Actual source code: axpy.c

  1: #include <petsc/private/matimpl.h>

  3: static PetscErrorCode MatTransposeAXPY_Private(Mat Y, PetscScalar a, Mat X, MatStructure str, Mat T)
  4: {
  5:   Mat         A, F;
  6:   PetscScalar vshift, vscale;
  7:   PetscErrorCode (*f)(Mat, Mat *);

  9:   PetscFunctionBegin;
 10:   if (T == X) PetscCall(MatShellGetScalingShifts(T, &vshift, &vscale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
 11:   else {
 12:     vshift = 0.0;
 13:     vscale = 1.0;
 14:   }
 15:   PetscCall(PetscObjectQueryFunction((PetscObject)T, "MatTransposeGetMat_C", &f));
 16:   if (f) {
 17:     PetscCall(MatTransposeGetMat(T, &A));
 18:     if (T == X) {
 19:       PetscCall(PetscInfo(NULL, "Explicitly transposing X of type MATTRANSPOSEVIRTUAL to perform MatAXPY()\n"));
 20:       PetscCall(MatTranspose(A, MAT_INITIAL_MATRIX, &F));
 21:       A = Y;
 22:     } else {
 23:       PetscCall(PetscInfo(NULL, "Transposing X because Y of type MATTRANSPOSEVIRTUAL to perform MatAXPY()\n"));
 24:       PetscCall(MatTranspose(X, MAT_INITIAL_MATRIX, &F));
 25:     }
 26:   } else {
 27:     PetscCall(MatHermitianTransposeGetMat(T, &A));
 28:     if (T == X) {
 29:       PetscCall(PetscInfo(NULL, "Explicitly Hermitian transposing X of type MATHERMITIANTRANSPOSEVIRTUAL to perform MatAXPY()\n"));
 30:       PetscCall(MatHermitianTranspose(A, MAT_INITIAL_MATRIX, &F));
 31:       A = Y;
 32:     } else {
 33:       PetscCall(PetscInfo(NULL, "Hermitian transposing X because Y of type MATHERMITIANTRANSPOSEVIRTUAL to perform MatAXPY()\n"));
 34:       PetscCall(MatHermitianTranspose(X, MAT_INITIAL_MATRIX, &F));
 35:     }
 36:   }
 37:   PetscCall(MatAXPY(A, a * vscale, F, str));
 38:   PetscCall(MatShift(A, a * vshift));
 39:   PetscCall(MatDestroy(&F));
 40:   PetscFunctionReturn(PETSC_SUCCESS);
 41: }

 43: static PetscErrorCode MatAXPY_BasicWithTypeCompare(Mat Y, PetscScalar a, Mat X, MatStructure str)
 44: {
 45:   PetscBool flg;

 47:   PetscFunctionBegin;
 48:   PetscCall(MatIsShell(Y, &flg));
 49:   if (flg) { /* MatShell has special support for AXPY */
 50:     PetscErrorCode (*f)(Mat, PetscScalar, Mat, MatStructure);

 52:     PetscCall(MatGetOperation(Y, MATOP_AXPY, (void (**)(void))&f));
 53:     if (f) {
 54:       PetscCall((*f)(Y, a, X, str));
 55:       PetscFunctionReturn(PETSC_SUCCESS);
 56:     }
 57:   } else {
 58:     /* no need to preallocate if Y is dense */
 59:     PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &flg, MATSEQDENSE, MATMPIDENSE, ""));
 60:     if (flg) {
 61:       PetscCall(PetscObjectTypeCompare((PetscObject)X, MATNEST, &flg));
 62:       if (flg) {
 63:         PetscCall(MatAXPY_Dense_Nest(Y, a, X));
 64:         PetscFunctionReturn(PETSC_SUCCESS);
 65:       }
 66:     }
 67:     PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &flg, MATSCALAPACK, MATELEMENTAL, ""));
 68:     if (flg) { /* Avoid MatAXPY_Basic() due to missing MatGetRow() */
 69:       Mat C;

 71:       PetscCall(MatConvert(X, ((PetscObject)Y)->type_name, MAT_INITIAL_MATRIX, &C));
 72:       PetscCall(MatAXPY(Y, a, C, str));
 73:       PetscCall(MatDestroy(&C));
 74:       PetscFunctionReturn(PETSC_SUCCESS);
 75:     }
 76:   }
 77:   PetscCall(MatAXPY_Basic(Y, a, X, str));
 78:   PetscFunctionReturn(PETSC_SUCCESS);
 79: }

 81: /*@
 82:   MatAXPY - Computes Y = a*X + Y.

 84:   Logically Collective

 86:   Input Parameters:
 87: + a   - the scalar multiplier
 88: . X   - the first matrix
 89: . Y   - the second matrix
 90: - str - either `SAME_NONZERO_PATTERN`, `DIFFERENT_NONZERO_PATTERN`, `UNKNOWN_NONZERO_PATTERN`, or `SUBSET_NONZERO_PATTERN` (nonzeros of `X` is a subset of `Y`'s)

 92:   Level: intermediate

 94: .seealso: [](ch_matrices), `Mat`, `MatAYPX()`
 95:  @*/
 96: PetscErrorCode MatAXPY(Mat Y, PetscScalar a, Mat X, MatStructure str)
 97: {
 98:   PetscInt  M1, M2, N1, N2;
 99:   PetscInt  m1, m2, n1, n2;
100:   PetscBool sametype, transpose;

102:   PetscFunctionBegin;
106:   PetscCheckSameComm(Y, 1, X, 3);
107:   PetscCall(MatGetSize(X, &M1, &N1));
108:   PetscCall(MatGetSize(Y, &M2, &N2));
109:   PetscCall(MatGetLocalSize(X, &m1, &n1));
110:   PetscCall(MatGetLocalSize(Y, &m2, &n2));
111:   PetscCheck(M1 == M2 && N1 == N2, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_SIZ, "Non conforming matrix add: global sizes X %" PetscInt_FMT " x %" PetscInt_FMT ", Y %" PetscInt_FMT " x %" PetscInt_FMT, M1, N1, M2, N2);
112:   PetscCheck(m1 == m2 && n1 == n2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Non conforming matrix add: local sizes X %" PetscInt_FMT " x %" PetscInt_FMT ", Y %" PetscInt_FMT " x %" PetscInt_FMT, m1, n1, m2, n2);
113:   PetscCheck(Y->assembled, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix (Y)");
114:   PetscCheck(X->assembled, PetscObjectComm((PetscObject)X), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix (X)");
115:   if (a == (PetscScalar)0.0) PetscFunctionReturn(PETSC_SUCCESS);
116:   if (Y == X) {
117:     PetscCall(MatScale(Y, 1.0 + a));
118:     PetscFunctionReturn(PETSC_SUCCESS);
119:   }
120:   PetscCall(PetscObjectObjectTypeCompare((PetscObject)X, (PetscObject)Y, &sametype));
121:   PetscCall(PetscLogEventBegin(MAT_AXPY, Y, 0, 0, 0));
122:   if (Y->ops->axpy && (sametype || X->ops->axpy == Y->ops->axpy)) {
123:     PetscUseTypeMethod(Y, axpy, a, X, str);
124:   } else {
125:     PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &transpose, MATTRANSPOSEVIRTUAL, MATHERMITIANTRANSPOSEVIRTUAL, ""));
126:     if (transpose) {
127:       PetscCall(MatTransposeAXPY_Private(Y, a, X, str, X));
128:     } else {
129:       PetscCall(PetscObjectTypeCompareAny((PetscObject)Y, &transpose, MATTRANSPOSEVIRTUAL, MATHERMITIANTRANSPOSEVIRTUAL, ""));
130:       if (transpose) {
131:         PetscCall(MatTransposeAXPY_Private(Y, a, X, str, Y));
132:       } else {
133:         PetscCall(MatAXPY_BasicWithTypeCompare(Y, a, X, str));
134:       }
135:     }
136:   }
137:   PetscCall(PetscLogEventEnd(MAT_AXPY, Y, 0, 0, 0));
138:   PetscFunctionReturn(PETSC_SUCCESS);
139: }

141: PetscErrorCode MatAXPY_Basic_Preallocate(Mat Y, Mat X, Mat *B)
142: {
143:   PetscErrorCode (*preall)(Mat, Mat, Mat *) = NULL;

145:   PetscFunctionBegin;
146:   /* look for any available faster alternative to the general preallocator */
147:   PetscCall(PetscObjectQueryFunction((PetscObject)Y, "MatAXPYGetPreallocation_C", &preall));
148:   if (preall) {
149:     PetscCall((*preall)(Y, X, B));
150:   } else { /* Use MatPrellocator, assumes same row-col distribution */
151:     Mat      preallocator;
152:     PetscInt r, rstart, rend;
153:     PetscInt m, n, M, N;

155:     PetscCall(MatGetRowUpperTriangular(Y));
156:     PetscCall(MatGetRowUpperTriangular(X));
157:     PetscCall(MatGetSize(Y, &M, &N));
158:     PetscCall(MatGetLocalSize(Y, &m, &n));
159:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &preallocator));
160:     PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
161:     PetscCall(MatSetLayouts(preallocator, Y->rmap, Y->cmap));
162:     PetscCall(MatSetUp(preallocator));
163:     PetscCall(MatGetOwnershipRange(preallocator, &rstart, &rend));
164:     for (r = rstart; r < rend; ++r) {
165:       PetscInt           ncols;
166:       const PetscInt    *row;
167:       const PetscScalar *vals;

169:       PetscCall(MatGetRow(Y, r, &ncols, &row, &vals));
170:       PetscCall(MatSetValues(preallocator, 1, &r, ncols, row, vals, INSERT_VALUES));
171:       PetscCall(MatRestoreRow(Y, r, &ncols, &row, &vals));
172:       PetscCall(MatGetRow(X, r, &ncols, &row, &vals));
173:       PetscCall(MatSetValues(preallocator, 1, &r, ncols, row, vals, INSERT_VALUES));
174:       PetscCall(MatRestoreRow(X, r, &ncols, &row, &vals));
175:     }
176:     PetscCall(MatSetOption(preallocator, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
177:     PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
178:     PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
179:     PetscCall(MatRestoreRowUpperTriangular(Y));
180:     PetscCall(MatRestoreRowUpperTriangular(X));

182:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), B));
183:     PetscCall(MatSetType(*B, ((PetscObject)Y)->type_name));
184:     PetscCall(MatSetLayouts(*B, Y->rmap, Y->cmap));
185:     PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_FALSE, *B));
186:     PetscCall(MatDestroy(&preallocator));
187:   }
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: PetscErrorCode MatAXPY_Basic(Mat Y, PetscScalar a, Mat X, MatStructure str)
192: {
193:   PetscFunctionBegin;
194:   if (str == DIFFERENT_NONZERO_PATTERN || str == UNKNOWN_NONZERO_PATTERN) {
195:     PetscBool isdense;

197:     /* no need to preallocate if Y is dense */
198:     PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isdense, MATSEQDENSE, MATMPIDENSE, ""));
199:     if (isdense) str = SUBSET_NONZERO_PATTERN;
200:   }
201:   if (str != DIFFERENT_NONZERO_PATTERN && str != UNKNOWN_NONZERO_PATTERN) {
202:     PetscInt           i, start, end, j, ncols, m, n;
203:     const PetscInt    *row;
204:     PetscScalar       *val;
205:     const PetscScalar *vals;

207:     PetscCall(MatGetSize(X, &m, &n));
208:     PetscCall(MatGetOwnershipRange(X, &start, &end));
209:     PetscCall(MatGetRowUpperTriangular(X));
210:     if (a == 1.0) {
211:       for (i = start; i < end; i++) {
212:         PetscCall(MatGetRow(X, i, &ncols, &row, &vals));
213:         PetscCall(MatSetValues(Y, 1, &i, ncols, row, vals, ADD_VALUES));
214:         PetscCall(MatRestoreRow(X, i, &ncols, &row, &vals));
215:       }
216:     } else {
217:       PetscInt vs = 100;
218:       /* realloc if needed, as this function may be used in parallel */
219:       PetscCall(PetscMalloc1(vs, &val));
220:       for (i = start; i < end; i++) {
221:         PetscCall(MatGetRow(X, i, &ncols, &row, &vals));
222:         if (vs < ncols) {
223:           vs = PetscMin(2 * ncols, n);
224:           PetscCall(PetscRealloc(vs * sizeof(*val), &val));
225:         }
226:         for (j = 0; j < ncols; j++) val[j] = a * vals[j];
227:         PetscCall(MatSetValues(Y, 1, &i, ncols, row, val, ADD_VALUES));
228:         PetscCall(MatRestoreRow(X, i, &ncols, &row, &vals));
229:       }
230:       PetscCall(PetscFree(val));
231:     }
232:     PetscCall(MatRestoreRowUpperTriangular(X));
233:     PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
234:     PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
235:   } else {
236:     Mat B;

238:     PetscCall(MatAXPY_Basic_Preallocate(Y, X, &B));
239:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
240:     PetscCall(MatHeaderMerge(Y, &B));
241:   }
242:   PetscFunctionReturn(PETSC_SUCCESS);
243: }

245: PetscErrorCode MatAXPY_BasicWithPreallocation(Mat B, Mat Y, PetscScalar a, Mat X, MatStructure str)
246: {
247:   PetscInt           i, start, end, j, ncols, m, n;
248:   const PetscInt    *row;
249:   PetscScalar       *val;
250:   const PetscScalar *vals;

252:   PetscFunctionBegin;
253:   PetscCall(MatGetSize(X, &m, &n));
254:   PetscCall(MatGetOwnershipRange(X, &start, &end));
255:   PetscCall(MatGetRowUpperTriangular(Y));
256:   PetscCall(MatGetRowUpperTriangular(X));
257:   if (a == 1.0) {
258:     for (i = start; i < end; i++) {
259:       PetscCall(MatGetRow(Y, i, &ncols, &row, &vals));
260:       PetscCall(MatSetValues(B, 1, &i, ncols, row, vals, ADD_VALUES));
261:       PetscCall(MatRestoreRow(Y, i, &ncols, &row, &vals));

263:       PetscCall(MatGetRow(X, i, &ncols, &row, &vals));
264:       PetscCall(MatSetValues(B, 1, &i, ncols, row, vals, ADD_VALUES));
265:       PetscCall(MatRestoreRow(X, i, &ncols, &row, &vals));
266:     }
267:   } else {
268:     PetscInt vs = 100;
269:     /* realloc if needed, as this function may be used in parallel */
270:     PetscCall(PetscMalloc1(vs, &val));
271:     for (i = start; i < end; i++) {
272:       PetscCall(MatGetRow(Y, i, &ncols, &row, &vals));
273:       PetscCall(MatSetValues(B, 1, &i, ncols, row, vals, ADD_VALUES));
274:       PetscCall(MatRestoreRow(Y, i, &ncols, &row, &vals));

276:       PetscCall(MatGetRow(X, i, &ncols, &row, &vals));
277:       if (vs < ncols) {
278:         vs = PetscMin(2 * ncols, n);
279:         PetscCall(PetscRealloc(vs * sizeof(*val), &val));
280:       }
281:       for (j = 0; j < ncols; j++) val[j] = a * vals[j];
282:       PetscCall(MatSetValues(B, 1, &i, ncols, row, val, ADD_VALUES));
283:       PetscCall(MatRestoreRow(X, i, &ncols, &row, &vals));
284:     }
285:     PetscCall(PetscFree(val));
286:   }
287:   PetscCall(MatRestoreRowUpperTriangular(Y));
288:   PetscCall(MatRestoreRowUpperTriangular(X));
289:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
290:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
291:   PetscFunctionReturn(PETSC_SUCCESS);
292: }

294: /*@
295:   MatShift - Computes `Y =  Y + a I`, where `a` is a `PetscScalar`

297:   Neighbor-wise Collective

299:   Input Parameters:
300: + Y - the matrix
301: - a - the `PetscScalar`

303:   Level: intermediate

305:   Notes:
306:   If `Y` is a rectangular matrix, the shift is done on the main diagonal of the matrix (https://en.wikipedia.org/wiki/Main_diagonal)

308:   If the matrix `Y` is missing some diagonal entries this routine can be very slow. To make it fast one should initially
309:   fill the matrix so that all diagonal entries have a value (with a value of zero for those locations that would not have an
310:   entry). No operation is performed when a is zero.

312:   To form Y = Y + diag(V) use `MatDiagonalSet()`

314: .seealso: [](ch_matrices), `Mat`, `MatDiagonalSet()`, `MatScale()`, `MatDiagonalScale()`
315:  @*/
316: PetscErrorCode MatShift(Mat Y, PetscScalar a)
317: {
318:   PetscFunctionBegin;
320:   PetscCheck(Y->assembled, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
321:   PetscCheck(!Y->factortype, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
322:   MatCheckPreallocated(Y, 1);
323:   if (a == 0.0) PetscFunctionReturn(PETSC_SUCCESS);

325:   if (Y->ops->shift) PetscUseTypeMethod(Y, shift, a);
326:   else PetscCall(MatShift_Basic(Y, a));

328:   PetscCall(PetscObjectStateIncrease((PetscObject)Y));
329:   PetscFunctionReturn(PETSC_SUCCESS);
330: }

332: PetscErrorCode MatDiagonalSet_Default(Mat Y, Vec D, InsertMode is)
333: {
334:   PetscInt           i, start, end;
335:   const PetscScalar *v;

337:   PetscFunctionBegin;
338:   PetscCall(MatGetOwnershipRange(Y, &start, &end));
339:   PetscCall(VecGetArrayRead(D, &v));
340:   for (i = start; i < end; i++) PetscCall(MatSetValues(Y, 1, &i, 1, &i, v + i - start, is));
341:   PetscCall(VecRestoreArrayRead(D, &v));
342:   PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
343:   PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
344:   PetscFunctionReturn(PETSC_SUCCESS);
345: }

347: /*@
348:   MatDiagonalSet - Computes `Y` = `Y` + `D`, where `D` is a diagonal matrix
349:   that is represented as a vector. Or Y[i,i] = D[i] if `InsertMode` is
350:   `INSERT_VALUES`.

352:   Neighbor-wise Collective

354:   Input Parameters:
355: + Y  - the input matrix
356: . D  - the diagonal matrix, represented as a vector
357: - is - `INSERT_VALUES` or `ADD_VALUES`

359:   Level: intermediate

361:   Note:
362:   If the matrix `Y` is missing some diagonal entries this routine can be very slow. To make it fast one should initially
363:   fill the matrix so that all diagonal entries have a value (with a value of zero for those locations that would not have an
364:   entry).

366: .seealso: [](ch_matrices), `Mat`, `MatShift()`, `MatScale()`, `MatDiagonalScale()`
367: @*/
368: PetscErrorCode MatDiagonalSet(Mat Y, Vec D, InsertMode is)
369: {
370:   PetscInt matlocal, veclocal;

372:   PetscFunctionBegin;
375:   MatCheckPreallocated(Y, 1);
376:   PetscCall(MatGetLocalSize(Y, &matlocal, NULL));
377:   PetscCall(VecGetLocalSize(D, &veclocal));
378:   PetscCheck(matlocal == veclocal, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number local rows of matrix %" PetscInt_FMT " does not match that of vector for diagonal %" PetscInt_FMT, matlocal, veclocal);
379:   if (Y->ops->diagonalset) PetscUseTypeMethod(Y, diagonalset, D, is);
380:   else PetscCall(MatDiagonalSet_Default(Y, D, is));
381:   PetscCall(PetscObjectStateIncrease((PetscObject)Y));
382:   PetscFunctionReturn(PETSC_SUCCESS);
383: }

385: /*@
386:   MatAYPX - Computes Y = a*Y + X.

388:   Logically Collective

390:   Input Parameters:
391: + a   - the `PetscScalar` multiplier
392: . Y   - the first matrix
393: . X   - the second matrix
394: - str - either `SAME_NONZERO_PATTERN`, `DIFFERENT_NONZERO_PATTERN`, `UNKNOWN_NONZERO_PATTERN`, or `SUBSET_NONZERO_PATTERN` (nonzeros of `X` is a subset of `Y`'s)

396:   Level: intermediate

398: .seealso: [](ch_matrices), `Mat`, `MatAXPY()`
399:  @*/
400: PetscErrorCode MatAYPX(Mat Y, PetscScalar a, Mat X, MatStructure str)
401: {
402:   PetscFunctionBegin;
403:   PetscCall(MatScale(Y, a));
404:   PetscCall(MatAXPY(Y, 1.0, X, str));
405:   PetscFunctionReturn(PETSC_SUCCESS);
406: }

408: /*@
409:   MatComputeOperator - Computes the explicit matrix

411:   Collective

413:   Input Parameters:
414: + inmat   - the matrix
415: - mattype - the matrix type for the explicit operator

417:   Output Parameter:
418: . mat - the explicit  operator

420:   Level: advanced

422:   Note:
423:   This computation is done by applying the operator to columns of the identity matrix.
424:   This routine is costly in general, and is recommended for use only with relatively small systems.
425:   Currently, this routine uses a dense matrix format if `mattype` == `NULL`.

427: .seealso: [](ch_matrices), `Mat`, `MatConvert()`, `MatMult()`, `MatComputeOperatorTranspose()`
428: @*/
429: PetscErrorCode MatComputeOperator(Mat inmat, MatType mattype, Mat *mat)
430: {
431:   PetscFunctionBegin;
433:   PetscAssertPointer(mat, 3);
434:   PetscCall(MatConvert_Shell(inmat, mattype ? mattype : MATDENSE, MAT_INITIAL_MATRIX, mat));
435:   PetscFunctionReturn(PETSC_SUCCESS);
436: }

438: /*@
439:   MatComputeOperatorTranspose - Computes the explicit matrix representation of
440:   a give matrix that can apply `MatMultTranspose()`

442:   Collective

444:   Input Parameters:
445: + inmat   - the matrix
446: - mattype - the matrix type for the explicit operator

448:   Output Parameter:
449: . mat - the explicit  operator transposed

451:   Level: advanced

453:   Note:
454:   This computation is done by applying the transpose of the operator to columns of the identity matrix.
455:   This routine is costly in general, and is recommended for use only with relatively small systems.
456:   Currently, this routine uses a dense matrix format if `mattype` == `NULL`.

458: .seealso: [](ch_matrices), `Mat`, `MatConvert()`, `MatMult()`, `MatComputeOperator()`
459: @*/
460: PetscErrorCode MatComputeOperatorTranspose(Mat inmat, MatType mattype, Mat *mat)
461: {
462:   Mat A;

464:   PetscFunctionBegin;
466:   PetscAssertPointer(mat, 3);
467:   PetscCall(MatCreateTranspose(inmat, &A));
468:   PetscCall(MatConvert_Shell(A, mattype ? mattype : MATDENSE, MAT_INITIAL_MATRIX, mat));
469:   PetscCall(MatDestroy(&A));
470:   PetscFunctionReturn(PETSC_SUCCESS);
471: }

473: /*@
474:   MatFilter - Set all values in the matrix with an absolute value less than or equal to the tolerance to zero, and optionally compress the underlying storage

476:   Input Parameters:
477: + A        - The matrix
478: . tol      - The zero tolerance
479: . compress - Whether the storage from the input matrix `A` should be compressed once values less than or equal to `tol` are set to zero
480: - keep     - If `compress` is true and for a given row of `A`, the diagonal coefficient is less than or equal to `tol`, indicates whether it should be left in the structure or eliminated as well

482:   Level: intermediate

484: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatZeroEntries()`, `MatEliminateZeros()`, `VecFilter()`
485:  @*/
486: PetscErrorCode MatFilter(Mat A, PetscReal tol, PetscBool compress, PetscBool keep)
487: {
488:   Mat          a;
489:   PetscScalar *newVals;
490:   PetscInt    *newCols, rStart, rEnd, maxRows, r, colMax = 0, nnz0 = 0, nnz1 = 0;
491:   PetscBool    flg;

493:   PetscFunctionBegin;
494:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)A, &flg, MATSEQDENSE, MATMPIDENSE, ""));
495:   if (flg) {
496:     PetscCall(MatDenseGetLocalMatrix(A, &a));
497:     PetscCall(MatDenseGetLDA(a, &r));
498:     PetscCall(MatGetSize(a, &rStart, &rEnd));
499:     PetscCall(MatDenseGetArray(a, &newVals));
500:     for (; colMax < rEnd; ++colMax) {
501:       for (maxRows = 0; maxRows < rStart; ++maxRows) newVals[maxRows + colMax * r] = PetscAbsScalar(newVals[maxRows + colMax * r]) <= tol ? 0.0 : newVals[maxRows + colMax * r];
502:     }
503:     PetscCall(MatDenseRestoreArray(a, &newVals));
504:   } else {
505:     const PetscInt *ranges;
506:     PetscMPIInt     rank, size;

508:     PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));
509:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
510:     PetscCall(MatGetOwnershipRanges(A, &ranges));
511:     rStart = ranges[rank];
512:     rEnd   = ranges[rank + 1];
513:     PetscCall(MatGetRowUpperTriangular(A));
514:     for (r = rStart; r < rEnd; ++r) {
515:       PetscInt ncols;

517:       PetscCall(MatGetRow(A, r, &ncols, NULL, NULL));
518:       colMax = PetscMax(colMax, ncols);
519:       PetscCall(MatRestoreRow(A, r, &ncols, NULL, NULL));
520:     }
521:     maxRows = 0;
522:     for (r = 0; r < size; ++r) maxRows = PetscMax(maxRows, ranges[r + 1] - ranges[r]);
523:     PetscCall(PetscCalloc2(colMax, &newCols, colMax, &newVals));
524:     PetscCall(MatGetOption(A, MAT_NO_OFF_PROC_ENTRIES, &flg)); /* cache user-defined value */
525:     PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
526:     /* short-circuit code in MatAssemblyBegin() and MatAssemblyEnd()             */
527:     /* that are potentially called many times depending on the distribution of A */
528:     for (r = rStart; r < rStart + maxRows; ++r) {
529:       if (r < rEnd) {
530:         const PetscScalar *vals;
531:         const PetscInt    *cols;
532:         PetscInt           ncols, newcols = 0, c;

534:         PetscCall(MatGetRow(A, r, &ncols, &cols, &vals));
535:         nnz0 += ncols - 1;
536:         for (c = 0; c < ncols; ++c) {
537:           if (PetscUnlikely(PetscAbsScalar(vals[c]) <= tol)) newCols[newcols++] = cols[c];
538:         }
539:         nnz1 += ncols - newcols - 1;
540:         PetscCall(MatRestoreRow(A, r, &ncols, &cols, &vals));
541:         PetscCall(MatSetValues(A, 1, &r, newcols, newCols, newVals, INSERT_VALUES));
542:       }
543:       PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
544:       PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
545:     }
546:     PetscCall(MatRestoreRowUpperTriangular(A));
547:     PetscCall(PetscFree2(newCols, newVals));
548:     PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, flg)); /* reset option to its user-defined value */
549:     if (nnz0 > 0) PetscCall(PetscInfo(NULL, "Filtering left %g%% edges in graph\n", 100 * (double)nnz1 / (double)nnz0));
550:     else PetscCall(PetscInfo(NULL, "Warning: %" PetscInt_FMT " edges to filter with %" PetscInt_FMT " rows\n", nnz0, maxRows));
551:   }
552:   if (compress && A->ops->eliminatezeros) {
553:     Mat       B;
554:     PetscBool flg;

556:     PetscCall(PetscObjectTypeCompareAny((PetscObject)A, &flg, MATSEQAIJHIPSPARSE, MATMPIAIJHIPSPARSE, ""));
557:     if (!flg) {
558:       PetscCall(MatEliminateZeros(A, keep));
559:       PetscCall(MatDuplicate(A, MAT_COPY_VALUES, &B));
560:       PetscCall(MatHeaderReplace(A, &B));
561:     }
562:   }
563:   PetscFunctionReturn(PETSC_SUCCESS);
564: }