(pc, i + 1, p));
1008:           PetscCall(MatDestroy(&p));
1009:         }
1010:         PetscCall(DMHasCreateInjection(dms[i], &dmhasinject));
1011:         if (dmhasinject && !mglevels[i + 1]->inject) {
1012:           PetscCall(DMCreateInjection(dms[i], dms[i + 1], &p));
1013:           PetscCall(PCMGSetInjection(pc, i + 1, p));
1014:           PetscCall(MatDestroy(&p));
1015:         }
1016:       }

1018:       for (i = n - 2; i > -1; i--) PetscCall(DMDestroy(&dms[i]));
1019:       PetscCall(PetscFree(dms));
1020:     }
1021:   }

1023:   if (mg->galerkin < PC_MG_GALERKIN_NONE) {
1024:     Mat       A, B;
1025:     PetscBool doA = PETSC_FALSE, doB = PETSC_FALSE;
1026:     MatReuse  reuse = MAT_INITIAL_MATRIX;

1028:     if (mg->galerkin == PC_MG_GALERKIN_PMAT || mg->galerkin == PC_MG_GALERKIN_BOTH) doB = PETSC_TRUE;
1029:     if (mg->galerkin == PC_MG_GALERKIN_MAT || (mg->galerkin == PC_MG_GALERKIN_BOTH && dA != dB)) doA = PETSC_TRUE;
1030:     if (pc->setupcalled) reuse = MAT_REUSE_MATRIX;
1031:     for (i = n - 2; i > -1; i--) {
1032:       PetscCheck(mglevels[i + 1]->restrct || mglevels[i + 1]->interpolate, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must provide interpolation or restriction for each MG level except level 0");
1033:       if (!mglevels[i + 1]->interpolate) PetscCall(PCMGSetInterpolation(pc, i + 1, mglevels[i + 1]->restrct));
1034:       if (!mglevels[i + 1]->restrct) PetscCall(PCMGSetRestriction(pc, i + 1, mglevels[i + 1]->interpolate));
1035:       if (reuse == MAT_REUSE_MATRIX) PetscCall(KSPGetOperators(mglevels[i]->smoothd, &A, &B));
1036:       if (doA) PetscCall(MatGalerkin(mglevels[i + 1]->restrct, dA, mglevels[i + 1]->interpolate, reuse, 1.0, &A));
1037:       if (doB) PetscCall(MatGalerkin(mglevels[i + 1]->restrct, dB, mglevels[i + 1]->interpolate, reuse, 1.0, &B));
1038:       /* the management of the PetscObjectReference() and PetscObjecDereference() below is rather delicate */
1039:       if (!doA && dAeqdB) {
1040:         if (reuse == MAT_INITIAL_MATRIX) PetscCall(PetscObjectReference((PetscObject)B));
1041:         A = B;
1042:       } else if (!doA && reuse == MAT_INITIAL_MATRIX) {
1043:         PetscCall(KSPGetOperators(mglevels[i]->smoothd, &A, NULL));
1044:         PetscCall(PetscObjectReference((PetscObject)A));
1045:       }
1046:       if (!doB && dAeqdB) {
1047:         if (reuse == MAT_INITIAL_MATRIX) PetscCall(PetscObjectReference((PetscObject)A));
1048:         B = A;
1049:       } else if (!doB && reuse == MAT_INITIAL_MATRIX) {
1050:         PetscCall(KSPGetOperators(mglevels[i]->smoothd, NULL, &B));
1051:         PetscCall(PetscObjectReference((PetscObject)B));
1052:       }
1053:       if (reuse == MAT_INITIAL_MATRIX) {
1054:         PetscCall(KSPSetOperators(mglevels[i]->smoothd, A, B));
1055:         PetscCall(PetscObjectDereference((PetscObject)A));
1056:         PetscCall(PetscObjectDereference((PetscObject)B));
1057:       }
1058:       dA = A;
1059:       dB = B;
1060:     }
1061:   }

1063:   /* Adapt interpolation matrices */
1064:   if (adaptInterpolation) {
1065:     for (i = 0; i < n; ++i) {
1066:       if (!mglevels[i]->coarseSpace) PetscCall(PCMGComputeCoarseSpace_Internal(pc, i, mg->coarseSpaceType, mg->Nc, !i ? NULL : mglevels[i - 1]->coarseSpace, &mglevels[i]->coarseSpace));
1067:       if (i) PetscCall(PCMGAdaptInterpolator_Internal(pc, i, mglevels[i - 1]->smoothu, mglevels[i]->smoothu, mglevels[i - 1]->coarseSpace, mglevels[i]->coarseSpace));
1068:     }
1069:     for (i = n - 2; i > -1; --i) PetscCall(PCMGRecomputeLevelOperators_Internal(pc, i));
1070:   }

1072:   if (needRestricts && pc->dm) {
1073:     for (i = n - 2; i >= 0; i--) {
1074:       DM  dmfine, dmcoarse;
1075:       Mat Restrict, Inject;
1076:       Vec rscale;
1077:       PetscCall(KSPGetDM(mglevels[i + 1]->smoothd, &dmfine));
1078:       PetscCall(KSPGetDM(mglevels[i]->smoothd, &dmcoarse));
1079:       PetscCall(PCMGGetRestriction(pc, i + 1, &Restrict));
1080:       PetscCall(PCMGGetRScale(pc, i + 1, &rscale));
1081:       PetscCall(PCMGGetInjection(pc, i + 1, &Inject));
1082:       PetscCall(DMRestrict(dmfine, Restrict, rscale, Inject, dmcoarse));
1083:     }
1084:   }

1086:   if (!pc->setupcalled) {
1087:     for (i = 0; i < n; i++) PetscCall(KSPSetFromOptions(mglevels[i]->smoothd));
1088:     for (i = 1; i < n; i++) {
1089:       if (mglevels[i]->smoothu && (mglevels[i]->smoothu != mglevels[i]->smoothd)) PetscCall(KSPSetFromOptions(mglevels[i]->smoothu));
1090:       if (mglevels[i]->cr) PetscCall(KSPSetFromOptions(mglevels[i]->cr));
1091:     }
1092:     /* insure that if either interpolation or restriction is set the other one is set */
1093:     for (i = 1; i < n; i++) {
1094:       PetscCall(PCMGGetInterpolation(pc, i, NULL));
1095:       PetscCall(PCMGGetRestriction(pc, i, NULL));
1096:     }
1097:     for (i = 0; i < n - 1; i++) {
1098:       if (!mglevels[i]->b) {
1099:         Vec *vec;
1100:         PetscCall(KSPCreateVecs(mglevels[i]->smoothd, 1, &vec, 0, NULL));
1101:         PetscCall(PCMGSetRhs(pc, i, *vec));
1102:         PetscCall(VecDestroy(vec));
1103:         PetscCall(PetscFree(vec));
1104:       }
1105:       if (!mglevels[i]->r && i) {
1106:         PetscCall(VecDuplicate(mglevels[i]->b, &tvec));
1107:         PetscCall(PCMGSetR(pc, i, tvec));
1108:         PetscCall(VecDestroy(&tvec));
1109:       }
1110:       if (!mglevels[i]->x) {
1111:         PetscCall(VecDuplicate(mglevels[i]->b, &tvec));
1112:         PetscCall(PCMGSetX(pc, i, tvec));
1113:         PetscCall(VecDestroy(&tvec));
1114:       }
1115:       if (doCR) {
1116:         PetscCall(VecDuplicate(mglevels[i]->b, &mglevels[i]->crx));
1117:         PetscCall(VecDuplicate(mglevels[i]->b, &mglevels[i]->crb));
1118:         PetscCall(VecZeroEntries(mglevels[i]->crb));
1119:       }
1120:     }
1121:     if (n != 1 && !mglevels[n - 1]->r) {
1122:       /* PCMGSetR() on the finest level if user did not supply it */
1123:       Vec *vec;
1124:       PetscCall(KSPCreateVecs(mglevels[n - 1]->smoothd, 1, &vec, 0, NULL));
1125:       PetscCall(PCMGSetR(pc, n - 1, *vec));
1126:       PetscCall(VecDestroy(vec));
1127:       PetscCall(PetscFree(vec));
1128:     }
1129:     if (doCR) {
1130:       PetscCall(VecDuplicate(mglevels[n - 1]->r, &mglevels[n - 1]->crx));
1131:       PetscCall(VecDuplicate(mglevels[n - 1]->r, &mglevels[n - 1]->crb));
1132:       PetscCall(VecZeroEntries(mglevels[n - 1]->crb));
1133:     }
1134:   }

1136:   if (pc->dm) {
1137:     /* need to tell all the coarser levels to rebuild the matrix using the DM for that level */
1138:     for (i = 0; i < n - 1; i++) {
1139:       if (mglevels[i]->smoothd->setupstage != KSP_SETUP_NEW) mglevels[i]->smoothd->setupstage = KSP_SETUP_NEWMATRIX;
1140:     }
1141:   }
1142:   // We got here (PCSetUp_MG) because the matrix has changed, which means the smoother needs to be set up again (e.g.,
1143:   // new diagonal for Jacobi). Setting it here allows it to be logged under PCSetUp rather than deep inside a PCApply.
1144:   if (mglevels[n - 1]->smoothd->setupstage != KSP_SETUP_NEW) mglevels[n - 1]->smoothd->setupstage = KSP_SETUP_NEWMATRIX;

1146:   for (i = 1; i < n; i++) {
1147:     if (mglevels[i]->smoothu == mglevels[i]->smoothd || mg->am == PC_MG_FULL || mg->am == PC_MG_KASKADE || mg->cyclesperpcapply > 1) {
1148:       /* if doing only down then initial guess is zero */
1149:       PetscCall(KSPSetInitialGuessNonzero(mglevels[i]->smoothd, PETSC_TRUE));
1150:     }
1151:     if (mglevels[i]->cr) PetscCall(KSPSetInitialGuessNonzero(mglevels[i]->cr, PETSC_TRUE));
1152:     if (mglevels[i]->eventsmoothsetup) PetscCall(PetscLogEventBegin(mglevels[i]->eventsmoothsetup, 0, 0, 0, 0));
1153:     PetscCall(KSPSetUp(mglevels[i]->smoothd));
1154:     if (mglevels[i]->smoothd->reason) pc->failedreason = PC_SUBPC_ERROR;
1155:     if (mglevels[i]->eventsmoothsetup) PetscCall(PetscLogEventEnd(mglevels[i]->eventsmoothsetup, 0, 0, 0, 0));
1156:     if (!mglevels[i]->residual) {
1157:       Mat mat;
1158:       PetscCall(KSPGetOperators(mglevels[i]->smoothd, &mat, NULL));
1159:       PetscCall(PCMGSetResidual(pc, i, PCMGResidualDefault, mat));
1160:     }
1161:     if (!mglevels[i]->residualtranspose) {
1162:       Mat mat;
1163:       PetscCall(KSPGetOperators(mglevels[i]->smoothd, &mat, NULL));
1164:       PetscCall(PCMGSetResidualTranspose(pc, i, PCMGResidualTransposeDefault, mat));
1165:     }
1166:   }
1167:   for (i = 1; i < n; i++) {
1168:     if (mglevels[i]->smoothu && mglevels[i]->smoothu != mglevels[i]->smoothd) {
1169:       Mat downmat, downpmat;

1171:       /* check if operators have been set for up, if not use down operators to set them */
1172:       PetscCall(KSPGetOperatorsSet(mglevels[i]->smoothu, &opsset, NULL));
1173:       if (!opsset) {
1174:         PetscCall(KSPGetOperators(mglevels[i]->smoothd, &downmat, &downpmat));
1175:         PetscCall(KSPSetOperators(mglevels[i]->smoothu, downmat, downpmat));
1176:       }

1178:       PetscCall(KSPSetInitialGuessNonzero(mglevels[i]->smoothu, PETSC_TRUE));
1179:       if (mglevels[i]->eventsmoothsetup) PetscCall(PetscLogEventBegin(mglevels[i]->eventsmoothsetup, 0, 0, 0, 0));
1180:       PetscCall(KSPSetUp(mglevels[i]->smoothu));
1181:       if (mglevels[i]->smoothu->reason) pc->failedreason = PC_SUBPC_ERROR;
1182:       if (mglevels[i]->eventsmoothsetup) PetscCall(PetscLogEventEnd(mglevels[i]->eventsmoothsetup, 0, 0, 0, 0));
1183:     }
1184:     if (mglevels[i]->cr) {
1185:       Mat downmat, downpmat;

1187:       /* check if operators have been set for up, if not use down operators to set them */
1188:       PetscCall(KSPGetOperatorsSet(mglevels[i]->cr, &opsset, NULL));
1189:       if (!opsset) {
1190:         PetscCall(KSPGetOperators(mglevels[i]->smoothd, &downmat, &downpmat));
1191:         PetscCall(KSPSetOperators(mglevels[i]->cr, downmat, downpmat));
1192:       }

1194:       PetscCall(KSPSetInitialGuessNonzero(mglevels[i]->cr, PETSC_TRUE));
1195:       if (mglevels[i]->eventsmoothsetup) PetscCall(PetscLogEventBegin(mglevels[i]->eventsmoothsetup, 0, 0, 0, 0));
1196:       PetscCall(KSPSetUp(mglevels[i]->cr));
1197:       if (mglevels[i]->cr->reason) pc->failedreason = PC_SUBPC_ERROR;
1198:       if (mglevels[i]->eventsmoothsetup) PetscCall(PetscLogEventEnd(mglevels[i]->eventsmoothsetup, 0, 0, 0, 0));
1199:     }
1200:   }

1202:   if (mglevels[0]->eventsmoothsetup) PetscCall(PetscLogEventBegin(mglevels[0]->eventsmoothsetup, 0, 0, 0, 0));
1203:   PetscCall(KSPSetUp(mglevels[0]->smoothd));
1204:   if (mglevels[0]->smoothd->reason) pc->failedreason = PC_SUBPC_ERROR;
1205:   if (mglevels[0]->eventsmoothsetup) PetscCall(PetscLogEventEnd(mglevels[0]->eventsmoothsetup, 0, 0, 0, 0));

1207:   /*
1208:      Dump the interpolation/restriction matrices plus the
1209:    Jacobian/stiffness on each level. This allows MATLAB users to
1210:    easily check if the Galerkin condition A_c = R A_f R^T is satisfied.

1212:    Only support one or the other at the same time.
1213:   */
1214: #if defined(PETSC_USE_SOCKET_VIEWER)
1215:   PetscCall(PetscOptionsGetBool(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, "-pc_mg_dump_matlab", &dump, NULL));
1216:   if (dump) viewer = PETSC_VIEWER_SOCKET_(PetscObjectComm((PetscObject)pc));
1217:   dump = PETSC_FALSE;
1218: #endif
1219:   PetscCall(PetscOptionsGetBool(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, "-pc_mg_dump_binary", &dump, NULL));
1220:   if (dump) viewer = PETSC_VIEWER_BINARY_(PetscObjectComm((PetscObject)pc));

1222:   if (viewer) {
1223:     for (i = 1; i < n; i++) PetscCall(MatView(mglevels[i]->restrct, viewer));
1224:     for (i = 0; i < n; i++) {
1225:       PetscCall(KSPGetPC(mglevels[i]->smoothd, &pc));
1226:       PetscCall(MatView(pc->mat, viewer));
1227:     }
1228:   }
1229:   PetscFunctionReturn(PETSC_SUCCESS);
1230: }

1232: PetscErrorCode PCMGGetLevels_MG(PC pc, PetscInt *levels)
1233: {
1234:   PC_MG *mg = (PC_MG *)pc->data;

1236:   PetscFunctionBegin;
1237:   *levels = mg->nlevels;
1238:   PetscFunctionReturn(PETSC_SUCCESS);
1239: }

1241: /*@
1242:   PCMGGetLevels - Gets the number of levels to use with `PCMG`.

1244:   Not Collective

1246:   Input Parameter:
1247: . pc - the preconditioner context

1249:   Output Parameter:
1250: . levels - the number of levels

1252:   Level: advanced

1254: .seealso: [](ch_ksp), `PCMG`, `PCMGSetLevels()`
1255: @*/
1256: PetscErrorCode PCMGGetLevels(PC pc, PetscInt *levels)
1257: {
1258:   PetscFunctionBegin;
1260:   PetscAssertPointer(levels, 2);
1261:   *levels = 0;
1262:   PetscTryMethod(pc, "PCMGGetLevels_C", (PC, PetscInt *), (pc, levels));
1263:   PetscFunctionReturn(PETSC_SUCCESS);
1264: }

1266: /*@
1267:   PCMGGetGridComplexity - compute operator and grid complexity of the `PCMG` hierarchy

1269:   Input Parameter:
1270: . pc - the preconditioner context

1272:   Output Parameters:
1273: + gc - grid complexity = sum_i(n_i) / n_0
1274: - oc - operator complexity = sum_i(nnz_i) / nnz_0

1276:   Level: advanced

1278:   Note:
1279:   This is often call the operator complexity in multigrid literature

1281: .seealso: [](ch_ksp), `PCMG`, `PCMGGetLevels()`, `PCMGSetLevels()`
1282: @*/
1283: PetscErrorCode PCMGGetGridComplexity(PC pc, PetscReal *gc, PetscReal *oc)
1284: {
1285:   PC_MG         *mg       = (PC_MG *)pc->data;
1286:   PC_MG_Levels **mglevels = mg->levels;
1287:   PetscInt       lev, N;
1288:   PetscLogDouble nnz0 = 0, sgc = 0, soc = 0, n0 = 0;
1289:   MatInfo        info;

1291:   PetscFunctionBegin;
1293:   if (gc) PetscAssertPointer(gc, 2);
1294:   if (oc) PetscAssertPointer(oc, 3);
1295:   if (!pc->setupcalled) {
1296:     if (gc) *gc = 0;
1297:     if (oc) *oc = 0;
1298:     PetscFunctionReturn(PETSC_SUCCESS);
1299:   }
1300:   PetscCheck(mg->nlevels > 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "MG has no levels");
1301:   for (lev = 0; lev < mg->nlevels; lev++) {
1302:     Mat dB;
1303:     PetscCall(KSPGetOperators(mglevels[lev]->smoothd, NULL, &dB));
1304:     PetscCall(MatGetInfo(dB, MAT_GLOBAL_SUM, &info)); /* global reduction */
1305:     PetscCall(MatGetSize(dB, &N, NULL));
1306:     sgc += N;
1307:     soc += info.nz_used;
1308:     if (lev == mg->nlevels - 1) {
1309:       nnz0 = info.nz_used;
1310:       n0   = N;
1311:     }
1312:   }
1313:   PetscCheck(n0 > 0 && gc, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number for grid points on finest level is not available");
1314:   *gc = (PetscReal)(sgc / n0);
1315:   if (nnz0 > 0 && oc) *oc = (PetscReal)(soc / nnz0);
1316:   PetscFunctionReturn(PETSC_SUCCESS);
1317: }

1319: /*@
1320:   PCMGSetType - Determines the form of multigrid to use, either
1321:   multiplicative, additive, full, or the Kaskade algorithm.

1323:   Logically Collective

1325:   Input Parameters:
1326: + pc   - the preconditioner context
1327: - form - multigrid form, one of `PC_MG_MULTIPLICATIVE`, `PC_MG_ADDITIVE`, `PC_MG_FULL`, `PC_MG_KASKADE`

1329:   Options Database Key:
1330: . -pc_mg_type <form> - Sets <form>, one of multiplicative, additive, full, kaskade

1332:   Level: advanced

1334: .seealso: [](ch_ksp), `PCMGType`, `PCMG`, `PCMGGetLevels()`, `PCMGSetLevels()`, `PCMGGetType()`, `PCMGCycleType`
1335: @*/
1336: PetscErrorCode PCMGSetType(PC pc, PCMGType form)
1337: {
1338:   PC_MG *mg = (PC_MG *)pc->data;

1340:   PetscFunctionBegin;
1343:   mg->am = form;
1344:   if (form == PC_MG_MULTIPLICATIVE) pc->ops->applyrichardson = PCApplyRichardson_MG;
1345:   else pc->ops->applyrichardson = NULL;
1346:   PetscFunctionReturn(PETSC_SUCCESS);
1347: }

1349: /*@
1350:   PCMGGetType - Finds the form of multigrid the `PCMG` is using  multiplicative, additive, full, or the Kaskade algorithm.

1352:   Logically Collective

1354:   Input Parameter:
1355: . pc - the preconditioner context

1357:   Output Parameter:
1358: . type - one of `PC_MG_MULTIPLICATIVE`, `PC_MG_ADDITIVE`, `PC_MG_FULL`, `PC_MG_KASKADE`, `PCMGCycleType`

1360:   Level: advanced

1362: .seealso: [](ch_ksp), `PCMGType`, `PCMG`, `PCMGGetLevels()`, `PCMGSetLevels()`, `PCMGSetType()`
1363: @*/
1364: PetscErrorCode PCMGGetType(PC pc, PCMGType *type)
1365: {
1366:   PC_MG *mg = (PC_MG *)pc->data;

1368:   PetscFunctionBegin;
1370:   *type = mg->am;
1371:   PetscFunctionReturn(PETSC_SUCCESS);
1372: }

1374: /*@
1375:   PCMGSetCycleType - Sets the type cycles to use.  Use `PCMGSetCycleTypeOnLevel()` for more
1376:   complicated cycling.

1378:   Logically Collective

1380:   Input Parameters:
1381: + pc - the multigrid context
1382: - n  - either `PC_MG_CYCLE_V` or `PC_MG_CYCLE_W`

1384:   Options Database Key:
1385: . -pc_mg_cycle_type <v,w> - provide the cycle desired

1387:   Level: advanced

1389: .seealso: [](ch_ksp), `PCMG`, `PCMGSetCycleTypeOnLevel()`, `PCMGType`, `PCMGCycleType`
1390: @*/
1391: PetscErrorCode PCMGSetCycleType(PC pc, PCMGCycleType n)
1392: {
1393:   PC_MG         *mg       = (PC_MG *)pc->data;
1394:   PC_MG_Levels **mglevels = mg->levels;
1395:   PetscInt       i, levels;

1397:   PetscFunctionBegin;
1400:   PetscCheck(mglevels, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Must set MG levels with PCMGSetLevels() before calling");
1401:   levels = mglevels[0]->levels;
1402:   for (i = 0; i < levels; i++) mglevels[i]->cycles = n;
1403:   PetscFunctionReturn(PETSC_SUCCESS);
1404: }

1406: /*@
1407:   PCMGMultiplicativeSetCycles - Sets the number of cycles to use for each preconditioner step
1408:   of multigrid when `PCMGType` is `PC_MG_MULTIPLICATIVE`

1410:   Logically Collective

1412:   Input Parameters:
1413: + pc - the multigrid context
1414: - n  - number of cycles (default is 1)

1416:   Options Database Key:
1417: . -pc_mg_multiplicative_cycles n - set the number of cycles

1419:   Level: advanced

1421:   Note:
1422:   This is not associated with setting a v or w cycle, that is set with `PCMGSetCycleType()`

1424: .seealso: [](ch_ksp), `PCMGSetCycleTypeOnLevel()`, `PCMGSetCycleType()`, `PCMGCycleType`, `PCMGType`
1425: @*/
1426: PetscErrorCode PCMGMultiplicativeSetCycles(PC pc, PetscInt n)
1427: {
1428:   PC_MG *mg = (PC_MG *)pc->data;

1430:   PetscFunctionBegin;
1433:   mg->cyclesperpcapply = n;
1434:   PetscFunctionReturn(PETSC_SUCCESS);
1435: }

1437: static PetscErrorCode PCMGSetGalerkin_MG(PC pc, PCMGGalerkinType use)
1438: {
1439:   PC_MG *mg = (PC_MG *)pc->data;

1441:   PetscFunctionBegin;
1442:   mg->galerkin = use;
1443:   PetscFunctionReturn(PETSC_SUCCESS);
1444: }

1446: /*@
1447:   PCMGSetGalerkin - Causes the coarser grid matrices to be computed from the
1448:   finest grid via the Galerkin process: A_i-1 = r_i * A_i * p_i

1450:   Logically Collective

1452:   Input Parameters:
1453: + pc  - the multigrid context
1454: - use - one of `PC_MG_GALERKIN_BOTH`, `PC_MG_GALERKIN_PMAT`, `PC_MG_GALERKIN_MAT`, or `PC_MG_GALERKIN_NONE`

1456:   Options Database Key:
1457: . -pc_mg_galerkin <both,pmat,mat,none> - set the matrices to form via the Galerkin process

1459:   Level: intermediate

1461:   Note:
1462:   Some codes that use `PCMG` such as `PCGAMG` use Galerkin internally while constructing the hierarchy and thus do not
1463:   use the `PCMG` construction of the coarser grids.

1465: .seealso: [](ch_ksp), `PCMG`, `PCMGGetGalerkin()`, `PCMGGalerkinType`
1466: @*/
1467: PetscErrorCode PCMGSetGalerkin(PC pc, PCMGGalerkinType use)
1468: {
1469:   PetscFunctionBegin;
1471:   PetscTryMethod(pc, "PCMGSetGalerkin_C", (PC, PCMGGalerkinType), (pc, use));
1472:   PetscFunctionReturn(PETSC_SUCCESS);
1473: }

1475: /*@
1476:   PCMGGetGalerkin - Checks if Galerkin multigrid is being used, i.e. A_i-1 = r_i * A_i * p_i

1478:   Not Collective

1480:   Input Parameter:
1481: . pc - the multigrid context

1483:   Output Parameter:
1484: . galerkin - one of `PC_MG_GALERKIN_BOTH`,`PC_MG_GALERKIN_PMAT`,`PC_MG_GALERKIN_MAT`, `PC_MG_GALERKIN_NONE`, or `PC_MG_GALERKIN_EXTERNAL`

1486:   Level: intermediate

1488: .seealso: [](ch_ksp), `PCMG`, `PCMGSetGalerkin()`, `PCMGGalerkinType`
1489: @*/
1490: PetscErrorCode PCMGGetGalerkin(PC pc, PCMGGalerkinType *galerkin)
1491: {
1492:   PC_MG *mg = (PC_MG *)pc->data;

1494:   PetscFunctionBegin;
1496:   *galerkin = mg->galerkin;
1497:   PetscFunctionReturn(PETSC_SUCCESS);
1498: }

1500: static PetscErrorCode PCMGSetAdaptInterpolation_MG(PC pc, PetscBool adapt)
1501: {
1502:   PC_MG *mg = (PC_MG *)pc->data;

1504:   PetscFunctionBegin;
1505:   mg->adaptInterpolation = adapt;
1506:   PetscFunctionReturn(PETSC_SUCCESS);
1507: }

1509: static PetscErrorCode PCMGGetAdaptInterpolation_MG(PC pc, PetscBool *adapt)
1510: {
1511:   PC_MG *mg = (PC_MG *)pc->data;

1513:   PetscFunctionBegin;
1514:   *adapt = mg->adaptInterpolation;
1515:   PetscFunctionReturn(PETSC_SUCCESS);
1516: }

1518: static PetscErrorCode PCMGSetAdaptCoarseSpaceType_MG(PC pc, PCMGCoarseSpaceType ctype)
1519: {
1520:   PC_MG *mg = (PC_MG *)pc->data;

1522:   PetscFunctionBegin;
1523:   mg->adaptInterpolation = ctype != PCMG_ADAPT_NONE ? PETSC_TRUE : PETSC_FALSE;
1524:   mg->coarseSpaceType    = ctype;
1525:   PetscCall(PCMGSetGalerkin(pc, PC_MG_GALERKIN_BOTH));
1526:   PetscFunctionReturn(PETSC_SUCCESS);
1527: }

1529: static PetscErrorCode PCMGGetAdaptCoarseSpaceType_MG(PC pc, PCMGCoarseSpaceType *ctype)
1530: {
1531:   PC_MG *mg = (PC_MG *)pc->data;

1533:   PetscFunctionBegin;
1534:   *ctype = mg->coarseSpaceType;
1535:   PetscFunctionReturn(PETSC_SUCCESS);
1536: }

1538: static PetscErrorCode PCMGSetAdaptCR_MG(PC pc, PetscBool cr)
1539: {
1540:   PC_MG *mg = (PC_MG *)pc->data;

1542:   PetscFunctionBegin;
1543:   mg->compatibleRelaxation = cr;
1544:   PetscFunctionReturn(PETSC_SUCCESS);
1545: }

1547: static PetscErrorCode PCMGGetAdaptCR_MG(PC pc, PetscBool *cr)
1548: {
1549:   PC_MG *mg = (PC_MG *)pc->data;

1551:   PetscFunctionBegin;
1552:   *cr = mg->compatibleRelaxation;
1553:   PetscFunctionReturn(PETSC_SUCCESS);
1554: }

1556: /*@
1557:   PCMGSetAdaptCoarseSpaceType - Set the type of adaptive coarse space.

1559:   Adapts or creates the interpolator based upon a vector space which should be accurately captured by the next coarser mesh, and thus accurately interpolated.

1561:   Logically Collective

1563:   Input Parameters:
1564: + pc    - the multigrid context
1565: - ctype - the type of coarse space

1567:   Options Database Keys:
1568: + -pc_mg_adapt_interp_n <int>             - The number of modes to use
1569: - -pc_mg_adapt_interp_coarse_space <type> - The type of coarse space: none, `polynomial`, `harmonic`, `eigenvector`, `generalized_eigenvector`, `gdsw`

1571:   Level: intermediate

1573:   Note:
1574:   Requires a `DM` with specific functionality be attached to the `PC`.

1576: .seealso: [](ch_ksp), `PCMG`, `PCMGCoarseSpaceType`, `PCMGGetAdaptCoarseSpaceType()`, `PCMGSetGalerkin()`, `PCMGSetAdaptInterpolation()`, `DM`
1577: @*/
1578: PetscErrorCode PCMGSetAdaptCoarseSpaceType(PC pc, PCMGCoarseSpaceType ctype)
1579: {
1580:   PetscFunctionBegin;
1583:   PetscTryMethod(pc, "PCMGSetAdaptCoarseSpaceType_C", (PC, PCMGCoarseSpaceType), (pc, ctype));
1584:   PetscFunctionReturn(PETSC_SUCCESS);
1585: }

1587: /*@
1588:   PCMGGetAdaptCoarseSpaceType - Get the type of adaptive coarse space.

1590:   Not Collective

1592:   Input Parameter:
1593: . pc - the multigrid context

1595:   Output Parameter:
1596: . ctype - the type of coarse space

1598:   Level: intermediate

1600: .seealso: [](ch_ksp), `PCMG`, `PCMGCoarseSpaceType`, `PCMGSetAdaptCoarseSpaceType()`, `PCMGSetGalerkin()`, `PCMGSetAdaptInterpolation()`
1601: @*/
1602: PetscErrorCode PCMGGetAdaptCoarseSpaceType(PC pc, PCMGCoarseSpaceType *ctype)
1603: {
1604:   PetscFunctionBegin;
1606:   PetscAssertPointer(ctype, 2);
1607:   PetscUseMethod(pc, "PCMGGetAdaptCoarseSpaceType_C", (PC, PCMGCoarseSpaceType *), (pc, ctype));
1608:   PetscFunctionReturn(PETSC_SUCCESS);
1609: }

1611: /* MATT: REMOVE? */
1612: /*@
1613:   PCMGSetAdaptInterpolation - Adapt the interpolator based upon a vector space which should be accurately captured by the next coarser mesh, and thus accurately interpolated.

1615:   Logically Collective

1617:   Input Parameters:
1618: + pc    - the multigrid context
1619: - adapt - flag for adaptation of the interpolator

1621:   Options Database Keys:
1622: + -pc_mg_adapt_interp                     - Turn on adaptation
1623: . -pc_mg_adapt_interp_n <int>             - The number of modes to use, should be divisible by dimension
1624: - -pc_mg_adapt_interp_coarse_space <type> - The type of coarse space: polynomial, harmonic, eigenvector, generalized_eigenvector

1626:   Level: intermediate

1628: .seealso: [](ch_ksp), `PCMG`, `PCMGGetAdaptInterpolation()`, `PCMGSetGalerkin()`, `PCMGGetAdaptCoarseSpaceType()`, `PCMGSetAdaptCoarseSpaceType()`
1629: @*/
1630: PetscErrorCode PCMGSetAdaptInterpolation(PC pc, PetscBool adapt)
1631: {
1632:   PetscFunctionBegin;
1634:   PetscTryMethod(pc, "PCMGSetAdaptInterpolation_C", (PC, PetscBool), (pc, adapt));
1635:   PetscFunctionReturn(PETSC_SUCCESS);
1636: }

1638: /*@
1639:   PCMGGetAdaptInterpolation - Get the flag to adapt the interpolator based upon a vector space which should be accurately captured by the next coarser mesh,
1640:   and thus accurately interpolated.

1642:   Not Collective

1644:   Input Parameter:
1645: . pc - the multigrid context

1647:   Output Parameter:
1648: . adapt - flag for adaptation of the interpolator

1650:   Level: intermediate

1652: .seealso: [](ch_ksp), `PCMG`, `PCMGSetAdaptInterpolation()`, `PCMGSetGalerkin()`, `PCMGGetAdaptCoarseSpaceType()`, `PCMGSetAdaptCoarseSpaceType()`
1653: @*/
1654: PetscErrorCode PCMGGetAdaptInterpolation(PC pc, PetscBool *adapt)
1655: {
1656:   PetscFunctionBegin;
1658:   PetscAssertPointer(adapt, 2);
1659:   PetscUseMethod(pc, "PCMGGetAdaptInterpolation_C", (PC, PetscBool *), (pc, adapt));
1660:   PetscFunctionReturn(PETSC_SUCCESS);
1661: }

1663: /*@
1664:   PCMGSetAdaptCR - Monitor the coarse space quality using an auxiliary solve with compatible relaxation.

1666:   Logically Collective

1668:   Input Parameters:
1669: + pc - the multigrid context
1670: - cr - flag for compatible relaxation

1672:   Options Database Key:
1673: . -pc_mg_adapt_cr - Turn on compatible relaxation

1675:   Level: intermediate

1677: .seealso: [](ch_ksp), `PCMG`, `PCMGGetAdaptCR()`, `PCMGSetAdaptInterpolation()`, `PCMGSetGalerkin()`, `PCMGGetAdaptCoarseSpaceType()`, `PCMGSetAdaptCoarseSpaceType()`
1678: @*/
1679: PetscErrorCode PCMGSetAdaptCR(PC pc, PetscBool cr)
1680: {
1681:   PetscFunctionBegin;
1683:   PetscTryMethod(pc, "PCMGSetAdaptCR_C", (PC, PetscBool), (pc, cr));
1684:   PetscFunctionReturn(PETSC_SUCCESS);
1685: }

1687: /*@
1688:   PCMGGetAdaptCR - Get the flag to monitor coarse space quality using an auxiliary solve with compatible relaxation.

1690:   Not Collective

1692:   Input Parameter:
1693: . pc - the multigrid context

1695:   Output Parameter:
1696: . cr - flag for compatible relaxaion

1698:   Level: intermediate

1700: .seealso: [](ch_ksp), `PCMGSetAdaptCR()`, `PCMGGetAdaptInterpolation()`, `PCMGSetGalerkin()`, `PCMGGetAdaptCoarseSpaceType()`, `PCMGSetAdaptCoarseSpaceType()`
1701: @*/
1702: PetscErrorCode PCMGGetAdaptCR(PC pc, PetscBool *cr)
1703: {
1704:   PetscFunctionBegin;
1706:   PetscAssertPointer(cr, 2);
1707:   PetscUseMethod(pc, "PCMGGetAdaptCR_C", (PC, PetscBool *), (pc, cr));
1708:   PetscFunctionReturn(PETSC_SUCCESS);
1709: }

1711: /*@
1712:   PCMGSetNumberSmooth - Sets the number of pre and post-smoothing steps to use
1713:   on all levels.  Use `PCMGDistinctSmoothUp()` to create separate up and down smoothers if you want different numbers of
1714:   pre- and post-smoothing steps.

1716:   Logically Collective

1718:   Input Parameters:
1719: + pc - the multigrid context
1720: - n  - the number of smoothing steps

1722:   Options Database Key:
1723: . -mg_levels_ksp_max_it <n> - Sets number of pre and post-smoothing steps

1725:   Level: advanced

1727:   Note:
1728:   This does not set a value on the coarsest grid, since we assume that there is no separate smooth up on the coarsest grid.

1730: .seealso: [](ch_ksp), `PCMG`, `PCMGSetDistinctSmoothUp()`
1731: @*/
1732: PetscErrorCode PCMGSetNumberSmooth(PC pc, PetscInt n)
1733: {
1734:   PC_MG         *mg       = (PC_MG *)pc->data;
1735:   PC_MG_Levels **mglevels = mg->levels;
1736:   PetscInt       i, levels;

1738:   PetscFunctionBegin;
1741:   PetscCheck(mglevels, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Must set MG levels with PCMGSetLevels() before calling");
1742:   levels = mglevels[0]->levels;

1744:   for (i = 1; i < levels; i++) {
1745:     PetscCall(KSPSetTolerances(mglevels[i]->smoothu, PETSC_CURRENT, PETSC_CURRENT, PETSC_CURRENT, n));
1746:     PetscCall(KSPSetTolerances(mglevels[i]->smoothd, PETSC_CURRENT, PETSC_CURRENT, PETSC_CURRENT, n));
1747:     mg->default_smoothu = n;
1748:     mg->default_smoothd = n;
1749:   }
1750:   PetscFunctionReturn(PETSC_SUCCESS);
1751: }

1753: /*@
1754:   PCMGSetDistinctSmoothUp - sets the up (post) smoother to be a separate `KSP` from the down (pre) smoother on all levels
1755:   and adds the suffix _up to the options name

1757:   Logically Collective

1759:   Input Parameter:
1760: . pc - the preconditioner context

1762:   Options Database Key:
1763: . -pc_mg_distinct_smoothup <bool> - use distinct smoothing objects

1765:   Level: advanced

1767:   Note:
1768:   This does not set a value on the coarsest grid, since we assume that there is no separate smooth up on the coarsest grid.

1770: .seealso: [](ch_ksp), `PCMG`, `PCMGSetNumberSmooth()`
1771: @*/
1772: PetscErrorCode PCMGSetDistinctSmoothUp(PC pc)
1773: {
1774:   PC_MG         *mg       = (PC_MG *)pc->data;
1775:   PC_MG_Levels **mglevels = mg->levels;
1776:   PetscInt       i, levels;
1777:   KSP            subksp;

1779:   PetscFunctionBegin;
1781:   PetscCheck(mglevels, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Must set MG levels with PCMGSetLevels() before calling");
1782:   levels = mglevels[0]->levels;

1784:   for (i = 1; i < levels; i++) {
1785:     const char *prefix = NULL;
1786:     /* make sure smoother up and down are different */
1787:     PetscCall(PCMGGetSmootherUp(pc, i, &subksp));
1788:     PetscCall(KSPGetOptionsPrefix(mglevels[i]->smoothd, &prefix));
1789:     PetscCall(KSPSetOptionsPrefix(subksp, prefix));
1790:     PetscCall(KSPAppendOptionsPrefix(subksp, "up_"));
1791:   }
1792:   PetscFunctionReturn(PETSC_SUCCESS);
1793: }

1795: /* No new matrices are created, and the coarse operator matrices are the references to the original ones */
1796: static PetscErrorCode PCGetInterpolations_MG(PC pc, PetscInt *num_levels, Mat *interpolations[])
1797: {
1798:   PC_MG         *mg       = (PC_MG *)pc->data;
1799:   PC_MG_Levels **mglevels = mg->levels;
1800:   Mat           *mat;
1801:   PetscInt       l;

1803:   PetscFunctionBegin;
1804:   PetscCheck(mglevels, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must set MG levels before calling");
1805:   PetscCall(PetscMalloc1(mg->nlevels, &mat));
1806:   for (l = 1; l < mg->nlevels; l++) {
1807:     mat[l - 1] = mglevels[l]->interpolate;
1808:     PetscCall(PetscObjectReference((PetscObject)mat[l - 1]));
1809:   }
1810:   *num_levels     = mg->nlevels;
1811:   *interpolations = mat;
1812:   PetscFunctionReturn(PETSC_SUCCESS);
1813: }

1815: /* No new matrices are created, and the coarse operator matrices are the references to the original ones */
1816: static PetscErrorCode PCGetCoarseOperators_MG(PC pc, PetscInt *num_levels, Mat *coarseOperators[])
1817: {
1818:   PC_MG         *mg       = (PC_MG *)pc->data;
1819:   PC_MG_Levels **mglevels = mg->levels;
1820:   PetscInt       l;
1821:   Mat           *mat;

1823:   PetscFunctionBegin;
1824:   PetscCheck(mglevels, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must set MG levels before calling");
1825:   PetscCall(PetscMalloc1(mg->nlevels, &mat));
1826:   for (l = 0; l < mg->nlevels - 1; l++) {
1827:     PetscCall(KSPGetOperators(mglevels[l]->smoothd, NULL, &mat[l]));
1828:     PetscCall(PetscObjectReference((PetscObject)mat[l]));
1829:   }
1830:   *num_levels      = mg->nlevels;
1831:   *coarseOperators = mat;
1832:   PetscFunctionReturn(PETSC_SUCCESS);
1833: }

1835: /*@C
1836:   PCMGRegisterCoarseSpaceConstructor -  Adds a method to the `PCMG` package for coarse space construction.

1838:   Not Collective, No Fortran Support

1840:   Input Parameters:
1841: + name     - name of the constructor
1842: - function - constructor routine

1844:   Calling sequence of `function`:
1845: + pc        - The `PC` object
1846: . l         - The multigrid level, 0 is the coarse level
1847: . dm        - The `DM` for this level
1848: . smooth    - The level smoother
1849: . Nc        - The size of the coarse space
1850: . initGuess - Basis for an initial guess for the space
1851: - coarseSp  - A basis for the computed coarse space

1853:   Level: advanced

1855:   Developer Notes:
1856:   How come this is not used by `PCGAMG`?

1858: .seealso: [](ch_ksp), `PCMG`, `PCMGGetCoarseSpaceConstructor()`, `PCRegister()`
1859: @*/
1860: PetscErrorCode PCMGRegisterCoarseSpaceConstructor(const char name[], PetscErrorCode (*function)(PC pc, PetscInt l, DM dm, KSP smooth, PetscInt Nc, Mat initGuess, Mat *coarseSp))
1861: {
1862:   PetscFunctionBegin;
1863:   PetscCall(PCInitializePackage());
1864:   PetscCall(PetscFunctionListAdd(&PCMGCoarseList, name, function));
1865:   PetscFunctionReturn(PETSC_SUCCESS);
1866: }

1868: /*@C
1869:   PCMGGetCoarseSpaceConstructor -  Returns the given coarse space construction method.

1871:   Not Collective, No Fortran Support

1873:   Input Parameter:
1874: . name - name of the constructor

1876:   Output Parameter:
1877: . function - constructor routine

1879:   Level: advanced

1881: .seealso: [](ch_ksp), `PCMG`, `PCMGRegisterCoarseSpaceConstructor()`, `PCRegister()`
1882: @*/
1883: PetscErrorCode PCMGGetCoarseSpaceConstructor(const char name[], PetscErrorCode (**function)(PC, PetscInt, DM, KSP, PetscInt, Mat, Mat *))
1884: {
1885:   PetscFunctionBegin;
1886:   PetscCall(PetscFunctionListFind(PCMGCoarseList, name, function));
1887:   PetscFunctionReturn(PETSC_SUCCESS);
1888: }

1890: /*MC
1891:    PCMG - Use multigrid preconditioning. This preconditioner requires you provide additional
1892:     information about the coarser grid matrices and restriction/interpolation operators.

1894:    Options Database Keys:
1895: +  -pc_mg_levels <nlevels>                            - number of levels including finest
1896: .  -pc_mg_cycle_type <v,w>                            - provide the cycle desired
1897: .  -pc_mg_type <additive,multiplicative,full,kaskade> - multiplicative is the default
1898: .  -pc_mg_log                                         - log information about time spent on each level of the solver
1899: .  -pc_mg_distinct_smoothup                           - configure up (after interpolation) and down (before restriction) smoothers separately (with different options prefixes)
1900: .  -pc_mg_galerkin <both,pmat,mat,none>               - use Galerkin process to compute coarser operators, i.e. Acoarse = R A R'
1901: .  -pc_mg_multiplicative_cycles                        - number of cycles to use as the preconditioner (defaults to 1)
1902: .  -pc_mg_dump_matlab                                  - dumps the matrices for each level and the restriction/interpolation matrices
1903:                                                          to a `PETSCVIEWERSOCKET` for reading from MATLAB.
1904: -  -pc_mg_dump_binary                                  -dumps the matrices for each level and the restriction/interpolation matrices
1905:                                                         to the binary output file called binaryoutput

1907:    Level: intermediate

1909:    Notes:
1910:    The Krylov solver (if any) and preconditioner (smoother) and their parameters are controlled from the options database with the standard
1911:    options database keywords prefixed with `-mg_levels_` to affect all the levels but the coarsest, which is controlled with `-mg_coarse_`,
1912:    and the finest where `-mg_fine_` can override `-mg_levels_`.  One can set different preconditioners etc on specific levels with the prefix
1913:    `-mg_levels_n_` where `n` is the level number (zero being the coarse level. For example
1914: .vb
1915:    -mg_levels_ksp_type gmres -mg_levels_pc_type bjacobi -mg_coarse_pc_type svd -mg_levels_2_pc_type sor
1916: .ve
1917:    These options also work for controlling the smoothers etc inside `PCGAMG`

1919:    If one uses a Krylov method such `KSPGMRES` or `KSPCG` as the smoother then one must use `KSPFGMRES`, `KSPGCR`, or `KSPRICHARDSON` as the outer Krylov method

1921:    When run with a single level the smoother options are used on that level NOT the coarse grid solver options

1923:    When run with `KSPRICHARDSON` the convergence test changes slightly if monitor is turned on. The iteration count may change slightly. This
1924:    is because without monitoring the residual norm is computed WITHIN each multigrid cycle on the finest level after the pre-smoothing
1925:    (because the residual has just been computed for the multigrid algorithm and is hence available for free) while with monitoring the
1926:    residual is computed at the end of each cycle.

1928: .seealso: [](sec_mg), `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCMGType`, `PCEXOTIC`, `PCGAMG`, `PCML`, `PCHYPRE`
1929:           `PCMGSetLevels()`, `PCMGGetLevels()`, `PCMGSetType()`, `PCMGSetCycleType()`,
1930:           `PCMGSetDistinctSmoothUp()`, `PCMGGetCoarseSolve()`, `PCMGSetResidual()`, `PCMGSetInterpolation()`,
1931:           `PCMGSetRestriction()`, `PCMGGetSmoother()`, `PCMGGetSmootherUp()`, `PCMGGetSmootherDown()`,
1932:           `PCMGSetCycleTypeOnLevel()`, `PCMGSetRhs()`, `PCMGSetX()`, `PCMGSetR()`,
1933:           `PCMGSetAdaptCR()`, `PCMGGetAdaptInterpolation()`, `PCMGSetGalerkin()`, `PCMGGetAdaptCoarseSpaceType()`, `PCMGSetAdaptCoarseSpaceType()`
1934: M*/

1936: PETSC_EXTERN PetscErrorCode PCCreate_MG(PC pc)
1937: {
1938:   PC_MG *mg;

1940:   PetscFunctionBegin;
1941:   PetscCall(PetscNew(&mg));
1942:   pc->data               = mg;
1943:   mg->nlevels            = -1;
1944:   mg->am                 = PC_MG_MULTIPLICATIVE;
1945:   mg->galerkin           = PC_MG_GALERKIN_NONE;
1946:   mg->adaptInterpolation = PETSC_FALSE;
1947:   mg->Nc                 = -1;
1948:   mg->eigenvalue         = -1;

1950:   pc->useAmat = PETSC_TRUE;

1952:   pc->ops->apply          = PCApply_MG;
1953:   pc->ops->applytranspose = PCApplyTranspose_MG;
1954:   pc->ops->matapply       = PCMatApply_MG;
1955:   pc->ops->setup          = PCSetUp_MG;
1956:   pc->ops->reset          = PCReset_MG;
1957:   pc->ops->destroy        = PCDestroy_MG;
1958:   pc->ops->setfromoptions = PCSetFromOptions_MG;
1959:   pc->ops->view           = PCView_MG;

1961:   PetscCall(PetscObjectComposedDataRegister(&mg->eigenvalue));
1962:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetGalerkin_C", PCMGSetGalerkin_MG));
1963:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetLevels_C", PCMGGetLevels_MG));
1964:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetLevels_C", PCMGSetLevels_MG));
1965:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetInterpolations_C", PCGetInterpolations_MG));
1966:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCGetCoarseOperators_C", PCGetCoarseOperators_MG));
1967:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetAdaptInterpolation_C", PCMGSetAdaptInterpolation_MG));
1968:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetAdaptInterpolation_C", PCMGGetAdaptInterpolation_MG));
1969:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetAdaptCR_C", PCMGSetAdaptCR_MG));
1970:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetAdaptCR_C", PCMGGetAdaptCR_MG));
1971:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGSetAdaptCoarseSpaceType_C", PCMGSetAdaptCoarseSpaceType_MG));
1972:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCMGGetAdaptCoarseSpaceType_C", PCMGGetAdaptCoarseSpaceType_MG));
1973:   PetscFunctionReturn(PETSC_SUCCESS);
1974: }