Actual source code: ex56.c
1: /* Portions of this code are under:
2: Copyright (C) 2022 Advanced Micro Devices, Inc. All rights reserved.
3: */
4: static char help[] = "3D tensor hexahedra & 3D Laplacian displacement finite element formulation\n\
5: of linear elasticity. E=1.0, nu=1/3.\n\
6: Unit cube domain with Dirichlet boundary\n\n";
8: #include <petscdmplex.h>
9: #include <petscsnes.h>
10: #include <petscds.h>
11: #include <petscdmforest.h>
13: static PetscReal s_soft_alpha = 0.01;
14: static PetscReal s_mu = 0.4;
15: static PetscReal s_lambda = 0.4;
17: static void f0_bd_u_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
18: {
19: f0[0] = 1; /* x direction pull */
20: f0[1] = -x[2]; /* add a twist around x-axis */
21: f0[2] = x[1];
22: }
24: static void f1_bd_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
25: {
26: const PetscInt Ncomp = dim;
27: PetscInt comp, d;
28: for (comp = 0; comp < Ncomp; ++comp) {
29: for (d = 0; d < dim; ++d) f1[comp * dim + d] = 0.0;
30: }
31: }
33: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
34: static void f1_u_3d_alpha(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
35: {
36: PetscReal trace, mu = s_mu, lambda = s_lambda, rad;
37: PetscInt i, j;
38: for (i = 0, rad = 0.; i < dim; i++) {
39: PetscReal t = x[i];
40: rad += t * t;
41: }
42: rad = PetscSqrtReal(rad);
43: if (rad > 0.25) {
44: mu *= s_soft_alpha;
45: lambda *= s_soft_alpha; /* we could keep the bulk the same like rubberish */
46: }
47: for (i = 0, trace = 0; i < dim; ++i) trace += PetscRealPart(u_x[i * dim + i]);
48: for (i = 0; i < dim; ++i) {
49: for (j = 0; j < dim; ++j) f1[i * dim + j] = mu * (u_x[i * dim + j] + u_x[j * dim + i]);
50: f1[i * dim + i] += lambda * trace;
51: }
52: }
54: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
55: static void f1_u_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
56: {
57: PetscReal trace, mu = s_mu, lambda = s_lambda;
58: PetscInt i, j;
59: for (i = 0, trace = 0; i < dim; ++i) trace += PetscRealPart(u_x[i * dim + i]);
60: for (i = 0; i < dim; ++i) {
61: for (j = 0; j < dim; ++j) f1[i * dim + j] = mu * (u_x[i * dim + j] + u_x[j * dim + i]);
62: f1[i * dim + i] += lambda * trace;
63: }
64: }
66: static void f1_u_lap(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
67: {
68: PetscInt d;
69: for (d = 0; d < dim; ++d) f1[d] = u_x[d];
70: }
72: /* 3D elasticity */
73: #define IDX(ii, jj, kk, ll) (27 * ii + 9 * jj + 3 * kk + ll)
75: void g3_uu_3d_private(PetscScalar g3[], const PetscReal mu, const PetscReal lambda)
76: {
77: if (1) {
78: g3[0] += lambda;
79: g3[0] += mu;
80: g3[0] += mu;
81: g3[4] += lambda;
82: g3[8] += lambda;
83: g3[10] += mu;
84: g3[12] += mu;
85: g3[20] += mu;
86: g3[24] += mu;
87: g3[28] += mu;
88: g3[30] += mu;
89: g3[36] += lambda;
90: g3[40] += lambda;
91: g3[40] += mu;
92: g3[40] += mu;
93: g3[44] += lambda;
94: g3[50] += mu;
95: g3[52] += mu;
96: g3[56] += mu;
97: g3[60] += mu;
98: g3[68] += mu;
99: g3[70] += mu;
100: g3[72] += lambda;
101: g3[76] += lambda;
102: g3[80] += lambda;
103: g3[80] += mu;
104: g3[80] += mu;
105: } else {
106: int i, j, k, l;
107: static int cc = -1;
108: cc++;
109: for (i = 0; i < 3; ++i) {
110: for (j = 0; j < 3; ++j) {
111: for (k = 0; k < 3; ++k) {
112: for (l = 0; l < 3; ++l) {
113: if (k == l && i == j) g3[IDX(i, j, k, l)] += lambda;
114: if (i == k && j == l) g3[IDX(i, j, k, l)] += mu;
115: if (i == l && j == k) g3[IDX(i, j, k, l)] += mu;
116: if (k == l && i == j && !cc) (void)PetscPrintf(PETSC_COMM_WORLD, "g3[%d] += lambda;\n", IDX(i, j, k, l));
117: if (i == k && j == l && !cc) (void)PetscPrintf(PETSC_COMM_WORLD, "g3[%d] += mu;\n", IDX(i, j, k, l));
118: if (i == l && j == k && !cc) (void)PetscPrintf(PETSC_COMM_WORLD, "g3[%d] += mu;\n", IDX(i, j, k, l));
119: }
120: }
121: }
122: }
123: }
124: }
126: static void g3_uu_3d_alpha(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
127: {
128: PetscReal mu = s_mu, lambda = s_lambda, rad;
129: PetscInt i;
130: for (i = 0, rad = 0.; i < dim; i++) {
131: PetscReal t = x[i];
132: rad += t * t;
133: }
134: rad = PetscSqrtReal(rad);
135: if (rad > 0.25) {
136: mu *= s_soft_alpha;
137: lambda *= s_soft_alpha; /* we could keep the bulk the same like rubberish */
138: }
139: g3_uu_3d_private(g3, mu, lambda);
140: }
142: static void g3_uu_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
143: {
144: g3_uu_3d_private(g3, s_mu, s_lambda);
145: }
147: static void g3_lap(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
148: {
149: PetscInt d;
150: for (d = 0; d < dim; ++d) g3[d * dim + d] = 1.0;
151: }
153: static void g3_lap_alpha(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
154: {
155: PetscReal lambda = 1, rad;
156: PetscInt i;
157: for (i = 0, rad = 0.; i < dim; i++) {
158: PetscReal t = x[i];
159: rad += t * t;
160: }
161: rad = PetscSqrtReal(rad);
162: if (rad > 0.25) { lambda *= s_soft_alpha; /* we could keep the bulk the same like rubberish */ }
163: for (int d = 0; d < dim; ++d) g3[d * dim + d] = lambda;
164: }
166: static void f0_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
167: {
168: const PetscInt Ncomp = dim;
169: PetscInt comp;
171: for (comp = 0; comp < Ncomp; ++comp) f0[comp] = 0.0;
172: }
174: /* PI_i (x_i^4 - x_i^2) */
175: static void f0_u_x4(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
176: {
177: for (int comp = 0; comp < Nf; ++comp) {
178: f0[comp] = 1e5;
179: for (int i = 0; i < dim; ++i) { f0[comp] *= /* (comp+1)* */ (x[i] * x[i] * x[i] * x[i] - x[i] * x[i]); /* assumes (0,1]^D domain */ }
180: }
181: }
183: PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
184: {
185: const PetscInt Ncomp = dim;
186: PetscInt comp;
188: for (comp = 0; comp < Ncomp; ++comp) u[comp] = 0;
189: return PETSC_SUCCESS;
190: }
192: int main(int argc, char **args)
193: {
194: Mat Amat;
195: SNES snes;
196: KSP ksp;
197: MPI_Comm comm;
198: PetscMPIInt rank;
199: PetscLogStage stage[17];
200: PetscBool test_nonzero_cols = PETSC_FALSE, use_nearnullspace = PETSC_TRUE, attach_nearnullspace = PETSC_FALSE;
201: Vec xx, bb;
202: PetscInt iter, i, N, dim = 3, max_conv_its, sizes[7], run_type = 1, Ncomp = dim;
203: DM dm;
204: PetscBool flg;
205: PetscReal Lx, mdisp[10], err[10];
207: PetscFunctionBeginUser;
208: PetscCall(PetscInitialize(&argc, &args, (char *)0, help));
209: comm = PETSC_COMM_WORLD;
210: PetscCallMPI(MPI_Comm_rank(comm, &rank));
211: /* options */
212: PetscOptionsBegin(comm, NULL, "3D bilinear Q1 elasticity options", "");
213: {
214: Lx = 1.; /* or ne for rod */
215: max_conv_its = 3;
216: PetscCall(PetscOptionsInt("-max_conv_its", "Number of iterations in convergence study", "", max_conv_its, &max_conv_its, NULL));
217: PetscCheck(max_conv_its > 0 && max_conv_its < 8, PETSC_COMM_WORLD, PETSC_ERR_USER, "Bad number of iterations for convergence test (%" PetscInt_FMT ")", max_conv_its);
218: PetscCall(PetscOptionsReal("-lx", "Length of domain", "", Lx, &Lx, NULL));
219: PetscCall(PetscOptionsReal("-alpha", "material coefficient inside circle", "", s_soft_alpha, &s_soft_alpha, NULL));
220: PetscCall(PetscOptionsBool("-test_nonzero_cols", "nonzero test", "", test_nonzero_cols, &test_nonzero_cols, NULL));
221: PetscCall(PetscOptionsBool("-use_mat_nearnullspace", "MatNearNullSpace API test", "", use_nearnullspace, &use_nearnullspace, NULL));
222: PetscCall(PetscOptionsBool("-attach_mat_nearnullspace", "MatNearNullSpace API test (via MatSetNearNullSpace)", "", attach_nearnullspace, &attach_nearnullspace, NULL));
223: PetscCall(PetscOptionsInt("-run_type", "0: twisting load on cantalever, 1: Elasticty convergence test on cube, 2: Laplacian, 3: soft core Laplacian", "", run_type, &run_type, NULL));
224: }
225: PetscOptionsEnd();
226: PetscCall(PetscLogStageRegister("Mesh Setup", &stage[16]));
227: for (iter = 0; iter < max_conv_its; iter++) {
228: char str[] = "Solve 0";
229: str[6] += iter;
230: PetscCall(PetscLogStageRegister(str, &stage[iter]));
231: }
232: /* create DM, Plex calls DMSetup */
233: PetscCall(PetscLogStagePush(stage[16]));
234: PetscCall(DMCreate(comm, &dm));
235: PetscCall(DMSetType(dm, DMPLEX));
236: PetscCall(PetscObjectSetName((PetscObject)dm, "Mesh"));
237: PetscCall(DMSetFromOptions(dm));
238: PetscCall(DMPlexDistributeSetDefault(dm, PETSC_FALSE));
239: PetscCall(DMGetDimension(dm, &dim));
240: {
241: DMLabel label;
242: IS is;
243: PetscCall(DMCreateLabel(dm, "boundary"));
244: PetscCall(DMGetLabel(dm, "boundary", &label));
245: PetscCall(DMPlexMarkBoundaryFaces(dm, 1, label));
246: if (run_type == 0) {
247: PetscCall(DMGetStratumIS(dm, "boundary", 1, &is));
248: PetscCall(DMCreateLabel(dm, "Faces"));
249: if (is) {
250: PetscInt d, f, Nf;
251: const PetscInt *faces;
252: PetscInt csize;
253: PetscSection cs;
254: Vec coordinates;
255: DM cdm;
256: PetscCall(ISGetLocalSize(is, &Nf));
257: PetscCall(ISGetIndices(is, &faces));
258: PetscCall(DMGetCoordinatesLocal(dm, &coordinates));
259: PetscCall(DMGetCoordinateDM(dm, &cdm));
260: PetscCall(DMGetLocalSection(cdm, &cs));
261: /* Check for each boundary face if any component of its centroid is either 0.0 or 1.0 */
262: for (f = 0; f < Nf; ++f) {
263: PetscReal faceCoord;
264: PetscInt b, v;
265: PetscScalar *coords = NULL;
266: PetscInt Nv;
267: PetscCall(DMPlexVecGetClosure(cdm, cs, coordinates, faces[f], &csize, &coords));
268: Nv = csize / dim; /* Calculate mean coordinate vector */
269: for (d = 0; d < dim; ++d) {
270: faceCoord = 0.0;
271: for (v = 0; v < Nv; ++v) faceCoord += PetscRealPart(coords[v * dim + d]);
272: faceCoord /= Nv;
273: for (b = 0; b < 2; ++b) {
274: if (PetscAbs(faceCoord - b) < PETSC_SMALL) { /* domain have not been set yet, still [0,1]^3 */
275: PetscCall(DMSetLabelValue(dm, "Faces", faces[f], d * 2 + b + 1));
276: }
277: }
278: }
279: PetscCall(DMPlexVecRestoreClosure(cdm, cs, coordinates, faces[f], &csize, &coords));
280: }
281: PetscCall(ISRestoreIndices(is, &faces));
282: }
283: PetscCall(ISDestroy(&is));
284: PetscCall(DMGetLabel(dm, "Faces", &label));
285: PetscCall(DMPlexLabelComplete(dm, label));
286: }
287: }
288: PetscCall(PetscLogStagePop());
289: for (iter = 0; iter < max_conv_its; iter++) {
290: PetscCall(PetscLogStagePush(stage[16]));
291: /* snes */
292: PetscCall(SNESCreate(comm, &snes));
293: PetscCall(SNESSetDM(snes, dm));
294: PetscCall(DMViewFromOptions(dm, NULL, "-dm_view"));
295: /* fem */
296: {
297: const PetscInt components[] = {0, 1, 2};
298: const PetscInt Nfid = 1, Npid = 1;
299: PetscInt fid[] = {1}; /* The fixed faces (x=0) */
300: const PetscInt pid[] = {2}; /* The faces with loading (x=L_x) */
301: PetscFE fe;
302: PetscDS prob;
303: DMLabel label;
305: if (run_type == 2 || run_type == 3) Ncomp = 1;
306: else Ncomp = dim;
307: PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, Ncomp, PETSC_FALSE, NULL, PETSC_DECIDE, &fe));
308: PetscCall(PetscObjectSetName((PetscObject)fe, "deformation"));
309: /* FEM prob */
310: PetscCall(DMSetField(dm, 0, NULL, (PetscObject)fe));
311: PetscCall(DMCreateDS(dm));
312: PetscCall(DMGetDS(dm, &prob));
313: /* setup problem */
314: if (run_type == 1) { // elast
315: PetscCall(PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu_3d));
316: PetscCall(PetscDSSetResidual(prob, 0, f0_u_x4, f1_u_3d));
317: } else if (run_type == 0) { //twisted not maintained
318: PetscWeakForm wf;
319: PetscInt bd, i;
320: PetscCall(PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu_3d_alpha));
321: PetscCall(PetscDSSetResidual(prob, 0, f0_u, f1_u_3d_alpha));
322: PetscCall(DMGetLabel(dm, "Faces", &label));
323: PetscCall(DMAddBoundary(dm, DM_BC_NATURAL, "traction", label, Npid, pid, 0, Ncomp, components, NULL, NULL, NULL, &bd));
324: PetscCall(PetscDSGetBoundary(prob, bd, &wf, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL));
325: for (i = 0; i < Npid; ++i) PetscCall(PetscWeakFormSetIndexBdResidual(wf, label, pid[i], 0, 0, 0, f0_bd_u_3d, 0, f1_bd_u));
326: } else if (run_type == 2) { // Laplacian
327: PetscCall(PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_lap));
328: PetscCall(PetscDSSetResidual(prob, 0, f0_u_x4, f1_u_lap));
329: } else if (run_type == 3) { // soft core Laplacian
330: PetscCall(PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_lap_alpha));
331: PetscCall(PetscDSSetResidual(prob, 0, f0_u_x4, f1_u_lap));
332: }
333: /* bcs */
334: if (run_type != 0) {
335: PetscInt id = 1;
336: PetscCall(DMGetLabel(dm, "boundary", &label));
337: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))zero, NULL, NULL, NULL));
338: } else {
339: PetscCall(DMGetLabel(dm, "Faces", &label));
340: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "fixed", label, Nfid, fid, 0, Ncomp, components, (void (*)(void))zero, NULL, NULL, NULL));
341: }
342: PetscCall(PetscFEDestroy(&fe));
343: }
344: /* vecs & mat */
345: PetscCall(DMCreateGlobalVector(dm, &xx));
346: PetscCall(VecDuplicate(xx, &bb));
347: PetscCall(PetscObjectSetName((PetscObject)bb, "b"));
348: PetscCall(PetscObjectSetName((PetscObject)xx, "u"));
349: PetscCall(DMCreateMatrix(dm, &Amat));
350: PetscCall(MatSetOption(Amat, MAT_SYMMETRIC, PETSC_TRUE)); /* Some matrix kernels can take advantage of symmetry if we set this. */
351: PetscCall(MatSetOption(Amat, MAT_SYMMETRY_ETERNAL, PETSC_TRUE)); /* Inform PETSc that Amat is always symmetric, so info set above isn't lost. */
352: PetscCall(MatSetBlockSize(Amat, Ncomp));
353: PetscCall(MatSetOption(Amat, MAT_SPD, PETSC_TRUE));
354: PetscCall(MatSetOption(Amat, MAT_SPD_ETERNAL, PETSC_TRUE));
355: PetscCall(VecGetSize(bb, &N));
356: sizes[iter] = N;
357: PetscCall(PetscInfo(snes, "%" PetscInt_FMT " global equations, %" PetscInt_FMT " vertices\n", N, N / dim));
358: if ((use_nearnullspace || attach_nearnullspace) && N / dim > 1 && Ncomp > 1) {
359: /* Set up the near null space (a.k.a. rigid body modes) that will be used by the multigrid preconditioner */
360: DM subdm;
361: MatNullSpace nearNullSpace;
362: PetscInt fields = 0;
363: PetscObject deformation;
364: PetscCall(DMCreateSubDM(dm, 1, &fields, NULL, &subdm));
365: PetscCall(DMPlexCreateRigidBody(subdm, 0, &nearNullSpace));
366: PetscCall(DMGetField(dm, 0, NULL, &deformation));
367: PetscCall(PetscObjectCompose(deformation, "nearnullspace", (PetscObject)nearNullSpace));
368: PetscCall(DMDestroy(&subdm));
369: if (attach_nearnullspace) PetscCall(MatSetNearNullSpace(Amat, nearNullSpace));
370: PetscCall(MatNullSpaceDestroy(&nearNullSpace)); /* created by DM and destroyed by Mat */
371: }
372: PetscCall(DMPlexSetSNESLocalFEM(dm, PETSC_FALSE, NULL));
373: PetscCall(SNESSetJacobian(snes, Amat, Amat, NULL, NULL));
374: PetscCall(SNESSetFromOptions(snes));
375: PetscCall(DMSetUp(dm));
376: PetscCall(PetscLogStagePop());
377: PetscCall(PetscLogStagePush(stage[16]));
378: /* ksp */
379: PetscCall(SNESGetKSP(snes, &ksp));
380: PetscCall(KSPSetComputeSingularValues(ksp, PETSC_TRUE));
381: if (!use_nearnullspace) {
382: PC pc;
383: PetscCall(KSPGetPC(ksp, &pc));
384: PetscCall(PCGAMGASMSetHEM(pc, 3)); // code coverage
385: }
386: /* test BCs */
387: PetscCall(VecZeroEntries(xx));
388: if (test_nonzero_cols) {
389: if (rank == 0) PetscCall(VecSetValue(xx, 0, 1.0, INSERT_VALUES));
390: PetscCall(VecAssemblyBegin(xx));
391: PetscCall(VecAssemblyEnd(xx));
392: }
393: PetscCall(VecZeroEntries(bb));
394: PetscCall(VecGetSize(bb, &i));
395: sizes[iter] = i;
396: PetscCall(PetscInfo(snes, "%" PetscInt_FMT " equations in vector, %" PetscInt_FMT " vertices\n", i, i / dim));
397: PetscCall(PetscLogStagePop());
398: /* solve */
399: PetscCall(SNESComputeJacobian(snes, xx, Amat, Amat));
400: PetscCall(MatViewFromOptions(Amat, NULL, "-my_mat_view"));
401: PetscCall(PetscLogStagePush(stage[iter]));
402: PetscCall(SNESSolve(snes, bb, xx));
403: PetscCall(PetscLogStagePop());
404: PetscCall(VecNorm(xx, NORM_INFINITY, &mdisp[iter]));
405: {
406: PetscViewer viewer = NULL;
407: PetscViewerFormat fmt;
408: PetscCall(PetscOptionsCreateViewer(comm, NULL, "", "-vec_view", &viewer, &fmt, &flg));
409: if (flg) {
410: PetscCall(PetscViewerPushFormat(viewer, fmt));
411: PetscCall(VecView(xx, viewer));
412: PetscCall(VecView(bb, viewer));
413: PetscCall(PetscViewerPopFormat(viewer));
414: }
415: PetscCall(PetscViewerDestroy(&viewer));
416: }
417: /* Free work space */
418: PetscCall(SNESDestroy(&snes));
419: PetscCall(VecDestroy(&xx));
420: PetscCall(VecDestroy(&bb));
421: PetscCall(MatDestroy(&Amat));
422: if (iter + 1 < max_conv_its) {
423: DM newdm;
424: PetscCall(DMViewFromOptions(dm, NULL, "-my_dm_view"));
425: PetscCall(DMRefine(dm, comm, &newdm));
426: if (rank == -1) {
427: PetscDS prob;
428: PetscCall(DMGetDS(dm, &prob));
429: PetscCall(PetscDSViewFromOptions(prob, NULL, "-ds_view"));
430: PetscCall(DMGetDS(newdm, &prob));
431: PetscCall(PetscDSViewFromOptions(prob, NULL, "-ds_view"));
432: }
433: PetscCall(DMDestroy(&dm));
434: dm = newdm;
435: PetscCall(PetscObjectSetName((PetscObject)dm, "Mesh"));
436: PetscCall(DMViewFromOptions(dm, NULL, "-my_dm_view"));
437: PetscCall(DMSetFromOptions(dm));
438: }
439: }
440: PetscCall(DMDestroy(&dm));
441: if (run_type == 1) err[0] = 5.97537599375e+01 - mdisp[0]; /* error with what I think is the exact solution */
442: else if (run_type == 0) err[0] = 0;
443: else if (run_type == 2) err[0] = 3.527795e+01 - mdisp[0];
444: else err[0] = 0;
445: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "[%d] %d) N=%12" PetscInt_FMT ", max displ=%9.7e, error=%4.3e\n", rank, 0, sizes[0], (double)mdisp[0], (double)err[0]));
446: for (iter = 1; iter < max_conv_its; iter++) {
447: if (run_type == 1) err[iter] = 5.97537599375e+01 - mdisp[iter];
448: else if (run_type == 0) err[iter] = 0;
449: else if (run_type == 2) err[iter] = 3.527795e+01 - mdisp[iter];
450: else err[iter] = 0;
451: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "[%d] %" PetscInt_FMT ") N=%12" PetscInt_FMT ", max displ=%9.7e, disp diff=%9.2e, error=%4.3e, rate=%3.2g\n", rank, iter, sizes[iter], (double)mdisp[iter], (double)(mdisp[iter] - mdisp[iter - 1]), (double)err[iter], (double)(PetscLogReal(PetscAbs(err[iter - 1] / err[iter])) / PetscLogReal(2.))));
452: }
454: PetscCall(PetscFinalize());
455: return 0;
456: }
458: /*TEST
460: testset:
461: nsize: 4
462: requires: !single
463: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -petscspace_degree 2 -snes_max_it 1 -ksp_max_it 100 -ksp_type cg -ksp_rtol 1.e-10 -ksp_norm_type unpreconditioned -pc_type gamg -pc_gamg_coarse_eq_limit 10 -pc_gamg_reuse_interpolation true -pc_gamg_aggressive_coarsening 1 -pc_gamg_threshold 0.001 -ksp_converged_reason -use_mat_nearnullspace true -mg_levels_ksp_max_it 2 -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.2,0,1.1 -mg_levels_pc_type jacobi -petscpartitioner_type simple -my_dm_view -snes_lag_jacobian -2 -snes_type ksponly -pc_gamg_mis_k_minimum_degree_ordering true -pc_gamg_low_memory_threshold_filter
464: timeoutfactor: 2
465: test:
466: suffix: 0
467: args: -run_type 1 -max_conv_its 3 -pc_gamg_mat_coarsen_type hem -pc_gamg_mat_coarsen_max_it 5 -pc_gamg_asm_hem_aggs 4 -ksp_rtol 1.e-6
468: filter: sed -e "s/Linear solve converged due to CONVERGED_RTOL iterations 7/Linear solve converged due to CONVERGED_RTOL iterations 8/g"
469: test:
470: suffix: 1
471: filter: grep -v HERMITIAN
472: args: -run_type 2 -max_conv_its 2 -use_mat_nearnullspace false -snes_view
474: test:
475: nsize: 1
476: requires: !single
477: suffix: 2
478: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -petscspace_degree 2 -snes_max_it 1 -ksp_type cg -ksp_norm_type unpreconditioned -pc_type gamg -pc_gamg_coarse_eq_limit 10 -pc_gamg_aggressive_coarsening 1 -ksp_converged_reason -use_mat_nearnullspace true -my_dm_view -snes_type ksponly
479: timeoutfactor: 2
481: # HYPRE PtAP broken with complex numbers
482: test:
483: suffix: hypre
484: requires: hypre !single !complex !defined(PETSC_HAVE_HYPRE_DEVICE)
485: nsize: 4
486: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-8 -pc_type hypre -pc_hypre_type boomeramg -pc_hypre_boomeramg_no_CF true -pc_hypre_boomeramg_agg_nl 1 -pc_hypre_boomeramg_coarsen_type HMIS -pc_hypre_boomeramg_interp_type ext+i -ksp_converged_reason -use_mat_nearnullspace true -petscpartitioner_type simple
488: test:
489: suffix: ml
490: requires: ml !single
491: nsize: 4
492: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type cg -ksp_monitor_short -ksp_converged_reason -ksp_rtol 1.e-8 -pc_type ml -mg_levels_ksp_type chebyshev -mg_levels_ksp_max_it 3 -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05 -mg_levels_pc_type sor -petscpartitioner_type simple -use_mat_nearnullspace
494: test:
495: suffix: hpddm
496: requires: hpddm slepc !single defined(PETSC_HAVE_DYNAMIC_LIBRARIES) defined(PETSC_USE_SHARED_LIBRARIES)
497: nsize: 4
498: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type fgmres -ksp_monitor_short -ksp_converged_reason -ksp_rtol 1.e-8 -pc_type hpddm -petscpartitioner_type simple -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 6 -pc_hpddm_coarse_p 1 -pc_hpddm_coarse_pc_type svd
500: test:
501: suffix: repart
502: nsize: 4
503: requires: parmetis !single
504: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -petscspace_degree 2 -snes_max_it 4 -ksp_max_it 100 -ksp_type cg -ksp_rtol 1.e-2 -ksp_norm_type unpreconditioned -snes_rtol 1.e-3 -pc_type gamg -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_aggressive_coarsening 1 -pc_gamg_threshold 0.05 -pc_gamg_threshold_scale .0 -use_mat_nearnullspace true -mg_levels_ksp_max_it 2 -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05 -mg_levels_pc_type jacobi -pc_gamg_mat_partitioning_type parmetis -pc_gamg_repartition true -pc_gamg_process_eq_limit 20 -pc_gamg_coarse_eq_limit 10 -ksp_converged_reason -pc_gamg_reuse_interpolation true -petscpartitioner_type simple
506: test:
507: suffix: bddc
508: nsize: 4
509: requires: !single
510: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-8 -ksp_converged_reason -petscpartitioner_type simple -dm_mat_type is -mat_is_localmat_type {{sbaij baij aij}} -pc_type bddc
512: testset:
513: nsize: 4
514: requires: !single
515: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-10 -ksp_converged_reason -petscpartitioner_type simple -dm_mat_type is -mat_is_localmat_type aij -pc_type bddc -attach_mat_nearnullspace {{0 1}separate output}
516: test:
517: suffix: bddc_approx_gamg
518: args: -pc_bddc_switch_static -prefix_push pc_bddc_dirichlet_ -approximate -pc_type gamg -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_reuse_interpolation true -pc_gamg_aggressive_coarsening 1 -pc_gamg_threshold 0.05 -pc_gamg_threshold_scale .0 -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -prefix_pop -prefix_push pc_bddc_neumann_ -approximate -pc_type gamg -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_coarse_eq_limit 10 -pc_gamg_reuse_interpolation true -pc_gamg_aggressive_coarsening 1 -pc_gamg_threshold 0.05 -pc_gamg_threshold_scale .0 -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -prefix_pop
519: # HYPRE PtAP broken with complex numbers
520: test:
521: requires: hypre !complex !defined(PETSC_HAVE_HYPRE_DEVICE)
522: suffix: bddc_approx_hypre
523: args: -pc_bddc_switch_static -prefix_push pc_bddc_dirichlet_ -pc_type hypre -pc_hypre_boomeramg_no_CF true -pc_hypre_boomeramg_strong_threshold 0.75 -pc_hypre_boomeramg_agg_nl 1 -pc_hypre_boomeramg_coarsen_type HMIS -pc_hypre_boomeramg_interp_type ext+i -prefix_pop -prefix_push pc_bddc_neumann_ -pc_type hypre -pc_hypre_boomeramg_no_CF true -pc_hypre_boomeramg_strong_threshold 0.75 -pc_hypre_boomeramg_agg_nl 1 -pc_hypre_boomeramg_coarsen_type HMIS -pc_hypre_boomeramg_interp_type ext+i -prefix_pop
524: test:
525: requires: ml
526: suffix: bddc_approx_ml
527: args: -pc_bddc_switch_static -prefix_push pc_bddc_dirichlet_ -approximate -pc_type ml -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -prefix_pop -prefix_push pc_bddc_neumann_ -approximate -pc_type ml -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -prefix_pop
529: test:
530: suffix: fetidp
531: nsize: 4
532: requires: !single
533: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type fetidp -fetidp_ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-8 -ksp_converged_reason -petscpartitioner_type simple -dm_mat_type is -mat_is_localmat_type {{sbaij baij aij}}
535: test:
536: suffix: bddc_elast
537: nsize: 4
538: requires: !single
539: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-8 -ksp_converged_reason -petscpartitioner_type simple -dm_mat_type is -mat_is_localmat_type sbaij -pc_type bddc -pc_bddc_monolithic -attach_mat_nearnullspace
541: test:
542: suffix: fetidp_elast
543: nsize: 4
544: requires: !single
545: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type fetidp -fetidp_ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-8 -ksp_converged_reason -petscpartitioner_type simple -dm_mat_type is -mat_is_localmat_type sbaij -fetidp_bddc_pc_bddc_monolithic -attach_mat_nearnullspace
547: test:
548: suffix: gdsw
549: nsize: 4
550: requires: !single
551: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -lx 1. -alpha .01 -petscspace_degree 2 -ksp_type cg -ksp_monitor_short -ksp_rtol 1.e-8 -ksp_converged_reason -petscpartitioner_type simple -dm_mat_type is -attach_mat_nearnullspace \
552: -pc_type mg -pc_mg_galerkin -pc_mg_adapt_interp_coarse_space gdsw -pc_mg_levels 2 -mg_levels_pc_type bjacobi -mg_levels_sub_pc_type icc
554: testset:
555: nsize: 4
556: requires: !single
557: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -petscspace_degree 2 -snes_max_it 2 -ksp_max_it 100 -ksp_type cg -ksp_rtol 1.e-10 -ksp_norm_type unpreconditioned -snes_rtol 1.e-10 -pc_type gamg -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_coarse_eq_limit 10 -pc_gamg_reuse_interpolation true -pc_gamg_aggressive_coarsening 0 -pc_gamg_threshold 0.05 -pc_gamg_threshold_scale .0 -use_mat_nearnullspace true -mg_levels_ksp_max_it 2 -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05 -mg_levels_pc_type jacobi -ksp_monitor_short -ksp_converged_reason -snes_monitor_short -dm_view -petscpartitioner_type simple -pc_gamg_process_eq_limit 20 -pc_gamg_coarse_eq_limit 40
558: output_file: output/ex56_cuda.out
560: test:
561: suffix: cuda
562: requires: cuda
563: args: -dm_mat_type aijcusparse -dm_vec_type cuda
565: test:
566: suffix: hip
567: requires: hip
568: args: -dm_mat_type aijhipsparse -dm_vec_type hip
570: test:
571: suffix: viennacl
572: requires: viennacl
573: args: -dm_mat_type aijviennacl -dm_vec_type viennacl
575: test:
576: suffix: kokkos
577: requires: kokkos_kernels
578: args: -dm_mat_type aijkokkos -dm_vec_type kokkos
579: # Don't run AIJMKL caes with complex scalars because of convergence issues.
580: # Note that we need to test both single and multiple MPI rank cases, because these use different sparse MKL routines to implement the PtAP operation.
581: test:
582: suffix: seqaijmkl
583: nsize: 1
584: requires: defined(PETSC_HAVE_MKL_SPARSE_OPTIMIZE) !single !complex
585: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -petscspace_degree 2 -snes_max_it 2 -ksp_max_it 100 -ksp_type cg -ksp_rtol 1.e-11 -ksp_norm_type unpreconditioned -snes_rtol 1.e-10 -pc_type gamg -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_coarse_eq_limit 1000 -pc_gamg_reuse_interpolation true -pc_gamg_aggressive_coarsening 1 -pc_gamg_threshold 0.05 -pc_gamg_threshold_scale .0 -ksp_converged_reason -use_mat_nearnullspace true -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -pc_gamg_esteig_ksp_type cg -pc_gamg_esteig_ksp_max_it 10 -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.1 -mg_levels_pc_type jacobi -petscpartitioner_type simple -mat_block_size 3 -dm_view -mat_seqaij_type seqaijmkl
586: timeoutfactor: 2
588: test:
589: suffix: mpiaijmkl
590: nsize: 4
591: requires: defined(PETSC_HAVE_MKL_SPARSE_OPTIMIZE) !single !complex
592: args: -dm_plex_dim 3 -dm_plex_simplex 0 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1,1,1 -run_type 1 -dm_plex_box_faces 2,2,1 -petscpartitioner_simple_process_grid 2,2,1 -max_conv_its 2 -petscspace_degree 2 -snes_max_it 2 -ksp_max_it 100 -ksp_type cg -ksp_rtol 1.e-11 -ksp_norm_type unpreconditioned -snes_rtol 1.e-10 -pc_type gamg -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_coarse_eq_limit 1000 -pc_gamg_reuse_interpolation true -pc_gamg_aggressive_coarsening 1 -pc_gamg_threshold 0.05 -pc_gamg_threshold_scale .0 -ksp_converged_reason -use_mat_nearnullspace true -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -pc_gamg_esteig_ksp_type cg -pc_gamg_esteig_ksp_max_it 10 -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.1 -mg_levels_pc_type jacobi -petscpartitioner_type simple -mat_block_size 3 -dm_view -mat_seqaij_type seqaijmkl
593: timeoutfactor: 2
595: TEST*/