Actual source code: al.c

  1: #include <../src/snes/impls/al/alimpl.h>

  3: /*
  4:      This file implements a truncated Newton method with arc length continuation,
  5:      for solving a system of nonlinear equations, using the KSP, Vec,
  6:      and Mat interfaces for linear solvers, vectors, and matrices,
  7:      respectively.
  8: */

 10: const char NewtonALExactCitation[]   = "@article{Ritto-CorreaCamotim2008,\n"
 11:                                        "  title={On the arc-length and other quadratic control methods: Established, less known and new implementation procedures},\n"
 12:                                        "  volume={86},\n"
 13:                                        "  ISSN={0045-7949},\n"
 14:                                        "  DOI={10.1016/j.compstruc.2007.08.003},\n"
 15:                                        "  number={11},\n"
 16:                                        "  journal={Computers & Structures},\n"
 17:                                        "  author={Ritto-Corr{\\^{e}}a, Manuel and Camotim, Dinar},\n"
 18:                                        "  year={2008},\n"
 19:                                        "  month=jun,\n"
 20:                                        "  pages={1353-1368},\n"
 21:                                        "}\n";
 22: PetscBool  NewtonALExactCitationSet  = PETSC_FALSE;
 23: const char NewtonALNormalCitation[]  = "@article{LeonPaulinoPereiraMenezesLages_2011,\n"
 24:                                        "  title={A Unified Library of Nonlinear Solution Schemes},\n"
 25:                                        "  volume={64},\n"
 26:                                        "  ISSN={0003-6900, 2379-0407},\n"
 27:                                        "  DOI={10.1115/1.4006992},\n"
 28:                                        "  number={4},\n"
 29:                                        "  journal={Applied Mechanics Reviews},\n"
 30:                                        "  author={Leon, Sofie E. and Paulino, Glaucio H. and Pereira, Anderson and Menezes, Ivan F. M. and Lages, Eduardo N.},\n"
 31:                                        "  year={2011},\n"
 32:                                        "  month=jul,\n"
 33:                                        "  pages={040803},\n"
 34:                                        "  language={en}\n"
 35:                                        "}\n";
 36: PetscBool  NewtonALNormalCitationSet = PETSC_FALSE;

 38: const char *const SNESNewtonALCorrectionTypes[] = {"EXACT", "NORMAL", "SNESNewtonALCorrectionType", "SNES_NEWTONAL_CORRECTION_", NULL};

 40: static PetscErrorCode SNESNewtonALCheckArcLength(SNES snes, Vec XStep, PetscReal lambdaStep, PetscReal stepSize)
 41: {
 42:   PetscReal      arcLength, arcLengthError;
 43:   SNES_NEWTONAL *al = (SNES_NEWTONAL *)snes->data;

 45:   PetscFunctionBegin;
 46:   PetscCall(VecNorm(XStep, NORM_2, &arcLength));
 47:   arcLength      = PetscSqrtReal(PetscSqr(arcLength) + al->psisq * lambdaStep * lambdaStep);
 48:   arcLengthError = PetscAbsReal(arcLength - stepSize);

 50:   if (arcLengthError > PETSC_SQRT_MACHINE_EPSILON) PetscCall(PetscInfo(snes, "Arc length differs from specified step size: computed=%18.16e, expected=%18.16e, error=%18.16e \n", (double)arcLength, (double)stepSize, (double)arcLengthError));
 51:   PetscFunctionReturn(PETSC_SUCCESS);
 52: }

 54: /* stable implementation of roots of a*x^2 + b*x + c = 0 */
 55: static inline void PetscQuadraticRoots(PetscReal a, PetscReal b, PetscReal c, PetscReal *xm, PetscReal *xp)
 56: {
 57:   PetscReal temp = -0.5 * (b + PetscCopysignReal(1.0, b) * PetscSqrtReal(b * b - 4 * a * c));
 58:   PetscReal x1   = temp / a;
 59:   PetscReal x2   = c / temp;
 60:   *xm            = PetscMin(x1, x2);
 61:   *xp            = PetscMax(x1, x2);
 62: }

 64: static PetscErrorCode SNESNewtonALSetCorrectionType_NEWTONAL(SNES snes, SNESNewtonALCorrectionType ctype)
 65: {
 66:   SNES_NEWTONAL *al = (SNES_NEWTONAL *)snes->data;

 68:   PetscFunctionBegin;
 69:   al->correction_type = ctype;
 70:   PetscFunctionReturn(PETSC_SUCCESS);
 71: }

 73: /*@
 74:   SNESNewtonALSetCorrectionType - Set the type of correction to use in the arc-length continuation method.

 76:   Logically Collective

 78:   Input Parameters:
 79: + snes  - the nonlinear solver object
 80: - ctype - the type of correction to use

 82:   Options Database Key:
 83: . -snes_newtonal_correction_type <type> - Set the type of correction to use; use -help for a list of available types

 85:   Level: intermediate

 87: .seealso: [](ch_snes), `SNES`, `SNESNEWTONAL`, `SNESNewtonALCorrectionType`
 88: @*/
 89: PetscErrorCode SNESNewtonALSetCorrectionType(SNES snes, SNESNewtonALCorrectionType ctype)
 90: {
 91:   PetscFunctionBegin;
 94:   PetscTryMethod(snes, "SNESNewtonALSetCorrectionType_C", (SNES, SNESNewtonALCorrectionType), (snes, ctype));
 95:   PetscFunctionReturn(PETSC_SUCCESS);
 96: }

 98: static PetscErrorCode SNESNewtonALSetFunction_NEWTONAL(SNES snes, SNESFunctionFn *func, void *ctx)
 99: {
100:   SNES_NEWTONAL *al = (SNES_NEWTONAL *)snes->data;

102:   PetscFunctionBegin;
103:   al->computealfunction = func;
104:   al->alctx             = ctx;
105:   PetscFunctionReturn(PETSC_SUCCESS);
106: }

108: /*@C
109:   SNESNewtonALSetFunction - Sets a user function that is called at each function evaluation to
110:   compute the tangent load vector for the arc-length continuation method.

112:   Logically Collective

114:   Input Parameters:
115: + snes - the nonlinear solver object
116: . func - [optional] tangent load function evaluation routine, see `SNESFunctionFn` for the calling sequence. `U` is the current solution vector, `Q` is the output tangent load vector
117: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

119:   Level: intermediate

121:   Notes:
122:   If the current value of the load parameter is needed in `func`, it can be obtained with `SNESNewtonALGetLoadParameter()`.

124:   The tangent load vector is the partial derivative of external load with respect to the load parameter.
125:   In the case of proportional loading, the tangent load vector is the full external load vector at the end of the load step.

127: .seealso: [](ch_snes), `SNES`, `SNESNEWTONAL`, `SNESNewtonALGetFunction()`, `SNESNewtonALGetLoadParameter()`
128: @*/
129: PetscErrorCode SNESNewtonALSetFunction(SNES snes, SNESFunctionFn *func, void *ctx)
130: {
131:   PetscFunctionBegin;
133:   PetscTryMethod(snes, "SNESNewtonALSetFunction_C", (SNES, SNESFunctionFn *, void *), (snes, func, ctx));
134:   PetscFunctionReturn(PETSC_SUCCESS);
135: }

137: static PetscErrorCode SNESNewtonALGetFunction_NEWTONAL(SNES snes, SNESFunctionFn **func, void **ctx)
138: {
139:   SNES_NEWTONAL *al = (SNES_NEWTONAL *)snes->data;

141:   PetscFunctionBegin;
142:   if (func) *func = al->computealfunction;
143:   if (ctx) *ctx = al->alctx;
144:   PetscFunctionReturn(PETSC_SUCCESS);
145: }

147: /*@C
148:   SNESNewtonALGetFunction - Get the user function and context set with `SNESNewtonALSetFunction`

150:   Logically Collective

152:   Input Parameters:
153: + snes - the nonlinear solver object
154: . func - [optional] tangent load function evaluation routine, see `SNESNewtonALSetFunction()` for the call sequence
155: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

157:   Level: intermediate

159: .seealso: [](ch_snes), `SNES`, `SNESNEWTONAL`, `SNESNewtonALSetFunction()`
160: @*/
161: PetscErrorCode SNESNewtonALGetFunction(SNES snes, SNESFunctionFn **func, void **ctx)
162: {
163:   PetscFunctionBegin;
165:   PetscUseMethod(snes, "SNESNewtonALGetFunction_C", (SNES, SNESFunctionFn **, void **), (snes, func, ctx));
166:   PetscFunctionReturn(PETSC_SUCCESS);
167: }

169: static PetscErrorCode SNESNewtonALGetLoadParameter_NEWTONAL(SNES snes, PetscReal *lambda)
170: {
171:   SNES_NEWTONAL *al;

173:   PetscFunctionBeginHot;
174:   al      = (SNES_NEWTONAL *)snes->data;
175:   *lambda = al->lambda;
176:   PetscFunctionReturn(PETSC_SUCCESS);
177: }

179: /*@C
180:   SNESNewtonALGetLoadParameter - Get the value of the load parameter `lambda` for the arc-length continuation method.

182:   Logically Collective

184:   Input Parameter:
185: . snes - the nonlinear solver object

187:   Output Parameter:
188: . lambda - the arc-length parameter

190:   Level: intermediate

192:   Notes:
193:   This function should be used in the functions provided to `SNESSetFunction()` and `SNESNewtonALSetFunction()`
194:   to compute the residual and tangent load vectors for a given value of `lambda` (0 <= lambda <= 1).

196:   Usually, `lambda` is used to scale the external force vector in the residual function, i.e. proportional loading,
197:   in which case the tangent load vector is the full external force vector.

199: .seealso: [](ch_snes), `SNES`, `SNESNEWTONAL`, `SNESNewtonALSetFunction()`
200: @*/
201: PetscErrorCode SNESNewtonALGetLoadParameter(SNES snes, PetscReal *lambda)
202: {
203:   PetscFunctionBeginHot;
205:   PetscAssertPointer(lambda, 2);
206:   PetscUseMethod(snes, "SNESNewtonALGetLoadParameter_C", (SNES, PetscReal *), (snes, lambda));
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: static PetscErrorCode SNESNewtonALComputeFunction_NEWTONAL(SNES snes, Vec X, Vec Q)
211: {
212:   void           *ctx               = NULL;
213:   SNESFunctionFn *computealfunction = NULL;
214:   SNES_NEWTONAL  *al;

216:   PetscFunctionBegin;
217:   al = (SNES_NEWTONAL *)snes->data;
218:   PetscCall(SNESNewtonALGetFunction(snes, &computealfunction, &ctx));

220:   PetscCall(VecZeroEntries(Q));
221:   PetscCheck(computealfunction || (snes->vec_rhs && al->scale_rhs), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "No tangent load function or rhs vector has been set");
222:   if (computealfunction) {
223:     PetscCall(VecLockReadPush(X));
224:     PetscCallBack("SNES callback NewtonAL tangent load function", (*computealfunction)(snes, X, Q, ctx));
225:     PetscCall(VecLockReadPop(X));
226:   }
227:   if (al->scale_rhs && snes->vec_rhs) {
228:     /* Save original RHS vector values, then scale `snes->vec_rhs` by load parameter */
229:     if (!al->vec_rhs_orig) PetscCall(VecDuplicate(snes->vec_rhs, &al->vec_rhs_orig));
230:     if (!al->copied_rhs) {
231:       PetscCall(VecCopy(snes->vec_rhs, al->vec_rhs_orig));
232:       al->copied_rhs = PETSC_TRUE;
233:     }
234:     PetscCall(VecAXPBY(snes->vec_rhs, al->lambda, 0.0, al->vec_rhs_orig));
235:     PetscCall(VecAXPY(Q, 1, al->vec_rhs_orig));
236:   }
237:   PetscFunctionReturn(PETSC_SUCCESS);
238: }

240: /*@C
241:   SNESNewtonALComputeFunction - Calls the function that has been set with `SNESNewtonALSetFunction()`.

243:   Collective

245:   Input Parameters:
246: + snes - the `SNES` context
247: - X    - input vector

249:   Output Parameter:
250: . Q - tangent load vector, as set by `SNESNewtonALSetFunction()`

252:   Level: developer

254:   Note:
255:   `SNESNewtonALComputeFunction()` is typically used within nonlinear solvers
256:   implementations, so users would not generally call this routine themselves.

258: .seealso: [](ch_snes), `SNES`, `SNESNewtonALSetFunction()`, `SNESNewtonALGetFunction()`
259: @*/
260: PetscErrorCode SNESNewtonALComputeFunction(SNES snes, Vec X, Vec Q)
261: {
262:   PetscFunctionBegin;
266:   PetscCheckSameComm(snes, 1, X, 2);
267:   PetscCheckSameComm(snes, 1, Q, 3);
268:   PetscCall(VecValidValues_Internal(X, 2, PETSC_TRUE));
269:   PetscCall(PetscLogEventBegin(SNES_NewtonALEval, snes, X, Q, 0));
270:   PetscTryMethod(snes, "SNESNewtonALComputeFunction_C", (SNES, Vec, Vec), (snes, X, Q));
271:   PetscCall(PetscLogEventEnd(SNES_NewtonALEval, snes, X, Q, 0));
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: /*
276:   SNESSolve_NEWTONAL - Solves a nonlinear system with Newton's method with arc length continuation.

278:   Input Parameter:
279: . snes - the `SNES` context

281:   Application Interface Routine: SNESSolve()
282: */
283: static PetscErrorCode SNESSolve_NEWTONAL(SNES snes)
284: {
285:   SNES_NEWTONAL *data = (SNES_NEWTONAL *)snes->data;
286:   PetscInt       maxits, maxincs, lits;
287:   PetscReal      fnorm, xnorm, ynorm, stepSize;
288:   Vec            DeltaX, deltaX, X, R, Q, deltaX_Q, deltaX_R;

290:   PetscFunctionBegin;
291:   PetscCheck(!snes->xl && !snes->xu && !snes->ops->computevariablebounds, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

293:   /* Register citations */
294:   PetscCall(PetscCitationsRegister(SNESCitation, &SNEScite));
295:   if (data->correction_type == SNES_NEWTONAL_CORRECTION_EXACT) {
296:     PetscCall(PetscCitationsRegister(NewtonALExactCitation, &NewtonALExactCitationSet));
297:   } else if (data->correction_type == SNES_NEWTONAL_CORRECTION_NORMAL) {
298:     PetscCall(PetscCitationsRegister(NewtonALNormalCitation, &NewtonALNormalCitationSet));
299:   }

301:   data->copied_rhs             = PETSC_FALSE;
302:   data->lambda_update          = 0.0;
303:   data->lambda                 = 0.0;
304:   snes->numFailures            = 0;
305:   snes->numLinearSolveFailures = 0;
306:   snes->reason                 = SNES_CONVERGED_ITERATING;
307:   snes->iter                   = 0;

309:   maxits   = snes->max_its;                /* maximum number of iterations */
310:   maxincs  = data->max_continuation_steps; /* maximum number of increments */
311:   X        = snes->vec_sol;                /* solution vector */
312:   R        = snes->vec_func;               /* residual vector */
313:   Q        = snes->work[0];                /* tangent load vector */
314:   deltaX_Q = snes->work[1];                /* variation of X with respect to lambda */
315:   deltaX_R = snes->work[2];                /* linearized error correction */
316:   DeltaX   = snes->work[3];                /* step from equilibrium */
317:   deltaX   = snes->vec_sol_update;         /* full newton step */
318:   stepSize = data->step_size;              /* initial step size */

320:   PetscCall(VecZeroEntries(DeltaX));

322:   /* set snes->max_its for convergence test */
323:   snes->max_its = maxits * maxincs;

325:   /* main incremental-iterative loop */
326:   for (PetscInt i = 0; i < maxincs || maxincs < 0; i++) {
327:     PetscReal deltaLambda;

329:     PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
330:     snes->norm = 0.0;
331:     PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
332:     PetscCall(SNESNewtonALComputeFunction(snes, X, Q));
333:     PetscCall(SNESComputeFunction(snes, X, R));
334:     PetscCall(VecAXPY(R, 1, Q));           /* R <- R + Q */
335:     PetscCall(VecNorm(R, NORM_2, &fnorm)); /* fnorm <- ||R|| */
336:     SNESCheckFunctionNorm(snes, fnorm);

338:     /* Monitor convergence */
339:     PetscCall(SNESConverged(snes, snes->iter, 0.0, 0.0, fnorm));
340:     PetscCall(SNESMonitor(snes, snes->iter, fnorm));
341:     if (i == 0 && snes->reason) break;
342:     for (PetscInt j = 0; j < maxits; j++) {
343:       PetscReal normsqX_Q, deltaS = 1;

345:       /* Call general purpose update function */
346:       PetscTryTypeMethod(snes, update, snes->iter);

348:       PetscCall(SNESComputeJacobian(snes, X, snes->jacobian, snes->jacobian_pre));
349:       SNESCheckJacobianDomainerror(snes);
350:       PetscCall(KSPSetOperators(snes->ksp, snes->jacobian, snes->jacobian_pre));
351:       /* Solve J deltaX_Q = Q, where J is Jacobian matrix */
352:       PetscCall(KSPSolve(snes->ksp, Q, deltaX_Q));
353:       SNESCheckKSPSolve(snes);
354:       PetscCall(KSPGetIterationNumber(snes->ksp, &lits));
355:       PetscCall(PetscInfo(snes, "iter=%" PetscInt_FMT ", tangent load linear solve iterations=%" PetscInt_FMT "\n", snes->iter, lits));
356:       /* Compute load parameter variation */
357:       PetscCall(VecNorm(deltaX_Q, NORM_2, &normsqX_Q));
358:       normsqX_Q *= normsqX_Q;
359:       /* On first iter, use predictor. This is the same regardless of corrector scheme. */
360:       if (j == 0) {
361:         PetscReal sign = 1.0;
362:         if (i > 0) {
363:           PetscCall(VecDotRealPart(DeltaX, deltaX_Q, &sign));
364:           sign += data->psisq * data->lambda_update;
365:           sign = sign >= 0 ? 1.0 : -1.0;
366:         }
367:         data->lambda_update = 0.0;
368:         PetscCall(VecZeroEntries(DeltaX));
369:         deltaLambda = sign * stepSize / PetscSqrtReal(normsqX_Q + data->psisq);
370:       } else {
371:         /* Solve J deltaX_R = -R */
372:         PetscCall(KSPSolve(snes->ksp, R, deltaX_R));
373:         SNESCheckKSPSolve(snes);
374:         PetscCall(KSPGetIterationNumber(snes->ksp, &lits));
375:         PetscCall(PetscInfo(snes, "iter=%" PetscInt_FMT ", residual linear solve iterations=%" PetscInt_FMT "\n", snes->iter, lits));
376:         PetscCall(VecScale(deltaX_R, -1));

378:         if (data->correction_type == SNES_NEWTONAL_CORRECTION_NORMAL) {
379:           /*
380:             Take a step orthogonal to the current incremental update DeltaX.
381:             Note, this approach is cheaper than the exact correction, but may exhibit convergence
382:             issues due to the iterative trial points not being on the quadratic constraint surface.
383:             On the bright side, we always have a real and unique solution for deltaLambda.
384:           */
385:           PetscScalar coefs[2];
386:           Vec         rhs[] = {deltaX_R, deltaX_Q};

388:           PetscCall(VecMDot(DeltaX, 2, rhs, coefs));
389:           deltaLambda = -PetscRealPart(coefs[0]) / (PetscRealPart(coefs[1]) + data->psisq * data->lambda_update);
390:         } else {
391:           /*
392:             Solve
393:               a*deltaLambda^2 + b*deltaLambda + c = 0  (*)
394:             where
395:               a = a0
396:               b = b0 + b1*deltaS
397:               c = c0 + c1*deltaS + c2*deltaS^2
398:             and deltaS is either 1, or the largest value in (0, 1) that satisfies
399:               b^2 - 4*a*c = as*deltaS^2 + bs*deltaS + cs >= 0
400:             where
401:               as = b1^2 - 4*a0*c2
402:               bs = 2*b1*b0 - 4*a0*c1
403:               cs = b0^2 - 4*a0*c0
404:             These "partial corrections" prevent (*) from having complex roots.
405:           */
406:           PetscReal   psisqLambdaUpdate, discriminant;
407:           PetscReal   as, bs, cs;
408:           PetscReal   a0, b0, b1, c0, c1, c2;
409:           PetscScalar coefs1[3]; /* coefs[0] = deltaX_Q*DeltaX, coefs[1] = deltaX_R*DeltaX, coefs[2] = DeltaX*DeltaX */
410:           PetscScalar coefs2[2]; /* coefs[0] = deltaX_Q*deltaX_R, coefs[1] = deltaX_R*deltaX_R */
411:           const Vec   rhs1[3] = {deltaX_Q, deltaX_R, DeltaX};
412:           const Vec   rhs2[2] = {deltaX_Q, deltaX_R};

414:           psisqLambdaUpdate = data->psisq * data->lambda_update;
415:           PetscCall(VecMDotBegin(DeltaX, 3, rhs1, coefs1));
416:           PetscCall(VecMDotBegin(deltaX_R, 2, rhs2, coefs2));
417:           PetscCall(VecMDotEnd(DeltaX, 3, rhs1, coefs1));
418:           PetscCall(VecMDotEnd(deltaX_R, 2, rhs2, coefs2));

420:           a0 = normsqX_Q + data->psisq;
421:           b0 = 2 * (PetscRealPart(coefs1[0]) + psisqLambdaUpdate);
422:           b1 = 2 * PetscRealPart(coefs2[0]);
423:           c0 = PetscRealPart(coefs1[2]) + psisqLambdaUpdate * data->lambda_update - stepSize * stepSize;
424:           c1 = 2 * PetscRealPart(coefs1[1]);
425:           c2 = PetscRealPart(coefs2[1]);

427:           as = b1 * b1 - 4 * a0 * c2;
428:           bs = 2 * (b1 * b0 - 2 * a0 * c1);
429:           cs = b0 * b0 - 4 * a0 * c0;

431:           discriminant = cs + bs * deltaS + as * deltaS * deltaS;

433:           if (discriminant < 0) {
434:             /* Take deltaS < 1 with the unique root -b/(2*a) */
435:             PetscReal x1;

437:             /* Compute deltaS to be the largest root of (as * x^2 + bs * x + cs = 0) */
438:             PetscQuadraticRoots(as, bs, cs, &x1, &deltaS);
439:             PetscCall(PetscInfo(snes, "iter=%" PetscInt_FMT ", discriminant=%18.16e < 0, shrinking residual update size to deltaS = %18.16e\n", snes->iter, (double)discriminant, (double)deltaS));
440:             deltaLambda = -0.5 * (b0 + b1 * deltaS) / a0;
441:           } else {
442:             /* Use deltaS = 1, pick root that is closest to the last point to prevent doubling back */
443:             PetscReal dlambda1, dlambda2;

445:             PetscQuadraticRoots(a0, b0 + b1, c0 + c1 + c2, &dlambda1, &dlambda2);
446:             deltaLambda = (b0 * dlambda1) > (b0 * dlambda2) ? dlambda1 : dlambda2;
447:           }
448:         }
449:       }
450:       PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
451:       data->lambda = data->lambda + deltaLambda;
452:       if (data->lambda > data->lambda_max) {
453:         /* Ensure that lambda = lambda_max exactly at the end of incremental process. This ensures the final solution matches the problem we want to solve. */
454:         deltaLambda  = deltaLambda - (data->lambda - data->lambda_max);
455:         data->lambda = data->lambda_max;
456:       }
457:       if (data->lambda < data->lambda_min) {
458:         // LCOV_EXCL_START
459:         /* Ensure that lambda >= lambda_min. This prevents some potential oscillatory behavior. */
460:         deltaLambda  = deltaLambda - (data->lambda - data->lambda_min);
461:         data->lambda = data->lambda_min;
462:         // LCOV_EXCL_STOP
463:       }
464:       data->lambda_update = data->lambda_update + deltaLambda;
465:       PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
466:       PetscCall(PetscInfo(snes, "iter=%" PetscInt_FMT ", lambda=%18.16e, lambda_update=%18.16e\n", snes->iter, (double)data->lambda, (double)data->lambda_update));
467:       if (j == 0) {
468:         /* deltaX = deltaLambda*deltaX_Q */
469:         PetscCall(VecCopy(deltaX_Q, deltaX));
470:         PetscCall(VecScale(deltaX, deltaLambda));
471:       } else {
472:         /* deltaX = deltaS*deltaX_R + deltaLambda*deltaX_Q */
473:         PetscCall(VecAXPBYPCZ(deltaX, deltaS, deltaLambda, 0, deltaX_R, deltaX_Q));
474:       }
475:       PetscCall(VecAXPY(DeltaX, 1, deltaX));
476:       PetscCall(VecAXPY(X, 1, deltaX));
477:       /* Q = -dF/dlambda(X, lambda)*/
478:       PetscCall(SNESNewtonALComputeFunction(snes, X, Q));
479:       /* R = F(X, lambda) */
480:       PetscCall(SNESComputeFunction(snes, X, R));
481:       PetscCall(VecNormBegin(R, NORM_2, &fnorm));
482:       PetscCall(VecNormBegin(X, NORM_2, &xnorm));
483:       PetscCall(VecNormBegin(deltaX, NORM_2, &ynorm));
484:       PetscCall(VecNormEnd(R, NORM_2, &fnorm));
485:       PetscCall(VecNormEnd(X, NORM_2, &xnorm));
486:       PetscCall(VecNormEnd(deltaX, NORM_2, &ynorm));

488:       if (PetscLogPrintInfo) PetscCall(SNESNewtonALCheckArcLength(snes, DeltaX, data->lambda_update, stepSize));

490:       /* Monitor convergence */
491:       PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
492:       snes->iter++;
493:       snes->norm  = fnorm;
494:       snes->ynorm = ynorm;
495:       snes->xnorm = xnorm;
496:       PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
497:       PetscCall(SNESLogConvergenceHistory(snes, snes->norm, lits));
498:       PetscCall(SNESConverged(snes, snes->iter, xnorm, ynorm, fnorm));
499:       PetscCall(SNESMonitor(snes, snes->iter, snes->norm));
500:       if (!snes->reason && j == maxits - 1) snes->reason = SNES_DIVERGED_MAX_IT;
501:       if (snes->reason) break;
502:     }
503:     if (snes->reason < 0) break;
504:     if (data->lambda >= data->lambda_max) {
505:       break;
506:     } else if (maxincs > 0 && i == maxincs - 1) {
507:       snes->reason = SNES_DIVERGED_MAX_IT;
508:       break;
509:     } else {
510:       snes->reason = SNES_CONVERGED_ITERATING;
511:     }
512:   }
513:   /* Reset RHS vector, if changed */
514:   if (data->copied_rhs) {
515:     PetscCall(VecCopy(data->vec_rhs_orig, snes->vec_rhs));
516:     data->copied_rhs = PETSC_FALSE;
517:   }
518:   snes->max_its = maxits; /* reset snes->max_its */
519:   PetscFunctionReturn(PETSC_SUCCESS);
520: }

522: /*
523:    SNESSetUp_NEWTONAL - Sets up the internal data structures for the later use
524:    of the SNESNEWTONAL nonlinear solver.

526:    Input Parameter:
527: .  snes - the SNES context
528: .  x - the solution vector

530:    Application Interface Routine: SNESSetUp()
531:  */
532: static PetscErrorCode SNESSetUp_NEWTONAL(SNES snes)
533: {
534:   PetscFunctionBegin;
535:   PetscCall(SNESSetWorkVecs(snes, 4));
536:   PetscCall(SNESSetUpMatrices(snes));
537:   PetscFunctionReturn(PETSC_SUCCESS);
538: }

540: /*
541:    SNESSetFromOptions_NEWTONAL - Sets various parameters for the SNESNEWTONAL method.

543:    Input Parameter:
544: .  snes - the SNES context

546:    Application Interface Routine: SNESSetFromOptions()
547: */
548: static PetscErrorCode SNESSetFromOptions_NEWTONAL(SNES snes, PetscOptionItems PetscOptionsObject)
549: {
550:   SNES_NEWTONAL             *data            = (SNES_NEWTONAL *)snes->data;
551:   SNESNewtonALCorrectionType correction_type = data->correction_type;

553:   PetscFunctionBegin;
554:   PetscOptionsHeadBegin(PetscOptionsObject, "SNES Newton Arc Length options");
555:   PetscCall(PetscOptionsReal("-snes_newtonal_step_size", "Initial arc length increment step size", "SNESNewtonAL", data->step_size, &data->step_size, NULL));
556:   PetscCall(PetscOptionsInt("-snes_newtonal_max_continuation_steps", "Maximum number of increment steps", "SNESNewtonAL", data->max_continuation_steps, &data->max_continuation_steps, NULL));
557:   PetscCall(PetscOptionsReal("-snes_newtonal_psisq", "Regularization parameter for arc length continuation, 0 for cylindrical", "SNESNewtonAL", data->psisq, &data->psisq, NULL));
558:   PetscCall(PetscOptionsReal("-snes_newtonal_lambda_min", "Minimum value of the load parameter lambda", "SNESNewtonAL", data->lambda_min, &data->lambda_min, NULL));
559:   PetscCall(PetscOptionsReal("-snes_newtonal_lambda_max", "Maximum value of the load parameter lambda", "SNESNewtonAL", data->lambda_max, &data->lambda_max, NULL));
560:   PetscCall(PetscOptionsBool("-snes_newtonal_scale_rhs", "Scale the constant vector passed to `SNESSolve` by the load parameter lambda", "SNESNewtonAL", data->scale_rhs, &data->scale_rhs, NULL));
561:   PetscCall(PetscOptionsEnum("-snes_newtonal_correction_type", "Type of correction to use in the arc-length continuation method", "SNESNewtonALCorrectionType", SNESNewtonALCorrectionTypes, (PetscEnum)correction_type, (PetscEnum *)&correction_type, NULL));
562:   PetscCall(SNESNewtonALSetCorrectionType(snes, correction_type));
563:   PetscOptionsHeadEnd();
564:   PetscFunctionReturn(PETSC_SUCCESS);
565: }

567: static PetscErrorCode SNESReset_NEWTONAL(SNES snes)
568: {
569:   SNES_NEWTONAL *al = (SNES_NEWTONAL *)snes->data;

571:   PetscFunctionBegin;
572:   PetscCall(VecDestroy(&al->vec_rhs_orig));
573:   PetscFunctionReturn(PETSC_SUCCESS);
574: }

576: /*
577:    SNESDestroy_NEWTONAL - Destroys the private SNES_NEWTONAL context that was created
578:    with SNESCreate_NEWTONAL().

580:    Input Parameter:
581: .  snes - the SNES context

583:    Application Interface Routine: SNESDestroy()
584:  */
585: static PetscErrorCode SNESDestroy_NEWTONAL(SNES snes)
586: {
587:   PetscFunctionBegin;
588:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALSetCorrectionType_C", NULL));
589:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALGetLoadParameter_C", NULL));
590:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALSetFunction_C", NULL));
591:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALGetFunction_C", NULL));
592:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALComputeFunction_C", NULL));
593:   PetscCall(PetscFree(snes->data));
594:   PetscFunctionReturn(PETSC_SUCCESS);
595: }

597: /*MC
598:   SNESNEWTONAL - Newton based nonlinear solver that uses a arc-length continuation method to solve the nonlinear system.

600:   Options Database Keys:
601: +   -snes_newtonal_step_size <1.0>              - Initial arc length increment step size
602: .   -snes_newtonal_max_continuation_steps <100> - Maximum number of continuation steps, or negative for no limit (not recommended)
603: .   -snes_newtonal_psisq <1.0>                  - Regularization parameter for arc length continuation, 0 for cylindrical. Larger values generally lead to more steps.
604: .   -snes_newtonal_lambda_min <0.0>             - Minimum value of the load parameter lambda
605: .   -snes_newtonal_lambda_max <1.0>             - Maximum value of the load parameter lambda
606: .   -snes_newtonal_scale_rhs <true>             - Scale the constant vector passed to `SNESSolve` by the load parameter lambda
607: -   -snes_newtonal_correction_type <exact>      - Type of correction to use in the arc-length continuation method, `exact` or `normal`

609:   Level: intermediate

611:   Note:
612:   The exact correction scheme with partial updates is detailed in {cite}`Ritto-CorreaCamotim2008` and the implementation of the
613:   normal correction scheme is based on {cite}`LeonPaulinoPereiraMenezesLages_2011`.

615: .seealso: [](ch_snes), `SNESCreate()`, `SNES`, `SNESSetType()`, `SNESNEWTONAL`, `SNESNewtonALSetFunction()`, `SNESNewtonALGetFunction()`, `SNESNewtonALGetLoadParameter()`
616: M*/
617: PETSC_EXTERN PetscErrorCode SNESCreate_NEWTONAL(SNES snes)
618: {
619:   SNES_NEWTONAL *arclengthParameters;

621:   PetscFunctionBegin;
622:   snes->ops->setup          = SNESSetUp_NEWTONAL;
623:   snes->ops->solve          = SNESSolve_NEWTONAL;
624:   snes->ops->destroy        = SNESDestroy_NEWTONAL;
625:   snes->ops->setfromoptions = SNESSetFromOptions_NEWTONAL;
626:   snes->ops->reset          = SNESReset_NEWTONAL;

628:   snes->usesksp = PETSC_TRUE;
629:   snes->usesnpc = PETSC_FALSE;

631:   PetscCall(SNESParametersInitialize(snes));
632:   PetscObjectParameterSetDefault(snes, max_funcs, 30000);
633:   PetscObjectParameterSetDefault(snes, max_its, 50);

635:   snes->alwayscomputesfinalresidual = PETSC_TRUE;

637:   PetscCall(PetscNew(&arclengthParameters));
638:   arclengthParameters->lambda                 = 0.0;
639:   arclengthParameters->lambda_update          = 0.0;
640:   arclengthParameters->step_size              = 1.0;
641:   arclengthParameters->max_continuation_steps = 100;
642:   arclengthParameters->psisq                  = 1.0;
643:   arclengthParameters->lambda_min             = 0.0;
644:   arclengthParameters->lambda_max             = 1.0;
645:   arclengthParameters->scale_rhs              = PETSC_TRUE;
646:   arclengthParameters->correction_type        = SNES_NEWTONAL_CORRECTION_EXACT;
647:   snes->data                                  = (void *)arclengthParameters;

649:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALSetCorrectionType_C", SNESNewtonALSetCorrectionType_NEWTONAL));
650:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALGetLoadParameter_C", SNESNewtonALGetLoadParameter_NEWTONAL));
651:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALSetFunction_C", SNESNewtonALSetFunction_NEWTONAL));
652:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALGetFunction_C", SNESNewtonALGetFunction_NEWTONAL));
653:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonALComputeFunction_C", SNESNewtonALComputeFunction_NEWTONAL));
654:   PetscFunctionReturn(PETSC_SUCCESS);
655: }