Actual source code: theta.c

  1: /*
  2:   Code for timestepping with implicit Theta method
  3: */
  4: #include <petsc/private/tsimpl.h>
  5: #include <petscsnes.h>
  6: #include <petscdm.h>
  7: #include <petscmat.h>

  9: typedef struct {
 10:   /* context for time stepping */
 11:   PetscReal    stage_time;
 12:   Vec          Stages[2];   /* Storage for stage solutions */
 13:   Vec          X0, X, Xdot; /* Storage for u^n, u^n + dt a_{11} k_1, and time derivative u^{n+1}_t */
 14:   Vec          affine;      /* Affine vector needed for residual at beginning of step in endpoint formulation */
 15:   PetscReal    Theta;
 16:   PetscReal    shift; /* Shift parameter for SNES Jacobian, used by forward, TLM and adjoint */
 17:   PetscInt     order;
 18:   PetscBool    endpoint;
 19:   PetscBool    extrapolate;
 20:   TSStepStatus status;
 21:   Vec          VecCostIntegral0; /* Backup for roll-backs due to events, used by cost integral */
 22:   PetscReal    ptime0;           /* Backup for ts->ptime, the start time of current time step, used by TLM and cost integral */
 23:   PetscReal    time_step0;       /* Backup for ts->timestep, the step size of current time step, used by TLM and cost integral*/

 25:   /* context for sensitivity analysis */
 26:   PetscInt num_tlm;               /* Total number of tangent linear equations */
 27:   Vec     *VecsDeltaLam;          /* Increment of the adjoint sensitivity w.r.t IC at stage */
 28:   Vec     *VecsDeltaMu;           /* Increment of the adjoint sensitivity w.r.t P at stage */
 29:   Vec     *VecsSensiTemp;         /* Vector to be multiplied with Jacobian transpose */
 30:   Mat      MatFwdStages[2];       /* TLM Stages */
 31:   Mat      MatDeltaFwdSensip;     /* Increment of the forward sensitivity at stage */
 32:   Vec      VecDeltaFwdSensipCol;  /* Working vector for holding one column of the sensitivity matrix */
 33:   Mat      MatFwdSensip0;         /* backup for roll-backs due to events */
 34:   Mat      MatIntegralSensipTemp; /* Working vector for forward integral sensitivity */
 35:   Mat      MatIntegralSensip0;    /* backup for roll-backs due to events */
 36:   Vec     *VecsDeltaLam2;         /* Increment of the 2nd-order adjoint sensitivity w.r.t IC at stage */
 37:   Vec     *VecsDeltaMu2;          /* Increment of the 2nd-order adjoint sensitivity w.r.t P at stage */
 38:   Vec     *VecsSensi2Temp;        /* Working vectors that holds the residual for the second-order adjoint */
 39:   Vec     *VecsAffine;            /* Working vectors to store residuals */
 40:   /* context for error estimation */
 41:   Vec vec_sol_prev;
 42:   Vec vec_lte_work;
 43: } TS_Theta;

 45: static PetscErrorCode TSThetaGetX0AndXdot(TS ts, DM dm, Vec *X0, Vec *Xdot)
 46: {
 47:   TS_Theta *th = (TS_Theta *)ts->data;

 49:   PetscFunctionBegin;
 50:   if (X0) {
 51:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSTheta_X0", X0));
 52:     else *X0 = ts->vec_sol;
 53:   }
 54:   if (Xdot) {
 55:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSTheta_Xdot", Xdot));
 56:     else *Xdot = th->Xdot;
 57:   }
 58:   PetscFunctionReturn(PETSC_SUCCESS);
 59: }

 61: static PetscErrorCode TSThetaRestoreX0AndXdot(TS ts, DM dm, Vec *X0, Vec *Xdot)
 62: {
 63:   PetscFunctionBegin;
 64:   if (X0) {
 65:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSTheta_X0", X0));
 66:   }
 67:   if (Xdot) {
 68:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSTheta_Xdot", Xdot));
 69:   }
 70:   PetscFunctionReturn(PETSC_SUCCESS);
 71: }

 73: static PetscErrorCode DMCoarsenHook_TSTheta(DM fine, DM coarse, void *ctx)
 74: {
 75:   PetscFunctionBegin;
 76:   PetscFunctionReturn(PETSC_SUCCESS);
 77: }

 79: static PetscErrorCode DMRestrictHook_TSTheta(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
 80: {
 81:   TS  ts = (TS)ctx;
 82:   Vec X0, Xdot, X0_c, Xdot_c;

 84:   PetscFunctionBegin;
 85:   PetscCall(TSThetaGetX0AndXdot(ts, fine, &X0, &Xdot));
 86:   PetscCall(TSThetaGetX0AndXdot(ts, coarse, &X0_c, &Xdot_c));
 87:   PetscCall(MatRestrict(restrct, X0, X0_c));
 88:   PetscCall(MatRestrict(restrct, Xdot, Xdot_c));
 89:   PetscCall(VecPointwiseMult(X0_c, rscale, X0_c));
 90:   PetscCall(VecPointwiseMult(Xdot_c, rscale, Xdot_c));
 91:   PetscCall(TSThetaRestoreX0AndXdot(ts, fine, &X0, &Xdot));
 92:   PetscCall(TSThetaRestoreX0AndXdot(ts, coarse, &X0_c, &Xdot_c));
 93:   PetscFunctionReturn(PETSC_SUCCESS);
 94: }

 96: static PetscErrorCode DMSubDomainHook_TSTheta(DM dm, DM subdm, void *ctx)
 97: {
 98:   PetscFunctionBegin;
 99:   PetscFunctionReturn(PETSC_SUCCESS);
100: }

102: static PetscErrorCode DMSubDomainRestrictHook_TSTheta(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
103: {
104:   TS  ts = (TS)ctx;
105:   Vec X0, Xdot, X0_sub, Xdot_sub;

107:   PetscFunctionBegin;
108:   PetscCall(TSThetaGetX0AndXdot(ts, dm, &X0, &Xdot));
109:   PetscCall(TSThetaGetX0AndXdot(ts, subdm, &X0_sub, &Xdot_sub));

111:   PetscCall(VecScatterBegin(gscat, X0, X0_sub, INSERT_VALUES, SCATTER_FORWARD));
112:   PetscCall(VecScatterEnd(gscat, X0, X0_sub, INSERT_VALUES, SCATTER_FORWARD));

114:   PetscCall(VecScatterBegin(gscat, Xdot, Xdot_sub, INSERT_VALUES, SCATTER_FORWARD));
115:   PetscCall(VecScatterEnd(gscat, Xdot, Xdot_sub, INSERT_VALUES, SCATTER_FORWARD));

117:   PetscCall(TSThetaRestoreX0AndXdot(ts, dm, &X0, &Xdot));
118:   PetscCall(TSThetaRestoreX0AndXdot(ts, subdm, &X0_sub, &Xdot_sub));
119:   PetscFunctionReturn(PETSC_SUCCESS);
120: }

122: static PetscErrorCode TSThetaEvaluateCostIntegral(TS ts)
123: {
124:   TS_Theta *th     = (TS_Theta *)ts->data;
125:   TS        quadts = ts->quadraturets;

127:   PetscFunctionBegin;
128:   if (th->endpoint) {
129:     /* Evolve ts->vec_costintegral to compute integrals */
130:     if (th->Theta != 1.0) {
131:       PetscCall(TSComputeRHSFunction(quadts, th->ptime0, th->X0, ts->vec_costintegrand));
132:       PetscCall(VecAXPY(quadts->vec_sol, th->time_step0 * (1.0 - th->Theta), ts->vec_costintegrand));
133:     }
134:     PetscCall(TSComputeRHSFunction(quadts, ts->ptime, ts->vec_sol, ts->vec_costintegrand));
135:     PetscCall(VecAXPY(quadts->vec_sol, th->time_step0 * th->Theta, ts->vec_costintegrand));
136:   } else {
137:     PetscCall(TSComputeRHSFunction(quadts, th->stage_time, th->X, ts->vec_costintegrand));
138:     PetscCall(VecAXPY(quadts->vec_sol, th->time_step0, ts->vec_costintegrand));
139:   }
140:   PetscFunctionReturn(PETSC_SUCCESS);
141: }

143: static PetscErrorCode TSForwardCostIntegral_Theta(TS ts)
144: {
145:   TS_Theta *th     = (TS_Theta *)ts->data;
146:   TS        quadts = ts->quadraturets;

148:   PetscFunctionBegin;
149:   /* backup cost integral */
150:   PetscCall(VecCopy(quadts->vec_sol, th->VecCostIntegral0));
151:   PetscCall(TSThetaEvaluateCostIntegral(ts));
152:   PetscFunctionReturn(PETSC_SUCCESS);
153: }

155: static PetscErrorCode TSAdjointCostIntegral_Theta(TS ts)
156: {
157:   TS_Theta *th = (TS_Theta *)ts->data;

159:   PetscFunctionBegin;
160:   /* Like TSForwardCostIntegral(), the adjoint cost integral evaluation relies on ptime0 and time_step0. */
161:   th->ptime0     = ts->ptime + ts->time_step;
162:   th->time_step0 = -ts->time_step;
163:   PetscCall(TSThetaEvaluateCostIntegral(ts));
164:   PetscFunctionReturn(PETSC_SUCCESS);
165: }

167: static PetscErrorCode TSTheta_SNESSolve(TS ts, Vec b, Vec x)
168: {
169:   PetscInt nits, lits;

171:   PetscFunctionBegin;
172:   PetscCall(SNESSolve(ts->snes, b, x));
173:   PetscCall(SNESGetIterationNumber(ts->snes, &nits));
174:   PetscCall(SNESGetLinearSolveIterations(ts->snes, &lits));
175:   ts->snes_its += nits;
176:   ts->ksp_its += lits;
177:   PetscFunctionReturn(PETSC_SUCCESS);
178: }

180: static PetscErrorCode TSResizeRegister_Theta(TS ts, PetscBool reg)
181: {
182:   TS_Theta *th = (TS_Theta *)ts->data;

184:   PetscFunctionBegin;
185:   if (reg) {
186:     PetscCall(TSResizeRegisterVec(ts, "ts:theta:sol_prev", th->vec_sol_prev));
187:     PetscCall(TSResizeRegisterVec(ts, "ts:theta:X0", th->X0));
188:   } else {
189:     PetscCall(TSResizeRetrieveVec(ts, "ts:theta:sol_prev", &th->vec_sol_prev));
190:     PetscCall(PetscObjectReference((PetscObject)th->vec_sol_prev));
191:     PetscCall(TSResizeRetrieveVec(ts, "ts:theta:X0", &th->X0));
192:     PetscCall(PetscObjectReference((PetscObject)th->X0));
193:   }
194:   PetscFunctionReturn(PETSC_SUCCESS);
195: }

197: static PetscErrorCode TSStep_Theta(TS ts)
198: {
199:   TS_Theta *th         = (TS_Theta *)ts->data;
200:   PetscInt  rejections = 0;
201:   PetscBool stageok, accept = PETSC_TRUE;
202:   PetscReal next_time_step = ts->time_step;

204:   PetscFunctionBegin;
205:   if (!ts->steprollback) {
206:     if (th->vec_sol_prev) PetscCall(VecCopy(th->X0, th->vec_sol_prev));
207:     PetscCall(VecCopy(ts->vec_sol, th->X0));
208:   }

210:   th->status = TS_STEP_INCOMPLETE;
211:   while (!ts->reason && th->status != TS_STEP_COMPLETE) {
212:     th->shift      = 1 / (th->Theta * ts->time_step);
213:     th->stage_time = ts->ptime + (th->endpoint ? (PetscReal)1 : th->Theta) * ts->time_step;
214:     PetscCall(VecCopy(th->X0, th->X));
215:     if (th->extrapolate && !ts->steprestart) PetscCall(VecAXPY(th->X, 1 / th->shift, th->Xdot));
216:     if (th->endpoint) { /* This formulation assumes linear time-independent mass matrix */
217:       if (!th->affine) PetscCall(VecDuplicate(ts->vec_sol, &th->affine));
218:       PetscCall(VecZeroEntries(th->Xdot));
219:       PetscCall(TSComputeIFunction(ts, ts->ptime, th->X0, th->Xdot, th->affine, PETSC_FALSE));
220:       PetscCall(VecScale(th->affine, (th->Theta - 1) / th->Theta));
221:     }
222:     PetscCall(TSPreStage(ts, th->stage_time));
223:     PetscCall(TSTheta_SNESSolve(ts, th->endpoint ? th->affine : NULL, th->X));
224:     PetscCall(TSPostStage(ts, th->stage_time, 0, &th->X));
225:     PetscCall(TSAdaptCheckStage(ts->adapt, ts, th->stage_time, th->X, &stageok));
226:     if (!stageok) goto reject_step;

228:     if (th->endpoint) {
229:       PetscCall(VecCopy(th->X, ts->vec_sol));
230:     } else {
231:       PetscCall(VecAXPBYPCZ(th->Xdot, -th->shift, th->shift, 0, th->X0, th->X)); /* th->Xdot is needed by TSInterpolate_Theta */
232:       if (th->Theta == 1.0) PetscCall(VecCopy(th->X, ts->vec_sol));              /* BEULER, stage already checked */
233:       else {
234:         PetscCall(VecAXPY(ts->vec_sol, ts->time_step, th->Xdot));
235:         PetscCall(TSAdaptCheckStage(ts->adapt, ts, ts->ptime + ts->time_step, ts->vec_sol, &stageok));
236:         if (!stageok) {
237:           PetscCall(VecCopy(th->X0, ts->vec_sol));
238:           goto reject_step;
239:         }
240:       }
241:     }

243:     th->status = TS_STEP_PENDING;
244:     PetscCall(TSAdaptChoose(ts->adapt, ts, ts->time_step, NULL, &next_time_step, &accept));
245:     th->status = accept ? TS_STEP_COMPLETE : TS_STEP_INCOMPLETE;
246:     if (!accept) {
247:       PetscCall(VecCopy(th->X0, ts->vec_sol));
248:       ts->time_step = next_time_step;
249:       goto reject_step;
250:     }

252:     if (ts->forward_solve || ts->costintegralfwd) { /* Save the info for the later use in cost integral evaluation */
253:       th->ptime0     = ts->ptime;
254:       th->time_step0 = ts->time_step;
255:     }
256:     ts->ptime += ts->time_step;
257:     ts->time_step = next_time_step;
258:     break;

260:   reject_step:
261:     ts->reject++;
262:     accept = PETSC_FALSE;
263:     if (!ts->reason && ++rejections > ts->max_reject && ts->max_reject >= 0) {
264:       ts->reason = TS_DIVERGED_STEP_REJECTED;
265:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", step rejections %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, rejections));
266:     }
267:   }
268:   PetscFunctionReturn(PETSC_SUCCESS);
269: }

271: static PetscErrorCode TSAdjointStepBEuler_Private(TS ts)
272: {
273:   TS_Theta      *th           = (TS_Theta *)ts->data;
274:   TS             quadts       = ts->quadraturets;
275:   Vec           *VecsDeltaLam = th->VecsDeltaLam, *VecsDeltaMu = th->VecsDeltaMu, *VecsSensiTemp = th->VecsSensiTemp;
276:   Vec           *VecsDeltaLam2 = th->VecsDeltaLam2, *VecsDeltaMu2 = th->VecsDeltaMu2, *VecsSensi2Temp = th->VecsSensi2Temp;
277:   PetscInt       nadj;
278:   Mat            J, Jpre, quadJ = NULL, quadJp = NULL;
279:   KSP            ksp;
280:   PetscScalar   *xarr;
281:   TSEquationType eqtype;
282:   PetscBool      isexplicitode = PETSC_FALSE;
283:   PetscReal      adjoint_time_step;

285:   PetscFunctionBegin;
286:   PetscCall(TSGetEquationType(ts, &eqtype));
287:   if (eqtype == TS_EQ_ODE_EXPLICIT) {
288:     isexplicitode = PETSC_TRUE;
289:     VecsDeltaLam  = ts->vecs_sensi;
290:     VecsDeltaLam2 = ts->vecs_sensi2;
291:   }
292:   th->status = TS_STEP_INCOMPLETE;
293:   PetscCall(SNESGetKSP(ts->snes, &ksp));
294:   PetscCall(TSGetIJacobian(ts, &J, &Jpre, NULL, NULL));
295:   if (quadts) {
296:     PetscCall(TSGetRHSJacobian(quadts, &quadJ, NULL, NULL, NULL));
297:     PetscCall(TSGetRHSJacobianP(quadts, &quadJp, NULL, NULL));
298:   }

300:   th->stage_time    = ts->ptime;
301:   adjoint_time_step = -ts->time_step; /* always positive since time_step is negative */

303:   /* Build RHS for first-order adjoint lambda_{n+1}/h + r_u^T(n+1) */
304:   if (quadts) PetscCall(TSComputeRHSJacobian(quadts, th->stage_time, ts->vec_sol, quadJ, NULL));

306:   for (nadj = 0; nadj < ts->numcost; nadj++) {
307:     PetscCall(VecCopy(ts->vecs_sensi[nadj], VecsSensiTemp[nadj]));
308:     PetscCall(VecScale(VecsSensiTemp[nadj], 1. / adjoint_time_step)); /* lambda_{n+1}/h */
309:     if (quadJ) {
310:       PetscCall(MatDenseGetColumn(quadJ, nadj, &xarr));
311:       PetscCall(VecPlaceArray(ts->vec_drdu_col, xarr));
312:       PetscCall(VecAXPY(VecsSensiTemp[nadj], 1., ts->vec_drdu_col));
313:       PetscCall(VecResetArray(ts->vec_drdu_col));
314:       PetscCall(MatDenseRestoreColumn(quadJ, &xarr));
315:     }
316:   }

318:   /* Build LHS for first-order adjoint */
319:   th->shift = 1. / adjoint_time_step;
320:   PetscCall(TSComputeSNESJacobian(ts, ts->vec_sol, J, Jpre));
321:   PetscCall(KSPSetOperators(ksp, J, Jpre));

323:   /* Solve stage equation LHS*lambda_s = RHS for first-order adjoint */
324:   for (nadj = 0; nadj < ts->numcost; nadj++) {
325:     KSPConvergedReason kspreason;
326:     PetscCall(KSPSolveTranspose(ksp, VecsSensiTemp[nadj], VecsDeltaLam[nadj]));
327:     PetscCall(KSPGetConvergedReason(ksp, &kspreason));
328:     if (kspreason < 0) {
329:       ts->reason = TSADJOINT_DIVERGED_LINEAR_SOLVE;
330:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", %" PetscInt_FMT "th cost function, transposed linear solve fails, stopping 1st-order adjoint solve\n", ts->steps, nadj));
331:     }
332:   }

334:   if (ts->vecs_sensi2) { /* U_{n+1} */
335:     /* Get w1 at t_{n+1} from TLM matrix */
336:     PetscCall(MatDenseGetColumn(ts->mat_sensip, 0, &xarr));
337:     PetscCall(VecPlaceArray(ts->vec_sensip_col, xarr));
338:     /* lambda_s^T F_UU w_1 */
339:     PetscCall(TSComputeIHessianProductFunctionUU(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_sensip_col, ts->vecs_fuu));
340:     /* lambda_s^T F_UP w_2 */
341:     PetscCall(TSComputeIHessianProductFunctionUP(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_dir, ts->vecs_fup));
342:     for (nadj = 0; nadj < ts->numcost; nadj++) { /* compute the residual */
343:       PetscCall(VecCopy(ts->vecs_sensi2[nadj], VecsSensi2Temp[nadj]));
344:       PetscCall(VecScale(VecsSensi2Temp[nadj], 1. / adjoint_time_step));
345:       PetscCall(VecAXPY(VecsSensi2Temp[nadj], -1., ts->vecs_fuu[nadj]));
346:       if (ts->vecs_fup) PetscCall(VecAXPY(VecsSensi2Temp[nadj], -1., ts->vecs_fup[nadj]));
347:     }
348:     /* Solve stage equation LHS X = RHS for second-order adjoint */
349:     for (nadj = 0; nadj < ts->numcost; nadj++) {
350:       KSPConvergedReason kspreason;
351:       PetscCall(KSPSolveTranspose(ksp, VecsSensi2Temp[nadj], VecsDeltaLam2[nadj]));
352:       PetscCall(KSPGetConvergedReason(ksp, &kspreason));
353:       if (kspreason < 0) {
354:         ts->reason = TSADJOINT_DIVERGED_LINEAR_SOLVE;
355:         PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", %" PetscInt_FMT "th cost function, transposed linear solve fails, stopping 2nd-order adjoint solve\n", ts->steps, nadj));
356:       }
357:     }
358:   }

360:   /* Update sensitivities, and evaluate integrals if there is any */
361:   if (!isexplicitode) {
362:     th->shift = 0.0;
363:     PetscCall(TSComputeSNESJacobian(ts, ts->vec_sol, J, Jpre));
364:     PetscCall(KSPSetOperators(ksp, J, Jpre));
365:     for (nadj = 0; nadj < ts->numcost; nadj++) {
366:       /* Add f_U \lambda_s to the original RHS */
367:       PetscCall(VecScale(VecsSensiTemp[nadj], -1.));
368:       PetscCall(MatMultTransposeAdd(J, VecsDeltaLam[nadj], VecsSensiTemp[nadj], VecsSensiTemp[nadj]));
369:       PetscCall(VecScale(VecsSensiTemp[nadj], -adjoint_time_step));
370:       PetscCall(VecCopy(VecsSensiTemp[nadj], ts->vecs_sensi[nadj]));
371:       if (ts->vecs_sensi2) {
372:         PetscCall(MatMultTransposeAdd(J, VecsDeltaLam2[nadj], VecsSensi2Temp[nadj], VecsSensi2Temp[nadj]));
373:         PetscCall(VecScale(VecsSensi2Temp[nadj], -adjoint_time_step));
374:         PetscCall(VecCopy(VecsSensi2Temp[nadj], ts->vecs_sensi2[nadj]));
375:       }
376:     }
377:   }
378:   if (ts->vecs_sensip) {
379:     PetscCall(VecAXPBYPCZ(th->Xdot, -1. / adjoint_time_step, 1.0 / adjoint_time_step, 0, th->X0, ts->vec_sol));
380:     PetscCall(TSComputeIJacobianP(ts, th->stage_time, ts->vec_sol, th->Xdot, 1. / adjoint_time_step, ts->Jacp, PETSC_FALSE)); /* get -f_p */
381:     if (quadts) PetscCall(TSComputeRHSJacobianP(quadts, th->stage_time, ts->vec_sol, quadJp));
382:     if (ts->vecs_sensi2p) {
383:       /* lambda_s^T F_PU w_1 */
384:       PetscCall(TSComputeIHessianProductFunctionPU(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_sensip_col, ts->vecs_fpu));
385:       /* lambda_s^T F_PP w_2 */
386:       PetscCall(TSComputeIHessianProductFunctionPP(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_dir, ts->vecs_fpp));
387:     }

389:     for (nadj = 0; nadj < ts->numcost; nadj++) {
390:       PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam[nadj], VecsDeltaMu[nadj]));
391:       PetscCall(VecAXPY(ts->vecs_sensip[nadj], -adjoint_time_step, VecsDeltaMu[nadj]));
392:       if (quadJp) {
393:         PetscCall(MatDenseGetColumn(quadJp, nadj, &xarr));
394:         PetscCall(VecPlaceArray(ts->vec_drdp_col, xarr));
395:         PetscCall(VecAXPY(ts->vecs_sensip[nadj], adjoint_time_step, ts->vec_drdp_col));
396:         PetscCall(VecResetArray(ts->vec_drdp_col));
397:         PetscCall(MatDenseRestoreColumn(quadJp, &xarr));
398:       }
399:       if (ts->vecs_sensi2p) {
400:         PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam2[nadj], VecsDeltaMu2[nadj]));
401:         PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step, VecsDeltaMu2[nadj]));
402:         if (ts->vecs_fpu) PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step, ts->vecs_fpu[nadj]));
403:         if (ts->vecs_fpp) PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step, ts->vecs_fpp[nadj]));
404:       }
405:     }
406:   }

408:   if (ts->vecs_sensi2) {
409:     PetscCall(VecResetArray(ts->vec_sensip_col));
410:     PetscCall(MatDenseRestoreColumn(ts->mat_sensip, &xarr));
411:   }
412:   th->status = TS_STEP_COMPLETE;
413:   PetscFunctionReturn(PETSC_SUCCESS);
414: }

416: static PetscErrorCode TSAdjointStep_Theta(TS ts)
417: {
418:   TS_Theta    *th           = (TS_Theta *)ts->data;
419:   TS           quadts       = ts->quadraturets;
420:   Vec         *VecsDeltaLam = th->VecsDeltaLam, *VecsDeltaMu = th->VecsDeltaMu, *VecsSensiTemp = th->VecsSensiTemp;
421:   Vec         *VecsDeltaLam2 = th->VecsDeltaLam2, *VecsDeltaMu2 = th->VecsDeltaMu2, *VecsSensi2Temp = th->VecsSensi2Temp;
422:   PetscInt     nadj;
423:   Mat          J, Jpre, quadJ = NULL, quadJp = NULL;
424:   KSP          ksp;
425:   PetscScalar *xarr;
426:   PetscReal    adjoint_time_step;
427:   PetscReal    adjoint_ptime; /* end time of the adjoint time step (ts->ptime is the start time, usually ts->ptime is larger than adjoint_ptime) */

429:   PetscFunctionBegin;
430:   if (th->Theta == 1.) {
431:     PetscCall(TSAdjointStepBEuler_Private(ts));
432:     PetscFunctionReturn(PETSC_SUCCESS);
433:   }
434:   th->status = TS_STEP_INCOMPLETE;
435:   PetscCall(SNESGetKSP(ts->snes, &ksp));
436:   PetscCall(TSGetIJacobian(ts, &J, &Jpre, NULL, NULL));
437:   if (quadts) {
438:     PetscCall(TSGetRHSJacobian(quadts, &quadJ, NULL, NULL, NULL));
439:     PetscCall(TSGetRHSJacobianP(quadts, &quadJp, NULL, NULL));
440:   }
441:   /* If endpoint=1, th->ptime and th->X0 will be used; if endpoint=0, th->stage_time and th->X will be used. */
442:   th->stage_time    = th->endpoint ? ts->ptime : (ts->ptime + (1. - th->Theta) * ts->time_step);
443:   adjoint_ptime     = ts->ptime + ts->time_step;
444:   adjoint_time_step = -ts->time_step; /* always positive since time_step is negative */

446:   if (!th->endpoint) {
447:     /* recover th->X0 using vec_sol and the stage value th->X */
448:     PetscCall(VecAXPBYPCZ(th->X0, 1.0 / (1.0 - th->Theta), th->Theta / (th->Theta - 1.0), 0, th->X, ts->vec_sol));
449:   }

451:   /* Build RHS for first-order adjoint */
452:   /* Cost function has an integral term */
453:   if (quadts) {
454:     if (th->endpoint) {
455:       PetscCall(TSComputeRHSJacobian(quadts, th->stage_time, ts->vec_sol, quadJ, NULL));
456:     } else {
457:       PetscCall(TSComputeRHSJacobian(quadts, th->stage_time, th->X, quadJ, NULL));
458:     }
459:   }

461:   for (nadj = 0; nadj < ts->numcost; nadj++) {
462:     PetscCall(VecCopy(ts->vecs_sensi[nadj], VecsSensiTemp[nadj]));
463:     PetscCall(VecScale(VecsSensiTemp[nadj], 1. / (th->Theta * adjoint_time_step)));
464:     if (quadJ) {
465:       PetscCall(MatDenseGetColumn(quadJ, nadj, &xarr));
466:       PetscCall(VecPlaceArray(ts->vec_drdu_col, xarr));
467:       PetscCall(VecAXPY(VecsSensiTemp[nadj], 1., ts->vec_drdu_col));
468:       PetscCall(VecResetArray(ts->vec_drdu_col));
469:       PetscCall(MatDenseRestoreColumn(quadJ, &xarr));
470:     }
471:   }

473:   /* Build LHS for first-order adjoint */
474:   th->shift = 1. / (th->Theta * adjoint_time_step);
475:   if (th->endpoint) {
476:     PetscCall(TSComputeSNESJacobian(ts, ts->vec_sol, J, Jpre));
477:   } else {
478:     PetscCall(TSComputeSNESJacobian(ts, th->X, J, Jpre));
479:   }
480:   PetscCall(KSPSetOperators(ksp, J, Jpre));

482:   /* Solve stage equation LHS*lambda_s = RHS for first-order adjoint */
483:   for (nadj = 0; nadj < ts->numcost; nadj++) {
484:     KSPConvergedReason kspreason;
485:     PetscCall(KSPSolveTranspose(ksp, VecsSensiTemp[nadj], VecsDeltaLam[nadj]));
486:     PetscCall(KSPGetConvergedReason(ksp, &kspreason));
487:     if (kspreason < 0) {
488:       ts->reason = TSADJOINT_DIVERGED_LINEAR_SOLVE;
489:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", %" PetscInt_FMT "th cost function, transposed linear solve fails, stopping 1st-order adjoint solve\n", ts->steps, nadj));
490:     }
491:   }

493:   /* Second-order adjoint */
494:   if (ts->vecs_sensi2) { /* U_{n+1} */
495:     PetscCheck(th->endpoint, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Operation not implemented in TS_Theta");
496:     /* Get w1 at t_{n+1} from TLM matrix */
497:     PetscCall(MatDenseGetColumn(ts->mat_sensip, 0, &xarr));
498:     PetscCall(VecPlaceArray(ts->vec_sensip_col, xarr));
499:     /* lambda_s^T F_UU w_1 */
500:     PetscCall(TSComputeIHessianProductFunctionUU(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_sensip_col, ts->vecs_fuu));
501:     PetscCall(VecResetArray(ts->vec_sensip_col));
502:     PetscCall(MatDenseRestoreColumn(ts->mat_sensip, &xarr));
503:     /* lambda_s^T F_UP w_2 */
504:     PetscCall(TSComputeIHessianProductFunctionUP(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_dir, ts->vecs_fup));
505:     for (nadj = 0; nadj < ts->numcost; nadj++) { /* compute the residual */
506:       PetscCall(VecCopy(ts->vecs_sensi2[nadj], VecsSensi2Temp[nadj]));
507:       PetscCall(VecScale(VecsSensi2Temp[nadj], th->shift));
508:       PetscCall(VecAXPY(VecsSensi2Temp[nadj], -1., ts->vecs_fuu[nadj]));
509:       if (ts->vecs_fup) PetscCall(VecAXPY(VecsSensi2Temp[nadj], -1., ts->vecs_fup[nadj]));
510:     }
511:     /* Solve stage equation LHS X = RHS for second-order adjoint */
512:     for (nadj = 0; nadj < ts->numcost; nadj++) {
513:       KSPConvergedReason kspreason;
514:       PetscCall(KSPSolveTranspose(ksp, VecsSensi2Temp[nadj], VecsDeltaLam2[nadj]));
515:       PetscCall(KSPGetConvergedReason(ksp, &kspreason));
516:       if (kspreason < 0) {
517:         ts->reason = TSADJOINT_DIVERGED_LINEAR_SOLVE;
518:         PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", %" PetscInt_FMT "th cost function, transposed linear solve fails, stopping 2nd-order adjoint solve\n", ts->steps, nadj));
519:       }
520:     }
521:   }

523:   /* Update sensitivities, and evaluate integrals if there is any */
524:   if (th->endpoint) { /* two-stage Theta methods with th->Theta!=1, th->Theta==1 leads to BEuler */
525:     th->shift      = 1. / ((th->Theta - 1.) * adjoint_time_step);
526:     th->stage_time = adjoint_ptime;
527:     PetscCall(TSComputeSNESJacobian(ts, th->X0, J, Jpre));
528:     PetscCall(KSPSetOperators(ksp, J, Jpre));
529:     /* R_U at t_n */
530:     if (quadts) PetscCall(TSComputeRHSJacobian(quadts, adjoint_ptime, th->X0, quadJ, NULL));
531:     for (nadj = 0; nadj < ts->numcost; nadj++) {
532:       PetscCall(MatMultTranspose(J, VecsDeltaLam[nadj], ts->vecs_sensi[nadj]));
533:       if (quadJ) {
534:         PetscCall(MatDenseGetColumn(quadJ, nadj, &xarr));
535:         PetscCall(VecPlaceArray(ts->vec_drdu_col, xarr));
536:         PetscCall(VecAXPY(ts->vecs_sensi[nadj], -1., ts->vec_drdu_col));
537:         PetscCall(VecResetArray(ts->vec_drdu_col));
538:         PetscCall(MatDenseRestoreColumn(quadJ, &xarr));
539:       }
540:       PetscCall(VecScale(ts->vecs_sensi[nadj], 1. / th->shift));
541:     }

543:     /* Second-order adjoint */
544:     if (ts->vecs_sensi2) { /* U_n */
545:       /* Get w1 at t_n from TLM matrix */
546:       PetscCall(MatDenseGetColumn(th->MatFwdSensip0, 0, &xarr));
547:       PetscCall(VecPlaceArray(ts->vec_sensip_col, xarr));
548:       /* lambda_s^T F_UU w_1 */
549:       PetscCall(TSComputeIHessianProductFunctionUU(ts, adjoint_ptime, th->X0, VecsDeltaLam, ts->vec_sensip_col, ts->vecs_fuu));
550:       PetscCall(VecResetArray(ts->vec_sensip_col));
551:       PetscCall(MatDenseRestoreColumn(th->MatFwdSensip0, &xarr));
552:       /* lambda_s^T F_UU w_2 */
553:       PetscCall(TSComputeIHessianProductFunctionUP(ts, adjoint_ptime, th->X0, VecsDeltaLam, ts->vec_dir, ts->vecs_fup));
554:       for (nadj = 0; nadj < ts->numcost; nadj++) {
555:         /* M^T Lambda_s + h(1-theta) F_U^T Lambda_s + h(1-theta) lambda_s^T F_UU w_1 + lambda_s^T F_UP w_2  */
556:         PetscCall(MatMultTranspose(J, VecsDeltaLam2[nadj], ts->vecs_sensi2[nadj]));
557:         PetscCall(VecAXPY(ts->vecs_sensi2[nadj], 1., ts->vecs_fuu[nadj]));
558:         if (ts->vecs_fup) PetscCall(VecAXPY(ts->vecs_sensi2[nadj], 1., ts->vecs_fup[nadj]));
559:         PetscCall(VecScale(ts->vecs_sensi2[nadj], 1. / th->shift));
560:       }
561:     }

563:     th->stage_time = ts->ptime; /* recover the old value */

565:     if (ts->vecs_sensip) { /* sensitivities wrt parameters */
566:       /* U_{n+1} */
567:       th->shift = 1.0 / (adjoint_time_step * th->Theta);
568:       PetscCall(VecAXPBYPCZ(th->Xdot, -th->shift, th->shift, 0, th->X0, ts->vec_sol));
569:       PetscCall(TSComputeIJacobianP(ts, th->stage_time, ts->vec_sol, th->Xdot, -1. / (th->Theta * adjoint_time_step), ts->Jacp, PETSC_FALSE));
570:       if (quadts) PetscCall(TSComputeRHSJacobianP(quadts, th->stage_time, ts->vec_sol, quadJp));
571:       for (nadj = 0; nadj < ts->numcost; nadj++) {
572:         PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam[nadj], VecsDeltaMu[nadj]));
573:         PetscCall(VecAXPY(ts->vecs_sensip[nadj], -adjoint_time_step * th->Theta, VecsDeltaMu[nadj]));
574:         if (quadJp) {
575:           PetscCall(MatDenseGetColumn(quadJp, nadj, &xarr));
576:           PetscCall(VecPlaceArray(ts->vec_drdp_col, xarr));
577:           PetscCall(VecAXPY(ts->vecs_sensip[nadj], adjoint_time_step * th->Theta, ts->vec_drdp_col));
578:           PetscCall(VecResetArray(ts->vec_drdp_col));
579:           PetscCall(MatDenseRestoreColumn(quadJp, &xarr));
580:         }
581:       }
582:       if (ts->vecs_sensi2p) { /* second-order */
583:         /* Get w1 at t_{n+1} from TLM matrix */
584:         PetscCall(MatDenseGetColumn(ts->mat_sensip, 0, &xarr));
585:         PetscCall(VecPlaceArray(ts->vec_sensip_col, xarr));
586:         /* lambda_s^T F_PU w_1 */
587:         PetscCall(TSComputeIHessianProductFunctionPU(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_sensip_col, ts->vecs_fpu));
588:         PetscCall(VecResetArray(ts->vec_sensip_col));
589:         PetscCall(MatDenseRestoreColumn(ts->mat_sensip, &xarr));

591:         /* lambda_s^T F_PP w_2 */
592:         PetscCall(TSComputeIHessianProductFunctionPP(ts, th->stage_time, ts->vec_sol, VecsDeltaLam, ts->vec_dir, ts->vecs_fpp));
593:         for (nadj = 0; nadj < ts->numcost; nadj++) {
594:           /* Mu2 <- Mu2 + h theta F_P^T Lambda_s + h theta (lambda_s^T F_UU w_1 + lambda_s^T F_UP w_2)  */
595:           PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam2[nadj], VecsDeltaMu2[nadj]));
596:           PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step * th->Theta, VecsDeltaMu2[nadj]));
597:           if (ts->vecs_fpu) PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step * th->Theta, ts->vecs_fpu[nadj]));
598:           if (ts->vecs_fpp) PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step * th->Theta, ts->vecs_fpp[nadj]));
599:         }
600:       }

602:       /* U_s */
603:       PetscCall(VecZeroEntries(th->Xdot));
604:       PetscCall(TSComputeIJacobianP(ts, adjoint_ptime, th->X0, th->Xdot, 1. / ((th->Theta - 1.0) * adjoint_time_step), ts->Jacp, PETSC_FALSE));
605:       if (quadts) PetscCall(TSComputeRHSJacobianP(quadts, adjoint_ptime, th->X0, quadJp));
606:       for (nadj = 0; nadj < ts->numcost; nadj++) {
607:         PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam[nadj], VecsDeltaMu[nadj]));
608:         PetscCall(VecAXPY(ts->vecs_sensip[nadj], -adjoint_time_step * (1.0 - th->Theta), VecsDeltaMu[nadj]));
609:         if (quadJp) {
610:           PetscCall(MatDenseGetColumn(quadJp, nadj, &xarr));
611:           PetscCall(VecPlaceArray(ts->vec_drdp_col, xarr));
612:           PetscCall(VecAXPY(ts->vecs_sensip[nadj], adjoint_time_step * (1.0 - th->Theta), ts->vec_drdp_col));
613:           PetscCall(VecResetArray(ts->vec_drdp_col));
614:           PetscCall(MatDenseRestoreColumn(quadJp, &xarr));
615:         }
616:         if (ts->vecs_sensi2p) { /* second-order */
617:           /* Get w1 at t_n from TLM matrix */
618:           PetscCall(MatDenseGetColumn(th->MatFwdSensip0, 0, &xarr));
619:           PetscCall(VecPlaceArray(ts->vec_sensip_col, xarr));
620:           /* lambda_s^T F_PU w_1 */
621:           PetscCall(TSComputeIHessianProductFunctionPU(ts, adjoint_ptime, th->X0, VecsDeltaLam, ts->vec_sensip_col, ts->vecs_fpu));
622:           PetscCall(VecResetArray(ts->vec_sensip_col));
623:           PetscCall(MatDenseRestoreColumn(th->MatFwdSensip0, &xarr));
624:           /* lambda_s^T F_PP w_2 */
625:           PetscCall(TSComputeIHessianProductFunctionPP(ts, adjoint_ptime, th->X0, VecsDeltaLam, ts->vec_dir, ts->vecs_fpp));
626:           for (nadj = 0; nadj < ts->numcost; nadj++) {
627:             /* Mu2 <- Mu2 + h(1-theta) F_P^T Lambda_s + h(1-theta) (lambda_s^T F_UU w_1 + lambda_s^T F_UP w_2) */
628:             PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam2[nadj], VecsDeltaMu2[nadj]));
629:             PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step * (1.0 - th->Theta), VecsDeltaMu2[nadj]));
630:             if (ts->vecs_fpu) PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step * (1.0 - th->Theta), ts->vecs_fpu[nadj]));
631:             if (ts->vecs_fpp) PetscCall(VecAXPY(ts->vecs_sensi2p[nadj], -adjoint_time_step * (1.0 - th->Theta), ts->vecs_fpp[nadj]));
632:           }
633:         }
634:       }
635:     }
636:   } else { /* one-stage case */
637:     th->shift = 0.0;
638:     PetscCall(TSComputeSNESJacobian(ts, th->X, J, Jpre)); /* get -f_y */
639:     PetscCall(KSPSetOperators(ksp, J, Jpre));
640:     if (quadts) PetscCall(TSComputeRHSJacobian(quadts, th->stage_time, th->X, quadJ, NULL));
641:     for (nadj = 0; nadj < ts->numcost; nadj++) {
642:       PetscCall(MatMultTranspose(J, VecsDeltaLam[nadj], VecsSensiTemp[nadj]));
643:       PetscCall(VecAXPY(ts->vecs_sensi[nadj], -adjoint_time_step, VecsSensiTemp[nadj]));
644:       if (quadJ) {
645:         PetscCall(MatDenseGetColumn(quadJ, nadj, &xarr));
646:         PetscCall(VecPlaceArray(ts->vec_drdu_col, xarr));
647:         PetscCall(VecAXPY(ts->vecs_sensi[nadj], adjoint_time_step, ts->vec_drdu_col));
648:         PetscCall(VecResetArray(ts->vec_drdu_col));
649:         PetscCall(MatDenseRestoreColumn(quadJ, &xarr));
650:       }
651:     }
652:     if (ts->vecs_sensip) {
653:       th->shift = 1.0 / (adjoint_time_step * th->Theta);
654:       PetscCall(VecAXPBYPCZ(th->Xdot, -th->shift, th->shift, 0, th->X0, th->X));
655:       PetscCall(TSComputeIJacobianP(ts, th->stage_time, th->X, th->Xdot, th->shift, ts->Jacp, PETSC_FALSE));
656:       if (quadts) PetscCall(TSComputeRHSJacobianP(quadts, th->stage_time, th->X, quadJp));
657:       for (nadj = 0; nadj < ts->numcost; nadj++) {
658:         PetscCall(MatMultTranspose(ts->Jacp, VecsDeltaLam[nadj], VecsDeltaMu[nadj]));
659:         PetscCall(VecAXPY(ts->vecs_sensip[nadj], -adjoint_time_step, VecsDeltaMu[nadj]));
660:         if (quadJp) {
661:           PetscCall(MatDenseGetColumn(quadJp, nadj, &xarr));
662:           PetscCall(VecPlaceArray(ts->vec_drdp_col, xarr));
663:           PetscCall(VecAXPY(ts->vecs_sensip[nadj], adjoint_time_step, ts->vec_drdp_col));
664:           PetscCall(VecResetArray(ts->vec_drdp_col));
665:           PetscCall(MatDenseRestoreColumn(quadJp, &xarr));
666:         }
667:       }
668:     }
669:   }

671:   th->status = TS_STEP_COMPLETE;
672:   PetscFunctionReturn(PETSC_SUCCESS);
673: }

675: static PetscErrorCode TSInterpolate_Theta(TS ts, PetscReal t, Vec X)
676: {
677:   TS_Theta *th = (TS_Theta *)ts->data;
678:   PetscReal dt = t - ts->ptime;

680:   PetscFunctionBegin;
681:   PetscCall(VecCopy(ts->vec_sol, th->X));
682:   if (th->endpoint) dt *= th->Theta;
683:   PetscCall(VecWAXPY(X, dt, th->Xdot, th->X));
684:   PetscFunctionReturn(PETSC_SUCCESS);
685: }

687: static PetscErrorCode TSEvaluateWLTE_Theta(TS ts, NormType wnormtype, PetscInt *order, PetscReal *wlte)
688: {
689:   TS_Theta *th = (TS_Theta *)ts->data;
690:   Vec       X  = ts->vec_sol;      /* X = solution */
691:   Vec       Y  = th->vec_lte_work; /* Y = X + LTE  */
692:   PetscReal wltea, wlter;

694:   PetscFunctionBegin;
695:   if (!th->vec_sol_prev) {
696:     *wlte = -1;
697:     PetscFunctionReturn(PETSC_SUCCESS);
698:   }
699:   /* Cannot compute LTE in first step or in restart after event */
700:   if (ts->steprestart) {
701:     *wlte = -1;
702:     PetscFunctionReturn(PETSC_SUCCESS);
703:   }
704:   /* Compute LTE using backward differences with non-constant time step */
705:   {
706:     PetscReal   h = ts->time_step, h_prev = ts->ptime - ts->ptime_prev;
707:     PetscReal   a = 1 + h_prev / h;
708:     PetscScalar scal[3];
709:     Vec         vecs[3];
710:     scal[0] = -1 / a;
711:     scal[1] = +1 / (a - 1);
712:     scal[2] = -1 / (a * (a - 1));
713:     vecs[0] = X;
714:     vecs[1] = th->X0;
715:     vecs[2] = th->vec_sol_prev;
716:     PetscCall(VecCopy(X, Y));
717:     PetscCall(VecMAXPY(Y, 3, scal, vecs));
718:     PetscCall(TSErrorWeightedNorm(ts, X, Y, wnormtype, wlte, &wltea, &wlter));
719:   }
720:   if (order) *order = 2;
721:   PetscFunctionReturn(PETSC_SUCCESS);
722: }

724: static PetscErrorCode TSRollBack_Theta(TS ts)
725: {
726:   TS_Theta *th     = (TS_Theta *)ts->data;
727:   TS        quadts = ts->quadraturets;

729:   PetscFunctionBegin;
730:   if (quadts && ts->costintegralfwd) PetscCall(VecCopy(th->VecCostIntegral0, quadts->vec_sol));
731:   th->status = TS_STEP_INCOMPLETE;
732:   if (ts->mat_sensip) PetscCall(MatCopy(th->MatFwdSensip0, ts->mat_sensip, SAME_NONZERO_PATTERN));
733:   if (quadts && quadts->mat_sensip) PetscCall(MatCopy(th->MatIntegralSensip0, quadts->mat_sensip, SAME_NONZERO_PATTERN));
734:   PetscFunctionReturn(PETSC_SUCCESS);
735: }

737: static PetscErrorCode TSForwardStep_Theta(TS ts)
738: {
739:   TS_Theta    *th                   = (TS_Theta *)ts->data;
740:   TS           quadts               = ts->quadraturets;
741:   Mat          MatDeltaFwdSensip    = th->MatDeltaFwdSensip;
742:   Vec          VecDeltaFwdSensipCol = th->VecDeltaFwdSensipCol;
743:   PetscInt     ntlm;
744:   KSP          ksp;
745:   Mat          J, Jpre, quadJ = NULL, quadJp = NULL;
746:   PetscScalar *barr, *xarr;
747:   PetscReal    previous_shift;

749:   PetscFunctionBegin;
750:   previous_shift = th->shift;
751:   PetscCall(MatCopy(ts->mat_sensip, th->MatFwdSensip0, SAME_NONZERO_PATTERN));

753:   if (quadts && quadts->mat_sensip) PetscCall(MatCopy(quadts->mat_sensip, th->MatIntegralSensip0, SAME_NONZERO_PATTERN));
754:   PetscCall(SNESGetKSP(ts->snes, &ksp));
755:   PetscCall(TSGetIJacobian(ts, &J, &Jpre, NULL, NULL));
756:   if (quadts) {
757:     PetscCall(TSGetRHSJacobian(quadts, &quadJ, NULL, NULL, NULL));
758:     PetscCall(TSGetRHSJacobianP(quadts, &quadJp, NULL, NULL));
759:   }

761:   /* Build RHS */
762:   if (th->endpoint) { /* 2-stage method*/
763:     th->shift = 1. / ((th->Theta - 1.) * th->time_step0);
764:     PetscCall(TSComputeIJacobian(ts, th->ptime0, th->X0, th->Xdot, th->shift, J, Jpre, PETSC_FALSE));
765:     PetscCall(MatMatMult(J, ts->mat_sensip, MAT_REUSE_MATRIX, PETSC_DETERMINE, &MatDeltaFwdSensip));
766:     PetscCall(MatScale(MatDeltaFwdSensip, (th->Theta - 1.) / th->Theta));

768:     /* Add the f_p forcing terms */
769:     if (ts->Jacp) {
770:       PetscCall(VecZeroEntries(th->Xdot));
771:       PetscCall(TSComputeIJacobianP(ts, th->ptime0, th->X0, th->Xdot, th->shift, ts->Jacp, PETSC_FALSE));
772:       PetscCall(MatAXPY(MatDeltaFwdSensip, (th->Theta - 1.) / th->Theta, ts->Jacp, SUBSET_NONZERO_PATTERN));
773:       th->shift = previous_shift;
774:       PetscCall(VecAXPBYPCZ(th->Xdot, -th->shift, th->shift, 0, th->X0, ts->vec_sol));
775:       PetscCall(TSComputeIJacobianP(ts, th->stage_time, ts->vec_sol, th->Xdot, th->shift, ts->Jacp, PETSC_FALSE));
776:       PetscCall(MatAXPY(MatDeltaFwdSensip, -1., ts->Jacp, SUBSET_NONZERO_PATTERN));
777:     }
778:   } else { /* 1-stage method */
779:     th->shift = 0.0;
780:     PetscCall(TSComputeIJacobian(ts, th->stage_time, th->X, th->Xdot, th->shift, J, Jpre, PETSC_FALSE));
781:     PetscCall(MatMatMult(J, ts->mat_sensip, MAT_REUSE_MATRIX, PETSC_DETERMINE, &MatDeltaFwdSensip));
782:     PetscCall(MatScale(MatDeltaFwdSensip, -1.));

784:     /* Add the f_p forcing terms */
785:     if (ts->Jacp) {
786:       th->shift = previous_shift;
787:       PetscCall(VecAXPBYPCZ(th->Xdot, -th->shift, th->shift, 0, th->X0, th->X));
788:       PetscCall(TSComputeIJacobianP(ts, th->stage_time, th->X, th->Xdot, th->shift, ts->Jacp, PETSC_FALSE));
789:       PetscCall(MatAXPY(MatDeltaFwdSensip, -1., ts->Jacp, SUBSET_NONZERO_PATTERN));
790:     }
791:   }

793:   /* Build LHS */
794:   th->shift = previous_shift; /* recover the previous shift used in TSStep_Theta() */
795:   if (th->endpoint) {
796:     PetscCall(TSComputeIJacobian(ts, th->stage_time, ts->vec_sol, th->Xdot, th->shift, J, Jpre, PETSC_FALSE));
797:   } else {
798:     PetscCall(TSComputeIJacobian(ts, th->stage_time, th->X, th->Xdot, th->shift, J, Jpre, PETSC_FALSE));
799:   }
800:   PetscCall(KSPSetOperators(ksp, J, Jpre));

802:   /*
803:     Evaluate the first stage of integral gradients with the 2-stage method:
804:     drdu|t_n*S(t_n) + drdp|t_n
805:     This is done before the linear solve because the sensitivity variable S(t_n) will be propagated to S(t_{n+1})
806:   */
807:   if (th->endpoint) { /* 2-stage method only */
808:     if (quadts && quadts->mat_sensip) {
809:       PetscCall(TSComputeRHSJacobian(quadts, th->ptime0, th->X0, quadJ, NULL));
810:       PetscCall(TSComputeRHSJacobianP(quadts, th->ptime0, th->X0, quadJp));
811:       PetscCall(MatTransposeMatMult(ts->mat_sensip, quadJ, MAT_REUSE_MATRIX, PETSC_DETERMINE, &th->MatIntegralSensipTemp));
812:       PetscCall(MatAXPY(th->MatIntegralSensipTemp, 1, quadJp, SAME_NONZERO_PATTERN));
813:       PetscCall(MatAXPY(quadts->mat_sensip, th->time_step0 * (1. - th->Theta), th->MatIntegralSensipTemp, SAME_NONZERO_PATTERN));
814:     }
815:   }

817:   /* Solve the tangent linear equation for forward sensitivities to parameters */
818:   for (ntlm = 0; ntlm < th->num_tlm; ntlm++) {
819:     KSPConvergedReason kspreason;
820:     PetscCall(MatDenseGetColumn(MatDeltaFwdSensip, ntlm, &barr));
821:     PetscCall(VecPlaceArray(VecDeltaFwdSensipCol, barr));
822:     if (th->endpoint) {
823:       PetscCall(MatDenseGetColumn(ts->mat_sensip, ntlm, &xarr));
824:       PetscCall(VecPlaceArray(ts->vec_sensip_col, xarr));
825:       PetscCall(KSPSolve(ksp, VecDeltaFwdSensipCol, ts->vec_sensip_col));
826:       PetscCall(VecResetArray(ts->vec_sensip_col));
827:       PetscCall(MatDenseRestoreColumn(ts->mat_sensip, &xarr));
828:     } else {
829:       PetscCall(KSPSolve(ksp, VecDeltaFwdSensipCol, VecDeltaFwdSensipCol));
830:     }
831:     PetscCall(KSPGetConvergedReason(ksp, &kspreason));
832:     if (kspreason < 0) {
833:       ts->reason = TSFORWARD_DIVERGED_LINEAR_SOLVE;
834:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", %" PetscInt_FMT "th tangent linear solve, linear solve fails, stopping tangent linear solve\n", ts->steps, ntlm));
835:     }
836:     PetscCall(VecResetArray(VecDeltaFwdSensipCol));
837:     PetscCall(MatDenseRestoreColumn(MatDeltaFwdSensip, &barr));
838:   }

840:   /*
841:     Evaluate the second stage of integral gradients with the 2-stage method:
842:     drdu|t_{n+1}*S(t_{n+1}) + drdp|t_{n+1}
843:   */
844:   if (quadts && quadts->mat_sensip) {
845:     if (!th->endpoint) {
846:       PetscCall(MatAXPY(ts->mat_sensip, 1, MatDeltaFwdSensip, SAME_NONZERO_PATTERN)); /* stage sensitivity */
847:       PetscCall(TSComputeRHSJacobian(quadts, th->stage_time, th->X, quadJ, NULL));
848:       PetscCall(TSComputeRHSJacobianP(quadts, th->stage_time, th->X, quadJp));
849:       PetscCall(MatTransposeMatMult(ts->mat_sensip, quadJ, MAT_REUSE_MATRIX, PETSC_DETERMINE, &th->MatIntegralSensipTemp));
850:       PetscCall(MatAXPY(th->MatIntegralSensipTemp, 1, quadJp, SAME_NONZERO_PATTERN));
851:       PetscCall(MatAXPY(quadts->mat_sensip, th->time_step0, th->MatIntegralSensipTemp, SAME_NONZERO_PATTERN));
852:       PetscCall(MatAXPY(ts->mat_sensip, (1. - th->Theta) / th->Theta, MatDeltaFwdSensip, SAME_NONZERO_PATTERN));
853:     } else {
854:       PetscCall(TSComputeRHSJacobian(quadts, th->stage_time, ts->vec_sol, quadJ, NULL));
855:       PetscCall(TSComputeRHSJacobianP(quadts, th->stage_time, ts->vec_sol, quadJp));
856:       PetscCall(MatTransposeMatMult(ts->mat_sensip, quadJ, MAT_REUSE_MATRIX, PETSC_DETERMINE, &th->MatIntegralSensipTemp));
857:       PetscCall(MatAXPY(th->MatIntegralSensipTemp, 1, quadJp, SAME_NONZERO_PATTERN));
858:       PetscCall(MatAXPY(quadts->mat_sensip, th->time_step0 * th->Theta, th->MatIntegralSensipTemp, SAME_NONZERO_PATTERN));
859:     }
860:   } else {
861:     if (!th->endpoint) PetscCall(MatAXPY(ts->mat_sensip, 1. / th->Theta, MatDeltaFwdSensip, SAME_NONZERO_PATTERN));
862:   }
863:   PetscFunctionReturn(PETSC_SUCCESS);
864: }

866: static PetscErrorCode TSForwardGetStages_Theta(TS ts, PetscInt *ns, Mat *stagesensip[])
867: {
868:   TS_Theta *th = (TS_Theta *)ts->data;

870:   PetscFunctionBegin;
871:   if (ns) {
872:     if (!th->endpoint && th->Theta != 1.0) *ns = 1; /* midpoint form */
873:     else *ns = 2;                                   /* endpoint form */
874:   }
875:   if (stagesensip) {
876:     if (!th->endpoint && th->Theta != 1.0) {
877:       th->MatFwdStages[0] = th->MatDeltaFwdSensip;
878:     } else {
879:       th->MatFwdStages[0] = th->MatFwdSensip0;
880:       th->MatFwdStages[1] = ts->mat_sensip; /* stiffly accurate */
881:     }
882:     *stagesensip = th->MatFwdStages;
883:   }
884:   PetscFunctionReturn(PETSC_SUCCESS);
885: }

887: /*------------------------------------------------------------*/
888: static PetscErrorCode TSReset_Theta(TS ts)
889: {
890:   TS_Theta *th = (TS_Theta *)ts->data;

892:   PetscFunctionBegin;
893:   PetscCall(VecDestroy(&th->X));
894:   PetscCall(VecDestroy(&th->Xdot));
895:   PetscCall(VecDestroy(&th->X0));
896:   PetscCall(VecDestroy(&th->affine));

898:   PetscCall(VecDestroy(&th->vec_sol_prev));
899:   PetscCall(VecDestroy(&th->vec_lte_work));

901:   PetscCall(VecDestroy(&th->VecCostIntegral0));
902:   PetscFunctionReturn(PETSC_SUCCESS);
903: }

905: static PetscErrorCode TSAdjointReset_Theta(TS ts)
906: {
907:   TS_Theta *th = (TS_Theta *)ts->data;

909:   PetscFunctionBegin;
910:   PetscCall(VecDestroyVecs(ts->numcost, &th->VecsDeltaLam));
911:   PetscCall(VecDestroyVecs(ts->numcost, &th->VecsDeltaMu));
912:   PetscCall(VecDestroyVecs(ts->numcost, &th->VecsDeltaLam2));
913:   PetscCall(VecDestroyVecs(ts->numcost, &th->VecsDeltaMu2));
914:   PetscCall(VecDestroyVecs(ts->numcost, &th->VecsSensiTemp));
915:   PetscCall(VecDestroyVecs(ts->numcost, &th->VecsSensi2Temp));
916:   PetscFunctionReturn(PETSC_SUCCESS);
917: }

919: static PetscErrorCode TSDestroy_Theta(TS ts)
920: {
921:   PetscFunctionBegin;
922:   PetscCall(TSReset_Theta(ts));
923:   if (ts->dm) {
924:     PetscCall(DMCoarsenHookRemove(ts->dm, DMCoarsenHook_TSTheta, DMRestrictHook_TSTheta, ts));
925:     PetscCall(DMSubDomainHookRemove(ts->dm, DMSubDomainHook_TSTheta, DMSubDomainRestrictHook_TSTheta, ts));
926:   }
927:   PetscCall(PetscFree(ts->data));
928:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaGetTheta_C", NULL));
929:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaSetTheta_C", NULL));
930:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaGetEndpoint_C", NULL));
931:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaSetEndpoint_C", NULL));
932:   PetscFunctionReturn(PETSC_SUCCESS);
933: }

935: /*
936:   This defines the nonlinear equation that is to be solved with SNES
937:   G(U) = F[t0+Theta*dt, U, (U-U0)*shift] = 0

939:   Note that U here is the stage argument. This means that U = U_{n+1} only if endpoint = true,
940:   otherwise U = theta U_{n+1} + (1 - theta) U0, which for the case of implicit midpoint is
941:   U = (U_{n+1} + U0)/2
942: */
943: static PetscErrorCode SNESTSFormFunction_Theta(SNES snes, Vec x, Vec y, TS ts)
944: {
945:   TS_Theta *th = (TS_Theta *)ts->data;
946:   Vec       X0, Xdot;
947:   DM        dm, dmsave;
948:   PetscReal shift = th->shift;

950:   PetscFunctionBegin;
951:   PetscCall(SNESGetDM(snes, &dm));
952:   /* When using the endpoint variant, this is actually 1/Theta * Xdot */
953:   PetscCall(TSThetaGetX0AndXdot(ts, dm, &X0, &Xdot));
954:   if (x != X0) {
955:     PetscCall(VecAXPBYPCZ(Xdot, -shift, shift, 0, X0, x));
956:   } else {
957:     PetscCall(VecZeroEntries(Xdot));
958:   }
959:   /* DM monkey-business allows user code to call TSGetDM() inside of functions evaluated on levels of FAS */
960:   dmsave = ts->dm;
961:   ts->dm = dm;
962:   PetscCall(TSComputeIFunction(ts, th->stage_time, x, Xdot, y, PETSC_FALSE));
963:   ts->dm = dmsave;
964:   PetscCall(TSThetaRestoreX0AndXdot(ts, dm, &X0, &Xdot));
965:   PetscFunctionReturn(PETSC_SUCCESS);
966: }

968: static PetscErrorCode SNESTSFormJacobian_Theta(SNES snes, Vec x, Mat A, Mat B, TS ts)
969: {
970:   TS_Theta *th = (TS_Theta *)ts->data;
971:   Vec       Xdot;
972:   DM        dm, dmsave;
973:   PetscReal shift = th->shift;

975:   PetscFunctionBegin;
976:   PetscCall(SNESGetDM(snes, &dm));
977:   /* Xdot has already been computed in SNESTSFormFunction_Theta (SNES guarantees this) */
978:   PetscCall(TSThetaGetX0AndXdot(ts, dm, NULL, &Xdot));

980:   dmsave = ts->dm;
981:   ts->dm = dm;
982:   PetscCall(TSComputeIJacobian(ts, th->stage_time, x, Xdot, shift, A, B, PETSC_FALSE));
983:   ts->dm = dmsave;
984:   PetscCall(TSThetaRestoreX0AndXdot(ts, dm, NULL, &Xdot));
985:   PetscFunctionReturn(PETSC_SUCCESS);
986: }

988: static PetscErrorCode TSForwardSetUp_Theta(TS ts)
989: {
990:   TS_Theta *th     = (TS_Theta *)ts->data;
991:   TS        quadts = ts->quadraturets;

993:   PetscFunctionBegin;
994:   /* combine sensitivities to parameters and sensitivities to initial values into one array */
995:   th->num_tlm = ts->num_parameters;
996:   PetscCall(MatDuplicate(ts->mat_sensip, MAT_DO_NOT_COPY_VALUES, &th->MatDeltaFwdSensip));
997:   if (quadts && quadts->mat_sensip) {
998:     PetscCall(MatDuplicate(quadts->mat_sensip, MAT_DO_NOT_COPY_VALUES, &th->MatIntegralSensipTemp));
999:     PetscCall(MatDuplicate(quadts->mat_sensip, MAT_DO_NOT_COPY_VALUES, &th->MatIntegralSensip0));
1000:   }
1001:   /* backup sensitivity results for roll-backs */
1002:   PetscCall(MatDuplicate(ts->mat_sensip, MAT_DO_NOT_COPY_VALUES, &th->MatFwdSensip0));

1004:   PetscCall(VecDuplicate(ts->vec_sol, &th->VecDeltaFwdSensipCol));
1005:   PetscFunctionReturn(PETSC_SUCCESS);
1006: }

1008: static PetscErrorCode TSForwardReset_Theta(TS ts)
1009: {
1010:   TS_Theta *th     = (TS_Theta *)ts->data;
1011:   TS        quadts = ts->quadraturets;

1013:   PetscFunctionBegin;
1014:   if (quadts && quadts->mat_sensip) {
1015:     PetscCall(MatDestroy(&th->MatIntegralSensipTemp));
1016:     PetscCall(MatDestroy(&th->MatIntegralSensip0));
1017:   }
1018:   PetscCall(VecDestroy(&th->VecDeltaFwdSensipCol));
1019:   PetscCall(MatDestroy(&th->MatDeltaFwdSensip));
1020:   PetscCall(MatDestroy(&th->MatFwdSensip0));
1021:   PetscFunctionReturn(PETSC_SUCCESS);
1022: }

1024: static PetscErrorCode TSSetUp_Theta(TS ts)
1025: {
1026:   TS_Theta *th     = (TS_Theta *)ts->data;
1027:   TS        quadts = ts->quadraturets;
1028:   PetscBool match;

1030:   PetscFunctionBegin;
1031:   if (!th->VecCostIntegral0 && quadts && ts->costintegralfwd) { /* back up cost integral */
1032:     PetscCall(VecDuplicate(quadts->vec_sol, &th->VecCostIntegral0));
1033:   }
1034:   if (!th->X) PetscCall(VecDuplicate(ts->vec_sol, &th->X));
1035:   if (!th->Xdot) PetscCall(VecDuplicate(ts->vec_sol, &th->Xdot));
1036:   if (!th->X0) PetscCall(VecDuplicate(ts->vec_sol, &th->X0));
1037:   if (th->endpoint) PetscCall(VecDuplicate(ts->vec_sol, &th->affine));

1039:   th->order = (th->Theta == 0.5) ? 2 : 1;
1040:   th->shift = 1 / (th->Theta * ts->time_step);

1042:   PetscCall(TSGetDM(ts, &ts->dm));
1043:   PetscCall(DMCoarsenHookAdd(ts->dm, DMCoarsenHook_TSTheta, DMRestrictHook_TSTheta, ts));
1044:   PetscCall(DMSubDomainHookAdd(ts->dm, DMSubDomainHook_TSTheta, DMSubDomainRestrictHook_TSTheta, ts));

1046:   PetscCall(TSGetAdapt(ts, &ts->adapt));
1047:   PetscCall(TSAdaptCandidatesClear(ts->adapt));
1048:   PetscCall(PetscObjectTypeCompare((PetscObject)ts->adapt, TSADAPTNONE, &match));
1049:   if (!match) {
1050:     if (!th->vec_sol_prev) PetscCall(VecDuplicate(ts->vec_sol, &th->vec_sol_prev));
1051:     if (!th->vec_lte_work) PetscCall(VecDuplicate(ts->vec_sol, &th->vec_lte_work));
1052:   }
1053:   PetscCall(TSGetSNES(ts, &ts->snes));

1055:   ts->stifflyaccurate = (!th->endpoint && th->Theta != 1.0) ? PETSC_FALSE : PETSC_TRUE;
1056:   PetscFunctionReturn(PETSC_SUCCESS);
1057: }

1059: /*------------------------------------------------------------*/

1061: static PetscErrorCode TSAdjointSetUp_Theta(TS ts)
1062: {
1063:   TS_Theta *th = (TS_Theta *)ts->data;

1065:   PetscFunctionBegin;
1066:   PetscCall(VecDuplicateVecs(ts->vecs_sensi[0], ts->numcost, &th->VecsDeltaLam));
1067:   PetscCall(VecDuplicateVecs(ts->vecs_sensi[0], ts->numcost, &th->VecsSensiTemp));
1068:   if (ts->vecs_sensip) PetscCall(VecDuplicateVecs(ts->vecs_sensip[0], ts->numcost, &th->VecsDeltaMu));
1069:   if (ts->vecs_sensi2) {
1070:     PetscCall(VecDuplicateVecs(ts->vecs_sensi[0], ts->numcost, &th->VecsDeltaLam2));
1071:     PetscCall(VecDuplicateVecs(ts->vecs_sensi2[0], ts->numcost, &th->VecsSensi2Temp));
1072:     /* hack ts to make implicit TS solver work when users provide only explicit versions of callbacks (RHSFunction,RHSJacobian,RHSHessian etc.) */
1073:     if (!ts->ihessianproduct_fuu) ts->vecs_fuu = ts->vecs_guu;
1074:     if (!ts->ihessianproduct_fup) ts->vecs_fup = ts->vecs_gup;
1075:   }
1076:   if (ts->vecs_sensi2p) {
1077:     PetscCall(VecDuplicateVecs(ts->vecs_sensi2p[0], ts->numcost, &th->VecsDeltaMu2));
1078:     /* hack ts to make implicit TS solver work when users provide only explicit versions of callbacks (RHSFunction,RHSJacobian,RHSHessian etc.) */
1079:     if (!ts->ihessianproduct_fpu) ts->vecs_fpu = ts->vecs_gpu;
1080:     if (!ts->ihessianproduct_fpp) ts->vecs_fpp = ts->vecs_gpp;
1081:   }
1082:   PetscFunctionReturn(PETSC_SUCCESS);
1083: }

1085: static PetscErrorCode TSSetFromOptions_Theta(TS ts, PetscOptionItems PetscOptionsObject)
1086: {
1087:   TS_Theta *th = (TS_Theta *)ts->data;

1089:   PetscFunctionBegin;
1090:   PetscOptionsHeadBegin(PetscOptionsObject, "Theta ODE solver options");
1091:   {
1092:     PetscCall(PetscOptionsReal("-ts_theta_theta", "Location of stage (0<Theta<=1)", "TSThetaSetTheta", th->Theta, &th->Theta, NULL));
1093:     PetscCall(PetscOptionsBool("-ts_theta_endpoint", "Use the endpoint instead of midpoint form of the Theta method", "TSThetaSetEndpoint", th->endpoint, &th->endpoint, NULL));
1094:     PetscCall(PetscOptionsBool("-ts_theta_initial_guess_extrapolate", "Extrapolate stage initial guess from previous solution (sometimes unstable)", "TSThetaSetExtrapolate", th->extrapolate, &th->extrapolate, NULL));
1095:   }
1096:   PetscOptionsHeadEnd();
1097:   PetscFunctionReturn(PETSC_SUCCESS);
1098: }

1100: static PetscErrorCode TSView_Theta(TS ts, PetscViewer viewer)
1101: {
1102:   TS_Theta *th = (TS_Theta *)ts->data;
1103:   PetscBool isascii;

1105:   PetscFunctionBegin;
1106:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1107:   if (isascii) {
1108:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Theta=%g\n", (double)th->Theta));
1109:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Extrapolation=%s\n", th->extrapolate ? "yes" : "no"));
1110:   }
1111:   PetscFunctionReturn(PETSC_SUCCESS);
1112: }

1114: static PetscErrorCode TSThetaGetTheta_Theta(TS ts, PetscReal *theta)
1115: {
1116:   TS_Theta *th = (TS_Theta *)ts->data;

1118:   PetscFunctionBegin;
1119:   *theta = th->Theta;
1120:   PetscFunctionReturn(PETSC_SUCCESS);
1121: }

1123: static PetscErrorCode TSThetaSetTheta_Theta(TS ts, PetscReal theta)
1124: {
1125:   TS_Theta *th = (TS_Theta *)ts->data;

1127:   PetscFunctionBegin;
1128:   PetscCheck(theta > 0 && theta <= 1, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Theta %g not in range (0,1]", (double)theta);
1129:   th->Theta = theta;
1130:   th->order = (th->Theta == 0.5) ? 2 : 1;
1131:   PetscFunctionReturn(PETSC_SUCCESS);
1132: }

1134: static PetscErrorCode TSThetaGetEndpoint_Theta(TS ts, PetscBool *endpoint)
1135: {
1136:   TS_Theta *th = (TS_Theta *)ts->data;

1138:   PetscFunctionBegin;
1139:   *endpoint = th->endpoint;
1140:   PetscFunctionReturn(PETSC_SUCCESS);
1141: }

1143: static PetscErrorCode TSThetaSetEndpoint_Theta(TS ts, PetscBool flg)
1144: {
1145:   TS_Theta *th = (TS_Theta *)ts->data;

1147:   PetscFunctionBegin;
1148:   th->endpoint = flg;
1149:   PetscFunctionReturn(PETSC_SUCCESS);
1150: }

1152: #if defined(PETSC_HAVE_COMPLEX)
1153: static PetscErrorCode TSComputeLinearStability_Theta(TS ts, PetscReal xr, PetscReal xi, PetscReal *yr, PetscReal *yi)
1154: {
1155:   PetscComplex z  = xr + xi * PETSC_i, f;
1156:   TS_Theta    *th = (TS_Theta *)ts->data;

1158:   PetscFunctionBegin;
1159:   f   = (1.0 + (1.0 - th->Theta) * z) / (1.0 - th->Theta * z);
1160:   *yr = PetscRealPartComplex(f);
1161:   *yi = PetscImaginaryPartComplex(f);
1162:   PetscFunctionReturn(PETSC_SUCCESS);
1163: }
1164: #endif

1166: static PetscErrorCode TSGetStages_Theta(TS ts, PetscInt *ns, Vec *Y[])
1167: {
1168:   TS_Theta *th = (TS_Theta *)ts->data;

1170:   PetscFunctionBegin;
1171:   if (ns) {
1172:     if (!th->endpoint && th->Theta != 1.0) *ns = 1; /* midpoint form */
1173:     else *ns = 2;                                   /* endpoint form */
1174:   }
1175:   if (Y) {
1176:     if (!th->endpoint && th->Theta != 1.0) {
1177:       th->Stages[0] = th->X;
1178:     } else {
1179:       th->Stages[0] = th->X0;
1180:       th->Stages[1] = ts->vec_sol; /* stiffly accurate */
1181:     }
1182:     *Y = th->Stages;
1183:   }
1184:   PetscFunctionReturn(PETSC_SUCCESS);
1185: }

1187: /* ------------------------------------------------------------ */
1188: /*MC
1189:       TSTHETA - DAE solver using the implicit Theta method

1191:    Level: beginner

1193:    Options Database Keys:
1194: +  -ts_theta_theta <Theta> - Location of stage (0<Theta<=1)
1195: .  -ts_theta_endpoint <flag> - Use the endpoint (like Crank-Nicholson) instead of midpoint form of the Theta method
1196: -  -ts_theta_initial_guess_extrapolate <flg> - Extrapolate stage initial guess from previous solution (sometimes unstable)

1198:    Notes:
1199: .vb
1200:   -ts_type theta -ts_theta_theta 1.0 corresponds to backward Euler (TSBEULER)
1201:   -ts_type theta -ts_theta_theta 0.5 corresponds to the implicit midpoint rule
1202:   -ts_type theta -ts_theta_theta 0.5 -ts_theta_endpoint corresponds to Crank-Nicholson (TSCN)
1203: .ve

1205:    The endpoint variant of the Theta method and backward Euler can be applied to DAE. The midpoint variant is not suitable for DAEs because it is not stiffly accurate.

1207:    The midpoint variant is cast as a 1-stage implicit Runge-Kutta method.

1209: .vb
1210:   Theta | Theta
1211:   -------------
1212:         |  1
1213: .ve

1215:    For the default Theta=0.5, this is also known as the implicit midpoint rule.

1217:    When the endpoint variant is chosen, the method becomes a 2-stage method with first stage explicit:

1219: .vb
1220:   0 | 0         0
1221:   1 | 1-Theta   Theta
1222:   -------------------
1223:     | 1-Theta   Theta
1224: .ve

1226:    For the default Theta=0.5, this is the trapezoid rule (also known as Crank-Nicolson, see TSCN).

1228:    To apply a diagonally implicit RK method to DAE, the stage formula
1229: .vb
1230:   Y_i = X + h sum_j a_ij Y'_j
1231: .ve
1232:    is interpreted as a formula for Y'_i in terms of Y_i and known values (Y'_j, j<i)

1234: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSCN`, `TSBEULER`, `TSThetaSetTheta()`, `TSThetaSetEndpoint()`
1235: M*/
1236: PETSC_EXTERN PetscErrorCode TSCreate_Theta(TS ts)
1237: {
1238:   TS_Theta *th;

1240:   PetscFunctionBegin;
1241:   ts->ops->reset          = TSReset_Theta;
1242:   ts->ops->adjointreset   = TSAdjointReset_Theta;
1243:   ts->ops->destroy        = TSDestroy_Theta;
1244:   ts->ops->view           = TSView_Theta;
1245:   ts->ops->setup          = TSSetUp_Theta;
1246:   ts->ops->adjointsetup   = TSAdjointSetUp_Theta;
1247:   ts->ops->adjointreset   = TSAdjointReset_Theta;
1248:   ts->ops->step           = TSStep_Theta;
1249:   ts->ops->interpolate    = TSInterpolate_Theta;
1250:   ts->ops->evaluatewlte   = TSEvaluateWLTE_Theta;
1251:   ts->ops->rollback       = TSRollBack_Theta;
1252:   ts->ops->resizeregister = TSResizeRegister_Theta;
1253:   ts->ops->setfromoptions = TSSetFromOptions_Theta;
1254:   ts->ops->snesfunction   = SNESTSFormFunction_Theta;
1255:   ts->ops->snesjacobian   = SNESTSFormJacobian_Theta;
1256: #if defined(PETSC_HAVE_COMPLEX)
1257:   ts->ops->linearstability = TSComputeLinearStability_Theta;
1258: #endif
1259:   ts->ops->getstages       = TSGetStages_Theta;
1260:   ts->ops->adjointstep     = TSAdjointStep_Theta;
1261:   ts->ops->adjointintegral = TSAdjointCostIntegral_Theta;
1262:   ts->ops->forwardintegral = TSForwardCostIntegral_Theta;
1263:   ts->default_adapt_type   = TSADAPTNONE;

1265:   ts->ops->forwardsetup     = TSForwardSetUp_Theta;
1266:   ts->ops->forwardreset     = TSForwardReset_Theta;
1267:   ts->ops->forwardstep      = TSForwardStep_Theta;
1268:   ts->ops->forwardgetstages = TSForwardGetStages_Theta;

1270:   ts->usessnes = PETSC_TRUE;

1272:   PetscCall(PetscNew(&th));
1273:   ts->data = (void *)th;

1275:   th->VecsDeltaLam   = NULL;
1276:   th->VecsDeltaMu    = NULL;
1277:   th->VecsSensiTemp  = NULL;
1278:   th->VecsSensi2Temp = NULL;

1280:   th->extrapolate = PETSC_FALSE;
1281:   th->Theta       = 0.5;
1282:   th->order       = 2;
1283:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaGetTheta_C", TSThetaGetTheta_Theta));
1284:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaSetTheta_C", TSThetaSetTheta_Theta));
1285:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaGetEndpoint_C", TSThetaGetEndpoint_Theta));
1286:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSThetaSetEndpoint_C", TSThetaSetEndpoint_Theta));
1287:   PetscFunctionReturn(PETSC_SUCCESS);
1288: }

1290: /*@
1291:   TSThetaGetTheta - Get the abscissa of the stage in (0,1] for `TSTHETA`

1293:   Not Collective

1295:   Input Parameter:
1296: . ts - timestepping context

1298:   Output Parameter:
1299: . theta - stage abscissa

1301:   Level: advanced

1303:   Note:
1304:   Use of this function is normally only required to hack `TSTHETA` to use a modified integration scheme.

1306: .seealso: [](ch_ts), `TSThetaSetTheta()`, `TSTHETA`
1307: @*/
1308: PetscErrorCode TSThetaGetTheta(TS ts, PetscReal *theta)
1309: {
1310:   PetscFunctionBegin;
1312:   PetscAssertPointer(theta, 2);
1313:   PetscUseMethod(ts, "TSThetaGetTheta_C", (TS, PetscReal *), (ts, theta));
1314:   PetscFunctionReturn(PETSC_SUCCESS);
1315: }

1317: /*@
1318:   TSThetaSetTheta - Set the abscissa of the stage in (0,1]  for `TSTHETA`

1320:   Not Collective

1322:   Input Parameters:
1323: + ts    - timestepping context
1324: - theta - stage abscissa

1326:   Options Database Key:
1327: . -ts_theta_theta <theta> - set theta

1329:   Level: intermediate

1331: .seealso: [](ch_ts), `TSThetaGetTheta()`, `TSTHETA`, `TSCN`
1332: @*/
1333: PetscErrorCode TSThetaSetTheta(TS ts, PetscReal theta)
1334: {
1335:   PetscFunctionBegin;
1337:   PetscTryMethod(ts, "TSThetaSetTheta_C", (TS, PetscReal), (ts, theta));
1338:   PetscFunctionReturn(PETSC_SUCCESS);
1339: }

1341: /*@
1342:   TSThetaGetEndpoint - Gets whether to use the endpoint variant of the method (e.g. trapezoid/Crank-Nicolson instead of midpoint rule) for `TSTHETA`

1344:   Not Collective

1346:   Input Parameter:
1347: . ts - timestepping context

1349:   Output Parameter:
1350: . endpoint - `PETSC_TRUE` when using the endpoint variant

1352:   Level: advanced

1354: .seealso: [](ch_ts), `TSThetaSetEndpoint()`, `TSTHETA`, `TSCN`
1355: @*/
1356: PetscErrorCode TSThetaGetEndpoint(TS ts, PetscBool *endpoint)
1357: {
1358:   PetscFunctionBegin;
1360:   PetscAssertPointer(endpoint, 2);
1361:   PetscUseMethod(ts, "TSThetaGetEndpoint_C", (TS, PetscBool *), (ts, endpoint));
1362:   PetscFunctionReturn(PETSC_SUCCESS);
1363: }

1365: /*@
1366:   TSThetaSetEndpoint - Sets whether to use the endpoint variant of the method (e.g. trapezoid/Crank-Nicolson instead of midpoint rule) for `TSTHETA`

1368:   Not Collective

1370:   Input Parameters:
1371: + ts  - timestepping context
1372: - flg - `PETSC_TRUE` to use the endpoint variant

1374:   Options Database Key:
1375: . -ts_theta_endpoint <flg> - use the endpoint variant

1377:   Level: intermediate

1379: .seealso: [](ch_ts), `TSTHETA`, `TSCN`
1380: @*/
1381: PetscErrorCode TSThetaSetEndpoint(TS ts, PetscBool flg)
1382: {
1383:   PetscFunctionBegin;
1385:   PetscTryMethod(ts, "TSThetaSetEndpoint_C", (TS, PetscBool), (ts, flg));
1386:   PetscFunctionReturn(PETSC_SUCCESS);
1387: }

1389: /*
1390:  * TSBEULER and TSCN are straightforward specializations of TSTHETA.
1391:  * The creation functions for these specializations are below.
1392:  */

1394: static PetscErrorCode TSSetUp_BEuler(TS ts)
1395: {
1396:   TS_Theta *th = (TS_Theta *)ts->data;

1398:   PetscFunctionBegin;
1399:   PetscCheck(th->Theta == 1.0, PetscObjectComm((PetscObject)ts), PETSC_ERR_OPT_OVERWRITE, "Can not change the default value (1) of theta when using backward Euler");
1400:   PetscCheck(!th->endpoint, PetscObjectComm((PetscObject)ts), PETSC_ERR_OPT_OVERWRITE, "Can not change to the endpoint form of the Theta methods when using backward Euler");
1401:   PetscCall(TSSetUp_Theta(ts));
1402:   PetscFunctionReturn(PETSC_SUCCESS);
1403: }

1405: static PetscErrorCode TSView_BEuler(TS ts, PetscViewer viewer)
1406: {
1407:   PetscFunctionBegin;
1408:   PetscFunctionReturn(PETSC_SUCCESS);
1409: }

1411: /*MC
1412:       TSBEULER - ODE solver using the implicit backward Euler method

1414:   Level: beginner

1416:   Note:
1417:   `TSBEULER` is equivalent to `TSTHETA` with Theta=1.0 or `-ts_type theta -ts_theta_theta 1.0`

1419: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSEULER`, `TSCN`, `TSTHETA`
1420: M*/
1421: PETSC_EXTERN PetscErrorCode TSCreate_BEuler(TS ts)
1422: {
1423:   PetscFunctionBegin;
1424:   PetscCall(TSCreate_Theta(ts));
1425:   PetscCall(TSThetaSetTheta(ts, 1.0));
1426:   PetscCall(TSThetaSetEndpoint(ts, PETSC_FALSE));
1427:   ts->ops->setup = TSSetUp_BEuler;
1428:   ts->ops->view  = TSView_BEuler;
1429:   PetscFunctionReturn(PETSC_SUCCESS);
1430: }

1432: static PetscErrorCode TSSetUp_CN(TS ts)
1433: {
1434:   TS_Theta *th = (TS_Theta *)ts->data;

1436:   PetscFunctionBegin;
1437:   PetscCheck(th->Theta == 0.5, PetscObjectComm((PetscObject)ts), PETSC_ERR_OPT_OVERWRITE, "Can not change the default value (0.5) of theta when using Crank-Nicolson");
1438:   PetscCheck(th->endpoint, PetscObjectComm((PetscObject)ts), PETSC_ERR_OPT_OVERWRITE, "Can not change to the midpoint form of the Theta methods when using Crank-Nicolson");
1439:   PetscCall(TSSetUp_Theta(ts));
1440:   PetscFunctionReturn(PETSC_SUCCESS);
1441: }

1443: static PetscErrorCode TSView_CN(TS ts, PetscViewer viewer)
1444: {
1445:   PetscFunctionBegin;
1446:   PetscFunctionReturn(PETSC_SUCCESS);
1447: }

1449: /*MC
1450:       TSCN - ODE solver using the implicit Crank-Nicolson method.

1452:   Level: beginner

1454:   Notes:
1455:   `TSCN` is equivalent to `TSTHETA` with Theta=0.5 and the "endpoint" option set. I.e.
1456: .vb
1457:   -ts_type theta
1458:   -ts_theta_theta 0.5
1459:   -ts_theta_endpoint
1460: .ve

1462: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSBEULER`, `TSTHETA`, `TSType`,
1463: M*/
1464: PETSC_EXTERN PetscErrorCode TSCreate_CN(TS ts)
1465: {
1466:   PetscFunctionBegin;
1467:   PetscCall(TSCreate_Theta(ts));
1468:   PetscCall(TSThetaSetTheta(ts, 0.5));
1469:   PetscCall(TSThetaSetEndpoint(ts, PETSC_TRUE));
1470:   ts->ops->setup = TSSetUp_CN;
1471:   ts->ops->view  = TSView_CN;
1472:   PetscFunctionReturn(PETSC_SUCCESS);
1473: }