Actual source code: plexland.c

  1: #include <../src/mat/impls/aij/seq/aij.h>
  2: #include <petsc/private/dmpleximpl.h>
  3: #include <petsclandau.h>
  4: #include <petscts.h>
  5: #include <petscdmforest.h>
  6: #include <petscdmcomposite.h>

  8: /* Landau collision operator */

 10: /* relativistic terms */
 11: #if defined(PETSC_USE_REAL_SINGLE)
 12:   #define SPEED_OF_LIGHT 2.99792458e8F
 13:   #define C_0(v0)        (SPEED_OF_LIGHT / v0) /* needed for relativistic tensor on all architectures */
 14: #else
 15:   #define SPEED_OF_LIGHT 2.99792458e8
 16:   #define C_0(v0)        (SPEED_OF_LIGHT / v0) /* needed for relativistic tensor on all architectures */
 17: #endif

 19: #include "land_tensors.h"

 21: #if defined(PETSC_HAVE_OPENMP)
 22:   #include <omp.h>
 23: #endif

 25: static PetscErrorCode LandauGPUMapsDestroy(void **ptr)
 26: {
 27:   P4estVertexMaps *maps = (P4estVertexMaps *)*ptr;

 29:   PetscFunctionBegin;
 30:   // free device data
 31:   if (maps[0].deviceType != LANDAU_CPU) {
 32: #if defined(PETSC_HAVE_KOKKOS)
 33:     if (maps[0].deviceType == LANDAU_KOKKOS) PetscCall(LandauKokkosDestroyMatMaps(maps, maps[0].numgrids)); // implies Kokkos does
 34: #endif
 35:   }
 36:   // free host data
 37:   for (PetscInt grid = 0; grid < maps[0].numgrids; grid++) {
 38:     PetscCall(PetscFree(maps[grid].c_maps));
 39:     PetscCall(PetscFree(maps[grid].gIdx));
 40:   }
 41:   PetscCall(PetscFree(maps));
 42:   PetscFunctionReturn(PETSC_SUCCESS);
 43: }
 44: static PetscErrorCode energy_f(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf_dummy, PetscScalar *u, void *actx)
 45: {
 46:   PetscReal v2 = 0;

 48:   PetscFunctionBegin;
 49:   /* compute v^2 / 2 */
 50:   for (PetscInt i = 0; i < dim; ++i) v2 += x[i] * x[i];
 51:   /* evaluate the Maxwellian */
 52:   u[0] = v2 / 2;
 53:   PetscFunctionReturn(PETSC_SUCCESS);
 54: }

 56: /* needs double */
 57: static PetscErrorCode gamma_m1_f(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf_dummy, PetscScalar *u, void *actx)
 58: {
 59:   PetscReal *c2_0_arr = ((PetscReal *)actx);
 60:   double     u2 = 0, c02 = (double)*c2_0_arr, xx;

 62:   PetscFunctionBegin;
 63:   /* compute u^2 / 2 */
 64:   for (PetscInt i = 0; i < dim; ++i) u2 += x[i] * x[i];
 65:   /* gamma - 1 = g_eps, for conditioning and we only take derivatives */
 66:   xx = u2 / c02;
 67: #if defined(PETSC_USE_DEBUG)
 68:   u[0] = PetscSqrtReal(1. + xx);
 69: #else
 70:   u[0] = xx / (PetscSqrtReal(1. + xx) + 1.) - 1.; // better conditioned. -1 might help condition and only used for derivative
 71: #endif
 72:   PetscFunctionReturn(PETSC_SUCCESS);
 73: }

 75: /*
 76:  LandauFormJacobian_Internal - Evaluates Jacobian matrix.

 78:  Input Parameters:
 79:  .  globX - input vector
 80:  .  actx - optional user-defined context
 81:  .  dim - dimension

 83:  Output Parameter:
 84:  .  J0acP - Jacobian matrix filled, not created
 85:  */
 86: static PetscErrorCode LandauFormJacobian_Internal(Vec a_X, Mat JacP, const PetscInt dim, PetscReal shift, void *a_ctx)
 87: {
 88:   LandauCtx         *ctx = (LandauCtx *)a_ctx;
 89:   PetscInt           numCells[LANDAU_MAX_GRIDS], Nq, Nb;
 90:   PetscQuadrature    quad;
 91:   PetscReal          Eq_m[LANDAU_MAX_SPECIES]; // could be static data w/o quench (ex2)
 92:   PetscScalar       *cellClosure = NULL;
 93:   const PetscScalar *xdata       = NULL;
 94:   PetscDS            prob;
 95:   PetscContainer     container;
 96:   P4estVertexMaps   *maps;
 97:   Mat                subJ[LANDAU_MAX_GRIDS * LANDAU_MAX_BATCH_SZ];

 99:   PetscFunctionBegin;
102:   PetscAssertPointer(ctx, 5);
103:   /* check for matrix container for GPU assembly. Support CPU assembly for debugging */
104:   PetscCheck(ctx->plex[0] != NULL, ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
105:   PetscCall(PetscLogEventBegin(ctx->events[10], 0, 0, 0, 0));
106:   PetscCall(DMGetDS(ctx->plex[0], &prob)); // same DS for all grids
107:   PetscCall(PetscObjectQuery((PetscObject)JacP, "assembly_maps", (PetscObject *)&container));
108:   if (container) {
109:     PetscCheck(ctx->gpu_assembly, ctx->comm, PETSC_ERR_ARG_WRONG, "maps but no GPU assembly");
110:     PetscCall(PetscContainerGetPointer(container, (void **)&maps));
111:     PetscCheck(maps, ctx->comm, PETSC_ERR_ARG_WRONG, "empty GPU matrix container");
112:     for (PetscInt i = 0; i < ctx->num_grids * ctx->batch_sz; i++) subJ[i] = NULL;
113:   } else {
114:     PetscCheck(!ctx->gpu_assembly, ctx->comm, PETSC_ERR_ARG_WRONG, "No maps but GPU assembly");
115:     for (PetscInt tid = 0; tid < ctx->batch_sz; tid++) {
116:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMCreateMatrix(ctx->plex[grid], &subJ[LAND_PACK_IDX(tid, grid)]));
117:     }
118:     maps = NULL;
119:   }
120:   // get dynamic data (Eq is odd, for quench and Spitzer test) for CPU assembly and raw data for Jacobian GPU assembly. Get host numCells[], Nq (yuck)
121:   PetscCall(PetscFEGetQuadrature(ctx->fe[0], &quad));
122:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
123:   PetscCall(PetscFEGetDimension(ctx->fe[0], &Nb));
124:   PetscCheck(Nq <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nq = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nq, LANDAU_MAX_NQND);
125:   PetscCheck(Nb <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nb = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nb, LANDAU_MAX_NQND);
126:   // get metadata for collecting dynamic data
127:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
128:     PetscInt cStart, cEnd;
129:     PetscCheck(ctx->plex[grid] != NULL, ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
130:     PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
131:     numCells[grid] = cEnd - cStart; // grids can have different topology
132:   }
133:   PetscCall(PetscLogEventEnd(ctx->events[10], 0, 0, 0, 0));
134:   if (shift == 0) { /* create dynamic point data: f_alpha for closure of each cell (cellClosure[nbatch,ngrids,ncells[g],f[Nb,ns[g]]]) or xdata */
135:     DM pack;
136:     PetscCall(VecGetDM(a_X, &pack));
137:     PetscCheck(pack, PETSC_COMM_SELF, PETSC_ERR_PLIB, "pack has no DM");
138:     PetscCall(PetscLogEventBegin(ctx->events[1], 0, 0, 0, 0));
139:     for (PetscInt fieldA = 0; fieldA < ctx->num_species; fieldA++) {
140:       Eq_m[fieldA] = ctx->Ez * ctx->t_0 * ctx->charges[fieldA] / (ctx->v_0 * ctx->masses[fieldA]); /* normalize dimensionless */
141:       if (dim == 2) Eq_m[fieldA] *= 2 * PETSC_PI;                                                  /* add the 2pi term that is not in Landau */
142:     }
143:     if (!ctx->gpu_assembly) {
144:       Vec         *locXArray, *globXArray;
145:       PetscScalar *cellClosure_it;
146:       PetscInt     cellClosure_sz = 0, nDMs, Nf[LANDAU_MAX_GRIDS];
147:       PetscSection section[LANDAU_MAX_GRIDS], globsection[LANDAU_MAX_GRIDS];
148:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
149:         PetscCall(DMGetLocalSection(ctx->plex[grid], &section[grid]));
150:         PetscCall(DMGetGlobalSection(ctx->plex[grid], &globsection[grid]));
151:         PetscCall(PetscSectionGetNumFields(section[grid], &Nf[grid]));
152:       }
153:       /* count cellClosure size */
154:       PetscCall(DMCompositeGetNumberDM(pack, &nDMs));
155:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) cellClosure_sz += Nb * Nf[grid] * numCells[grid];
156:       PetscCall(PetscMalloc1(cellClosure_sz * ctx->batch_sz, &cellClosure));
157:       cellClosure_it = cellClosure;
158:       PetscCall(PetscMalloc(sizeof(*locXArray) * nDMs, &locXArray));
159:       PetscCall(PetscMalloc(sizeof(*globXArray) * nDMs, &globXArray));
160:       PetscCall(DMCompositeGetLocalAccessArray(pack, a_X, nDMs, NULL, locXArray));
161:       PetscCall(DMCompositeGetAccessArray(pack, a_X, nDMs, NULL, globXArray));
162:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // OpenMP (once)
163:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
164:           Vec      locX = locXArray[LAND_PACK_IDX(b_id, grid)], globX = globXArray[LAND_PACK_IDX(b_id, grid)], locX2;
165:           PetscInt cStart, cEnd, ei;
166:           PetscCall(VecDuplicate(locX, &locX2));
167:           PetscCall(DMGlobalToLocalBegin(ctx->plex[grid], globX, INSERT_VALUES, locX2));
168:           PetscCall(DMGlobalToLocalEnd(ctx->plex[grid], globX, INSERT_VALUES, locX2));
169:           PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
170:           for (ei = cStart; ei < cEnd; ++ei) {
171:             PetscScalar *coef = NULL;
172:             PetscCall(DMPlexVecGetClosure(ctx->plex[grid], section[grid], locX2, ei, NULL, &coef));
173:             PetscCall(PetscMemcpy(cellClosure_it, coef, Nb * Nf[grid] * sizeof(*cellClosure_it))); /* change if LandauIPReal != PetscScalar */
174:             PetscCall(DMPlexVecRestoreClosure(ctx->plex[grid], section[grid], locX2, ei, NULL, &coef));
175:             cellClosure_it += Nb * Nf[grid];
176:           }
177:           PetscCall(VecDestroy(&locX2));
178:         }
179:       }
180:       PetscCheck(cellClosure_it - cellClosure == cellClosure_sz * ctx->batch_sz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "iteration wrong %" PetscCount_FMT " != cellClosure_sz = %" PetscInt_FMT, cellClosure_it - cellClosure, cellClosure_sz * ctx->batch_sz);
181:       PetscCall(DMCompositeRestoreLocalAccessArray(pack, a_X, nDMs, NULL, locXArray));
182:       PetscCall(DMCompositeRestoreAccessArray(pack, a_X, nDMs, NULL, globXArray));
183:       PetscCall(PetscFree(locXArray));
184:       PetscCall(PetscFree(globXArray));
185:       xdata = NULL;
186:     } else {
187:       PetscMemType mtype;
188:       if (ctx->jacobian_field_major_order) { // get data in batch ordering
189:         PetscCall(VecScatterBegin(ctx->plex_batch, a_X, ctx->work_vec, INSERT_VALUES, SCATTER_FORWARD));
190:         PetscCall(VecScatterEnd(ctx->plex_batch, a_X, ctx->work_vec, INSERT_VALUES, SCATTER_FORWARD));
191:         PetscCall(VecGetArrayReadAndMemType(ctx->work_vec, &xdata, &mtype));
192:       } else {
193:         PetscCall(VecGetArrayReadAndMemType(a_X, &xdata, &mtype));
194:       }
195:       PetscCheck(mtype == PETSC_MEMTYPE_HOST || ctx->deviceType != LANDAU_CPU, ctx->comm, PETSC_ERR_ARG_WRONG, "CPU run with device data: use -mat_type aij");
196:       cellClosure = NULL;
197:     }
198:     PetscCall(PetscLogEventEnd(ctx->events[1], 0, 0, 0, 0));
199:   } else xdata = cellClosure = NULL;

201:   /* do it */
202:   if (ctx->deviceType == LANDAU_KOKKOS) {
203: #if defined(PETSC_HAVE_KOKKOS)
204:     PetscCall(LandauKokkosJacobian(ctx->plex, Nq, Nb, ctx->batch_sz, ctx->num_grids, numCells, Eq_m, cellClosure, xdata, &ctx->SData_d, shift, ctx->events, ctx->mat_offset, ctx->species_offset, subJ, JacP));
205: #else
206:     SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-landau_device_type %s not built", "kokkos");
207: #endif
208:   } else {               /* CPU version */
209:     PetscTabulation *Tf; // used for CPU and print info. Same on all grids and all species
210:     PetscInt         ip_offset[LANDAU_MAX_GRIDS + 1], ipf_offset[LANDAU_MAX_GRIDS + 1], elem_offset[LANDAU_MAX_GRIDS + 1], IPf_sz_glb, IPf_sz_tot, num_grids = ctx->num_grids, Nf[LANDAU_MAX_GRIDS];
211:     PetscReal       *ff, *dudx, *dudy, *dudz, *invJ_a = (PetscReal *)ctx->SData_d.invJ, *xx = (PetscReal *)ctx->SData_d.x, *yy = (PetscReal *)ctx->SData_d.y, *zz = (PetscReal *)ctx->SData_d.z, *ww = (PetscReal *)ctx->SData_d.w;
212:     PetscReal       *nu_alpha = (PetscReal *)ctx->SData_d.alpha, *nu_beta = (PetscReal *)ctx->SData_d.beta, *invMass = (PetscReal *)ctx->SData_d.invMass;
213:     PetscReal (*lambdas)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS] = (PetscReal (*)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS])ctx->SData_d.lambdas;
214:     PetscSection section[LANDAU_MAX_GRIDS], globsection[LANDAU_MAX_GRIDS];
215:     PetscScalar *coo_vals = NULL;
216:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
217:       PetscCall(DMGetLocalSection(ctx->plex[grid], &section[grid]));
218:       PetscCall(DMGetGlobalSection(ctx->plex[grid], &globsection[grid]));
219:       PetscCall(PetscSectionGetNumFields(section[grid], &Nf[grid]));
220:     }
221:     /* count IPf size, etc */
222:     PetscCall(PetscDSGetTabulation(prob, &Tf)); // Bf, &Df same for all grids
223:     const PetscReal *const BB = Tf[0]->T[0], *const DD = Tf[0]->T[1];
224:     ip_offset[0] = ipf_offset[0] = elem_offset[0] = 0;
225:     for (PetscInt grid = 0; grid < num_grids; grid++) {
226:       PetscInt nfloc        = ctx->species_offset[grid + 1] - ctx->species_offset[grid];
227:       elem_offset[grid + 1] = elem_offset[grid] + numCells[grid];
228:       ip_offset[grid + 1]   = ip_offset[grid] + numCells[grid] * Nq;
229:       ipf_offset[grid + 1]  = ipf_offset[grid] + Nq * nfloc * numCells[grid];
230:     }
231:     IPf_sz_glb = ipf_offset[num_grids];
232:     IPf_sz_tot = IPf_sz_glb * ctx->batch_sz;
233:     // prep COO
234:     PetscCall(PetscMalloc1(ctx->SData_d.coo_size, &coo_vals)); // allocate every time?
235:     if (shift == 0.0) {                                        /* compute dynamic data f and df and init data for Jacobian */
236: #if defined(PETSC_HAVE_THREADSAFETY)
237:       double starttime, endtime;
238:       starttime = MPI_Wtime();
239: #endif
240:       PetscCall(PetscLogEventBegin(ctx->events[8], 0, 0, 0, 0));
241:       PetscCall(PetscMalloc4(IPf_sz_tot, &ff, IPf_sz_tot, &dudx, IPf_sz_tot, &dudy, (dim == 3 ? IPf_sz_tot : 0), &dudz));
242:       // F df/dx
243:       for (PetscInt tid = 0; tid < ctx->batch_sz * elem_offset[num_grids]; tid++) {                        // for each element
244:         const PetscInt b_Nelem = elem_offset[num_grids], b_elem_idx = tid % b_Nelem, b_id = tid / b_Nelem; // b_id == OMP thd_id in batch
245:         // find my grid:
246:         PetscInt grid = 0;
247:         while (b_elem_idx >= elem_offset[grid + 1]) grid++; // yuck search for grid
248:         {
249:           const PetscInt loc_nip = numCells[grid] * Nq, loc_Nf = ctx->species_offset[grid + 1] - ctx->species_offset[grid], loc_elem = b_elem_idx - elem_offset[grid];
250:           const PetscInt moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset); //b_id*b_N + ctx->mat_offset[grid];
251:           PetscScalar   *coef, coef_buff[LANDAU_MAX_SPECIES * LANDAU_MAX_NQND];
252:           PetscReal     *invJe = &invJ_a[(ip_offset[grid] + loc_elem * Nq) * dim * dim]; // ingJ is static data on batch 0
253:           PetscInt       b, f, q;
254:           if (cellClosure) {
255:             coef = &cellClosure[b_id * IPf_sz_glb + ipf_offset[grid] + loc_elem * Nb * loc_Nf]; // this is const
256:           } else {
257:             coef = coef_buff;
258:             for (f = 0; f < loc_Nf; ++f) {
259:               LandauIdx *const Idxs = &maps[grid].gIdx[loc_elem][f][0];
260:               for (b = 0; b < Nb; ++b) {
261:                 PetscInt idx = Idxs[b];
262:                 if (idx >= 0) {
263:                   coef[f * Nb + b] = xdata[idx + moffset];
264:                 } else {
265:                   idx              = -idx - 1;
266:                   coef[f * Nb + b] = 0;
267:                   for (q = 0; q < maps[grid].num_face; q++) {
268:                     PetscInt    id    = maps[grid].c_maps[idx][q].gid;
269:                     PetscScalar scale = maps[grid].c_maps[idx][q].scale;
270:                     coef[f * Nb + b] += scale * xdata[id + moffset];
271:                   }
272:                 }
273:               }
274:             }
275:           }
276:           /* get f and df */
277:           for (PetscInt qi = 0; qi < Nq; qi++) {
278:             const PetscReal *invJ = &invJe[qi * dim * dim];
279:             const PetscReal *Bq   = &BB[qi * Nb];
280:             const PetscReal *Dq   = &DD[qi * Nb * dim];
281:             PetscReal        u_x[LANDAU_DIM];
282:             /* get f & df */
283:             for (f = 0; f < loc_Nf; ++f) {
284:               const PetscInt idx = b_id * IPf_sz_glb + ipf_offset[grid] + f * loc_nip + loc_elem * Nq + qi;
285:               PetscInt       b, e;
286:               PetscReal      refSpaceDer[LANDAU_DIM];
287:               ff[idx] = 0.0;
288:               for (PetscInt d = 0; d < LANDAU_DIM; ++d) refSpaceDer[d] = 0.0;
289:               for (b = 0; b < Nb; ++b) {
290:                 const PetscInt cidx = b;
291:                 ff[idx] += Bq[cidx] * PetscRealPart(coef[f * Nb + cidx]);
292:                 for (PetscInt d = 0; d < dim; ++d) refSpaceDer[d] += Dq[cidx * dim + d] * PetscRealPart(coef[f * Nb + cidx]);
293:               }
294:               for (PetscInt d = 0; d < LANDAU_DIM; ++d) {
295:                 for (e = 0, u_x[d] = 0.0; e < LANDAU_DIM; ++e) u_x[d] += invJ[e * dim + d] * refSpaceDer[e];
296:               }
297:               dudx[idx] = u_x[0];
298:               dudy[idx] = u_x[1];
299: #if LANDAU_DIM == 3
300:               dudz[idx] = u_x[2];
301: #endif
302:             }
303:           } // q
304:         } // grid
305:       } // grid*batch
306:       PetscCall(PetscLogEventEnd(ctx->events[8], 0, 0, 0, 0));
307: #if defined(PETSC_HAVE_THREADSAFETY)
308:       endtime = MPI_Wtime();
309:       if (ctx->stage) ctx->times[LANDAU_F_DF] += (endtime - starttime);
310: #endif
311:     } // Jacobian setup
312:     // assemble Jacobian (or mass)
313:     for (PetscInt tid = 0; tid < ctx->batch_sz * elem_offset[num_grids]; tid++) { // for each element
314:       const PetscInt b_Nelem      = elem_offset[num_grids];
315:       const PetscInt glb_elem_idx = tid % b_Nelem, b_id = tid / b_Nelem;
316:       PetscInt       grid = 0;
317: #if defined(PETSC_HAVE_THREADSAFETY)
318:       double starttime, endtime;
319:       starttime = MPI_Wtime();
320: #endif
321:       while (glb_elem_idx >= elem_offset[grid + 1]) grid++;
322:       {
323:         const PetscInt   loc_Nf = ctx->species_offset[grid + 1] - ctx->species_offset[grid], loc_elem = glb_elem_idx - elem_offset[grid];
324:         const PetscInt   moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset), totDim = loc_Nf * Nq, elemMatSize = totDim * totDim;
325:         PetscScalar     *elemMat;
326:         const PetscReal *invJe = &invJ_a[(ip_offset[grid] + loc_elem * Nq) * dim * dim];
327:         PetscCall(PetscMalloc1(elemMatSize, &elemMat));
328:         PetscCall(PetscMemzero(elemMat, elemMatSize * sizeof(*elemMat)));
329:         if (shift == 0.0) { // Jacobian
330:           PetscCall(PetscLogEventBegin(ctx->events[4], 0, 0, 0, 0));
331:         } else { // mass
332:           PetscCall(PetscLogEventBegin(ctx->events[16], 0, 0, 0, 0));
333:         }
334:         for (PetscInt qj = 0; qj < Nq; ++qj) {
335:           const PetscInt jpidx_glb = ip_offset[grid] + qj + loc_elem * Nq;
336:           PetscReal      g0[LANDAU_MAX_SPECIES], g2[LANDAU_MAX_SPECIES][LANDAU_DIM], g3[LANDAU_MAX_SPECIES][LANDAU_DIM][LANDAU_DIM]; // could make a LANDAU_MAX_SPECIES_GRID ~ number of ions - 1
337:           PetscInt       d, d2, dp, d3, IPf_idx;
338:           if (shift == 0.0) { // Jacobian
339:             const PetscReal *const invJj = &invJe[qj * dim * dim];
340:             PetscReal              gg2[LANDAU_MAX_SPECIES][LANDAU_DIM], gg3[LANDAU_MAX_SPECIES][LANDAU_DIM][LANDAU_DIM], gg2_temp[LANDAU_DIM], gg3_temp[LANDAU_DIM][LANDAU_DIM];
341:             const PetscReal        vj[3] = {xx[jpidx_glb], yy[jpidx_glb], zz ? zz[jpidx_glb] : 0}, wj = ww[jpidx_glb];
342:             // create g2 & g3
343:             for (d = 0; d < LANDAU_DIM; d++) { // clear accumulation data D & K
344:               gg2_temp[d] = 0;
345:               for (d2 = 0; d2 < LANDAU_DIM; d2++) gg3_temp[d][d2] = 0;
346:             }
347:             /* inner beta reduction */
348:             IPf_idx = 0;
349:             for (PetscInt grid_r = 0, f_off = 0, ipidx = 0; grid_r < ctx->num_grids; grid_r++, f_off = ctx->species_offset[grid_r]) { // IPf_idx += nip_loc_r*Nfloc_r
350:               PetscInt nip_loc_r = numCells[grid_r] * Nq, Nfloc_r = Nf[grid_r];
351:               for (PetscInt ei_r = 0, loc_fdf_idx = 0; ei_r < numCells[grid_r]; ++ei_r) {
352:                 for (PetscInt qi = 0; qi < Nq; qi++, ipidx++, loc_fdf_idx++) {
353:                   const PetscReal wi = ww[ipidx], x = xx[ipidx], y = yy[ipidx];
354:                   PetscReal       temp1[3] = {0, 0, 0}, temp2 = 0;
355: #if LANDAU_DIM == 2
356:                   PetscReal Ud[2][2], Uk[2][2], mask = (PetscAbs(vj[0] - x) < 100 * PETSC_SQRT_MACHINE_EPSILON && PetscAbs(vj[1] - y) < 100 * PETSC_SQRT_MACHINE_EPSILON) ? 0. : 1.;
357:                   LandauTensor2D(vj, x, y, Ud, Uk, mask);
358: #else
359:                   PetscReal U[3][3], z = zz[ipidx], mask = (PetscAbs(vj[0] - x) < 100 * PETSC_SQRT_MACHINE_EPSILON && PetscAbs(vj[1] - y) < 100 * PETSC_SQRT_MACHINE_EPSILON && PetscAbs(vj[2] - z) < 100 * PETSC_SQRT_MACHINE_EPSILON) ? 0. : 1.;
360:                   if (ctx->use_relativistic_corrections) {
361:                     LandauTensor3DRelativistic(vj, x, y, z, U, mask, C_0(ctx->v_0));
362:                   } else {
363:                     LandauTensor3D(vj, x, y, z, U, mask);
364:                   }
365: #endif
366:                   for (PetscInt f = 0; f < Nfloc_r; ++f) {
367:                     const PetscInt idx = b_id * IPf_sz_glb + ipf_offset[grid_r] + f * nip_loc_r + ei_r * Nq + qi; // IPf_idx + f*nip_loc_r + loc_fdf_idx;
368:                     temp1[0] += dudx[idx] * nu_beta[f + f_off] * invMass[f + f_off] * (*lambdas)[grid][grid_r];
369:                     temp1[1] += dudy[idx] * nu_beta[f + f_off] * invMass[f + f_off] * (*lambdas)[grid][grid_r];
370: #if LANDAU_DIM == 3
371:                     temp1[2] += dudz[idx] * nu_beta[f + f_off] * invMass[f + f_off] * (*lambdas)[grid][grid_r];
372: #endif
373:                     temp2 += ff[idx] * nu_beta[f + f_off] * (*lambdas)[grid][grid_r];
374:                   }
375:                   temp1[0] *= wi;
376:                   temp1[1] *= wi;
377: #if LANDAU_DIM == 3
378:                   temp1[2] *= wi;
379: #endif
380:                   temp2 *= wi;
381: #if LANDAU_DIM == 2
382:                   for (d2 = 0; d2 < 2; d2++) {
383:                     for (d3 = 0; d3 < 2; ++d3) {
384:                       /* K = U * grad(f): g2=e: i,A */
385:                       gg2_temp[d2] += Uk[d2][d3] * temp1[d3];
386:                       /* D = -U * (I \kron (fx)): g3=f: i,j,A */
387:                       gg3_temp[d2][d3] += Ud[d2][d3] * temp2;
388:                     }
389:                   }
390: #else
391:                   for (d2 = 0; d2 < 3; ++d2) {
392:                     for (d3 = 0; d3 < 3; ++d3) {
393:                       /* K = U * grad(f): g2 = e: i,A */
394:                       gg2_temp[d2] += U[d2][d3] * temp1[d3];
395:                       /* D = -U * (I \kron (fx)): g3 = f: i,j,A */
396:                       gg3_temp[d2][d3] += U[d2][d3] * temp2;
397:                     }
398:                   }
399: #endif
400:                 } // qi
401:               } // ei_r
402:               IPf_idx += nip_loc_r * Nfloc_r;
403:             } /* grid_r - IPs */
404:             PetscCheck(IPf_idx == IPf_sz_glb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "IPf_idx != IPf_sz %" PetscInt_FMT " %" PetscInt_FMT, IPf_idx, IPf_sz_glb);
405:             // add alpha and put in gg2/3
406:             for (PetscInt fieldA = 0, f_off = ctx->species_offset[grid]; fieldA < loc_Nf; ++fieldA) {
407:               for (d2 = 0; d2 < LANDAU_DIM; d2++) {
408:                 gg2[fieldA][d2] = gg2_temp[d2] * nu_alpha[fieldA + f_off];
409:                 for (d3 = 0; d3 < LANDAU_DIM; d3++) gg3[fieldA][d2][d3] = -gg3_temp[d2][d3] * nu_alpha[fieldA + f_off] * invMass[fieldA + f_off];
410:               }
411:             }
412:             /* add electric field term once per IP */
413:             for (PetscInt fieldA = 0, f_off = ctx->species_offset[grid]; fieldA < loc_Nf; ++fieldA) gg2[fieldA][LANDAU_DIM - 1] += Eq_m[fieldA + f_off];
414:             /* Jacobian transform - g2, g3 */
415:             for (PetscInt fieldA = 0; fieldA < loc_Nf; ++fieldA) {
416:               for (d = 0; d < dim; ++d) {
417:                 g2[fieldA][d] = 0.0;
418:                 for (d2 = 0; d2 < dim; ++d2) {
419:                   g2[fieldA][d] += invJj[d * dim + d2] * gg2[fieldA][d2];
420:                   g3[fieldA][d][d2] = 0.0;
421:                   for (d3 = 0; d3 < dim; ++d3) {
422:                     for (dp = 0; dp < dim; ++dp) g3[fieldA][d][d2] += invJj[d * dim + d3] * gg3[fieldA][d3][dp] * invJj[d2 * dim + dp];
423:                   }
424:                   g3[fieldA][d][d2] *= wj;
425:                 }
426:                 g2[fieldA][d] *= wj;
427:               }
428:             }
429:           } else { // mass
430:             PetscReal wj = ww[jpidx_glb];
431:             /* Jacobian transform - g0 */
432:             for (PetscInt fieldA = 0; fieldA < loc_Nf; ++fieldA) {
433:               if (dim == 2) {
434:                 g0[fieldA] = wj * shift * 2. * PETSC_PI; // move this to below and remove g0
435:               } else {
436:                 g0[fieldA] = wj * shift; // move this to below and remove g0
437:               }
438:             }
439:           }
440:           /* FE matrix construction */
441:           {
442:             PetscInt         fieldA, d, f, d2, g;
443:             const PetscReal *BJq = &BB[qj * Nb], *DIq = &DD[qj * Nb * dim];
444:             /* assemble - on the diagonal (I,I) */
445:             for (fieldA = 0; fieldA < loc_Nf; fieldA++) {
446:               for (f = 0; f < Nb; f++) {
447:                 const PetscInt i = fieldA * Nb + f; /* Element matrix row */
448:                 for (g = 0; g < Nb; ++g) {
449:                   const PetscInt j    = fieldA * Nb + g; /* Element matrix column */
450:                   const PetscInt fOff = i * totDim + j;
451:                   if (shift == 0.0) {
452:                     for (d = 0; d < dim; ++d) {
453:                       elemMat[fOff] += DIq[f * dim + d] * g2[fieldA][d] * BJq[g];
454:                       for (d2 = 0; d2 < dim; ++d2) elemMat[fOff] += DIq[f * dim + d] * g3[fieldA][d][d2] * DIq[g * dim + d2];
455:                     }
456:                   } else { // mass
457:                     elemMat[fOff] += BJq[f] * g0[fieldA] * BJq[g];
458:                   }
459:                 }
460:               }
461:             }
462:           }
463:         } /* qj loop */
464:         if (shift == 0.0) { // Jacobian
465:           PetscCall(PetscLogEventEnd(ctx->events[4], 0, 0, 0, 0));
466:         } else {
467:           PetscCall(PetscLogEventEnd(ctx->events[16], 0, 0, 0, 0));
468:         }
469: #if defined(PETSC_HAVE_THREADSAFETY)
470:         endtime = MPI_Wtime();
471:         if (ctx->stage) ctx->times[LANDAU_KERNEL] += (endtime - starttime);
472: #endif
473:         /* assemble matrix */
474:         if (!container) {
475:           PetscInt cStart;
476:           PetscCall(PetscLogEventBegin(ctx->events[6], 0, 0, 0, 0));
477:           PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, NULL));
478:           PetscCall(DMPlexMatSetClosure(ctx->plex[grid], section[grid], globsection[grid], subJ[LAND_PACK_IDX(b_id, grid)], loc_elem + cStart, elemMat, ADD_VALUES));
479:           PetscCall(PetscLogEventEnd(ctx->events[6], 0, 0, 0, 0));
480:         } else { // GPU like assembly for debugging
481:           PetscInt    fieldA, q, f, g, d, nr, nc, rows0[LANDAU_MAX_Q_FACE] = {0}, cols0[LANDAU_MAX_Q_FACE] = {0}, rows[LANDAU_MAX_Q_FACE], cols[LANDAU_MAX_Q_FACE];
482:           PetscScalar vals[LANDAU_MAX_Q_FACE * LANDAU_MAX_Q_FACE] = {0}, row_scale[LANDAU_MAX_Q_FACE] = {0}, col_scale[LANDAU_MAX_Q_FACE] = {0};
483:           LandauIdx *coo_elem_offsets = (LandauIdx *)ctx->SData_d.coo_elem_offsets, *coo_elem_fullNb = (LandauIdx *)ctx->SData_d.coo_elem_fullNb, (*coo_elem_point_offsets)[LANDAU_MAX_NQND + 1] = (LandauIdx(*)[LANDAU_MAX_NQND + 1]) ctx->SData_d.coo_elem_point_offsets;
484:           /* assemble - from the diagonal (I,I) in this format for DMPlexMatSetClosure */
485:           for (fieldA = 0; fieldA < loc_Nf; fieldA++) {
486:             LandauIdx *const Idxs = &maps[grid].gIdx[loc_elem][fieldA][0];
487:             for (f = 0; f < Nb; f++) {
488:               PetscInt idx = Idxs[f];
489:               if (idx >= 0) {
490:                 nr           = 1;
491:                 rows0[0]     = idx;
492:                 row_scale[0] = 1.;
493:               } else {
494:                 idx = -idx - 1;
495:                 for (q = 0, nr = 0; q < maps[grid].num_face; q++, nr++) {
496:                   if (maps[grid].c_maps[idx][q].gid < 0) break;
497:                   rows0[q]     = maps[grid].c_maps[idx][q].gid;
498:                   row_scale[q] = maps[grid].c_maps[idx][q].scale;
499:                 }
500:               }
501:               for (g = 0; g < Nb; ++g) {
502:                 idx = Idxs[g];
503:                 if (idx >= 0) {
504:                   nc           = 1;
505:                   cols0[0]     = idx;
506:                   col_scale[0] = 1.;
507:                 } else {
508:                   idx = -idx - 1;
509:                   nc  = maps[grid].num_face;
510:                   for (q = 0, nc = 0; q < maps[grid].num_face; q++, nc++) {
511:                     if (maps[grid].c_maps[idx][q].gid < 0) break;
512:                     cols0[q]     = maps[grid].c_maps[idx][q].gid;
513:                     col_scale[q] = maps[grid].c_maps[idx][q].scale;
514:                   }
515:                 }
516:                 const PetscInt    i   = fieldA * Nb + f; /* Element matrix row */
517:                 const PetscInt    j   = fieldA * Nb + g; /* Element matrix column */
518:                 const PetscScalar Aij = elemMat[i * totDim + j];
519:                 if (coo_vals) { // mirror (i,j) in CreateStaticGPUData
520:                   const PetscInt fullNb = coo_elem_fullNb[glb_elem_idx], fullNb2 = fullNb * fullNb;
521:                   const PetscInt idx0 = b_id * coo_elem_offsets[elem_offset[num_grids]] + coo_elem_offsets[glb_elem_idx] + fieldA * fullNb2 + fullNb * coo_elem_point_offsets[glb_elem_idx][f] + nr * coo_elem_point_offsets[glb_elem_idx][g];
522:                   for (PetscInt q = 0, idx2 = idx0; q < nr; q++) {
523:                     for (PetscInt d = 0; d < nc; d++, idx2++) coo_vals[idx2] = row_scale[q] * col_scale[d] * Aij;
524:                   }
525:                 } else {
526:                   for (q = 0; q < nr; q++) rows[q] = rows0[q] + moffset;
527:                   for (d = 0; d < nc; d++) cols[d] = cols0[d] + moffset;
528:                   for (q = 0; q < nr; q++) {
529:                     for (d = 0; d < nc; d++) vals[q * nc + d] = row_scale[q] * col_scale[d] * Aij;
530:                   }
531:                   PetscCall(MatSetValues(JacP, nr, rows, nc, cols, vals, ADD_VALUES));
532:                 }
533:               }
534:             }
535:           }
536:         }
537:         if (loc_elem == -1) {
538:           PetscCall(PetscPrintf(ctx->comm, "CPU Element matrix\n"));
539:           for (PetscInt d = 0; d < totDim; ++d) {
540:             for (PetscInt f = 0; f < totDim; ++f) PetscCall(PetscPrintf(ctx->comm, " %12.5e", (double)PetscRealPart(elemMat[d * totDim + f])));
541:             PetscCall(PetscPrintf(ctx->comm, "\n"));
542:           }
543:           exit(12);
544:         }
545:         PetscCall(PetscFree(elemMat));
546:       } /* grid */
547:     } /* outer element & batch loop */
548:     if (shift == 0.0) { // mass
549:       PetscCall(PetscFree4(ff, dudx, dudy, dudz));
550:     }
551:     if (!container) {                                         // 'CPU' assembly move nest matrix to global JacP
552:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // OpenMP
553:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
554:           const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset); // b_id*b_N + ctx->mat_offset[grid];
555:           PetscInt           nloc, nzl, colbuf[1024], row;
556:           const PetscInt    *cols;
557:           const PetscScalar *vals;
558:           Mat                B = subJ[LAND_PACK_IDX(b_id, grid)];
559:           PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
560:           PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
561:           PetscCall(MatGetSize(B, &nloc, NULL));
562:           for (PetscInt i = 0; i < nloc; i++) {
563:             PetscCall(MatGetRow(B, i, &nzl, &cols, &vals));
564:             PetscCheck(nzl <= 1024, PetscObjectComm((PetscObject)B), PETSC_ERR_PLIB, "Row too big: %" PetscInt_FMT, nzl);
565:             for (PetscInt j = 0; j < nzl; j++) colbuf[j] = moffset + cols[j];
566:             row = moffset + i;
567:             PetscCall(MatSetValues(JacP, 1, &row, nzl, colbuf, vals, ADD_VALUES));
568:             PetscCall(MatRestoreRow(B, i, &nzl, &cols, &vals));
569:           }
570:           PetscCall(MatDestroy(&B));
571:         }
572:       }
573:     }
574:     if (coo_vals) {
575:       PetscCall(MatSetValuesCOO(JacP, coo_vals, ADD_VALUES));
576:       PetscCall(PetscFree(coo_vals));
577:     }
578:   } /* CPU version */
579:   PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
580:   PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
581:   /* clean up */
582:   if (cellClosure) PetscCall(PetscFree(cellClosure));
583:   if (xdata) PetscCall(VecRestoreArrayReadAndMemType(a_X, &xdata));
584:   PetscFunctionReturn(PETSC_SUCCESS);
585: }

587: static PetscErrorCode GeometryDMLandau(DM base, PetscInt point, PetscInt dim, const PetscReal abc[], PetscReal xyz[], void *a_ctx)
588: {
589:   PetscReal  r = abc[0], z = abc[1];
590:   LandauCtx *ctx = (LandauCtx *)a_ctx;

592:   PetscFunctionBegin;
593:   if (ctx->sphere && dim == 3) { // make sphere: works for one AMR and Q2
594:     PetscInt nzero = 0, idx = 0;
595:     xyz[0] = r;
596:     xyz[1] = z;
597:     xyz[2] = abc[2];
598:     for (PetscInt i = 0; i < 3; i++) {
599:       if (PetscAbs(xyz[i]) < PETSC_SQRT_MACHINE_EPSILON) nzero++;
600:       else idx = i;
601:     }
602:     if (nzero == 2) xyz[idx] *= 1.732050807568877; // sqrt(3)
603:     else if (nzero == 1) {
604:       for (PetscInt i = 0; i < 3; i++) xyz[i] *= 1.224744871391589; // sqrt(3/2)
605:     }
606:   } else {
607:     xyz[0] = r;
608:     xyz[1] = z;
609:     if (dim == 3) xyz[2] = abc[2];
610:   }
611:   PetscFunctionReturn(PETSC_SUCCESS);
612: }

614: /* create DMComposite of meshes for each species group */
615: static PetscErrorCode LandauDMCreateVMeshes(MPI_Comm comm_self, const PetscInt dim, const char prefix[], LandauCtx *ctx, DM pack)
616: {
617:   PetscFunctionBegin;
618:   { /* p4est, quads */
619:     /* Create plex mesh of Landau domain */
620:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
621:       PetscReal par_radius = ctx->radius_par[grid], perp_radius = ctx->radius_perp[grid];
622:       if (!ctx->sphere && !ctx->simplex) { // 2 or 3D (only 3D option)
623:         PetscReal      lo[] = {-perp_radius, -par_radius, -par_radius}, hi[] = {perp_radius, par_radius, par_radius};
624:         DMBoundaryType periodicity[3] = {DM_BOUNDARY_NONE, dim == 2 ? DM_BOUNDARY_NONE : DM_BOUNDARY_NONE, DM_BOUNDARY_NONE};
625:         if (dim == 2) lo[0] = 0;
626:         else {
627:           lo[1] = -perp_radius;
628:           hi[1] = perp_radius; // 3D y is a perp
629:         }
630:         PetscCall(DMPlexCreateBoxMesh(comm_self, dim, PETSC_FALSE, ctx->cells0, lo, hi, periodicity, PETSC_TRUE, 0, PETSC_TRUE, &ctx->plex[grid])); // TODO: make composite and create dm[grid] here
631:         PetscCall(DMLocalizeCoordinates(ctx->plex[grid]));                                                                                          /* needed for periodic */
632:         if (dim == 3) PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "cube"));
633:         else PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "half-plane"));
634:       } else if (dim == 2) {
635:         size_t len;
636:         PetscCall(PetscStrlen(ctx->filename, &len));
637:         if (len) {
638:           Vec          coords;
639:           PetscScalar *x;
640:           PetscInt     N;
641:           char         str[] = "-dm_landau_view_file_0";
642:           str[21] += grid;
643:           PetscCall(DMPlexCreateFromFile(comm_self, ctx->filename, "plexland.c", PETSC_TRUE, &ctx->plex[grid]));
644:           PetscCall(DMPlexOrient(ctx->plex[grid]));
645:           PetscCall(DMGetCoordinatesLocal(ctx->plex[grid], &coords));
646:           PetscCall(VecGetSize(coords, &N));
647:           PetscCall(VecGetArray(coords, &x));
648:           /* scale by domain size */
649:           for (PetscInt i = 0; i < N; i += 2) {
650:             x[i + 0] *= ctx->radius_perp[grid];
651:             x[i + 1] *= ctx->radius_par[grid];
652:           }
653:           PetscCall(VecRestoreArray(coords, &x));
654:           PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], ctx->filename));
655:           PetscCall(PetscInfo(ctx->plex[grid], "%" PetscInt_FMT ") Read %s mesh file (%s)\n", grid, ctx->filename, str));
656:           PetscCall(DMViewFromOptions(ctx->plex[grid], NULL, str));
657:         } else { // simplex forces a sphere
658:           PetscInt       numCells = ctx->simplex ? 12 : 6, cell_size = ctx->simplex ? 3 : 4, j;
659:           const PetscInt numVerts    = 11;
660:           PetscInt       cellsT[][4] = {
661:             {0,  1, 6, 5 },
662:             {1,  2, 7, 6 },
663:             {2,  3, 8, 7 },
664:             {3,  4, 9, 8 },
665:             {5,  6, 7, 10},
666:             {10, 7, 8, 9 }
667:           };
668:           PetscInt cellsS[][3] = {
669:             {0,  1, 6 },
670:             {1,  2, 6 },
671:             {6,  2, 7 },
672:             {7,  2, 8 },
673:             {8,  2, 3 },
674:             {8,  3, 4 },
675:             {0,  6, 5 },
676:             {5,  6, 7 },
677:             {5,  7, 10},
678:             {10, 7, 9 },
679:             {9,  7, 8 },
680:             {9,  8, 4 }
681:           };
682:           const PetscInt *pcell = (const PetscInt *)(ctx->simplex ? &cellsS[0][0] : &cellsT[0][0]);
683:           PetscReal       coords[11][2], *flatCoords = &coords[0][0];
684:           PetscReal       rad = ctx->radius[grid];
685:           for (j = 0; j < 5; j++) { // outside edge
686:             PetscReal z, r, theta = -PETSC_PI / 2 + (j % 5) * PETSC_PI / 4;
687:             r            = rad * PetscCosReal(theta);
688:             coords[j][0] = r;
689:             z            = rad * PetscSinReal(theta);
690:             coords[j][1] = z;
691:           }
692:           coords[j][0]   = 0;
693:           coords[j++][1] = -rad * ctx->sphere_inner_radius_90degree[grid];
694:           coords[j][0]   = rad * ctx->sphere_inner_radius_45degree[grid] * 0.707106781186548;
695:           coords[j++][1] = -rad * ctx->sphere_inner_radius_45degree[grid] * 0.707106781186548;
696:           coords[j][0]   = rad * ctx->sphere_inner_radius_90degree[grid];
697:           coords[j++][1] = 0;
698:           coords[j][0]   = rad * ctx->sphere_inner_radius_45degree[grid] * 0.707106781186548;
699:           coords[j++][1] = rad * ctx->sphere_inner_radius_45degree[grid] * 0.707106781186548;
700:           coords[j][0]   = 0;
701:           coords[j++][1] = rad * ctx->sphere_inner_radius_90degree[grid];
702:           coords[j][0]   = 0;
703:           coords[j++][1] = 0;
704:           PetscCall(DMPlexCreateFromCellListPetsc(comm_self, 2, numCells, numVerts, cell_size, ctx->interpolate, pcell, 2, flatCoords, &ctx->plex[grid]));
705:           PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "semi-circle"));
706:           PetscCall(PetscInfo(ctx->plex[grid], "\t%" PetscInt_FMT ") Make circle %s mesh\n", grid, ctx->simplex ? "simplex" : "tensor"));
707:         }
708:       } else {
709:         PetscCheck(dim == 3 && ctx->sphere && !ctx->simplex, ctx->comm, PETSC_ERR_ARG_WRONG, "not: dim == 3 && ctx->sphere && !ctx->simplex");
710:         PetscReal      rad = ctx->radius[grid] / 1.732050807568877, inner_rad = rad * ctx->sphere_inner_radius_45degree[grid], outer_rad = rad;
711:         const PetscInt numCells = 7, cell_size = 8, numVerts = 16;
712:         const PetscInt cells[][8] = {
713:           {0, 3, 2, 1, 4,  5,  6,  7 },
714:           {0, 4, 5, 1, 8,  9,  13, 12},
715:           {1, 5, 6, 2, 9,  10, 14, 13},
716:           {2, 6, 7, 3, 10, 11, 15, 14},
717:           {0, 3, 7, 4, 8,  12, 15, 11},
718:           {0, 1, 2, 3, 8,  11, 10, 9 },
719:           {4, 7, 6, 5, 12, 13, 14, 15}
720:         };
721:         PetscReal coords[16 /* numVerts */][3];
722:         for (PetscInt j = 0; j < 4; j++) { // inner edge, low
723:           coords[j][0] = inner_rad * (j == 0 || j == 3 ? 1 : -1);
724:           coords[j][1] = inner_rad * (j / 2 < 1 ? 1 : -1);
725:           coords[j][2] = inner_rad * -1;
726:         }
727:         for (PetscInt j = 0, jj = 4; j < 4; j++, jj++) { // inner edge, hi
728:           coords[jj][0] = inner_rad * (j == 0 || j == 3 ? 1 : -1);
729:           coords[jj][1] = inner_rad * (j / 2 < 1 ? 1 : -1);
730:           coords[jj][2] = inner_rad * 1;
731:         }
732:         for (PetscInt j = 0, jj = 8; j < 4; j++, jj++) { // outer edge, low
733:           coords[jj][0] = outer_rad * (j == 0 || j == 3 ? 1 : -1);
734:           coords[jj][1] = outer_rad * (j / 2 < 1 ? 1 : -1);
735:           coords[jj][2] = outer_rad * -1;
736:         }
737:         for (PetscInt j = 0, jj = 12; j < 4; j++, jj++) { // outer edge, hi
738:           coords[jj][0] = outer_rad * (j == 0 || j == 3 ? 1 : -1);
739:           coords[jj][1] = outer_rad * (j / 2 < 1 ? 1 : -1);
740:           coords[jj][2] = outer_rad * 1;
741:         }
742:         PetscCall(DMPlexCreateFromCellListPetsc(comm_self, 3, numCells, numVerts, cell_size, ctx->interpolate, (const PetscInt *)cells, 3, (const PetscReal *)coords, &ctx->plex[grid]));
743:         PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "cubed sphere"));
744:         PetscCall(PetscInfo(ctx->plex[grid], "\t%" PetscInt_FMT ") Make cubed sphere %s mesh\n", grid, ctx->simplex ? "simplex" : "tensor"));
745:       }
746:       PetscCall(DMSetFromOptions(ctx->plex[grid]));
747:     } // grid loop
748:     PetscCall(PetscObjectSetOptionsPrefix((PetscObject)pack, prefix));
749:     { /* convert to p4est (or whatever), wait for discretization to create pack */
750:       char      convType[256];
751:       PetscBool flg;

753:       PetscOptionsBegin(ctx->comm, prefix, "Mesh conversion options", "DMPLEX");
754:       PetscCall(PetscOptionsFList("-dm_landau_type", "Convert DMPlex to another format (p4est)", "plexland.c", DMList, DMPLEX, convType, 256, &flg));
755:       PetscOptionsEnd();
756:       if (flg) {
757:         ctx->use_p4est = PETSC_TRUE; /* flag for Forest */
758:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
759:           DM        dmforest;
760:           PetscBool isForest;

762:           PetscCall(DMConvert(ctx->plex[grid], convType, &dmforest));
763:           PetscCheck(dmforest, ctx->comm, PETSC_ERR_PLIB, "Convert failed?");
764:           PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dmforest, prefix));
765:           PetscCall(DMIsForest(dmforest, &isForest));
766:           PetscCheck(isForest, ctx->comm, PETSC_ERR_PLIB, "Converted to non Forest?");
767:           if (ctx->sphere) PetscCall(DMForestSetBaseCoordinateMapping(dmforest, GeometryDMLandau, ctx));
768:           PetscCall(DMDestroy(&ctx->plex[grid]));
769:           ctx->plex[grid] = dmforest; // Forest for adaptivity
770:         }
771:       } else ctx->use_p4est = PETSC_FALSE; /* flag for Forest */
772:     }
773:   } /* non-file */
774:   PetscCall(DMSetDimension(pack, dim));
775:   PetscCall(PetscObjectSetName((PetscObject)pack, "Mesh"));
776:   PetscCall(DMSetApplicationContext(pack, ctx));
777:   PetscFunctionReturn(PETSC_SUCCESS);
778: }

780: static PetscErrorCode SetupDS(DM pack, PetscInt dim, PetscInt grid, LandauCtx *ctx)
781: {
782:   PetscInt     ii, i0;
783:   char         buf[256];
784:   PetscSection section;

786:   PetscFunctionBegin;
787:   for (ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
788:     if (ii == 0) PetscCall(PetscSNPrintf(buf, sizeof(buf), "e"));
789:     else PetscCall(PetscSNPrintf(buf, sizeof(buf), "i%" PetscInt_FMT, ii));
790:     /* Setup Discretization - FEM */
791:     PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, ctx->simplex, NULL, PETSC_DECIDE, &ctx->fe[ii]));
792:     PetscCall(PetscObjectSetName((PetscObject)ctx->fe[ii], buf));
793:     PetscCall(DMSetField(ctx->plex[grid], i0, NULL, (PetscObject)ctx->fe[ii]));
794:   }
795:   PetscCall(DMCreateDS(ctx->plex[grid]));
796:   PetscCall(DMGetLocalSection(ctx->plex[grid], &section));
797:   for (PetscInt ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
798:     if (ii == 0) PetscCall(PetscSNPrintf(buf, sizeof(buf), "se"));
799:     else PetscCall(PetscSNPrintf(buf, sizeof(buf), "si%" PetscInt_FMT, ii));
800:     PetscCall(PetscSectionSetComponentName(section, i0, 0, buf));
801:   }
802:   PetscFunctionReturn(PETSC_SUCCESS);
803: }

805: /* Define a Maxwellian function for testing out the operator. */

807: /* Using cartesian velocity space coordinates, the particle */
808: /* density, [1/m^3], is defined according to */

810: /* $$ n=\int_{R^3} dv^3 \left(\frac{m}{2\pi T}\right)^{3/2}\exp [- mv^2/(2T)] $$ */

812: /* Using some constant, c, we normalize the velocity vector into a */
813: /* dimensionless variable according to v=c*x. Thus the density, $n$, becomes */

815: /* $$ n=\int_{R^3} dx^3 \left(\frac{mc^2}{2\pi T}\right)^{3/2}\exp [- mc^2/(2T)*x^2] $$ */

817: /* Defining $\theta=2T/mc^2$, we thus find that the probability density */
818: /* for finding the particle within the interval in a box dx^3 around x is */

820: /* f(x;\theta)=\left(\frac{1}{\pi\theta}\right)^{3/2} \exp [ -x^2/\theta ] */

822: typedef struct {
823:   PetscReal v_0;
824:   PetscReal kT_m;
825:   PetscReal n;
826:   PetscReal shift;
827: } MaxwellianCtx;

829: static PetscErrorCode maxwellian(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf_dummy, PetscScalar *u, void *actx)
830: {
831:   MaxwellianCtx *mctx = (MaxwellianCtx *)actx;
832:   PetscInt       i;
833:   PetscReal      v2 = 0, theta = 2 * mctx->kT_m / (mctx->v_0 * mctx->v_0), shift; /* theta = 2kT/mc^2 */

835:   PetscFunctionBegin;
836:   /* compute the exponents, v^2 */
837:   for (i = 0; i < dim; ++i) v2 += x[i] * x[i];
838:   /* evaluate the Maxwellian */
839:   if (mctx->shift < 0) shift = -mctx->shift;
840:   else {
841:     u[0]  = mctx->n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
842:     shift = mctx->shift;
843:   }
844:   if (shift != 0.) {
845:     v2 = 0;
846:     for (i = 0; i < dim - 1; ++i) v2 += x[i] * x[i];
847:     v2 += (x[dim - 1] - shift) * (x[dim - 1] - shift);
848:     /* evaluate the shifted Maxwellian */
849:     u[0] += mctx->n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
850:   }
851:   PetscFunctionReturn(PETSC_SUCCESS);
852: }

854: /*@
855:   DMPlexLandauAddMaxwellians - Add a Maxwellian distribution to a state

857:   Collective

859:   Input Parameters:
860: + dm      - The mesh (local)
861: . time    - Current time
862: . temps   - Temperatures of each species (global)
863: . ns      - Number density of each species (global)
864: . grid    - index into current grid - just used for offset into `temp` and `ns`
865: . b_id    - batch index
866: . n_batch - number of batches
867: - actx    - Landau context

869:   Output Parameter:
870: . X - The state (local to this grid)

872:   Level: beginner

874: .seealso: `DMPlexLandauCreateVelocitySpace()`
875:  @*/
876: PetscErrorCode DMPlexLandauAddMaxwellians(DM dm, Vec X, PetscReal time, PetscReal temps[], PetscReal ns[], PetscInt grid, PetscInt b_id, PetscInt n_batch, void *actx)
877: {
878:   LandauCtx *ctx = (LandauCtx *)actx;
879:   PetscErrorCode (*initu[LANDAU_MAX_SPECIES])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *);
880:   PetscInt       dim;
881:   MaxwellianCtx *mctxs[LANDAU_MAX_SPECIES], data[LANDAU_MAX_SPECIES];

883:   PetscFunctionBegin;
884:   PetscCall(DMGetDimension(dm, &dim));
885:   if (!ctx) PetscCall(DMGetApplicationContext(dm, &ctx));
886:   for (PetscInt ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
887:     mctxs[i0]      = &data[i0];
888:     data[i0].v_0   = ctx->v_0;                             // v_0 same for all grids
889:     data[i0].kT_m  = ctx->k * temps[ii] / ctx->masses[ii]; /* kT/m */
890:     data[i0].n     = ns[ii];
891:     initu[i0]      = maxwellian;
892:     data[i0].shift = 0;
893:   }
894:   data[0].shift = ctx->electronShift;
895:   /* need to make ADD_ALL_VALUES work - TODO */
896:   PetscCall(DMProjectFunction(dm, time, initu, (void **)mctxs, INSERT_ALL_VALUES, X));
897:   PetscFunctionReturn(PETSC_SUCCESS);
898: }

900: /*
901:  LandauSetInitialCondition - Adds Maxwellians with context

903:  Collective

905:  Input Parameters:
906:  .   dm - The mesh
907:  -   grid - index into current grid - just used for offset into temp and ns
908:  .   b_id - batch index
909:  -   n_batch - number of batches
910:  +   actx - Landau context with T and n

912:  Output Parameter:
913:  .   X  - The state

915:  Level: beginner

917: .seealso: `DMPlexLandauCreateVelocitySpace()`, `DMPlexLandauAddMaxwellians()`
918:  */
919: static PetscErrorCode LandauSetInitialCondition(DM dm, Vec X, PetscInt grid, PetscInt b_id, PetscInt n_batch, void *actx)
920: {
921:   LandauCtx *ctx = (LandauCtx *)actx;

923:   PetscFunctionBegin;
924:   if (!ctx) PetscCall(DMGetApplicationContext(dm, &ctx));
925:   PetscCall(VecZeroEntries(X));
926:   PetscCall(DMPlexLandauAddMaxwellians(dm, X, 0.0, ctx->thermal_temps, ctx->n, grid, b_id, n_batch, ctx));
927:   PetscFunctionReturn(PETSC_SUCCESS);
928: }

930: // adapt a level once. Forest in/out
931: #if defined(PETSC_USE_INFO)
932: static const char *s_refine_names[] = {"RE", "Z1", "Origin", "Z2", "Uniform"};
933: #endif
934: static PetscErrorCode adaptToleranceFEM(PetscFE fem, Vec sol, PetscInt type, PetscInt grid, LandauCtx *ctx, DM *newForest)
935: {
936:   DM              forest, plex, adaptedDM = NULL;
937:   PetscDS         prob;
938:   PetscBool       isForest;
939:   PetscQuadrature quad;
940:   PetscInt        Nq, Nb, *Nb2, cStart, cEnd, c, dim, qj, k;
941:   DMLabel         adaptLabel = NULL;

943:   PetscFunctionBegin;
944:   forest = ctx->plex[grid];
945:   PetscCall(DMCreateDS(forest));
946:   PetscCall(DMGetDS(forest, &prob));
947:   PetscCall(DMGetDimension(forest, &dim));
948:   PetscCall(DMIsForest(forest, &isForest));
949:   PetscCheck(isForest, ctx->comm, PETSC_ERR_ARG_WRONG, "! Forest");
950:   PetscCall(DMConvert(forest, DMPLEX, &plex));
951:   PetscCall(DMPlexGetHeightStratum(plex, 0, &cStart, &cEnd));
952:   PetscCall(DMLabelCreate(PETSC_COMM_SELF, "adapt", &adaptLabel));
953:   PetscCall(PetscFEGetQuadrature(fem, &quad));
954:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
955:   PetscCheck(Nq <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nq = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nq, LANDAU_MAX_NQND);
956:   PetscCall(PetscFEGetDimension(ctx->fe[0], &Nb));
957:   PetscCall(PetscDSGetDimensions(prob, &Nb2));
958:   PetscCheck(Nb2[0] == Nb, ctx->comm, PETSC_ERR_ARG_WRONG, " Nb = %" PetscInt_FMT " != Nb (%" PetscInt_FMT ")", Nb, Nb2[0]);
959:   PetscCheck(Nb <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nb = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nb, LANDAU_MAX_NQND);
960:   PetscCall(PetscInfo(sol, "%" PetscInt_FMT ") Refine phase: %s\n", grid, s_refine_names[type]));
961:   if (type == 4) {
962:     for (c = cStart; c < cEnd; c++) PetscCall(DMLabelSetValue(adaptLabel, c, DM_ADAPT_REFINE));
963:   } else if (type == 2) {
964:     PetscInt  rCellIdx[8], nr = 0, nrmax = (dim == 3) ? 8 : 2;
965:     PetscReal minRad = PETSC_INFINITY, r;
966:     for (c = cStart; c < cEnd; c++) {
967:       PetscReal tt, v0[LANDAU_MAX_NQND * 3], J[LANDAU_MAX_NQND * 9], invJ[LANDAU_MAX_NQND * 9], detJ[LANDAU_MAX_NQND];
968:       PetscCall(DMPlexComputeCellGeometryFEM(plex, c, quad, v0, J, invJ, detJ));
969:       (void)J;
970:       (void)invJ;
971:       for (qj = 0; qj < Nq; ++qj) {
972:         tt = PetscSqr(v0[dim * qj + 0]) + PetscSqr(v0[dim * qj + 1]) + PetscSqr((dim == 3) ? v0[dim * qj + 2] : 0);
973:         r  = PetscSqrtReal(tt);
974:         if (r < minRad - PETSC_SQRT_MACHINE_EPSILON * 10.) {
975:           minRad         = r;
976:           nr             = 0;
977:           rCellIdx[nr++] = c;
978:           PetscCall(PetscInfo(sol, "\t\t%" PetscInt_FMT ") Found first inner r=%e, cell %" PetscInt_FMT ", qp %" PetscInt_FMT "/%" PetscInt_FMT "\n", grid, (double)r, c, qj + 1, Nq));
979:         } else if ((r - minRad) < PETSC_SQRT_MACHINE_EPSILON * 100. && nr < nrmax) {
980:           for (k = 0; k < nr; k++)
981:             if (c == rCellIdx[k]) break;
982:           if (k == nr) {
983:             rCellIdx[nr++] = c;
984:             PetscCall(PetscInfo(sol, "\t\t\t%" PetscInt_FMT ") Found another inner r=%e, cell %" PetscInt_FMT ", qp %" PetscInt_FMT "/%" PetscInt_FMT ", d=%e\n", grid, (double)r, c, qj + 1, Nq, (double)(r - minRad)));
985:           }
986:         }
987:       }
988:     }
989:     for (k = 0; k < nr; k++) PetscCall(DMLabelSetValue(adaptLabel, rCellIdx[k], DM_ADAPT_REFINE));
990:     PetscCall(PetscInfo(sol, "\t\t\t%" PetscInt_FMT ") Refined %" PetscInt_FMT " origin cells %" PetscInt_FMT ",%" PetscInt_FMT " r=%g\n", grid, nr, rCellIdx[0], rCellIdx[1], (double)minRad));
991:   } else if (type == 0 || type == 1 || type == 3) { /* refine along r=0 axis */
992:     PetscScalar *coef = NULL;
993:     Vec          coords;
994:     PetscInt     csize, Nv, d, nz, nrefined = 0;
995:     DM           cdm;
996:     PetscSection cs;
997:     PetscCall(DMGetCoordinatesLocal(forest, &coords));
998:     PetscCall(DMGetCoordinateDM(forest, &cdm));
999:     PetscCall(DMGetLocalSection(cdm, &cs));
1000:     for (c = cStart; c < cEnd; c++) {
1001:       PetscInt doit = 0, outside = 0;
1002:       PetscCall(DMPlexVecGetClosure(cdm, cs, coords, c, &csize, &coef));
1003:       Nv = csize / dim;
1004:       for (nz = d = 0; d < Nv; d++) {
1005:         PetscReal z = PetscRealPart(coef[d * dim + (dim - 1)]), x = PetscSqr(PetscRealPart(coef[d * dim + 0])) + ((dim == 3) ? PetscSqr(PetscRealPart(coef[d * dim + 1])) : 0);
1006:         x = PetscSqrtReal(x);
1007:         if (type == 0) {
1008:           if (ctx->re_radius > PETSC_SQRT_MACHINE_EPSILON && (z < -PETSC_MACHINE_EPSILON * 10. || z > ctx->re_radius + PETSC_MACHINE_EPSILON * 10.)) outside++; /* first pass don't refine bottom */
1009:         } else if (type == 1 && (z > ctx->vperp0_radius1 || z < -ctx->vperp0_radius1)) {
1010:           outside++; /* don't refine outside electron refine radius */
1011:           PetscCall(PetscInfo(sol, "\t%" PetscInt_FMT ") (debug) found %s cells\n", grid, s_refine_names[type]));
1012:         } else if (type == 3 && (z > ctx->vperp0_radius2 || z < -ctx->vperp0_radius2)) {
1013:           outside++; /* refine r=0 cells on refinement front */
1014:           PetscCall(PetscInfo(sol, "\t%" PetscInt_FMT ") (debug) found %s cells\n", grid, s_refine_names[type]));
1015:         }
1016:         if (x < PETSC_MACHINE_EPSILON * 10. && (type != 0 || ctx->re_radius > PETSC_SQRT_MACHINE_EPSILON)) nz++;
1017:       }
1018:       PetscCall(DMPlexVecRestoreClosure(cdm, cs, coords, c, &csize, &coef));
1019:       if (doit || (outside < Nv && nz)) {
1020:         PetscCall(DMLabelSetValue(adaptLabel, c, DM_ADAPT_REFINE));
1021:         nrefined++;
1022:       }
1023:     }
1024:     PetscCall(PetscInfo(sol, "\t%" PetscInt_FMT ") Refined %" PetscInt_FMT " cells\n", grid, nrefined));
1025:   }
1026:   PetscCall(DMDestroy(&plex));
1027:   PetscCall(DMAdaptLabel(forest, adaptLabel, &adaptedDM));
1028:   PetscCall(DMLabelDestroy(&adaptLabel));
1029:   *newForest = adaptedDM;
1030:   if (adaptedDM) {
1031:     if (isForest) PetscCall(DMForestSetAdaptivityForest(adaptedDM, NULL)); // ????
1032:     PetscCall(DMConvert(adaptedDM, DMPLEX, &plex));
1033:     PetscCall(DMPlexGetHeightStratum(plex, 0, &cStart, &cEnd));
1034:     PetscCall(PetscInfo(sol, "\t\t\t\t%" PetscInt_FMT ") %" PetscInt_FMT " cells, %" PetscInt_FMT " total quadrature points\n", grid, cEnd - cStart, Nq * (cEnd - cStart)));
1035:     PetscCall(DMDestroy(&plex));
1036:   } else *newForest = NULL;
1037:   PetscFunctionReturn(PETSC_SUCCESS);
1038: }

1040: // forest goes in (ctx->plex[grid]), plex comes out
1041: static PetscErrorCode adapt(PetscInt grid, LandauCtx *ctx, Vec *uu)
1042: {
1043:   PetscInt adaptIter;

1045:   PetscFunctionBegin;
1046:   PetscInt type, limits[5] = {(grid == 0) ? ctx->numRERefine : 0, (grid == 0) ? ctx->nZRefine1 : 0, ctx->numAMRRefine[grid], (grid == 0) ? ctx->nZRefine2 : 0, ctx->postAMRRefine[grid]};
1047:   for (type = 0; type < 5; type++) {
1048:     for (adaptIter = 0; adaptIter < limits[type]; adaptIter++) {
1049:       DM newForest = NULL;
1050:       PetscCall(adaptToleranceFEM(ctx->fe[0], *uu, type, grid, ctx, &newForest));
1051:       if (newForest) {
1052:         PetscCall(DMDestroy(&ctx->plex[grid]));
1053:         PetscCall(VecDestroy(uu));
1054:         PetscCall(DMCreateGlobalVector(newForest, uu));
1055:         PetscCall(LandauSetInitialCondition(newForest, *uu, grid, 0, 1, ctx));
1056:         ctx->plex[grid] = newForest;
1057:       } else {
1058:         PetscCall(PetscInfo(*uu, "No refinement\n"));
1059:       }
1060:     }
1061:   }
1062:   PetscCall(PetscObjectSetName((PetscObject)*uu, "uAMR"));
1063:   PetscFunctionReturn(PETSC_SUCCESS);
1064: }

1066: // make log(Lambdas) from NRL Plasma formulary
1067: static PetscErrorCode makeLambdas(LandauCtx *ctx)
1068: {
1069:   PetscFunctionBegin;
1070:   for (PetscInt gridi = 0; gridi < ctx->num_grids; gridi++) {
1071:     PetscInt  iii   = ctx->species_offset[gridi];
1072:     PetscReal Ti_ev = (ctx->thermal_temps[iii] / 1.1604525e7) * 1000; // convert (back) to eV
1073:     PetscReal ni    = ctx->n[iii] * ctx->n_0;
1074:     for (PetscInt gridj = gridi; gridj < ctx->num_grids; gridj++) {
1075:       PetscInt  jjj = ctx->species_offset[gridj];
1076:       PetscReal Zj  = ctx->charges[jjj] / 1.6022e-19;
1077:       if (gridi == 0) {
1078:         if (gridj == 0) { // lam_ee
1079:           ctx->lambdas[gridi][gridj] = 23.5 - PetscLogReal(PetscSqrtReal(ni) * PetscPowReal(Ti_ev, -1.25)) - PetscSqrtReal(1e-5 + PetscSqr(PetscLogReal(Ti_ev) - 2) / 16);
1080:         } else { // lam_ei == lam_ie
1081:           if (10 * Zj * Zj > Ti_ev) {
1082:             ctx->lambdas[gridi][gridj] = ctx->lambdas[gridj][gridi] = 23 - PetscLogReal(PetscSqrtReal(ni) * Zj * PetscPowReal(Ti_ev, -1.5));
1083:           } else {
1084:             ctx->lambdas[gridi][gridj] = ctx->lambdas[gridj][gridi] = 24 - PetscLogReal(PetscSqrtReal(ni) / Ti_ev);
1085:           }
1086:         }
1087:       } else { // lam_ii'
1088:         PetscReal mui = ctx->masses[iii] / 1.6720e-27, Zi = ctx->charges[iii] / 1.6022e-19;
1089:         PetscReal Tj_ev            = (ctx->thermal_temps[jjj] / 1.1604525e7) * 1000; // convert (back) to eV
1090:         PetscReal muj              = ctx->masses[jjj] / 1.6720e-27;
1091:         PetscReal nj               = ctx->n[jjj] * ctx->n_0;
1092:         ctx->lambdas[gridi][gridj] = ctx->lambdas[gridj][gridi] = 23 - PetscLogReal(Zi * Zj * (mui + muj) / (mui * Tj_ev + muj * Ti_ev) * PetscSqrtReal(ni * Zi * Zi / Ti_ev + nj * Zj * Zj / Tj_ev));
1093:       }
1094:     }
1095:   }
1096:   //PetscReal v0 = PetscSqrtReal(ctx->k * ctx->thermal_temps[iii] / ctx->masses[iii]); /* arbitrary units for non-dimensionalization: plasma formulary def */
1097:   PetscFunctionReturn(PETSC_SUCCESS);
1098: }

1100: static PetscErrorCode ProcessOptions(LandauCtx *ctx, const char prefix[])
1101: {
1102:   PetscBool flg, fileflg;
1103:   PetscInt  ii, nt, nm, nc, num_species_grid[LANDAU_MAX_GRIDS], non_dim_grid;
1104:   PetscReal lnLam = 10;
1105:   DM        dummy;

1107:   PetscFunctionBegin;
1108:   PetscCall(DMCreate(ctx->comm, &dummy));
1109:   /* get options - initialize context */
1110:   ctx->verbose        = 1; // should be 0 for silent compliance
1111:   ctx->batch_sz       = 1;
1112:   ctx->batch_view_idx = 0;
1113:   ctx->interpolate    = PETSC_TRUE;
1114:   ctx->gpu_assembly   = PETSC_TRUE;
1115:   ctx->norm_state     = 0;
1116:   ctx->electronShift  = 0;
1117:   ctx->M              = NULL;
1118:   ctx->J              = NULL;
1119:   /* geometry and grids */
1120:   ctx->sphere    = PETSC_FALSE;
1121:   ctx->use_p4est = PETSC_FALSE;
1122:   ctx->simplex   = PETSC_FALSE;
1123:   for (PetscInt grid = 0; grid < LANDAU_MAX_GRIDS; grid++) {
1124:     ctx->radius[grid]             = 5.; /* thermal radius (velocity) */
1125:     ctx->radius_perp[grid]        = 5.; /* thermal radius (velocity) */
1126:     ctx->radius_par[grid]         = 5.; /* thermal radius (velocity) */
1127:     ctx->numAMRRefine[grid]       = 0;
1128:     ctx->postAMRRefine[grid]      = 0;
1129:     ctx->species_offset[grid + 1] = 1; // one species default
1130:     num_species_grid[grid]        = 0;
1131:     ctx->plex[grid]               = NULL; /* cache as expensive to Convert */
1132:   }
1133:   ctx->species_offset[0] = 0;
1134:   ctx->re_radius         = 0.;
1135:   ctx->vperp0_radius1    = 0;
1136:   ctx->vperp0_radius2    = 0;
1137:   ctx->nZRefine1         = 0;
1138:   ctx->nZRefine2         = 0;
1139:   ctx->numRERefine       = 0;
1140:   num_species_grid[0]    = 1; // one species default
1141:   /* species - [0] electrons, [1] one ion species eg, duetarium, [2] heavy impurity ion, ... */
1142:   ctx->charges[0]       = -1;                       /* electron charge (MKS) */
1143:   ctx->masses[0]        = 1 / 1835.469965278441013; /* temporary value in proton mass */
1144:   ctx->n[0]             = 1;
1145:   ctx->v_0              = 1; /* thermal velocity, we could start with a scale != 1 */
1146:   ctx->thermal_temps[0] = 1;
1147:   /* constants, etc. */
1148:   ctx->epsilon0 = 8.8542e-12;     /* permittivity of free space (MKS) F/m */
1149:   ctx->k        = 1.38064852e-23; /* Boltzmann constant (MKS) J/K */
1150:   ctx->n_0      = 1.e20;          /* typical plasma n, but could set it to 1 */
1151:   ctx->Ez       = 0;
1152:   for (PetscInt grid = 0; grid < LANDAU_NUM_TIMERS; grid++) ctx->times[grid] = 0;
1153:   for (PetscInt ii = 0; ii < LANDAU_DIM; ii++) ctx->cells0[ii] = 2;
1154:   if (LANDAU_DIM == 2) ctx->cells0[0] = 1;
1155:   ctx->use_matrix_mass                = PETSC_FALSE;
1156:   ctx->use_relativistic_corrections   = PETSC_FALSE;
1157:   ctx->use_energy_tensor_trick        = PETSC_FALSE; /* Use Eero's trick for energy conservation v --> grad(v^2/2) */
1158:   ctx->SData_d.w                      = NULL;
1159:   ctx->SData_d.x                      = NULL;
1160:   ctx->SData_d.y                      = NULL;
1161:   ctx->SData_d.z                      = NULL;
1162:   ctx->SData_d.invJ                   = NULL;
1163:   ctx->jacobian_field_major_order     = PETSC_FALSE;
1164:   ctx->SData_d.coo_elem_offsets       = NULL;
1165:   ctx->SData_d.coo_elem_point_offsets = NULL;
1166:   ctx->SData_d.coo_elem_fullNb        = NULL;
1167:   ctx->SData_d.coo_size               = 0;
1168:   PetscOptionsBegin(ctx->comm, prefix, "Options for Fokker-Plank-Landau collision operator", "none");
1169: #if defined(PETSC_HAVE_KOKKOS)
1170:   ctx->deviceType = LANDAU_KOKKOS;
1171:   PetscCall(PetscStrncpy(ctx->filename, "kokkos", sizeof(ctx->filename)));
1172: #else
1173:   ctx->deviceType = LANDAU_CPU;
1174:   PetscCall(PetscStrncpy(ctx->filename, "cpu", sizeof(ctx->filename)));
1175: #endif
1176:   PetscCall(PetscOptionsString("-dm_landau_device_type", "Use kernels on 'cpu' 'kokkos'", "plexland.c", ctx->filename, ctx->filename, sizeof(ctx->filename), NULL));
1177:   PetscCall(PetscStrcmp("cpu", ctx->filename, &flg));
1178:   if (flg) {
1179:     ctx->deviceType = LANDAU_CPU;
1180:   } else {
1181:     PetscCall(PetscStrcmp("kokkos", ctx->filename, &flg));
1182:     PetscCheck(flg, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_device_type %s", ctx->filename);
1183:     ctx->deviceType = LANDAU_KOKKOS;
1184:   }
1185:   ctx->filename[0] = '\0';
1186:   PetscCall(PetscOptionsString("-dm_landau_filename", "file to read mesh from", "plexland.c", ctx->filename, ctx->filename, sizeof(ctx->filename), &fileflg));
1187:   PetscCall(PetscOptionsReal("-dm_landau_electron_shift", "Shift in thermal velocity of electrons", "none", ctx->electronShift, &ctx->electronShift, NULL));
1188:   PetscCall(PetscOptionsInt("-dm_landau_verbose", "Level of verbosity output", "plexland.c", ctx->verbose, &ctx->verbose, NULL));
1189:   PetscCall(PetscOptionsInt("-dm_landau_batch_size", "Number of 'vertices' to batch", "ex2.c", ctx->batch_sz, &ctx->batch_sz, NULL));
1190:   PetscCheck(LANDAU_MAX_BATCH_SZ >= ctx->batch_sz, ctx->comm, PETSC_ERR_ARG_WRONG, "LANDAU_MAX_BATCH_SZ %d < ctx->batch_sz %" PetscInt_FMT, LANDAU_MAX_BATCH_SZ, ctx->batch_sz);
1191:   PetscCall(PetscOptionsInt("-dm_landau_batch_view_idx", "Index of batch for diagnostics like plotting", "ex2.c", ctx->batch_view_idx, &ctx->batch_view_idx, NULL));
1192:   PetscCheck(ctx->batch_view_idx < ctx->batch_sz, ctx->comm, PETSC_ERR_ARG_WRONG, "-ctx->batch_view_idx %" PetscInt_FMT " > ctx->batch_sz %" PetscInt_FMT, ctx->batch_view_idx, ctx->batch_sz);
1193:   PetscCall(PetscOptionsReal("-dm_landau_Ez", "Initial parallel electric field in unites of Conner-Hastie critical field", "plexland.c", ctx->Ez, &ctx->Ez, NULL));
1194:   PetscCall(PetscOptionsReal("-dm_landau_n_0", "Normalization constant for number density", "plexland.c", ctx->n_0, &ctx->n_0, NULL));
1195:   PetscCall(PetscOptionsBool("-dm_landau_use_mataxpy_mass", "Use fast but slightly fragile MATAXPY to add mass term", "plexland.c", ctx->use_matrix_mass, &ctx->use_matrix_mass, NULL));
1196:   PetscCall(PetscOptionsBool("-dm_landau_use_relativistic_corrections", "Use relativistic corrections", "plexland.c", ctx->use_relativistic_corrections, &ctx->use_relativistic_corrections, NULL));
1197:   PetscCall(PetscOptionsBool("-dm_landau_simplex", "Use simplex elements", "plexland.c", ctx->simplex, &ctx->simplex, NULL));
1198:   PetscCall(PetscOptionsBool("-dm_landau_sphere", "use sphere/semi-circle domain instead of rectangle", "plexland.c", ctx->sphere, &ctx->sphere, NULL));
1199:   if (LANDAU_DIM == 2 && ctx->use_relativistic_corrections) ctx->use_relativistic_corrections = PETSC_FALSE; // should warn
1200:   PetscCall(PetscOptionsBool("-dm_landau_use_energy_tensor_trick", "Use Eero's trick of using grad(v^2/2) instead of v as args to Landau tensor to conserve energy with relativistic corrections and Q1 elements", "plexland.c", ctx->use_energy_tensor_trick,
1201:                              &ctx->use_energy_tensor_trick, NULL));

1203:   /* get num species with temperature, set defaults */
1204:   for (ii = 1; ii < LANDAU_MAX_SPECIES; ii++) {
1205:     ctx->thermal_temps[ii] = 1;
1206:     ctx->charges[ii]       = 1;
1207:     ctx->masses[ii]        = 1;
1208:     ctx->n[ii]             = 1;
1209:   }
1210:   nt = LANDAU_MAX_SPECIES;
1211:   PetscCall(PetscOptionsRealArray("-dm_landau_thermal_temps", "Temperature of each species [e,i_0,i_1,...] in keV (must be set to set number of species)", "plexland.c", ctx->thermal_temps, &nt, &flg));
1212:   PetscCheck(flg, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_thermal_temps ,t1,t2,.. must be provided to set the number of species");
1213:   PetscCall(PetscInfo(dummy, "num_species set to number of thermal temps provided (%" PetscInt_FMT ")\n", nt));
1214:   ctx->num_species = nt;
1215:   for (ii = 0; ii < ctx->num_species; ii++) ctx->thermal_temps[ii] *= 1.1604525e7; /* convert to Kelvin */
1216:   nm = LANDAU_MAX_SPECIES - 1;
1217:   PetscCall(PetscOptionsRealArray("-dm_landau_ion_masses", "Mass of each species in units of proton mass [i_0=2,i_1=40...]", "plexland.c", &ctx->masses[1], &nm, &flg));
1218:   PetscCheck(!flg || nm == ctx->num_species - 1, ctx->comm, PETSC_ERR_ARG_WRONG, "num ion masses %" PetscInt_FMT " != num species %" PetscInt_FMT, nm, ctx->num_species - 1);
1219:   nm = LANDAU_MAX_SPECIES;
1220:   PetscCall(PetscOptionsRealArray("-dm_landau_n", "Number density of each species = n_s * n_0", "plexland.c", ctx->n, &nm, &flg));
1221:   PetscCheck(!flg || nm == ctx->num_species, ctx->comm, PETSC_ERR_ARG_WRONG, "wrong num n: %" PetscInt_FMT " != num species %" PetscInt_FMT, nm, ctx->num_species);
1222:   for (ii = 0; ii < LANDAU_MAX_SPECIES; ii++) ctx->masses[ii] *= 1.6720e-27; /* scale by proton mass kg */
1223:   ctx->masses[0] = 9.10938356e-31;                                           /* electron mass kg (should be about right already) */
1224:   nc             = LANDAU_MAX_SPECIES - 1;
1225:   PetscCall(PetscOptionsRealArray("-dm_landau_ion_charges", "Charge of each species in units of proton charge [i_0=2,i_1=18,...]", "plexland.c", &ctx->charges[1], &nc, &flg));
1226:   if (flg) PetscCheck(nc == ctx->num_species - 1, ctx->comm, PETSC_ERR_ARG_WRONG, "num charges %" PetscInt_FMT " != num species %" PetscInt_FMT, nc, ctx->num_species - 1);
1227:   for (ii = 0; ii < LANDAU_MAX_SPECIES; ii++) ctx->charges[ii] *= 1.6022e-19; /* electron/proton charge (MKS) */
1228:   /* geometry and grids */
1229:   nt = LANDAU_MAX_GRIDS;
1230:   PetscCall(PetscOptionsIntArray("-dm_landau_num_species_grid", "Number of species on each grid: [ 1, ....] or [S, 0 ....] for single grid", "plexland.c", num_species_grid, &nt, &flg));
1231:   if (flg) {
1232:     ctx->num_grids = nt;
1233:     for (ii = nt = 0; ii < ctx->num_grids; ii++) nt += num_species_grid[ii];
1234:     PetscCheck(ctx->num_species == nt, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_num_species_grid: sum %" PetscInt_FMT " != num_species = %" PetscInt_FMT ". %" PetscInt_FMT " grids (check that number of grids <= LANDAU_MAX_GRIDS = %d)", nt, ctx->num_species,
1235:                ctx->num_grids, LANDAU_MAX_GRIDS);
1236:   } else {
1237:     if (ctx->num_species > LANDAU_MAX_GRIDS) {
1238:       num_species_grid[0] = 1;
1239:       num_species_grid[1] = ctx->num_species - 1;
1240:       ctx->num_grids      = 2;
1241:     } else {
1242:       ctx->num_grids = ctx->num_species;
1243:       for (ii = 0; ii < ctx->num_grids; ii++) num_species_grid[ii] = 1;
1244:     }
1245:   }
1246:   for (ctx->species_offset[0] = ii = 0; ii < ctx->num_grids; ii++) ctx->species_offset[ii + 1] = ctx->species_offset[ii] + num_species_grid[ii];
1247:   PetscCheck(ctx->species_offset[ctx->num_grids] == ctx->num_species, ctx->comm, PETSC_ERR_ARG_WRONG, "ctx->species_offset[ctx->num_grids] %" PetscInt_FMT " != ctx->num_species = %" PetscInt_FMT " ???????????", ctx->species_offset[ctx->num_grids],
1248:              ctx->num_species);
1249:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1250:     PetscInt iii             = ctx->species_offset[grid];                                          // normalize with first (arbitrary) species on grid
1251:     ctx->thermal_speed[grid] = PetscSqrtReal(ctx->k * ctx->thermal_temps[iii] / ctx->masses[iii]); /* arbitrary units for non-dimensionalization: plasma formulary def */
1252:   }
1253:   // get lambdas here because we need them for t_0 etc
1254:   PetscCall(PetscOptionsReal("-dm_landau_ln_lambda", "Universal cross section parameter. Default uses NRL formulas", "plexland.c", lnLam, &lnLam, &flg));
1255:   if (flg) {
1256:     for (PetscInt grid = 0; grid < LANDAU_MAX_GRIDS; grid++) {
1257:       for (PetscInt gridj = 0; gridj < LANDAU_MAX_GRIDS; gridj++) ctx->lambdas[gridj][grid] = lnLam; /* cross section ratio large - small angle collisions */
1258:     }
1259:   } else {
1260:     PetscCall(makeLambdas(ctx));
1261:   }
1262:   non_dim_grid = 0;
1263:   PetscCall(PetscOptionsInt("-dm_landau_normalization_grid", "Index of grid to use for setting v_0, m_0, t_0. (Not recommended)", "plexland.c", non_dim_grid, &non_dim_grid, &flg));
1264:   if (non_dim_grid != 0) PetscCall(PetscInfo(dummy, "Normalization grid set to %" PetscInt_FMT ", but non-default not well verified\n", non_dim_grid));
1265:   PetscCheck(non_dim_grid >= 0 && non_dim_grid < ctx->num_species, ctx->comm, PETSC_ERR_ARG_WRONG, "Normalization grid wrong: %" PetscInt_FMT, non_dim_grid);
1266:   ctx->v_0 = ctx->thermal_speed[non_dim_grid]; /* arbitrary units for non dimensionalization: global mean velocity in 1D of electrons */
1267:   ctx->m_0 = ctx->masses[non_dim_grid];        /* arbitrary reference mass, electrons */
1268:   ctx->t_0 = 8 * PETSC_PI * PetscSqr(ctx->epsilon0 * ctx->m_0 / PetscSqr(ctx->charges[non_dim_grid])) / ctx->lambdas[non_dim_grid][non_dim_grid] / ctx->n_0 * PetscPowReal(ctx->v_0, 3); /* note, this t_0 makes nu[non_dim_grid,non_dim_grid]=1 */
1269:   /* domain */
1270:   nt = LANDAU_MAX_GRIDS;
1271:   PetscCall(PetscOptionsRealArray("-dm_landau_domain_radius", "Phase space size in units of thermal velocity of grid", "plexland.c", ctx->radius, &nt, &flg));
1272:   if (flg) {
1273:     PetscCheck(nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_domain_radius: given %" PetscInt_FMT " radius != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1274:     while (nt--) ctx->radius_par[nt] = ctx->radius_perp[nt] = ctx->radius[nt];
1275:   } else {
1276:     nt = LANDAU_MAX_GRIDS;
1277:     PetscCall(PetscOptionsRealArray("-dm_landau_domain_max_par", "Parallel velocity domain size in units of thermal velocity of grid", "plexland.c", ctx->radius_par, &nt, &flg));
1278:     if (flg) PetscCheck(nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_domain_max_par: given %" PetscInt_FMT " radius != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1279:     PetscCall(PetscOptionsRealArray("-dm_landau_domain_max_perp", "Perpendicular velocity domain size in units of thermal velocity of grid", "plexland.c", ctx->radius_perp, &nt, &flg));
1280:     if (flg) PetscCheck(nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_domain_max_perp: given %" PetscInt_FMT " radius != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1281:   }
1282:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1283:     if (flg && ctx->radius[grid] <= 0) { /* negative is ratio of c - need to set par and perp with this -- todo */
1284:       if (ctx->radius[grid] == 0) ctx->radius[grid] = 0.75;
1285:       else ctx->radius[grid] = -ctx->radius[grid];
1286:       ctx->radius[grid] = ctx->radius[grid] * SPEED_OF_LIGHT / ctx->v_0; // use any species on grid to normalize (v_0 same for all on grid)
1287:       PetscCall(PetscInfo(dummy, "Change domain radius to %g for grid %" PetscInt_FMT "\n", (double)ctx->radius[grid], grid));
1288:     }
1289:     ctx->radius[grid] *= ctx->thermal_speed[grid] / ctx->v_0;      // scale domain by thermal radius relative to v_0
1290:     ctx->radius_perp[grid] *= ctx->thermal_speed[grid] / ctx->v_0; // scale domain by thermal radius relative to v_0
1291:     ctx->radius_par[grid] *= ctx->thermal_speed[grid] / ctx->v_0;  // scale domain by thermal radius relative to v_0
1292:   }
1293:   /* amr parameters */
1294:   if (!fileflg) {
1295:     nt = LANDAU_MAX_GRIDS;
1296:     PetscCall(PetscOptionsIntArray("-dm_landau_amr_levels_max", "Number of AMR levels of refinement around origin, after (RE) refinements along z", "plexland.c", ctx->numAMRRefine, &nt, &flg));
1297:     PetscCheck(!flg || nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_amr_levels_max: given %" PetscInt_FMT " != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1298:     nt = LANDAU_MAX_GRIDS;
1299:     PetscCall(PetscOptionsIntArray("-dm_landau_amr_post_refine", "Number of levels to uniformly refine after AMR", "plexland.c", ctx->postAMRRefine, &nt, &flg));
1300:     for (ii = 1; ii < ctx->num_grids; ii++) ctx->postAMRRefine[ii] = ctx->postAMRRefine[0]; // all grids the same now
1301:     PetscCall(PetscOptionsInt("-dm_landau_amr_re_levels", "Number of levels to refine along v_perp=0, z>0", "plexland.c", ctx->numRERefine, &ctx->numRERefine, &flg));
1302:     PetscCall(PetscOptionsInt("-dm_landau_amr_z_refine_pre", "Number of levels to refine along v_perp=0 before origin refine", "plexland.c", ctx->nZRefine1, &ctx->nZRefine1, &flg));
1303:     PetscCall(PetscOptionsInt("-dm_landau_amr_z_refine_post", "Number of levels to refine along v_perp=0 after origin refine", "plexland.c", ctx->nZRefine2, &ctx->nZRefine2, &flg));
1304:     PetscCall(PetscOptionsReal("-dm_landau_re_radius", "velocity range to refine on positive (z>0) r=0 axis for runaways", "plexland.c", ctx->re_radius, &ctx->re_radius, &flg));
1305:     PetscCall(PetscOptionsReal("-dm_landau_z_radius_pre", "velocity range to refine r=0 axis (for electrons)", "plexland.c", ctx->vperp0_radius1, &ctx->vperp0_radius1, &flg));
1306:     PetscCall(PetscOptionsReal("-dm_landau_z_radius_post", "velocity range to refine r=0 axis (for electrons) after origin AMR", "plexland.c", ctx->vperp0_radius2, &ctx->vperp0_radius2, &flg));
1307:     /* spherical domain */
1308:     if (ctx->sphere || ctx->simplex) {
1309:       ctx->sphere_uniform_normal = PETSC_FALSE;
1310:       PetscCall(PetscOptionsBool("-dm_landau_sphere_uniform_normal", "Scaling of circle radius to get uniform particles per cell with Maxwellians (not used)", "plexland.c", ctx->sphere_uniform_normal, &ctx->sphere_uniform_normal, NULL));
1311:       if (!ctx->sphere_uniform_normal) { // true
1312:         nt = LANDAU_MAX_GRIDS;
1313:         PetscCall(PetscOptionsRealArray("-dm_landau_sphere_inner_radius_90degree_scale", "Scaling of radius for inner circle on 90 degree grid", "plexland.c", ctx->sphere_inner_radius_90degree, &nt, &flg));
1314:         if (flg && nt < ctx->num_grids) {
1315:           for (PetscInt grid = nt; grid < ctx->num_grids; grid++) ctx->sphere_inner_radius_90degree[grid] = ctx->sphere_inner_radius_90degree[0];
1316:         } else if (!flg || nt == 0) {
1317:           if (LANDAU_DIM == 2) {
1318:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) ctx->sphere_inner_radius_90degree[grid] = 0.4; // optimized for R=5, Q4, AMR=0
1319:           } else {
1320:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) ctx->sphere_inner_radius_90degree[grid] = 0.577 * 0.40;
1321:           }
1322:         }
1323:         nt = LANDAU_MAX_GRIDS;
1324:         PetscCall(PetscOptionsRealArray("-dm_landau_sphere_inner_radius_45degree_scale", "Scaling of radius for inner circle on 45 degree grid", "plexland.c", ctx->sphere_inner_radius_45degree, &nt, &flg));
1325:         if (flg && nt < ctx->num_grids) {
1326:           for (PetscInt grid = nt; grid < ctx->num_grids; grid++) ctx->sphere_inner_radius_45degree[grid] = ctx->sphere_inner_radius_45degree[0];
1327:         } else if (!flg || nt == 0) {
1328:           if (LANDAU_DIM == 2) {
1329:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) ctx->sphere_inner_radius_45degree[grid] = 0.45; // optimized for R=5, Q4, AMR=0
1330:           } else {
1331:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) ctx->sphere_inner_radius_45degree[grid] = 0.4; // 3D sphere
1332:           }
1333:         }
1334:         if (ctx->sphere) PetscCall(PetscInfo(ctx->plex[0], "sphere : , 45 degree scaling = %g; 90 degree scaling = %g\n", (double)ctx->sphere_inner_radius_45degree[0], (double)ctx->sphere_inner_radius_90degree[0]));
1335:       } else {
1336:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1337:           switch (ctx->numAMRRefine[grid]) {
1338:           case 0:
1339:           case 1:
1340:           case 2:
1341:           case 3:
1342:           default:
1343:             if (LANDAU_DIM == 2) {
1344:               ctx->sphere_inner_radius_90degree[grid] = 0.40;
1345:               ctx->sphere_inner_radius_45degree[grid] = 0.45;
1346:             } else {
1347:               ctx->sphere_inner_radius_45degree[grid] = 0.25;
1348:             }
1349:           }
1350:         }
1351:       }
1352:     } else {
1353:       nt = LANDAU_DIM;
1354:       PetscCall(PetscOptionsIntArray("-dm_landau_num_cells", "Number of cells in each dimension of base grid", "plexland.c", ctx->cells0, &nt, &flg));
1355:     }
1356:   }
1357:   /* processing options */
1358:   PetscCall(PetscOptionsBool("-dm_landau_gpu_assembly", "Assemble Jacobian on GPU", "plexland.c", ctx->gpu_assembly, &ctx->gpu_assembly, NULL));
1359:   PetscCall(PetscOptionsBool("-dm_landau_jacobian_field_major_order", "Reorder Jacobian for GPU assembly with field major, or block diagonal, ordering (DEPRECATED)", "plexland.c", ctx->jacobian_field_major_order, &ctx->jacobian_field_major_order, NULL));
1360:   if (ctx->jacobian_field_major_order) PetscCheck(ctx->gpu_assembly, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_jacobian_field_major_order requires -dm_landau_gpu_assembly");
1361:   PetscCheck(!ctx->jacobian_field_major_order, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_jacobian_field_major_order DEPRECATED");
1362:   PetscOptionsEnd();

1364:   for (ii = ctx->num_species; ii < LANDAU_MAX_SPECIES; ii++) ctx->masses[ii] = ctx->thermal_temps[ii] = ctx->charges[ii] = 0;
1365:   if (ctx->verbose != 0) {
1366:     PetscReal pmassunit = PetscRealConstant(1.6720e-27);

1368:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "masses:        e=%10.3e; ions in proton mass units:   %10.3e %10.3e ...\n", (double)ctx->masses[0], (double)(ctx->masses[1] / pmassunit), (double)(ctx->num_species > 2 ? ctx->masses[2] / pmassunit : 0)));
1369:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "charges:       e=%10.3e; charges in elementary units: %10.3e %10.3e\n", (double)ctx->charges[0], (double)(-ctx->charges[1] / ctx->charges[0]), (double)(ctx->num_species > 2 ? -ctx->charges[2] / ctx->charges[0] : 0)));
1370:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "n:             e: %10.3e                           i: %10.3e %10.3e\n", (double)ctx->n[0], (double)ctx->n[1], (double)(ctx->num_species > 2 ? ctx->n[2] : 0)));
1371:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "thermal T (K): e=%10.3e i=%10.3e %10.3e. Normalization grid %" PetscInt_FMT ": v_0=%10.3e (%10.3ec) n_0=%10.3e t_0=%10.3e %" PetscInt_FMT " batched, view batch %" PetscInt_FMT "\n", (double)ctx->thermal_temps[0],
1372:                           (double)ctx->thermal_temps[1], (double)((ctx->num_species > 2) ? ctx->thermal_temps[2] : 0), non_dim_grid, (double)ctx->v_0, (double)(ctx->v_0 / SPEED_OF_LIGHT), (double)ctx->n_0, (double)ctx->t_0, ctx->batch_sz, ctx->batch_view_idx));
1373:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Domain radius (AMR levels) grid %d: par=%10.3e perp=%10.3e (%" PetscInt_FMT ") ", 0, (double)ctx->radius_par[0], (double)ctx->radius_perp[0], ctx->numAMRRefine[0]));
1374:     for (ii = 1; ii < ctx->num_grids; ii++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, ", %" PetscInt_FMT ": par=%10.3e perp=%10.3e (%" PetscInt_FMT ") ", ii, (double)ctx->radius_par[ii], (double)ctx->radius_perp[ii], ctx->numAMRRefine[ii]));
1375:     if (ctx->use_relativistic_corrections) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nUse relativistic corrections\n"));
1376:     else PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
1377:   }
1378:   PetscCall(DMDestroy(&dummy));
1379:   {
1380:     PetscMPIInt rank;
1381:     PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
1382:     ctx->stage = 0;
1383:     PetscCall(PetscLogEventRegister("Landau Create", DM_CLASSID, &ctx->events[13]));   /* 13 */
1384:     PetscCall(PetscLogEventRegister(" GPU ass. setup", DM_CLASSID, &ctx->events[2]));  /* 2 */
1385:     PetscCall(PetscLogEventRegister(" Build matrix", DM_CLASSID, &ctx->events[12]));   /* 12 */
1386:     PetscCall(PetscLogEventRegister(" Assembly maps", DM_CLASSID, &ctx->events[15]));  /* 15 */
1387:     PetscCall(PetscLogEventRegister("Landau Mass mat", DM_CLASSID, &ctx->events[14])); /* 14 */
1388:     PetscCall(PetscLogEventRegister("Landau Operator", DM_CLASSID, &ctx->events[11])); /* 11 */
1389:     PetscCall(PetscLogEventRegister("Landau Jacobian", DM_CLASSID, &ctx->events[0]));  /* 0 */
1390:     PetscCall(PetscLogEventRegister("Landau Mass", DM_CLASSID, &ctx->events[9]));      /* 9 */
1391:     PetscCall(PetscLogEventRegister(" Preamble", DM_CLASSID, &ctx->events[10]));       /* 10 */
1392:     PetscCall(PetscLogEventRegister(" static IP Data", DM_CLASSID, &ctx->events[7]));  /* 7 */
1393:     PetscCall(PetscLogEventRegister(" dynamic IP-Jac", DM_CLASSID, &ctx->events[1]));  /* 1 */
1394:     PetscCall(PetscLogEventRegister(" Kernel-init", DM_CLASSID, &ctx->events[3]));     /* 3 */
1395:     PetscCall(PetscLogEventRegister(" Jac-f-df (GPU)", DM_CLASSID, &ctx->events[8]));  /* 8 */
1396:     PetscCall(PetscLogEventRegister(" J Kernel (GPU)", DM_CLASSID, &ctx->events[4]));  /* 4 */
1397:     PetscCall(PetscLogEventRegister(" M Kernel (GPU)", DM_CLASSID, &ctx->events[16])); /* 16 */
1398:     PetscCall(PetscLogEventRegister(" Copy to CPU", DM_CLASSID, &ctx->events[5]));     /* 5 */
1399:     PetscCall(PetscLogEventRegister(" CPU assemble", DM_CLASSID, &ctx->events[6]));    /* 6 */

1401:     if (rank) { /* turn off output stuff for duplicate runs - do we need to add the prefix to all this? */
1402:       PetscCall(PetscOptionsClearValue(NULL, "-snes_converged_reason"));
1403:       PetscCall(PetscOptionsClearValue(NULL, "-ksp_converged_reason"));
1404:       PetscCall(PetscOptionsClearValue(NULL, "-snes_monitor"));
1405:       PetscCall(PetscOptionsClearValue(NULL, "-ksp_monitor"));
1406:       PetscCall(PetscOptionsClearValue(NULL, "-ts_monitor"));
1407:       PetscCall(PetscOptionsClearValue(NULL, "-ts_view"));
1408:       PetscCall(PetscOptionsClearValue(NULL, "-ts_adapt_monitor"));
1409:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_amr_dm_view"));
1410:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_amr_vec_view"));
1411:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_mass_dm_view"));
1412:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_mass_view"));
1413:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_jacobian_view"));
1414:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_mat_view"));
1415:       PetscCall(PetscOptionsClearValue(NULL, "-pc_bjkokkos_ksp_converged_reason"));
1416:       PetscCall(PetscOptionsClearValue(NULL, "-pc_bjkokkos_ksp_monitor"));
1417:       PetscCall(PetscOptionsClearValue(NULL, "-"));
1418:       PetscCall(PetscOptionsClearValue(NULL, "-info"));
1419:     }
1420:   }
1421:   PetscFunctionReturn(PETSC_SUCCESS);
1422: }

1424: static PetscErrorCode CreateStaticData(PetscInt dim, IS grid_batch_is_inv[], LandauCtx *ctx)
1425: {
1426:   PetscSection     section[LANDAU_MAX_GRIDS], globsection[LANDAU_MAX_GRIDS];
1427:   PetscQuadrature  quad;
1428:   const PetscReal *quadWeights;
1429:   PetscReal        invMass[LANDAU_MAX_SPECIES], nu_alpha[LANDAU_MAX_SPECIES], nu_beta[LANDAU_MAX_SPECIES];
1430:   PetscInt         numCells[LANDAU_MAX_GRIDS], Nq, Nb, Nf[LANDAU_MAX_GRIDS], ncellsTot = 0, MAP_BF_SIZE = 64 * LANDAU_DIM * LANDAU_DIM * LANDAU_MAX_Q_FACE * LANDAU_MAX_SPECIES;
1431:   PetscTabulation *Tf;
1432:   PetscDS          prob;

1434:   PetscFunctionBegin;
1435:   PetscCall(PetscFEGetDimension(ctx->fe[0], &Nb));
1436:   PetscCheck(Nb <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nb = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nb, LANDAU_MAX_NQND);
1437:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1438:     for (PetscInt ii = ctx->species_offset[grid]; ii < ctx->species_offset[grid + 1]; ii++) {
1439:       invMass[ii]  = ctx->m_0 / ctx->masses[ii];
1440:       nu_alpha[ii] = PetscSqr(ctx->charges[ii] / ctx->m_0) * ctx->m_0 / ctx->masses[ii];
1441:       nu_beta[ii]  = PetscSqr(ctx->charges[ii] / ctx->epsilon0) / (8 * PETSC_PI) * ctx->t_0 * ctx->n_0 / PetscPowReal(ctx->v_0, 3);
1442:     }
1443:   }
1444:   if (ctx->verbose == 4) {
1445:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "nu_alpha: "));
1446:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1447:       PetscInt iii = ctx->species_offset[grid];
1448:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %e", (double)nu_alpha[ii]));
1449:     }
1450:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nnu_beta: "));
1451:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1452:       PetscInt iii = ctx->species_offset[grid];
1453:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %e", (double)nu_beta[ii]));
1454:     }
1455:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nnu_alpha[i]*nu_beta[j]*lambda[i][j]:\n"));
1456:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1457:       PetscInt iii = ctx->species_offset[grid];
1458:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) {
1459:         for (PetscInt gridj = 0; gridj < ctx->num_grids; gridj++) {
1460:           PetscInt jjj = ctx->species_offset[gridj];
1461:           for (PetscInt jj = jjj; jj < ctx->species_offset[gridj + 1]; jj++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %14.9e", (double)(nu_alpha[ii] * nu_beta[jj] * ctx->lambdas[grid][gridj])));
1462:         }
1463:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
1464:       }
1465:     }
1466:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "lambda[i][j]:\n"));
1467:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1468:       PetscInt iii = ctx->species_offset[grid];
1469:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) {
1470:         for (PetscInt gridj = 0; gridj < ctx->num_grids; gridj++) {
1471:           PetscInt jjj = ctx->species_offset[gridj];
1472:           for (PetscInt jj = jjj; jj < ctx->species_offset[gridj + 1]; jj++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %14.9e", (double)ctx->lambdas[grid][gridj]));
1473:         }
1474:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
1475:       }
1476:     }
1477:   }
1478:   PetscCall(DMGetDS(ctx->plex[0], &prob));    // same DS for all grids
1479:   PetscCall(PetscDSGetTabulation(prob, &Tf)); // Bf, &Df same for all grids
1480:   /* DS, Tab and quad is same on all grids */
1481:   PetscCheck(ctx->plex[0], ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
1482:   PetscCall(PetscFEGetQuadrature(ctx->fe[0], &quad));
1483:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, &quadWeights));
1484:   PetscCheck(Nq <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nq = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nq, LANDAU_MAX_NQND);
1485:   /* setup each grid */
1486:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1487:     PetscInt cStart, cEnd;
1488:     PetscCheck(ctx->plex[grid] != NULL, ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
1489:     PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
1490:     numCells[grid] = cEnd - cStart; // grids can have different topology
1491:     PetscCall(DMGetLocalSection(ctx->plex[grid], &section[grid]));
1492:     PetscCall(DMGetGlobalSection(ctx->plex[grid], &globsection[grid]));
1493:     PetscCall(PetscSectionGetNumFields(section[grid], &Nf[grid]));
1494:     ncellsTot += numCells[grid];
1495:   }
1496:   /* create GPU assembly data */
1497:   if (ctx->gpu_assembly) { /* we need GPU object with GPU assembly */
1498:     PetscContainer container;
1499:     PetscScalar   *elemMatrix, *elMat;
1500:     pointInterpolationP4est(*pointMaps)[LANDAU_MAX_Q_FACE];
1501:     P4estVertexMaps *maps;
1502:     const PetscInt  *plex_batch = NULL, elMatSz = Nb * Nb * ctx->num_species * ctx->num_species;
1503:     LandauIdx       *coo_elem_offsets = NULL, *coo_elem_fullNb = NULL, (*coo_elem_point_offsets)[LANDAU_MAX_NQND + 1] = NULL;
1504:     /* create GPU assembly data */
1505:     PetscCall(PetscInfo(ctx->plex[0], "Make GPU maps %d\n", 1));
1506:     PetscCall(PetscLogEventBegin(ctx->events[2], 0, 0, 0, 0));
1507:     PetscCall(PetscMalloc(sizeof(*maps) * ctx->num_grids, &maps));
1508:     PetscCall(PetscMalloc(sizeof(*pointMaps) * MAP_BF_SIZE, &pointMaps));
1509:     PetscCall(PetscMalloc(sizeof(*elemMatrix) * elMatSz, &elemMatrix));

1511:     {                                                                                                                             // setup COO assembly -- put COO metadata directly in ctx->SData_d
1512:       PetscCall(PetscMalloc3(ncellsTot + 1, &coo_elem_offsets, ncellsTot, &coo_elem_fullNb, ncellsTot, &coo_elem_point_offsets)); // array of integer pointers
1513:       coo_elem_offsets[0] = 0;                                                                                                    // finish later
1514:       PetscCall(PetscInfo(ctx->plex[0], "COO initialization, %" PetscInt_FMT " cells\n", ncellsTot));
1515:       ctx->SData_d.coo_n_cellsTot         = ncellsTot;
1516:       ctx->SData_d.coo_elem_offsets       = (void *)coo_elem_offsets;
1517:       ctx->SData_d.coo_elem_fullNb        = (void *)coo_elem_fullNb;
1518:       ctx->SData_d.coo_elem_point_offsets = (void *)coo_elem_point_offsets;
1519:     }

1521:     ctx->SData_d.coo_max_fullnb = 0;
1522:     for (PetscInt grid = 0, glb_elem_idx = 0; grid < ctx->num_grids; grid++) {
1523:       PetscInt cStart, cEnd, Nfloc = Nf[grid], totDim = Nfloc * Nb;
1524:       if (grid_batch_is_inv[grid]) PetscCall(ISGetIndices(grid_batch_is_inv[grid], &plex_batch));
1525:       PetscCheck(!plex_batch, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_jacobian_field_major_order DEPRECATED");
1526:       PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
1527:       // make maps
1528:       maps[grid].d_self       = NULL;
1529:       maps[grid].num_elements = numCells[grid];
1530:       maps[grid].num_face     = (PetscInt)(pow(Nq, 1. / ((double)dim)) + .001);                 // Q
1531:       maps[grid].num_face     = (PetscInt)(pow(maps[grid].num_face, (double)(dim - 1)) + .001); // Q^2
1532:       maps[grid].num_reduced  = 0;
1533:       maps[grid].deviceType   = ctx->deviceType;
1534:       maps[grid].numgrids     = ctx->num_grids;
1535:       // count reduced and get
1536:       PetscCall(PetscMalloc(maps[grid].num_elements * sizeof(*maps[grid].gIdx), &maps[grid].gIdx));
1537:       for (PetscInt ej = cStart, eidx = 0; ej < cEnd; ++ej, ++eidx, glb_elem_idx++) {
1538:         if (coo_elem_offsets) coo_elem_offsets[glb_elem_idx + 1] = coo_elem_offsets[glb_elem_idx]; // start with last one, then add
1539:         for (PetscInt fieldA = 0; fieldA < Nf[grid]; fieldA++) {
1540:           PetscInt fullNb = 0;
1541:           for (PetscInt q = 0; q < Nb; ++q) {
1542:             PetscInt     numindices, *indices;
1543:             PetscScalar *valuesOrig = elMat = elemMatrix;
1544:             PetscCall(PetscArrayzero(elMat, totDim * totDim));
1545:             elMat[(fieldA * Nb + q) * totDim + fieldA * Nb + q] = 1;
1546:             PetscCall(DMPlexGetClosureIndices(ctx->plex[grid], section[grid], globsection[grid], ej, PETSC_TRUE, &numindices, &indices, NULL, &elMat));
1547:             if (ctx->simplex) {
1548:               PetscCheck(numindices == Nb, ctx->comm, PETSC_ERR_ARG_WRONG, "numindices != Nb numindices=%" PetscInt_FMT " Nb=%" PetscInt_FMT, numindices, Nb);
1549:               for (PetscInt q = 0; q < numindices; ++q) maps[grid].gIdx[eidx][fieldA][q] = indices[q];
1550:               fullNb++;
1551:             } else {
1552:               for (PetscInt f = 0; f < numindices; ++f) { // look for a non-zero on the diagonal (is this too complicated for simplices?)
1553:                 if (PetscAbs(PetscRealPart(elMat[f * numindices + f])) > PETSC_MACHINE_EPSILON) {
1554:                   // found it
1555:                   if (PetscAbs(PetscRealPart(elMat[f * numindices + f] - 1.)) < PETSC_MACHINE_EPSILON) { // normal vertex 1.0
1556:                     if (plex_batch) {
1557:                       maps[grid].gIdx[eidx][fieldA][q] = plex_batch[indices[f]];
1558:                     } else {
1559:                       maps[grid].gIdx[eidx][fieldA][q] = indices[f];
1560:                     }
1561:                     fullNb++;
1562:                   } else { //found a constraint
1563:                     PetscInt       jj                = 0;
1564:                     PetscReal      sum               = 0;
1565:                     const PetscInt ff                = f;
1566:                     maps[grid].gIdx[eidx][fieldA][q] = -maps[grid].num_reduced - 1; // store (-)index: id = -(idx+1): idx = -id - 1
1567:                     PetscCheck(!ctx->simplex, ctx->comm, PETSC_ERR_ARG_WRONG, "No constraints with simplex");
1568:                     do {                                                                                              // constraints are continuous in Plex - exploit that here
1569:                       PetscInt ii;                                                                                    // get 'scale'
1570:                       for (ii = 0, pointMaps[maps[grid].num_reduced][jj].scale = 0; ii < maps[grid].num_face; ii++) { // sum row of outer product to recover vector value
1571:                         if (ff + ii < numindices) {                                                                   // 3D has Q and Q^2 interps so might run off end. We could test that elMat[f*numindices + ff + ii] > 0, and break if not
1572:                           pointMaps[maps[grid].num_reduced][jj].scale += PetscRealPart(elMat[f * numindices + ff + ii]);
1573:                         }
1574:                       }
1575:                       sum += pointMaps[maps[grid].num_reduced][jj].scale; // diagnostic
1576:                       // get 'gid'
1577:                       if (pointMaps[maps[grid].num_reduced][jj].scale == 0) pointMaps[maps[grid].num_reduced][jj].gid = -1; // 3D has Q and Q^2 interps
1578:                       else {
1579:                         if (plex_batch) {
1580:                           pointMaps[maps[grid].num_reduced][jj].gid = plex_batch[indices[f]];
1581:                         } else {
1582:                           pointMaps[maps[grid].num_reduced][jj].gid = indices[f];
1583:                         }
1584:                         fullNb++;
1585:                       }
1586:                     } while (++jj < maps[grid].num_face && ++f < numindices); // jj is incremented if we hit the end
1587:                     while (jj < maps[grid].num_face) {
1588:                       pointMaps[maps[grid].num_reduced][jj].scale = 0;
1589:                       pointMaps[maps[grid].num_reduced][jj].gid   = -1;
1590:                       jj++;
1591:                     }
1592:                     if (PetscAbs(sum - 1.0) > 10 * PETSC_MACHINE_EPSILON) { // debug
1593:                       PetscInt  d, f;
1594:                       PetscReal tmp = 0;
1595:                       PetscCall(
1596:                         PetscPrintf(PETSC_COMM_SELF, "\t\t%" PetscInt_FMT ".%" PetscInt_FMT ".%" PetscInt_FMT ") ERROR total I = %22.16e (LANDAU_MAX_Q_FACE=%d, #face=%" PetscInt_FMT ")\n", eidx, q, fieldA, (double)sum, LANDAU_MAX_Q_FACE, maps[grid].num_face));
1597:                       for (d = 0, tmp = 0; d < numindices; ++d) {
1598:                         if (tmp != 0 && PetscAbs(tmp - 1.0) > 10 * PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%3" PetscInt_FMT ") %3" PetscInt_FMT ": ", d, indices[d]));
1599:                         for (f = 0; f < numindices; ++f) tmp += PetscRealPart(elMat[d * numindices + f]);
1600:                         if (tmp != 0) PetscCall(PetscPrintf(ctx->comm, " | %22.16e\n", (double)tmp));
1601:                       }
1602:                     }
1603:                     maps[grid].num_reduced++;
1604:                     PetscCheck(maps[grid].num_reduced < MAP_BF_SIZE, PETSC_COMM_SELF, PETSC_ERR_PLIB, "maps[grid].num_reduced %" PetscInt_FMT " > %" PetscInt_FMT, maps[grid].num_reduced, MAP_BF_SIZE);
1605:                   }
1606:                   break;
1607:                 }
1608:               }
1609:             } // !simplex
1610:             // cleanup
1611:             PetscCall(DMPlexRestoreClosureIndices(ctx->plex[grid], section[grid], globsection[grid], ej, PETSC_TRUE, &numindices, &indices, NULL, &elMat));
1612:             if (elMat != valuesOrig) PetscCall(DMRestoreWorkArray(ctx->plex[grid], numindices * numindices, MPIU_SCALAR, &elMat));
1613:           }
1614:           {                                                        // setup COO assembly
1615:             coo_elem_offsets[glb_elem_idx + 1] += fullNb * fullNb; // one species block, adds a block for each species, on this element in this grid
1616:             if (fieldA == 0) {                                     // cache full Nb for this element, on this grid per species
1617:               coo_elem_fullNb[glb_elem_idx] = fullNb;
1618:               if (fullNb > ctx->SData_d.coo_max_fullnb) ctx->SData_d.coo_max_fullnb = fullNb;
1619:             } else PetscCheck(coo_elem_fullNb[glb_elem_idx] == fullNb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "full element size change with species %" PetscInt_FMT " %" PetscInt_FMT, coo_elem_fullNb[glb_elem_idx], fullNb);
1620:           }
1621:         } // field
1622:       } // cell
1623:       // allocate and copy point data maps[grid].gIdx[eidx][field][q]
1624:       PetscCall(PetscMalloc(maps[grid].num_reduced * sizeof(*maps[grid].c_maps), &maps[grid].c_maps));
1625:       for (PetscInt ej = 0; ej < maps[grid].num_reduced; ++ej) {
1626:         for (PetscInt q = 0; q < maps[grid].num_face; ++q) {
1627:           maps[grid].c_maps[ej][q].scale = pointMaps[ej][q].scale;
1628:           maps[grid].c_maps[ej][q].gid   = pointMaps[ej][q].gid;
1629:         }
1630:       }
1631: #if defined(PETSC_HAVE_KOKKOS)
1632:       if (ctx->deviceType == LANDAU_KOKKOS) PetscCall(LandauKokkosCreateMatMaps(maps, pointMaps, Nf, grid)); // implies Kokkos does
1633: #endif
1634:       if (plex_batch) {
1635:         PetscCall(ISRestoreIndices(grid_batch_is_inv[grid], &plex_batch));
1636:         PetscCall(ISDestroy(&grid_batch_is_inv[grid])); // we are done with this
1637:       }
1638:     } /* grids */
1639:     // finish COO
1640:     { // setup COO assembly
1641:       PetscInt *oor, *ooc;
1642:       ctx->SData_d.coo_size = coo_elem_offsets[ncellsTot] * ctx->batch_sz;
1643:       PetscCall(PetscMalloc2(ctx->SData_d.coo_size, &oor, ctx->SData_d.coo_size, &ooc));
1644:       for (PetscInt i = 0; i < ctx->SData_d.coo_size; i++) oor[i] = ooc[i] = -1;
1645:       // get
1646:       for (PetscInt grid = 0, glb_elem_idx = 0; grid < ctx->num_grids; grid++) {
1647:         for (PetscInt ej = 0; ej < numCells[grid]; ++ej, glb_elem_idx++) {
1648:           const PetscInt         fullNb           = coo_elem_fullNb[glb_elem_idx];
1649:           const LandauIdx *const Idxs             = &maps[grid].gIdx[ej][0][0]; // just use field-0 maps, They should be the same but this is just for COO storage
1650:           coo_elem_point_offsets[glb_elem_idx][0] = 0;
1651:           for (PetscInt f = 0, cnt2 = 0; f < Nb; f++) {
1652:             PetscInt idx                                = Idxs[f];
1653:             coo_elem_point_offsets[glb_elem_idx][f + 1] = coo_elem_point_offsets[glb_elem_idx][f]; // start at last
1654:             if (idx >= 0) {
1655:               cnt2++;
1656:               coo_elem_point_offsets[glb_elem_idx][f + 1]++; // inc
1657:             } else {
1658:               idx = -idx - 1;
1659:               for (PetscInt q = 0; q < maps[grid].num_face; q++) {
1660:                 if (maps[grid].c_maps[idx][q].gid < 0) break;
1661:                 cnt2++;
1662:                 coo_elem_point_offsets[glb_elem_idx][f + 1]++; // inc
1663:               }
1664:             }
1665:             PetscCheck(cnt2 <= fullNb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "wrong count %" PetscInt_FMT " < %" PetscInt_FMT, fullNb, cnt2);
1666:           }
1667:           PetscCheck(coo_elem_point_offsets[glb_elem_idx][Nb] == fullNb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "coo_elem_point_offsets size %" PetscInt_FMT " != fullNb=%" PetscInt_FMT, coo_elem_point_offsets[glb_elem_idx][Nb], fullNb);
1668:         }
1669:       }
1670:       // set
1671:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
1672:         for (PetscInt grid = 0, glb_elem_idx = 0; grid < ctx->num_grids; grid++) {
1673:           const PetscInt moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
1674:           for (PetscInt ej = 0; ej < numCells[grid]; ++ej, glb_elem_idx++) {
1675:             const PetscInt fullNb = coo_elem_fullNb[glb_elem_idx], fullNb2 = fullNb * fullNb;
1676:             // set (i,j)
1677:             for (PetscInt fieldA = 0; fieldA < Nf[grid]; fieldA++) {
1678:               const LandauIdx *const Idxs = &maps[grid].gIdx[ej][fieldA][0];
1679:               PetscInt               rows[LANDAU_MAX_Q_FACE], cols[LANDAU_MAX_Q_FACE];
1680:               for (PetscInt f = 0; f < Nb; ++f) {
1681:                 const PetscInt nr = coo_elem_point_offsets[glb_elem_idx][f + 1] - coo_elem_point_offsets[glb_elem_idx][f];
1682:                 if (nr == 1) rows[0] = Idxs[f];
1683:                 else {
1684:                   const PetscInt idx = -Idxs[f] - 1;
1685:                   for (PetscInt q = 0; q < nr; q++) rows[q] = maps[grid].c_maps[idx][q].gid;
1686:                 }
1687:                 for (PetscInt g = 0; g < Nb; ++g) {
1688:                   const PetscInt nc = coo_elem_point_offsets[glb_elem_idx][g + 1] - coo_elem_point_offsets[glb_elem_idx][g];
1689:                   if (nc == 1) cols[0] = Idxs[g];
1690:                   else {
1691:                     const PetscInt idx = -Idxs[g] - 1;
1692:                     for (PetscInt q = 0; q < nc; q++) cols[q] = maps[grid].c_maps[idx][q].gid;
1693:                   }
1694:                   const PetscInt idx0 = b_id * coo_elem_offsets[ncellsTot] + coo_elem_offsets[glb_elem_idx] + fieldA * fullNb2 + fullNb * coo_elem_point_offsets[glb_elem_idx][f] + nr * coo_elem_point_offsets[glb_elem_idx][g];
1695:                   for (PetscInt q = 0, idx = idx0; q < nr; q++) {
1696:                     for (PetscInt d = 0; d < nc; d++, idx++) {
1697:                       oor[idx] = rows[q] + moffset;
1698:                       ooc[idx] = cols[d] + moffset;
1699:                     }
1700:                   }
1701:                 }
1702:               }
1703:             }
1704:           } // cell
1705:         } // grid
1706:       } // batch
1707:       PetscCall(MatSetPreallocationCOO(ctx->J, ctx->SData_d.coo_size, oor, ooc));
1708:       PetscCall(PetscFree2(oor, ooc));
1709:     }
1710:     PetscCall(PetscFree(pointMaps));
1711:     PetscCall(PetscFree(elemMatrix));
1712:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
1713:     PetscCall(PetscContainerSetPointer(container, (void *)maps));
1714:     PetscCall(PetscContainerSetCtxDestroy(container, LandauGPUMapsDestroy));
1715:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "assembly_maps", (PetscObject)container));
1716:     PetscCall(PetscContainerDestroy(&container));
1717:     PetscCall(PetscLogEventEnd(ctx->events[2], 0, 0, 0, 0));
1718:   } // end GPU assembly
1719:   { /* create static point data, Jacobian called first, only one vertex copy */
1720:     PetscReal *invJe, *ww, *xx, *yy, *zz = NULL, *invJ_a;
1721:     PetscInt   outer_ipidx, outer_ej, grid, nip_glb = 0;
1722:     PetscFE    fe;
1723:     PetscCall(PetscLogEventBegin(ctx->events[7], 0, 0, 0, 0));
1724:     PetscCall(PetscInfo(ctx->plex[0], "Initialize static data\n"));
1725:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) nip_glb += Nq * numCells[grid];
1726:     /* collect f data, first time is for Jacobian, but make mass now */
1727:     if (ctx->verbose != 0) {
1728:       PetscInt ncells = 0, N;
1729:       MatInfo  info;
1730:       PetscCall(MatGetInfo(ctx->J, MAT_LOCAL, &info));
1731:       PetscCall(MatGetSize(ctx->J, &N, NULL));
1732:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) ncells += numCells[grid];
1733:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%d) %s %" PetscInt_FMT " IPs, %" PetscInt_FMT " cells total, Nb=%" PetscInt_FMT ", Nq=%" PetscInt_FMT ", dim=%" PetscInt_FMT ", Tab: Nb=%" PetscInt_FMT " Nf=%" PetscInt_FMT " Np=%" PetscInt_FMT " cdim=%" PetscInt_FMT " N=%" PetscInt_FMT " nnz= %" PetscInt_FMT "\n", 0, "FormLandau", nip_glb, ncells, Nb, Nq, dim, Nb,
1734:                             ctx->num_species, Nb, dim, N, (PetscInt)info.nz_used));
1735:     }
1736:     PetscCall(PetscMalloc4(nip_glb, &ww, nip_glb, &xx, nip_glb, &yy, nip_glb * dim * dim, &invJ_a));
1737:     if (dim == 3) PetscCall(PetscMalloc1(nip_glb, &zz));
1738:     if (ctx->use_energy_tensor_trick) {
1739:       PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, ctx->simplex, NULL, PETSC_DECIDE, &fe));
1740:       PetscCall(PetscObjectSetName((PetscObject)fe, "energy"));
1741:     }
1742:     /* init each grids static data - no batch */
1743:     for (grid = 0, outer_ipidx = 0, outer_ej = 0; grid < ctx->num_grids; grid++) { // OpenMP (once)
1744:       Vec          v2_2 = NULL;                                                    // projected function: v^2/2 for non-relativistic, gamma... for relativistic
1745:       PetscSection e_section;
1746:       DM           dmEnergy;
1747:       PetscInt     cStart, cEnd, ej;

1749:       PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
1750:       // prep energy trick, get v^2 / 2 vector
1751:       if (ctx->use_energy_tensor_trick) {
1752:         PetscErrorCode (*energyf[1])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *) = {ctx->use_relativistic_corrections ? gamma_m1_f : energy_f};
1753:         Vec        glob_v2;
1754:         PetscReal *c2_0[1], data[1] = {PetscSqr(C_0(ctx->v_0))};

1756:         PetscCall(DMClone(ctx->plex[grid], &dmEnergy));
1757:         PetscCall(PetscObjectSetName((PetscObject)dmEnergy, "energy"));
1758:         PetscCall(DMSetField(dmEnergy, 0, NULL, (PetscObject)fe));
1759:         PetscCall(DMCreateDS(dmEnergy));
1760:         PetscCall(DMGetLocalSection(dmEnergy, &e_section));
1761:         PetscCall(DMGetGlobalVector(dmEnergy, &glob_v2));
1762:         PetscCall(PetscObjectSetName((PetscObject)glob_v2, "trick"));
1763:         c2_0[0] = &data[0];
1764:         PetscCall(DMProjectFunction(dmEnergy, 0., energyf, (void **)c2_0, INSERT_ALL_VALUES, glob_v2));
1765:         PetscCall(DMGetLocalVector(dmEnergy, &v2_2));
1766:         PetscCall(VecZeroEntries(v2_2)); /* zero BCs so don't set */
1767:         PetscCall(DMGlobalToLocalBegin(dmEnergy, glob_v2, INSERT_VALUES, v2_2));
1768:         PetscCall(DMGlobalToLocalEnd(dmEnergy, glob_v2, INSERT_VALUES, v2_2));
1769:         PetscCall(DMViewFromOptions(dmEnergy, NULL, "-energy_dm_view"));
1770:         PetscCall(VecViewFromOptions(glob_v2, NULL, "-energy_vec_view"));
1771:         PetscCall(DMRestoreGlobalVector(dmEnergy, &glob_v2));
1772:       }
1773:       /* append part of the IP data for each grid */
1774:       for (ej = 0; ej < numCells[grid]; ++ej, ++outer_ej) {
1775:         PetscScalar *coefs = NULL;
1776:         PetscReal    vj[LANDAU_MAX_NQND * LANDAU_DIM], detJj[LANDAU_MAX_NQND], Jdummy[LANDAU_MAX_NQND * LANDAU_DIM * LANDAU_DIM], c0 = C_0(ctx->v_0), c02 = PetscSqr(c0);
1777:         invJe = invJ_a + outer_ej * Nq * dim * dim;
1778:         PetscCall(DMPlexComputeCellGeometryFEM(ctx->plex[grid], ej + cStart, quad, vj, Jdummy, invJe, detJj));
1779:         if (ctx->use_energy_tensor_trick) PetscCall(DMPlexVecGetClosure(dmEnergy, e_section, v2_2, ej + cStart, NULL, &coefs));
1780:         /* create static point data */
1781:         for (PetscInt qj = 0; qj < Nq; qj++, outer_ipidx++) {
1782:           const PetscInt   gidx = outer_ipidx;
1783:           const PetscReal *invJ = &invJe[qj * dim * dim];
1784:           ww[gidx]              = detJj[qj] * quadWeights[qj];
1785:           if (dim == 2) ww[gidx] *= vj[qj * dim + 0]; /* cylindrical coordinate, w/o 2pi */
1786:           // get xx, yy, zz
1787:           if (ctx->use_energy_tensor_trick) {
1788:             double                 refSpaceDer[3], eGradPhi[3];
1789:             const PetscReal *const DD = Tf[0]->T[1];
1790:             const PetscReal       *Dq = &DD[qj * Nb * dim];
1791:             for (PetscInt d = 0; d < 3; ++d) refSpaceDer[d] = eGradPhi[d] = 0.0;
1792:             for (PetscInt b = 0; b < Nb; ++b) {
1793:               for (PetscInt d = 0; d < dim; ++d) refSpaceDer[d] += Dq[b * dim + d] * PetscRealPart(coefs[b]);
1794:             }
1795:             xx[gidx] = 1e10;
1796:             if (ctx->use_relativistic_corrections) {
1797:               double dg2_c2 = 0;
1798:               //for (PetscInt d = 0; d < dim; ++d) refSpaceDer[d] *= c02;
1799:               for (PetscInt d = 0; d < dim; ++d) dg2_c2 += PetscSqr(refSpaceDer[d]);
1800:               dg2_c2 *= (double)c02;
1801:               if (dg2_c2 >= .999) {
1802:                 xx[gidx] = vj[qj * dim + 0]; /* coordinate */
1803:                 yy[gidx] = vj[qj * dim + 1];
1804:                 if (dim == 3) zz[gidx] = vj[qj * dim + 2];
1805:                 PetscCall(PetscPrintf(ctx->comm, "Error: %12.5e %" PetscInt_FMT ".%" PetscInt_FMT ") dg2/c02 = %12.5e x= %12.5e %12.5e %12.5e\n", (double)PetscSqrtReal(xx[gidx] * xx[gidx] + yy[gidx] * yy[gidx] + zz[gidx] * zz[gidx]), ej, qj, dg2_c2, (double)xx[gidx], (double)yy[gidx], (double)zz[gidx]));
1806:               } else {
1807:                 PetscReal fact = c02 / PetscSqrtReal(1. - dg2_c2);
1808:                 for (PetscInt d = 0; d < dim; ++d) refSpaceDer[d] *= fact;
1809:                 // could test with other point u' that (grad - grad') * U (refSpaceDer, refSpaceDer') == 0
1810:               }
1811:             }
1812:             if (xx[gidx] == 1e10) {
1813:               for (PetscInt d = 0; d < dim; ++d) {
1814:                 for (PetscInt e = 0; e < dim; ++e) eGradPhi[d] += invJ[e * dim + d] * refSpaceDer[e];
1815:               }
1816:               xx[gidx] = eGradPhi[0];
1817:               yy[gidx] = eGradPhi[1];
1818:               if (dim == 3) zz[gidx] = eGradPhi[2];
1819:             }
1820:           } else {
1821:             xx[gidx] = vj[qj * dim + 0]; /* coordinate */
1822:             yy[gidx] = vj[qj * dim + 1];
1823:             if (dim == 3) zz[gidx] = vj[qj * dim + 2];
1824:           }
1825:         } /* q */
1826:         if (ctx->use_energy_tensor_trick) PetscCall(DMPlexVecRestoreClosure(dmEnergy, e_section, v2_2, ej + cStart, NULL, &coefs));
1827:       } /* ej */
1828:       if (ctx->use_energy_tensor_trick) {
1829:         PetscCall(DMRestoreLocalVector(dmEnergy, &v2_2));
1830:         PetscCall(DMDestroy(&dmEnergy));
1831:       }
1832:     } /* grid */
1833:     if (ctx->use_energy_tensor_trick) PetscCall(PetscFEDestroy(&fe));
1834:     /* cache static data */
1835:     if (ctx->deviceType == LANDAU_KOKKOS) {
1836: #if defined(PETSC_HAVE_KOKKOS)
1837:       PetscCall(LandauKokkosStaticDataSet(ctx->plex[0], Nq, Nb, ctx->batch_sz, ctx->num_grids, numCells, ctx->species_offset, ctx->mat_offset, nu_alpha, nu_beta, invMass, (PetscReal *)ctx->lambdas, invJ_a, xx, yy, zz, ww, &ctx->SData_d));
1838:       /* free */
1839:       PetscCall(PetscFree4(ww, xx, yy, invJ_a));
1840:       if (dim == 3) PetscCall(PetscFree(zz));
1841: #else
1842:       SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-landau_device_type kokkos not built");
1843: #endif
1844:     } else {                                                                                                                                                                   /* CPU version, just copy in, only use part */
1845:       PetscReal *nu_alpha_p = (PetscReal *)ctx->SData_d.alpha, *nu_beta_p = (PetscReal *)ctx->SData_d.beta, *invMass_p = (PetscReal *)ctx->SData_d.invMass, *lambdas_p = NULL; // why set these ?
1846:       ctx->SData_d.w    = (void *)ww;
1847:       ctx->SData_d.x    = (void *)xx;
1848:       ctx->SData_d.y    = (void *)yy;
1849:       ctx->SData_d.z    = (void *)zz;
1850:       ctx->SData_d.invJ = (void *)invJ_a;
1851:       PetscCall(PetscMalloc4(ctx->num_species, &nu_alpha_p, ctx->num_species, &nu_beta_p, ctx->num_species, &invMass_p, LANDAU_MAX_GRIDS * LANDAU_MAX_GRIDS, &lambdas_p));
1852:       for (PetscInt ii = 0; ii < ctx->num_species; ii++) {
1853:         nu_alpha_p[ii] = nu_alpha[ii];
1854:         nu_beta_p[ii]  = nu_beta[ii];
1855:         invMass_p[ii]  = invMass[ii];
1856:       }
1857:       ctx->SData_d.alpha   = (void *)nu_alpha_p;
1858:       ctx->SData_d.beta    = (void *)nu_beta_p;
1859:       ctx->SData_d.invMass = (void *)invMass_p;
1860:       ctx->SData_d.lambdas = (void *)lambdas_p;
1861:       for (PetscInt grid = 0; grid < LANDAU_MAX_GRIDS; grid++) {
1862:         PetscReal (*lambdas)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS] = (PetscReal (*)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS])ctx->SData_d.lambdas;
1863:         for (PetscInt gridj = 0; gridj < LANDAU_MAX_GRIDS; gridj++) (*lambdas)[grid][gridj] = ctx->lambdas[grid][gridj];
1864:       }
1865:     }
1866:     PetscCall(PetscLogEventEnd(ctx->events[7], 0, 0, 0, 0));
1867:   } // initialize
1868:   PetscFunctionReturn(PETSC_SUCCESS);
1869: }

1871: /* < v, u > */
1872: static void g0_1(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
1873: {
1874:   g0[0] = 1.;
1875: }

1877: /* < v, u > */
1878: static void g0_fake(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
1879: {
1880:   static double ttt = 1e-12;
1881:   g0[0]             = ttt++;
1882: }

1884: /* < v, u > */
1885: static void g0_r(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
1886: {
1887:   g0[0] = 2. * PETSC_PI * x[0];
1888: }

1890: /*
1891:  LandauCreateJacobianMatrix - creates ctx->J with without real data. Hard to keep sparse.
1892:   - Like DMPlexLandauCreateMassMatrix. Should remove one and combine
1893:   - has old support for field major ordering
1894:  */
1895: static PetscErrorCode LandauCreateJacobianMatrix(MPI_Comm comm, Vec X, IS grid_batch_is_inv[LANDAU_MAX_GRIDS], LandauCtx *ctx)
1896: {
1897:   PetscInt *idxs = NULL;
1898:   Mat       subM[LANDAU_MAX_GRIDS];

1900:   PetscFunctionBegin;
1901:   if (!ctx->gpu_assembly) { /* we need GPU object with GPU assembly */
1902:     PetscFunctionReturn(PETSC_SUCCESS);
1903:   }
1904:   // get the RCM for this grid to separate out species into blocks -- create 'idxs' & 'ctx->batch_is' -- not used
1905:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) PetscCall(PetscMalloc1(ctx->mat_offset[ctx->num_grids] * ctx->batch_sz, &idxs));
1906:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1907:     const PetscInt *values, n = ctx->mat_offset[grid + 1] - ctx->mat_offset[grid];
1908:     Mat             gMat;
1909:     DM              massDM;
1910:     PetscDS         prob;
1911:     Vec             tvec;
1912:     // get "mass" matrix for reordering
1913:     PetscCall(DMClone(ctx->plex[grid], &massDM));
1914:     PetscCall(DMCopyFields(ctx->plex[grid], PETSC_DETERMINE, PETSC_DETERMINE, massDM));
1915:     PetscCall(DMCreateDS(massDM));
1916:     PetscCall(DMGetDS(massDM, &prob));
1917:     for (PetscInt ix = 0, ii = ctx->species_offset[grid]; ii < ctx->species_offset[grid + 1]; ii++, ix++) PetscCall(PetscDSSetJacobian(prob, ix, ix, g0_fake, NULL, NULL, NULL));
1918:     PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only")); // this trick is need to both sparsify the matrix and avoid runtime error
1919:     PetscCall(DMCreateMatrix(massDM, &gMat));
1920:     PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only false"));
1921:     PetscCall(MatSetOption(gMat, MAT_STRUCTURALLY_SYMMETRIC, PETSC_TRUE));
1922:     PetscCall(MatSetOption(gMat, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
1923:     PetscCall(DMCreateLocalVector(ctx->plex[grid], &tvec));
1924:     PetscCall(DMPlexSNESComputeJacobianFEM(massDM, tvec, gMat, gMat, ctx));
1925:     PetscCall(MatViewFromOptions(gMat, NULL, "-dm_landau_reorder_mat_view"));
1926:     PetscCall(DMDestroy(&massDM));
1927:     PetscCall(VecDestroy(&tvec));
1928:     subM[grid] = gMat;
1929:     if (ctx->gpu_assembly && ctx->jacobian_field_major_order) {
1930:       MatOrderingType rtype = MATORDERINGRCM;
1931:       IS              isrow, isicol;
1932:       PetscCall(MatGetOrdering(gMat, rtype, &isrow, &isicol));
1933:       PetscCall(ISInvertPermutation(isrow, PETSC_DECIDE, &grid_batch_is_inv[grid]));
1934:       PetscCall(ISGetIndices(isrow, &values));
1935:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // add batch size DMs for this species grid
1936: #if !defined(LANDAU_SPECIES_MAJOR)
1937:         PetscInt N = ctx->mat_offset[ctx->num_grids], n0 = ctx->mat_offset[grid] + b_id * N;
1938:         for (PetscInt ii = 0; ii < n; ++ii) idxs[n0 + ii] = values[ii] + n0;
1939: #else
1940:         PetscInt n0 = ctx->mat_offset[grid] * ctx->batch_sz + b_id * n;
1941:         for (PetscInt ii = 0; ii < n; ++ii) idxs[n0 + ii] = values[ii] + n0;
1942: #endif
1943:       }
1944:       PetscCall(ISRestoreIndices(isrow, &values));
1945:       PetscCall(ISDestroy(&isrow));
1946:       PetscCall(ISDestroy(&isicol));
1947:     }
1948:   }
1949:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) PetscCall(ISCreateGeneral(comm, ctx->mat_offset[ctx->num_grids] * ctx->batch_sz, idxs, PETSC_OWN_POINTER, &ctx->batch_is));
1950:   // get a block matrix
1951:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1952:     Mat      B = subM[grid];
1953:     PetscInt nloc, nzl, *colbuf, row, COL_BF_SIZE = 1024;
1954:     PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
1955:     PetscCall(MatGetSize(B, &nloc, NULL));
1956:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
1957:       const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
1958:       const PetscInt    *cols;
1959:       const PetscScalar *vals;
1960:       for (PetscInt i = 0; i < nloc; i++) {
1961:         PetscCall(MatGetRow(B, i, &nzl, NULL, NULL));
1962:         if (nzl > COL_BF_SIZE) {
1963:           PetscCall(PetscFree(colbuf));
1964:           PetscCall(PetscInfo(ctx->plex[grid], "Realloc buffer %" PetscInt_FMT " to %" PetscInt_FMT " (row size %" PetscInt_FMT ") \n", COL_BF_SIZE, 2 * COL_BF_SIZE, nzl));
1965:           COL_BF_SIZE = nzl;
1966:           PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
1967:         }
1968:         PetscCall(MatGetRow(B, i, &nzl, &cols, &vals));
1969:         for (PetscInt j = 0; j < nzl; j++) colbuf[j] = cols[j] + moffset;
1970:         row = i + moffset;
1971:         PetscCall(MatSetValues(ctx->J, 1, &row, nzl, colbuf, vals, INSERT_VALUES));
1972:         PetscCall(MatRestoreRow(B, i, &nzl, &cols, &vals));
1973:       }
1974:     }
1975:     PetscCall(PetscFree(colbuf));
1976:   }
1977:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(MatDestroy(&subM[grid]));
1978:   PetscCall(MatAssemblyBegin(ctx->J, MAT_FINAL_ASSEMBLY));
1979:   PetscCall(MatAssemblyEnd(ctx->J, MAT_FINAL_ASSEMBLY));

1981:   // debug
1982:   PetscCall(MatViewFromOptions(ctx->J, NULL, "-dm_landau_mat_view"));
1983:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) {
1984:     Mat mat_block_order;
1985:     PetscCall(MatCreateSubMatrix(ctx->J, ctx->batch_is, ctx->batch_is, MAT_INITIAL_MATRIX, &mat_block_order)); // use MatPermute
1986:     PetscCall(MatViewFromOptions(mat_block_order, NULL, "-dm_landau_mat_view"));
1987:     PetscCall(MatDestroy(&mat_block_order));
1988:     PetscCall(VecScatterCreate(X, ctx->batch_is, X, NULL, &ctx->plex_batch));
1989:     PetscCall(VecDuplicate(X, &ctx->work_vec));
1990:   }
1991:   PetscFunctionReturn(PETSC_SUCCESS);
1992: }

1994: PetscErrorCode DMPlexLandauCreateMassMatrix(DM pack, Mat *Amat);
1995: /*@C
1996:   DMPlexLandauCreateVelocitySpace - Create a `DMPLEX` velocity space mesh

1998:   Collective

2000:   Input Parameters:
2001: + comm   - The MPI communicator
2002: . dim    - velocity space dimension (2 for axisymmetric, 3 for full 3X + 3V solver)
2003: - prefix - prefix for options (not tested)

2005:   Output Parameters:
2006: + pack - The `DM` object representing the mesh
2007: . X    - A vector (user destroys)
2008: - J    - Optional matrix (object destroys)

2010:   Level: beginner

2012: .seealso: `DMPlexCreate()`, `DMPlexLandauDestroyVelocitySpace()`
2013:  @*/
2014: PetscErrorCode DMPlexLandauCreateVelocitySpace(MPI_Comm comm, PetscInt dim, const char prefix[], Vec *X, Mat *J, DM *pack)
2015: {
2016:   LandauCtx *ctx;
2017:   Vec        Xsub[LANDAU_MAX_GRIDS];
2018:   IS         grid_batch_is_inv[LANDAU_MAX_GRIDS];

2020:   PetscFunctionBegin;
2021:   PetscCheck(dim == 2 || dim == 3, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Only 2D and 3D supported");
2022:   PetscCheck(LANDAU_DIM == dim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "dim %" PetscInt_FMT " != LANDAU_DIM %d", dim, LANDAU_DIM);
2023:   PetscCall(PetscNew(&ctx));
2024:   ctx->comm = comm; /* used for diagnostics and global errors */
2025:   /* process options */
2026:   PetscCall(ProcessOptions(ctx, prefix));
2027:   if (dim == 2) ctx->use_relativistic_corrections = PETSC_FALSE;
2028:   /* Create Mesh */
2029:   PetscCall(DMCompositeCreate(PETSC_COMM_SELF, pack));
2030:   PetscCall(PetscLogEventBegin(ctx->events[13], 0, 0, 0, 0));
2031:   PetscCall(PetscLogEventBegin(ctx->events[15], 0, 0, 0, 0));
2032:   PetscCall(LandauDMCreateVMeshes(PETSC_COMM_SELF, dim, prefix, ctx, *pack)); // creates grids (Forest of AMR)
2033:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2034:     /* create FEM */
2035:     PetscCall(SetupDS(ctx->plex[grid], dim, grid, ctx));
2036:     /* set initial state */
2037:     PetscCall(DMCreateGlobalVector(ctx->plex[grid], &Xsub[grid]));
2038:     PetscCall(PetscObjectSetName((PetscObject)Xsub[grid], "u_orig"));
2039:     /* initial static refinement, no solve */
2040:     PetscCall(LandauSetInitialCondition(ctx->plex[grid], Xsub[grid], grid, 0, 1, ctx));
2041:     /* forest refinement - forest goes in (if forest), plex comes out */
2042:     if (ctx->use_p4est) {
2043:       DM plex;
2044:       PetscCall(adapt(grid, ctx, &Xsub[grid])); // forest goes in, plex comes out
2045:       if (grid == 0) {
2046:         PetscCall(DMViewFromOptions(ctx->plex[grid], NULL, "-dm_landau_amr_dm_view")); // need to differentiate - todo
2047:         PetscCall(VecViewFromOptions(Xsub[grid], NULL, "-dm_landau_amr_vec_view"));
2048:       }
2049:       // convert to plex, all done with this level
2050:       PetscCall(DMConvert(ctx->plex[grid], DMPLEX, &plex));
2051:       PetscCall(DMDestroy(&ctx->plex[grid]));
2052:       ctx->plex[grid] = plex;
2053:     }
2054: #if !defined(LANDAU_SPECIES_MAJOR)
2055:     PetscCall(DMCompositeAddDM(*pack, ctx->plex[grid]));
2056: #else
2057:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // add batch size DMs for this species grid
2058:       PetscCall(DMCompositeAddDM(*pack, ctx->plex[grid]));
2059:     }
2060: #endif
2061:     PetscCall(DMSetApplicationContext(ctx->plex[grid], ctx));
2062:   }
2063: #if !defined(LANDAU_SPECIES_MAJOR)
2064:   // stack the batched DMs, could do it all here!!! b_id=0
2065:   for (PetscInt b_id = 1; b_id < ctx->batch_sz; b_id++) {
2066:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMCompositeAddDM(*pack, ctx->plex[grid]));
2067:   }
2068: #endif
2069:   // create ctx->mat_offset
2070:   ctx->mat_offset[0] = 0;
2071:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2072:     PetscInt n;
2073:     PetscCall(VecGetLocalSize(Xsub[grid], &n));
2074:     ctx->mat_offset[grid + 1] = ctx->mat_offset[grid] + n;
2075:   }
2076:   // creat DM & Jac
2077:   PetscCall(DMSetApplicationContext(*pack, ctx));
2078:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only"));
2079:   PetscCall(DMCreateMatrix(*pack, &ctx->J));
2080:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only false"));
2081:   PetscCall(MatSetOption(ctx->J, MAT_STRUCTURALLY_SYMMETRIC, PETSC_TRUE));
2082:   PetscCall(MatSetOption(ctx->J, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2083:   PetscCall(PetscObjectSetName((PetscObject)ctx->J, "Jac"));
2084:   // construct initial conditions in X
2085:   PetscCall(DMCreateGlobalVector(*pack, X));
2086:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2087:     PetscInt n;
2088:     PetscCall(VecGetLocalSize(Xsub[grid], &n));
2089:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
2090:       PetscScalar const *values;
2091:       const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
2092:       PetscCall(LandauSetInitialCondition(ctx->plex[grid], Xsub[grid], grid, b_id, ctx->batch_sz, ctx));
2093:       PetscCall(VecGetArrayRead(Xsub[grid], &values)); // Drop whole grid in Plex ordering
2094:       for (PetscInt i = 0, idx = moffset; i < n; i++, idx++) PetscCall(VecSetValue(*X, idx, values[i], INSERT_VALUES));
2095:       PetscCall(VecRestoreArrayRead(Xsub[grid], &values));
2096:     }
2097:   }
2098:   // cleanup
2099:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(VecDestroy(&Xsub[grid]));
2100:   /* check for correct matrix type */
2101:   if (ctx->gpu_assembly) { /* we need GPU object with GPU assembly */
2102:     PetscBool flg;
2103:     if (ctx->deviceType == LANDAU_KOKKOS) {
2104:       PetscCall(PetscObjectTypeCompareAny((PetscObject)ctx->J, &flg, MATSEQAIJKOKKOS, MATMPIAIJKOKKOS, MATAIJKOKKOS, ""));
2105: #if defined(PETSC_HAVE_KOKKOS)
2106:       PetscCheck(flg, ctx->comm, PETSC_ERR_ARG_WRONG, "must use '-dm_mat_type aijkokkos -dm_vec_type kokkos' for GPU assembly and Kokkos or use '-dm_landau_device_type cpu'");
2107: #else
2108:       PetscCheck(flg, ctx->comm, PETSC_ERR_ARG_WRONG, "must configure with '--download-kokkos-kernels' for GPU assembly and Kokkos or use '-dm_landau_device_type cpu'");
2109: #endif
2110:     }
2111:   }
2112:   PetscCall(PetscLogEventEnd(ctx->events[15], 0, 0, 0, 0));

2114:   // create field major ordering
2115:   ctx->work_vec   = NULL;
2116:   ctx->plex_batch = NULL;
2117:   ctx->batch_is   = NULL;
2118:   for (PetscInt i = 0; i < LANDAU_MAX_GRIDS; i++) grid_batch_is_inv[i] = NULL;
2119:   PetscCall(PetscLogEventBegin(ctx->events[12], 0, 0, 0, 0));
2120:   PetscCall(LandauCreateJacobianMatrix(comm, *X, grid_batch_is_inv, ctx));
2121:   PetscCall(PetscLogEventEnd(ctx->events[12], 0, 0, 0, 0));

2123:   // create AMR GPU assembly maps and static GPU data
2124:   PetscCall(CreateStaticData(dim, grid_batch_is_inv, ctx));

2126:   PetscCall(PetscLogEventEnd(ctx->events[13], 0, 0, 0, 0));

2128:   // create mass matrix
2129:   PetscCall(DMPlexLandauCreateMassMatrix(*pack, NULL));

2131:   if (J) *J = ctx->J;

2133:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) {
2134:     PetscContainer container;
2135:     // cache ctx for KSP with batch/field major Jacobian ordering -ksp_type gmres/etc -dm_landau_jacobian_field_major_order
2136:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
2137:     PetscCall(PetscContainerSetPointer(container, (void *)ctx));
2138:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "LandauCtx", (PetscObject)container));
2139:     PetscCall(PetscContainerDestroy(&container));
2140:     // batch solvers need to map -- can batch solvers work
2141:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
2142:     PetscCall(PetscContainerSetPointer(container, (void *)ctx->plex_batch));
2143:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "plex_batch_is", (PetscObject)container));
2144:     PetscCall(PetscContainerDestroy(&container));
2145:   }
2146:   // for batch solvers
2147:   {
2148:     PetscContainer container;
2149:     PetscInt      *pNf;
2150:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
2151:     PetscCall(PetscMalloc1(sizeof(*pNf), &pNf));
2152:     *pNf = ctx->batch_sz;
2153:     PetscCall(PetscContainerSetPointer(container, (void *)pNf));
2154:     PetscCall(PetscContainerSetCtxDestroy(container, PetscCtxDestroyDefault));
2155:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "batch size", (PetscObject)container));
2156:     PetscCall(PetscContainerDestroy(&container));
2157:   }
2158:   PetscFunctionReturn(PETSC_SUCCESS);
2159: }

2161: /*@C
2162:   DMPlexLandauAccess - Access to the distribution function with user callback

2164:   Collective

2166:   Input Parameters:
2167: + pack     - the `DMCOMPOSITE`
2168: . func     - call back function
2169: - user_ctx - user context

2171:   Input/Output Parameter:
2172: . X - Vector to data to

2174:   Level: advanced

2176: .seealso: `DMPlexLandauCreateVelocitySpace()`
2177:  @*/
2178: PetscErrorCode DMPlexLandauAccess(DM pack, Vec X, PetscErrorCode (*func)(DM, Vec, PetscInt, PetscInt, PetscInt, void *), void *user_ctx)
2179: {
2180:   LandauCtx *ctx;

2182:   PetscFunctionBegin;
2183:   PetscCall(DMGetApplicationContext(pack, &ctx)); // uses ctx->num_grids; ctx->plex[grid]; ctx->batch_sz; ctx->mat_offset
2184:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2185:     PetscInt dim, n;
2186:     PetscCall(DMGetDimension(pack, &dim));
2187:     for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) {
2188:       Vec      vec;
2189:       PetscInt vf[1] = {i0};
2190:       IS       vis;
2191:       DM       vdm;
2192:       PetscCall(DMCreateSubDM(ctx->plex[grid], 1, vf, &vis, &vdm));
2193:       PetscCall(DMSetApplicationContext(vdm, ctx)); // the user might want this
2194:       PetscCall(DMCreateGlobalVector(vdm, &vec));
2195:       PetscCall(VecGetSize(vec, &n));
2196:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
2197:         const PetscInt moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
2198:         PetscCall(VecZeroEntries(vec));
2199:         /* Add your data with 'dm' for species 'sp' to 'vec' */
2200:         PetscCall(func(vdm, vec, i0, grid, b_id, user_ctx));
2201:         /* add to global */
2202:         PetscScalar const *values;
2203:         const PetscInt    *offsets;
2204:         PetscCall(VecGetArrayRead(vec, &values));
2205:         PetscCall(ISGetIndices(vis, &offsets));
2206:         for (PetscInt i = 0; i < n; i++) PetscCall(VecSetValue(X, moffset + offsets[i], values[i], ADD_VALUES));
2207:         PetscCall(VecRestoreArrayRead(vec, &values));
2208:         PetscCall(ISRestoreIndices(vis, &offsets));
2209:       } // batch
2210:       PetscCall(VecDestroy(&vec));
2211:       PetscCall(ISDestroy(&vis));
2212:       PetscCall(DMDestroy(&vdm));
2213:     }
2214:   } // grid
2215:   PetscFunctionReturn(PETSC_SUCCESS);
2216: }

2218: /*@
2219:   DMPlexLandauDestroyVelocitySpace - Destroy a `DMPLEX` velocity space mesh

2221:   Collective

2223:   Input/Output Parameters:
2224: . dm - the `DM` to destroy

2226:   Level: beginner

2228: .seealso: `DMPlexLandauCreateVelocitySpace()`
2229:  @*/
2230: PetscErrorCode DMPlexLandauDestroyVelocitySpace(DM *dm)
2231: {
2232:   LandauCtx *ctx;

2234:   PetscFunctionBegin;
2235:   PetscCall(DMGetApplicationContext(*dm, &ctx));
2236:   PetscCall(MatDestroy(&ctx->M));
2237:   PetscCall(MatDestroy(&ctx->J));
2238:   for (PetscInt ii = 0; ii < ctx->num_species; ii++) PetscCall(PetscFEDestroy(&ctx->fe[ii]));
2239:   PetscCall(ISDestroy(&ctx->batch_is));
2240:   PetscCall(VecDestroy(&ctx->work_vec));
2241:   PetscCall(VecScatterDestroy(&ctx->plex_batch));
2242:   if (ctx->deviceType == LANDAU_KOKKOS) {
2243: #if defined(PETSC_HAVE_KOKKOS)
2244:     PetscCall(LandauKokkosStaticDataClear(&ctx->SData_d));
2245: #else
2246:     SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-landau_device_type %s not built", "kokkos");
2247: #endif
2248:   } else {
2249:     if (ctx->SData_d.x) { /* in a CPU run */
2250:       PetscReal *invJ = (PetscReal *)ctx->SData_d.invJ, *xx = (PetscReal *)ctx->SData_d.x, *yy = (PetscReal *)ctx->SData_d.y, *zz = (PetscReal *)ctx->SData_d.z, *ww = (PetscReal *)ctx->SData_d.w;
2251:       LandauIdx *coo_elem_offsets = (LandauIdx *)ctx->SData_d.coo_elem_offsets, *coo_elem_fullNb = (LandauIdx *)ctx->SData_d.coo_elem_fullNb, (*coo_elem_point_offsets)[LANDAU_MAX_NQND + 1] = (LandauIdx(*)[LANDAU_MAX_NQND + 1]) ctx->SData_d.coo_elem_point_offsets;
2252:       PetscCall(PetscFree4(ww, xx, yy, invJ));
2253:       if (zz) PetscCall(PetscFree(zz));
2254:       if (coo_elem_offsets) PetscCall(PetscFree3(coo_elem_offsets, coo_elem_fullNb, coo_elem_point_offsets)); // could be NULL
2255:       PetscCall(PetscFree4(ctx->SData_d.alpha, ctx->SData_d.beta, ctx->SData_d.invMass, ctx->SData_d.lambdas));
2256:     }
2257:   }

2259:   if (ctx->times[LANDAU_MATRIX_TOTAL] > 0) { // OMP timings
2260:     PetscCall(PetscPrintf(ctx->comm, "TSStep               N  1.0 %10.3e\n", ctx->times[LANDAU_EX2_TSSOLVE]));
2261:     PetscCall(PetscPrintf(ctx->comm, "2:           Solve:  %10.3e with %" PetscInt_FMT " threads\n", ctx->times[LANDAU_EX2_TSSOLVE] - ctx->times[LANDAU_MATRIX_TOTAL], ctx->batch_sz));
2262:     PetscCall(PetscPrintf(ctx->comm, "3:          Landau:  %10.3e\n", ctx->times[LANDAU_MATRIX_TOTAL]));
2263:     PetscCall(PetscPrintf(ctx->comm, "Landau Jacobian       %" PetscInt_FMT " 1.0 %10.3e\n", (PetscInt)ctx->times[LANDAU_JACOBIAN_COUNT], ctx->times[LANDAU_JACOBIAN]));
2264:     PetscCall(PetscPrintf(ctx->comm, "Landau Operator       N 1.0  %10.3e\n", ctx->times[LANDAU_OPERATOR]));
2265:     PetscCall(PetscPrintf(ctx->comm, "Landau Mass           N 1.0  %10.3e\n", ctx->times[LANDAU_MASS]));
2266:     PetscCall(PetscPrintf(ctx->comm, " Jac-f-df (GPU)       N 1.0  %10.3e\n", ctx->times[LANDAU_F_DF]));
2267:     PetscCall(PetscPrintf(ctx->comm, " Kernel (GPU)         N 1.0  %10.3e\n", ctx->times[LANDAU_KERNEL]));
2268:     PetscCall(PetscPrintf(ctx->comm, "MatLUFactorNum        X 1.0 %10.3e\n", ctx->times[KSP_FACTOR]));
2269:     PetscCall(PetscPrintf(ctx->comm, "MatSolve              X 1.0 %10.3e\n", ctx->times[KSP_SOLVE]));
2270:   }
2271:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMDestroy(&ctx->plex[grid]));
2272:   PetscCall(PetscFree(ctx));
2273:   PetscCall(DMDestroy(dm));
2274:   PetscFunctionReturn(PETSC_SUCCESS);
2275: }

2277: /* < v, ru > */
2278: static void f0_s_den(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2279: {
2280:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2281:   f0[0]       = u[ii];
2282: }

2284: /* < v, ru > */
2285: static void f0_s_mom(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2286: {
2287:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]), jj = (PetscInt)PetscRealPart(constants[1]);
2288:   f0[0] = x[jj] * u[ii]; /* x momentum */
2289: }

2291: static void f0_s_v2(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2292: {
2293:   PetscInt i, ii = (PetscInt)PetscRealPart(constants[0]);
2294:   double   tmp1 = 0.;
2295:   for (i = 0; i < dim; ++i) tmp1 += x[i] * x[i];
2296:   f0[0] = tmp1 * u[ii];
2297: }

2299: static PetscErrorCode gamma_n_f(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *actx)
2300: {
2301:   const PetscReal *c2_0_arr = ((PetscReal *)actx);
2302:   const PetscReal  c02      = c2_0_arr[0];

2304:   PetscFunctionBegin;
2305:   for (PetscInt s = 0; s < Nf; s++) {
2306:     PetscReal tmp1 = 0.;
2307:     for (PetscInt i = 0; i < dim; ++i) tmp1 += x[i] * x[i];
2308: #if defined(PETSC_USE_DEBUG)
2309:     u[s] = PetscSqrtReal(1. + tmp1 / c02); //  u[0] = PetscSqrtReal(1. + xx);
2310: #else
2311:     {
2312:       PetscReal xx = tmp1 / c02;
2313:       u[s]         = xx / (PetscSqrtReal(1. + xx) + 1.); // better conditioned = xx/(PetscSqrtReal(1. + xx) + 1.)
2314:     }
2315: #endif
2316:   }
2317:   PetscFunctionReturn(PETSC_SUCCESS);
2318: }

2320: /* < v, ru > */
2321: static void f0_s_rden(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2322: {
2323:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2324:   f0[0]       = 2. * PETSC_PI * x[0] * u[ii];
2325: }

2327: /* < v, ru > */
2328: static void f0_s_rmom(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2329: {
2330:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2331:   f0[0]       = 2. * PETSC_PI * x[0] * x[1] * u[ii];
2332: }

2334: static void f0_s_rv2(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2335: {
2336:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2337:   f0[0]       = 2. * PETSC_PI * x[0] * (x[0] * x[0] + x[1] * x[1]) * u[ii];
2338: }

2340: /*@
2341:   DMPlexLandauPrintNorms - collects moments and prints them

2343:   Collective

2345:   Input Parameters:
2346: + X     - the state
2347: - stepi - current step to print

2349:   Level: beginner

2351: .seealso: `DMPlexLandauCreateVelocitySpace()`
2352:  @*/
2353: PetscErrorCode DMPlexLandauPrintNorms(Vec X, PetscInt stepi)
2354: {
2355:   LandauCtx  *ctx;
2356:   PetscDS     prob;
2357:   DM          pack;
2358:   PetscInt    cStart, cEnd, dim, ii, i0, nDMs;
2359:   PetscScalar xmomentumtot = 0, ymomentumtot = 0, zmomentumtot = 0, energytot = 0, densitytot = 0, tt[LANDAU_MAX_SPECIES];
2360:   PetscScalar xmomentum[LANDAU_MAX_SPECIES], ymomentum[LANDAU_MAX_SPECIES], zmomentum[LANDAU_MAX_SPECIES], energy[LANDAU_MAX_SPECIES], density[LANDAU_MAX_SPECIES];
2361:   Vec        *globXArray;

2363:   PetscFunctionBegin;
2364:   PetscCall(VecGetDM(X, &pack));
2365:   PetscCheck(pack, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Vector has no DM");
2366:   PetscCall(DMGetDimension(pack, &dim));
2367:   PetscCheck(dim == 2 || dim == 3, PETSC_COMM_SELF, PETSC_ERR_PLIB, "dim %" PetscInt_FMT " not in [2,3]", dim);
2368:   PetscCall(DMGetApplicationContext(pack, &ctx));
2369:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2370:   /* print momentum and energy */
2371:   PetscCall(DMCompositeGetNumberDM(pack, &nDMs));
2372:   PetscCheck(nDMs == ctx->num_grids * ctx->batch_sz, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "#DM wrong %" PetscInt_FMT " %" PetscInt_FMT, nDMs, ctx->num_grids * ctx->batch_sz);
2373:   PetscCall(PetscMalloc(sizeof(*globXArray) * nDMs, &globXArray));
2374:   PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray));
2375:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2376:     Vec Xloc = globXArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)];
2377:     PetscCall(DMGetDS(ctx->plex[grid], &prob));
2378:     for (ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
2379:       PetscScalar user[2] = {(PetscScalar)i0, ctx->charges[ii]};
2380:       PetscCall(PetscDSSetConstants(prob, 2, user));
2381:       if (dim == 2) { /* 2/3X + 3V (cylindrical coordinates) */
2382:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_rden));
2383:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2384:         density[ii] = tt[0] * ctx->n_0 * ctx->charges[ii];
2385:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_rmom));
2386:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2387:         zmomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2388:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_rv2));
2389:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2390:         energy[ii] = tt[0] * 0.5 * ctx->n_0 * ctx->v_0 * ctx->v_0 * ctx->masses[ii];
2391:         zmomentumtot += zmomentum[ii];
2392:         energytot += energy[ii];
2393:         densitytot += density[ii];
2394:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%3" PetscInt_FMT ") species-%" PetscInt_FMT ": charge density= %20.13e z-momentum= %20.13e energy= %20.13e", stepi, ii, (double)PetscRealPart(density[ii]), (double)PetscRealPart(zmomentum[ii]), (double)PetscRealPart(energy[ii])));
2395:       } else { /* 2/3Xloc + 3V */
2396:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_den));
2397:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2398:         density[ii] = tt[0] * ctx->n_0 * ctx->charges[ii];
2399:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_mom));
2400:         user[1] = 0;
2401:         PetscCall(PetscDSSetConstants(prob, 2, user));
2402:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2403:         xmomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2404:         user[1]       = 1;
2405:         PetscCall(PetscDSSetConstants(prob, 2, user));
2406:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2407:         ymomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2408:         user[1]       = 2;
2409:         PetscCall(PetscDSSetConstants(prob, 2, user));
2410:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2411:         zmomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2412:         if (ctx->use_relativistic_corrections) {
2413:           /* gamma * M * f */
2414:           if (ii == 0 && grid == 0) { // do all at once
2415:             Vec Mf, globGamma, *globMfArray, *globGammaArray;
2416:             PetscErrorCode (*gammaf[1])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *) = {gamma_n_f};
2417:             PetscReal *c2_0[1], data[1];

2419:             PetscCall(VecDuplicate(X, &globGamma));
2420:             PetscCall(VecDuplicate(X, &Mf));
2421:             PetscCall(PetscMalloc(sizeof(*globMfArray) * nDMs, &globMfArray));
2422:             PetscCall(PetscMalloc(sizeof(*globMfArray) * nDMs, &globGammaArray));
2423:             /* M * f */
2424:             PetscCall(MatMult(ctx->M, X, Mf));
2425:             /* gamma */
2426:             PetscCall(DMCompositeGetAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2427:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // yes a grid loop in a grid loop to print nice, need to fix for batching
2428:               Vec v1  = globGammaArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)];
2429:               data[0] = PetscSqr(C_0(ctx->v_0));
2430:               c2_0[0] = &data[0];
2431:               PetscCall(DMProjectFunction(ctx->plex[grid], 0., gammaf, (void **)c2_0, INSERT_ALL_VALUES, v1));
2432:             }
2433:             PetscCall(DMCompositeRestoreAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2434:             /* gamma * Mf */
2435:             PetscCall(DMCompositeGetAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2436:             PetscCall(DMCompositeGetAccessArray(pack, Mf, nDMs, NULL, globMfArray));
2437:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // yes a grid loop in a grid loop to print nice
2438:               PetscInt Nf    = ctx->species_offset[grid + 1] - ctx->species_offset[grid], N, bs;
2439:               Vec      Mfsub = globMfArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)], Gsub = globGammaArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)], v1, v2;
2440:               // get each component
2441:               PetscCall(VecGetSize(Mfsub, &N));
2442:               PetscCall(VecCreate(ctx->comm, &v1));
2443:               PetscCall(VecSetSizes(v1, PETSC_DECIDE, N / Nf));
2444:               PetscCall(VecCreate(ctx->comm, &v2));
2445:               PetscCall(VecSetSizes(v2, PETSC_DECIDE, N / Nf));
2446:               PetscCall(VecSetFromOptions(v1)); // ???
2447:               PetscCall(VecSetFromOptions(v2));
2448:               // get each component
2449:               PetscCall(VecGetBlockSize(Gsub, &bs));
2450:               PetscCheck(bs == Nf, PETSC_COMM_SELF, PETSC_ERR_PLIB, "bs %" PetscInt_FMT " != num_species %" PetscInt_FMT " in Gsub", bs, Nf);
2451:               PetscCall(VecGetBlockSize(Mfsub, &bs));
2452:               PetscCheck(bs == Nf, PETSC_COMM_SELF, PETSC_ERR_PLIB, "bs %" PetscInt_FMT " != num_species %" PetscInt_FMT, bs, Nf);
2453:               for (PetscInt i = 0, ix = ctx->species_offset[grid]; i < Nf; i++, ix++) {
2454:                 PetscScalar val;
2455:                 PetscCall(VecStrideGather(Gsub, i, v1, INSERT_VALUES)); // this is not right -- TODO
2456:                 PetscCall(VecStrideGather(Mfsub, i, v2, INSERT_VALUES));
2457:                 PetscCall(VecDot(v1, v2, &val));
2458:                 energy[ix] = PetscRealPart(val) * ctx->n_0 * ctx->v_0 * ctx->v_0 * ctx->masses[ix];
2459:               }
2460:               PetscCall(VecDestroy(&v1));
2461:               PetscCall(VecDestroy(&v2));
2462:             } /* grids */
2463:             PetscCall(DMCompositeRestoreAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2464:             PetscCall(DMCompositeRestoreAccessArray(pack, Mf, nDMs, NULL, globMfArray));
2465:             PetscCall(PetscFree(globGammaArray));
2466:             PetscCall(PetscFree(globMfArray));
2467:             PetscCall(VecDestroy(&globGamma));
2468:             PetscCall(VecDestroy(&Mf));
2469:           }
2470:         } else {
2471:           PetscCall(PetscDSSetObjective(prob, 0, &f0_s_v2));
2472:           PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2473:           energy[ii] = 0.5 * tt[0] * ctx->n_0 * ctx->v_0 * ctx->v_0 * ctx->masses[ii];
2474:         }
2475:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%3" PetscInt_FMT ") species %" PetscInt_FMT ": density=%20.13e, x-momentum=%20.13e, y-momentum=%20.13e, z-momentum=%20.13e, energy=%21.13e", stepi, ii, (double)PetscRealPart(density[ii]), (double)PetscRealPart(xmomentum[ii]), (double)PetscRealPart(ymomentum[ii]), (double)PetscRealPart(zmomentum[ii]), (double)PetscRealPart(energy[ii])));
2476:         xmomentumtot += xmomentum[ii];
2477:         ymomentumtot += ymomentum[ii];
2478:         zmomentumtot += zmomentum[ii];
2479:         energytot += energy[ii];
2480:         densitytot += density[ii];
2481:       }
2482:       if (ctx->num_species > 1) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
2483:     }
2484:   }
2485:   PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
2486:   PetscCall(PetscFree(globXArray));
2487:   /* totals */
2488:   PetscCall(DMPlexGetHeightStratum(ctx->plex[0], 0, &cStart, &cEnd));
2489:   if (ctx->num_species > 1) {
2490:     if (dim == 2) {
2491:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\t%3" PetscInt_FMT ") Total: charge density=%21.13e, momentum=%21.13e, energy=%21.13e (m_i[0]/m_e = %g, %" PetscInt_FMT " cells on electron grid)", stepi, (double)PetscRealPart(densitytot), (double)PetscRealPart(zmomentumtot), (double)PetscRealPart(energytot),
2492:                             (double)(ctx->masses[1] / ctx->masses[0]), cEnd - cStart));
2493:     } else {
2494:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\t%3" PetscInt_FMT ") Total: charge density=%21.13e, x-momentum=%21.13e, y-momentum=%21.13e, z-momentum=%21.13e, energy=%21.13e (m_i[0]/m_e = %g, %" PetscInt_FMT " cells)", stepi, (double)PetscRealPart(densitytot), (double)PetscRealPart(xmomentumtot), (double)PetscRealPart(ymomentumtot), (double)PetscRealPart(zmomentumtot), (double)PetscRealPart(energytot),
2495:                             (double)(ctx->masses[1] / ctx->masses[0]), cEnd - cStart));
2496:     }
2497:   } else PetscCall(PetscPrintf(PETSC_COMM_WORLD, " -- %" PetscInt_FMT " cells", cEnd - cStart));
2498:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
2499:   PetscFunctionReturn(PETSC_SUCCESS);
2500: }

2502: /*@
2503:   DMPlexLandauCreateMassMatrix - Create mass matrix for Landau in Plex space (not field major order of Jacobian)
2504:   - puts mass matrix into ctx->M

2506:   Collective

2508:   Input Parameter:
2509: . pack - the `DM` object. Puts matrix in Landau context M field

2511:   Output Parameter:
2512: . Amat - The mass matrix (optional), mass matrix is added to the `DM` context

2514:   Level: beginner

2516: .seealso: `DMPlexLandauCreateVelocitySpace()`
2517:  @*/
2518: PetscErrorCode DMPlexLandauCreateMassMatrix(DM pack, Mat *Amat)
2519: {
2520:   DM         mass_pack, massDM[LANDAU_MAX_GRIDS];
2521:   PetscDS    prob;
2522:   PetscInt   ii, dim, N1 = 1, N2;
2523:   LandauCtx *ctx;
2524:   Mat        packM, subM[LANDAU_MAX_GRIDS];

2526:   PetscFunctionBegin;
2528:   if (Amat) PetscAssertPointer(Amat, 2);
2529:   PetscCall(DMGetApplicationContext(pack, &ctx));
2530:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2531:   PetscCall(PetscLogEventBegin(ctx->events[14], 0, 0, 0, 0));
2532:   PetscCall(DMGetDimension(pack, &dim));
2533:   PetscCall(DMCompositeCreate(PetscObjectComm((PetscObject)pack), &mass_pack));
2534:   /* create pack mass matrix */
2535:   for (PetscInt grid = 0, ix = 0; grid < ctx->num_grids; grid++) {
2536:     PetscCall(DMClone(ctx->plex[grid], &massDM[grid]));
2537:     PetscCall(DMCopyFields(ctx->plex[grid], PETSC_DETERMINE, PETSC_DETERMINE, massDM[grid]));
2538:     PetscCall(DMCreateDS(massDM[grid]));
2539:     PetscCall(DMGetDS(massDM[grid], &prob));
2540:     for (ix = 0, ii = ctx->species_offset[grid]; ii < ctx->species_offset[grid + 1]; ii++, ix++) {
2541:       if (dim == 3) PetscCall(PetscDSSetJacobian(prob, ix, ix, g0_1, NULL, NULL, NULL));
2542:       else PetscCall(PetscDSSetJacobian(prob, ix, ix, g0_r, NULL, NULL, NULL));
2543:     }
2544: #if !defined(LANDAU_SPECIES_MAJOR)
2545:     PetscCall(DMCompositeAddDM(mass_pack, massDM[grid]));
2546: #else
2547:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // add batch size DMs for this species grid
2548:       PetscCall(DMCompositeAddDM(mass_pack, massDM[grid]));
2549:     }
2550: #endif
2551:     PetscCall(DMCreateMatrix(massDM[grid], &subM[grid]));
2552:   }
2553: #if !defined(LANDAU_SPECIES_MAJOR)
2554:   // stack the batched DMs
2555:   for (PetscInt b_id = 1; b_id < ctx->batch_sz; b_id++) {
2556:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMCompositeAddDM(mass_pack, massDM[grid]));
2557:   }
2558: #endif
2559:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only"));
2560:   PetscCall(DMCreateMatrix(mass_pack, &packM));
2561:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only false"));
2562:   PetscCall(MatSetOption(packM, MAT_STRUCTURALLY_SYMMETRIC, PETSC_TRUE));
2563:   PetscCall(MatSetOption(packM, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2564:   PetscCall(DMDestroy(&mass_pack));
2565:   /* make mass matrix for each block */
2566:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2567:     Vec locX;
2568:     DM  plex = massDM[grid];
2569:     PetscCall(DMGetLocalVector(plex, &locX));
2570:     /* Mass matrix is independent of the input, so no need to fill locX */
2571:     PetscCall(DMPlexSNESComputeJacobianFEM(plex, locX, subM[grid], subM[grid], ctx));
2572:     PetscCall(DMRestoreLocalVector(plex, &locX));
2573:     PetscCall(DMDestroy(&massDM[grid]));
2574:   }
2575:   PetscCall(MatGetSize(ctx->J, &N1, NULL));
2576:   PetscCall(MatGetSize(packM, &N2, NULL));
2577:   PetscCheck(N1 == N2, PetscObjectComm((PetscObject)pack), PETSC_ERR_PLIB, "Incorrect matrix sizes: |Jacobian| = %" PetscInt_FMT ", |Mass|=%" PetscInt_FMT, N1, N2);
2578:   /* assemble block diagonals */
2579:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2580:     Mat      B = subM[grid];
2581:     PetscInt nloc, nzl, *colbuf, COL_BF_SIZE = 1024, row;
2582:     PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
2583:     PetscCall(MatGetSize(B, &nloc, NULL));
2584:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
2585:       const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
2586:       const PetscInt    *cols;
2587:       const PetscScalar *vals;
2588:       for (PetscInt i = 0; i < nloc; i++) {
2589:         PetscCall(MatGetRow(B, i, &nzl, NULL, NULL));
2590:         if (nzl > COL_BF_SIZE) {
2591:           PetscCall(PetscFree(colbuf));
2592:           PetscCall(PetscInfo(pack, "Realloc buffer %" PetscInt_FMT " to %" PetscInt_FMT " (row size %" PetscInt_FMT ") \n", COL_BF_SIZE, 2 * COL_BF_SIZE, nzl));
2593:           COL_BF_SIZE = nzl;
2594:           PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
2595:         }
2596:         PetscCall(MatGetRow(B, i, &nzl, &cols, &vals));
2597:         for (PetscInt j = 0; j < nzl; j++) colbuf[j] = cols[j] + moffset;
2598:         row = i + moffset;
2599:         PetscCall(MatSetValues(packM, 1, &row, nzl, colbuf, vals, INSERT_VALUES));
2600:         PetscCall(MatRestoreRow(B, i, &nzl, &cols, &vals));
2601:       }
2602:     }
2603:     PetscCall(PetscFree(colbuf));
2604:   }
2605:   // cleanup
2606:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(MatDestroy(&subM[grid]));
2607:   PetscCall(MatAssemblyBegin(packM, MAT_FINAL_ASSEMBLY));
2608:   PetscCall(MatAssemblyEnd(packM, MAT_FINAL_ASSEMBLY));
2609:   PetscCall(PetscObjectSetName((PetscObject)packM, "mass"));
2610:   PetscCall(MatViewFromOptions(packM, NULL, "-dm_landau_mass_view"));
2611:   ctx->M = packM;
2612:   if (Amat) *Amat = packM;
2613:   PetscCall(PetscLogEventEnd(ctx->events[14], 0, 0, 0, 0));
2614:   PetscFunctionReturn(PETSC_SUCCESS);
2615: }

2617: /*@
2618:   DMPlexLandauIFunction - `TS` residual calculation, confusingly this computes the Jacobian w/o mass

2620:   Collective

2622:   Input Parameters:
2623: + ts         - The time stepping context
2624: . time_dummy - current time (not used)
2625: . X          - Current state
2626: . X_t        - Time derivative of current state
2627: - actx       - Landau context

2629:   Output Parameter:
2630: . F - The residual

2632:   Level: beginner

2634: .seealso: `DMPlexLandauCreateVelocitySpace()`, `DMPlexLandauIJacobian()`
2635:  @*/
2636: PetscErrorCode DMPlexLandauIFunction(TS ts, PetscReal time_dummy, Vec X, Vec X_t, Vec F, void *actx)
2637: {
2638:   LandauCtx *ctx = (LandauCtx *)actx;
2639:   PetscInt   dim;
2640:   DM         pack;
2641: #if defined(PETSC_HAVE_THREADSAFETY)
2642:   double starttime, endtime;
2643: #endif
2644:   PetscObjectState state;

2646:   PetscFunctionBegin;
2647:   PetscCall(TSGetDM(ts, &pack));
2648:   PetscCall(DMGetApplicationContext(pack, &ctx));
2649:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2650:   if (ctx->stage) PetscCall(PetscLogStagePush(ctx->stage));
2651:   PetscCall(PetscLogEventBegin(ctx->events[11], 0, 0, 0, 0));
2652:   PetscCall(PetscLogEventBegin(ctx->events[0], 0, 0, 0, 0));
2653: #if defined(PETSC_HAVE_THREADSAFETY)
2654:   starttime = MPI_Wtime();
2655: #endif
2656:   PetscCall(DMGetDimension(pack, &dim));
2657:   PetscCall(PetscObjectStateGet((PetscObject)ctx->J, &state));
2658:   if (state != ctx->norm_state) {
2659:     PetscCall(MatZeroEntries(ctx->J));
2660:     PetscCall(LandauFormJacobian_Internal(X, ctx->J, dim, 0.0, (void *)ctx));
2661:     PetscCall(MatViewFromOptions(ctx->J, NULL, "-dm_landau_jacobian_view"));
2662:     PetscCall(PetscObjectStateGet((PetscObject)ctx->J, &state));
2663:     ctx->norm_state = state;
2664:   } else {
2665:     PetscCall(PetscInfo(ts, "WARNING Skip forming Jacobian, has not changed %" PetscInt64_FMT "\n", state));
2666:   }
2667:   /* mat vec for op */
2668:   PetscCall(MatMult(ctx->J, X, F)); /* C*f */
2669:   /* add time term */
2670:   if (X_t) PetscCall(MatMultAdd(ctx->M, X_t, F, F));
2671: #if defined(PETSC_HAVE_THREADSAFETY)
2672:   if (ctx->stage) {
2673:     endtime = MPI_Wtime();
2674:     ctx->times[LANDAU_OPERATOR] += (endtime - starttime);
2675:     ctx->times[LANDAU_JACOBIAN] += (endtime - starttime);
2676:     ctx->times[LANDAU_MATRIX_TOTAL] += (endtime - starttime);
2677:     ctx->times[LANDAU_JACOBIAN_COUNT] += 1;
2678:   }
2679: #endif
2680:   PetscCall(PetscLogEventEnd(ctx->events[0], 0, 0, 0, 0));
2681:   PetscCall(PetscLogEventEnd(ctx->events[11], 0, 0, 0, 0));
2682:   if (ctx->stage) PetscCall(PetscLogStagePop());
2683:   PetscFunctionReturn(PETSC_SUCCESS);
2684: }

2686: /*@
2687:   DMPlexLandauIJacobian - `TS` Jacobian construction, confusingly this adds mass

2689:   Collective

2691:   Input Parameters:
2692: + ts         - The time stepping context
2693: . time_dummy - current time (not used)
2694: . X          - Current state
2695: . U_tdummy   - Time derivative of current state (not used)
2696: . shift      - shift for du/dt term
2697: - actx       - Landau context

2699:   Output Parameters:
2700: + Amat - Jacobian
2701: - Pmat - same as Amat

2703:   Level: beginner

2705: .seealso: `DMPlexLandauCreateVelocitySpace()`, `DMPlexLandauIFunction()`
2706:  @*/
2707: PetscErrorCode DMPlexLandauIJacobian(TS ts, PetscReal time_dummy, Vec X, Vec U_tdummy, PetscReal shift, Mat Amat, Mat Pmat, void *actx)
2708: {
2709:   LandauCtx *ctx = NULL;
2710:   PetscInt   dim;
2711:   DM         pack;
2712: #if defined(PETSC_HAVE_THREADSAFETY)
2713:   double starttime, endtime;
2714: #endif
2715:   PetscObjectState state;

2717:   PetscFunctionBegin;
2718:   PetscCall(TSGetDM(ts, &pack));
2719:   PetscCall(DMGetApplicationContext(pack, &ctx));
2720:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2721:   PetscCheck(Amat == Pmat && Amat == ctx->J, ctx->comm, PETSC_ERR_PLIB, "Amat!=Pmat || Amat!=ctx->J");
2722:   PetscCall(DMGetDimension(pack, &dim));
2723:   /* get collision Jacobian into A */
2724:   if (ctx->stage) PetscCall(PetscLogStagePush(ctx->stage));
2725:   PetscCall(PetscLogEventBegin(ctx->events[11], 0, 0, 0, 0));
2726:   PetscCall(PetscLogEventBegin(ctx->events[9], 0, 0, 0, 0));
2727: #if defined(PETSC_HAVE_THREADSAFETY)
2728:   starttime = MPI_Wtime();
2729: #endif
2730:   PetscCheck(shift != 0.0, ctx->comm, PETSC_ERR_PLIB, "zero shift");
2731:   PetscCall(PetscObjectStateGet((PetscObject)ctx->J, &state));
2732:   PetscCheck(state == ctx->norm_state, ctx->comm, PETSC_ERR_PLIB, "wrong state, %" PetscInt64_FMT " %" PetscInt64_FMT, ctx->norm_state, state);
2733:   if (!ctx->use_matrix_mass) {
2734:     PetscCall(LandauFormJacobian_Internal(X, ctx->J, dim, shift, (void *)ctx));
2735:   } else { /* add mass */
2736:     PetscCall(MatAXPY(Pmat, shift, ctx->M, SAME_NONZERO_PATTERN));
2737:   }
2738: #if defined(PETSC_HAVE_THREADSAFETY)
2739:   if (ctx->stage) {
2740:     endtime = MPI_Wtime();
2741:     ctx->times[LANDAU_OPERATOR] += (endtime - starttime);
2742:     ctx->times[LANDAU_MASS] += (endtime - starttime);
2743:     ctx->times[LANDAU_MATRIX_TOTAL] += (endtime - starttime);
2744:   }
2745: #endif
2746:   PetscCall(PetscLogEventEnd(ctx->events[9], 0, 0, 0, 0));
2747:   PetscCall(PetscLogEventEnd(ctx->events[11], 0, 0, 0, 0));
2748:   if (ctx->stage) PetscCall(PetscLogStagePop());
2749:   PetscFunctionReturn(PETSC_SUCCESS);
2750: }