Actual source code: ex59.c

  1: static const char help[] = "Tries to solve u`` + u^{2} = f for an easy case and an impossible case.\n\n";

  3: /*
  4:        This example was contributed by Peter Graf to show how SNES fails when given a nonlinear problem with no solution.

  6:        Run with -n 14 to see fail to converge and -n 15 to see convergence

  8:        The option -second_order uses a different discretization of the Neumann boundary condition and always converges

 10: */

 12: #include <petscsnes.h>

 14: PetscBool second_order = PETSC_FALSE;
 15: #define X0DOT -2.0
 16: #define X1    5.0
 17: #define KPOW  2.0
 18: const PetscScalar sperturb = 1.1;

 20: /*
 21:    User-defined routines
 22: */
 23: PetscErrorCode FormJacobian(SNES, Vec, Mat, Mat, void *);
 24: PetscErrorCode FormFunction(SNES, Vec, Vec, void *);

 26: int main(int argc, char **argv)
 27: {
 28:   SNES              snes;    /* SNES context */
 29:   Vec               x, r, F; /* vectors */
 30:   Mat               J;       /* Jacobian */
 31:   PetscInt          it, n = 11, i;
 32:   PetscReal         h, xp = 0.0;
 33:   PetscScalar       v;
 34:   const PetscScalar a = X0DOT;
 35:   const PetscScalar b = X1;
 36:   const PetscScalar k = KPOW;
 37:   PetscScalar       v2;
 38:   PetscScalar      *xx;

 40:   PetscFunctionBeginUser;
 41:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
 42:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-n", &n, NULL));
 43:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-second_order", &second_order, NULL));
 44:   h = 1.0 / (n - 1);

 46:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 47:      Create nonlinear solver context
 48:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 50:   PetscCall(SNESCreate(PETSC_COMM_WORLD, &snes));

 52:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 53:      Create vector data structures; set function evaluation routine
 54:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 56:   PetscCall(VecCreate(PETSC_COMM_SELF, &x));
 57:   PetscCall(VecSetSizes(x, PETSC_DECIDE, n));
 58:   PetscCall(VecSetFromOptions(x));
 59:   PetscCall(VecDuplicate(x, &r));
 60:   PetscCall(VecDuplicate(x, &F));

 62:   PetscCall(SNESSetFunction(snes, r, FormFunction, (void *)F));

 64:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 65:      Create matrix data structures; set Jacobian evaluation routine
 66:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 68:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, n, n, 3, NULL, &J));

 70:   /*
 71:      Note that in this case we create separate matrices for the Jacobian
 72:      and preconditioner matrix.  Both of these are computed in the
 73:      routine FormJacobian()
 74:   */
 75:   /*  PetscCall(SNESSetJacobian(snes,NULL,JPrec,FormJacobian,0)); */
 76:   PetscCall(SNESSetJacobian(snes, J, J, FormJacobian, 0));
 77:   /*  PetscCall(SNESSetJacobian(snes,J,JPrec,FormJacobian,0)); */

 79:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 80:      Customize nonlinear solver; set runtime options
 81:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 83:   PetscCall(SNESSetFromOptions(snes));

 85:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 86:      Initialize application:
 87:      Store right-hand side of PDE and exact solution
 88:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 90:   /* set right-hand side and initial guess to be exact solution of continuim problem */
 91: #define SQR(x) ((x) * (x))
 92:   xp = 0.0;
 93:   for (i = 0; i < n; i++) {
 94:     v = k * (k - 1.) * (b - a) * PetscPowScalar(xp, k - 2.) + SQR(a * xp) + SQR(b - a) * PetscPowScalar(xp, 2. * k) + 2. * a * (b - a) * PetscPowScalar(xp, k + 1.);
 95:     PetscCall(VecSetValues(F, 1, &i, &v, INSERT_VALUES));
 96:     v2 = a * xp + (b - a) * PetscPowScalar(xp, k);
 97:     PetscCall(VecSetValues(x, 1, &i, &v2, INSERT_VALUES));
 98:     xp += h;
 99:   }

101:   /* perturb initial guess */
102:   PetscCall(VecGetArray(x, &xx));
103:   for (i = 0; i < n; i++) {
104:     v2 = xx[i] * sperturb;
105:     PetscCall(VecSetValues(x, 1, &i, &v2, INSERT_VALUES));
106:   }
107:   PetscCall(VecRestoreArray(x, &xx));

109:   PetscCall(SNESSolve(snes, NULL, x));
110:   PetscCall(SNESGetIterationNumber(snes, &it));
111:   PetscCall(PetscPrintf(PETSC_COMM_SELF, "SNES iterations = %" PetscInt_FMT "\n\n", it));

113:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
114:      Free work space.  All PETSc objects should be destroyed when they
115:      are no longer needed.
116:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

118:   PetscCall(VecDestroy(&x));
119:   PetscCall(VecDestroy(&r));
120:   PetscCall(VecDestroy(&F));
121:   PetscCall(MatDestroy(&J));
122:   PetscCall(SNESDestroy(&snes));
123:   PetscCall(PetscFinalize());
124:   return 0;
125: }

127: PetscErrorCode FormFunction(SNES snes, Vec x, Vec f, void *dummy)
128: {
129:   const PetscScalar *xx;
130:   PetscScalar       *ff, *FF, d, d2;
131:   PetscInt           i, n;

133:   PetscFunctionBeginUser;
134:   PetscCall(VecGetArrayRead(x, &xx));
135:   PetscCall(VecGetArray(f, &ff));
136:   PetscCall(VecGetArray((Vec)dummy, &FF));
137:   PetscCall(VecGetSize(x, &n));
138:   d  = (PetscReal)(n - 1);
139:   d2 = d * d;

141:   if (second_order) ff[0] = d * (0.5 * d * (-xx[2] + 4. * xx[1] - 3. * xx[0]) - X0DOT);
142:   else ff[0] = d * (d * (xx[1] - xx[0]) - X0DOT);

144:   for (i = 1; i < n - 1; i++) ff[i] = d2 * (xx[i - 1] - 2. * xx[i] + xx[i + 1]) + xx[i] * xx[i] - FF[i];

146:   ff[n - 1] = d * d * (xx[n - 1] - X1);
147:   PetscCall(VecRestoreArrayRead(x, &xx));
148:   PetscCall(VecRestoreArray(f, &ff));
149:   PetscCall(VecRestoreArray((Vec)dummy, &FF));
150:   PetscFunctionReturn(PETSC_SUCCESS);
151: }

153: PetscErrorCode FormJacobian(SNES snes, Vec x, Mat jac, Mat prejac, void *dummy)
154: {
155:   const PetscScalar *xx;
156:   PetscScalar        A[3], d, d2;
157:   PetscInt           i, n, j[3];

159:   PetscFunctionBeginUser;
160:   PetscCall(VecGetSize(x, &n));
161:   PetscCall(VecGetArrayRead(x, &xx));
162:   d  = (PetscReal)(n - 1);
163:   d2 = d * d;

165:   i = 0;
166:   if (second_order) {
167:     j[0] = 0;
168:     j[1] = 1;
169:     j[2] = 2;
170:     A[0] = -3. * d * d * 0.5;
171:     A[1] = 4. * d * d * 0.5;
172:     A[2] = -1. * d * d * 0.5;
173:     PetscCall(MatSetValues(prejac, 1, &i, 3, j, A, INSERT_VALUES));
174:   } else {
175:     j[0] = 0;
176:     j[1] = 1;
177:     A[0] = -d * d;
178:     A[1] = d * d;
179:     PetscCall(MatSetValues(prejac, 1, &i, 2, j, A, INSERT_VALUES));
180:   }
181:   for (i = 1; i < n - 1; i++) {
182:     j[0] = i - 1;
183:     j[1] = i;
184:     j[2] = i + 1;
185:     A[0] = d2;
186:     A[1] = -2. * d2 + 2. * xx[i];
187:     A[2] = d2;
188:     PetscCall(MatSetValues(prejac, 1, &i, 3, j, A, INSERT_VALUES));
189:   }

191:   i    = n - 1;
192:   A[0] = d * d;
193:   PetscCall(MatSetValues(prejac, 1, &i, 1, &i, &A[0], INSERT_VALUES));

195:   PetscCall(MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY));
196:   PetscCall(MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY));
197:   PetscCall(MatAssemblyBegin(prejac, MAT_FINAL_ASSEMBLY));
198:   PetscCall(MatAssemblyEnd(prejac, MAT_FINAL_ASSEMBLY));

200:   PetscCall(VecRestoreArrayRead(x, &xx));
201:   PetscFunctionReturn(PETSC_SUCCESS);
202: }

204: /*TEST

206:    test:
207:       args: -n 14 -snes_monitor_short -snes_converged_reason
208:       requires: !single

210:    test:
211:       suffix: 2
212:       args: -n 15 -snes_monitor_short -snes_converged_reason
213:       requires: !single

215:    test:
216:       suffix: 3
217:       args: -n 14 -second_order -snes_monitor_short -snes_converged_reason
218:       requires: !single

220: TEST*/