Actual source code: sbaij.c

  1: /*
  2:     Defines the basic matrix operations for the SBAIJ (compressed row)
  3:   matrix storage format.
  4: */
  5: #include <../src/mat/impls/baij/seq/baij.h>
  6: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  7: #include <petscblaslapack.h>

  9: #include <../src/mat/impls/sbaij/seq/relax.h>
 10: #define USESHORT
 11: #include <../src/mat/impls/sbaij/seq/relax.h>

 13: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 14: #define TYPE SBAIJ
 15: #define TYPE_SBAIJ
 16: #define TYPE_BS
 17: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 18: #undef TYPE_BS
 19: #define TYPE_BS _BS
 20: #define TYPE_BS_ON
 21: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 22: #undef TYPE_BS
 23: #undef TYPE_SBAIJ
 24: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 25: #undef TYPE
 26: #undef TYPE_BS_ON

 28: #if defined(PETSC_HAVE_ELEMENTAL)
 29: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
 30: #endif
 31: #if defined(PETSC_HAVE_SCALAPACK)
 32: PETSC_INTERN PetscErrorCode MatConvert_SBAIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
 33: #endif
 34: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Basic(Mat, MatType, MatReuse, Mat *);

 36: /*
 37:      Checks for missing diagonals
 38: */
 39: static PetscErrorCode MatMissingDiagonal_SeqSBAIJ(Mat A, PetscBool *missing, PetscInt *dd)
 40: {
 41:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
 42:   PetscInt     *diag, *ii = a->i, i;

 44:   PetscFunctionBegin;
 45:   PetscCall(MatMarkDiagonal_SeqSBAIJ(A));
 46:   *missing = PETSC_FALSE;
 47:   if (A->rmap->n > 0 && !ii) {
 48:     *missing = PETSC_TRUE;
 49:     if (dd) *dd = 0;
 50:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
 51:   } else {
 52:     diag = a->diag;
 53:     for (i = 0; i < a->mbs; i++) {
 54:       if (diag[i] >= ii[i + 1]) {
 55:         *missing = PETSC_TRUE;
 56:         if (dd) *dd = i;
 57:         break;
 58:       }
 59:     }
 60:   }
 61:   PetscFunctionReturn(PETSC_SUCCESS);
 62: }

 64: PetscErrorCode MatMarkDiagonal_SeqSBAIJ(Mat A)
 65: {
 66:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
 67:   PetscInt      i, j;

 69:   PetscFunctionBegin;
 70:   if (!a->diag) {
 71:     PetscCall(PetscMalloc1(a->mbs, &a->diag));
 72:     a->free_diag = PETSC_TRUE;
 73:   }
 74:   for (i = 0; i < a->mbs; i++) {
 75:     a->diag[i] = a->i[i + 1];
 76:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
 77:       if (a->j[j] == i) {
 78:         a->diag[i] = j;
 79:         break;
 80:       }
 81:     }
 82:   }
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: static PetscErrorCode MatGetRowIJ_SeqSBAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool blockcompressed, PetscInt *nn, const PetscInt *inia[], const PetscInt *inja[], PetscBool *done)
 87: {
 88:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
 89:   PetscInt      i, j, n = a->mbs, nz = a->i[n], *tia, *tja, bs = A->rmap->bs, k, l, cnt;
 90:   PetscInt    **ia = (PetscInt **)inia, **ja = (PetscInt **)inja;

 92:   PetscFunctionBegin;
 93:   *nn = n;
 94:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
 95:   if (symmetric) {
 96:     PetscCall(MatToSymmetricIJ_SeqAIJ(n, a->i, a->j, PETSC_FALSE, 0, 0, &tia, &tja));
 97:     nz = tia[n];
 98:   } else {
 99:     tia = a->i;
100:     tja = a->j;
101:   }

103:   if (!blockcompressed && bs > 1) {
104:     (*nn) *= bs;
105:     /* malloc & create the natural set of indices */
106:     PetscCall(PetscMalloc1((n + 1) * bs, ia));
107:     if (n) {
108:       (*ia)[0] = oshift;
109:       for (j = 1; j < bs; j++) (*ia)[j] = (tia[1] - tia[0]) * bs + (*ia)[j - 1];
110:     }

112:     for (i = 1; i < n; i++) {
113:       (*ia)[i * bs] = (tia[i] - tia[i - 1]) * bs + (*ia)[i * bs - 1];
114:       for (j = 1; j < bs; j++) (*ia)[i * bs + j] = (tia[i + 1] - tia[i]) * bs + (*ia)[i * bs + j - 1];
115:     }
116:     if (n) (*ia)[n * bs] = (tia[n] - tia[n - 1]) * bs + (*ia)[n * bs - 1];

118:     if (inja) {
119:       PetscCall(PetscMalloc1(nz * bs * bs, ja));
120:       cnt = 0;
121:       for (i = 0; i < n; i++) {
122:         for (j = 0; j < bs; j++) {
123:           for (k = tia[i]; k < tia[i + 1]; k++) {
124:             for (l = 0; l < bs; l++) (*ja)[cnt++] = bs * tja[k] + l;
125:           }
126:         }
127:       }
128:     }

130:     if (symmetric) { /* deallocate memory allocated in MatToSymmetricIJ_SeqAIJ() */
131:       PetscCall(PetscFree(tia));
132:       PetscCall(PetscFree(tja));
133:     }
134:   } else if (oshift == 1) {
135:     if (symmetric) {
136:       nz = tia[A->rmap->n / bs];
137:       /*  add 1 to i and j indices */
138:       for (i = 0; i < A->rmap->n / bs + 1; i++) tia[i] = tia[i] + 1;
139:       *ia = tia;
140:       if (ja) {
141:         for (i = 0; i < nz; i++) tja[i] = tja[i] + 1;
142:         *ja = tja;
143:       }
144:     } else {
145:       nz = a->i[A->rmap->n / bs];
146:       /* malloc space and  add 1 to i and j indices */
147:       PetscCall(PetscMalloc1(A->rmap->n / bs + 1, ia));
148:       for (i = 0; i < A->rmap->n / bs + 1; i++) (*ia)[i] = a->i[i] + 1;
149:       if (ja) {
150:         PetscCall(PetscMalloc1(nz, ja));
151:         for (i = 0; i < nz; i++) (*ja)[i] = a->j[i] + 1;
152:       }
153:     }
154:   } else {
155:     *ia = tia;
156:     if (ja) *ja = tja;
157:   }
158:   PetscFunctionReturn(PETSC_SUCCESS);
159: }

161: static PetscErrorCode MatRestoreRowIJ_SeqSBAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool blockcompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
162: {
163:   PetscFunctionBegin;
164:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
165:   if ((!blockcompressed && A->rmap->bs > 1) || (symmetric || oshift == 1)) {
166:     PetscCall(PetscFree(*ia));
167:     if (ja) PetscCall(PetscFree(*ja));
168:   }
169:   PetscFunctionReturn(PETSC_SUCCESS);
170: }

172: PetscErrorCode MatDestroy_SeqSBAIJ(Mat A)
173: {
174:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

176:   PetscFunctionBegin;
177:   if (A->hash_active) {
178:     PetscInt bs;
179:     A->ops[0] = a->cops;
180:     PetscCall(PetscHMapIJVDestroy(&a->ht));
181:     PetscCall(MatGetBlockSize(A, &bs));
182:     if (bs > 1) PetscCall(PetscHSetIJDestroy(&a->bht));
183:     PetscCall(PetscFree(a->dnz));
184:     PetscCall(PetscFree(a->bdnz));
185:     A->hash_active = PETSC_FALSE;
186:   }
187:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->N, a->nz));
188:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
189:   if (a->free_diag) PetscCall(PetscFree(a->diag));
190:   PetscCall(ISDestroy(&a->row));
191:   PetscCall(ISDestroy(&a->col));
192:   PetscCall(ISDestroy(&a->icol));
193:   PetscCall(PetscFree(a->idiag));
194:   PetscCall(PetscFree(a->inode.size));
195:   if (a->free_imax_ilen) PetscCall(PetscFree2(a->imax, a->ilen));
196:   PetscCall(PetscFree(a->solve_work));
197:   PetscCall(PetscFree(a->sor_work));
198:   PetscCall(PetscFree(a->solves_work));
199:   PetscCall(PetscFree(a->mult_work));
200:   PetscCall(PetscFree(a->saved_values));
201:   if (a->free_jshort) PetscCall(PetscFree(a->jshort));
202:   PetscCall(PetscFree(a->inew));
203:   PetscCall(MatDestroy(&a->parent));
204:   PetscCall(PetscFree(A->data));

206:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
207:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJGetArray_C", NULL));
208:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJRestoreArray_C", NULL));
209:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
210:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
211:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJSetColumnIndices_C", NULL));
212:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_seqaij_C", NULL));
213:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_seqbaij_C", NULL));
214:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJSetPreallocation_C", NULL));
215:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSBAIJSetPreallocationCSR_C", NULL));
216: #if defined(PETSC_HAVE_ELEMENTAL)
217:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_elemental_C", NULL));
218: #endif
219: #if defined(PETSC_HAVE_SCALAPACK)
220:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsbaij_scalapack_C", NULL));
221: #endif
222:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
223:   PetscFunctionReturn(PETSC_SUCCESS);
224: }

226: static PetscErrorCode MatSetOption_SeqSBAIJ(Mat A, MatOption op, PetscBool flg)
227: {
228:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
229: #if defined(PETSC_USE_COMPLEX)
230:   PetscInt bs;
231: #endif

233:   PetscFunctionBegin;
234: #if defined(PETSC_USE_COMPLEX)
235:   PetscCall(MatGetBlockSize(A, &bs));
236: #endif
237:   switch (op) {
238:   case MAT_ROW_ORIENTED:
239:     a->roworiented = flg;
240:     break;
241:   case MAT_KEEP_NONZERO_PATTERN:
242:     a->keepnonzeropattern = flg;
243:     break;
244:   case MAT_NEW_NONZERO_LOCATIONS:
245:     a->nonew = (flg ? 0 : 1);
246:     break;
247:   case MAT_NEW_NONZERO_LOCATION_ERR:
248:     a->nonew = (flg ? -1 : 0);
249:     break;
250:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
251:     a->nonew = (flg ? -2 : 0);
252:     break;
253:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
254:     a->nounused = (flg ? -1 : 0);
255:     break;
256:   case MAT_HERMITIAN:
257: #if defined(PETSC_USE_COMPLEX)
258:     if (flg) { /* disable transpose ops */
259:       PetscCheck(bs <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for Hermitian with block size greater than 1");
260:       A->ops->multtranspose    = NULL;
261:       A->ops->multtransposeadd = NULL;
262:       A->symmetric             = PETSC_BOOL3_FALSE;
263:     }
264: #endif
265:     break;
266:   case MAT_SYMMETRIC:
267:   case MAT_SPD:
268: #if defined(PETSC_USE_COMPLEX)
269:     if (flg) { /* An hermitian and symmetric matrix has zero imaginary part (restore back transpose ops) */
270:       A->ops->multtranspose    = A->ops->mult;
271:       A->ops->multtransposeadd = A->ops->multadd;
272:     }
273: #endif
274:     break;
275:   case MAT_IGNORE_LOWER_TRIANGULAR:
276:     a->ignore_ltriangular = flg;
277:     break;
278:   case MAT_ERROR_LOWER_TRIANGULAR:
279:     a->ignore_ltriangular = flg;
280:     break;
281:   case MAT_GETROW_UPPERTRIANGULAR:
282:     a->getrow_utriangular = flg;
283:     break;
284:   default:
285:     break;
286:   }
287:   PetscFunctionReturn(PETSC_SUCCESS);
288: }

290: PetscErrorCode MatGetRow_SeqSBAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
291: {
292:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

294:   PetscFunctionBegin;
295:   PetscCheck(!A || a->getrow_utriangular, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatGetRow is not supported for SBAIJ matrix format. Getting the upper triangular part of row, run with -mat_getrow_uppertriangular, call MatSetOption(mat,MAT_GETROW_UPPERTRIANGULAR,PETSC_TRUE) or MatGetRowUpperTriangular()");

297:   /* Get the upper triangular part of the row */
298:   PetscCall(MatGetRow_SeqBAIJ_private(A, row, nz, idx, v, a->i, a->j, a->a));
299:   PetscFunctionReturn(PETSC_SUCCESS);
300: }

302: PetscErrorCode MatRestoreRow_SeqSBAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
303: {
304:   PetscFunctionBegin;
305:   if (idx) PetscCall(PetscFree(*idx));
306:   if (v) PetscCall(PetscFree(*v));
307:   PetscFunctionReturn(PETSC_SUCCESS);
308: }

310: static PetscErrorCode MatGetRowUpperTriangular_SeqSBAIJ(Mat A)
311: {
312:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

314:   PetscFunctionBegin;
315:   a->getrow_utriangular = PETSC_TRUE;
316:   PetscFunctionReturn(PETSC_SUCCESS);
317: }

319: static PetscErrorCode MatRestoreRowUpperTriangular_SeqSBAIJ(Mat A)
320: {
321:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

323:   PetscFunctionBegin;
324:   a->getrow_utriangular = PETSC_FALSE;
325:   PetscFunctionReturn(PETSC_SUCCESS);
326: }

328: static PetscErrorCode MatTranspose_SeqSBAIJ(Mat A, MatReuse reuse, Mat *B)
329: {
330:   PetscFunctionBegin;
331:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
332:   if (reuse == MAT_INITIAL_MATRIX) {
333:     PetscCall(MatDuplicate(A, MAT_COPY_VALUES, B));
334:   } else if (reuse == MAT_REUSE_MATRIX) {
335:     PetscCall(MatCopy(A, *B, SAME_NONZERO_PATTERN));
336:   }
337:   PetscFunctionReturn(PETSC_SUCCESS);
338: }

340: static PetscErrorCode MatView_SeqSBAIJ_ASCII(Mat A, PetscViewer viewer)
341: {
342:   Mat_SeqSBAIJ     *a = (Mat_SeqSBAIJ *)A->data;
343:   PetscInt          i, j, bs = A->rmap->bs, k, l, bs2 = a->bs2;
344:   PetscViewerFormat format;
345:   PetscInt         *diag;
346:   const char       *matname;

348:   PetscFunctionBegin;
349:   PetscCall(PetscViewerGetFormat(viewer, &format));
350:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
351:     PetscCall(PetscViewerASCIIPrintf(viewer, "  block size is %" PetscInt_FMT "\n", bs));
352:   } else if (format == PETSC_VIEWER_ASCII_MATLAB) {
353:     Mat aij;

355:     if (A->factortype && bs > 1) {
356:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "Warning: matrix is factored with bs>1. MatView() with PETSC_VIEWER_ASCII_MATLAB is not supported and ignored!\n"));
357:       PetscFunctionReturn(PETSC_SUCCESS);
358:     }
359:     PetscCall(MatConvert(A, MATSEQAIJ, MAT_INITIAL_MATRIX, &aij));
360:     if (((PetscObject)A)->name) PetscCall(PetscObjectGetName((PetscObject)A, &matname));
361:     if (((PetscObject)A)->name) PetscCall(PetscObjectSetName((PetscObject)aij, matname));
362:     PetscCall(MatView_SeqAIJ(aij, viewer));
363:     PetscCall(MatDestroy(&aij));
364:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
365:     Mat B;

367:     PetscCall(MatConvert(A, MATSEQAIJ, MAT_INITIAL_MATRIX, &B));
368:     if (((PetscObject)A)->name) PetscCall(PetscObjectGetName((PetscObject)A, &matname));
369:     if (((PetscObject)A)->name) PetscCall(PetscObjectSetName((PetscObject)B, matname));
370:     PetscCall(MatView_SeqAIJ(B, viewer));
371:     PetscCall(MatDestroy(&B));
372:   } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
373:     PetscFunctionReturn(PETSC_SUCCESS);
374:   } else {
375:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
376:     if (A->factortype) { /* for factored matrix */
377:       PetscCheck(bs <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "matrix is factored with bs>1. Not implemented yet");

379:       diag = a->diag;
380:       for (i = 0; i < a->mbs; i++) { /* for row block i */
381:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
382:         /* diagonal entry */
383: #if defined(PETSC_USE_COMPLEX)
384:         if (PetscImaginaryPart(a->a[diag[i]]) > 0.0) {
385:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", a->j[diag[i]], (double)PetscRealPart(1.0 / a->a[diag[i]]), (double)PetscImaginaryPart(1.0 / a->a[diag[i]])));
386:         } else if (PetscImaginaryPart(a->a[diag[i]]) < 0.0) {
387:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i) ", a->j[diag[i]], (double)PetscRealPart(1.0 / a->a[diag[i]]), -(double)PetscImaginaryPart(1.0 / a->a[diag[i]])));
388:         } else {
389:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[diag[i]], (double)PetscRealPart(1.0 / a->a[diag[i]])));
390:         }
391: #else
392:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[diag[i]], (double)(1 / a->a[diag[i]])));
393: #endif
394:         /* off-diagonal entries */
395:         for (k = a->i[i]; k < a->i[i + 1] - 1; k++) {
396: #if defined(PETSC_USE_COMPLEX)
397:           if (PetscImaginaryPart(a->a[k]) > 0.0) {
398:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", bs * a->j[k], (double)PetscRealPart(a->a[k]), (double)PetscImaginaryPart(a->a[k])));
399:           } else if (PetscImaginaryPart(a->a[k]) < 0.0) {
400:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i) ", bs * a->j[k], (double)PetscRealPart(a->a[k]), -(double)PetscImaginaryPart(a->a[k])));
401:           } else {
402:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", bs * a->j[k], (double)PetscRealPart(a->a[k])));
403:           }
404: #else
405:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[k], (double)a->a[k]));
406: #endif
407:         }
408:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
409:       }

411:     } else {                         /* for non-factored matrix */
412:       for (i = 0; i < a->mbs; i++) { /* for row block i */
413:         for (j = 0; j < bs; j++) {   /* for row bs*i + j */
414:           PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i * bs + j));
415:           for (k = a->i[i]; k < a->i[i + 1]; k++) { /* for column block */
416:             for (l = 0; l < bs; l++) {              /* for column */
417: #if defined(PETSC_USE_COMPLEX)
418:               if (PetscImaginaryPart(a->a[bs2 * k + l * bs + j]) > 0.0) {
419:                 PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", bs * a->j[k] + l, (double)PetscRealPart(a->a[bs2 * k + l * bs + j]), (double)PetscImaginaryPart(a->a[bs2 * k + l * bs + j])));
420:               } else if (PetscImaginaryPart(a->a[bs2 * k + l * bs + j]) < 0.0) {
421:                 PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i) ", bs * a->j[k] + l, (double)PetscRealPart(a->a[bs2 * k + l * bs + j]), -(double)PetscImaginaryPart(a->a[bs2 * k + l * bs + j])));
422:               } else {
423:                 PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", bs * a->j[k] + l, (double)PetscRealPart(a->a[bs2 * k + l * bs + j])));
424:               }
425: #else
426:               PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", bs * a->j[k] + l, (double)a->a[bs2 * k + l * bs + j]));
427: #endif
428:             }
429:           }
430:           PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
431:         }
432:       }
433:     }
434:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
435:   }
436:   PetscCall(PetscViewerFlush(viewer));
437:   PetscFunctionReturn(PETSC_SUCCESS);
438: }

440: #include <petscdraw.h>
441: static PetscErrorCode MatView_SeqSBAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
442: {
443:   Mat           A = (Mat)Aa;
444:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
445:   PetscInt      row, i, j, k, l, mbs = a->mbs, bs = A->rmap->bs, bs2 = a->bs2;
446:   PetscReal     xl, yl, xr, yr, x_l, x_r, y_l, y_r;
447:   MatScalar    *aa;
448:   PetscViewer   viewer;
449:   int           color;

451:   PetscFunctionBegin;
452:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
453:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

455:   /* loop over matrix elements drawing boxes */

457:   PetscDrawCollectiveBegin(draw);
458:   PetscCall(PetscDrawString(draw, .3 * (xl + xr), .3 * (yl + yr), PETSC_DRAW_BLACK, "symmetric"));
459:   /* Blue for negative, Cyan for zero and  Red for positive */
460:   color = PETSC_DRAW_BLUE;
461:   for (i = 0, row = 0; i < mbs; i++, row += bs) {
462:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
463:       y_l = A->rmap->N - row - 1.0;
464:       y_r = y_l + 1.0;
465:       x_l = a->j[j] * bs;
466:       x_r = x_l + 1.0;
467:       aa  = a->a + j * bs2;
468:       for (k = 0; k < bs; k++) {
469:         for (l = 0; l < bs; l++) {
470:           if (PetscRealPart(*aa++) >= 0.) continue;
471:           PetscCall(PetscDrawRectangle(draw, x_l + k, y_l - l, x_r + k, y_r - l, color, color, color, color));
472:         }
473:       }
474:     }
475:   }
476:   color = PETSC_DRAW_CYAN;
477:   for (i = 0, row = 0; i < mbs; i++, row += bs) {
478:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
479:       y_l = A->rmap->N - row - 1.0;
480:       y_r = y_l + 1.0;
481:       x_l = a->j[j] * bs;
482:       x_r = x_l + 1.0;
483:       aa  = a->a + j * bs2;
484:       for (k = 0; k < bs; k++) {
485:         for (l = 0; l < bs; l++) {
486:           if (PetscRealPart(*aa++) != 0.) continue;
487:           PetscCall(PetscDrawRectangle(draw, x_l + k, y_l - l, x_r + k, y_r - l, color, color, color, color));
488:         }
489:       }
490:     }
491:   }
492:   color = PETSC_DRAW_RED;
493:   for (i = 0, row = 0; i < mbs; i++, row += bs) {
494:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
495:       y_l = A->rmap->N - row - 1.0;
496:       y_r = y_l + 1.0;
497:       x_l = a->j[j] * bs;
498:       x_r = x_l + 1.0;
499:       aa  = a->a + j * bs2;
500:       for (k = 0; k < bs; k++) {
501:         for (l = 0; l < bs; l++) {
502:           if (PetscRealPart(*aa++) <= 0.) continue;
503:           PetscCall(PetscDrawRectangle(draw, x_l + k, y_l - l, x_r + k, y_r - l, color, color, color, color));
504:         }
505:       }
506:     }
507:   }
508:   PetscDrawCollectiveEnd(draw);
509:   PetscFunctionReturn(PETSC_SUCCESS);
510: }

512: static PetscErrorCode MatView_SeqSBAIJ_Draw(Mat A, PetscViewer viewer)
513: {
514:   PetscReal xl, yl, xr, yr, w, h;
515:   PetscDraw draw;
516:   PetscBool isnull;

518:   PetscFunctionBegin;
519:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
520:   PetscCall(PetscDrawIsNull(draw, &isnull));
521:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

523:   xr = A->rmap->N;
524:   yr = A->rmap->N;
525:   h  = yr / 10.0;
526:   w  = xr / 10.0;
527:   xr += w;
528:   yr += h;
529:   xl = -w;
530:   yl = -h;
531:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
532:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
533:   PetscCall(PetscDrawZoom(draw, MatView_SeqSBAIJ_Draw_Zoom, A));
534:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
535:   PetscCall(PetscDrawSave(draw));
536:   PetscFunctionReturn(PETSC_SUCCESS);
537: }

539: /* Used for both MPIBAIJ and MPISBAIJ matrices */
540: #define MatView_SeqSBAIJ_Binary MatView_SeqBAIJ_Binary

542: PetscErrorCode MatView_SeqSBAIJ(Mat A, PetscViewer viewer)
543: {
544:   PetscBool iascii, isbinary, isdraw;

546:   PetscFunctionBegin;
547:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
548:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
549:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
550:   if (iascii) {
551:     PetscCall(MatView_SeqSBAIJ_ASCII(A, viewer));
552:   } else if (isbinary) {
553:     PetscCall(MatView_SeqSBAIJ_Binary(A, viewer));
554:   } else if (isdraw) {
555:     PetscCall(MatView_SeqSBAIJ_Draw(A, viewer));
556:   } else {
557:     Mat         B;
558:     const char *matname;
559:     PetscCall(MatConvert(A, MATSEQAIJ, MAT_INITIAL_MATRIX, &B));
560:     if (((PetscObject)A)->name) PetscCall(PetscObjectGetName((PetscObject)A, &matname));
561:     if (((PetscObject)A)->name) PetscCall(PetscObjectSetName((PetscObject)B, matname));
562:     PetscCall(MatView(B, viewer));
563:     PetscCall(MatDestroy(&B));
564:   }
565:   PetscFunctionReturn(PETSC_SUCCESS);
566: }

568: PetscErrorCode MatGetValues_SeqSBAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
569: {
570:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
571:   PetscInt     *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
572:   PetscInt     *ai = a->i, *ailen = a->ilen;
573:   PetscInt      brow, bcol, ridx, cidx, bs = A->rmap->bs, bs2 = a->bs2;
574:   MatScalar    *ap, *aa = a->a;

576:   PetscFunctionBegin;
577:   for (k = 0; k < m; k++) { /* loop over rows */
578:     row  = im[k];
579:     brow = row / bs;
580:     if (row < 0) {
581:       v += n;
582:       continue;
583:     } /* negative row */
584:     PetscCheck(row < A->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->N - 1);
585:     rp   = aj + ai[brow];
586:     ap   = aa + bs2 * ai[brow];
587:     nrow = ailen[brow];
588:     for (l = 0; l < n; l++) { /* loop over columns */
589:       if (in[l] < 0) {
590:         v++;
591:         continue;
592:       } /* negative column */
593:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
594:       col  = in[l];
595:       bcol = col / bs;
596:       cidx = col % bs;
597:       ridx = row % bs;
598:       high = nrow;
599:       low  = 0; /* assume unsorted */
600:       while (high - low > 5) {
601:         t = (low + high) / 2;
602:         if (rp[t] > bcol) high = t;
603:         else low = t;
604:       }
605:       for (i = low; i < high; i++) {
606:         if (rp[i] > bcol) break;
607:         if (rp[i] == bcol) {
608:           *v++ = ap[bs2 * i + bs * cidx + ridx];
609:           goto finished;
610:         }
611:       }
612:       *v++ = 0.0;
613:     finished:;
614:     }
615:   }
616:   PetscFunctionReturn(PETSC_SUCCESS);
617: }

619: static PetscErrorCode MatPermute_SeqSBAIJ(Mat A, IS rowp, IS colp, Mat *B)
620: {
621:   Mat       C;
622:   PetscBool flg = (PetscBool)(rowp == colp);

624:   PetscFunctionBegin;
625:   PetscCall(MatConvert(A, MATSEQBAIJ, MAT_INITIAL_MATRIX, &C));
626:   PetscCall(MatPermute(C, rowp, colp, B));
627:   PetscCall(MatDestroy(&C));
628:   if (!flg) PetscCall(ISEqual(rowp, colp, &flg));
629:   if (flg) PetscCall(MatConvert(*B, MATSEQSBAIJ, MAT_INPLACE_MATRIX, B));
630:   PetscFunctionReturn(PETSC_SUCCESS);
631: }

633: PetscErrorCode MatSetValuesBlocked_SeqSBAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
634: {
635:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ *)A->data;
636:   PetscInt          *rp, k, low, high, t, ii, jj, row, nrow, i, col, l, rmax, N, lastcol = -1;
637:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
638:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs, stepval;
639:   PetscBool          roworiented = a->roworiented;
640:   const PetscScalar *value       = v;
641:   MatScalar         *ap, *aa = a->a, *bap;

643:   PetscFunctionBegin;
644:   if (roworiented) stepval = (n - 1) * bs;
645:   else stepval = (m - 1) * bs;
646:   for (k = 0; k < m; k++) { /* loop over added rows */
647:     row = im[k];
648:     if (row < 0) continue;
649:     PetscCheck(row < a->mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block index row too large %" PetscInt_FMT " max %" PetscInt_FMT, row, a->mbs - 1);
650:     rp   = aj + ai[row];
651:     ap   = aa + bs2 * ai[row];
652:     rmax = imax[row];
653:     nrow = ailen[row];
654:     low  = 0;
655:     high = nrow;
656:     for (l = 0; l < n; l++) { /* loop over added columns */
657:       if (in[l] < 0) continue;
658:       col = in[l];
659:       PetscCheck(col < a->nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block index column too large %" PetscInt_FMT " max %" PetscInt_FMT, col, a->nbs - 1);
660:       if (col < row) {
661:         if (a->ignore_ltriangular) continue; /* ignore lower triangular block */
662:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
663:       }
664:       if (roworiented) value = v + k * (stepval + bs) * bs + l * bs;
665:       else value = v + l * (stepval + bs) * bs + k * bs;

667:       if (col <= lastcol) low = 0;
668:       else high = nrow;

670:       lastcol = col;
671:       while (high - low > 7) {
672:         t = (low + high) / 2;
673:         if (rp[t] > col) high = t;
674:         else low = t;
675:       }
676:       for (i = low; i < high; i++) {
677:         if (rp[i] > col) break;
678:         if (rp[i] == col) {
679:           bap = ap + bs2 * i;
680:           if (roworiented) {
681:             if (is == ADD_VALUES) {
682:               for (ii = 0; ii < bs; ii++, value += stepval) {
683:                 for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
684:               }
685:             } else {
686:               for (ii = 0; ii < bs; ii++, value += stepval) {
687:                 for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
688:               }
689:             }
690:           } else {
691:             if (is == ADD_VALUES) {
692:               for (ii = 0; ii < bs; ii++, value += stepval) {
693:                 for (jj = 0; jj < bs; jj++) *bap++ += *value++;
694:               }
695:             } else {
696:               for (ii = 0; ii < bs; ii++, value += stepval) {
697:                 for (jj = 0; jj < bs; jj++) *bap++ = *value++;
698:               }
699:             }
700:           }
701:           goto noinsert2;
702:         }
703:       }
704:       if (nonew == 1) goto noinsert2;
705:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new block index nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", row, col);
706:       MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
707:       N = nrow++ - 1;
708:       high++;
709:       /* shift up all the later entries in this row */
710:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
711:       PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
712:       PetscCall(PetscArrayzero(ap + bs2 * i, bs2));
713:       rp[i] = col;
714:       bap   = ap + bs2 * i;
715:       if (roworiented) {
716:         for (ii = 0; ii < bs; ii++, value += stepval) {
717:           for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
718:         }
719:       } else {
720:         for (ii = 0; ii < bs; ii++, value += stepval) {
721:           for (jj = 0; jj < bs; jj++) *bap++ = *value++;
722:         }
723:       }
724:     noinsert2:;
725:       low = i;
726:     }
727:     ailen[row] = nrow;
728:   }
729:   PetscFunctionReturn(PETSC_SUCCESS);
730: }

732: static PetscErrorCode MatAssemblyEnd_SeqSBAIJ(Mat A, MatAssemblyType mode)
733: {
734:   Mat_SeqSBAIJ *a      = (Mat_SeqSBAIJ *)A->data;
735:   PetscInt      fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
736:   PetscInt      m = A->rmap->N, *ip, N, *ailen = a->ilen;
737:   PetscInt      mbs = a->mbs, bs2 = a->bs2, rmax = 0;
738:   MatScalar    *aa = a->a, *ap;

740:   PetscFunctionBegin;
741:   if (mode == MAT_FLUSH_ASSEMBLY || (A->was_assembled && A->ass_nonzerostate == A->nonzerostate)) PetscFunctionReturn(PETSC_SUCCESS);

743:   if (m) rmax = ailen[0];
744:   for (i = 1; i < mbs; i++) {
745:     /* move each row back by the amount of empty slots (fshift) before it*/
746:     fshift += imax[i - 1] - ailen[i - 1];
747:     rmax = PetscMax(rmax, ailen[i]);
748:     if (fshift) {
749:       ip = aj + ai[i];
750:       ap = aa + bs2 * ai[i];
751:       N  = ailen[i];
752:       PetscCall(PetscArraymove(ip - fshift, ip, N));
753:       PetscCall(PetscArraymove(ap - bs2 * fshift, ap, bs2 * N));
754:     }
755:     ai[i] = ai[i - 1] + ailen[i - 1];
756:   }
757:   if (mbs) {
758:     fshift += imax[mbs - 1] - ailen[mbs - 1];
759:     ai[mbs] = ai[mbs - 1] + ailen[mbs - 1];
760:   }
761:   /* reset ilen and imax for each row */
762:   for (i = 0; i < mbs; i++) ailen[i] = imax[i] = ai[i + 1] - ai[i];
763:   a->nz = ai[mbs];

765:   /* diagonals may have moved, reset it */
766:   if (a->diag) PetscCall(PetscArraycpy(a->diag, ai, mbs));
767:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT " block size %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, A->rmap->bs, fshift * bs2);

769:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT ", block size %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded, %" PetscInt_FMT " used\n", m, A->rmap->N, A->rmap->bs, fshift * bs2, a->nz * bs2));
770:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues is %" PetscInt_FMT "\n", a->reallocs));
771:   PetscCall(PetscInfo(A, "Most nonzeros blocks in any row is %" PetscInt_FMT "\n", rmax));

773:   A->info.mallocs += a->reallocs;
774:   a->reallocs         = 0;
775:   A->info.nz_unneeded = (PetscReal)fshift * bs2;
776:   a->idiagvalid       = PETSC_FALSE;
777:   a->rmax             = rmax;

779:   if (A->cmap->n < 65536 && A->cmap->bs == 1) {
780:     if (a->jshort && a->free_jshort) {
781:       /* when matrix data structure is changed, previous jshort must be replaced */
782:       PetscCall(PetscFree(a->jshort));
783:     }
784:     PetscCall(PetscMalloc1(a->i[A->rmap->n], &a->jshort));
785:     for (i = 0; i < a->i[A->rmap->n]; i++) a->jshort[i] = (short)a->j[i];
786:     A->ops->mult   = MatMult_SeqSBAIJ_1_ushort;
787:     A->ops->sor    = MatSOR_SeqSBAIJ_ushort;
788:     a->free_jshort = PETSC_TRUE;
789:   }
790:   PetscFunctionReturn(PETSC_SUCCESS);
791: }

793: /* Only add/insert a(i,j) with i<=j (blocks).
794:    Any a(i,j) with i>j input by user is ignored.
795: */

797: PetscErrorCode MatSetValues_SeqSBAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
798: {
799:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
800:   PetscInt     *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N, lastcol = -1;
801:   PetscInt     *imax = a->imax, *ai = a->i, *ailen = a->ilen, roworiented = a->roworiented;
802:   PetscInt     *aj = a->j, nonew = a->nonew, bs = A->rmap->bs, brow, bcol;
803:   PetscInt      ridx, cidx, bs2                 = a->bs2;
804:   MatScalar    *ap, value, *aa                  = a->a, *bap;

806:   PetscFunctionBegin;
807:   for (k = 0; k < m; k++) { /* loop over added rows */
808:     row  = im[k];           /* row number */
809:     brow = row / bs;        /* block row number */
810:     if (row < 0) continue;
811:     PetscCheck(row < A->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->N - 1);
812:     rp   = aj + ai[brow];       /*ptr to beginning of column value of the row block*/
813:     ap   = aa + bs2 * ai[brow]; /*ptr to beginning of element value of the row block*/
814:     rmax = imax[brow];          /* maximum space allocated for this row */
815:     nrow = ailen[brow];         /* actual length of this row */
816:     low  = 0;
817:     high = nrow;
818:     for (l = 0; l < n; l++) { /* loop over added columns */
819:       if (in[l] < 0) continue;
820:       PetscCheck(in[l] < A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->N - 1);
821:       col  = in[l];
822:       bcol = col / bs; /* block col number */

824:       if (brow > bcol) {
825:         if (a->ignore_ltriangular) continue; /* ignore lower triangular values */
826:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
827:       }

829:       ridx = row % bs;
830:       cidx = col % bs; /*row and col index inside the block */
831:       if ((brow == bcol && ridx <= cidx) || (brow < bcol)) {
832:         /* element value a(k,l) */
833:         if (roworiented) value = v[l + k * n];
834:         else value = v[k + l * m];

836:         /* move pointer bap to a(k,l) quickly and add/insert value */
837:         if (col <= lastcol) low = 0;
838:         else high = nrow;

840:         lastcol = col;
841:         while (high - low > 7) {
842:           t = (low + high) / 2;
843:           if (rp[t] > bcol) high = t;
844:           else low = t;
845:         }
846:         for (i = low; i < high; i++) {
847:           if (rp[i] > bcol) break;
848:           if (rp[i] == bcol) {
849:             bap = ap + bs2 * i + bs * cidx + ridx;
850:             if (is == ADD_VALUES) *bap += value;
851:             else *bap = value;
852:             /* for diag block, add/insert its symmetric element a(cidx,ridx) */
853:             if (brow == bcol && ridx < cidx) {
854:               bap = ap + bs2 * i + bs * ridx + cidx;
855:               if (is == ADD_VALUES) *bap += value;
856:               else *bap = value;
857:             }
858:             goto noinsert1;
859:           }
860:         }

862:         if (nonew == 1) goto noinsert1;
863:         PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", row, col);
864:         MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);

866:         N = nrow++ - 1;
867:         high++;
868:         /* shift up all the later entries in this row */
869:         PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
870:         PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
871:         PetscCall(PetscArrayzero(ap + bs2 * i, bs2));
872:         rp[i]                          = bcol;
873:         ap[bs2 * i + bs * cidx + ridx] = value;
874:         /* for diag block, add/insert its symmetric element a(cidx,ridx) */
875:         if (brow == bcol && ridx < cidx) ap[bs2 * i + bs * ridx + cidx] = value;
876:       noinsert1:;
877:         low = i;
878:       }
879:     } /* end of loop over added columns */
880:     ailen[brow] = nrow;
881:   } /* end of loop over added rows */
882:   PetscFunctionReturn(PETSC_SUCCESS);
883: }

885: static PetscErrorCode MatICCFactor_SeqSBAIJ(Mat inA, IS row, const MatFactorInfo *info)
886: {
887:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)inA->data;
888:   Mat           outA;
889:   PetscBool     row_identity;

891:   PetscFunctionBegin;
892:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 is supported for in-place icc");
893:   PetscCall(ISIdentity(row, &row_identity));
894:   PetscCheck(row_identity, PETSC_COMM_SELF, PETSC_ERR_SUP, "Matrix reordering is not supported");
895:   PetscCheck(inA->rmap->bs == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Matrix block size %" PetscInt_FMT " is not supported", inA->rmap->bs); /* Need to replace MatCholeskyFactorSymbolic_SeqSBAIJ_MSR()! */

897:   outA            = inA;
898:   inA->factortype = MAT_FACTOR_ICC;
899:   PetscCall(PetscFree(inA->solvertype));
900:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

902:   PetscCall(MatMarkDiagonal_SeqSBAIJ(inA));
903:   PetscCall(MatSeqSBAIJSetNumericFactorization_inplace(inA, row_identity));

905:   PetscCall(PetscObjectReference((PetscObject)row));
906:   PetscCall(ISDestroy(&a->row));
907:   a->row = row;
908:   PetscCall(PetscObjectReference((PetscObject)row));
909:   PetscCall(ISDestroy(&a->col));
910:   a->col = row;

912:   /* Create the invert permutation so that it can be used in MatCholeskyFactorNumeric() */
913:   if (a->icol) PetscCall(ISInvertPermutation(row, PETSC_DECIDE, &a->icol));

915:   if (!a->solve_work) PetscCall(PetscMalloc1(inA->rmap->N + inA->rmap->bs, &a->solve_work));

917:   PetscCall(MatCholeskyFactorNumeric(outA, inA, info));
918:   PetscFunctionReturn(PETSC_SUCCESS);
919: }

921: static PetscErrorCode MatSeqSBAIJSetColumnIndices_SeqSBAIJ(Mat mat, PetscInt *indices)
922: {
923:   Mat_SeqSBAIJ *baij = (Mat_SeqSBAIJ *)mat->data;
924:   PetscInt      i, nz, n;

926:   PetscFunctionBegin;
927:   nz = baij->maxnz;
928:   n  = mat->cmap->n;
929:   for (i = 0; i < nz; i++) baij->j[i] = indices[i];

931:   baij->nz = nz;
932:   for (i = 0; i < n; i++) baij->ilen[i] = baij->imax[i];

934:   PetscCall(MatSetOption(mat, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
935:   PetscFunctionReturn(PETSC_SUCCESS);
936: }

938: /*@
939:   MatSeqSBAIJSetColumnIndices - Set the column indices for all the rows
940:   in a `MATSEQSBAIJ` matrix.

942:   Input Parameters:
943: + mat     - the `MATSEQSBAIJ` matrix
944: - indices - the column indices

946:   Level: advanced

948:   Notes:
949:   This can be called if you have precomputed the nonzero structure of the
950:   matrix and want to provide it to the matrix object to improve the performance
951:   of the `MatSetValues()` operation.

953:   You MUST have set the correct numbers of nonzeros per row in the call to
954:   `MatCreateSeqSBAIJ()`, and the columns indices MUST be sorted.

956:   MUST be called before any calls to `MatSetValues()`

958: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreateSeqSBAIJ`
959: @*/
960: PetscErrorCode MatSeqSBAIJSetColumnIndices(Mat mat, PetscInt *indices)
961: {
962:   PetscFunctionBegin;
964:   PetscAssertPointer(indices, 2);
965:   PetscUseMethod(mat, "MatSeqSBAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
966:   PetscFunctionReturn(PETSC_SUCCESS);
967: }

969: static PetscErrorCode MatCopy_SeqSBAIJ(Mat A, Mat B, MatStructure str)
970: {
971:   PetscBool isbaij;

973:   PetscFunctionBegin;
974:   PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &isbaij, MATSEQSBAIJ, MATMPISBAIJ, ""));
975:   PetscCheck(isbaij, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "Not for matrix type %s", ((PetscObject)B)->type_name);
976:   /* If the two matrices have the same copy implementation and nonzero pattern, use fast copy. */
977:   if (str == SAME_NONZERO_PATTERN && A->ops->copy == B->ops->copy) {
978:     Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
979:     Mat_SeqSBAIJ *b = (Mat_SeqSBAIJ *)B->data;

981:     PetscCheck(a->i[a->mbs] == b->i[b->mbs], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different");
982:     PetscCheck(a->mbs == b->mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of rows in two matrices are different");
983:     PetscCheck(a->bs2 == b->bs2, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Different block size");
984:     PetscCall(PetscArraycpy(b->a, a->a, a->bs2 * a->i[a->mbs]));
985:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
986:   } else {
987:     PetscCall(MatGetRowUpperTriangular(A));
988:     PetscCall(MatCopy_Basic(A, B, str));
989:     PetscCall(MatRestoreRowUpperTriangular(A));
990:   }
991:   PetscFunctionReturn(PETSC_SUCCESS);
992: }

994: static PetscErrorCode MatSeqSBAIJGetArray_SeqSBAIJ(Mat A, PetscScalar *array[])
995: {
996:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;

998:   PetscFunctionBegin;
999:   *array = a->a;
1000:   PetscFunctionReturn(PETSC_SUCCESS);
1001: }

1003: static PetscErrorCode MatSeqSBAIJRestoreArray_SeqSBAIJ(Mat A, PetscScalar *array[])
1004: {
1005:   PetscFunctionBegin;
1006:   *array = NULL;
1007:   PetscFunctionReturn(PETSC_SUCCESS);
1008: }

1010: PetscErrorCode MatAXPYGetPreallocation_SeqSBAIJ(Mat Y, Mat X, PetscInt *nnz)
1011: {
1012:   PetscInt      bs = Y->rmap->bs, mbs = Y->rmap->N / bs;
1013:   Mat_SeqSBAIJ *x = (Mat_SeqSBAIJ *)X->data;
1014:   Mat_SeqSBAIJ *y = (Mat_SeqSBAIJ *)Y->data;

1016:   PetscFunctionBegin;
1017:   /* Set the number of nonzeros in the new matrix */
1018:   PetscCall(MatAXPYGetPreallocation_SeqX_private(mbs, x->i, x->j, y->i, y->j, nnz));
1019:   PetscFunctionReturn(PETSC_SUCCESS);
1020: }

1022: static PetscErrorCode MatAXPY_SeqSBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1023: {
1024:   Mat_SeqSBAIJ *x = (Mat_SeqSBAIJ *)X->data, *y = (Mat_SeqSBAIJ *)Y->data;
1025:   PetscInt      bs = Y->rmap->bs, bs2 = bs * bs;
1026:   PetscBLASInt  one = 1;

1028:   PetscFunctionBegin;
1029:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
1030:     PetscBool e = x->nz == y->nz && x->mbs == y->mbs ? PETSC_TRUE : PETSC_FALSE;
1031:     if (e) {
1032:       PetscCall(PetscArraycmp(x->i, y->i, x->mbs + 1, &e));
1033:       if (e) {
1034:         PetscCall(PetscArraycmp(x->j, y->j, x->i[x->mbs], &e));
1035:         if (e) str = SAME_NONZERO_PATTERN;
1036:       }
1037:     }
1038:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
1039:   }
1040:   if (str == SAME_NONZERO_PATTERN) {
1041:     PetscScalar  alpha = a;
1042:     PetscBLASInt bnz;
1043:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1044:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1045:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1046:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1047:     PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
1048:     PetscCall(MatAXPY_Basic(Y, a, X, str));
1049:     PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
1050:   } else {
1051:     Mat       B;
1052:     PetscInt *nnz;
1053:     PetscCheck(bs == X->rmap->bs, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrices must have same block size");
1054:     PetscCall(MatGetRowUpperTriangular(X));
1055:     PetscCall(MatGetRowUpperTriangular(Y));
1056:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
1057:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1058:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1059:     PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1060:     PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1061:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
1062:     PetscCall(MatAXPYGetPreallocation_SeqSBAIJ(Y, X, nnz));
1063:     PetscCall(MatSeqSBAIJSetPreallocation(B, bs, 0, nnz));

1065:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));

1067:     PetscCall(MatHeaderMerge(Y, &B));
1068:     PetscCall(PetscFree(nnz));
1069:     PetscCall(MatRestoreRowUpperTriangular(X));
1070:     PetscCall(MatRestoreRowUpperTriangular(Y));
1071:   }
1072:   PetscFunctionReturn(PETSC_SUCCESS);
1073: }

1075: static PetscErrorCode MatIsStructurallySymmetric_SeqSBAIJ(Mat A, PetscBool *flg)
1076: {
1077:   PetscFunctionBegin;
1078:   *flg = PETSC_TRUE;
1079:   PetscFunctionReturn(PETSC_SUCCESS);
1080: }

1082: static PetscErrorCode MatConjugate_SeqSBAIJ(Mat A)
1083: {
1084: #if defined(PETSC_USE_COMPLEX)
1085:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1086:   PetscInt      i, nz = a->bs2 * a->i[a->mbs];
1087:   MatScalar    *aa = a->a;

1089:   PetscFunctionBegin;
1090:   for (i = 0; i < nz; i++) aa[i] = PetscConj(aa[i]);
1091: #else
1092:   PetscFunctionBegin;
1093: #endif
1094:   PetscFunctionReturn(PETSC_SUCCESS);
1095: }

1097: static PetscErrorCode MatRealPart_SeqSBAIJ(Mat A)
1098: {
1099:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1100:   PetscInt      i, nz = a->bs2 * a->i[a->mbs];
1101:   MatScalar    *aa = a->a;

1103:   PetscFunctionBegin;
1104:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1105:   PetscFunctionReturn(PETSC_SUCCESS);
1106: }

1108: static PetscErrorCode MatImaginaryPart_SeqSBAIJ(Mat A)
1109: {
1110:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
1111:   PetscInt      i, nz = a->bs2 * a->i[a->mbs];
1112:   MatScalar    *aa = a->a;

1114:   PetscFunctionBegin;
1115:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1116:   PetscFunctionReturn(PETSC_SUCCESS);
1117: }

1119: static PetscErrorCode MatZeroRowsColumns_SeqSBAIJ(Mat A, PetscInt is_n, const PetscInt is_idx[], PetscScalar diag, Vec x, Vec b)
1120: {
1121:   Mat_SeqSBAIJ      *baij = (Mat_SeqSBAIJ *)A->data;
1122:   PetscInt           i, j, k, count;
1123:   PetscInt           bs = A->rmap->bs, bs2 = baij->bs2, row, col;
1124:   PetscScalar        zero = 0.0;
1125:   MatScalar         *aa;
1126:   const PetscScalar *xx;
1127:   PetscScalar       *bb;
1128:   PetscBool         *zeroed, vecs = PETSC_FALSE;

1130:   PetscFunctionBegin;
1131:   /* fix right-hand side if needed */
1132:   if (x && b) {
1133:     PetscCall(VecGetArrayRead(x, &xx));
1134:     PetscCall(VecGetArray(b, &bb));
1135:     vecs = PETSC_TRUE;
1136:   }

1138:   /* zero the columns */
1139:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
1140:   for (i = 0; i < is_n; i++) {
1141:     PetscCheck(is_idx[i] >= 0 && is_idx[i] < A->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", is_idx[i]);
1142:     zeroed[is_idx[i]] = PETSC_TRUE;
1143:   }
1144:   if (vecs) {
1145:     for (i = 0; i < A->rmap->N; i++) {
1146:       row = i / bs;
1147:       for (j = baij->i[row]; j < baij->i[row + 1]; j++) {
1148:         for (k = 0; k < bs; k++) {
1149:           col = bs * baij->j[j] + k;
1150:           if (col <= i) continue;
1151:           aa = baij->a + j * bs2 + (i % bs) + bs * k;
1152:           if (!zeroed[i] && zeroed[col]) bb[i] -= aa[0] * xx[col];
1153:           if (zeroed[i] && !zeroed[col]) bb[col] -= aa[0] * xx[i];
1154:         }
1155:       }
1156:     }
1157:     for (i = 0; i < is_n; i++) bb[is_idx[i]] = diag * xx[is_idx[i]];
1158:   }

1160:   for (i = 0; i < A->rmap->N; i++) {
1161:     if (!zeroed[i]) {
1162:       row = i / bs;
1163:       for (j = baij->i[row]; j < baij->i[row + 1]; j++) {
1164:         for (k = 0; k < bs; k++) {
1165:           col = bs * baij->j[j] + k;
1166:           if (zeroed[col]) {
1167:             aa    = baij->a + j * bs2 + (i % bs) + bs * k;
1168:             aa[0] = 0.0;
1169:           }
1170:         }
1171:       }
1172:     }
1173:   }
1174:   PetscCall(PetscFree(zeroed));
1175:   if (vecs) {
1176:     PetscCall(VecRestoreArrayRead(x, &xx));
1177:     PetscCall(VecRestoreArray(b, &bb));
1178:   }

1180:   /* zero the rows */
1181:   for (i = 0; i < is_n; i++) {
1182:     row   = is_idx[i];
1183:     count = (baij->i[row / bs + 1] - baij->i[row / bs]) * bs;
1184:     aa    = baij->a + baij->i[row / bs] * bs2 + (row % bs);
1185:     for (k = 0; k < count; k++) {
1186:       aa[0] = zero;
1187:       aa += bs;
1188:     }
1189:     if (diag != 0.0) PetscUseTypeMethod(A, setvalues, 1, &row, 1, &row, &diag, INSERT_VALUES);
1190:   }
1191:   PetscCall(MatAssemblyEnd_SeqSBAIJ(A, MAT_FINAL_ASSEMBLY));
1192:   PetscFunctionReturn(PETSC_SUCCESS);
1193: }

1195: static PetscErrorCode MatShift_SeqSBAIJ(Mat Y, PetscScalar a)
1196: {
1197:   Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)Y->data;

1199:   PetscFunctionBegin;
1200:   if (!Y->preallocated || !aij->nz) PetscCall(MatSeqSBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL));
1201:   PetscCall(MatShift_Basic(Y, a));
1202:   PetscFunctionReturn(PETSC_SUCCESS);
1203: }

1205: PetscErrorCode MatEliminateZeros_SeqSBAIJ(Mat A, PetscBool keep)
1206: {
1207:   Mat_SeqSBAIJ *a      = (Mat_SeqSBAIJ *)A->data;
1208:   PetscInt      fshift = 0, fshift_prev = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax, j, k;
1209:   PetscInt      m = A->rmap->N, *ailen = a->ilen;
1210:   PetscInt      mbs = a->mbs, bs2 = a->bs2, rmax = 0;
1211:   MatScalar    *aa = a->a, *ap;
1212:   PetscBool     zero;

1214:   PetscFunctionBegin;
1215:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot eliminate zeros for unassembled matrix");
1216:   if (m) rmax = ailen[0];
1217:   for (i = 1; i <= mbs; i++) {
1218:     for (k = ai[i - 1]; k < ai[i]; k++) {
1219:       zero = PETSC_TRUE;
1220:       ap   = aa + bs2 * k;
1221:       for (j = 0; j < bs2 && zero; j++) {
1222:         if (ap[j] != 0.0) zero = PETSC_FALSE;
1223:       }
1224:       if (zero && (aj[k] != i - 1 || !keep)) fshift++;
1225:       else {
1226:         if (zero && aj[k] == i - 1) PetscCall(PetscInfo(A, "Keep the diagonal block at row %" PetscInt_FMT "\n", i - 1));
1227:         aj[k - fshift] = aj[k];
1228:         PetscCall(PetscArraymove(ap - bs2 * fshift, ap, bs2));
1229:       }
1230:     }
1231:     ai[i - 1] -= fshift_prev;
1232:     fshift_prev  = fshift;
1233:     ailen[i - 1] = imax[i - 1] = ai[i] - fshift - ai[i - 1];
1234:     a->nonzerorowcnt += ((ai[i] - fshift - ai[i - 1]) > 0);
1235:     rmax = PetscMax(rmax, ailen[i - 1]);
1236:   }
1237:   if (fshift) {
1238:     if (mbs) {
1239:       ai[mbs] -= fshift;
1240:       a->nz = ai[mbs];
1241:     }
1242:     PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; zeros eliminated: %" PetscInt_FMT "; nonzeros left: %" PetscInt_FMT "\n", m, A->cmap->n, fshift, a->nz));
1243:     A->nonzerostate++;
1244:     A->info.nz_unneeded += (PetscReal)fshift;
1245:     a->rmax = rmax;
1246:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1247:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1248:   }
1249:   PetscFunctionReturn(PETSC_SUCCESS);
1250: }

1252: static struct _MatOps MatOps_Values = {MatSetValues_SeqSBAIJ,
1253:                                        MatGetRow_SeqSBAIJ,
1254:                                        MatRestoreRow_SeqSBAIJ,
1255:                                        MatMult_SeqSBAIJ_N,
1256:                                        /*  4*/ MatMultAdd_SeqSBAIJ_N,
1257:                                        MatMult_SeqSBAIJ_N, /* transpose versions are same as non-transpose versions */
1258:                                        MatMultAdd_SeqSBAIJ_N,
1259:                                        NULL,
1260:                                        NULL,
1261:                                        NULL,
1262:                                        /* 10*/ NULL,
1263:                                        NULL,
1264:                                        MatCholeskyFactor_SeqSBAIJ,
1265:                                        MatSOR_SeqSBAIJ,
1266:                                        MatTranspose_SeqSBAIJ,
1267:                                        /* 15*/ MatGetInfo_SeqSBAIJ,
1268:                                        MatEqual_SeqSBAIJ,
1269:                                        MatGetDiagonal_SeqSBAIJ,
1270:                                        MatDiagonalScale_SeqSBAIJ,
1271:                                        MatNorm_SeqSBAIJ,
1272:                                        /* 20*/ NULL,
1273:                                        MatAssemblyEnd_SeqSBAIJ,
1274:                                        MatSetOption_SeqSBAIJ,
1275:                                        MatZeroEntries_SeqSBAIJ,
1276:                                        /* 24*/ NULL,
1277:                                        NULL,
1278:                                        NULL,
1279:                                        NULL,
1280:                                        NULL,
1281:                                        /* 29*/ MatSetUp_Seq_Hash,
1282:                                        NULL,
1283:                                        NULL,
1284:                                        NULL,
1285:                                        NULL,
1286:                                        /* 34*/ MatDuplicate_SeqSBAIJ,
1287:                                        NULL,
1288:                                        NULL,
1289:                                        NULL,
1290:                                        MatICCFactor_SeqSBAIJ,
1291:                                        /* 39*/ MatAXPY_SeqSBAIJ,
1292:                                        MatCreateSubMatrices_SeqSBAIJ,
1293:                                        MatIncreaseOverlap_SeqSBAIJ,
1294:                                        MatGetValues_SeqSBAIJ,
1295:                                        MatCopy_SeqSBAIJ,
1296:                                        /* 44*/ NULL,
1297:                                        MatScale_SeqSBAIJ,
1298:                                        MatShift_SeqSBAIJ,
1299:                                        NULL,
1300:                                        MatZeroRowsColumns_SeqSBAIJ,
1301:                                        /* 49*/ NULL,
1302:                                        MatGetRowIJ_SeqSBAIJ,
1303:                                        MatRestoreRowIJ_SeqSBAIJ,
1304:                                        NULL,
1305:                                        NULL,
1306:                                        /* 54*/ NULL,
1307:                                        NULL,
1308:                                        NULL,
1309:                                        MatPermute_SeqSBAIJ,
1310:                                        MatSetValuesBlocked_SeqSBAIJ,
1311:                                        /* 59*/ MatCreateSubMatrix_SeqSBAIJ,
1312:                                        NULL,
1313:                                        NULL,
1314:                                        NULL,
1315:                                        NULL,
1316:                                        /* 64*/ NULL,
1317:                                        NULL,
1318:                                        NULL,
1319:                                        NULL,
1320:                                        NULL,
1321:                                        /* 69*/ MatGetRowMaxAbs_SeqSBAIJ,
1322:                                        NULL,
1323:                                        MatConvert_MPISBAIJ_Basic,
1324:                                        NULL,
1325:                                        NULL,
1326:                                        /* 74*/ NULL,
1327:                                        NULL,
1328:                                        NULL,
1329:                                        NULL,
1330:                                        NULL,
1331:                                        /* 79*/ NULL,
1332:                                        NULL,
1333:                                        NULL,
1334:                                        MatGetInertia_SeqSBAIJ,
1335:                                        MatLoad_SeqSBAIJ,
1336:                                        /* 84*/ NULL,
1337:                                        NULL,
1338:                                        MatIsStructurallySymmetric_SeqSBAIJ,
1339:                                        NULL,
1340:                                        NULL,
1341:                                        /* 89*/ NULL,
1342:                                        NULL,
1343:                                        NULL,
1344:                                        NULL,
1345:                                        NULL,
1346:                                        /* 94*/ NULL,
1347:                                        NULL,
1348:                                        NULL,
1349:                                        NULL,
1350:                                        NULL,
1351:                                        /* 99*/ NULL,
1352:                                        NULL,
1353:                                        NULL,
1354:                                        MatConjugate_SeqSBAIJ,
1355:                                        NULL,
1356:                                        /*104*/ NULL,
1357:                                        MatRealPart_SeqSBAIJ,
1358:                                        MatImaginaryPart_SeqSBAIJ,
1359:                                        MatGetRowUpperTriangular_SeqSBAIJ,
1360:                                        MatRestoreRowUpperTriangular_SeqSBAIJ,
1361:                                        /*109*/ NULL,
1362:                                        NULL,
1363:                                        NULL,
1364:                                        NULL,
1365:                                        MatMissingDiagonal_SeqSBAIJ,
1366:                                        /*114*/ NULL,
1367:                                        NULL,
1368:                                        NULL,
1369:                                        NULL,
1370:                                        NULL,
1371:                                        /*119*/ NULL,
1372:                                        NULL,
1373:                                        NULL,
1374:                                        NULL,
1375:                                        NULL,
1376:                                        /*124*/ NULL,
1377:                                        NULL,
1378:                                        NULL,
1379:                                        NULL,
1380:                                        NULL,
1381:                                        /*129*/ NULL,
1382:                                        NULL,
1383:                                        NULL,
1384:                                        NULL,
1385:                                        NULL,
1386:                                        /*134*/ NULL,
1387:                                        NULL,
1388:                                        NULL,
1389:                                        NULL,
1390:                                        NULL,
1391:                                        /*139*/ MatSetBlockSizes_Default,
1392:                                        NULL,
1393:                                        NULL,
1394:                                        NULL,
1395:                                        NULL,
1396:                                        /*144*/ MatCreateMPIMatConcatenateSeqMat_SeqSBAIJ,
1397:                                        NULL,
1398:                                        NULL,
1399:                                        NULL,
1400:                                        NULL,
1401:                                        NULL,
1402:                                        /*150*/ NULL,
1403:                                        MatEliminateZeros_SeqSBAIJ,
1404:                                        NULL,
1405:                                        NULL,
1406:                                        NULL,
1407:                                        /*155*/ NULL,
1408:                                        MatCopyHashToXAIJ_Seq_Hash};

1410: static PetscErrorCode MatStoreValues_SeqSBAIJ(Mat mat)
1411: {
1412:   Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)mat->data;
1413:   PetscInt      nz  = aij->i[mat->rmap->N] * mat->rmap->bs * aij->bs2;

1415:   PetscFunctionBegin;
1416:   PetscCheck(aij->nonew == 1, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

1418:   /* allocate space for values if not already there */
1419:   if (!aij->saved_values) PetscCall(PetscMalloc1(nz + 1, &aij->saved_values));

1421:   /* copy values over */
1422:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
1423:   PetscFunctionReturn(PETSC_SUCCESS);
1424: }

1426: static PetscErrorCode MatRetrieveValues_SeqSBAIJ(Mat mat)
1427: {
1428:   Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)mat->data;
1429:   PetscInt      nz  = aij->i[mat->rmap->N] * mat->rmap->bs * aij->bs2;

1431:   PetscFunctionBegin;
1432:   PetscCheck(aij->nonew == 1, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
1433:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");

1435:   /* copy values over */
1436:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
1437:   PetscFunctionReturn(PETSC_SUCCESS);
1438: }

1440: static PetscErrorCode MatSeqSBAIJSetPreallocation_SeqSBAIJ(Mat B, PetscInt bs, PetscInt nz, const PetscInt nnz[])
1441: {
1442:   Mat_SeqSBAIJ *b = (Mat_SeqSBAIJ *)B->data;
1443:   PetscInt      i, mbs, nbs, bs2;
1444:   PetscBool     skipallocation = PETSC_FALSE, flg = PETSC_FALSE, realalloc = PETSC_FALSE;

1446:   PetscFunctionBegin;
1447:   if (B->hash_active) {
1448:     PetscInt bs;
1449:     B->ops[0] = b->cops;
1450:     PetscCall(PetscHMapIJVDestroy(&b->ht));
1451:     PetscCall(MatGetBlockSize(B, &bs));
1452:     if (bs > 1) PetscCall(PetscHSetIJDestroy(&b->bht));
1453:     PetscCall(PetscFree(b->dnz));
1454:     PetscCall(PetscFree(b->bdnz));
1455:     B->hash_active = PETSC_FALSE;
1456:   }
1457:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;

1459:   PetscCall(MatSetBlockSize(B, bs));
1460:   PetscCall(PetscLayoutSetUp(B->rmap));
1461:   PetscCall(PetscLayoutSetUp(B->cmap));
1462:   PetscCheck(B->rmap->N <= B->cmap->N, PETSC_COMM_SELF, PETSC_ERR_SUP, "SEQSBAIJ matrix cannot have more rows %" PetscInt_FMT " than columns %" PetscInt_FMT, B->rmap->N, B->cmap->N);
1463:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));

1465:   B->preallocated = PETSC_TRUE;

1467:   mbs = B->rmap->N / bs;
1468:   nbs = B->cmap->n / bs;
1469:   bs2 = bs * bs;

1471:   PetscCheck(mbs * bs == B->rmap->N && nbs * bs == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Number rows, cols must be divisible by blocksize");

1473:   if (nz == MAT_SKIP_ALLOCATION) {
1474:     skipallocation = PETSC_TRUE;
1475:     nz             = 0;
1476:   }

1478:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 3;
1479:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
1480:   if (nnz) {
1481:     for (i = 0; i < mbs; i++) {
1482:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
1483:       PetscCheck(nnz[i] <= nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than block row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " block rowlength %" PetscInt_FMT, i, nnz[i], nbs);
1484:     }
1485:   }

1487:   B->ops->mult             = MatMult_SeqSBAIJ_N;
1488:   B->ops->multadd          = MatMultAdd_SeqSBAIJ_N;
1489:   B->ops->multtranspose    = MatMult_SeqSBAIJ_N;
1490:   B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_N;

1492:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_no_unroll", &flg, NULL));
1493:   if (!flg) {
1494:     switch (bs) {
1495:     case 1:
1496:       B->ops->mult             = MatMult_SeqSBAIJ_1;
1497:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_1;
1498:       B->ops->multtranspose    = MatMult_SeqSBAIJ_1;
1499:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_1;
1500:       break;
1501:     case 2:
1502:       B->ops->mult             = MatMult_SeqSBAIJ_2;
1503:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_2;
1504:       B->ops->multtranspose    = MatMult_SeqSBAIJ_2;
1505:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_2;
1506:       break;
1507:     case 3:
1508:       B->ops->mult             = MatMult_SeqSBAIJ_3;
1509:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_3;
1510:       B->ops->multtranspose    = MatMult_SeqSBAIJ_3;
1511:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_3;
1512:       break;
1513:     case 4:
1514:       B->ops->mult             = MatMult_SeqSBAIJ_4;
1515:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_4;
1516:       B->ops->multtranspose    = MatMult_SeqSBAIJ_4;
1517:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_4;
1518:       break;
1519:     case 5:
1520:       B->ops->mult             = MatMult_SeqSBAIJ_5;
1521:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_5;
1522:       B->ops->multtranspose    = MatMult_SeqSBAIJ_5;
1523:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_5;
1524:       break;
1525:     case 6:
1526:       B->ops->mult             = MatMult_SeqSBAIJ_6;
1527:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_6;
1528:       B->ops->multtranspose    = MatMult_SeqSBAIJ_6;
1529:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_6;
1530:       break;
1531:     case 7:
1532:       B->ops->mult             = MatMult_SeqSBAIJ_7;
1533:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_7;
1534:       B->ops->multtranspose    = MatMult_SeqSBAIJ_7;
1535:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_7;
1536:       break;
1537:     }
1538:   }

1540:   b->mbs = mbs;
1541:   b->nbs = nbs;
1542:   if (!skipallocation) {
1543:     if (!b->imax) {
1544:       PetscCall(PetscMalloc2(mbs, &b->imax, mbs, &b->ilen));

1546:       b->free_imax_ilen = PETSC_TRUE;
1547:     }
1548:     if (!nnz) {
1549:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
1550:       else if (nz <= 0) nz = 1;
1551:       nz = PetscMin(nbs, nz);
1552:       for (i = 0; i < mbs; i++) b->imax[i] = nz;
1553:       PetscCall(PetscIntMultError(nz, mbs, &nz));
1554:     } else {
1555:       PetscInt64 nz64 = 0;
1556:       for (i = 0; i < mbs; i++) {
1557:         b->imax[i] = nnz[i];
1558:         nz64 += nnz[i];
1559:       }
1560:       PetscCall(PetscIntCast(nz64, &nz));
1561:     }
1562:     /* b->ilen will count nonzeros in each block row so far. */
1563:     for (i = 0; i < mbs; i++) b->ilen[i] = 0;
1564:     /* nz=(nz+mbs)/2; */ /* total diagonal and superdiagonal nonzero blocks */

1566:     /* allocate the matrix space */
1567:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
1568:     PetscCall(PetscShmgetAllocateArray(bs2 * nz, sizeof(PetscScalar), (void **)&b->a));
1569:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&b->j));
1570:     PetscCall(PetscShmgetAllocateArray(B->rmap->n + 1, sizeof(PetscInt), (void **)&b->i));
1571:     b->free_a  = PETSC_TRUE;
1572:     b->free_ij = PETSC_TRUE;
1573:     PetscCall(PetscArrayzero(b->a, nz * bs2));
1574:     PetscCall(PetscArrayzero(b->j, nz));
1575:     b->free_a  = PETSC_TRUE;
1576:     b->free_ij = PETSC_TRUE;

1578:     /* pointer to beginning of each row */
1579:     b->i[0] = 0;
1580:     for (i = 1; i < mbs + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];

1582:   } else {
1583:     b->free_a  = PETSC_FALSE;
1584:     b->free_ij = PETSC_FALSE;
1585:   }

1587:   b->bs2     = bs2;
1588:   b->nz      = 0;
1589:   b->maxnz   = nz;
1590:   b->inew    = NULL;
1591:   b->jnew    = NULL;
1592:   b->anew    = NULL;
1593:   b->a2anew  = NULL;
1594:   b->permute = PETSC_FALSE;

1596:   B->was_assembled = PETSC_FALSE;
1597:   B->assembled     = PETSC_FALSE;
1598:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
1599:   PetscFunctionReturn(PETSC_SUCCESS);
1600: }

1602: static PetscErrorCode MatSeqSBAIJSetPreallocationCSR_SeqSBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
1603: {
1604:   PetscInt      i, j, m, nz, anz, nz_max = 0, *nnz;
1605:   PetscScalar  *values      = NULL;
1606:   Mat_SeqSBAIJ *b           = (Mat_SeqSBAIJ *)B->data;
1607:   PetscBool     roworiented = b->roworiented;
1608:   PetscBool     ilw         = b->ignore_ltriangular;

1610:   PetscFunctionBegin;
1611:   PetscCheck(bs >= 1, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_OUTOFRANGE, "Invalid block size specified, must be positive but it is %" PetscInt_FMT, bs);
1612:   PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
1613:   PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
1614:   PetscCall(PetscLayoutSetUp(B->rmap));
1615:   PetscCall(PetscLayoutSetUp(B->cmap));
1616:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
1617:   m = B->rmap->n / bs;

1619:   PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
1620:   PetscCall(PetscMalloc1(m + 1, &nnz));
1621:   for (i = 0; i < m; i++) {
1622:     nz = ii[i + 1] - ii[i];
1623:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
1624:     PetscCheckSorted(nz, jj + ii[i]);
1625:     anz = 0;
1626:     for (j = 0; j < nz; j++) {
1627:       /* count only values on the diagonal or above */
1628:       if (jj[ii[i] + j] >= i) {
1629:         anz = nz - j;
1630:         break;
1631:       }
1632:     }
1633:     nz_max = PetscMax(nz_max, nz);
1634:     nnz[i] = anz;
1635:   }
1636:   PetscCall(MatSeqSBAIJSetPreallocation(B, bs, 0, nnz));
1637:   PetscCall(PetscFree(nnz));

1639:   values = (PetscScalar *)V;
1640:   if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
1641:   b->ignore_ltriangular = PETSC_TRUE;
1642:   for (i = 0; i < m; i++) {
1643:     PetscInt        ncols = ii[i + 1] - ii[i];
1644:     const PetscInt *icols = jj + ii[i];

1646:     if (!roworiented || bs == 1) {
1647:       const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
1648:       PetscCall(MatSetValuesBlocked_SeqSBAIJ(B, 1, &i, ncols, icols, svals, INSERT_VALUES));
1649:     } else {
1650:       for (j = 0; j < ncols; j++) {
1651:         const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
1652:         PetscCall(MatSetValuesBlocked_SeqSBAIJ(B, 1, &i, 1, &icols[j], svals, INSERT_VALUES));
1653:       }
1654:     }
1655:   }
1656:   if (!V) PetscCall(PetscFree(values));
1657:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
1658:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
1659:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
1660:   b->ignore_ltriangular = ilw;
1661:   PetscFunctionReturn(PETSC_SUCCESS);
1662: }

1664: /*
1665:    This is used to set the numeric factorization for both Cholesky and ICC symbolic factorization
1666: */
1667: PetscErrorCode MatSeqSBAIJSetNumericFactorization_inplace(Mat B, PetscBool natural)
1668: {
1669:   PetscBool flg = PETSC_FALSE;
1670:   PetscInt  bs  = B->rmap->bs;

1672:   PetscFunctionBegin;
1673:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_no_unroll", &flg, NULL));
1674:   if (flg) bs = 8;

1676:   if (!natural) {
1677:     switch (bs) {
1678:     case 1:
1679:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_1_inplace;
1680:       break;
1681:     case 2:
1682:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_2;
1683:       break;
1684:     case 3:
1685:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_3;
1686:       break;
1687:     case 4:
1688:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_4;
1689:       break;
1690:     case 5:
1691:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_5;
1692:       break;
1693:     case 6:
1694:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_6;
1695:       break;
1696:     case 7:
1697:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_7;
1698:       break;
1699:     default:
1700:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_N;
1701:       break;
1702:     }
1703:   } else {
1704:     switch (bs) {
1705:     case 1:
1706:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_1_NaturalOrdering_inplace;
1707:       break;
1708:     case 2:
1709:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_2_NaturalOrdering;
1710:       break;
1711:     case 3:
1712:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_3_NaturalOrdering;
1713:       break;
1714:     case 4:
1715:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_4_NaturalOrdering;
1716:       break;
1717:     case 5:
1718:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_5_NaturalOrdering;
1719:       break;
1720:     case 6:
1721:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_6_NaturalOrdering;
1722:       break;
1723:     case 7:
1724:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_7_NaturalOrdering;
1725:       break;
1726:     default:
1727:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_N_NaturalOrdering;
1728:       break;
1729:     }
1730:   }
1731:   PetscFunctionReturn(PETSC_SUCCESS);
1732: }

1734: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_SeqAIJ(Mat, MatType, MatReuse, Mat *);
1735: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_SeqBAIJ(Mat, MatType, MatReuse, Mat *);
1736: static PetscErrorCode       MatFactorGetSolverType_petsc(Mat A, MatSolverType *type)
1737: {
1738:   PetscFunctionBegin;
1739:   *type = MATSOLVERPETSC;
1740:   PetscFunctionReturn(PETSC_SUCCESS);
1741: }

1743: PETSC_INTERN PetscErrorCode MatGetFactor_seqsbaij_petsc(Mat A, MatFactorType ftype, Mat *B)
1744: {
1745:   PetscInt n = A->rmap->n;

1747:   PetscFunctionBegin;
1748: #if defined(PETSC_USE_COMPLEX)
1749:   if ((ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) && A->hermitian == PETSC_BOOL3_TRUE && A->symmetric != PETSC_BOOL3_TRUE) {
1750:     PetscCall(PetscInfo(A, "Hermitian MAT_FACTOR_CHOLESKY or MAT_FACTOR_ICC are not supported. Use MAT_FACTOR_LU instead.\n"));
1751:     *B = NULL;
1752:     PetscFunctionReturn(PETSC_SUCCESS);
1753:   }
1754: #endif

1756:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
1757:   PetscCall(MatSetSizes(*B, n, n, n, n));
1758:   if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
1759:     PetscCall(MatSetType(*B, MATSEQSBAIJ));
1760:     PetscCall(MatSeqSBAIJSetPreallocation(*B, A->rmap->bs, MAT_SKIP_ALLOCATION, NULL));

1762:     (*B)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqSBAIJ;
1763:     (*B)->ops->iccfactorsymbolic      = MatICCFactorSymbolic_SeqSBAIJ;
1764:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_CHOLESKY]));
1765:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_ICC]));
1766:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Factor type not supported");

1768:   (*B)->factortype     = ftype;
1769:   (*B)->canuseordering = PETSC_TRUE;
1770:   PetscCall(PetscFree((*B)->solvertype));
1771:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*B)->solvertype));
1772:   PetscCall(PetscObjectComposeFunction((PetscObject)*B, "MatFactorGetSolverType_C", MatFactorGetSolverType_petsc));
1773:   PetscFunctionReturn(PETSC_SUCCESS);
1774: }

1776: /*@C
1777:   MatSeqSBAIJGetArray - gives access to the array where the numerical data for a `MATSEQSBAIJ` matrix is stored

1779:   Not Collective

1781:   Input Parameter:
1782: . A - a `MATSEQSBAIJ` matrix

1784:   Output Parameter:
1785: . array - pointer to the data

1787:   Level: intermediate

1789: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MatSeqSBAIJRestoreArray()`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArray()`
1790: @*/
1791: PetscErrorCode MatSeqSBAIJGetArray(Mat A, PetscScalar *array[])
1792: {
1793:   PetscFunctionBegin;
1794:   PetscUseMethod(A, "MatSeqSBAIJGetArray_C", (Mat, PetscScalar **), (A, array));
1795:   PetscFunctionReturn(PETSC_SUCCESS);
1796: }

1798: /*@C
1799:   MatSeqSBAIJRestoreArray - returns access to the array where the numerical data for a `MATSEQSBAIJ` matrix is stored obtained by `MatSeqSBAIJGetArray()`

1801:   Not Collective

1803:   Input Parameters:
1804: + A     - a `MATSEQSBAIJ` matrix
1805: - array - pointer to the data

1807:   Level: intermediate

1809: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MatSeqSBAIJGetArray()`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArray()`
1810: @*/
1811: PetscErrorCode MatSeqSBAIJRestoreArray(Mat A, PetscScalar *array[])
1812: {
1813:   PetscFunctionBegin;
1814:   PetscUseMethod(A, "MatSeqSBAIJRestoreArray_C", (Mat, PetscScalar **), (A, array));
1815:   PetscFunctionReturn(PETSC_SUCCESS);
1816: }

1818: /*MC
1819:   MATSEQSBAIJ - MATSEQSBAIJ = "seqsbaij" - A matrix type to be used for sequential symmetric block sparse matrices,
1820:   based on block compressed sparse row format.  Only the upper triangular portion of the matrix is stored.

1822:   For complex numbers by default this matrix is symmetric, NOT Hermitian symmetric. To make it Hermitian symmetric you
1823:   can call `MatSetOption`(`Mat`, `MAT_HERMITIAN`).

1825:   Options Database Key:
1826:   . -mat_type seqsbaij - sets the matrix type to "seqsbaij" during a call to `MatSetFromOptions()`

1828:   Level: beginner

1830:   Notes:
1831:   By default if you insert values into the lower triangular part of the matrix they are simply ignored (since they are not
1832:   stored and it is assumed they symmetric to the upper triangular). If you call `MatSetOption`(`Mat`,`MAT_IGNORE_LOWER_TRIANGULAR`,`PETSC_FALSE`) or use
1833:   the options database `-mat_ignore_lower_triangular` false it will generate an error if you try to set a value in the lower triangular portion.

1835:   The number of rows in the matrix must be less than or equal to the number of columns

1837: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreateSeqSBAIJ()`, `MatType`, `MATMPISBAIJ`
1838: M*/
1839: PETSC_EXTERN PetscErrorCode MatCreate_SeqSBAIJ(Mat B)
1840: {
1841:   Mat_SeqSBAIJ *b;
1842:   PetscMPIInt   size;
1843:   PetscBool     no_unroll = PETSC_FALSE, no_inode = PETSC_FALSE;

1845:   PetscFunctionBegin;
1846:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
1847:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Comm must be of size 1");

1849:   PetscCall(PetscNew(&b));
1850:   B->data   = (void *)b;
1851:   B->ops[0] = MatOps_Values;

1853:   B->ops->destroy    = MatDestroy_SeqSBAIJ;
1854:   B->ops->view       = MatView_SeqSBAIJ;
1855:   b->row             = NULL;
1856:   b->icol            = NULL;
1857:   b->reallocs        = 0;
1858:   b->saved_values    = NULL;
1859:   b->inode.limit     = 5;
1860:   b->inode.max_limit = 5;

1862:   b->roworiented        = PETSC_TRUE;
1863:   b->nonew              = 0;
1864:   b->diag               = NULL;
1865:   b->solve_work         = NULL;
1866:   b->mult_work          = NULL;
1867:   B->spptr              = NULL;
1868:   B->info.nz_unneeded   = (PetscReal)b->maxnz * b->bs2;
1869:   b->keepnonzeropattern = PETSC_FALSE;

1871:   b->inew    = NULL;
1872:   b->jnew    = NULL;
1873:   b->anew    = NULL;
1874:   b->a2anew  = NULL;
1875:   b->permute = PETSC_FALSE;

1877:   b->ignore_ltriangular = PETSC_TRUE;

1879:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_ignore_lower_triangular", &b->ignore_ltriangular, NULL));

1881:   b->getrow_utriangular = PETSC_FALSE;

1883:   PetscCall(PetscOptionsGetBool(((PetscObject)B)->options, ((PetscObject)B)->prefix, "-mat_getrow_uppertriangular", &b->getrow_utriangular, NULL));

1885:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJGetArray_C", MatSeqSBAIJGetArray_SeqSBAIJ));
1886:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJRestoreArray_C", MatSeqSBAIJRestoreArray_SeqSBAIJ));
1887:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqSBAIJ));
1888:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqSBAIJ));
1889:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJSetColumnIndices_C", MatSeqSBAIJSetColumnIndices_SeqSBAIJ));
1890:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_seqaij_C", MatConvert_SeqSBAIJ_SeqAIJ));
1891:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_seqbaij_C", MatConvert_SeqSBAIJ_SeqBAIJ));
1892:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJSetPreallocation_C", MatSeqSBAIJSetPreallocation_SeqSBAIJ));
1893:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSBAIJSetPreallocationCSR_C", MatSeqSBAIJSetPreallocationCSR_SeqSBAIJ));
1894: #if defined(PETSC_HAVE_ELEMENTAL)
1895:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_elemental_C", MatConvert_SeqSBAIJ_Elemental));
1896: #endif
1897: #if defined(PETSC_HAVE_SCALAPACK)
1898:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsbaij_scalapack_C", MatConvert_SBAIJ_ScaLAPACK));
1899: #endif

1901:   B->symmetry_eternal            = PETSC_TRUE;
1902:   B->structural_symmetry_eternal = PETSC_TRUE;
1903:   B->symmetric                   = PETSC_BOOL3_TRUE;
1904:   B->structurally_symmetric      = PETSC_BOOL3_TRUE;
1905: #if defined(PETSC_USE_COMPLEX)
1906:   B->hermitian = PETSC_BOOL3_FALSE;
1907: #else
1908:   B->hermitian = PETSC_BOOL3_TRUE;
1909: #endif

1911:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQSBAIJ));

1913:   PetscOptionsBegin(PetscObjectComm((PetscObject)B), ((PetscObject)B)->prefix, "Options for SEQSBAIJ matrix", "Mat");
1914:   PetscCall(PetscOptionsBool("-mat_no_unroll", "Do not optimize for inodes (slower)", NULL, no_unroll, &no_unroll, NULL));
1915:   if (no_unroll) PetscCall(PetscInfo(B, "Not using Inode routines due to -mat_no_unroll\n"));
1916:   PetscCall(PetscOptionsBool("-mat_no_inode", "Do not optimize for inodes (slower)", NULL, no_inode, &no_inode, NULL));
1917:   if (no_inode) PetscCall(PetscInfo(B, "Not using Inode routines due to -mat_no_inode\n"));
1918:   PetscCall(PetscOptionsInt("-mat_inode_limit", "Do not use inodes larger then this value", NULL, b->inode.limit, &b->inode.limit, NULL));
1919:   PetscOptionsEnd();
1920:   b->inode.use = (PetscBool)(!(no_unroll || no_inode));
1921:   if (b->inode.limit > b->inode.max_limit) b->inode.limit = b->inode.max_limit;
1922:   PetscFunctionReturn(PETSC_SUCCESS);
1923: }

1925: /*@
1926:   MatSeqSBAIJSetPreallocation - Creates a sparse symmetric matrix in block AIJ (block
1927:   compressed row) `MATSEQSBAIJ` format.  For good matrix assembly performance the
1928:   user should preallocate the matrix storage by setting the parameter `nz`
1929:   (or the array `nnz`).

1931:   Collective

1933:   Input Parameters:
1934: + B   - the symmetric matrix
1935: . bs  - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
1936:         blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
1937: . nz  - number of block nonzeros per block row (same for all rows)
1938: - nnz - array containing the number of block nonzeros in the upper triangular plus
1939:         diagonal portion of each block (possibly different for each block row) or `NULL`

1941:   Options Database Keys:
1942: + -mat_no_unroll  - uses code that does not unroll the loops in the block calculations (much slower)
1943: - -mat_block_size - size of the blocks to use (only works if a negative bs is passed in

1945:   Level: intermediate

1947:   Notes:
1948:   Specify the preallocated storage with either `nz` or `nnz` (not both).
1949:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
1950:   allocation.  See [Sparse Matrices](sec_matsparse) for details.

1952:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
1953:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
1954:   You can also run with the option `-info` and look for messages with the string
1955:   malloc in them to see if additional memory allocation was needed.

1957:   If the `nnz` parameter is given then the `nz` parameter is ignored

1959: .seealso: [](ch_matrices), `Mat`, [Sparse Matrices](sec_matsparse), `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatCreateSBAIJ()`
1960: @*/
1961: PetscErrorCode MatSeqSBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt nz, const PetscInt nnz[])
1962: {
1963:   PetscFunctionBegin;
1967:   PetscTryMethod(B, "MatSeqSBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[]), (B, bs, nz, nnz));
1968:   PetscFunctionReturn(PETSC_SUCCESS);
1969: }

1971: /*@C
1972:   MatSeqSBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATSEQSBAIJ` format using the given nonzero structure and (optional) numerical values

1974:   Input Parameters:
1975: + B  - the matrix
1976: . bs - size of block, the blocks are ALWAYS square.
1977: . i  - the indices into `j` for the start of each local row (indices start with zero)
1978: . j  - the column indices for each local row (indices start with zero) these must be sorted for each row
1979: - v  - optional values in the matrix, use `NULL` if not provided

1981:   Level: advanced

1983:   Notes:
1984:   The `i`,`j`,`v` values are COPIED with this routine; to avoid the copy use `MatCreateSeqSBAIJWithArrays()`

1986:   The order of the entries in values is specified by the `MatOption` `MAT_ROW_ORIENTED`.  For example, C programs
1987:   may want to use the default `MAT_ROW_ORIENTED` = `PETSC_TRUE` and use an array v[nnz][bs][bs] where the second index is
1988:   over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
1989:   `MAT_ROW_ORIENTED` = `PETSC_FALSE` and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
1990:   block column and the second index is over columns within a block.

1992:   Any entries provided that lie below the diagonal are ignored

1994:   Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries
1995:   and usually the numerical values as well

1997: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSeqSBAIJ()`, `MatSetValuesBlocked()`, `MatSeqSBAIJSetPreallocation()`
1998: @*/
1999: PetscErrorCode MatSeqSBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2000: {
2001:   PetscFunctionBegin;
2005:   PetscTryMethod(B, "MatSeqSBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2006:   PetscFunctionReturn(PETSC_SUCCESS);
2007: }

2009: /*@
2010:   MatCreateSeqSBAIJ - Creates a sparse symmetric matrix in (block
2011:   compressed row) `MATSEQSBAIJ` format.  For good matrix assembly performance the
2012:   user should preallocate the matrix storage by setting the parameter `nz`
2013:   (or the array `nnz`).

2015:   Collective

2017:   Input Parameters:
2018: + comm - MPI communicator, set to `PETSC_COMM_SELF`
2019: . bs   - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2020:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
2021: . m    - number of rows
2022: . n    - number of columns
2023: . nz   - number of block nonzeros per block row (same for all rows)
2024: - nnz  - array containing the number of block nonzeros in the upper triangular plus
2025:          diagonal portion of each block (possibly different for each block row) or `NULL`

2027:   Output Parameter:
2028: . A - the symmetric matrix

2030:   Options Database Keys:
2031: + -mat_no_unroll  - uses code that does not unroll the loops in the block calculations (much slower)
2032: - -mat_block_size - size of the blocks to use

2034:   Level: intermediate

2036:   Notes:
2037:   It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
2038:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
2039:   [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]

2041:   The number of rows and columns must be divisible by blocksize.
2042:   This matrix type does not support complex Hermitian operation.

2044:   Specify the preallocated storage with either `nz` or `nnz` (not both).
2045:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
2046:   allocation.  See [Sparse Matrices](sec_matsparse) for details.

2048:   If the `nnz` parameter is given then the `nz` parameter is ignored

2050: .seealso: [](ch_matrices), `Mat`, [Sparse Matrices](sec_matsparse), `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatCreateSBAIJ()`
2051: @*/
2052: PetscErrorCode MatCreateSeqSBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
2053: {
2054:   PetscFunctionBegin;
2055:   PetscCall(MatCreate(comm, A));
2056:   PetscCall(MatSetSizes(*A, m, n, m, n));
2057:   PetscCall(MatSetType(*A, MATSEQSBAIJ));
2058:   PetscCall(MatSeqSBAIJSetPreallocation(*A, bs, nz, (PetscInt *)nnz));
2059:   PetscFunctionReturn(PETSC_SUCCESS);
2060: }

2062: PetscErrorCode MatDuplicate_SeqSBAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
2063: {
2064:   Mat           C;
2065:   Mat_SeqSBAIJ *c, *a  = (Mat_SeqSBAIJ *)A->data;
2066:   PetscInt      i, mbs = a->mbs, nz = a->nz, bs2 = a->bs2;

2068:   PetscFunctionBegin;
2069:   PetscCheck(A->assembled, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");
2070:   PetscCheck(a->i[mbs] == nz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Corrupt matrix");

2072:   *B = NULL;
2073:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2074:   PetscCall(MatSetSizes(C, A->rmap->N, A->cmap->n, A->rmap->N, A->cmap->n));
2075:   PetscCall(MatSetBlockSizesFromMats(C, A, A));
2076:   PetscCall(MatSetType(C, MATSEQSBAIJ));
2077:   c = (Mat_SeqSBAIJ *)C->data;

2079:   C->preallocated       = PETSC_TRUE;
2080:   C->factortype         = A->factortype;
2081:   c->row                = NULL;
2082:   c->icol               = NULL;
2083:   c->saved_values       = NULL;
2084:   c->keepnonzeropattern = a->keepnonzeropattern;
2085:   C->assembled          = PETSC_TRUE;

2087:   PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
2088:   PetscCall(PetscLayoutReference(A->cmap, &C->cmap));
2089:   c->bs2 = a->bs2;
2090:   c->mbs = a->mbs;
2091:   c->nbs = a->nbs;

2093:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2094:     c->imax           = a->imax;
2095:     c->ilen           = a->ilen;
2096:     c->free_imax_ilen = PETSC_FALSE;
2097:   } else {
2098:     PetscCall(PetscMalloc2(mbs + 1, &c->imax, mbs + 1, &c->ilen));
2099:     for (i = 0; i < mbs; i++) {
2100:       c->imax[i] = a->imax[i];
2101:       c->ilen[i] = a->ilen[i];
2102:     }
2103:     c->free_imax_ilen = PETSC_TRUE;
2104:   }

2106:   /* allocate the matrix space */
2107:   PetscCall(PetscShmgetAllocateArray(bs2 * nz, sizeof(PetscScalar), (void **)&c->a));
2108:   c->free_a = PETSC_TRUE;
2109:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2110:     PetscCall(PetscArrayzero(c->a, bs2 * nz));
2111:     c->i       = a->i;
2112:     c->j       = a->j;
2113:     c->free_ij = PETSC_FALSE;
2114:     c->parent  = A;
2115:     PetscCall(PetscObjectReference((PetscObject)A));
2116:     PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2117:     PetscCall(MatSetOption(C, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2118:   } else {
2119:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&c->j));
2120:     PetscCall(PetscShmgetAllocateArray(mbs + 1, sizeof(PetscInt), (void **)&c->i));
2121:     PetscCall(PetscArraycpy(c->i, a->i, mbs + 1));
2122:     c->free_ij = PETSC_TRUE;
2123:   }
2124:   if (mbs > 0) {
2125:     if (cpvalues != MAT_SHARE_NONZERO_PATTERN) PetscCall(PetscArraycpy(c->j, a->j, nz));
2126:     if (cpvalues == MAT_COPY_VALUES) {
2127:       PetscCall(PetscArraycpy(c->a, a->a, bs2 * nz));
2128:     } else {
2129:       PetscCall(PetscArrayzero(c->a, bs2 * nz));
2130:     }
2131:     if (a->jshort) {
2132:       /* cannot share jshort, it is reallocated in MatAssemblyEnd_SeqSBAIJ() */
2133:       /* if the parent matrix is reassembled, this child matrix will never notice */
2134:       PetscCall(PetscMalloc1(nz, &c->jshort));
2135:       PetscCall(PetscArraycpy(c->jshort, a->jshort, nz));

2137:       c->free_jshort = PETSC_TRUE;
2138:     }
2139:   }

2141:   c->roworiented = a->roworiented;
2142:   c->nonew       = a->nonew;

2144:   if (a->diag) {
2145:     if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2146:       c->diag      = a->diag;
2147:       c->free_diag = PETSC_FALSE;
2148:     } else {
2149:       PetscCall(PetscMalloc1(mbs, &c->diag));
2150:       for (i = 0; i < mbs; i++) c->diag[i] = a->diag[i];
2151:       c->free_diag = PETSC_TRUE;
2152:     }
2153:   }
2154:   c->nz         = a->nz;
2155:   c->maxnz      = a->nz; /* Since we allocate exactly the right amount */
2156:   c->solve_work = NULL;
2157:   c->mult_work  = NULL;

2159:   *B = C;
2160:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
2161:   PetscFunctionReturn(PETSC_SUCCESS);
2162: }

2164: /* Used for both SeqBAIJ and SeqSBAIJ matrices */
2165: #define MatLoad_SeqSBAIJ_Binary MatLoad_SeqBAIJ_Binary

2167: PetscErrorCode MatLoad_SeqSBAIJ(Mat mat, PetscViewer viewer)
2168: {
2169:   PetscBool isbinary;

2171:   PetscFunctionBegin;
2172:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
2173:   PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
2174:   PetscCall(MatLoad_SeqSBAIJ_Binary(mat, viewer));
2175:   PetscFunctionReturn(PETSC_SUCCESS);
2176: }

2178: /*@
2179:   MatCreateSeqSBAIJWithArrays - Creates an sequential `MATSEQSBAIJ` matrix using matrix elements
2180:   (upper triangular entries in CSR format) provided by the user.

2182:   Collective

2184:   Input Parameters:
2185: + comm - must be an MPI communicator of size 1
2186: . bs   - size of block
2187: . m    - number of rows
2188: . n    - number of columns
2189: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that row block row of the matrix
2190: . j    - column indices
2191: - a    - matrix values

2193:   Output Parameter:
2194: . mat - the matrix

2196:   Level: advanced

2198:   Notes:
2199:   The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
2200:   once the matrix is destroyed

2202:   You cannot set new nonzero locations into this matrix, that will generate an error.

2204:   The `i` and `j` indices are 0 based

2206:   When block size is greater than 1 the matrix values must be stored using the `MATSBAIJ` storage format. For block size of 1
2207:   it is the regular CSR format excluding the lower triangular elements.

2209: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MatCreate()`, `MatCreateSBAIJ()`, `MatCreateSeqSBAIJ()`
2210: @*/
2211: PetscErrorCode MatCreateSeqSBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
2212: {
2213:   PetscInt      ii;
2214:   Mat_SeqSBAIJ *sbaij;

2216:   PetscFunctionBegin;
2217:   PetscCheck(bs == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "block size %" PetscInt_FMT " > 1 is not supported yet", bs);
2218:   PetscCheck(m == 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");

2220:   PetscCall(MatCreate(comm, mat));
2221:   PetscCall(MatSetSizes(*mat, m, n, m, n));
2222:   PetscCall(MatSetType(*mat, MATSEQSBAIJ));
2223:   PetscCall(MatSeqSBAIJSetPreallocation(*mat, bs, MAT_SKIP_ALLOCATION, NULL));
2224:   sbaij = (Mat_SeqSBAIJ *)(*mat)->data;
2225:   PetscCall(PetscMalloc2(m, &sbaij->imax, m, &sbaij->ilen));

2227:   sbaij->i = i;
2228:   sbaij->j = j;
2229:   sbaij->a = a;

2231:   sbaij->nonew          = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
2232:   sbaij->free_a         = PETSC_FALSE;
2233:   sbaij->free_ij        = PETSC_FALSE;
2234:   sbaij->free_imax_ilen = PETSC_TRUE;

2236:   for (ii = 0; ii < m; ii++) {
2237:     sbaij->ilen[ii] = sbaij->imax[ii] = i[ii + 1] - i[ii];
2238:     PetscCheck(i[ii + 1] >= i[ii], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
2239:   }
2240:   if (PetscDefined(USE_DEBUG)) {
2241:     for (ii = 0; ii < sbaij->i[m]; ii++) {
2242:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
2243:       PetscCheck(j[ii] < n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index too large at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
2244:     }
2245:   }

2247:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
2248:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
2249:   PetscFunctionReturn(PETSC_SUCCESS);
2250: }

2252: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqSBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
2253: {
2254:   PetscFunctionBegin;
2255:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPISBAIJ(comm, inmat, n, scall, outmat));
2256:   PetscFunctionReturn(PETSC_SUCCESS);
2257: }