Actual source code: rvector.c

  1: /*
  2:      Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
  3:    These are the vector functions the user calls.
  4: */
  5: #include <petsc/private/vecimpl.h>

  7: PetscInt VecGetSubVectorSavedStateId = -1;

  9: #if PetscDefined(USE_DEBUG)
 10: // this is a no-op '0' macro in optimized builds
 11: PetscErrorCode VecValidValues_Internal(Vec vec, PetscInt argnum, PetscBool begin)
 12: {
 13:   PetscFunctionBegin;
 14:   if (vec->petscnative || vec->ops->getarray) {
 15:     PetscInt           n;
 16:     const PetscScalar *x;
 17:     PetscOffloadMask   mask;

 19:     PetscCall(VecGetOffloadMask(vec, &mask));
 20:     if (!PetscOffloadHost(mask)) PetscFunctionReturn(PETSC_SUCCESS);
 21:     PetscCall(VecGetLocalSize(vec, &n));
 22:     PetscCall(VecGetArrayRead(vec, &x));
 23:     for (PetscInt i = 0; i < n; i++) {
 24:       if (begin) {
 25:         PetscCheck(!PetscIsInfOrNanScalar(x[i]), PETSC_COMM_SELF, PETSC_ERR_FP, "Vec entry at local location %" PetscInt_FMT " is not-a-number or infinite at beginning of function: Parameter number %" PetscInt_FMT, i, argnum);
 26:       } else {
 27:         PetscCheck(!PetscIsInfOrNanScalar(x[i]), PETSC_COMM_SELF, PETSC_ERR_FP, "Vec entry at local location %" PetscInt_FMT " is not-a-number or infinite at end of function: Parameter number %" PetscInt_FMT, i, argnum);
 28:       }
 29:     }
 30:     PetscCall(VecRestoreArrayRead(vec, &x));
 31:   }
 32:   PetscFunctionReturn(PETSC_SUCCESS);
 33: }
 34: #endif

 36: /*@
 37:   VecMaxPointwiseDivide - Computes the maximum of the componentwise division `max = max_i abs(x[i]/y[i])`.

 39:   Logically Collective

 41:   Input Parameters:
 42: + x - the numerators
 43: - y - the denominators

 45:   Output Parameter:
 46: . max - the result

 48:   Level: advanced

 50:   Notes:
 51:   `x` and `y` may be the same vector

 53:   if a particular `y[i]` is zero, it is treated as 1 in the above formula

 55: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`
 56: @*/
 57: PetscErrorCode VecMaxPointwiseDivide(Vec x, Vec y, PetscReal *max)
 58: {
 59:   PetscFunctionBegin;
 62:   PetscAssertPointer(max, 3);
 65:   PetscCheckSameTypeAndComm(x, 1, y, 2);
 66:   VecCheckSameSize(x, 1, y, 2);
 67:   VecCheckAssembled(x);
 68:   VecCheckAssembled(y);
 69:   PetscCall(VecLockReadPush(x));
 70:   PetscCall(VecLockReadPush(y));
 71:   PetscUseTypeMethod(x, maxpointwisedivide, y, max);
 72:   PetscCall(VecLockReadPop(x));
 73:   PetscCall(VecLockReadPop(y));
 74:   PetscFunctionReturn(PETSC_SUCCESS);
 75: }

 77: /*@
 78:   VecDot - Computes the vector dot product.

 80:   Collective

 82:   Input Parameters:
 83: + x - first vector
 84: - y - second vector

 86:   Output Parameter:
 87: . val - the dot product

 89:   Level: intermediate

 91:   Notes for Users of Complex Numbers:
 92:   For complex vectors, `VecDot()` computes
 93: $     val = (x,y) = y^H x,
 94:   where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
 95:   inner product where the SECOND argument gets the complex conjugate. Since the `BLASdot()` complex conjugates the first
 96:   first argument we call the `BLASdot()` with the arguments reversed.

 98:   Use `VecTDot()` for the indefinite form
 99: $     val = (x,y) = y^T x,
100:   where y^T denotes the transpose of y.

102: .seealso: [](ch_vectors), `Vec`, `VecMDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecDotRealPart()`
103: @*/
104: PetscErrorCode VecDot(Vec x, Vec y, PetscScalar *val)
105: {
106:   PetscFunctionBegin;
109:   PetscAssertPointer(val, 3);
112:   PetscCheckSameTypeAndComm(x, 1, y, 2);
113:   VecCheckSameSize(x, 1, y, 2);
114:   VecCheckAssembled(x);
115:   VecCheckAssembled(y);

117:   PetscCall(VecLockReadPush(x));
118:   PetscCall(VecLockReadPush(y));
119:   PetscCall(PetscLogEventBegin(VEC_Dot, x, y, 0, 0));
120:   PetscUseTypeMethod(x, dot, y, val);
121:   PetscCall(PetscLogEventEnd(VEC_Dot, x, y, 0, 0));
122:   PetscCall(VecLockReadPop(x));
123:   PetscCall(VecLockReadPop(y));
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: /*@
128:   VecDotRealPart - Computes the real part of the vector dot product.

130:   Collective

132:   Input Parameters:
133: + x - first vector
134: - y - second vector

136:   Output Parameter:
137: . val - the real part of the dot product;

139:   Level: intermediate

141:   Notes for Users of Complex Numbers:
142:   See `VecDot()` for more details on the definition of the dot product for complex numbers

144:   For real numbers this returns the same value as `VecDot()`

146:   For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
147:   the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)

149:   Developer Notes:
150:   This is not currently optimized to compute only the real part of the dot product.

152: .seealso: [](ch_vectors), `Vec`, `VecMDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecDot()`, `VecDotNorm2()`
153: @*/
154: PetscErrorCode VecDotRealPart(Vec x, Vec y, PetscReal *val)
155: {
156:   PetscScalar fdot;

158:   PetscFunctionBegin;
159:   PetscCall(VecDot(x, y, &fdot));
160:   *val = PetscRealPart(fdot);
161:   PetscFunctionReturn(PETSC_SUCCESS);
162: }

164: /*@
165:   VecNorm  - Computes the vector norm.

167:   Collective

169:   Input Parameters:
170: + x    - the vector
171: - type - the type of the norm requested

173:   Output Parameter:
174: . val - the norm

176:   Level: intermediate

178:   Notes:
179:   See `NormType` for descriptions of each norm.

181:   For complex numbers `NORM_1` will return the traditional 1 norm of the 2 norm of the complex
182:   numbers; that is the 1 norm of the absolute values of the complex entries. In PETSc 3.6 and
183:   earlier releases it returned the 1 norm of the 1 norm of the complex entries (what is
184:   returned by the BLAS routine `asum()`). Both are valid norms but most people expect the former.

186:   This routine stashes the computed norm value, repeated calls before the vector entries are
187:   changed are then rapid since the precomputed value is immediately available. Certain vector
188:   operations such as `VecSet()` store the norms so the value is immediately available and does
189:   not need to be explicitly computed. `VecScale()` updates any stashed norm values, thus calls
190:   after `VecScale()` do not need to explicitly recompute the norm.

192: .seealso: [](ch_vectors), `Vec`, `NormType`, `VecDot()`, `VecTDot()`, `VecDotBegin()`, `VecDotEnd()`, `VecNormAvailable()`,
193:           `VecNormBegin()`, `VecNormEnd()`, `NormType()`
194: @*/
195: PetscErrorCode VecNorm(Vec x, NormType type, PetscReal *val)
196: {
197:   PetscBool flg = PETSC_TRUE;

199:   PetscFunctionBegin;
202:   VecCheckAssembled(x);
204:   PetscAssertPointer(val, 3);

206:   PetscCall(VecNormAvailable(x, type, &flg, val));
207:   // check that all MPI processes call this routine together and have same availability
208:   if (PetscDefined(USE_DEBUG)) {
209:     PetscMPIInt b0 = (PetscMPIInt)flg, b1[2], b2[2];
210:     b1[0]          = -b0;
211:     b1[1]          = b0;
212:     PetscCall(MPIU_Allreduce(b1, b2, 2, MPI_INT, MPI_MAX, PetscObjectComm((PetscObject)x)));
213:     PetscCheck(-b2[0] == b2[1], PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_WRONGSTATE, "Some MPI processes have cached %s norm, others do not. This may happen when some MPI processes call VecGetArray() and some others do not.", NormTypes[type]);
214:     if (flg) {
215:       PetscReal b1[2], b2[2];
216:       b1[0] = -(*val);
217:       b1[1] = *val;
218:       PetscCall(MPIU_Allreduce(b1, b2, 2, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)x)));
219:       PetscCheck(-b2[0] == b2[1], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Difference in cached %s norms: local %g", NormTypes[type], (double)*val);
220:     }
221:   }
222:   if (flg) PetscFunctionReturn(PETSC_SUCCESS);

224:   PetscCall(VecLockReadPush(x));
225:   PetscCall(PetscLogEventBegin(VEC_Norm, x, 0, 0, 0));
226:   PetscUseTypeMethod(x, norm, type, val);
227:   PetscCall(PetscLogEventEnd(VEC_Norm, x, 0, 0, 0));
228:   PetscCall(VecLockReadPop(x));

230:   if (type != NORM_1_AND_2) PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[type], *val));
231:   PetscFunctionReturn(PETSC_SUCCESS);
232: }

234: /*@
235:   VecNormAvailable  - Returns the vector norm if it is already known. That is, it has been previously computed and cached in the vector

237:   Not Collective

239:   Input Parameters:
240: + x    - the vector
241: - type - one of `NORM_1` (sum_i |x[i]|), `NORM_2` sqrt(sum_i (x[i])^2), `NORM_INFINITY` max_i |x[i]|.  Also available
242:           `NORM_1_AND_2`, which computes both norms and stores them
243:           in a two element array.

245:   Output Parameters:
246: + available - `PETSC_TRUE` if the val returned is valid
247: - val       - the norm

249:   Level: intermediate

251:   Developer Notes:
252:   `PETSC_HAVE_SLOW_BLAS_NORM2` will cause a C (loop unrolled) version of the norm to be used, rather
253:   than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
254:   (as opposed to vendor provided) because the FORTRAN BLAS `NRM2()` routine is very slow.

256: .seealso: [](ch_vectors), `Vec`, `VecDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`,
257:           `VecNormBegin()`, `VecNormEnd()`
258: @*/
259: PetscErrorCode VecNormAvailable(Vec x, NormType type, PetscBool *available, PetscReal *val)
260: {
261:   PetscFunctionBegin;
264:   PetscAssertPointer(available, 3);
265:   PetscAssertPointer(val, 4);

267:   if (type == NORM_1_AND_2) {
268:     *available = PETSC_FALSE;
269:   } else {
270:     PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[type], *val, *available));
271:   }
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: /*@
276:   VecNormalize - Normalizes a vector by its 2-norm.

278:   Collective

280:   Input Parameter:
281: . x - the vector

283:   Output Parameter:
284: . val - the vector norm before normalization. May be `NULL` if the value is not needed.

286:   Level: intermediate

288: .seealso: [](ch_vectors), `Vec`, `VecNorm()`, `NORM_2`, `NormType`
289: @*/
290: PetscErrorCode VecNormalize(Vec x, PetscReal *val)
291: {
292:   PetscReal norm;

294:   PetscFunctionBegin;
297:   PetscCall(VecSetErrorIfLocked(x, 1));
298:   if (val) PetscAssertPointer(val, 2);
299:   PetscCall(PetscLogEventBegin(VEC_Normalize, x, 0, 0, 0));
300:   PetscCall(VecNorm(x, NORM_2, &norm));
301:   if (norm == 0.0) PetscCall(PetscInfo(x, "Vector of zero norm can not be normalized; Returning only the zero norm\n"));
302:   else if (PetscIsInfOrNanReal(norm)) PetscCall(PetscInfo(x, "Vector with Inf or Nan norm can not be normalized; Returning only the norm\n"));
303:   else {
304:     PetscScalar s = 1.0 / norm;
305:     PetscCall(VecScale(x, s));
306:   }
307:   PetscCall(PetscLogEventEnd(VEC_Normalize, x, 0, 0, 0));
308:   if (val) *val = norm;
309:   PetscFunctionReturn(PETSC_SUCCESS);
310: }

312: /*@C
313:   VecMax - Determines the vector component with maximum real part and its location.

315:   Collective

317:   Input Parameter:
318: . x - the vector

320:   Output Parameters:
321: + p   - the index of `val` (pass `NULL` if you don't want this) in the vector
322: - val - the maximum component

324:   Level: intermediate

326:   Notes:
327:   Returns the value `PETSC_MIN_REAL` and negative `p` if the vector is of length 0.

329:   Returns the smallest index with the maximum value

331:   Developer Note:
332:   The Nag Fortran compiler does not like the symbol name VecMax

334: .seealso: [](ch_vectors), `Vec`, `VecNorm()`, `VecMin()`
335: @*/
336: PetscErrorCode VecMax(Vec x, PetscInt *p, PetscReal *val)
337: {
338:   PetscFunctionBegin;
341:   VecCheckAssembled(x);
342:   if (p) PetscAssertPointer(p, 2);
343:   PetscAssertPointer(val, 3);
344:   PetscCall(VecLockReadPush(x));
345:   PetscCall(PetscLogEventBegin(VEC_Max, x, 0, 0, 0));
346:   PetscUseTypeMethod(x, max, p, val);
347:   PetscCall(PetscLogEventEnd(VEC_Max, x, 0, 0, 0));
348:   PetscCall(VecLockReadPop(x));
349:   PetscFunctionReturn(PETSC_SUCCESS);
350: }

352: /*@C
353:   VecMin - Determines the vector component with minimum real part and its location.

355:   Collective

357:   Input Parameter:
358: . x - the vector

360:   Output Parameters:
361: + p   - the index of `val` (pass `NULL` if you don't want this location) in the vector
362: - val - the minimum component

364:   Level: intermediate

366:   Notes:
367:   Returns the value `PETSC_MAX_REAL` and negative `p` if the vector is of length 0.

369:   This returns the smallest index with the minimum value

371:   Developer Note:
372:   The Nag Fortran compiler does not like the symbol name VecMin

374: .seealso: [](ch_vectors), `Vec`, `VecMax()`
375: @*/
376: PetscErrorCode VecMin(Vec x, PetscInt *p, PetscReal *val)
377: {
378:   PetscFunctionBegin;
381:   VecCheckAssembled(x);
382:   if (p) PetscAssertPointer(p, 2);
383:   PetscAssertPointer(val, 3);
384:   PetscCall(VecLockReadPush(x));
385:   PetscCall(PetscLogEventBegin(VEC_Min, x, 0, 0, 0));
386:   PetscUseTypeMethod(x, min, p, val);
387:   PetscCall(PetscLogEventEnd(VEC_Min, x, 0, 0, 0));
388:   PetscCall(VecLockReadPop(x));
389:   PetscFunctionReturn(PETSC_SUCCESS);
390: }

392: /*@
393:   VecTDot - Computes an indefinite vector dot product. That is, this
394:   routine does NOT use the complex conjugate.

396:   Collective

398:   Input Parameters:
399: + x - first vector
400: - y - second vector

402:   Output Parameter:
403: . val - the dot product

405:   Level: intermediate

407:   Notes for Users of Complex Numbers:
408:   For complex vectors, `VecTDot()` computes the indefinite form
409: $     val = (x,y) = y^T x,
410:   where y^T denotes the transpose of y.

412:   Use `VecDot()` for the inner product
413: $     val = (x,y) = y^H x,
414:   where y^H denotes the conjugate transpose of y.

416: .seealso: [](ch_vectors), `Vec`, `VecDot()`, `VecMTDot()`
417: @*/
418: PetscErrorCode VecTDot(Vec x, Vec y, PetscScalar *val)
419: {
420:   PetscFunctionBegin;
423:   PetscAssertPointer(val, 3);
426:   PetscCheckSameTypeAndComm(x, 1, y, 2);
427:   VecCheckSameSize(x, 1, y, 2);
428:   VecCheckAssembled(x);
429:   VecCheckAssembled(y);

431:   PetscCall(VecLockReadPush(x));
432:   PetscCall(VecLockReadPush(y));
433:   PetscCall(PetscLogEventBegin(VEC_TDot, x, y, 0, 0));
434:   PetscUseTypeMethod(x, tdot, y, val);
435:   PetscCall(PetscLogEventEnd(VEC_TDot, x, y, 0, 0));
436:   PetscCall(VecLockReadPop(x));
437:   PetscCall(VecLockReadPop(y));
438:   PetscFunctionReturn(PETSC_SUCCESS);
439: }

441: PetscErrorCode VecScaleAsync_Private(Vec x, PetscScalar alpha, PetscDeviceContext dctx)
442: {
443:   PetscReal   norms[4];
444:   PetscBool   flgs[4];
445:   PetscScalar one = 1.0;

447:   PetscFunctionBegin;
450:   VecCheckAssembled(x);
451:   PetscCall(VecSetErrorIfLocked(x, 1));
453:   if (alpha == one) PetscFunctionReturn(PETSC_SUCCESS);

455:   /* get current stashed norms */
456:   for (PetscInt i = 0; i < 4; i++) PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], norms[i], flgs[i]));

458:   PetscCall(PetscLogEventBegin(VEC_Scale, x, 0, 0, 0));
459:   VecMethodDispatch(x, dctx, VecAsyncFnName(Scale), scale, (Vec, PetscScalar, PetscDeviceContext), alpha);
460:   PetscCall(PetscLogEventEnd(VEC_Scale, x, 0, 0, 0));

462:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
463:   /* put the scaled stashed norms back into the Vec */
464:   for (PetscInt i = 0; i < 4; i++) {
465:     PetscReal ar = PetscAbsScalar(alpha);
466:     if (flgs[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[i], ar * norms[i]));
467:   }
468:   PetscFunctionReturn(PETSC_SUCCESS);
469: }

471: /*@
472:   VecScale - Scales a vector.

474:   Logically Collective

476:   Input Parameters:
477: + x     - the vector
478: - alpha - the scalar

480:   Level: intermediate

482:   Note:
483:   For a vector with n components, `VecScale()` computes  x[i] = alpha * x[i], for i=1,...,n.

485: .seealso: [](ch_vectors), `Vec`, `VecSet()`
486: @*/
487: PetscErrorCode VecScale(Vec x, PetscScalar alpha)
488: {
489:   PetscFunctionBegin;
490:   PetscCall(VecScaleAsync_Private(x, alpha, NULL));
491:   PetscFunctionReturn(PETSC_SUCCESS);
492: }

494: PetscErrorCode VecSetAsync_Private(Vec x, PetscScalar alpha, PetscDeviceContext dctx)
495: {
496:   PetscFunctionBegin;
499:   VecCheckAssembled(x);
501:   PetscCall(VecSetErrorIfLocked(x, 1));

503:   if (alpha == 0) {
504:     PetscReal norm;
505:     PetscBool set;

507:     PetscCall(VecNormAvailable(x, NORM_2, &set, &norm));
508:     if (set == PETSC_TRUE && norm == 0) PetscFunctionReturn(PETSC_SUCCESS);
509:   }
510:   PetscCall(PetscLogEventBegin(VEC_Set, x, 0, 0, 0));
511:   VecMethodDispatch(x, dctx, VecAsyncFnName(Set), set, (Vec, PetscScalar, PetscDeviceContext), alpha);
512:   PetscCall(PetscLogEventEnd(VEC_Set, x, 0, 0, 0));
513:   PetscCall(PetscObjectStateIncrease((PetscObject)x));

515:   /*  norms can be simply set (if |alpha|*N not too large) */
516:   {
517:     PetscReal      val = PetscAbsScalar(alpha);
518:     const PetscInt N   = x->map->N;

520:     if (N == 0) {
521:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_1], 0.0));
522:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], 0.0));
523:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_2], 0.0));
524:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_FROBENIUS], 0.0));
525:     } else if (val > PETSC_MAX_REAL / N) {
526:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], val));
527:     } else {
528:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_1], N * val));
529:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], val));
530:       val *= PetscSqrtReal((PetscReal)N);
531:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_2], val));
532:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_FROBENIUS], val));
533:     }
534:   }
535:   PetscFunctionReturn(PETSC_SUCCESS);
536: }

538: /*@
539:   VecSet - Sets all components of a vector to a single scalar value.

541:   Logically Collective

543:   Input Parameters:
544: + x     - the vector
545: - alpha - the scalar

547:   Level: beginner

549:   Notes:
550:   For a vector of dimension n, `VecSet()` sets x[i] = alpha, for i=1,...,n,
551:   so that all vector entries then equal the identical
552:   scalar value, `alpha`.  Use the more general routine
553:   `VecSetValues()` to set different vector entries.

555:   You CANNOT call this after you have called `VecSetValues()` but before you call
556:   `VecAssemblyBegin()`

558:   If `alpha` is zero and the norm of the vector is known to be zero then this skips the unneeded zeroing process

560: .seealso: [](ch_vectors), `Vec`, `VecSetValues()`, `VecSetValuesBlocked()`, `VecSetRandom()`
561: @*/
562: PetscErrorCode VecSet(Vec x, PetscScalar alpha)
563: {
564:   PetscFunctionBegin;
565:   PetscCall(VecSetAsync_Private(x, alpha, NULL));
566:   PetscFunctionReturn(PETSC_SUCCESS);
567: }

569: PetscErrorCode VecAXPYAsync_Private(Vec y, PetscScalar alpha, Vec x, PetscDeviceContext dctx)
570: {
571:   PetscFunctionBegin;
576:   PetscCheckSameTypeAndComm(x, 3, y, 1);
577:   VecCheckSameSize(x, 3, y, 1);
578:   VecCheckAssembled(x);
579:   VecCheckAssembled(y);
581:   if (alpha == (PetscScalar)0.0) PetscFunctionReturn(PETSC_SUCCESS);
582:   PetscCall(VecSetErrorIfLocked(y, 1));
583:   if (x == y) {
584:     PetscCall(VecScale(y, alpha + 1.0));
585:     PetscFunctionReturn(PETSC_SUCCESS);
586:   }
587:   PetscCall(VecLockReadPush(x));
588:   PetscCall(PetscLogEventBegin(VEC_AXPY, x, y, 0, 0));
589:   VecMethodDispatch(y, dctx, VecAsyncFnName(AXPY), axpy, (Vec, PetscScalar, Vec, PetscDeviceContext), alpha, x);
590:   PetscCall(PetscLogEventEnd(VEC_AXPY, x, y, 0, 0));
591:   PetscCall(VecLockReadPop(x));
592:   PetscCall(PetscObjectStateIncrease((PetscObject)y));
593:   PetscFunctionReturn(PETSC_SUCCESS);
594: }
595: /*@
596:   VecAXPY - Computes `y = alpha x + y`.

598:   Logically Collective

600:   Input Parameters:
601: + alpha - the scalar
602: . x     - vector scale by `alpha`
603: - y     - vector accumulated into

605:   Output Parameter:
606: . y - output vector

608:   Level: intermediate

610:   Notes:
611:   This routine is optimized for alpha of 0.0, otherwise it calls the BLAS routine
612: .vb
613:     VecAXPY(y,alpha,x)                   y = alpha x           +      y
614:     VecAYPX(y,beta,x)                    y =       x           + beta y
615:     VecAXPBY(y,alpha,beta,x)             y = alpha x           + beta y
616:     VecWAXPY(w,alpha,x,y)                w = alpha x           +      y
617:     VecAXPBYPCZ(z,alpha,beta,gamma,x,y)  z = alpha x           + beta y + gamma z
618:     VecMAXPY(y,nv,alpha[],x[])           y = sum alpha[i] x[i] +      y
619: .ve

621: .seealso: [](ch_vectors), `Vec`, `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
622: @*/
623: PetscErrorCode VecAXPY(Vec y, PetscScalar alpha, Vec x)
624: {
625:   PetscFunctionBegin;
626:   PetscCall(VecAXPYAsync_Private(y, alpha, x, NULL));
627:   PetscFunctionReturn(PETSC_SUCCESS);
628: }

630: PetscErrorCode VecAYPXAsync_Private(Vec y, PetscScalar beta, Vec x, PetscDeviceContext dctx)
631: {
632:   PetscFunctionBegin;
637:   PetscCheckSameTypeAndComm(x, 3, y, 1);
638:   VecCheckSameSize(x, 1, y, 3);
639:   VecCheckAssembled(x);
640:   VecCheckAssembled(y);
642:   PetscCall(VecSetErrorIfLocked(y, 1));
643:   if (x == y) {
644:     PetscCall(VecScale(y, beta + 1.0));
645:     PetscFunctionReturn(PETSC_SUCCESS);
646:   }
647:   PetscCall(VecLockReadPush(x));
648:   if (beta == (PetscScalar)0.0) {
649:     PetscCall(VecCopy(x, y));
650:   } else {
651:     PetscCall(PetscLogEventBegin(VEC_AYPX, x, y, 0, 0));
652:     VecMethodDispatch(y, dctx, VecAsyncFnName(AYPX), aypx, (Vec, PetscScalar, Vec, PetscDeviceContext), beta, x);
653:     PetscCall(PetscLogEventEnd(VEC_AYPX, x, y, 0, 0));
654:     PetscCall(PetscObjectStateIncrease((PetscObject)y));
655:   }
656:   PetscCall(VecLockReadPop(x));
657:   PetscFunctionReturn(PETSC_SUCCESS);
658: }

660: /*@
661:   VecAYPX - Computes `y = x + beta y`.

663:   Logically Collective

665:   Input Parameters:
666: + beta - the scalar
667: . x    - the unscaled vector
668: - y    - the vector to be scaled

670:   Output Parameter:
671: . y - output vector

673:   Level: intermediate

675:   Developer Notes:
676:   The implementation is optimized for `beta` of -1.0, 0.0, and 1.0

678: .seealso: [](ch_vectors), `Vec`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
679: @*/
680: PetscErrorCode VecAYPX(Vec y, PetscScalar beta, Vec x)
681: {
682:   PetscFunctionBegin;
683:   PetscCall(VecAYPXAsync_Private(y, beta, x, NULL));
684:   PetscFunctionReturn(PETSC_SUCCESS);
685: }

687: PetscErrorCode VecAXPBYAsync_Private(Vec y, PetscScalar alpha, PetscScalar beta, Vec x, PetscDeviceContext dctx)
688: {
689:   PetscFunctionBegin;
694:   PetscCheckSameTypeAndComm(x, 4, y, 1);
695:   VecCheckSameSize(y, 1, x, 4);
696:   VecCheckAssembled(x);
697:   VecCheckAssembled(y);
700:   if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)1.0) PetscFunctionReturn(PETSC_SUCCESS);
701:   if (x == y) {
702:     PetscCall(VecScale(y, alpha + beta));
703:     PetscFunctionReturn(PETSC_SUCCESS);
704:   }

706:   PetscCall(VecSetErrorIfLocked(y, 1));
707:   PetscCall(VecLockReadPush(x));
708:   PetscCall(PetscLogEventBegin(VEC_AXPY, y, x, 0, 0));
709:   VecMethodDispatch(y, dctx, VecAsyncFnName(AXPBY), axpby, (Vec, PetscScalar, PetscScalar, Vec, PetscDeviceContext), alpha, beta, x);
710:   PetscCall(PetscLogEventEnd(VEC_AXPY, y, x, 0, 0));
711:   PetscCall(PetscObjectStateIncrease((PetscObject)y));
712:   PetscCall(VecLockReadPop(x));
713:   PetscFunctionReturn(PETSC_SUCCESS);
714: }

716: /*@
717:   VecAXPBY - Computes `y = alpha x + beta y`.

719:   Logically Collective

721:   Input Parameters:
722: + alpha - first scalar
723: . beta  - second scalar
724: . x     - the first scaled vector
725: - y     - the second scaled vector

727:   Output Parameter:
728: . y - output vector

730:   Level: intermediate

732:   Developer Notes:
733:   The implementation is optimized for `alpha` and/or `beta` values of 0.0 and 1.0

735: .seealso: [](ch_vectors), `Vec`, `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`
736: @*/
737: PetscErrorCode VecAXPBY(Vec y, PetscScalar alpha, PetscScalar beta, Vec x)
738: {
739:   PetscFunctionBegin;
740:   PetscCall(VecAXPBYAsync_Private(y, alpha, beta, x, NULL));
741:   PetscFunctionReturn(PETSC_SUCCESS);
742: }

744: PetscErrorCode VecAXPBYPCZAsync_Private(Vec z, PetscScalar alpha, PetscScalar beta, PetscScalar gamma, Vec x, Vec y, PetscDeviceContext dctx)
745: {
746:   PetscFunctionBegin;
753:   PetscCheckSameTypeAndComm(x, 5, y, 6);
754:   PetscCheckSameTypeAndComm(x, 5, z, 1);
755:   VecCheckSameSize(x, 5, y, 6);
756:   VecCheckSameSize(x, 5, z, 1);
757:   PetscCheck(x != y && x != z, PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_IDN, "x, y, and z must be different vectors");
758:   PetscCheck(y != z, PetscObjectComm((PetscObject)y), PETSC_ERR_ARG_IDN, "x, y, and z must be different vectors");
759:   VecCheckAssembled(x);
760:   VecCheckAssembled(y);
761:   VecCheckAssembled(z);
765:   if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)0.0 && gamma == (PetscScalar)1.0) PetscFunctionReturn(PETSC_SUCCESS);

767:   PetscCall(VecSetErrorIfLocked(z, 1));
768:   PetscCall(VecLockReadPush(x));
769:   PetscCall(VecLockReadPush(y));
770:   PetscCall(PetscLogEventBegin(VEC_AXPBYPCZ, x, y, z, 0));
771:   VecMethodDispatch(z, dctx, VecAsyncFnName(AXPBYPCZ), axpbypcz, (Vec, PetscScalar, PetscScalar, PetscScalar, Vec, Vec, PetscDeviceContext), alpha, beta, gamma, x, y);
772:   PetscCall(PetscLogEventEnd(VEC_AXPBYPCZ, x, y, z, 0));
773:   PetscCall(PetscObjectStateIncrease((PetscObject)z));
774:   PetscCall(VecLockReadPop(x));
775:   PetscCall(VecLockReadPop(y));
776:   PetscFunctionReturn(PETSC_SUCCESS);
777: }
778: /*@
779:   VecAXPBYPCZ - Computes `z = alpha x + beta y + gamma z`

781:   Logically Collective

783:   Input Parameters:
784: + alpha - first scalar
785: . beta  - second scalar
786: . gamma - third scalar
787: . x     - first vector
788: . y     - second vector
789: - z     - third vector

791:   Output Parameter:
792: . z - output vector

794:   Level: intermediate

796:   Note:
797:   `x`, `y` and `z` must be different vectors

799:   Developer Notes:
800:   The implementation is optimized for `alpha` of 1.0 and `gamma` of 1.0 or 0.0

802: .seealso: [](ch_vectors), `Vec`, `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBY()`
803: @*/
804: PetscErrorCode VecAXPBYPCZ(Vec z, PetscScalar alpha, PetscScalar beta, PetscScalar gamma, Vec x, Vec y)
805: {
806:   PetscFunctionBegin;
807:   PetscCall(VecAXPBYPCZAsync_Private(z, alpha, beta, gamma, x, y, NULL));
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: PetscErrorCode VecWAXPYAsync_Private(Vec w, PetscScalar alpha, Vec x, Vec y, PetscDeviceContext dctx)
812: {
813:   PetscFunctionBegin;
820:   PetscCheckSameTypeAndComm(x, 3, y, 4);
821:   PetscCheckSameTypeAndComm(y, 4, w, 1);
822:   VecCheckSameSize(x, 3, y, 4);
823:   VecCheckSameSize(x, 3, w, 1);
824:   PetscCheck(w != y, PETSC_COMM_SELF, PETSC_ERR_SUP, "Result vector w cannot be same as input vector y, suggest VecAXPY()");
825:   PetscCheck(w != x, PETSC_COMM_SELF, PETSC_ERR_SUP, "Result vector w cannot be same as input vector x, suggest VecAYPX()");
826:   VecCheckAssembled(x);
827:   VecCheckAssembled(y);
829:   PetscCall(VecSetErrorIfLocked(w, 1));

831:   PetscCall(VecLockReadPush(x));
832:   PetscCall(VecLockReadPush(y));
833:   if (alpha == (PetscScalar)0.0) {
834:     PetscCall(VecCopyAsync_Private(y, w, dctx));
835:   } else {
836:     PetscCall(PetscLogEventBegin(VEC_WAXPY, x, y, w, 0));
837:     VecMethodDispatch(w, dctx, VecAsyncFnName(WAXPY), waxpy, (Vec, PetscScalar, Vec, Vec, PetscDeviceContext), alpha, x, y);
838:     PetscCall(PetscLogEventEnd(VEC_WAXPY, x, y, w, 0));
839:     PetscCall(PetscObjectStateIncrease((PetscObject)w));
840:   }
841:   PetscCall(VecLockReadPop(x));
842:   PetscCall(VecLockReadPop(y));
843:   PetscFunctionReturn(PETSC_SUCCESS);
844: }

846: /*@
847:   VecWAXPY - Computes `w = alpha x + y`.

849:   Logically Collective

851:   Input Parameters:
852: + alpha - the scalar
853: . x     - first vector, multiplied by `alpha`
854: - y     - second vector

856:   Output Parameter:
857: . w - the result

859:   Level: intermediate

861:   Note:
862:   `w` cannot be either `x` or `y`, but `x` and `y` can be the same

864:   Developer Notes:
865:   The implementation is optimized for alpha of -1.0, 0.0, and 1.0

867: .seealso: [](ch_vectors), `Vec`, `VecAXPY()`, `VecAYPX()`, `VecAXPBY()`, `VecMAXPY()`, `VecAXPBYPCZ()`
868: @*/
869: PetscErrorCode VecWAXPY(Vec w, PetscScalar alpha, Vec x, Vec y)
870: {
871:   PetscFunctionBegin;
872:   PetscCall(VecWAXPYAsync_Private(w, alpha, x, y, NULL));
873:   PetscFunctionReturn(PETSC_SUCCESS);
874: }

876: /*@
877:   VecSetValues - Inserts or adds values into certain locations of a vector.

879:   Not Collective

881:   Input Parameters:
882: + x    - vector to insert in
883: . ni   - number of elements to add
884: . ix   - indices where to add
885: . y    - array of values
886: - iora - either `INSERT_VALUES` to replace the current values or `ADD_VALUES` to add values to any existing entries

888:   Level: beginner

890:   Notes:
891: .vb
892:    `VecSetValues()` sets x[ix[i]] = y[i], for i=0,...,ni-1.
893: .ve

895:   Calls to `VecSetValues()` with the `INSERT_VALUES` and `ADD_VALUES`
896:   options cannot be mixed without intervening calls to the assembly
897:   routines.

899:   These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
900:   MUST be called after all calls to `VecSetValues()` have been completed.

902:   VecSetValues() uses 0-based indices in Fortran as well as in C.

904:   If you call `VecSetOption`(x, `VEC_IGNORE_NEGATIVE_INDICES`,`PETSC_TRUE`),
905:   negative indices may be passed in ix. These rows are
906:   simply ignored. This allows easily inserting element load matrices
907:   with homogeneous Dirichlet boundary conditions that you don't want represented
908:   in the vector.

910:   Fortran Note:
911:   If any of `ix` and `y` are scalars pass them using, for example,
912: .vb
913:   VecSetValues(mat, one, [ix], [y], INSERT_VALUES)
914: .ve

916: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValuesLocal()`,
917:           `VecSetValue()`, `VecSetValuesBlocked()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`, `VecGetValues()`
918: @*/
919: PetscErrorCode VecSetValues(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
920: {
921:   PetscFunctionBeginHot;
923:   if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
924:   PetscAssertPointer(ix, 3);
925:   PetscAssertPointer(y, 4);

928:   PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
929:   PetscUseTypeMethod(x, setvalues, ni, ix, y, iora);
930:   PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
931:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
932:   PetscFunctionReturn(PETSC_SUCCESS);
933: }

935: /*@
936:   VecGetValues - Gets values from certain locations of a vector. Currently
937:   can only get values on the same processor on which they are owned

939:   Not Collective

941:   Input Parameters:
942: + x  - vector to get values from
943: . ni - number of elements to get
944: - ix - indices where to get them from (in global 1d numbering)

946:   Output Parameter:
947: . y - array of values, must be passed in with a length of `ni`

949:   Level: beginner

951:   Notes:
952:   The user provides the allocated array y; it is NOT allocated in this routine

954:   `VecGetValues()` gets y[i] = x[ix[i]], for i=0,...,ni-1.

956:   `VecAssemblyBegin()` and `VecAssemblyEnd()`  MUST be called before calling this if `VecSetValues()` or related routine has been called

958:   VecGetValues() uses 0-based indices in Fortran as well as in C.

960:   If you call `VecSetOption`(x, `VEC_IGNORE_NEGATIVE_INDICES`,`PETSC_TRUE`),
961:   negative indices may be passed in ix. These rows are
962:   simply ignored.

964: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`
965: @*/
966: PetscErrorCode VecGetValues(Vec x, PetscInt ni, const PetscInt ix[], PetscScalar y[])
967: {
968:   PetscFunctionBegin;
970:   if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
971:   PetscAssertPointer(ix, 3);
972:   PetscAssertPointer(y, 4);
974:   VecCheckAssembled(x);
975:   PetscUseTypeMethod(x, getvalues, ni, ix, y);
976:   PetscFunctionReturn(PETSC_SUCCESS);
977: }

979: /*@
980:   VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.

982:   Not Collective

984:   Input Parameters:
985: + x    - vector to insert in
986: . ni   - number of blocks to add
987: . ix   - indices where to add in block count, rather than element count
988: . y    - array of values
989: - iora - either `INSERT_VALUES` replaces existing entries with new values, `ADD_VALUES`, adds values to any existing entries

991:   Level: intermediate

993:   Notes:
994:   `VecSetValuesBlocked()` sets x[bs*ix[i]+j] = y[bs*i+j],
995:   for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().

997:   Calls to `VecSetValuesBlocked()` with the `INSERT_VALUES` and `ADD_VALUES`
998:   options cannot be mixed without intervening calls to the assembly
999:   routines.

1001:   These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
1002:   MUST be called after all calls to `VecSetValuesBlocked()` have been completed.

1004:   `VecSetValuesBlocked()` uses 0-based indices in Fortran as well as in C.

1006:   Negative indices may be passed in ix, these rows are
1007:   simply ignored. This allows easily inserting element load matrices
1008:   with homogeneous Dirichlet boundary conditions that you don't want represented
1009:   in the vector.

1011:   Fortran Note:
1012:   If any of `ix` and `y` are scalars pass them using, for example,
1013: .vb
1014:   VecSetValuesBlocked(mat, one, [ix], [y], INSERT_VALUES)
1015: .ve

1017: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValuesBlockedLocal()`,
1018:           `VecSetValues()`
1019: @*/
1020: PetscErrorCode VecSetValuesBlocked(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1021: {
1022:   PetscFunctionBeginHot;
1024:   if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
1025:   PetscAssertPointer(ix, 3);
1026:   PetscAssertPointer(y, 4);

1029:   PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
1030:   PetscUseTypeMethod(x, setvaluesblocked, ni, ix, y, iora);
1031:   PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
1032:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
1033:   PetscFunctionReturn(PETSC_SUCCESS);
1034: }

1036: /*@
1037:   VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
1038:   using a local ordering of the nodes.

1040:   Not Collective

1042:   Input Parameters:
1043: + x    - vector to insert in
1044: . ni   - number of elements to add
1045: . ix   - indices where to add
1046: . y    - array of values
1047: - iora - either `INSERT_VALUES` replaces existing entries with new values, `ADD_VALUES` adds values to any existing entries

1049:   Level: intermediate

1051:   Notes:
1052:   `VecSetValuesLocal()` sets x[ix[i]] = y[i], for i=0,...,ni-1.

1054:   Calls to `VecSetValues()` with the `INSERT_VALUES` and `ADD_VALUES`
1055:   options cannot be mixed without intervening calls to the assembly
1056:   routines.

1058:   These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
1059:   MUST be called after all calls to `VecSetValuesLocal()` have been completed.

1061:   `VecSetValuesLocal()` uses 0-based indices in Fortran as well as in C.

1063:   Fortran Note:
1064:   If any of `ix` and `y` are scalars pass them using, for example,
1065: .vb
1066:   VecSetValuesLocal(mat, one, [ix], [y], INSERT_VALUES)
1067: .ve

1069: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetLocalToGlobalMapping()`,
1070:           `VecSetValuesBlockedLocal()`
1071: @*/
1072: PetscErrorCode VecSetValuesLocal(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1073: {
1074:   PetscInt lixp[128], *lix = lixp;

1076:   PetscFunctionBeginHot;
1078:   if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
1079:   PetscAssertPointer(ix, 3);
1080:   PetscAssertPointer(y, 4);

1083:   PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
1084:   if (!x->ops->setvalueslocal) {
1085:     if (x->map->mapping) {
1086:       if (ni > 128) PetscCall(PetscMalloc1(ni, &lix));
1087:       PetscCall(ISLocalToGlobalMappingApply(x->map->mapping, ni, (PetscInt *)ix, lix));
1088:       PetscUseTypeMethod(x, setvalues, ni, lix, y, iora);
1089:       if (ni > 128) PetscCall(PetscFree(lix));
1090:     } else PetscUseTypeMethod(x, setvalues, ni, ix, y, iora);
1091:   } else PetscUseTypeMethod(x, setvalueslocal, ni, ix, y, iora);
1092:   PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
1093:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
1094:   PetscFunctionReturn(PETSC_SUCCESS);
1095: }

1097: /*@
1098:   VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
1099:   using a local ordering of the nodes.

1101:   Not Collective

1103:   Input Parameters:
1104: + x    - vector to insert in
1105: . ni   - number of blocks to add
1106: . ix   - indices where to add in block count, not element count
1107: . y    - array of values
1108: - iora - either `INSERT_VALUES` replaces existing entries with new values, `ADD_VALUES` adds values to any existing entries

1110:   Level: intermediate

1112:   Notes:
1113:   `VecSetValuesBlockedLocal()` sets x[bs*ix[i]+j] = y[bs*i+j],
1114:   for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with `VecSetBlockSize()`.

1116:   Calls to `VecSetValuesBlockedLocal()` with the `INSERT_VALUES` and `ADD_VALUES`
1117:   options cannot be mixed without intervening calls to the assembly
1118:   routines.

1120:   These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
1121:   MUST be called after all calls to `VecSetValuesBlockedLocal()` have been completed.

1123:   `VecSetValuesBlockedLocal()` uses 0-based indices in Fortran as well as in C.

1125:   Fortran Note:
1126:   If any of `ix` and `y` are scalars pass them using, for example,
1127: .vb
1128:   VecSetValuesBlockedLocal(mat, one, [ix], [y], INSERT_VALUES)
1129: .ve

1131: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetValuesBlocked()`,
1132:           `VecSetLocalToGlobalMapping()`
1133: @*/
1134: PetscErrorCode VecSetValuesBlockedLocal(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1135: {
1136:   PetscInt lixp[128], *lix = lixp;

1138:   PetscFunctionBeginHot;
1140:   if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
1141:   PetscAssertPointer(ix, 3);
1142:   PetscAssertPointer(y, 4);
1144:   PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
1145:   if (x->map->mapping) {
1146:     if (ni > 128) PetscCall(PetscMalloc1(ni, &lix));
1147:     PetscCall(ISLocalToGlobalMappingApplyBlock(x->map->mapping, ni, (PetscInt *)ix, lix));
1148:     PetscUseTypeMethod(x, setvaluesblocked, ni, lix, y, iora);
1149:     if (ni > 128) PetscCall(PetscFree(lix));
1150:   } else {
1151:     PetscUseTypeMethod(x, setvaluesblocked, ni, ix, y, iora);
1152:   }
1153:   PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
1154:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
1155:   PetscFunctionReturn(PETSC_SUCCESS);
1156: }

1158: static PetscErrorCode VecMXDot_Private(Vec x, PetscInt nv, const Vec y[], PetscScalar result[], PetscErrorCode (*mxdot)(Vec, PetscInt, const Vec[], PetscScalar[]), PetscLogEvent event)
1159: {
1160:   PetscFunctionBegin;
1163:   VecCheckAssembled(x);
1165:   if (!nv) PetscFunctionReturn(PETSC_SUCCESS);
1166:   PetscAssertPointer(y, 3);
1167:   for (PetscInt i = 0; i < nv; ++i) {
1170:     PetscCheckSameTypeAndComm(x, 1, y[i], 3);
1171:     VecCheckSameSize(x, 1, y[i], 3);
1172:     VecCheckAssembled(y[i]);
1173:     PetscCall(VecLockReadPush(y[i]));
1174:   }
1175:   PetscAssertPointer(result, 4);

1178:   PetscCall(VecLockReadPush(x));
1179:   PetscCall(PetscLogEventBegin(event, x, *y, 0, 0));
1180:   PetscCall((*mxdot)(x, nv, y, result));
1181:   PetscCall(PetscLogEventEnd(event, x, *y, 0, 0));
1182:   PetscCall(VecLockReadPop(x));
1183:   for (PetscInt i = 0; i < nv; ++i) PetscCall(VecLockReadPop(y[i]));
1184:   PetscFunctionReturn(PETSC_SUCCESS);
1185: }

1187: /*@
1188:   VecMTDot - Computes indefinite vector multiple dot products.
1189:   That is, it does NOT use the complex conjugate.

1191:   Collective

1193:   Input Parameters:
1194: + x  - one vector
1195: . nv - number of vectors
1196: - y  - array of vectors.  Note that vectors are pointers

1198:   Output Parameter:
1199: . val - array of the dot products

1201:   Level: intermediate

1203:   Notes for Users of Complex Numbers:
1204:   For complex vectors, `VecMTDot()` computes the indefinite form
1205: $      val = (x,y) = y^T x,
1206:   where y^T denotes the transpose of y.

1208:   Use `VecMDot()` for the inner product
1209: $      val = (x,y) = y^H x,
1210:   where y^H denotes the conjugate transpose of y.

1212: .seealso: [](ch_vectors), `Vec`, `VecMDot()`, `VecTDot()`
1213: @*/
1214: PetscErrorCode VecMTDot(Vec x, PetscInt nv, const Vec y[], PetscScalar val[])
1215: {
1216:   PetscFunctionBegin;
1218:   PetscCall(VecMXDot_Private(x, nv, y, val, x->ops->mtdot, VEC_MTDot));
1219:   PetscFunctionReturn(PETSC_SUCCESS);
1220: }

1222: /*@
1223:   VecMDot - Computes multiple vector dot products.

1225:   Collective

1227:   Input Parameters:
1228: + x  - one vector
1229: . nv - number of vectors
1230: - y  - array of vectors.

1232:   Output Parameter:
1233: . val - array of the dot products (does not allocate the array)

1235:   Level: intermediate

1237:   Notes for Users of Complex Numbers:
1238:   For complex vectors, `VecMDot()` computes
1239: $     val = (x,y) = y^H x,
1240:   where y^H denotes the conjugate transpose of y.

1242:   Use `VecMTDot()` for the indefinite form
1243: $     val = (x,y) = y^T x,
1244:   where y^T denotes the transpose of y.

1246: .seealso: [](ch_vectors), `Vec`, `VecMTDot()`, `VecDot()`
1247: @*/
1248: PetscErrorCode VecMDot(Vec x, PetscInt nv, const Vec y[], PetscScalar val[])
1249: {
1250:   PetscFunctionBegin;
1252:   PetscCall(VecMXDot_Private(x, nv, y, val, x->ops->mdot, VEC_MDot));
1253:   PetscFunctionReturn(PETSC_SUCCESS);
1254: }

1256: PetscErrorCode VecMAXPYAsync_Private(Vec y, PetscInt nv, const PetscScalar alpha[], Vec x[], PetscDeviceContext dctx)
1257: {
1258:   PetscFunctionBegin;
1260:   VecCheckAssembled(y);
1262:   PetscCall(VecSetErrorIfLocked(y, 1));
1263:   PetscCheck(nv >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of vectors (given %" PetscInt_FMT ") cannot be negative", nv);
1264:   if (nv) {
1265:     PetscInt zeros = 0;

1267:     PetscAssertPointer(alpha, 3);
1268:     PetscAssertPointer(x, 4);
1269:     for (PetscInt i = 0; i < nv; ++i) {
1273:       PetscCheckSameTypeAndComm(y, 1, x[i], 4);
1274:       VecCheckSameSize(y, 1, x[i], 4);
1275:       PetscCheck(y != x[i], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Array of vectors 'x' cannot contain y, found x[%" PetscInt_FMT "] == y", i);
1276:       VecCheckAssembled(x[i]);
1277:       PetscCall(VecLockReadPush(x[i]));
1278:       zeros += alpha[i] == (PetscScalar)0.0;
1279:     }

1281:     if (zeros < nv) {
1282:       PetscCall(PetscLogEventBegin(VEC_MAXPY, y, *x, 0, 0));
1283:       VecMethodDispatch(y, dctx, VecAsyncFnName(MAXPY), maxpy, (Vec, PetscInt, const PetscScalar[], Vec[], PetscDeviceContext), nv, alpha, x);
1284:       PetscCall(PetscLogEventEnd(VEC_MAXPY, y, *x, 0, 0));
1285:       PetscCall(PetscObjectStateIncrease((PetscObject)y));
1286:     }

1288:     for (PetscInt i = 0; i < nv; ++i) PetscCall(VecLockReadPop(x[i]));
1289:   }
1290:   PetscFunctionReturn(PETSC_SUCCESS);
1291: }

1293: /*@
1294:   VecMAXPY - Computes `y = y + sum alpha[i] x[i]`

1296:   Logically Collective

1298:   Input Parameters:
1299: + nv    - number of scalars and x-vectors
1300: . alpha - array of scalars
1301: . y     - one vector
1302: - x     - array of vectors

1304:   Level: intermediate

1306:   Note:
1307:   `y` cannot be any of the `x` vectors

1309: .seealso: [](ch_vectors), `Vec`, `VecMAXPBY()`,`VecAYPX()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
1310: @*/
1311: PetscErrorCode VecMAXPY(Vec y, PetscInt nv, const PetscScalar alpha[], Vec x[])
1312: {
1313:   PetscFunctionBegin;
1314:   PetscCall(VecMAXPYAsync_Private(y, nv, alpha, x, NULL));
1315:   PetscFunctionReturn(PETSC_SUCCESS);
1316: }

1318: /*@
1319:   VecMAXPBY - Computes `y = beta y + sum alpha[i] x[i]`

1321:   Logically Collective

1323:   Input Parameters:
1324: + nv    - number of scalars and x-vectors
1325: . alpha - array of scalars
1326: . beta  - scalar
1327: . y     - one vector
1328: - x     - array of vectors

1330:   Level: intermediate

1332:   Note:
1333:   `y` cannot be any of the `x` vectors.

1335:   Developer Notes:
1336:   This is a convenience routine, but implementations might be able to optimize it, for example, when `beta` is zero.

1338: .seealso: [](ch_vectors), `Vec`, `VecMAXPY()`, `VecAYPX()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
1339: @*/
1340: PetscErrorCode VecMAXPBY(Vec y, PetscInt nv, const PetscScalar alpha[], PetscScalar beta, Vec x[])
1341: {
1342:   PetscFunctionBegin;
1344:   VecCheckAssembled(y);
1346:   PetscCall(VecSetErrorIfLocked(y, 1));
1347:   PetscCheck(nv >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of vectors (given %" PetscInt_FMT ") cannot be negative", nv);

1350:   if (y->ops->maxpby) {
1351:     PetscInt zeros = 0;

1353:     if (nv) {
1354:       PetscAssertPointer(alpha, 3);
1355:       PetscAssertPointer(x, 5);
1356:     }

1358:     for (PetscInt i = 0; i < nv; ++i) { // scan all alpha[]
1362:       PetscCheckSameTypeAndComm(y, 1, x[i], 5);
1363:       VecCheckSameSize(y, 1, x[i], 5);
1364:       PetscCheck(y != x[i], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Array of vectors 'x' cannot contain y, found x[%" PetscInt_FMT "] == y", i);
1365:       VecCheckAssembled(x[i]);
1366:       PetscCall(VecLockReadPush(x[i]));
1367:       zeros += alpha[i] == (PetscScalar)0.0;
1368:     }

1370:     if (zeros < nv) { // has nonzero alpha
1371:       PetscCall(PetscLogEventBegin(VEC_MAXPY, y, *x, 0, 0));
1372:       PetscUseTypeMethod(y, maxpby, nv, alpha, beta, x);
1373:       PetscCall(PetscLogEventEnd(VEC_MAXPY, y, *x, 0, 0));
1374:       PetscCall(PetscObjectStateIncrease((PetscObject)y));
1375:     } else {
1376:       PetscCall(VecScale(y, beta));
1377:     }

1379:     for (PetscInt i = 0; i < nv; ++i) PetscCall(VecLockReadPop(x[i]));
1380:   } else { // no maxpby
1381:     if (beta == 0.0) PetscCall(VecSet(y, 0.0));
1382:     else PetscCall(VecScale(y, beta));
1383:     PetscCall(VecMAXPY(y, nv, alpha, x));
1384:   }
1385:   PetscFunctionReturn(PETSC_SUCCESS);
1386: }

1388: /*@
1389:   VecConcatenate - Creates a new vector that is a vertical concatenation of all the given array of vectors
1390:   in the order they appear in the array. The concatenated vector resides on the same
1391:   communicator and is the same type as the source vectors.

1393:   Collective

1395:   Input Parameters:
1396: + nx - number of vectors to be concatenated
1397: - X  - array containing the vectors to be concatenated in the order of concatenation

1399:   Output Parameters:
1400: + Y    - concatenated vector
1401: - x_is - array of index sets corresponding to the concatenated components of `Y` (pass `NULL` if not needed)

1403:   Level: advanced

1405:   Notes:
1406:   Concatenation is similar to the functionality of a `VECNEST` object; they both represent combination of
1407:   different vector spaces. However, concatenated vectors do not store any information about their
1408:   sub-vectors and own their own data. Consequently, this function provides index sets to enable the
1409:   manipulation of data in the concatenated vector that corresponds to the original components at creation.

1411:   This is a useful tool for outer loop algorithms, particularly constrained optimizers, where the solver
1412:   has to operate on combined vector spaces and cannot utilize `VECNEST` objects due to incompatibility with
1413:   bound projections.

1415: .seealso: [](ch_vectors), `Vec`, `VECNEST`, `VECSCATTER`, `VecScatterCreate()`
1416: @*/
1417: PetscErrorCode VecConcatenate(PetscInt nx, const Vec X[], Vec *Y, IS *x_is[])
1418: {
1419:   MPI_Comm comm;
1420:   VecType  vec_type;
1421:   Vec      Ytmp, Xtmp;
1422:   IS      *is_tmp;
1423:   PetscInt i, shift = 0, Xnl, Xng, Xbegin;

1425:   PetscFunctionBegin;
1429:   PetscAssertPointer(Y, 3);

1431:   if ((*X)->ops->concatenate) {
1432:     /* use the dedicated concatenation function if available */
1433:     PetscCall((*(*X)->ops->concatenate)(nx, X, Y, x_is));
1434:   } else {
1435:     /* loop over vectors and start creating IS */
1436:     comm = PetscObjectComm((PetscObject)*X);
1437:     PetscCall(VecGetType(*X, &vec_type));
1438:     PetscCall(PetscMalloc1(nx, &is_tmp));
1439:     for (i = 0; i < nx; i++) {
1440:       PetscCall(VecGetSize(X[i], &Xng));
1441:       PetscCall(VecGetLocalSize(X[i], &Xnl));
1442:       PetscCall(VecGetOwnershipRange(X[i], &Xbegin, NULL));
1443:       PetscCall(ISCreateStride(comm, Xnl, shift + Xbegin, 1, &is_tmp[i]));
1444:       shift += Xng;
1445:     }
1446:     /* create the concatenated vector */
1447:     PetscCall(VecCreate(comm, &Ytmp));
1448:     PetscCall(VecSetType(Ytmp, vec_type));
1449:     PetscCall(VecSetSizes(Ytmp, PETSC_DECIDE, shift));
1450:     PetscCall(VecSetUp(Ytmp));
1451:     /* copy data from X array to Y and return */
1452:     for (i = 0; i < nx; i++) {
1453:       PetscCall(VecGetSubVector(Ytmp, is_tmp[i], &Xtmp));
1454:       PetscCall(VecCopy(X[i], Xtmp));
1455:       PetscCall(VecRestoreSubVector(Ytmp, is_tmp[i], &Xtmp));
1456:     }
1457:     *Y = Ytmp;
1458:     if (x_is) {
1459:       *x_is = is_tmp;
1460:     } else {
1461:       for (i = 0; i < nx; i++) PetscCall(ISDestroy(&is_tmp[i]));
1462:       PetscCall(PetscFree(is_tmp));
1463:     }
1464:   }
1465:   PetscFunctionReturn(PETSC_SUCCESS);
1466: }

1468: /* A helper function for VecGetSubVector to check if we can implement it with no-copy (i.e. the subvector shares
1469:    memory with the original vector), and the block size of the subvector.

1471:     Input Parameters:
1472: +   X - the original vector
1473: -   is - the index set of the subvector

1475:     Output Parameters:
1476: +   contig - PETSC_TRUE if the index set refers to contiguous entries on this process, else PETSC_FALSE
1477: .   start  - start of contiguous block, as an offset from the start of the ownership range of the original vector
1478: -   blocksize - the block size of the subvector

1480: */
1481: PetscErrorCode VecGetSubVectorContiguityAndBS_Private(Vec X, IS is, PetscBool *contig, PetscInt *start, PetscInt *blocksize)
1482: {
1483:   PetscInt  gstart, gend, lstart;
1484:   PetscBool red[2] = {PETSC_TRUE /*contiguous*/, PETSC_TRUE /*validVBS*/};
1485:   PetscInt  n, N, ibs, vbs, bs = -1;

1487:   PetscFunctionBegin;
1488:   PetscCall(ISGetLocalSize(is, &n));
1489:   PetscCall(ISGetSize(is, &N));
1490:   PetscCall(ISGetBlockSize(is, &ibs));
1491:   PetscCall(VecGetBlockSize(X, &vbs));
1492:   PetscCall(VecGetOwnershipRange(X, &gstart, &gend));
1493:   PetscCall(ISContiguousLocal(is, gstart, gend, &lstart, &red[0]));
1494:   /* block size is given by IS if ibs > 1; otherwise, check the vector */
1495:   if (ibs > 1) {
1496:     PetscCall(MPIU_Allreduce(MPI_IN_PLACE, red, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)is)));
1497:     bs = ibs;
1498:   } else {
1499:     if (n % vbs || vbs == 1) red[1] = PETSC_FALSE; /* this process invalidate the collectiveness of block size */
1500:     PetscCall(MPIU_Allreduce(MPI_IN_PLACE, red, 2, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)is)));
1501:     if (red[0] && red[1]) bs = vbs; /* all processes have a valid block size and the access will be contiguous */
1502:   }

1504:   *contig    = red[0];
1505:   *start     = lstart;
1506:   *blocksize = bs;
1507:   PetscFunctionReturn(PETSC_SUCCESS);
1508: }

1510: /* A helper function for VecGetSubVector, to be used when we have to build a standalone subvector through VecScatter

1512:     Input Parameters:
1513: +   X - the original vector
1514: .   is - the index set of the subvector
1515: -   bs - the block size of the subvector, gotten from VecGetSubVectorContiguityAndBS_Private()

1517:     Output Parameter:
1518: .   Z  - the subvector, which will compose the VecScatter context on output
1519: */
1520: PetscErrorCode VecGetSubVectorThroughVecScatter_Private(Vec X, IS is, PetscInt bs, Vec *Z)
1521: {
1522:   PetscInt   n, N;
1523:   VecScatter vscat;
1524:   Vec        Y;

1526:   PetscFunctionBegin;
1527:   PetscCall(ISGetLocalSize(is, &n));
1528:   PetscCall(ISGetSize(is, &N));
1529:   PetscCall(VecCreate(PetscObjectComm((PetscObject)is), &Y));
1530:   PetscCall(VecSetSizes(Y, n, N));
1531:   PetscCall(VecSetBlockSize(Y, bs));
1532:   PetscCall(VecSetType(Y, ((PetscObject)X)->type_name));
1533:   PetscCall(VecScatterCreate(X, is, Y, NULL, &vscat));
1534:   PetscCall(VecScatterBegin(vscat, X, Y, INSERT_VALUES, SCATTER_FORWARD));
1535:   PetscCall(VecScatterEnd(vscat, X, Y, INSERT_VALUES, SCATTER_FORWARD));
1536:   PetscCall(PetscObjectCompose((PetscObject)Y, "VecGetSubVector_Scatter", (PetscObject)vscat));
1537:   PetscCall(VecScatterDestroy(&vscat));
1538:   *Z = Y;
1539:   PetscFunctionReturn(PETSC_SUCCESS);
1540: }

1542: /*@
1543:   VecGetSubVector - Gets a vector representing part of another vector

1545:   Collective

1547:   Input Parameters:
1548: + X  - vector from which to extract a subvector
1549: - is - index set representing portion of `X` to extract

1551:   Output Parameter:
1552: . Y - subvector corresponding to `is`

1554:   Level: advanced

1556:   Notes:
1557:   The subvector `Y` should be returned with `VecRestoreSubVector()`.
1558:   `X` and `is` must be defined on the same communicator

1560:   Changes to the subvector will be reflected in the `X` vector on the call to `VecRestoreSubVector()`.

1562:   This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1563:   modifying the subvector.  Other non-overlapping subvectors can still be obtained from `X` using this function.

1565:   The resulting subvector inherits the block size from `is` if greater than one. Otherwise, the block size is guessed from the block size of the original `X`.

1567: .seealso: [](ch_vectors), `Vec`, `IS`, `VECNEST`, `MatCreateSubMatrix()`
1568: @*/
1569: PetscErrorCode VecGetSubVector(Vec X, IS is, Vec *Y)
1570: {
1571:   Vec Z;

1573:   PetscFunctionBegin;
1576:   PetscCheckSameComm(X, 1, is, 2);
1577:   PetscAssertPointer(Y, 3);
1578:   if (X->ops->getsubvector) {
1579:     PetscUseTypeMethod(X, getsubvector, is, &Z);
1580:   } else { /* Default implementation currently does no caching */
1581:     PetscBool contig;
1582:     PetscInt  n, N, start, bs;

1584:     PetscCall(ISGetLocalSize(is, &n));
1585:     PetscCall(ISGetSize(is, &N));
1586:     PetscCall(VecGetSubVectorContiguityAndBS_Private(X, is, &contig, &start, &bs));
1587:     if (contig) { /* We can do a no-copy implementation */
1588:       const PetscScalar *x;
1589:       PetscInt           state = 0;
1590:       PetscBool          isstd, iscuda, iship;

1592:       PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &isstd, VECSEQ, VECMPI, VECSTANDARD, ""));
1593:       PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iscuda, VECSEQCUDA, VECMPICUDA, ""));
1594:       PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iship, VECSEQHIP, VECMPIHIP, ""));
1595:       if (iscuda) {
1596: #if defined(PETSC_HAVE_CUDA)
1597:         const PetscScalar *x_d;
1598:         PetscMPIInt        size;
1599:         PetscOffloadMask   flg;

1601:         PetscCall(VecCUDAGetArrays_Private(X, &x, &x_d, &flg));
1602:         PetscCheck(flg != PETSC_OFFLOAD_UNALLOCATED, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not for PETSC_OFFLOAD_UNALLOCATED");
1603:         PetscCheck(!n || x || x_d, PETSC_COMM_SELF, PETSC_ERR_SUP, "Missing vector data");
1604:         if (x) x += start;
1605:         if (x_d) x_d += start;
1606:         PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)X), &size));
1607:         if (size == 1) {
1608:           PetscCall(VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)X), bs, n, x, x_d, &Z));
1609:         } else {
1610:           PetscCall(VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)X), bs, n, N, x, x_d, &Z));
1611:         }
1612:         Z->offloadmask = flg;
1613: #endif
1614:       } else if (iship) {
1615: #if defined(PETSC_HAVE_HIP)
1616:         const PetscScalar *x_d;
1617:         PetscMPIInt        size;
1618:         PetscOffloadMask   flg;

1620:         PetscCall(VecHIPGetArrays_Private(X, &x, &x_d, &flg));
1621:         PetscCheck(flg != PETSC_OFFLOAD_UNALLOCATED, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not for PETSC_OFFLOAD_UNALLOCATED");
1622:         PetscCheck(!n || x || x_d, PETSC_COMM_SELF, PETSC_ERR_SUP, "Missing vector data");
1623:         if (x) x += start;
1624:         if (x_d) x_d += start;
1625:         PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)X), &size));
1626:         if (size == 1) {
1627:           PetscCall(VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)X), bs, n, x, x_d, &Z));
1628:         } else {
1629:           PetscCall(VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)X), bs, n, N, x, x_d, &Z));
1630:         }
1631:         Z->offloadmask = flg;
1632: #endif
1633:       } else if (isstd) {
1634:         PetscMPIInt size;

1636:         PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)X), &size));
1637:         PetscCall(VecGetArrayRead(X, &x));
1638:         if (x) x += start;
1639:         if (size == 1) {
1640:           PetscCall(VecCreateSeqWithArray(PetscObjectComm((PetscObject)X), bs, n, x, &Z));
1641:         } else {
1642:           PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)X), bs, n, N, x, &Z));
1643:         }
1644:         PetscCall(VecRestoreArrayRead(X, &x));
1645:       } else { /* default implementation: use place array */
1646:         PetscCall(VecGetArrayRead(X, &x));
1647:         PetscCall(VecCreate(PetscObjectComm((PetscObject)X), &Z));
1648:         PetscCall(VecSetType(Z, ((PetscObject)X)->type_name));
1649:         PetscCall(VecSetSizes(Z, n, N));
1650:         PetscCall(VecSetBlockSize(Z, bs));
1651:         PetscCall(VecPlaceArray(Z, PetscSafePointerPlusOffset(x, start)));
1652:         PetscCall(VecRestoreArrayRead(X, &x));
1653:       }

1655:       /* this is relevant only in debug mode */
1656:       PetscCall(VecLockGet(X, &state));
1657:       if (state) PetscCall(VecLockReadPush(Z));
1658:       Z->ops->placearray   = NULL;
1659:       Z->ops->replacearray = NULL;
1660:     } else { /* Have to create a scatter and do a copy */
1661:       PetscCall(VecGetSubVectorThroughVecScatter_Private(X, is, bs, &Z));
1662:     }
1663:   }
1664:   /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1665:   if (VecGetSubVectorSavedStateId < 0) PetscCall(PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId));
1666:   PetscCall(PetscObjectComposedDataSetInt((PetscObject)Z, VecGetSubVectorSavedStateId, 1));
1667:   *Y = Z;
1668:   PetscFunctionReturn(PETSC_SUCCESS);
1669: }

1671: /*@
1672:   VecRestoreSubVector - Restores a subvector extracted using `VecGetSubVector()`

1674:   Collective

1676:   Input Parameters:
1677: + X  - vector from which subvector was obtained
1678: . is - index set representing the subset of `X`
1679: - Y  - subvector being restored

1681:   Level: advanced

1683: .seealso: [](ch_vectors), `Vec`, `IS`, `VecGetSubVector()`
1684: @*/
1685: PetscErrorCode VecRestoreSubVector(Vec X, IS is, Vec *Y)
1686: {
1687:   PETSC_UNUSED PetscObjectState dummystate = 0;
1688:   PetscBool                     unchanged;

1690:   PetscFunctionBegin;
1693:   PetscCheckSameComm(X, 1, is, 2);
1694:   PetscAssertPointer(Y, 3);

1697:   if (X->ops->restoresubvector) PetscUseTypeMethod(X, restoresubvector, is, Y);
1698:   else {
1699:     PetscCall(PetscObjectComposedDataGetInt((PetscObject)*Y, VecGetSubVectorSavedStateId, dummystate, unchanged));
1700:     if (!unchanged) { /* If Y's state has not changed since VecGetSubVector(), we only need to destroy Y */
1701:       VecScatter scatter;
1702:       PetscInt   state;

1704:       PetscCall(VecLockGet(X, &state));
1705:       PetscCheck(state == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vec X is locked for read-only or read/write access");

1707:       PetscCall(PetscObjectQuery((PetscObject)*Y, "VecGetSubVector_Scatter", (PetscObject *)&scatter));
1708:       if (scatter) {
1709:         PetscCall(VecScatterBegin(scatter, *Y, X, INSERT_VALUES, SCATTER_REVERSE));
1710:         PetscCall(VecScatterEnd(scatter, *Y, X, INSERT_VALUES, SCATTER_REVERSE));
1711:       } else {
1712:         PetscBool iscuda, iship;
1713:         PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iscuda, VECSEQCUDA, VECMPICUDA, ""));
1714:         PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iship, VECSEQHIP, VECMPIHIP, ""));

1716:         if (iscuda) {
1717: #if defined(PETSC_HAVE_CUDA)
1718:           PetscOffloadMask ymask = (*Y)->offloadmask;

1720:           /* The offloadmask of X dictates where to move memory
1721:               If X GPU data is valid, then move Y data on GPU if needed
1722:               Otherwise, move back to the CPU */
1723:           switch (X->offloadmask) {
1724:           case PETSC_OFFLOAD_BOTH:
1725:             if (ymask == PETSC_OFFLOAD_CPU) {
1726:               PetscCall(VecCUDAResetArray(*Y));
1727:             } else if (ymask == PETSC_OFFLOAD_GPU) {
1728:               X->offloadmask = PETSC_OFFLOAD_GPU;
1729:             }
1730:             break;
1731:           case PETSC_OFFLOAD_GPU:
1732:             if (ymask == PETSC_OFFLOAD_CPU) PetscCall(VecCUDAResetArray(*Y));
1733:             break;
1734:           case PETSC_OFFLOAD_CPU:
1735:             if (ymask == PETSC_OFFLOAD_GPU) PetscCall(VecResetArray(*Y));
1736:             break;
1737:           case PETSC_OFFLOAD_UNALLOCATED:
1738:           case PETSC_OFFLOAD_KOKKOS:
1739:             SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "This should not happen");
1740:           }
1741: #endif
1742:         } else if (iship) {
1743: #if defined(PETSC_HAVE_HIP)
1744:           PetscOffloadMask ymask = (*Y)->offloadmask;

1746:           /* The offloadmask of X dictates where to move memory
1747:               If X GPU data is valid, then move Y data on GPU if needed
1748:               Otherwise, move back to the CPU */
1749:           switch (X->offloadmask) {
1750:           case PETSC_OFFLOAD_BOTH:
1751:             if (ymask == PETSC_OFFLOAD_CPU) {
1752:               PetscCall(VecHIPResetArray(*Y));
1753:             } else if (ymask == PETSC_OFFLOAD_GPU) {
1754:               X->offloadmask = PETSC_OFFLOAD_GPU;
1755:             }
1756:             break;
1757:           case PETSC_OFFLOAD_GPU:
1758:             if (ymask == PETSC_OFFLOAD_CPU) PetscCall(VecHIPResetArray(*Y));
1759:             break;
1760:           case PETSC_OFFLOAD_CPU:
1761:             if (ymask == PETSC_OFFLOAD_GPU) PetscCall(VecResetArray(*Y));
1762:             break;
1763:           case PETSC_OFFLOAD_UNALLOCATED:
1764:           case PETSC_OFFLOAD_KOKKOS:
1765:             SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "This should not happen");
1766:           }
1767: #endif
1768:         } else {
1769:           /* If OpenCL vecs updated the device memory, this triggers a copy on the CPU */
1770:           PetscCall(VecResetArray(*Y));
1771:         }
1772:         PetscCall(PetscObjectStateIncrease((PetscObject)X));
1773:       }
1774:     }
1775:   }
1776:   PetscCall(VecDestroy(Y));
1777:   PetscFunctionReturn(PETSC_SUCCESS);
1778: }

1780: /*@
1781:   VecCreateLocalVector - Creates a vector object suitable for use with `VecGetLocalVector()` and friends. You must call `VecDestroy()` when the
1782:   vector is no longer needed.

1784:   Not Collective.

1786:   Input Parameter:
1787: . v - The vector for which the local vector is desired.

1789:   Output Parameter:
1790: . w - Upon exit this contains the local vector.

1792:   Level: beginner

1794: .seealso: [](ch_vectors), `Vec`, `VecGetLocalVectorRead()`, `VecRestoreLocalVectorRead()`, `VecGetLocalVector()`, `VecRestoreLocalVector()`
1795: @*/
1796: PetscErrorCode VecCreateLocalVector(Vec v, Vec *w)
1797: {
1798:   PetscMPIInt size;

1800:   PetscFunctionBegin;
1802:   PetscAssertPointer(w, 2);
1803:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)v), &size));
1804:   if (size == 1) PetscCall(VecDuplicate(v, w));
1805:   else if (v->ops->createlocalvector) PetscUseTypeMethod(v, createlocalvector, w);
1806:   else {
1807:     VecType  type;
1808:     PetscInt n;

1810:     PetscCall(VecCreate(PETSC_COMM_SELF, w));
1811:     PetscCall(VecGetLocalSize(v, &n));
1812:     PetscCall(VecSetSizes(*w, n, n));
1813:     PetscCall(VecGetBlockSize(v, &n));
1814:     PetscCall(VecSetBlockSize(*w, n));
1815:     PetscCall(VecGetType(v, &type));
1816:     PetscCall(VecSetType(*w, type));
1817:   }
1818:   PetscFunctionReturn(PETSC_SUCCESS);
1819: }

1821: /*@
1822:   VecGetLocalVectorRead - Maps the local portion of a vector into a
1823:   vector.

1825:   Not Collective.

1827:   Input Parameter:
1828: . v - The vector for which the local vector is desired.

1830:   Output Parameter:
1831: . w - Upon exit this contains the local vector.

1833:   Level: beginner

1835:   Notes:
1836:   You must call `VecRestoreLocalVectorRead()` when the local
1837:   vector is no longer needed.

1839:   This function is similar to `VecGetArrayRead()` which maps the local
1840:   portion into a raw pointer.  `VecGetLocalVectorRead()` is usually
1841:   almost as efficient as `VecGetArrayRead()` but in certain circumstances
1842:   `VecGetLocalVectorRead()` can be much more efficient than
1843:   `VecGetArrayRead()`.  This is because the construction of a contiguous
1844:   array representing the vector data required by `VecGetArrayRead()` can
1845:   be an expensive operation for certain vector types.  For example, for
1846:   GPU vectors `VecGetArrayRead()` requires that the data between device
1847:   and host is synchronized.

1849:   Unlike `VecGetLocalVector()`, this routine is not collective and
1850:   preserves cached information.

1852: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecRestoreLocalVectorRead()`, `VecGetLocalVector()`, `VecGetArrayRead()`, `VecGetArray()`
1853: @*/
1854: PetscErrorCode VecGetLocalVectorRead(Vec v, Vec w)
1855: {
1856:   PetscFunctionBegin;
1859:   VecCheckSameLocalSize(v, 1, w, 2);
1860:   if (v->ops->getlocalvectorread) {
1861:     PetscUseTypeMethod(v, getlocalvectorread, w);
1862:   } else {
1863:     PetscScalar *a;

1865:     PetscCall(VecGetArrayRead(v, (const PetscScalar **)&a));
1866:     PetscCall(VecPlaceArray(w, a));
1867:   }
1868:   PetscCall(PetscObjectStateIncrease((PetscObject)w));
1869:   PetscCall(VecLockReadPush(v));
1870:   PetscCall(VecLockReadPush(w));
1871:   PetscFunctionReturn(PETSC_SUCCESS);
1872: }

1874: /*@
1875:   VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1876:   previously mapped into a vector using `VecGetLocalVectorRead()`.

1878:   Not Collective.

1880:   Input Parameters:
1881: + v - The local portion of this vector was previously mapped into `w` using `VecGetLocalVectorRead()`.
1882: - w - The vector into which the local portion of `v` was mapped.

1884:   Level: beginner

1886: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecGetLocalVectorRead()`, `VecGetLocalVector()`, `VecGetArrayRead()`, `VecGetArray()`
1887: @*/
1888: PetscErrorCode VecRestoreLocalVectorRead(Vec v, Vec w)
1889: {
1890:   PetscFunctionBegin;
1893:   if (v->ops->restorelocalvectorread) {
1894:     PetscUseTypeMethod(v, restorelocalvectorread, w);
1895:   } else {
1896:     const PetscScalar *a;

1898:     PetscCall(VecGetArrayRead(w, &a));
1899:     PetscCall(VecRestoreArrayRead(v, &a));
1900:     PetscCall(VecResetArray(w));
1901:   }
1902:   PetscCall(VecLockReadPop(v));
1903:   PetscCall(VecLockReadPop(w));
1904:   PetscCall(PetscObjectStateIncrease((PetscObject)w));
1905:   PetscFunctionReturn(PETSC_SUCCESS);
1906: }

1908: /*@
1909:   VecGetLocalVector - Maps the local portion of a vector into a
1910:   vector.

1912:   Collective

1914:   Input Parameter:
1915: . v - The vector for which the local vector is desired.

1917:   Output Parameter:
1918: . w - Upon exit this contains the local vector.

1920:   Level: beginner

1922:   Notes:
1923:   You must call `VecRestoreLocalVector()` when the local
1924:   vector is no longer needed.

1926:   This function is similar to `VecGetArray()` which maps the local
1927:   portion into a raw pointer.  `VecGetLocalVector()` is usually about as
1928:   efficient as `VecGetArray()` but in certain circumstances
1929:   `VecGetLocalVector()` can be much more efficient than `VecGetArray()`.
1930:   This is because the construction of a contiguous array representing
1931:   the vector data required by `VecGetArray()` can be an expensive
1932:   operation for certain vector types.  For example, for GPU vectors
1933:   `VecGetArray()` requires that the data between device and host is
1934:   synchronized.

1936: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecRestoreLocalVector()`, `VecGetLocalVectorRead()`, `VecGetArrayRead()`, `VecGetArray()`
1937: @*/
1938: PetscErrorCode VecGetLocalVector(Vec v, Vec w)
1939: {
1940:   PetscFunctionBegin;
1943:   VecCheckSameLocalSize(v, 1, w, 2);
1944:   if (v->ops->getlocalvector) {
1945:     PetscUseTypeMethod(v, getlocalvector, w);
1946:   } else {
1947:     PetscScalar *a;

1949:     PetscCall(VecGetArray(v, &a));
1950:     PetscCall(VecPlaceArray(w, a));
1951:   }
1952:   PetscCall(PetscObjectStateIncrease((PetscObject)w));
1953:   PetscFunctionReturn(PETSC_SUCCESS);
1954: }

1956: /*@
1957:   VecRestoreLocalVector - Unmaps the local portion of a vector
1958:   previously mapped into a vector using `VecGetLocalVector()`.

1960:   Logically Collective.

1962:   Input Parameters:
1963: + v - The local portion of this vector was previously mapped into `w` using `VecGetLocalVector()`.
1964: - w - The vector into which the local portion of `v` was mapped.

1966:   Level: beginner

1968: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecGetLocalVector()`, `VecGetLocalVectorRead()`, `VecRestoreLocalVectorRead()`, `LocalVectorRead()`, `VecGetArrayRead()`, `VecGetArray()`
1969: @*/
1970: PetscErrorCode VecRestoreLocalVector(Vec v, Vec w)
1971: {
1972:   PetscFunctionBegin;
1975:   if (v->ops->restorelocalvector) {
1976:     PetscUseTypeMethod(v, restorelocalvector, w);
1977:   } else {
1978:     PetscScalar *a;
1979:     PetscCall(VecGetArray(w, &a));
1980:     PetscCall(VecRestoreArray(v, &a));
1981:     PetscCall(VecResetArray(w));
1982:   }
1983:   PetscCall(PetscObjectStateIncrease((PetscObject)w));
1984:   PetscCall(PetscObjectStateIncrease((PetscObject)v));
1985:   PetscFunctionReturn(PETSC_SUCCESS);
1986: }

1988: /*@C
1989:   VecGetArray - Returns a pointer to a contiguous array that contains this
1990:   MPI processes's portion of the vector data

1992:   Logically Collective

1994:   Input Parameter:
1995: . x - the vector

1997:   Output Parameter:
1998: . a - location to put pointer to the array

2000:   Level: beginner

2002:   Notes:
2003:   For the standard PETSc vectors, `VecGetArray()` returns a pointer to the local data array and
2004:   does not use any copies. If the underlying vector data is not stored in a contiguous array
2005:   this routine will copy the data to a contiguous array and return a pointer to that. You MUST
2006:   call `VecRestoreArray()` when you no longer need access to the array.

2008:   Fortran Notes:
2009:   `VecGetArray()` Fortran binding is deprecated (since PETSc 3.19), use `VecGetArrayF90()`

2011: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecGetArrayReadF90()`, `VecPlaceArray()`, `VecGetArray2d()`,
2012:           `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`, `VecRestoreArrayWrite()`
2013: @*/
2014: PetscErrorCode VecGetArray(Vec x, PetscScalar **a)
2015: {
2016:   PetscFunctionBegin;
2018:   PetscCall(VecSetErrorIfLocked(x, 1));
2019:   if (x->ops->getarray) { /* The if-else order matters! VECNEST, VECCUDA etc should have ops->getarray while VECCUDA etc are petscnative */
2020:     PetscUseTypeMethod(x, getarray, a);
2021:   } else if (x->petscnative) { /* VECSTANDARD */
2022:     *a = *((PetscScalar **)x->data);
2023:   } else SETERRQ(PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot get array for vector type \"%s\"", ((PetscObject)x)->type_name);
2024:   PetscFunctionReturn(PETSC_SUCCESS);
2025: }

2027: /*@C
2028:   VecRestoreArray - Restores a vector after `VecGetArray()` has been called and the array is no longer needed

2030:   Logically Collective

2032:   Input Parameters:
2033: + x - the vector
2034: - a - location of pointer to array obtained from `VecGetArray()`

2036:   Level: beginner

2038:   Fortran Notes:
2039:   `VecRestoreArray()` Fortran binding is deprecated (since PETSc 3.19), use `VecRestoreArrayF90()`

2041: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecRestoreArrayReadF90()`, `VecPlaceArray()`, `VecRestoreArray2d()`,
2042:           `VecGetArrayPair()`, `VecRestoreArrayPair()`
2043: @*/
2044: PetscErrorCode VecRestoreArray(Vec x, PetscScalar **a)
2045: {
2046:   PetscFunctionBegin;
2048:   if (a) PetscAssertPointer(a, 2);
2049:   if (x->ops->restorearray) {
2050:     PetscUseTypeMethod(x, restorearray, a);
2051:   } else PetscCheck(x->petscnative, PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot restore array for vector type \"%s\"", ((PetscObject)x)->type_name);
2052:   if (a) *a = NULL;
2053:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
2054:   PetscFunctionReturn(PETSC_SUCCESS);
2055: }
2056: /*@C
2057:   VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.

2059:   Not Collective

2061:   Input Parameter:
2062: . x - the vector

2064:   Output Parameter:
2065: . a - the array

2067:   Level: beginner

2069:   Notes:
2070:   The array must be returned using a matching call to `VecRestoreArrayRead()`.

2072:   Unlike `VecGetArray()`, preserves cached information like vector norms.

2074:   Standard PETSc vectors use contiguous storage so that this routine does not perform a copy.  Other vector
2075:   implementations may require a copy, but such implementations should cache the contiguous representation so that
2076:   only one copy is performed when this routine is called multiple times in sequence.

2078:   Fortran Notes:
2079:   `VecGetArrayRead()` Fortran binding is deprecated (since PETSc 3.19), use `VecGetArrayReadF90()`

2081: .seealso: [](ch_vectors), `Vec`, `VecGetArrayReadF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2082: @*/
2083: PetscErrorCode VecGetArrayRead(Vec x, const PetscScalar **a)
2084: {
2085:   PetscFunctionBegin;
2087:   PetscAssertPointer(a, 2);
2088:   if (x->ops->getarrayread) {
2089:     PetscUseTypeMethod(x, getarrayread, a);
2090:   } else if (x->ops->getarray) {
2091:     PetscObjectState state;

2093:     /* VECNEST, VECCUDA, VECKOKKOS etc */
2094:     // x->ops->getarray may bump the object state, but since we know this is a read-only get
2095:     // we can just undo that
2096:     PetscCall(PetscObjectStateGet((PetscObject)x, &state));
2097:     PetscUseTypeMethod(x, getarray, (PetscScalar **)a);
2098:     PetscCall(PetscObjectStateSet((PetscObject)x, state));
2099:   } else if (x->petscnative) {
2100:     /* VECSTANDARD */
2101:     *a = *((PetscScalar **)x->data);
2102:   } else SETERRQ(PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot get array read for vector type \"%s\"", ((PetscObject)x)->type_name);
2103:   PetscFunctionReturn(PETSC_SUCCESS);
2104: }

2106: /*@C
2107:   VecRestoreArrayRead - Restore array obtained with `VecGetArrayRead()`

2109:   Not Collective

2111:   Input Parameters:
2112: + x - the vector
2113: - a - the array

2115:   Level: beginner

2117:   Fortran Notes:
2118:   `VecRestoreArrayRead()` Fortran binding is deprecated (since PETSc 3.19), use `VecRestoreArrayReadF90()`

2120: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayReadF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2121: @*/
2122: PetscErrorCode VecRestoreArrayRead(Vec x, const PetscScalar **a)
2123: {
2124:   PetscFunctionBegin;
2126:   if (a) PetscAssertPointer(a, 2);
2127:   if (x->petscnative) { /* VECSTANDARD, VECCUDA, VECKOKKOS etc */
2128:     /* nothing */
2129:   } else if (x->ops->restorearrayread) { /* VECNEST */
2130:     PetscUseTypeMethod(x, restorearrayread, a);
2131:   } else { /* No one? */
2132:     PetscObjectState state;

2134:     // x->ops->restorearray may bump the object state, but since we know this is a read-restore
2135:     // we can just undo that
2136:     PetscCall(PetscObjectStateGet((PetscObject)x, &state));
2137:     PetscUseTypeMethod(x, restorearray, (PetscScalar **)a);
2138:     PetscCall(PetscObjectStateSet((PetscObject)x, state));
2139:   }
2140:   if (a) *a = NULL;
2141:   PetscFunctionReturn(PETSC_SUCCESS);
2142: }

2144: /*@C
2145:   VecGetArrayWrite - Returns a pointer to a contiguous array that WILL contain this
2146:   MPI processes's portion of the vector data.

2148:   Logically Collective

2150:   Input Parameter:
2151: . x - the vector

2153:   Output Parameter:
2154: . a - location to put pointer to the array

2156:   Level: intermediate

2158:   Note:
2159:   The values in this array are NOT valid, the caller of this routine is responsible for putting
2160:   values into the array; any values it does not set will be invalid.

2162:   The array must be returned using a matching call to `VecRestoreArrayRead()`.

2164:   For vectors associated with GPUs, the host and device vectors are not synchronized before
2165:   giving access. If you need correct values in the array use `VecGetArray()`

2167:   Fortran Notes:
2168:   `VecGetArrayWrite()` Fortran binding is deprecated (since PETSc 3.19), use `VecGetArrayWriteF90()`

2170: .seealso: [](ch_vectors), `Vec`, `VecGetArrayWriteF90()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecGetArrayReadF90()`, `VecPlaceArray()`, `VecGetArray2d()`,
2171:           `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArray()`, `VecRestoreArrayWrite()`
2172: @*/
2173: PetscErrorCode VecGetArrayWrite(Vec x, PetscScalar **a)
2174: {
2175:   PetscFunctionBegin;
2177:   PetscAssertPointer(a, 2);
2178:   PetscCall(VecSetErrorIfLocked(x, 1));
2179:   if (x->ops->getarraywrite) {
2180:     PetscUseTypeMethod(x, getarraywrite, a);
2181:   } else {
2182:     PetscCall(VecGetArray(x, a));
2183:   }
2184:   PetscFunctionReturn(PETSC_SUCCESS);
2185: }

2187: /*@C
2188:   VecRestoreArrayWrite - Restores a vector after `VecGetArrayWrite()` has been called.

2190:   Logically Collective

2192:   Input Parameters:
2193: + x - the vector
2194: - a - location of pointer to array obtained from `VecGetArray()`

2196:   Level: beginner

2198:   Fortran Notes:
2199:   `VecRestoreArrayWrite()` Fortran binding is deprecated (since PETSc 3.19), use `VecRestoreArrayWriteF90()`

2201: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayWriteF90()`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecRestoreArrayReadF90()`, `VecPlaceArray()`, `VecRestoreArray2d()`,
2202:           `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`
2203: @*/
2204: PetscErrorCode VecRestoreArrayWrite(Vec x, PetscScalar **a)
2205: {
2206:   PetscFunctionBegin;
2208:   if (a) PetscAssertPointer(a, 2);
2209:   if (x->ops->restorearraywrite) {
2210:     PetscUseTypeMethod(x, restorearraywrite, a);
2211:   } else if (x->ops->restorearray) {
2212:     PetscUseTypeMethod(x, restorearray, a);
2213:   }
2214:   if (a) *a = NULL;
2215:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
2216:   PetscFunctionReturn(PETSC_SUCCESS);
2217: }

2219: /*@C
2220:   VecGetArrays - Returns a pointer to the arrays in a set of vectors
2221:   that were created by a call to `VecDuplicateVecs()`.

2223:   Logically Collective; No Fortran Support

2225:   Input Parameters:
2226: + x - the vectors
2227: - n - the number of vectors

2229:   Output Parameter:
2230: . a - location to put pointer to the array

2232:   Level: intermediate

2234:   Note:
2235:   You MUST call `VecRestoreArrays()` when you no longer need access to the arrays.

2237: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArrays()`
2238: @*/
2239: PetscErrorCode VecGetArrays(const Vec x[], PetscInt n, PetscScalar **a[])
2240: {
2241:   PetscInt      i;
2242:   PetscScalar **q;

2244:   PetscFunctionBegin;
2245:   PetscAssertPointer(x, 1);
2247:   PetscAssertPointer(a, 3);
2248:   PetscCheck(n > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must get at least one array n = %" PetscInt_FMT, n);
2249:   PetscCall(PetscMalloc1(n, &q));
2250:   for (i = 0; i < n; ++i) PetscCall(VecGetArray(x[i], &q[i]));
2251:   *a = q;
2252:   PetscFunctionReturn(PETSC_SUCCESS);
2253: }

2255: /*@C
2256:   VecRestoreArrays - Restores a group of vectors after `VecGetArrays()`
2257:   has been called.

2259:   Logically Collective; No Fortran Support

2261:   Input Parameters:
2262: + x - the vector
2263: . n - the number of vectors
2264: - a - location of pointer to arrays obtained from `VecGetArrays()`

2266:   Notes:
2267:   For regular PETSc vectors this routine does not involve any copies. For
2268:   any special vectors that do not store local vector data in a contiguous
2269:   array, this routine will copy the data back into the underlying
2270:   vector data structure from the arrays obtained with `VecGetArrays()`.

2272:   Level: intermediate

2274: .seealso: [](ch_vectors), `Vec`, `VecGetArrays()`, `VecRestoreArray()`
2275: @*/
2276: PetscErrorCode VecRestoreArrays(const Vec x[], PetscInt n, PetscScalar **a[])
2277: {
2278:   PetscInt      i;
2279:   PetscScalar **q = *a;

2281:   PetscFunctionBegin;
2282:   PetscAssertPointer(x, 1);
2284:   PetscAssertPointer(a, 3);

2286:   for (i = 0; i < n; ++i) PetscCall(VecRestoreArray(x[i], &q[i]));
2287:   PetscCall(PetscFree(q));
2288:   PetscFunctionReturn(PETSC_SUCCESS);
2289: }

2291: /*@C
2292:   VecGetArrayAndMemType - Like `VecGetArray()`, but if this is a standard device vector (e.g.,
2293:   `VECCUDA`), the returned pointer will be a device pointer to the device memory that contains
2294:   this MPI processes's portion of the vector data.

2296:   Logically Collective; No Fortran Support

2298:   Input Parameter:
2299: . x - the vector

2301:   Output Parameters:
2302: + a     - location to put pointer to the array
2303: - mtype - memory type of the array

2305:   Level: beginner

2307:   Note:
2308:   Device data is guaranteed to have the latest value. Otherwise, when this is a host vector
2309:   (e.g., `VECMPI`), this routine functions the same as `VecGetArray()` and returns a host
2310:   pointer.

2312:   For `VECKOKKOS`, if Kokkos is configured without device (e.g., use serial or openmp), per
2313:   this function, the vector works like `VECSEQ`/`VECMPI`; otherwise, it works like `VECCUDA` or
2314:   `VECHIP` etc.

2316:   Use `VecRestoreArrayAndMemType()` when the array access is no longer needed.

2318: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayAndMemType()`, `VecGetArrayReadAndMemType()`, `VecGetArrayWriteAndMemType()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecGetArrayReadF90()`,
2319:           `VecPlaceArray()`, `VecGetArray2d()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`, `VecRestoreArrayWrite()`
2320: @*/
2321: PetscErrorCode VecGetArrayAndMemType(Vec x, PetscScalar **a, PetscMemType *mtype)
2322: {
2323:   PetscFunctionBegin;
2326:   PetscAssertPointer(a, 2);
2327:   if (mtype) PetscAssertPointer(mtype, 3);
2328:   PetscCall(VecSetErrorIfLocked(x, 1));
2329:   if (x->ops->getarrayandmemtype) {
2330:     /* VECCUDA, VECKOKKOS etc */
2331:     PetscUseTypeMethod(x, getarrayandmemtype, a, mtype);
2332:   } else {
2333:     /* VECSTANDARD, VECNEST, VECVIENNACL */
2334:     PetscCall(VecGetArray(x, a));
2335:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2336:   }
2337:   PetscFunctionReturn(PETSC_SUCCESS);
2338: }

2340: /*@C
2341:   VecRestoreArrayAndMemType - Restores a vector after `VecGetArrayAndMemType()` has been called.

2343:   Logically Collective; No Fortran Support

2345:   Input Parameters:
2346: + x - the vector
2347: - a - location of pointer to array obtained from `VecGetArrayAndMemType()`

2349:   Level: beginner

2351: .seealso: [](ch_vectors), `Vec`, `VecGetArrayAndMemType()`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecRestoreArrayReadF90()`,
2352:           `VecPlaceArray()`, `VecRestoreArray2d()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2353: @*/
2354: PetscErrorCode VecRestoreArrayAndMemType(Vec x, PetscScalar **a)
2355: {
2356:   PetscFunctionBegin;
2359:   if (a) PetscAssertPointer(a, 2);
2360:   if (x->ops->restorearrayandmemtype) {
2361:     /* VECCUDA, VECKOKKOS etc */
2362:     PetscUseTypeMethod(x, restorearrayandmemtype, a);
2363:   } else {
2364:     /* VECNEST, VECVIENNACL */
2365:     PetscCall(VecRestoreArray(x, a));
2366:   } /* VECSTANDARD does nothing */
2367:   if (a) *a = NULL;
2368:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
2369:   PetscFunctionReturn(PETSC_SUCCESS);
2370: }

2372: /*@C
2373:   VecGetArrayReadAndMemType - Like `VecGetArrayRead()`, but if the input vector is a device vector, it will return a read-only device pointer.
2374:   The returned pointer is guaranteed to point to up-to-date data. For host vectors, it functions as `VecGetArrayRead()`.

2376:   Not Collective; No Fortran Support

2378:   Input Parameter:
2379: . x - the vector

2381:   Output Parameters:
2382: + a     - the array
2383: - mtype - memory type of the array

2385:   Level: beginner

2387:   Notes:
2388:   The array must be returned using a matching call to `VecRestoreArrayReadAndMemType()`.

2390: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayReadAndMemType()`, `VecGetArrayAndMemType()`, `VecGetArrayWriteAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2391: @*/
2392: PetscErrorCode VecGetArrayReadAndMemType(Vec x, const PetscScalar **a, PetscMemType *mtype)
2393: {
2394:   PetscFunctionBegin;
2397:   PetscAssertPointer(a, 2);
2398:   if (mtype) PetscAssertPointer(mtype, 3);
2399:   if (x->ops->getarrayreadandmemtype) {
2400:     /* VECCUDA/VECHIP though they are also petscnative */
2401:     PetscUseTypeMethod(x, getarrayreadandmemtype, a, mtype);
2402:   } else if (x->ops->getarrayandmemtype) {
2403:     /* VECKOKKOS */
2404:     PetscObjectState state;

2406:     // see VecGetArrayRead() for why
2407:     PetscCall(PetscObjectStateGet((PetscObject)x, &state));
2408:     PetscUseTypeMethod(x, getarrayandmemtype, (PetscScalar **)a, mtype);
2409:     PetscCall(PetscObjectStateSet((PetscObject)x, state));
2410:   } else {
2411:     PetscCall(VecGetArrayRead(x, a));
2412:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2413:   }
2414:   PetscFunctionReturn(PETSC_SUCCESS);
2415: }

2417: /*@C
2418:   VecRestoreArrayReadAndMemType - Restore array obtained with `VecGetArrayReadAndMemType()`

2420:   Not Collective; No Fortran Support

2422:   Input Parameters:
2423: + x - the vector
2424: - a - the array

2426:   Level: beginner

2428: .seealso: [](ch_vectors), `Vec`, `VecGetArrayReadAndMemType()`, `VecRestoreArrayAndMemType()`, `VecRestoreArrayWriteAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2429: @*/
2430: PetscErrorCode VecRestoreArrayReadAndMemType(Vec x, const PetscScalar **a)
2431: {
2432:   PetscFunctionBegin;
2435:   if (a) PetscAssertPointer(a, 2);
2436:   if (x->ops->restorearrayreadandmemtype) {
2437:     /* VECCUDA/VECHIP */
2438:     PetscUseTypeMethod(x, restorearrayreadandmemtype, a);
2439:   } else if (!x->petscnative) {
2440:     /* VECNEST */
2441:     PetscCall(VecRestoreArrayRead(x, a));
2442:   }
2443:   if (a) *a = NULL;
2444:   PetscFunctionReturn(PETSC_SUCCESS);
2445: }

2447: /*@C
2448:   VecGetArrayWriteAndMemType - Like `VecGetArrayWrite()`, but if this is a device vector it will always return
2449:   a device pointer to the device memory that contains this processor's portion of the vector data.

2451:   Logically Collective; No Fortran Support

2453:   Input Parameter:
2454: . x - the vector

2456:   Output Parameters:
2457: + a     - the array
2458: - mtype - memory type of the array

2460:   Level: beginner

2462:   Note:
2463:   The array must be returned using a matching call to `VecRestoreArrayWriteAndMemType()`, where it will label the device memory as most recent.

2465: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayWriteAndMemType()`, `VecGetArrayReadAndMemType()`, `VecGetArrayAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`,
2466: @*/
2467: PetscErrorCode VecGetArrayWriteAndMemType(Vec x, PetscScalar **a, PetscMemType *mtype)
2468: {
2469:   PetscFunctionBegin;
2472:   PetscCall(VecSetErrorIfLocked(x, 1));
2473:   PetscAssertPointer(a, 2);
2474:   if (mtype) PetscAssertPointer(mtype, 3);
2475:   if (x->ops->getarraywriteandmemtype) {
2476:     /* VECCUDA, VECHIP, VECKOKKOS etc, though they are also petscnative */
2477:     PetscUseTypeMethod(x, getarraywriteandmemtype, a, mtype);
2478:   } else if (x->ops->getarrayandmemtype) {
2479:     PetscCall(VecGetArrayAndMemType(x, a, mtype));
2480:   } else {
2481:     /* VECNEST, VECVIENNACL */
2482:     PetscCall(VecGetArrayWrite(x, a));
2483:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2484:   }
2485:   PetscFunctionReturn(PETSC_SUCCESS);
2486: }

2488: /*@C
2489:   VecRestoreArrayWriteAndMemType - Restore array obtained with `VecGetArrayWriteAndMemType()`

2491:   Logically Collective; No Fortran Support

2493:   Input Parameters:
2494: + x - the vector
2495: - a - the array

2497:   Level: beginner

2499: .seealso: [](ch_vectors), `Vec`, `VecGetArrayWriteAndMemType()`, `VecRestoreArrayAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2500: @*/
2501: PetscErrorCode VecRestoreArrayWriteAndMemType(Vec x, PetscScalar **a)
2502: {
2503:   PetscFunctionBegin;
2506:   PetscCall(VecSetErrorIfLocked(x, 1));
2507:   if (a) PetscAssertPointer(a, 2);
2508:   if (x->ops->restorearraywriteandmemtype) {
2509:     /* VECCUDA/VECHIP */
2510:     PetscMemType PETSC_UNUSED mtype; // since this function doesn't accept a memtype?
2511:     PetscUseTypeMethod(x, restorearraywriteandmemtype, a, &mtype);
2512:   } else if (x->ops->restorearrayandmemtype) {
2513:     PetscCall(VecRestoreArrayAndMemType(x, a));
2514:   } else {
2515:     PetscCall(VecRestoreArray(x, a));
2516:   }
2517:   if (a) *a = NULL;
2518:   PetscFunctionReturn(PETSC_SUCCESS);
2519: }

2521: /*@
2522:   VecPlaceArray - Allows one to replace the array in a vector with an
2523:   array provided by the user. This is useful to avoid copying an array
2524:   into a vector.

2526:   Logically Collective; No Fortran Support

2528:   Input Parameters:
2529: + vec   - the vector
2530: - array - the array

2532:   Level: developer

2534:   Notes:
2535:   Use `VecReplaceArray()` instead to permanently replace the array

2537:   You can return to the original array with a call to `VecResetArray()`. `vec` does not take
2538:   ownership of `array` in any way.

2540:   The user must free `array` themselves but be careful not to
2541:   do so before the vector has either been destroyed, had its original array restored with
2542:   `VecResetArray()` or permanently replaced with `VecReplaceArray()`.

2544: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecResetArray()`
2545: @*/
2546: PetscErrorCode VecPlaceArray(Vec vec, const PetscScalar array[])
2547: {
2548:   PetscFunctionBegin;
2551:   if (array) PetscAssertPointer(array, 2);
2552:   PetscUseTypeMethod(vec, placearray, array);
2553:   PetscCall(PetscObjectStateIncrease((PetscObject)vec));
2554:   PetscFunctionReturn(PETSC_SUCCESS);
2555: }

2557: /*@C
2558:   VecReplaceArray - Allows one to replace the array in a vector with an
2559:   array provided by the user. This is useful to avoid copying an array
2560:   into a vector.

2562:   Logically Collective; No Fortran Support

2564:   Input Parameters:
2565: + vec   - the vector
2566: - array - the array

2568:   Level: developer

2570:   Notes:
2571:   This permanently replaces the array and frees the memory associated
2572:   with the old array. Use `VecPlaceArray()` to temporarily replace the array.

2574:   The memory passed in MUST be obtained with `PetscMalloc()` and CANNOT be
2575:   freed by the user. It will be freed when the vector is destroyed.

2577: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecPlaceArray()`, `VecResetArray()`
2578: @*/
2579: PetscErrorCode VecReplaceArray(Vec vec, const PetscScalar array[])
2580: {
2581:   PetscFunctionBegin;
2584:   PetscUseTypeMethod(vec, replacearray, array);
2585:   PetscCall(PetscObjectStateIncrease((PetscObject)vec));
2586:   PetscFunctionReturn(PETSC_SUCCESS);
2587: }

2589: /*MC
2590:     VecDuplicateVecsF90 - Creates several vectors of the same type as an existing vector
2591:     and makes them accessible via a Fortran pointer.

2593:     Synopsis:
2594:     VecDuplicateVecsF90(Vec x,PetscInt n,{Vec, pointer :: y(:)},integer ierr)

2596:     Collective

2598:     Input Parameters:
2599: +   x - a vector to mimic
2600: -   n - the number of vectors to obtain

2602:     Output Parameters:
2603: +   y - Fortran pointer to the array of vectors
2604: -   ierr - error code

2606:     Example of Usage:
2607: .vb
2608: #include <petsc/finclude/petscvec.h>
2609:     use petscvec

2611:     Vec x
2612:     Vec, pointer :: y(:)
2613:     ....
2614:     call VecDuplicateVecsF90(x,2,y,ierr)
2615:     call VecSet(y(2),alpha,ierr)
2616:     call VecSet(y(2),alpha,ierr)
2617:     ....
2618:     call VecDestroyVecsF90(2,y,ierr)
2619: .ve

2621:     Level: beginner

2623:     Note:
2624:     Use `VecDestroyVecsF90()` to free the space.

2626: .seealso: [](ch_vectors), `Vec`, `VecDestroyVecsF90()`, `VecDuplicateVecs()`
2627: M*/

2629: /*MC
2630:     VecRestoreArrayF90 - Restores a vector to a usable state after a call to
2631:     `VecGetArrayF90()`.

2633:     Synopsis:
2634:     VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2636:     Logically Collective

2638:     Input Parameters:
2639: +   x - vector
2640: -   xx_v - the Fortran pointer to the array

2642:     Output Parameter:
2643: .   ierr - error code

2645:     Example of Usage:
2646: .vb
2647: #include <petsc/finclude/petscvec.h>
2648:     use petscvec

2650:     PetscScalar, pointer :: xx_v(:)
2651:     ....
2652:     call VecGetArrayF90(x,xx_v,ierr)
2653:     xx_v(3) = a
2654:     call VecRestoreArrayF90(x,xx_v,ierr)
2655: .ve

2657:     Level: beginner

2659: .seealso: [](ch_vectors), `Vec`, `VecGetArrayF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrayReadF90()`
2660: M*/

2662: /*MC
2663:     VecDestroyVecsF90 - Frees a block of vectors obtained with `VecDuplicateVecsF90()`.

2665:     Synopsis:
2666:     VecDestroyVecsF90(PetscInt n,{Vec, pointer :: x(:)},PetscErrorCode ierr)

2668:     Collective

2670:     Input Parameters:
2671: +   n - the number of vectors previously obtained
2672: -   x - pointer to array of vector pointers

2674:     Output Parameter:
2675: .   ierr - error code

2677:     Level: beginner

2679: .seealso: [](ch_vectors), `Vec`, `VecDestroyVecs()`, `VecDuplicateVecsF90()`
2680: M*/

2682: /*MC
2683:     VecGetArrayF90 - Accesses a vector array from Fortran. For default PETSc
2684:     vectors, `VecGetArrayF90()` returns a pointer to the local data array. Otherwise,
2685:     this routine is implementation dependent. You MUST call `VecRestoreArrayF90()`
2686:     when you no longer need access to the array.

2688:     Synopsis:
2689:     VecGetArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2691:     Logically Collective

2693:     Input Parameter:
2694: .   x - vector

2696:     Output Parameters:
2697: +   xx_v - the Fortran pointer to the array
2698: -   ierr - error code

2700:     Example of Usage:
2701: .vb
2702: #include <petsc/finclude/petscvec.h>
2703:     use petscvec

2705:     PetscScalar, pointer :: xx_v(:)
2706:     ....
2707:     call VecGetArrayF90(x,xx_v,ierr)
2708:     xx_v(3) = a
2709:     call VecRestoreArrayF90(x,xx_v,ierr)
2710: .ve

2712:      Level: beginner

2714:     Note:
2715:     If you ONLY intend to read entries from the array and not change any entries you should use `VecGetArrayReadF90()`.

2717: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayReadF90()`
2718: M*/

2720: /*MC
2721:     VecGetArrayReadF90 - Accesses a read only array from Fortran. For default PETSc
2722:     vectors, `VecGetArrayF90()` returns a pointer to the local data array. Otherwise,
2723:     this routine is implementation dependent. You MUST call `VecRestoreArrayReadF90()`
2724:     when you no longer need access to the array.

2726:     Synopsis:
2727:     VecGetArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2729:     Logically Collective

2731:     Input Parameter:
2732: .   x - vector

2734:     Output Parameters:
2735: +   xx_v - the Fortran pointer to the array
2736: -   ierr - error code

2738:     Example of Usage:
2739: .vb
2740: #include <petsc/finclude/petscvec.h>
2741:     use petscvec

2743:     PetscScalar, pointer :: xx_v(:)
2744:     ....
2745:     call VecGetArrayReadF90(x,xx_v,ierr)
2746:     a = xx_v(3)
2747:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2748: .ve

2750:     Level: beginner

2752:     Note:
2753:     If you intend to write entries into the array you must use `VecGetArrayF90()`.

2755: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayReadF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecRestoreArrayRead()`, `VecGetArrayF90()`
2756: M*/

2758: /*MC
2759:     VecRestoreArrayReadF90 - Restores a readonly vector to a usable state after a call to
2760:     `VecGetArrayReadF90()`.

2762:     Synopsis:
2763:     VecRestoreArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2765:     Logically Collective

2767:     Input Parameters:
2768: +   x - vector
2769: -   xx_v - the Fortran pointer to the array

2771:     Output Parameter:
2772: .   ierr - error code

2774:     Example of Usage:
2775: .vb
2776: #include <petsc/finclude/petscvec.h>
2777:     use petscvec

2779:     PetscScalar, pointer :: xx_v(:)
2780:     ....
2781:     call VecGetArrayReadF90(x,xx_v,ierr)
2782:     a = xx_v(3)
2783:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2784: .ve

2786:     Level: beginner

2788: .seealso: [](ch_vectors), `Vec`, `VecGetArrayReadF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecRestoreArrayRead()`, `VecRestoreArrayF90()`
2789: M*/

2791: /*@C
2792:   VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
2793:   processor's portion of the vector data.  You MUST call `VecRestoreArray2d()`
2794:   when you no longer need access to the array.

2796:   Logically Collective

2798:   Input Parameters:
2799: + x      - the vector
2800: . m      - first dimension of two dimensional array
2801: . n      - second dimension of two dimensional array
2802: . mstart - first index you will use in first coordinate direction (often 0)
2803: - nstart - first index in the second coordinate direction (often 0)

2805:   Output Parameter:
2806: . a - location to put pointer to the array

2808:   Level: developer

2810:   Notes:
2811:   For a vector obtained from `DMCreateLocalVector()` `mstart` and `nstart` are likely
2812:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2813:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
2814:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray2d()`.

2816:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2818: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
2819:           `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
2820:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2821: @*/
2822: PetscErrorCode VecGetArray2d(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2823: {
2824:   PetscInt     i, N;
2825:   PetscScalar *aa;

2827:   PetscFunctionBegin;
2829:   PetscAssertPointer(a, 6);
2831:   PetscCall(VecGetLocalSize(x, &N));
2832:   PetscCheck(m * n == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 2d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n);
2833:   PetscCall(VecGetArray(x, &aa));

2835:   PetscCall(PetscMalloc1(m, a));
2836:   for (i = 0; i < m; i++) (*a)[i] = aa + i * n - nstart;
2837:   *a -= mstart;
2838:   PetscFunctionReturn(PETSC_SUCCESS);
2839: }

2841: /*@C
2842:   VecGetArray2dWrite - Returns a pointer to a 2d contiguous array that will contain this
2843:   processor's portion of the vector data.  You MUST call `VecRestoreArray2dWrite()`
2844:   when you no longer need access to the array.

2846:   Logically Collective

2848:   Input Parameters:
2849: + x      - the vector
2850: . m      - first dimension of two dimensional array
2851: . n      - second dimension of two dimensional array
2852: . mstart - first index you will use in first coordinate direction (often 0)
2853: - nstart - first index in the second coordinate direction (often 0)

2855:   Output Parameter:
2856: . a - location to put pointer to the array

2858:   Level: developer

2860:   Notes:
2861:   For a vector obtained from `DMCreateLocalVector()` `mstart` and `nstart` are likely
2862:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2863:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
2864:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray2d()`.

2866:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2868: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
2869:           `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
2870:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2871: @*/
2872: PetscErrorCode VecGetArray2dWrite(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2873: {
2874:   PetscInt     i, N;
2875:   PetscScalar *aa;

2877:   PetscFunctionBegin;
2879:   PetscAssertPointer(a, 6);
2881:   PetscCall(VecGetLocalSize(x, &N));
2882:   PetscCheck(m * n == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 2d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n);
2883:   PetscCall(VecGetArrayWrite(x, &aa));

2885:   PetscCall(PetscMalloc1(m, a));
2886:   for (i = 0; i < m; i++) (*a)[i] = aa + i * n - nstart;
2887:   *a -= mstart;
2888:   PetscFunctionReturn(PETSC_SUCCESS);
2889: }

2891: /*@C
2892:   VecRestoreArray2d - Restores a vector after `VecGetArray2d()` has been called.

2894:   Logically Collective

2896:   Input Parameters:
2897: + x      - the vector
2898: . m      - first dimension of two dimensional array
2899: . n      - second dimension of the two dimensional array
2900: . mstart - first index you will use in first coordinate direction (often 0)
2901: . nstart - first index in the second coordinate direction (often 0)
2902: - a      - location of pointer to array obtained from `VecGetArray2d()`

2904:   Level: developer

2906:   Notes:
2907:   For regular PETSc vectors this routine does not involve any copies. For
2908:   any special vectors that do not store local vector data in a contiguous
2909:   array, this routine will copy the data back into the underlying
2910:   vector data structure from the array obtained with `VecGetArray()`.

2912:   This routine actually zeros out the `a` pointer.

2914: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
2915:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
2916:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2917: @*/
2918: PetscErrorCode VecRestoreArray2d(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2919: {
2920:   void *dummy;

2922:   PetscFunctionBegin;
2924:   PetscAssertPointer(a, 6);
2926:   dummy = (void *)(*a + mstart);
2927:   PetscCall(PetscFree(dummy));
2928:   PetscCall(VecRestoreArray(x, NULL));
2929:   *a = NULL;
2930:   PetscFunctionReturn(PETSC_SUCCESS);
2931: }

2933: /*@C
2934:   VecRestoreArray2dWrite - Restores a vector after `VecGetArray2dWrite()` has been called.

2936:   Logically Collective

2938:   Input Parameters:
2939: + x      - the vector
2940: . m      - first dimension of two dimensional array
2941: . n      - second dimension of the two dimensional array
2942: . mstart - first index you will use in first coordinate direction (often 0)
2943: . nstart - first index in the second coordinate direction (often 0)
2944: - a      - location of pointer to array obtained from `VecGetArray2d()`

2946:   Level: developer

2948:   Notes:
2949:   For regular PETSc vectors this routine does not involve any copies. For
2950:   any special vectors that do not store local vector data in a contiguous
2951:   array, this routine will copy the data back into the underlying
2952:   vector data structure from the array obtained with `VecGetArray()`.

2954:   This routine actually zeros out the `a` pointer.

2956: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
2957:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
2958:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2959: @*/
2960: PetscErrorCode VecRestoreArray2dWrite(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2961: {
2962:   void *dummy;

2964:   PetscFunctionBegin;
2966:   PetscAssertPointer(a, 6);
2968:   dummy = (void *)(*a + mstart);
2969:   PetscCall(PetscFree(dummy));
2970:   PetscCall(VecRestoreArrayWrite(x, NULL));
2971:   PetscFunctionReturn(PETSC_SUCCESS);
2972: }

2974: /*@C
2975:   VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
2976:   processor's portion of the vector data.  You MUST call `VecRestoreArray1d()`
2977:   when you no longer need access to the array.

2979:   Logically Collective

2981:   Input Parameters:
2982: + x      - the vector
2983: . m      - first dimension of two dimensional array
2984: - mstart - first index you will use in first coordinate direction (often 0)

2986:   Output Parameter:
2987: . a - location to put pointer to the array

2989:   Level: developer

2991:   Notes:
2992:   For a vector obtained from `DMCreateLocalVector()` `mstart` is likely
2993:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2994:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`.

2996:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2998: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
2999:           `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3000:           `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3001: @*/
3002: PetscErrorCode VecGetArray1d(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3003: {
3004:   PetscInt N;

3006:   PetscFunctionBegin;
3008:   PetscAssertPointer(a, 4);
3010:   PetscCall(VecGetLocalSize(x, &N));
3011:   PetscCheck(m == N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local array size %" PetscInt_FMT " does not match 1d array dimensions %" PetscInt_FMT, N, m);
3012:   PetscCall(VecGetArray(x, a));
3013:   *a -= mstart;
3014:   PetscFunctionReturn(PETSC_SUCCESS);
3015: }

3017: /*@C
3018:   VecGetArray1dWrite - Returns a pointer to a 1d contiguous array that will contain this
3019:   processor's portion of the vector data.  You MUST call `VecRestoreArray1dWrite()`
3020:   when you no longer need access to the array.

3022:   Logically Collective

3024:   Input Parameters:
3025: + x      - the vector
3026: . m      - first dimension of two dimensional array
3027: - mstart - first index you will use in first coordinate direction (often 0)

3029:   Output Parameter:
3030: . a - location to put pointer to the array

3032:   Level: developer

3034:   Notes:
3035:   For a vector obtained from `DMCreateLocalVector()` `mstart` is likely
3036:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3037:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`.

3039:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3041: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3042:           `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3043:           `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3044: @*/
3045: PetscErrorCode VecGetArray1dWrite(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3046: {
3047:   PetscInt N;

3049:   PetscFunctionBegin;
3051:   PetscAssertPointer(a, 4);
3053:   PetscCall(VecGetLocalSize(x, &N));
3054:   PetscCheck(m == N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local array size %" PetscInt_FMT " does not match 1d array dimensions %" PetscInt_FMT, N, m);
3055:   PetscCall(VecGetArrayWrite(x, a));
3056:   *a -= mstart;
3057:   PetscFunctionReturn(PETSC_SUCCESS);
3058: }

3060: /*@C
3061:   VecRestoreArray1d - Restores a vector after `VecGetArray1d()` has been called.

3063:   Logically Collective

3065:   Input Parameters:
3066: + x      - the vector
3067: . m      - first dimension of two dimensional array
3068: . mstart - first index you will use in first coordinate direction (often 0)
3069: - a      - location of pointer to array obtained from `VecGetArray1d()`

3071:   Level: developer

3073:   Notes:
3074:   For regular PETSc vectors this routine does not involve any copies. For
3075:   any special vectors that do not store local vector data in a contiguous
3076:   array, this routine will copy the data back into the underlying
3077:   vector data structure from the array obtained with `VecGetArray1d()`.

3079:   This routine actually zeros out the `a` pointer.

3081: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3082:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3083:           `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3084: @*/
3085: PetscErrorCode VecRestoreArray1d(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3086: {
3087:   PetscFunctionBegin;
3090:   PetscCall(VecRestoreArray(x, NULL));
3091:   *a = NULL;
3092:   PetscFunctionReturn(PETSC_SUCCESS);
3093: }

3095: /*@C
3096:   VecRestoreArray1dWrite - Restores a vector after `VecGetArray1dWrite()` has been called.

3098:   Logically Collective

3100:   Input Parameters:
3101: + x      - the vector
3102: . m      - first dimension of two dimensional array
3103: . mstart - first index you will use in first coordinate direction (often 0)
3104: - a      - location of pointer to array obtained from `VecGetArray1d()`

3106:   Level: developer

3108:   Notes:
3109:   For regular PETSc vectors this routine does not involve any copies. For
3110:   any special vectors that do not store local vector data in a contiguous
3111:   array, this routine will copy the data back into the underlying
3112:   vector data structure from the array obtained with `VecGetArray1d()`.

3114:   This routine actually zeros out the `a` pointer.

3116: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3117:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3118:           `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3119: @*/
3120: PetscErrorCode VecRestoreArray1dWrite(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3121: {
3122:   PetscFunctionBegin;
3125:   PetscCall(VecRestoreArrayWrite(x, NULL));
3126:   *a = NULL;
3127:   PetscFunctionReturn(PETSC_SUCCESS);
3128: }

3130: /*@C
3131:   VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
3132:   processor's portion of the vector data.  You MUST call `VecRestoreArray3d()`
3133:   when you no longer need access to the array.

3135:   Logically Collective

3137:   Input Parameters:
3138: + x      - the vector
3139: . m      - first dimension of three dimensional array
3140: . n      - second dimension of three dimensional array
3141: . p      - third dimension of three dimensional array
3142: . mstart - first index you will use in first coordinate direction (often 0)
3143: . nstart - first index in the second coordinate direction (often 0)
3144: - pstart - first index in the third coordinate direction (often 0)

3146:   Output Parameter:
3147: . a - location to put pointer to the array

3149:   Level: developer

3151:   Notes:
3152:   For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3153:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3154:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3155:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.

3157:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3159: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3160:           `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecRestoreArray3d()`,
3161:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3162: @*/
3163: PetscErrorCode VecGetArray3d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3164: {
3165:   PetscInt     i, N, j;
3166:   PetscScalar *aa, **b;

3168:   PetscFunctionBegin;
3170:   PetscAssertPointer(a, 8);
3172:   PetscCall(VecGetLocalSize(x, &N));
3173:   PetscCheck(m * n * p == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 3d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p);
3174:   PetscCall(VecGetArray(x, &aa));

3176:   PetscCall(PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a));
3177:   b = (PetscScalar **)((*a) + m);
3178:   for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3179:   for (i = 0; i < m; i++)
3180:     for (j = 0; j < n; j++) b[i * n + j] = PetscSafePointerPlusOffset(aa, i * n * p + j * p - pstart);
3181:   *a -= mstart;
3182:   PetscFunctionReturn(PETSC_SUCCESS);
3183: }

3185: /*@C
3186:   VecGetArray3dWrite - Returns a pointer to a 3d contiguous array that will contain this
3187:   processor's portion of the vector data.  You MUST call `VecRestoreArray3dWrite()`
3188:   when you no longer need access to the array.

3190:   Logically Collective

3192:   Input Parameters:
3193: + x      - the vector
3194: . m      - first dimension of three dimensional array
3195: . n      - second dimension of three dimensional array
3196: . p      - third dimension of three dimensional array
3197: . mstart - first index you will use in first coordinate direction (often 0)
3198: . nstart - first index in the second coordinate direction (often 0)
3199: - pstart - first index in the third coordinate direction (often 0)

3201:   Output Parameter:
3202: . a - location to put pointer to the array

3204:   Level: developer

3206:   Notes:
3207:   For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3208:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3209:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3210:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.

3212:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3214: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3215:           `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3216:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3217: @*/
3218: PetscErrorCode VecGetArray3dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3219: {
3220:   PetscInt     i, N, j;
3221:   PetscScalar *aa, **b;

3223:   PetscFunctionBegin;
3225:   PetscAssertPointer(a, 8);
3227:   PetscCall(VecGetLocalSize(x, &N));
3228:   PetscCheck(m * n * p == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 3d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p);
3229:   PetscCall(VecGetArrayWrite(x, &aa));

3231:   PetscCall(PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a));
3232:   b = (PetscScalar **)((*a) + m);
3233:   for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3234:   for (i = 0; i < m; i++)
3235:     for (j = 0; j < n; j++) b[i * n + j] = aa + i * n * p + j * p - pstart;

3237:   *a -= mstart;
3238:   PetscFunctionReturn(PETSC_SUCCESS);
3239: }

3241: /*@C
3242:   VecRestoreArray3d - Restores a vector after `VecGetArray3d()` has been called.

3244:   Logically Collective

3246:   Input Parameters:
3247: + x      - the vector
3248: . m      - first dimension of three dimensional array
3249: . n      - second dimension of the three dimensional array
3250: . p      - third dimension of the three dimensional array
3251: . mstart - first index you will use in first coordinate direction (often 0)
3252: . nstart - first index in the second coordinate direction (often 0)
3253: . pstart - first index in the third coordinate direction (often 0)
3254: - a      - location of pointer to array obtained from VecGetArray3d()

3256:   Level: developer

3258:   Notes:
3259:   For regular PETSc vectors this routine does not involve any copies. For
3260:   any special vectors that do not store local vector data in a contiguous
3261:   array, this routine will copy the data back into the underlying
3262:   vector data structure from the array obtained with `VecGetArray()`.

3264:   This routine actually zeros out the `a` pointer.

3266: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3267:           `VecGetArray2d()`, `VecGetArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3268:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3269: @*/
3270: PetscErrorCode VecRestoreArray3d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3271: {
3272:   void *dummy;

3274:   PetscFunctionBegin;
3276:   PetscAssertPointer(a, 8);
3278:   dummy = (void *)(*a + mstart);
3279:   PetscCall(PetscFree(dummy));
3280:   PetscCall(VecRestoreArray(x, NULL));
3281:   *a = NULL;
3282:   PetscFunctionReturn(PETSC_SUCCESS);
3283: }

3285: /*@C
3286:   VecRestoreArray3dWrite - Restores a vector after `VecGetArray3dWrite()` has been called.

3288:   Logically Collective

3290:   Input Parameters:
3291: + x      - the vector
3292: . m      - first dimension of three dimensional array
3293: . n      - second dimension of the three dimensional array
3294: . p      - third dimension of the three dimensional array
3295: . mstart - first index you will use in first coordinate direction (often 0)
3296: . nstart - first index in the second coordinate direction (often 0)
3297: . pstart - first index in the third coordinate direction (often 0)
3298: - a      - location of pointer to array obtained from VecGetArray3d()

3300:   Level: developer

3302:   Notes:
3303:   For regular PETSc vectors this routine does not involve any copies. For
3304:   any special vectors that do not store local vector data in a contiguous
3305:   array, this routine will copy the data back into the underlying
3306:   vector data structure from the array obtained with `VecGetArray()`.

3308:   This routine actually zeros out the `a` pointer.

3310: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3311:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3312:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3313: @*/
3314: PetscErrorCode VecRestoreArray3dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3315: {
3316:   void *dummy;

3318:   PetscFunctionBegin;
3320:   PetscAssertPointer(a, 8);
3322:   dummy = (void *)(*a + mstart);
3323:   PetscCall(PetscFree(dummy));
3324:   PetscCall(VecRestoreArrayWrite(x, NULL));
3325:   *a = NULL;
3326:   PetscFunctionReturn(PETSC_SUCCESS);
3327: }

3329: /*@C
3330:   VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
3331:   processor's portion of the vector data.  You MUST call `VecRestoreArray4d()`
3332:   when you no longer need access to the array.

3334:   Logically Collective

3336:   Input Parameters:
3337: + x      - the vector
3338: . m      - first dimension of four dimensional array
3339: . n      - second dimension of four dimensional array
3340: . p      - third dimension of four dimensional array
3341: . q      - fourth dimension of four dimensional array
3342: . mstart - first index you will use in first coordinate direction (often 0)
3343: . nstart - first index in the second coordinate direction (often 0)
3344: . pstart - first index in the third coordinate direction (often 0)
3345: - qstart - first index in the fourth coordinate direction (often 0)

3347:   Output Parameter:
3348: . a - location to put pointer to the array

3350:   Level: developer

3352:   Notes:
3353:   For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3354:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3355:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3356:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.

3358:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3360: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3361:           `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3362:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecRestoreArray4d()`
3363: @*/
3364: PetscErrorCode VecGetArray4d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3365: {
3366:   PetscInt     i, N, j, k;
3367:   PetscScalar *aa, ***b, **c;

3369:   PetscFunctionBegin;
3371:   PetscAssertPointer(a, 10);
3373:   PetscCall(VecGetLocalSize(x, &N));
3374:   PetscCheck(m * n * p * q == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 4d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p, q);
3375:   PetscCall(VecGetArray(x, &aa));

3377:   PetscCall(PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a));
3378:   b = (PetscScalar ***)((*a) + m);
3379:   c = (PetscScalar **)(b + m * n);
3380:   for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3381:   for (i = 0; i < m; i++)
3382:     for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3383:   for (i = 0; i < m; i++)
3384:     for (j = 0; j < n; j++)
3385:       for (k = 0; k < p; k++) c[i * n * p + j * p + k] = aa + i * n * p * q + j * p * q + k * q - qstart;
3386:   *a -= mstart;
3387:   PetscFunctionReturn(PETSC_SUCCESS);
3388: }

3390: /*@C
3391:   VecGetArray4dWrite - Returns a pointer to a 4d contiguous array that will contain this
3392:   processor's portion of the vector data.  You MUST call `VecRestoreArray4dWrite()`
3393:   when you no longer need access to the array.

3395:   Logically Collective

3397:   Input Parameters:
3398: + x      - the vector
3399: . m      - first dimension of four dimensional array
3400: . n      - second dimension of four dimensional array
3401: . p      - third dimension of four dimensional array
3402: . q      - fourth dimension of four dimensional array
3403: . mstart - first index you will use in first coordinate direction (often 0)
3404: . nstart - first index in the second coordinate direction (often 0)
3405: . pstart - first index in the third coordinate direction (often 0)
3406: - qstart - first index in the fourth coordinate direction (often 0)

3408:   Output Parameter:
3409: . a - location to put pointer to the array

3411:   Level: developer

3413:   Notes:
3414:   For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3415:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3416:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3417:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.

3419:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3421: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3422:           `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3423:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3424: @*/
3425: PetscErrorCode VecGetArray4dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3426: {
3427:   PetscInt     i, N, j, k;
3428:   PetscScalar *aa, ***b, **c;

3430:   PetscFunctionBegin;
3432:   PetscAssertPointer(a, 10);
3434:   PetscCall(VecGetLocalSize(x, &N));
3435:   PetscCheck(m * n * p * q == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 4d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p, q);
3436:   PetscCall(VecGetArrayWrite(x, &aa));

3438:   PetscCall(PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a));
3439:   b = (PetscScalar ***)((*a) + m);
3440:   c = (PetscScalar **)(b + m * n);
3441:   for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3442:   for (i = 0; i < m; i++)
3443:     for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3444:   for (i = 0; i < m; i++)
3445:     for (j = 0; j < n; j++)
3446:       for (k = 0; k < p; k++) c[i * n * p + j * p + k] = aa + i * n * p * q + j * p * q + k * q - qstart;
3447:   *a -= mstart;
3448:   PetscFunctionReturn(PETSC_SUCCESS);
3449: }

3451: /*@C
3452:   VecRestoreArray4d - Restores a vector after `VecGetArray4d()` has been called.

3454:   Logically Collective

3456:   Input Parameters:
3457: + x      - the vector
3458: . m      - first dimension of four dimensional array
3459: . n      - second dimension of the four dimensional array
3460: . p      - third dimension of the four dimensional array
3461: . q      - fourth dimension of the four dimensional array
3462: . mstart - first index you will use in first coordinate direction (often 0)
3463: . nstart - first index in the second coordinate direction (often 0)
3464: . pstart - first index in the third coordinate direction (often 0)
3465: . qstart - first index in the fourth coordinate direction (often 0)
3466: - a      - location of pointer to array obtained from VecGetArray4d()

3468:   Level: developer

3470:   Notes:
3471:   For regular PETSc vectors this routine does not involve any copies. For
3472:   any special vectors that do not store local vector data in a contiguous
3473:   array, this routine will copy the data back into the underlying
3474:   vector data structure from the array obtained with `VecGetArray()`.

3476:   This routine actually zeros out the `a` pointer.

3478: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3479:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3480:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecGet`
3481: @*/
3482: PetscErrorCode VecRestoreArray4d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3483: {
3484:   void *dummy;

3486:   PetscFunctionBegin;
3488:   PetscAssertPointer(a, 10);
3490:   dummy = (void *)(*a + mstart);
3491:   PetscCall(PetscFree(dummy));
3492:   PetscCall(VecRestoreArray(x, NULL));
3493:   *a = NULL;
3494:   PetscFunctionReturn(PETSC_SUCCESS);
3495: }

3497: /*@C
3498:   VecRestoreArray4dWrite - Restores a vector after `VecGetArray4dWrite()` has been called.

3500:   Logically Collective

3502:   Input Parameters:
3503: + x      - the vector
3504: . m      - first dimension of four dimensional array
3505: . n      - second dimension of the four dimensional array
3506: . p      - third dimension of the four dimensional array
3507: . q      - fourth dimension of the four dimensional array
3508: . mstart - first index you will use in first coordinate direction (often 0)
3509: . nstart - first index in the second coordinate direction (often 0)
3510: . pstart - first index in the third coordinate direction (often 0)
3511: . qstart - first index in the fourth coordinate direction (often 0)
3512: - a      - location of pointer to array obtained from `VecGetArray4d()`

3514:   Level: developer

3516:   Notes:
3517:   For regular PETSc vectors this routine does not involve any copies. For
3518:   any special vectors that do not store local vector data in a contiguous
3519:   array, this routine will copy the data back into the underlying
3520:   vector data structure from the array obtained with `VecGetArray()`.

3522:   This routine actually zeros out the `a` pointer.

3524: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3525:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3526:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3527: @*/
3528: PetscErrorCode VecRestoreArray4dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3529: {
3530:   void *dummy;

3532:   PetscFunctionBegin;
3534:   PetscAssertPointer(a, 10);
3536:   dummy = (void *)(*a + mstart);
3537:   PetscCall(PetscFree(dummy));
3538:   PetscCall(VecRestoreArrayWrite(x, NULL));
3539:   *a = NULL;
3540:   PetscFunctionReturn(PETSC_SUCCESS);
3541: }

3543: /*@C
3544:   VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
3545:   processor's portion of the vector data.  You MUST call `VecRestoreArray2dRead()`
3546:   when you no longer need access to the array.

3548:   Logically Collective

3550:   Input Parameters:
3551: + x      - the vector
3552: . m      - first dimension of two dimensional array
3553: . n      - second dimension of two dimensional array
3554: . mstart - first index you will use in first coordinate direction (often 0)
3555: - nstart - first index in the second coordinate direction (often 0)

3557:   Output Parameter:
3558: . a - location to put pointer to the array

3560:   Level: developer

3562:   Notes:
3563:   For a vector obtained from `DMCreateLocalVector()` `mstart` and `nstart` are likely
3564:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3565:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3566:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray2d()`.

3568:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3570: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3571:           `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3572:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3573: @*/
3574: PetscErrorCode VecGetArray2dRead(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3575: {
3576:   PetscInt           i, N;
3577:   const PetscScalar *aa;

3579:   PetscFunctionBegin;
3581:   PetscAssertPointer(a, 6);
3583:   PetscCall(VecGetLocalSize(x, &N));
3584:   PetscCheck(m * n == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 2d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n);
3585:   PetscCall(VecGetArrayRead(x, &aa));

3587:   PetscCall(PetscMalloc1(m, a));
3588:   for (i = 0; i < m; i++) (*a)[i] = (PetscScalar *)aa + i * n - nstart;
3589:   *a -= mstart;
3590:   PetscFunctionReturn(PETSC_SUCCESS);
3591: }

3593: /*@C
3594:   VecRestoreArray2dRead - Restores a vector after `VecGetArray2dRead()` has been called.

3596:   Logically Collective

3598:   Input Parameters:
3599: + x      - the vector
3600: . m      - first dimension of two dimensional array
3601: . n      - second dimension of the two dimensional array
3602: . mstart - first index you will use in first coordinate direction (often 0)
3603: . nstart - first index in the second coordinate direction (often 0)
3604: - a      - location of pointer to array obtained from VecGetArray2d()

3606:   Level: developer

3608:   Notes:
3609:   For regular PETSc vectors this routine does not involve any copies. For
3610:   any special vectors that do not store local vector data in a contiguous
3611:   array, this routine will copy the data back into the underlying
3612:   vector data structure from the array obtained with `VecGetArray()`.

3614:   This routine actually zeros out the `a` pointer.

3616: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3617:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3618:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3619: @*/
3620: PetscErrorCode VecRestoreArray2dRead(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3621: {
3622:   void *dummy;

3624:   PetscFunctionBegin;
3626:   PetscAssertPointer(a, 6);
3628:   dummy = (void *)(*a + mstart);
3629:   PetscCall(PetscFree(dummy));
3630:   PetscCall(VecRestoreArrayRead(x, NULL));
3631:   *a = NULL;
3632:   PetscFunctionReturn(PETSC_SUCCESS);
3633: }

3635: /*@C
3636:   VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
3637:   processor's portion of the vector data.  You MUST call `VecRestoreArray1dRead()`
3638:   when you no longer need access to the array.

3640:   Logically Collective

3642:   Input Parameters:
3643: + x      - the vector
3644: . m      - first dimension of two dimensional array
3645: - mstart - first index you will use in first coordinate direction (often 0)

3647:   Output Parameter:
3648: . a - location to put pointer to the array

3650:   Level: developer

3652:   Notes:
3653:   For a vector obtained from `DMCreateLocalVector()` `mstart` is likely
3654:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3655:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`.

3657:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3659: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3660:           `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3661:           `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3662: @*/
3663: PetscErrorCode VecGetArray1dRead(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3664: {
3665:   PetscInt N;

3667:   PetscFunctionBegin;
3669:   PetscAssertPointer(a, 4);
3671:   PetscCall(VecGetLocalSize(x, &N));
3672:   PetscCheck(m == N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local array size %" PetscInt_FMT " does not match 1d array dimensions %" PetscInt_FMT, N, m);
3673:   PetscCall(VecGetArrayRead(x, (const PetscScalar **)a));
3674:   *a -= mstart;
3675:   PetscFunctionReturn(PETSC_SUCCESS);
3676: }

3678: /*@C
3679:   VecRestoreArray1dRead - Restores a vector after `VecGetArray1dRead()` has been called.

3681:   Logically Collective

3683:   Input Parameters:
3684: + x      - the vector
3685: . m      - first dimension of two dimensional array
3686: . mstart - first index you will use in first coordinate direction (often 0)
3687: - a      - location of pointer to array obtained from `VecGetArray1dRead()`

3689:   Level: developer

3691:   Notes:
3692:   For regular PETSc vectors this routine does not involve any copies. For
3693:   any special vectors that do not store local vector data in a contiguous
3694:   array, this routine will copy the data back into the underlying
3695:   vector data structure from the array obtained with `VecGetArray1dRead()`.

3697:   This routine actually zeros out the `a` pointer.

3699: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3700:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3701:           `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3702: @*/
3703: PetscErrorCode VecRestoreArray1dRead(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3704: {
3705:   PetscFunctionBegin;
3708:   PetscCall(VecRestoreArrayRead(x, NULL));
3709:   *a = NULL;
3710:   PetscFunctionReturn(PETSC_SUCCESS);
3711: }

3713: /*@C
3714:   VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
3715:   processor's portion of the vector data.  You MUST call `VecRestoreArray3dRead()`
3716:   when you no longer need access to the array.

3718:   Logically Collective

3720:   Input Parameters:
3721: + x      - the vector
3722: . m      - first dimension of three dimensional array
3723: . n      - second dimension of three dimensional array
3724: . p      - third dimension of three dimensional array
3725: . mstart - first index you will use in first coordinate direction (often 0)
3726: . nstart - first index in the second coordinate direction (often 0)
3727: - pstart - first index in the third coordinate direction (often 0)

3729:   Output Parameter:
3730: . a - location to put pointer to the array

3732:   Level: developer

3734:   Notes:
3735:   For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3736:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3737:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3738:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3dRead()`.

3740:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3742: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3743:           `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3744:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3745: @*/
3746: PetscErrorCode VecGetArray3dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3747: {
3748:   PetscInt           i, N, j;
3749:   const PetscScalar *aa;
3750:   PetscScalar      **b;

3752:   PetscFunctionBegin;
3754:   PetscAssertPointer(a, 8);
3756:   PetscCall(VecGetLocalSize(x, &N));
3757:   PetscCheck(m * n * p == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 3d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p);
3758:   PetscCall(VecGetArrayRead(x, &aa));

3760:   PetscCall(PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a));
3761:   b = (PetscScalar **)((*a) + m);
3762:   for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3763:   for (i = 0; i < m; i++)
3764:     for (j = 0; j < n; j++) b[i * n + j] = PetscSafePointerPlusOffset((PetscScalar *)aa, i * n * p + j * p - pstart);
3765:   *a -= mstart;
3766:   PetscFunctionReturn(PETSC_SUCCESS);
3767: }

3769: /*@C
3770:   VecRestoreArray3dRead - Restores a vector after `VecGetArray3dRead()` has been called.

3772:   Logically Collective

3774:   Input Parameters:
3775: + x      - the vector
3776: . m      - first dimension of three dimensional array
3777: . n      - second dimension of the three dimensional array
3778: . p      - third dimension of the three dimensional array
3779: . mstart - first index you will use in first coordinate direction (often 0)
3780: . nstart - first index in the second coordinate direction (often 0)
3781: . pstart - first index in the third coordinate direction (often 0)
3782: - a      - location of pointer to array obtained from `VecGetArray3dRead()`

3784:   Level: developer

3786:   Notes:
3787:   For regular PETSc vectors this routine does not involve any copies. For
3788:   any special vectors that do not store local vector data in a contiguous
3789:   array, this routine will copy the data back into the underlying
3790:   vector data structure from the array obtained with `VecGetArray()`.

3792:   This routine actually zeros out the `a` pointer.

3794: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3795:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3796:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3797: @*/
3798: PetscErrorCode VecRestoreArray3dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3799: {
3800:   void *dummy;

3802:   PetscFunctionBegin;
3804:   PetscAssertPointer(a, 8);
3806:   dummy = (void *)(*a + mstart);
3807:   PetscCall(PetscFree(dummy));
3808:   PetscCall(VecRestoreArrayRead(x, NULL));
3809:   *a = NULL;
3810:   PetscFunctionReturn(PETSC_SUCCESS);
3811: }

3813: /*@C
3814:   VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
3815:   processor's portion of the vector data.  You MUST call `VecRestoreArray4dRead()`
3816:   when you no longer need access to the array.

3818:   Logically Collective

3820:   Input Parameters:
3821: + x      - the vector
3822: . m      - first dimension of four dimensional array
3823: . n      - second dimension of four dimensional array
3824: . p      - third dimension of four dimensional array
3825: . q      - fourth dimension of four dimensional array
3826: . mstart - first index you will use in first coordinate direction (often 0)
3827: . nstart - first index in the second coordinate direction (often 0)
3828: . pstart - first index in the third coordinate direction (often 0)
3829: - qstart - first index in the fourth coordinate direction (often 0)

3831:   Output Parameter:
3832: . a - location to put pointer to the array

3834:   Level: beginner

3836:   Notes:
3837:   For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3838:   obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3839:   `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3840:   the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.

3842:   For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3844: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3845:           `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3846:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3847: @*/
3848: PetscErrorCode VecGetArray4dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3849: {
3850:   PetscInt           i, N, j, k;
3851:   const PetscScalar *aa;
3852:   PetscScalar     ***b, **c;

3854:   PetscFunctionBegin;
3856:   PetscAssertPointer(a, 10);
3858:   PetscCall(VecGetLocalSize(x, &N));
3859:   PetscCheck(m * n * p * q == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 4d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p, q);
3860:   PetscCall(VecGetArrayRead(x, &aa));

3862:   PetscCall(PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a));
3863:   b = (PetscScalar ***)((*a) + m);
3864:   c = (PetscScalar **)(b + m * n);
3865:   for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3866:   for (i = 0; i < m; i++)
3867:     for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3868:   for (i = 0; i < m; i++)
3869:     for (j = 0; j < n; j++)
3870:       for (k = 0; k < p; k++) c[i * n * p + j * p + k] = (PetscScalar *)aa + i * n * p * q + j * p * q + k * q - qstart;
3871:   *a -= mstart;
3872:   PetscFunctionReturn(PETSC_SUCCESS);
3873: }

3875: /*@C
3876:   VecRestoreArray4dRead - Restores a vector after `VecGetArray4d()` has been called.

3878:   Logically Collective

3880:   Input Parameters:
3881: + x      - the vector
3882: . m      - first dimension of four dimensional array
3883: . n      - second dimension of the four dimensional array
3884: . p      - third dimension of the four dimensional array
3885: . q      - fourth dimension of the four dimensional array
3886: . mstart - first index you will use in first coordinate direction (often 0)
3887: . nstart - first index in the second coordinate direction (often 0)
3888: . pstart - first index in the third coordinate direction (often 0)
3889: . qstart - first index in the fourth coordinate direction (often 0)
3890: - a      - location of pointer to array obtained from `VecGetArray4dRead()`

3892:   Level: beginner

3894:   Notes:
3895:   For regular PETSc vectors this routine does not involve any copies. For
3896:   any special vectors that do not store local vector data in a contiguous
3897:   array, this routine will copy the data back into the underlying
3898:   vector data structure from the array obtained with `VecGetArray()`.

3900:   This routine actually zeros out the `a` pointer.

3902: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3903:           `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3904:           `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3905: @*/
3906: PetscErrorCode VecRestoreArray4dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3907: {
3908:   void *dummy;

3910:   PetscFunctionBegin;
3912:   PetscAssertPointer(a, 10);
3914:   dummy = (void *)(*a + mstart);
3915:   PetscCall(PetscFree(dummy));
3916:   PetscCall(VecRestoreArrayRead(x, NULL));
3917:   *a = NULL;
3918:   PetscFunctionReturn(PETSC_SUCCESS);
3919: }

3921: /*@
3922:   VecLockGet - Get the current lock status of a vector

3924:   Logically Collective

3926:   Input Parameter:
3927: . x - the vector

3929:   Output Parameter:
3930: . state - greater than zero indicates the vector is locked for read; less than zero indicates the vector is
3931:            locked for write; equal to zero means the vector is unlocked, that is, it is free to read or write.

3933:   Level: advanced

3935: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockReadPop()`
3936: @*/
3937: PetscErrorCode VecLockGet(Vec x, PetscInt *state)
3938: {
3939:   PetscFunctionBegin;
3941:   PetscAssertPointer(state, 2);
3942:   *state = x->lock;
3943:   PetscFunctionReturn(PETSC_SUCCESS);
3944: }

3946: PetscErrorCode VecLockGetLocation(Vec x, const char *file[], const char *func[], int *line)
3947: {
3948:   PetscFunctionBegin;
3950:   PetscAssertPointer(file, 2);
3951:   PetscAssertPointer(func, 3);
3952:   PetscAssertPointer(line, 4);
3953: #if PetscDefined(USE_DEBUG) && !PetscDefined(HAVE_THREADSAFETY)
3954:   {
3955:     const int index = x->lockstack.currentsize - 1;

3957:     *file = index < 0 ? NULL : x->lockstack.file[index];
3958:     *func = index < 0 ? NULL : x->lockstack.function[index];
3959:     *line = index < 0 ? 0 : x->lockstack.line[index];
3960:   }
3961: #else
3962:   *file = NULL;
3963:   *func = NULL;
3964:   *line = 0;
3965: #endif
3966:   PetscFunctionReturn(PETSC_SUCCESS);
3967: }

3969: /*@
3970:   VecLockReadPush - Push a read-only lock on a vector to prevent it from being written to

3972:   Logically Collective

3974:   Input Parameter:
3975: . x - the vector

3977:   Level: intermediate

3979:   Notes:
3980:   If this is set then calls to `VecGetArray()` or `VecSetValues()` or any other routines that change the vectors values will generate an error.

3982:   The call can be nested, i.e., called multiple times on the same vector, but each `VecLockReadPush()` has to have one matching
3983:   `VecLockReadPop()`, which removes the latest read-only lock.

3985: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPop()`, `VecLockGet()`
3986: @*/
3987: PetscErrorCode VecLockReadPush(Vec x)
3988: {
3989:   PetscFunctionBegin;
3991:   PetscCheck(x->lock++ >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is already locked for exclusive write access but you want to read it");
3992: #if PetscDefined(USE_DEBUG) && !PetscDefined(HAVE_THREADSAFETY)
3993:   {
3994:     const char *file, *func;
3995:     int         index, line;

3997:     if ((index = petscstack.currentsize - 2) < 0) {
3998:       // vec was locked "outside" of petsc, either in user-land or main. the error message will
3999:       // now show this function as the culprit, but it will include the stacktrace
4000:       file = "unknown user-file";
4001:       func = "unknown_user_function";
4002:       line = 0;
4003:     } else {
4004:       file = petscstack.file[index];
4005:       func = petscstack.function[index];
4006:       line = petscstack.line[index];
4007:     }
4008:     PetscStackPush_Private(x->lockstack, file, func, line, petscstack.petscroutine[index], PETSC_FALSE);
4009:   }
4010: #endif
4011:   PetscFunctionReturn(PETSC_SUCCESS);
4012: }

4014: /*@
4015:   VecLockReadPop - Pop a read-only lock from a vector

4017:   Logically Collective

4019:   Input Parameter:
4020: . x - the vector

4022:   Level: intermediate

4024: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockGet()`
4025: @*/
4026: PetscErrorCode VecLockReadPop(Vec x)
4027: {
4028:   PetscFunctionBegin;
4030:   PetscCheck(--x->lock >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector has been unlocked from read-only access too many times");
4031: #if PetscDefined(USE_DEBUG) && !PetscDefined(HAVE_THREADSAFETY)
4032:   {
4033:     const char *previous = x->lockstack.function[x->lockstack.currentsize - 1];

4035:     PetscStackPop_Private(x->lockstack, previous);
4036:   }
4037: #endif
4038:   PetscFunctionReturn(PETSC_SUCCESS);
4039: }

4041: /*@
4042:   VecLockWriteSet - Lock or unlock a vector for exclusive read/write access

4044:   Logically Collective

4046:   Input Parameters:
4047: + x   - the vector
4048: - flg - `PETSC_TRUE` to lock the vector for exclusive read/write access; `PETSC_FALSE` to unlock it.

4050:   Level: intermediate

4052:   Notes:
4053:   The function is useful in split-phase computations, which usually have a begin phase and an end phase.
4054:   One can call `VecLockWriteSet`(x,`PETSC_TRUE`) in the begin phase to lock a vector for exclusive
4055:   access, and call `VecLockWriteSet`(x,`PETSC_FALSE`) in the end phase to unlock the vector from exclusive
4056:   access. In this way, one is ensured no other operations can access the vector in between. The code may like

4058: .vb
4059:        VecGetArray(x,&xdata); // begin phase
4060:        VecLockWriteSet(v,PETSC_TRUE);

4062:        Other operations, which can not access x anymore (they can access xdata, of course)

4064:        VecRestoreArray(x,&vdata); // end phase
4065:        VecLockWriteSet(v,PETSC_FALSE);
4066: .ve

4068:   The call can not be nested on the same vector, in other words, one can not call `VecLockWriteSet`(x,`PETSC_TRUE`)
4069:   again before calling `VecLockWriteSet`(v,`PETSC_FALSE`).

4071: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockReadPop()`, `VecLockGet()`
4072: @*/
4073: PetscErrorCode VecLockWriteSet(Vec x, PetscBool flg)
4074: {
4075:   PetscFunctionBegin;
4077:   if (flg) {
4078:     PetscCheck(x->lock <= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is already locked for read-only access but you want to write it");
4079:     PetscCheck(x->lock >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is already locked for exclusive write access but you want to write it");
4080:     x->lock = -1;
4081:   } else {
4082:     PetscCheck(x->lock == -1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is not locked for exclusive write access but you want to unlock it from that");
4083:     x->lock = 0;
4084:   }
4085:   PetscFunctionReturn(PETSC_SUCCESS);
4086: }