Actual source code: ntrdc.c

  1: #include <../src/snes/impls/ntrdc/ntrdcimpl.h>

  3: typedef struct {
  4:   SNES snes;
  5:   /*  Information on the regular SNES convergence test; which may have been user provided
  6:       Copied from tr.c (maybe able to disposed, but this is a private function) - Heeho
  7:       Same with SNESTR_KSPConverged_Private, SNESTR_KSPConverged_Destroy, and SNESTR_Converged_Private
  8:  */

 10:   KSPConvergenceTestFn *convtest;
 11:   PetscCtxDestroyFn    *convdestroy;
 12:   void                 *convctx;
 13: } SNES_TRDC_KSPConverged_Ctx;

 15: static PetscErrorCode SNESNewtonTRSetTolerances_TRDC(SNES snes, PetscReal delta_min, PetscReal delta_max, PetscReal delta_0)
 16: {
 17:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

 19:   PetscFunctionBegin;
 20:   if (delta_min == PETSC_DETERMINE) delta_min = 1.e-12;
 21:   if (delta_max == PETSC_DETERMINE) delta_max = 0.5;
 22:   if (delta_0 == PETSC_DETERMINE) delta_0 = 0.1;
 23:   if (delta_min != PETSC_CURRENT) tr->deltatol = delta_min;
 24:   if (delta_max != PETSC_CURRENT) tr->deltaM = delta_max;
 25:   if (delta_0 != PETSC_CURRENT) tr->delta0 = delta_0;
 26:   PetscFunctionReturn(PETSC_SUCCESS);
 27: }

 29: static PetscErrorCode SNESTRDC_KSPConverged_Private(KSP ksp, PetscInt n, PetscReal rnorm, KSPConvergedReason *reason, void *cctx)
 30: {
 31:   SNES_TRDC_KSPConverged_Ctx *ctx  = (SNES_TRDC_KSPConverged_Ctx *)cctx;
 32:   SNES                        snes = ctx->snes;
 33:   SNES_NEWTONTRDC            *neP  = (SNES_NEWTONTRDC *)snes->data;
 34:   Vec                         x;
 35:   PetscReal                   nrm;

 37:   PetscFunctionBegin;
 38:   PetscCall((*ctx->convtest)(ksp, n, rnorm, reason, ctx->convctx));
 39:   if (*reason) PetscCall(PetscInfo(snes, "Default or user provided convergence test KSP iterations=%" PetscInt_FMT ", rnorm=%g\n", n, (double)rnorm));
 40:   /* Determine norm of solution */
 41:   PetscCall(KSPBuildSolution(ksp, NULL, &x));
 42:   PetscCall(VecNorm(x, NORM_2, &nrm));
 43:   if (nrm >= neP->delta) {
 44:     PetscCall(PetscInfo(snes, "Ending linear iteration early, delta=%g, length=%g\n", (double)neP->delta, (double)nrm));
 45:     *reason = KSP_CONVERGED_STEP_LENGTH;
 46:   }
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode SNESTRDC_KSPConverged_Destroy(void **cctx)
 51: {
 52:   SNES_TRDC_KSPConverged_Ctx *ctx = (SNES_TRDC_KSPConverged_Ctx *)*cctx;

 54:   PetscFunctionBegin;
 55:   PetscCall((*ctx->convdestroy)(&ctx->convctx));
 56:   PetscCall(PetscFree(ctx));
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: /*
 61:    SNESTRDC_Converged_Private -test convergence JUST for the trust region tolerance.
 62: */
 63: static PetscErrorCode SNESTRDC_Converged_Private(SNES snes, PetscInt it, PetscReal xnorm, PetscReal pnorm, PetscReal fnorm, SNESConvergedReason *reason, void *dummy)
 64: {
 65:   SNES_NEWTONTRDC *neP = (SNES_NEWTONTRDC *)snes->data;

 67:   PetscFunctionBegin;
 68:   *reason = SNES_CONVERGED_ITERATING;
 69:   if (neP->delta < xnorm * neP->deltatol) {
 70:     PetscCall(PetscInfo(snes, "Diverged due to too small a trust region %g<%g*%g\n", (double)neP->delta, (double)xnorm, (double)neP->deltatol));
 71:     *reason = SNES_DIVERGED_TR_DELTA;
 72:   } else if (snes->nfuncs >= snes->max_funcs && snes->max_funcs >= 0) {
 73:     PetscCall(PetscInfo(snes, "Exceeded maximum number of function evaluations: %" PetscInt_FMT "\n", snes->max_funcs));
 74:     *reason = SNES_DIVERGED_FUNCTION_COUNT;
 75:   }
 76:   PetscFunctionReturn(PETSC_SUCCESS);
 77: }

 79: /*@
 80:   SNESNewtonTRDCGetRhoFlag - Get whether the current solution update is within the trust-region.

 82:   Logically Collective

 84:   Input Parameter:
 85: . snes - the nonlinear solver object

 87:   Output Parameter:
 88: . rho_flag - `PETSC_FALSE` or `PETSC_TRUE`

 90:   Level: developer

 92: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCSetPreCheck()`,
 93:           `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`
 94: @*/
 95: PetscErrorCode SNESNewtonTRDCGetRhoFlag(SNES snes, PetscBool *rho_flag)
 96: {
 97:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

 99:   PetscFunctionBegin;
101:   PetscAssertPointer(rho_flag, 2);
102:   *rho_flag = tr->rho_satisfied;
103:   PetscFunctionReturn(PETSC_SUCCESS);
104: }

106: /*@C
107:   SNESNewtonTRDCSetPreCheck - Sets a user function that is called before the search step has been determined.
108:   Allows the user a chance to change or override the trust region decision.

110:   Logically Collective

112:   Input Parameters:
113: + snes - the nonlinear solver object
114: . func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPreCheck()`
115: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

117:   Level: intermediate

119:   Note:
120:   This function is called BEFORE the function evaluation within the `SNESNEWTONTRDC` solver.

122: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`,
123:           `SNESNewtonTRDCGetRhoFlag()`
124: @*/
125: PetscErrorCode SNESNewtonTRDCSetPreCheck(SNES snes, PetscErrorCode (*func)(SNES, Vec, Vec, PetscBool *, void *), void *ctx)
126: {
127:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

129:   PetscFunctionBegin;
131:   if (func) tr->precheck = func;
132:   if (ctx) tr->precheckctx = ctx;
133:   PetscFunctionReturn(PETSC_SUCCESS);
134: }

136: /*@C
137:   SNESNewtonTRDCGetPreCheck - Gets the pre-check function optionally set with `SNESNewtonTRDCSetPreCheck()`

139:   Not Collective

141:   Input Parameter:
142: . snes - the nonlinear solver context

144:   Output Parameters:
145: + func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPreCheck()`
146: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

148:   Level: intermediate

150: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCPreCheck()`
151: @*/
152: PetscErrorCode SNESNewtonTRDCGetPreCheck(SNES snes, PetscErrorCode (**func)(SNES, Vec, Vec, PetscBool *, void *), void **ctx)
153: {
154:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

156:   PetscFunctionBegin;
158:   if (func) *func = tr->precheck;
159:   if (ctx) *ctx = tr->precheckctx;
160:   PetscFunctionReturn(PETSC_SUCCESS);
161: }

163: /*@C
164:   SNESNewtonTRDCSetPostCheck - Sets a user function that is called after the search step has been determined but before the next
165:   function evaluation. Allows the user a chance to change or override the decision of the line search routine

167:   Logically Collective

169:   Input Parameters:
170: + snes - the nonlinear solver object
171: . func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPostCheck()`
172: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

174:   Level: intermediate

176:   Note:
177:   This function is called BEFORE the function evaluation within the `SNESNEWTONTRDC` solver while the function set in
178:   `SNESLineSearchSetPostCheck()` is called AFTER the function evaluation.

180: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCPostCheck()`, `SNESNewtonTRDCGetPostCheck()`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCGetPreCheck()`
181: @*/
182: PetscErrorCode SNESNewtonTRDCSetPostCheck(SNES snes, PetscErrorCode (*func)(SNES, Vec, Vec, Vec, PetscBool *, PetscBool *, void *), void *ctx)
183: {
184:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

186:   PetscFunctionBegin;
188:   if (func) tr->postcheck = func;
189:   if (ctx) tr->postcheckctx = ctx;
190:   PetscFunctionReturn(PETSC_SUCCESS);
191: }

193: /*@C
194:   SNESNewtonTRDCGetPostCheck - Gets the post-check function optionally set with `SNESNewtonTRDCSetPostCheck()`

196:   Not Collective

198:   Input Parameter:
199: . snes - the nonlinear solver context

201:   Output Parameters:
202: + func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPostCheck()`
203: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

205:   Level: intermediate

207: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCPostCheck()`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCGetPreCheck()`
208: @*/
209: PetscErrorCode SNESNewtonTRDCGetPostCheck(SNES snes, PetscErrorCode (**func)(SNES, Vec, Vec, Vec, PetscBool *, PetscBool *, void *), void **ctx)
210: {
211:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

213:   PetscFunctionBegin;
215:   if (func) *func = tr->postcheck;
216:   if (ctx) *ctx = tr->postcheckctx;
217:   PetscFunctionReturn(PETSC_SUCCESS);
218: }

220: // PetscClangLinter pragma disable: -fdoc-internal-linkage
221: /*@C
222:    SNESNewtonTRDCPreCheck - Called before the step has been determined in `SNESNEWTONTRDC`

224:    Logically Collective

226:    Input Parameters:
227: +  snes - the solver
228: .  X - The last solution
229: -  Y - The step direction

231:    Output Parameter:
232: .  changed_Y - Indicator that the step direction `Y` has been changed.

234:    Level: developer

236: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCPostCheck()`
237: @*/
238: static PetscErrorCode SNESNewtonTRDCPreCheck(SNES snes, Vec X, Vec Y, PetscBool *changed_Y)
239: {
240:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

242:   PetscFunctionBegin;
243:   *changed_Y = PETSC_FALSE;
244:   if (tr->precheck) {
245:     PetscCall((*tr->precheck)(snes, X, Y, changed_Y, tr->precheckctx));
247:   }
248:   PetscFunctionReturn(PETSC_SUCCESS);
249: }

251: // PetscClangLinter pragma disable: -fdoc-internal-linkage
252: /*@C
253:    SNESNewtonTRDCPostCheck - Called after the step has been determined in `SNESNEWTONTRDC` but before the function evaluation at that step

255:    Logically Collective

257:    Input Parameters:
258: +  snes - the solver
259: .  X - The last solution
260: .  Y - The full step direction
261: -  W - The updated solution, W = X - Y

263:    Output Parameters:
264: +  changed_Y - indicator if step has been changed
265: -  changed_W - Indicator if the new candidate solution `W` has been changed.

267:    Level: developer

269:    Note:
270:      If `Y` is changed then `W` is recomputed as `X` - `Y`

272: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`, `SNESNewtonTRDCPreCheck()
273: @*/
274: static PetscErrorCode SNESNewtonTRDCPostCheck(SNES snes, Vec X, Vec Y, Vec W, PetscBool *changed_Y, PetscBool *changed_W)
275: {
276:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

278:   PetscFunctionBegin;
279:   *changed_Y = PETSC_FALSE;
280:   *changed_W = PETSC_FALSE;
281:   if (tr->postcheck) {
282:     PetscCall((*tr->postcheck)(snes, X, Y, W, changed_Y, changed_W, tr->postcheckctx));
285:   }
286:   PetscFunctionReturn(PETSC_SUCCESS);
287: }

289: /*
290:    SNESSolve_NEWTONTRDC - Implements Newton's Method with trust-region subproblem and adds dogleg Cauchy
291:    (Steepest Descent direction) step and direction if the trust region is not satisfied for solving system of
292:    nonlinear equations

294: */
295: static PetscErrorCode SNESSolve_NEWTONTRDC(SNES snes)
296: {
297:   SNES_NEWTONTRDC            *neP = (SNES_NEWTONTRDC *)snes->data;
298:   Vec                         X, F, Y, G, W, GradF, YNtmp;
299:   Vec                         YCtmp;
300:   Mat                         jac;
301:   PetscInt                    maxits, i, j, lits, inner_count, bs;
302:   PetscReal                   rho, fnorm, gnorm, xnorm = 0, delta, ynorm, temp_xnorm, temp_ynorm; /* TRDC inner iteration */
303:   PetscReal                   inorms[99];                                                         /* need to make it dynamic eventually, fixed max block size of 99 for now */
304:   PetscReal                   deltaM, ynnorm, f0, mp, gTy, g, yTHy;                               /* rho calculation */
305:   PetscReal                   auk, gfnorm, ycnorm, c0, c1, c2, tau, tau_pos, tau_neg, gTBg;       /* Cauchy Point */
306:   KSP                         ksp;
307:   SNESConvergedReason         reason   = SNES_CONVERGED_ITERATING;
308:   PetscBool                   breakout = PETSC_FALSE;
309:   SNES_TRDC_KSPConverged_Ctx *ctx;
310:   KSPConvergenceTestFn       *convtest;
311:   PetscCtxDestroyFn          *convdestroy;
312:   void                       *convctx;

314:   PetscFunctionBegin;
315:   maxits = snes->max_its;  /* maximum number of iterations */
316:   X      = snes->vec_sol;  /* solution vector */
317:   F      = snes->vec_func; /* residual vector */
318:   Y      = snes->work[0];  /* update vector */
319:   G      = snes->work[1];  /* updated residual */
320:   W      = snes->work[2];  /* temporary vector */
321:   GradF  = snes->work[3];  /* grad f = J^T F */
322:   YNtmp  = snes->work[4];  /* Newton solution */
323:   YCtmp  = snes->work[5];  /* Cauchy solution */

325:   PetscCheck(!snes->xl && !snes->xu && !snes->ops->computevariablebounds, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

327:   PetscCall(VecGetBlockSize(YNtmp, &bs));

329:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
330:   snes->iter = 0;
331:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));

333:   /* Set the linear stopping criteria to use the More' trick. From tr.c */
334:   PetscCall(SNESGetKSP(snes, &ksp));
335:   PetscCall(KSPGetConvergenceTest(ksp, &convtest, &convctx, &convdestroy));
336:   if (convtest != SNESTRDC_KSPConverged_Private) {
337:     PetscCall(PetscNew(&ctx));
338:     ctx->snes = snes;
339:     PetscCall(KSPGetAndClearConvergenceTest(ksp, &ctx->convtest, &ctx->convctx, &ctx->convdestroy));
340:     PetscCall(KSPSetConvergenceTest(ksp, SNESTRDC_KSPConverged_Private, ctx, SNESTRDC_KSPConverged_Destroy));
341:     PetscCall(PetscInfo(snes, "Using Krylov convergence test SNESTRDC_KSPConverged_Private\n"));
342:   }

344:   if (!snes->vec_func_init_set) {
345:     PetscCall(SNESComputeFunction(snes, X, F)); /* F(X) */
346:   } else snes->vec_func_init_set = PETSC_FALSE;

348:   PetscCall(VecNorm(F, NORM_2, &fnorm)); /* fnorm <- || F || */
349:   SNESCheckFunctionNorm(snes, fnorm);
350:   PetscCall(VecNorm(X, NORM_2, &xnorm)); /* xnorm <- || X || */

352:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
353:   snes->norm = fnorm;
354:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
355:   delta      = xnorm ? neP->delta0 * xnorm : neP->delta0; /* initial trust region size scaled by xnorm */
356:   deltaM     = xnorm ? neP->deltaM * xnorm : neP->deltaM; /* maximum trust region size scaled by xnorm */
357:   neP->delta = delta;
358:   PetscCall(SNESLogConvergenceHistory(snes, fnorm, 0));
359:   PetscCall(SNESMonitor(snes, 0, fnorm));

361:   neP->rho_satisfied = PETSC_FALSE;

363:   /* test convergence */
364:   PetscUseTypeMethod(snes, converged, snes->iter, 0.0, 0.0, fnorm, &snes->reason, snes->cnvP);
365:   if (snes->reason) PetscFunctionReturn(PETSC_SUCCESS);

367:   for (i = 0; i < maxits; i++) {
368:     PetscBool changed_y;
369:     PetscBool changed_w;

371:     /* dogleg method */
372:     PetscCall(SNESComputeJacobian(snes, X, snes->jacobian, snes->jacobian_pre));
373:     SNESCheckJacobianDomainerror(snes);
374:     PetscCall(KSPSetOperators(snes->ksp, snes->jacobian, snes->jacobian));
375:     PetscCall(KSPSolve(snes->ksp, F, YNtmp)); /* Quasi Newton Solution */
376:     SNESCheckKSPSolve(snes);                  /* this is necessary but old tr.c did not have it*/
377:     PetscCall(KSPGetIterationNumber(snes->ksp, &lits));
378:     PetscCall(SNESGetJacobian(snes, &jac, NULL, NULL, NULL));

380:     /* rescale Jacobian, Newton solution update, and re-calculate delta for multiphase (multivariable)
381:        for inner iteration and Cauchy direction calculation
382:     */
383:     if (bs > 1 && neP->auto_scale_multiphase) {
384:       PetscCall(VecStrideNormAll(YNtmp, NORM_INFINITY, inorms));
385:       for (j = 0; j < bs; j++) {
386:         if (neP->auto_scale_max > 1.0) {
387:           if (inorms[j] < 1.0 / neP->auto_scale_max) inorms[j] = 1.0 / neP->auto_scale_max;
388:         }
389:         PetscCall(VecStrideSet(W, j, inorms[j]));
390:         PetscCall(VecStrideScale(YNtmp, j, 1.0 / inorms[j]));
391:         PetscCall(VecStrideScale(X, j, 1.0 / inorms[j]));
392:       }
393:       PetscCall(VecNorm(X, NORM_2, &xnorm));
394:       if (i == 0) {
395:         delta = neP->delta0 * xnorm;
396:       } else {
397:         delta = neP->delta * xnorm;
398:       }
399:       deltaM = neP->deltaM * xnorm;
400:       PetscCall(MatDiagonalScale(jac, NULL, W));
401:     }

403:     /* calculating GradF of minimization function */
404:     PetscCall(MatMultTranspose(jac, F, GradF)); /* grad f = J^T F */
405:     PetscCall(VecNorm(YNtmp, NORM_2, &ynnorm)); /* ynnorm <- || Y_newton || */

407:     inner_count        = 0;
408:     neP->rho_satisfied = PETSC_FALSE;
409:     while (1) {
410:       if (ynnorm <= delta) { /* see if the Newton solution is within the trust region */
411:         PetscCall(VecCopy(YNtmp, Y));
412:       } else if (neP->use_cauchy) { /* use Cauchy direction if enabled */
413:         PetscCall(MatMult(jac, GradF, W));
414:         PetscCall(VecDotRealPart(W, W, &gTBg));     /* completes GradF^T J^T J GradF */
415:         PetscCall(VecNorm(GradF, NORM_2, &gfnorm)); /* grad f norm <- || grad f || */
416:         if (gTBg <= 0.0) {
417:           auk = PETSC_MAX_REAL;
418:         } else {
419:           auk = PetscSqr(gfnorm) / gTBg;
420:         }
421:         auk = PetscMin(delta / gfnorm, auk);
422:         PetscCall(VecCopy(GradF, YCtmp));           /* this could be improved */
423:         PetscCall(VecScale(YCtmp, auk));            /* YCtmp, Cauchy solution*/
424:         PetscCall(VecNorm(YCtmp, NORM_2, &ycnorm)); /* ycnorm <- || Y_cauchy || */
425:         if (ycnorm >= delta) {                      /* see if the Cauchy solution meets the criteria */
426:           PetscCall(VecCopy(YCtmp, Y));
427:           PetscCall(PetscInfo(snes, "DL evaluated. delta: %8.4e, ynnorm: %8.4e, ycnorm: %8.4e\n", (double)delta, (double)ynnorm, (double)ycnorm));
428:         } else {                                  /* take ratio, tau, of Cauchy and Newton direction and step */
429:           PetscCall(VecAXPY(YNtmp, -1.0, YCtmp)); /* YCtmp = A, YNtmp = B */
430:           PetscCall(VecNorm(YNtmp, NORM_2, &c0)); /* this could be improved */
431:           c0 = PetscSqr(c0);
432:           PetscCall(VecDotRealPart(YCtmp, YNtmp, &c1));
433:           c1 = 2.0 * c1;
434:           PetscCall(VecNorm(YCtmp, NORM_2, &c2)); /* this could be improved */
435:           c2      = PetscSqr(c2) - PetscSqr(delta);
436:           tau_pos = (c1 + PetscSqrtReal(PetscSqr(c1) - 4. * c0 * c2)) / (2. * c0); /* quadratic formula */
437:           tau_neg = (c1 - PetscSqrtReal(PetscSqr(c1) - 4. * c0 * c2)) / (2. * c0);
438:           tau     = PetscMax(tau_pos, tau_neg); /* can tau_neg > tau_pos? I don't think so, but just in case. */
439:           PetscCall(PetscInfo(snes, "DL evaluated. tau: %8.4e, ynnorm: %8.4e, ycnorm: %8.4e\n", (double)tau, (double)ynnorm, (double)ycnorm));
440:           PetscCall(VecWAXPY(W, tau, YNtmp, YCtmp));
441:           PetscCall(VecAXPY(W, -tau, YCtmp));
442:           PetscCall(VecCopy(W, Y)); /* this could be improved */
443:         }
444:       } else {
445:         /* if Cauchy is disabled, only use Newton direction */
446:         auk = delta / ynnorm;
447:         PetscCall(VecScale(YNtmp, auk));
448:         PetscCall(VecCopy(YNtmp, Y)); /* this could be improved (many VecCopy, VecNorm)*/
449:       }

451:       PetscCall(VecNorm(Y, NORM_2, &ynorm)); /* compute the final ynorm  */
452:       f0 = 0.5 * PetscSqr(fnorm);            /* minimizing function f(X) */
453:       PetscCall(MatMult(jac, Y, W));
454:       PetscCall(VecDotRealPart(W, W, &yTHy)); /* completes GradY^T J^T J GradY */
455:       PetscCall(VecDotRealPart(GradF, Y, &gTy));
456:       mp = f0 - gTy + 0.5 * yTHy; /* quadratic model to satisfy, -gTy because our update is X-Y*/

458:       /* scale back solution update */
459:       if (bs > 1 && neP->auto_scale_multiphase) {
460:         for (j = 0; j < bs; j++) {
461:           PetscCall(VecStrideScale(Y, j, inorms[j]));
462:           if (inner_count == 0) {
463:             /* TRDC inner algorithm does not need scaled X after calculating delta in the outer iteration */
464:             /* need to scale back X to match Y and provide proper update to the external code */
465:             PetscCall(VecStrideScale(X, j, inorms[j]));
466:           }
467:         }
468:         if (inner_count == 0) PetscCall(VecNorm(X, NORM_2, &temp_xnorm)); /* only in the first iteration */
469:         PetscCall(VecNorm(Y, NORM_2, &temp_ynorm));
470:       } else {
471:         temp_xnorm = xnorm;
472:         temp_ynorm = ynorm;
473:       }
474:       inner_count++;

476:       /* Evaluate the solution to meet the improvement ratio criteria */
477:       PetscCall(SNESNewtonTRDCPreCheck(snes, X, Y, &changed_y));
478:       PetscCall(VecWAXPY(W, -1.0, Y, X));
479:       PetscCall(SNESNewtonTRDCPostCheck(snes, X, Y, W, &changed_y, &changed_w));
480:       if (changed_y) PetscCall(VecWAXPY(W, -1.0, Y, X));
481:       PetscCall(VecCopy(Y, snes->vec_sol_update));
482:       PetscCall(SNESComputeFunction(snes, W, G)); /*  F(X-Y) = G */
483:       PetscCall(VecNorm(G, NORM_2, &gnorm));      /* gnorm <- || g || */
484:       SNESCheckFunctionNorm(snes, gnorm);
485:       g = 0.5 * PetscSqr(gnorm); /* minimizing function g(W) */
486:       if (f0 == mp) rho = 0.0;
487:       else rho = (f0 - g) / (f0 - mp); /* actual improvement over predicted improvement */

489:       if (rho < neP->eta2) {
490:         delta *= neP->t1; /* shrink the region */
491:       } else if (rho > neP->eta3) {
492:         delta = PetscMin(neP->t2 * delta, deltaM); /* expand the region, but not greater than deltaM */
493:       }

495:       neP->delta = delta;
496:       if (rho >= neP->eta1) {
497:         /* unscale delta and xnorm before going to the next outer iteration */
498:         if (bs > 1 && neP->auto_scale_multiphase) {
499:           neP->delta = delta / xnorm;
500:           xnorm      = temp_xnorm;
501:           ynorm      = temp_ynorm;
502:         }
503:         neP->rho_satisfied = PETSC_TRUE;
504:         break; /* the improvement ratio is satisfactory */
505:       }
506:       PetscCall(PetscInfo(snes, "Trying again in smaller region\n"));

508:       /* check to see if progress is hopeless */
509:       neP->itflag = PETSC_FALSE;
510:       /* both delta, ynorm, and xnorm are either scaled or unscaled */
511:       PetscCall(SNESTRDC_Converged_Private(snes, snes->iter, xnorm, ynorm, fnorm, &reason, snes->cnvP));
512:       /* if multiphase state changes, break out inner iteration */
513:       if (reason == SNES_BREAKOUT_INNER_ITER) {
514:         if (bs > 1 && neP->auto_scale_multiphase) {
515:           /* unscale delta and xnorm before going to the next outer iteration */
516:           neP->delta = delta / xnorm;
517:           xnorm      = temp_xnorm;
518:           ynorm      = temp_ynorm;
519:         }
520:         reason = SNES_CONVERGED_ITERATING;
521:         break;
522:       }
523:       if (reason == SNES_CONVERGED_SNORM_RELATIVE) reason = SNES_DIVERGED_INNER;
524:       if (reason) {
525:         if (reason < 0) {
526:           /* We're not progressing, so return with the current iterate */
527:           PetscCall(SNESMonitor(snes, i + 1, fnorm));
528:           breakout = PETSC_TRUE;
529:           break;
530:         } else if (reason > 0) {
531:           /* We're converged, so return with the current iterate and update solution */
532:           PetscCall(SNESMonitor(snes, i + 1, fnorm));
533:           breakout = PETSC_FALSE;
534:           break;
535:         }
536:       }
537:       snes->numFailures++;
538:     }
539:     if (!breakout) {
540:       /* Update function and solution vectors */
541:       fnorm = gnorm;
542:       PetscCall(VecCopy(G, F));
543:       PetscCall(VecCopy(W, X));
544:       /* Monitor convergence */
545:       PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
546:       snes->iter  = i + 1;
547:       snes->norm  = fnorm;
548:       snes->xnorm = xnorm;
549:       snes->ynorm = ynorm;
550:       PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
551:       PetscCall(SNESLogConvergenceHistory(snes, snes->norm, lits));
552:       PetscCall(SNESMonitor(snes, snes->iter, snes->norm));
553:       /* Test for convergence, xnorm = || X || */
554:       neP->itflag = PETSC_TRUE;
555:       if (snes->ops->converged != SNESConvergedSkip) PetscCall(VecNorm(X, NORM_2, &xnorm));
556:       PetscUseTypeMethod(snes, converged, snes->iter, xnorm, ynorm, fnorm, &reason, snes->cnvP);
557:       if (reason) break;
558:     } else break;
559:   }

561:   /* PetscCall(PetscFree(inorms)); */
562:   if (i == maxits) {
563:     PetscCall(PetscInfo(snes, "Maximum number of iterations has been reached: %" PetscInt_FMT "\n", maxits));
564:     if (!reason) reason = SNES_DIVERGED_MAX_IT;
565:   }
566:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
567:   snes->reason = reason;
568:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
569:   if (convtest != SNESTRDC_KSPConverged_Private) {
570:     PetscCall(KSPGetAndClearConvergenceTest(ksp, &ctx->convtest, &ctx->convctx, &ctx->convdestroy));
571:     PetscCall(PetscFree(ctx));
572:     PetscCall(KSPSetConvergenceTest(ksp, convtest, convctx, convdestroy));
573:   }
574:   PetscFunctionReturn(PETSC_SUCCESS);
575: }

577: static PetscErrorCode SNESSetUp_NEWTONTRDC(SNES snes)
578: {
579:   PetscFunctionBegin;
580:   PetscCall(SNESSetWorkVecs(snes, 6));
581:   PetscCall(SNESSetUpMatrices(snes));
582:   PetscFunctionReturn(PETSC_SUCCESS);
583: }

585: static PetscErrorCode SNESDestroy_NEWTONTRDC(SNES snes)
586: {
587:   PetscFunctionBegin;
588:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonTRSetTolerances_C", NULL));
589:   PetscCall(PetscFree(snes->data));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode SNESSetFromOptions_NEWTONTRDC(SNES snes, PetscOptionItems PetscOptionsObject)
594: {
595:   SNES_NEWTONTRDC *ctx = (SNES_NEWTONTRDC *)snes->data;

597:   PetscFunctionBegin;
598:   PetscOptionsHeadBegin(PetscOptionsObject, "SNES trust region options for nonlinear equations");
599:   PetscCall(PetscOptionsReal("-snes_trdc_tol", "Trust region tolerance", "SNESNewtonTRSetTolerances", ctx->deltatol, &ctx->deltatol, NULL));
600:   PetscCall(PetscOptionsReal("-snes_trdc_eta1", "eta1", "None", ctx->eta1, &ctx->eta1, NULL));
601:   PetscCall(PetscOptionsReal("-snes_trdc_eta2", "eta2", "None", ctx->eta2, &ctx->eta2, NULL));
602:   PetscCall(PetscOptionsReal("-snes_trdc_eta3", "eta3", "None", ctx->eta3, &ctx->eta3, NULL));
603:   PetscCall(PetscOptionsReal("-snes_trdc_t1", "t1", "None", ctx->t1, &ctx->t1, NULL));
604:   PetscCall(PetscOptionsReal("-snes_trdc_t2", "t2", "None", ctx->t2, &ctx->t2, NULL));
605:   PetscCall(PetscOptionsReal("-snes_trdc_deltaM", "deltaM", "None", ctx->deltaM, &ctx->deltaM, NULL));
606:   PetscCall(PetscOptionsReal("-snes_trdc_delta0", "delta0", "None", ctx->delta0, &ctx->delta0, NULL));
607:   PetscCall(PetscOptionsReal("-snes_trdc_auto_scale_max", "auto_scale_max", "None", ctx->auto_scale_max, &ctx->auto_scale_max, NULL));
608:   PetscCall(PetscOptionsBool("-snes_trdc_use_cauchy", "use_cauchy", "use Cauchy step and direction", ctx->use_cauchy, &ctx->use_cauchy, NULL));
609:   PetscCall(PetscOptionsBool("-snes_trdc_auto_scale_multiphase", "auto_scale_multiphase", "Auto scaling for proper cauchy direction", ctx->auto_scale_multiphase, &ctx->auto_scale_multiphase, NULL));
610:   PetscOptionsHeadEnd();
611:   PetscFunctionReturn(PETSC_SUCCESS);
612: }

614: static PetscErrorCode SNESView_NEWTONTRDC(SNES snes, PetscViewer viewer)
615: {
616:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;
617:   PetscBool        iascii;

619:   PetscFunctionBegin;
620:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
621:   if (iascii) {
622:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Trust region tolerance %g\n", (double)tr->deltatol));
623:     PetscCall(PetscViewerASCIIPrintf(viewer, "  eta1=%g, eta2=%g, eta3=%g\n", (double)tr->eta1, (double)tr->eta2, (double)tr->eta3));
624:     PetscCall(PetscViewerASCIIPrintf(viewer, "  delta0=%g, t1=%g, t2=%g, deltaM=%g\n", (double)tr->delta0, (double)tr->t1, (double)tr->t2, (double)tr->deltaM));
625:   }
626:   PetscFunctionReturn(PETSC_SUCCESS);
627: }

629: /*MC
630:       SNESNEWTONTRDC - Newton based nonlinear solver that uses trust-region dogleg method with Cauchy direction

632:    Options Database Keys:
633: +   -snes_trdc_tol <tol>                                     - trust region tolerance
634: .   -snes_trdc_eta1 <eta1>                                   - trust region parameter 0.0 <= eta1 <= eta2, rho >= eta1 breaks out of the inner iteration (default: eta1=0.001)
635: .   -snes_trdc_eta2 <eta2>                                   - trust region parameter 0.0 <= eta1 <= eta2, rho <= eta2 shrinks the trust region (default: eta2=0.25)
636: .   -snes_trdc_eta3 <eta3>                                   - trust region parameter eta3 > eta2, rho >= eta3 expands the trust region (default: eta3=0.75)
637: .   -snes_trdc_t1 <t1>                                       - trust region parameter, shrinking factor of trust region (default: 0.25)
638: .   -snes_trdc_t2 <t2>                                       - trust region parameter, expanding factor of trust region (default: 2.0)
639: .   -snes_trdc_deltaM <deltaM>                               - trust region parameter, max size of trust region, $deltaM*norm2(x)$ (default: 0.5)
640: .   -snes_trdc_delta0 <delta0>                               - trust region parameter, initial size of trust region, $delta0*norm2(x)$ (default: 0.1)
641: .   -snes_trdc_auto_scale_max <auto_scale_max>               - used with auto_scale_multiphase, caps the maximum auto-scaling factor
642: .   -snes_trdc_use_cauchy <use_cauchy>                       - True uses dogleg Cauchy (Steepest Descent direction) step & direction in the trust region algorithm
643: -   -snes_trdc_auto_scale_multiphase <auto_scale_multiphase> - True turns on auto-scaling for multivariable block matrix for Cauchy and trust region

645:    Level: advanced

647:    Notes:
648:    `SNESNEWTONTRDC` only works for root-finding problems and does not support objective functions.
649:    The main difference with respect to `SNESNEWTONTR` is that `SNESNEWTONTRDC` scales the trust region by the norm of the current linearization point.
650:    Future version may extend the `SNESNEWTONTR` code and deprecate `SNESNEWTONTRDC`.

652:    For details, see {cite}`park2021linear`

654: .seealso: [](ch_snes), `SNESCreate()`, `SNES`, `SNESSetType()`, `SNESNEWTONLS`, `SNESNewtonTRSetTolerances()`,
655:           `SNESNewtonTRDCPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`,
656:           `SNESNewtonTRDCGetRhoFlag()`, `SNESNewtonTRDCSetPreCheck()`
657: M*/
658: PETSC_EXTERN PetscErrorCode SNESCreate_NEWTONTRDC(SNES snes)
659: {
660:   SNES_NEWTONTRDC *neP;

662:   PetscFunctionBegin;
663:   snes->ops->setup          = SNESSetUp_NEWTONTRDC;
664:   snes->ops->solve          = SNESSolve_NEWTONTRDC;
665:   snes->ops->destroy        = SNESDestroy_NEWTONTRDC;
666:   snes->ops->setfromoptions = SNESSetFromOptions_NEWTONTRDC;
667:   snes->ops->view           = SNESView_NEWTONTRDC;

669:   snes->usesksp = PETSC_TRUE;
670:   snes->usesnpc = PETSC_FALSE;

672:   snes->alwayscomputesfinalresidual = PETSC_TRUE;

674:   PetscCall(SNESParametersInitialize(snes));

676:   PetscCall(PetscNew(&neP));
677:   snes->data                 = (void *)neP;
678:   neP->eta1                  = 0.001;
679:   neP->eta2                  = 0.25;
680:   neP->eta3                  = 0.75;
681:   neP->t1                    = 0.25;
682:   neP->t2                    = 2.0;
683:   neP->sigma                 = 0.0001;
684:   neP->itflag                = PETSC_FALSE;
685:   neP->rnorm0                = 0.0;
686:   neP->ttol                  = 0.0;
687:   neP->use_cauchy            = PETSC_TRUE;
688:   neP->auto_scale_multiphase = PETSC_FALSE;
689:   neP->auto_scale_max        = -1.0;
690:   neP->rho_satisfied         = PETSC_FALSE;
691:   neP->delta                 = 0.0;
692:   neP->deltaM                = 0.5;
693:   neP->delta0                = 0.1;
694:   neP->deltatol              = 1.e-12;

696:   /* for multiphase (multivariable) scaling */
697:   /* may be used for dynamic allocation of inorms, but it fails snes_tutorials-ex3_13
698:      on test forced DIVERGED_JACOBIAN_DOMAIN test. I will use static array for now.
699:   PetscCall(VecGetBlockSize(snes->work[0],&neP->bs));
700:   PetscCall(PetscCalloc1(neP->bs,&neP->inorms));
701:   */
702:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonTRSetTolerances_C", SNESNewtonTRSetTolerances_TRDC));
703:   PetscFunctionReturn(PETSC_SUCCESS);
704: }