Actual source code: lusol.c

  1: /*
  2:         Provides an interface to the LUSOL package of ....

  4: */
  5: #include <../src/mat/impls/aij/seq/aij.h>

  7: #if defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
  8:   #define LU1FAC lu1fac_
  9:   #define LU6SOL lu6sol_
 10:   #define M1PAGE m1page_
 11:   #define M5SETX m5setx_
 12:   #define M6RDEL m6rdel_
 13: #elif !defined(PETSC_HAVE_FORTRAN_CAPS)
 14:   #define LU1FAC lu1fac
 15:   #define LU6SOL lu6sol
 16:   #define M1PAGE m1page
 17:   #define M5SETX m5setx
 18:   #define M6RDEL m6rdel
 19: #endif

 21: /*
 22:     Dummy symbols that the MINOS files mi25bfac.f and mi15blas.f may require
 23: */
 24: PETSC_EXTERN void M1PAGE()
 25: {
 26:   ;
 27: }
 28: PETSC_EXTERN void M5SETX()
 29: {
 30:   ;
 31: }

 33: PETSC_EXTERN void M6RDEL()
 34: {
 35:   ;
 36: }

 38: PETSC_EXTERN void LU1FAC(int *m, int *n, int *nnz, int *size, int *luparm, double *parmlu, double *data, int *indc, int *indr, int *rowperm, int *colperm, int *collen, int *rowlen, int *colstart, int *rowstart, int *rploc, int *cploc, int *rpinv, int *cpinv, double *w, int *inform);

 40: PETSC_EXTERN void LU6SOL(int *mode, int *m, int *n, double *rhs, double *x, int *size, int *luparm, double *parmlu, double *data, int *indc, int *indr, int *rowperm, int *colperm, int *collen, int *rowlen, int *colstart, int *rowstart, int *inform);

 42: extern PetscErrorCode MatDuplicate_LUSOL(Mat, MatDuplicateOption, Mat *);

 44: typedef struct {
 45:   double *data;
 46:   int    *indc;
 47:   int    *indr;

 49:   int    *ip;
 50:   int    *iq;
 51:   int    *lenc;
 52:   int    *lenr;
 53:   int    *locc;
 54:   int    *locr;
 55:   int    *iploc;
 56:   int    *iqloc;
 57:   int    *ipinv;
 58:   int    *iqinv;
 59:   double *mnsw;
 60:   double *mnsv;

 62:   double elbowroom;
 63:   double luroom;     /* Extra space allocated when factor fails   */
 64:   double parmlu[30]; /* Input/output to LUSOL                     */

 66:   int n;          /* Number of rows/columns in matrix          */
 67:   int nz;         /* Number of nonzeros                        */
 68:   int nnz;        /* Number of nonzeros allocated for factors  */
 69:   int luparm[30]; /* Input/output to LUSOL                     */

 71:   PetscBool CleanUpLUSOL;

 73: } Mat_LUSOL;

 75: /*
 76:     LUSOL input/Output Parameters (Description uses C-style indexes

 78:     Input parameters                                        Typical value
 79:     luparm(0) = nout     File number for printed messages.         6
 80:     luparm(1) = lprint   Print level.                              0
 81:                       < 0 suppresses output.
 82:                       = 0 gives error messages.
 83:                       = 1 gives debug output from some of the
 84:                           other routines in LUSOL.
 85:                      >= 2 gives the pivot row and column and the
 86:                           no. of rows and columns involved at
 87:                           each elimination step in lu1fac.
 88:     luparm(2) = maxcol   lu1fac: maximum number of columns         5
 89:                           searched allowed in a Markowitz-type
 90:                           search for the next pivot element.
 91:                           For some of the factorization, the
 92:                           number of rows searched is
 93:                           maxrow = maxcol - 1.

 95:     Output parameters:

 97:     luparm(9) = inform   Return code from last call to any LU routine.
 98:     luparm(10) = nsing    No. of singularities marked in the
 99:                           output array w(*).
100:     luparm(11) = jsing    Column index of last singularity.
101:     luparm(12) = minlen   Minimum recommended value for  lena.
102:     luparm(13) = maxlen   ?
103:     luparm(14) = nupdat   No. of updates performed by the lu8 routines.
104:     luparm(15) = nrank    No. of nonempty rows of U.
105:     luparm(16) = ndens1   No. of columns remaining when the density of
106:                           the matrix being factorized reached dens1.
107:     luparm(17) = ndens2   No. of columns remaining when the density of
108:                           the matrix being factorized reached dens2.
109:     luparm(18) = jumin    The column index associated with dumin.
110:     luparm(19) = numl0    No. of columns in initial  L.
111:     luparm(20) = lenl0    Size of initial  L  (no. of nonzeros).
112:     luparm(21) = lenu0    Size of initial  U.
113:     luparm(22) = lenl     Size of current  L.
114:     luparm(23) = lenu     Size of current  U.
115:     luparm(24) = lrow     Length of row file.
116:     luparm(25) = ncp      No. of compressions of LU data structures.
117:     luparm(26) = mersum   lu1fac: sum of Markowitz merit counts.
118:     luparm(27) = nutri    lu1fac: triangular rows in U.
119:     luparm(28) = nltri    lu1fac: triangular rows in L.
120:     luparm(29) =

122:     Input parameters                                        Typical value
123:     parmlu(0) = elmax1   Max multiplier allowed in  L           10.0
124:                           during factor.
125:     parmlu(1) = elmax2   Max multiplier allowed in  L           10.0
126:                           during updates.
127:     parmlu(2) = small    Absolute tolerance for             eps**0.8
128:                           treating reals as zero.     IBM double: 3.0d-13
129:     parmlu(3) = utol1    Absolute tol for flagging          eps**0.66667
130:                           small diagonals of U.       IBM double: 3.7d-11
131:     parmlu(4) = utol2    Relative tol for flagging          eps**0.66667
132:                           small diagonals of U.       IBM double: 3.7d-11
133:     parmlu(5) = uspace   Factor limiting waste space in  U.      3.0
134:                           In lu1fac, the row or column lists
135:                           are compressed if their length
136:                           exceeds uspace times the length of
137:                           either file after the last compression.
138:     parmlu(6) = dens1    The density at which the Markowitz      0.3
139:                           strategy should search maxcol columns
140:                           and no rows.
141:     parmlu(7) = dens2    the density at which the Markowitz      0.6
142:                           strategy should search only 1 column
143:                           or (preferably) use a dense LU for
144:                           all the remaining rows and columns.

146:     Output parameters:
147:     parmlu(9) = amax     Maximum element in  A.
148:     parmlu(10) = elmax    Maximum multiplier in current  L.
149:     parmlu(11) = umax     Maximum element in current  U.
150:     parmlu(12) = dumax    Maximum diagonal in  U.
151:     parmlu(13) = dumin    Minimum diagonal in  U.
152:     parmlu(14) =
153:     parmlu(15) =
154:     parmlu(16) =
155:     parmlu(17) =
156:     parmlu(18) =
157:     parmlu(19) = resid    lu6sol: residual after solve with U or U'.
158:     ...
159:     parmlu(29) =
160:   */

162: #define Factorization_Tolerance       1e-1
163: #define Factorization_Pivot_Tolerance pow(2.2204460492503131E-16, 2.0 / 3.0)
164: #define Factorization_Small_Tolerance 1e-15 /* pow(DBL_EPSILON, 0.8) */

166: static PetscErrorCode MatDestroy_LUSOL(Mat A)
167: {
168:   Mat_LUSOL *lusol = (Mat_LUSOL *)A->spptr;

170:   PetscFunctionBegin;
171:   if (lusol && lusol->CleanUpLUSOL) {
172:     PetscCall(PetscFree(lusol->ip));
173:     PetscCall(PetscFree(lusol->iq));
174:     PetscCall(PetscFree(lusol->lenc));
175:     PetscCall(PetscFree(lusol->lenr));
176:     PetscCall(PetscFree(lusol->locc));
177:     PetscCall(PetscFree(lusol->locr));
178:     PetscCall(PetscFree(lusol->iploc));
179:     PetscCall(PetscFree(lusol->iqloc));
180:     PetscCall(PetscFree(lusol->ipinv));
181:     PetscCall(PetscFree(lusol->iqinv));
182:     PetscCall(PetscFree(lusol->mnsw));
183:     PetscCall(PetscFree(lusol->mnsv));
184:     PetscCall(PetscFree3(lusol->data, lusol->indc, lusol->indr));
185:   }
186:   PetscCall(PetscFree(A->spptr));
187:   PetscCall(MatDestroy_SeqAIJ(A));
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: static PetscErrorCode MatSolve_LUSOL(Mat A, Vec b, Vec x)
192: {
193:   Mat_LUSOL    *lusol = (Mat_LUSOL *)A->spptr;
194:   double       *xx;
195:   const double *bb;
196:   int           mode = 5;
197:   int           i, m, n, nnz, status;

199:   PetscFunctionBegin;
200:   PetscCall(VecGetArray(x, &xx));
201:   PetscCall(VecGetArrayRead(b, &bb));

203:   m = n = lusol->n;
204:   nnz   = lusol->nnz;

206:   for (i = 0; i < m; i++) lusol->mnsv[i] = bb[i];

208:   LU6SOL(&mode, &m, &n, lusol->mnsv, xx, &nnz, lusol->luparm, lusol->parmlu, lusol->data, lusol->indc, lusol->indr, lusol->ip, lusol->iq, lusol->lenc, lusol->lenr, lusol->locc, lusol->locr, &status);

210:   PetscCheck(!status, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "solve failed, error code %d", status);

212:   PetscCall(VecRestoreArray(x, &xx));
213:   PetscCall(VecRestoreArrayRead(b, &bb));
214:   PetscFunctionReturn(PETSC_SUCCESS);
215: }

217: static PetscErrorCode MatLUFactorNumeric_LUSOL(Mat F, Mat A, const MatFactorInfo *info)
218: {
219:   Mat_SeqAIJ *a;
220:   Mat_LUSOL  *lusol = (Mat_LUSOL *)F->spptr;
221:   int         m, n, nz, nnz, status;
222:   int         i, rs, re;
223:   int         factorizations;

225:   PetscFunctionBegin;
226:   PetscCall(MatGetSize(A, &m, &n));
227:   a = (Mat_SeqAIJ *)A->data;

229:   PetscCheck(m == lusol->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "factorization struct inconsistent");

231:   factorizations = 0;
232:   do {
233:     /*******************************************************************/
234:     /* Check the workspace allocation.                                 */
235:     /*******************************************************************/

237:     nz  = a->nz;
238:     nnz = PetscMax(lusol->nnz, (int)(lusol->elbowroom * nz));
239:     nnz = PetscMax(nnz, 5 * n);

241:     if (nnz < lusol->luparm[12]) {
242:       nnz = (int)(lusol->luroom * lusol->luparm[12]);
243:     } else if ((factorizations > 0) && (lusol->luroom < 6)) {
244:       lusol->luroom += 0.1;
245:     }

247:     nnz = PetscMax(nnz, (int)(lusol->luroom * (lusol->luparm[22] + lusol->luparm[23])));

249:     if (nnz > lusol->nnz) {
250:       PetscCall(PetscFree3(lusol->data, lusol->indc, lusol->indr));
251:       PetscCall(PetscMalloc3(nnz, &lusol->data, nnz, &lusol->indc, nnz, &lusol->indr));
252:       lusol->nnz = nnz;
253:     }

255:     /* Fill in the data for the problem.      (1-based Fortran style)  */
256:     nz = 0;
257:     for (i = 0; i < n; i++) {
258:       rs = a->i[i];
259:       re = a->i[i + 1];

261:       while (rs < re) {
262:         if (a->a[rs] != 0.0) {
263:           lusol->indc[nz] = i + 1;
264:           lusol->indr[nz] = a->j[rs] + 1;
265:           lusol->data[nz] = a->a[rs];
266:           nz++;
267:         }
268:         rs++;
269:       }
270:     }

272:     /* Do the factorization.                                           */
273:     LU1FAC(&m, &n, &nz, &nnz, lusol->luparm, lusol->parmlu, lusol->data, lusol->indc, lusol->indr, lusol->ip, lusol->iq, lusol->lenc, lusol->lenr, lusol->locc, lusol->locr, lusol->iploc, lusol->iqloc, lusol->ipinv, lusol->iqinv, lusol->mnsw, &status);

275:     switch (status) {
276:     case 0: /* factored */
277:       break;

279:     case 7: /* insufficient memory */
280:       break;

282:     case 1:
283:     case -1: /* singular */
284:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "Singular matrix");

286:     case 3:
287:     case 4: /* error conditions */
288:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "matrix error");

290:     default: /* unknown condition */
291:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "matrix unknown return code");
292:     }

294:     factorizations++;
295:   } while (status == 7);
296:   F->ops->solve   = MatSolve_LUSOL;
297:   F->assembled    = PETSC_TRUE;
298:   F->preallocated = PETSC_TRUE;
299:   PetscFunctionReturn(PETSC_SUCCESS);
300: }

302: static PetscErrorCode MatLUFactorSymbolic_LUSOL(Mat F, Mat A, IS r, IS c, const MatFactorInfo *info)
303: {
304:   /*
305:      Input
306:          A  - matrix to factor
307:          r  - row permutation (ignored)
308:          c  - column permutation (ignored)

310:      Output
311:          F  - matrix storing the factorization;
312:   */
313:   Mat_LUSOL *lusol;
314:   int        i, m, n, nz, nnz;

316:   PetscFunctionBegin;
317:   /* Check the arguments.                                                 */
318:   PetscCall(MatGetSize(A, &m, &n));
319:   nz = ((Mat_SeqAIJ *)A->data)->nz;

321:   /* Create the factorization.                                            */
322:   F->ops->lufactornumeric = MatLUFactorNumeric_LUSOL;
323:   lusol                   = (Mat_LUSOL *)F->spptr;

325:   /* Initialize parameters                                                */
326:   for (i = 0; i < 30; i++) {
327:     lusol->luparm[i] = 0;
328:     lusol->parmlu[i] = 0;
329:   }

331:   lusol->luparm[1] = -1;
332:   lusol->luparm[2] = 5;
333:   lusol->luparm[7] = 1;

335:   lusol->parmlu[0] = 1 / Factorization_Tolerance;
336:   lusol->parmlu[1] = 1 / Factorization_Tolerance;
337:   lusol->parmlu[2] = Factorization_Small_Tolerance;
338:   lusol->parmlu[3] = Factorization_Pivot_Tolerance;
339:   lusol->parmlu[4] = Factorization_Pivot_Tolerance;
340:   lusol->parmlu[5] = 3.0;
341:   lusol->parmlu[6] = 0.3;
342:   lusol->parmlu[7] = 0.6;

344:   /* Allocate the workspace needed by LUSOL.                              */
345:   lusol->elbowroom = PetscMax(lusol->elbowroom, info->fill);
346:   nnz              = PetscMax((int)(lusol->elbowroom * nz), 5 * n);

348:   lusol->n      = n;
349:   lusol->nz     = nz;
350:   lusol->nnz    = nnz;
351:   lusol->luroom = 1.75;

353:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->ip));
354:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->iq));
355:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->lenc));
356:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->lenr));
357:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->locc));
358:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->locr));
359:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->iploc));
360:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->iqloc));
361:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->ipinv));
362:   PetscCall(PetscMalloc(sizeof(int) * n, &lusol->iqinv));
363:   PetscCall(PetscMalloc(sizeof(double) * n, &lusol->mnsw));
364:   PetscCall(PetscMalloc(sizeof(double) * n, &lusol->mnsv));
365:   PetscCall(PetscMalloc3(nnz, &lusol->data, nnz, &lusol->indc, nnz, &lusol->indr));

367:   lusol->CleanUpLUSOL     = PETSC_TRUE;
368:   F->ops->lufactornumeric = MatLUFactorNumeric_LUSOL;
369:   PetscFunctionReturn(PETSC_SUCCESS);
370: }

372: static PetscErrorCode MatFactorGetSolverType_seqaij_lusol(Mat A, MatSolverType *type)
373: {
374:   PetscFunctionBegin;
375:   *type = MATSOLVERLUSOL;
376:   PetscFunctionReturn(PETSC_SUCCESS);
377: }

379: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_lusol(Mat A, MatFactorType ftype, Mat *F)
380: {
381:   Mat        B;
382:   Mat_LUSOL *lusol;
383:   int        m, n;

385:   PetscFunctionBegin;
386:   PetscCall(MatGetSize(A, &m, &n));
387:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
388:   PetscCall(MatSetSizes(B, PETSC_DECIDE, PETSC_DECIDE, m, n));
389:   PetscCall(MatSetType(B, ((PetscObject)A)->type_name));
390:   PetscCall(MatSeqAIJSetPreallocation(B, 0, NULL));

392:   PetscCall(PetscNew(&lusol));
393:   B->spptr = lusol;

395:   B->trivialsymbolic       = PETSC_TRUE;
396:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_LUSOL;
397:   B->ops->destroy          = MatDestroy_LUSOL;

399:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorGetSolverType_C", MatFactorGetSolverType_seqaij_lusol));

401:   B->factortype = MAT_FACTOR_LU;
402:   PetscCall(PetscFree(B->solvertype));
403:   PetscCall(PetscStrallocpy(MATSOLVERLUSOL, &B->solvertype));
404:   PetscFunctionReturn(PETSC_SUCCESS);
405: }

407: PETSC_INTERN PetscErrorCode MatSolverTypeRegister_Lusol(void)
408: {
409:   PetscFunctionBegin;
410:   PetscCall(MatSolverTypeRegister(MATSOLVERLUSOL, MATSEQAIJ, MAT_FACTOR_LU, MatGetFactor_seqaij_lusol));
411:   PetscFunctionReturn(PETSC_SUCCESS);
412: }

414: /*MC
415:   MATSOLVERLUSOL - "lusol" - Provides direct solvers, LU, for sequential matrices
416:                    via the external package LUSOL.

418:   Works with `MATSEQAIJ` matrices

420:   Level: beginner

422: .seealso: [](ch_matrices), `Mat`, `PCLU`, `PCFactorSetMatSolverType()`, `MatSolverType`
423: M*/