Actual source code: febasic.c

  1: #include <petsc/private/petscfeimpl.h>
  2: #include <petscblaslapack.h>

  4: static PetscErrorCode PetscFEDestroy_Basic(PetscFE fem)
  5: {
  6:   PetscFE_Basic *b = (PetscFE_Basic *)fem->data;

  8:   PetscFunctionBegin;
  9:   PetscCall(PetscFree(b));
 10:   PetscFunctionReturn(PETSC_SUCCESS);
 11: }

 13: static PetscErrorCode PetscFEView_Basic_Ascii(PetscFE fe, PetscViewer v)
 14: {
 15:   PetscInt        dim, Nc;
 16:   PetscSpace      basis = NULL;
 17:   PetscDualSpace  dual  = NULL;
 18:   PetscQuadrature quad  = NULL;

 20:   PetscFunctionBegin;
 21:   PetscCall(PetscFEGetSpatialDimension(fe, &dim));
 22:   PetscCall(PetscFEGetNumComponents(fe, &Nc));
 23:   PetscCall(PetscFEGetBasisSpace(fe, &basis));
 24:   PetscCall(PetscFEGetDualSpace(fe, &dual));
 25:   PetscCall(PetscFEGetQuadrature(fe, &quad));
 26:   PetscCall(PetscViewerASCIIPushTab(v));
 27:   PetscCall(PetscViewerASCIIPrintf(v, "Basic Finite Element in %" PetscInt_FMT " dimensions with %" PetscInt_FMT " components\n", dim, Nc));
 28:   if (basis) PetscCall(PetscSpaceView(basis, v));
 29:   if (dual) PetscCall(PetscDualSpaceView(dual, v));
 30:   if (quad) PetscCall(PetscQuadratureView(quad, v));
 31:   PetscCall(PetscViewerASCIIPopTab(v));
 32:   PetscFunctionReturn(PETSC_SUCCESS);
 33: }

 35: static PetscErrorCode PetscFEView_Basic(PetscFE fe, PetscViewer v)
 36: {
 37:   PetscBool iascii;

 39:   PetscFunctionBegin;
 40:   PetscCall(PetscObjectTypeCompare((PetscObject)v, PETSCVIEWERASCII, &iascii));
 41:   if (iascii) PetscCall(PetscFEView_Basic_Ascii(fe, v));
 42:   PetscFunctionReturn(PETSC_SUCCESS);
 43: }

 45: /* Construct the change of basis from prime basis to nodal basis */
 46: PETSC_INTERN PetscErrorCode PetscFESetUp_Basic(PetscFE fem)
 47: {
 48:   PetscReal    *work;
 49:   PetscBLASInt *pivots;
 50:   PetscBLASInt  n, info;
 51:   PetscInt      pdim, j;

 53:   PetscFunctionBegin;
 54:   PetscCall(PetscDualSpaceGetDimension(fem->dualSpace, &pdim));
 55:   PetscCall(PetscMalloc1(pdim * pdim, &fem->invV));
 56:   for (j = 0; j < pdim; ++j) {
 57:     PetscReal       *Bf;
 58:     PetscQuadrature  f;
 59:     const PetscReal *points, *weights;
 60:     PetscInt         Nc, Nq, q, k, c;

 62:     PetscCall(PetscDualSpaceGetFunctional(fem->dualSpace, j, &f));
 63:     PetscCall(PetscQuadratureGetData(f, NULL, &Nc, &Nq, &points, &weights));
 64:     PetscCall(PetscMalloc1(Nc * Nq * pdim, &Bf));
 65:     PetscCall(PetscSpaceEvaluate(fem->basisSpace, Nq, points, Bf, NULL, NULL));
 66:     for (k = 0; k < pdim; ++k) {
 67:       /* V_{jk} = n_j(\phi_k) = \int \phi_k(x) n_j(x) dx */
 68:       fem->invV[j * pdim + k] = 0.0;

 70:       for (q = 0; q < Nq; ++q) {
 71:         for (c = 0; c < Nc; ++c) fem->invV[j * pdim + k] += Bf[(q * pdim + k) * Nc + c] * weights[q * Nc + c];
 72:       }
 73:     }
 74:     PetscCall(PetscFree(Bf));
 75:   }

 77:   PetscCall(PetscMalloc2(pdim, &pivots, pdim, &work));
 78:   PetscCall(PetscBLASIntCast(pdim, &n));
 79:   PetscCallBLAS("LAPACKgetrf", LAPACKREALgetrf_(&n, &n, fem->invV, &n, pivots, &info));
 80:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
 81:   PetscCallBLAS("LAPACKgetri", LAPACKREALgetri_(&n, fem->invV, &n, pivots, work, &n, &info));
 82:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
 83:   PetscCall(PetscFree2(pivots, work));
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: PetscErrorCode PetscFEGetDimension_Basic(PetscFE fem, PetscInt *dim)
 88: {
 89:   PetscFunctionBegin;
 90:   PetscCall(PetscDualSpaceGetDimension(fem->dualSpace, dim));
 91:   PetscFunctionReturn(PETSC_SUCCESS);
 92: }

 94: /* Tensor contraction on the middle index,
 95:  *    C[m,n,p] = A[m,k,p] * B[k,n]
 96:  * where all matrices use C-style ordering.
 97:  */
 98: static PetscErrorCode TensorContract_Private(PetscInt m, PetscInt n, PetscInt p, PetscInt k, const PetscReal *A, const PetscReal *B, PetscReal *C)
 99: {
100:   PetscInt i;

102:   PetscFunctionBegin;
103:   PetscCheck(n && p, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Empty tensor is not allowed %" PetscInt_FMT " %" PetscInt_FMT, n, p);
104:   for (i = 0; i < m; i++) {
105:     PetscBLASInt n_, p_, k_, lda, ldb, ldc;
106:     PetscReal    one = 1, zero = 0;
107:     /* Taking contiguous submatrices, we wish to comput c[n,p] = a[k,p] * B[k,n]
108:      * or, in Fortran ordering, c(p,n) = a(p,k) * B(n,k)
109:      */
110:     PetscCall(PetscBLASIntCast(n, &n_));
111:     PetscCall(PetscBLASIntCast(p, &p_));
112:     PetscCall(PetscBLASIntCast(k, &k_));
113:     lda = p_;
114:     ldb = n_;
115:     ldc = p_;
116:     PetscCallBLAS("BLASgemm", BLASREALgemm_("N", "T", &p_, &n_, &k_, &one, A + i * k * p, &lda, B, &ldb, &zero, C + i * n * p, &ldc));
117:   }
118:   PetscCall(PetscLogFlops(2. * m * n * p * k));
119:   PetscFunctionReturn(PETSC_SUCCESS);
120: }

122: PETSC_INTERN PetscErrorCode PetscFEComputeTabulation_Basic(PetscFE fem, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation T)
123: {
124:   DM         dm;
125:   PetscInt   pdim; /* Dimension of FE space P */
126:   PetscInt   dim;  /* Spatial dimension */
127:   PetscInt   Nc;   /* Field components */
128:   PetscReal *B    = K >= 0 ? T->T[0] : NULL;
129:   PetscReal *D    = K >= 1 ? T->T[1] : NULL;
130:   PetscReal *H    = K >= 2 ? T->T[2] : NULL;
131:   PetscReal *tmpB = NULL, *tmpD = NULL, *tmpH = NULL;

133:   PetscFunctionBegin;
134:   PetscCall(PetscDualSpaceGetDM(fem->dualSpace, &dm));
135:   PetscCall(DMGetDimension(dm, &dim));
136:   PetscCall(PetscDualSpaceGetDimension(fem->dualSpace, &pdim));
137:   PetscCall(PetscFEGetNumComponents(fem, &Nc));
138:   /* Evaluate the prime basis functions at all points */
139:   if (K >= 0) PetscCall(DMGetWorkArray(dm, npoints * pdim * Nc, MPIU_REAL, &tmpB));
140:   if (K >= 1) PetscCall(DMGetWorkArray(dm, npoints * pdim * Nc * dim, MPIU_REAL, &tmpD));
141:   if (K >= 2) PetscCall(DMGetWorkArray(dm, npoints * pdim * Nc * dim * dim, MPIU_REAL, &tmpH));
142:   PetscCall(PetscSpaceEvaluate(fem->basisSpace, npoints, points, tmpB, tmpD, tmpH));
143:   /* Translate from prime to nodal basis */
144:   if (B) {
145:     /* B[npoints, nodes, Nc] = tmpB[npoints, prime, Nc] * invV[prime, nodes] */
146:     PetscCall(TensorContract_Private(npoints, pdim, Nc, pdim, tmpB, fem->invV, B));
147:   }
148:   if (D && dim) {
149:     /* D[npoints, nodes, Nc, dim] = tmpD[npoints, prime, Nc, dim] * invV[prime, nodes] */
150:     PetscCall(TensorContract_Private(npoints, pdim, Nc * dim, pdim, tmpD, fem->invV, D));
151:   }
152:   if (H && dim) {
153:     /* H[npoints, nodes, Nc, dim, dim] = tmpH[npoints, prime, Nc, dim, dim] * invV[prime, nodes] */
154:     PetscCall(TensorContract_Private(npoints, pdim, Nc * dim * dim, pdim, tmpH, fem->invV, H));
155:   }
156:   if (K >= 0) PetscCall(DMRestoreWorkArray(dm, npoints * pdim * Nc, MPIU_REAL, &tmpB));
157:   if (K >= 1) PetscCall(DMRestoreWorkArray(dm, npoints * pdim * Nc * dim, MPIU_REAL, &tmpD));
158:   if (K >= 2) PetscCall(DMRestoreWorkArray(dm, npoints * pdim * Nc * dim * dim, MPIU_REAL, &tmpH));
159:   PetscFunctionReturn(PETSC_SUCCESS);
160: }

162: PETSC_INTERN PetscErrorCode PetscFEIntegrate_Basic(PetscDS ds, PetscInt field, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
163: {
164:   const PetscInt     debug = ds->printIntegrate;
165:   PetscFE            fe;
166:   PetscPointFunc     obj_func;
167:   PetscQuadrature    quad;
168:   PetscTabulation   *T, *TAux = NULL;
169:   PetscScalar       *u, *u_x, *a, *a_x;
170:   const PetscScalar *constants;
171:   PetscReal         *x, cellScale;
172:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
173:   PetscInt           dim, dE, Np, numConstants, Nf, NfAux = 0, totDim, totDimAux = 0, cOffset = 0, cOffsetAux = 0, e;
174:   PetscBool          isAffine;
175:   const PetscReal   *quadPoints, *quadWeights;
176:   PetscInt           qNc, Nq, q;

178:   PetscFunctionBegin;
179:   PetscCall(PetscDSGetObjective(ds, field, &obj_func));
180:   if (!obj_func) PetscFunctionReturn(PETSC_SUCCESS);
181:   PetscCall(PetscDSGetDiscretization(ds, field, (PetscObject *)&fe));
182:   PetscCall(PetscFEGetSpatialDimension(fe, &dim));
183:   cellScale = (PetscReal)PetscPowInt(2, dim);
184:   PetscCall(PetscFEGetQuadrature(fe, &quad));
185:   PetscCall(PetscDSGetNumFields(ds, &Nf));
186:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
187:   PetscCall(PetscDSGetComponentOffsets(ds, &uOff));
188:   PetscCall(PetscDSGetComponentDerivativeOffsets(ds, &uOff_x));
189:   PetscCall(PetscDSGetTabulation(ds, &T));
190:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, NULL, &u_x));
191:   PetscCall(PetscDSGetWorkspace(ds, &x, NULL, NULL, NULL, NULL));
192:   PetscCall(PetscDSSetIntegrationParameters(ds, field, PETSC_DETERMINE));
193:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
194:   if (dsAux) {
195:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
196:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
197:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
198:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
199:     PetscCall(PetscDSGetTabulation(dsAux, &TAux));
200:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
201:     PetscCheck(T[0]->Np == TAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", T[0]->Np, TAux[0]->Np);
202:   }
203:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
204:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
205:   Np       = cgeom->numPoints;
206:   dE       = cgeom->dimEmbed;
207:   isAffine = cgeom->isAffine;
208:   for (e = 0; e < Ne; ++e) {
209:     PetscFEGeom fegeom;

211:     fegeom.dim      = cgeom->dim;
212:     fegeom.dimEmbed = cgeom->dimEmbed;
213:     fegeom.xi       = NULL;
214:     if (isAffine) {
215:       fegeom.v    = x;
216:       fegeom.xi   = cgeom->xi;
217:       fegeom.J    = &cgeom->J[e * Np * dE * dE];
218:       fegeom.invJ = &cgeom->invJ[e * Np * dE * dE];
219:       fegeom.detJ = &cgeom->detJ[e * Np];
220:     }
221:     for (q = 0; q < Nq; ++q) {
222:       PetscScalar integrand = 0.;
223:       PetscReal   w;

225:       if (isAffine) {
226:         CoordinatesRefToReal(dE, dim, fegeom.xi, &cgeom->v[e * Np * dE], fegeom.J, &quadPoints[q * dim], x);
227:       } else {
228:         fegeom.v    = &cgeom->v[(e * Np + q) * dE];
229:         fegeom.J    = &cgeom->J[(e * Np + q) * dE * dE];
230:         fegeom.invJ = &cgeom->invJ[(e * Np + q) * dE * dE];
231:         fegeom.detJ = &cgeom->detJ[e * Np + q];
232:       }
233:       PetscCall(PetscDSSetCellParameters(ds, fegeom.detJ[0] * cellScale));
234:       w = fegeom.detJ[0] * quadWeights[q];
235:       if (debug > 1 && q < Np) {
236:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  detJ: %g\n", (double)fegeom.detJ[0]));
237: #if !defined(PETSC_USE_COMPLEX)
238:         PetscCall(DMPrintCellMatrix(e, "invJ", dim, dim, fegeom.invJ));
239: #endif
240:       }
241:       if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT "\n", q));
242:       PetscCall(PetscFEEvaluateFieldJets_Internal(ds, Nf, 0, q, T, &fegeom, &coefficients[cOffset], NULL, u, u_x, NULL));
243:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, q, TAux, &fegeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
244:       obj_func(dim, Nf, NfAux, uOff, uOff_x, u, NULL, u_x, aOff, aOff_x, a, NULL, a_x, 0.0, fegeom.v, numConstants, constants, &integrand);
245:       integrand *= w;
246:       integral[e * Nf + field] += integrand;
247:     }
248:     if (debug > 1) PetscCall(PetscPrintf(PETSC_COMM_SELF, "    Element Field %" PetscInt_FMT " integral: %g\n", Nf, (double)PetscRealPart(integral[e * Nf + field])));
249:     cOffset += totDim;
250:     cOffsetAux += totDimAux;
251:   }
252:   PetscFunctionReturn(PETSC_SUCCESS);
253: }

255: PETSC_INTERN PetscErrorCode PetscFEIntegrateBd_Basic(PetscDS ds, PetscInt field, PetscBdPointFunc obj_func, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
256: {
257:   const PetscInt     debug = ds->printIntegrate;
258:   PetscFE            fe;
259:   PetscQuadrature    quad;
260:   PetscTabulation   *Tf, *TfAux = NULL;
261:   PetscScalar       *u, *u_x, *a, *a_x, *basisReal, *basisDerReal;
262:   const PetscScalar *constants;
263:   PetscReal         *x, cellScale;
264:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
265:   PetscBool          isAffine, auxOnBd;
266:   const PetscReal   *quadPoints, *quadWeights;
267:   PetscInt           qNc, Nq, q, Np, dE;
268:   PetscInt           dim, dimAux, numConstants, Nf, NfAux = 0, totDim, totDimAux = 0, cOffset = 0, cOffsetAux = 0, e;

270:   PetscFunctionBegin;
271:   if (!obj_func) PetscFunctionReturn(PETSC_SUCCESS);
272:   PetscCall(PetscDSGetDiscretization(ds, field, (PetscObject *)&fe));
273:   PetscCall(PetscFEGetSpatialDimension(fe, &dim));
274:   cellScale = (PetscReal)PetscPowInt(2, dim);
275:   PetscCall(PetscFEGetFaceQuadrature(fe, &quad));
276:   PetscCall(PetscDSGetNumFields(ds, &Nf));
277:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
278:   PetscCall(PetscDSGetComponentOffsets(ds, &uOff));
279:   PetscCall(PetscDSGetComponentDerivativeOffsets(ds, &uOff_x));
280:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, NULL, &u_x));
281:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, NULL, NULL));
282:   PetscCall(PetscDSGetFaceTabulation(ds, &Tf));
283:   PetscCall(PetscDSSetIntegrationParameters(ds, field, PETSC_DETERMINE));
284:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
285:   if (dsAux) {
286:     PetscCall(PetscDSGetSpatialDimension(dsAux, &dimAux));
287:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
288:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
289:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
290:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
291:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
292:     auxOnBd = dimAux < dim ? PETSC_TRUE : PETSC_FALSE;
293:     if (auxOnBd) PetscCall(PetscDSGetTabulation(dsAux, &TfAux));
294:     else PetscCall(PetscDSGetFaceTabulation(dsAux, &TfAux));
295:     PetscCheck(Tf[0]->Np == TfAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", Tf[0]->Np, TfAux[0]->Np);
296:   }
297:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
298:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
299:   if (debug > 1) PetscCall(PetscPrintf(PETSC_COMM_SELF, "Field: %" PetscInt_FMT " Nface: %" PetscInt_FMT " Nq: %" PetscInt_FMT "\n", field, Ne, Nq));
300:   Np       = fgeom->numPoints;
301:   dE       = fgeom->dimEmbed;
302:   isAffine = fgeom->isAffine;
303:   for (e = 0; e < Ne; ++e) {
304:     PetscFEGeom    fegeom, cgeom;
305:     const PetscInt face = fgeom->face[e][0]; /* Local face number in cell */
306:     fegeom.n            = NULL;
307:     fegeom.v            = NULL;
308:     fegeom.xi           = NULL;
309:     fegeom.J            = NULL;
310:     fegeom.invJ         = NULL;
311:     fegeom.detJ         = NULL;
312:     fegeom.dim          = fgeom->dim;
313:     fegeom.dimEmbed     = fgeom->dimEmbed;
314:     cgeom.dim           = fgeom->dim;
315:     cgeom.dimEmbed      = fgeom->dimEmbed;
316:     if (isAffine) {
317:       fegeom.v    = x;
318:       fegeom.xi   = fgeom->xi;
319:       fegeom.J    = &fgeom->J[e * Np * dE * dE];
320:       fegeom.invJ = &fgeom->invJ[e * Np * dE * dE];
321:       fegeom.detJ = &fgeom->detJ[e * Np];
322:       fegeom.n    = &fgeom->n[e * Np * dE];

324:       cgeom.J    = &fgeom->suppJ[0][e * Np * dE * dE];
325:       cgeom.invJ = &fgeom->suppInvJ[0][e * Np * dE * dE];
326:       cgeom.detJ = &fgeom->suppDetJ[0][e * Np];
327:     }
328:     for (q = 0; q < Nq; ++q) {
329:       PetscScalar integrand = 0.;
330:       PetscReal   w;

332:       if (isAffine) {
333:         CoordinatesRefToReal(dE, dim - 1, fegeom.xi, &fgeom->v[e * Np * dE], fegeom.J, &quadPoints[q * (dim - 1)], x);
334:       } else {
335:         fegeom.v    = &fgeom->v[(e * Np + q) * dE];
336:         fegeom.J    = &fgeom->J[(e * Np + q) * dE * dE];
337:         fegeom.invJ = &fgeom->invJ[(e * Np + q) * dE * dE];
338:         fegeom.detJ = &fgeom->detJ[e * Np + q];
339:         fegeom.n    = &fgeom->n[(e * Np + q) * dE];

341:         cgeom.J    = &fgeom->suppJ[0][(e * Np + q) * dE * dE];
342:         cgeom.invJ = &fgeom->suppInvJ[0][(e * Np + q) * dE * dE];
343:         cgeom.detJ = &fgeom->suppDetJ[0][e * Np + q];
344:       }
345:       PetscCall(PetscDSSetCellParameters(ds, fegeom.detJ[0] * cellScale));
346:       w = fegeom.detJ[0] * quadWeights[q];
347:       if (debug > 1 && q < Np) {
348:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  detJ: %g\n", (double)fegeom.detJ[0]));
349: #ifndef PETSC_USE_COMPLEX
350:         PetscCall(DMPrintCellMatrix(e, "invJ", dim, dim, fegeom.invJ));
351: #endif
352:       }
353:       if (debug > 1) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT "\n", q));
354:       if (debug > 3) {
355:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "    x_q ("));
356:         for (PetscInt d = 0; d < dE; ++d) {
357:           if (d) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
358:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)fegeom.v[d]));
359:         }
360:         PetscCall(PetscPrintf(PETSC_COMM_SELF, ")\n"));
361:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "    n_q ("));
362:         for (PetscInt d = 0; d < dE; ++d) {
363:           if (d) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
364:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)fegeom.n[d]));
365:         }
366:         PetscCall(PetscPrintf(PETSC_COMM_SELF, ")\n"));
367:         for (PetscInt f = 0; f < Nf; ++f) {
368:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "    u_%" PetscInt_FMT " (", f));
369:           for (PetscInt c = 0; c < uOff[f + 1] - uOff[f]; ++c) {
370:             if (c) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
371:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(u[uOff[f] + c])));
372:           }
373:           PetscCall(PetscPrintf(PETSC_COMM_SELF, ")\n"));
374:         }
375:       }
376:       PetscCall(PetscFEEvaluateFieldJets_Internal(ds, Nf, face, q, Tf, &cgeom, &coefficients[cOffset], NULL, u, u_x, NULL));
377:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, face, q, TfAux, &cgeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
378:       obj_func(dim, Nf, NfAux, uOff, uOff_x, u, NULL, u_x, aOff, aOff_x, a, NULL, a_x, 0.0, fegeom.v, fegeom.n, numConstants, constants, &integrand);
379:       integrand *= w;
380:       integral[e * Nf + field] += integrand;
381:       if (debug > 1) PetscCall(PetscPrintf(PETSC_COMM_SELF, "    int: %g tot: %g\n", (double)PetscRealPart(integrand), (double)PetscRealPart(integral[e * Nf + field])));
382:     }
383:     cOffset += totDim;
384:     cOffsetAux += totDimAux;
385:   }
386:   PetscFunctionReturn(PETSC_SUCCESS);
387: }

389: PetscErrorCode PetscFEIntegrateResidual_Basic(PetscDS ds, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
390: {
391:   const PetscInt     debug = ds->printIntegrate;
392:   const PetscInt     field = key.field;
393:   PetscFE            fe;
394:   PetscWeakForm      wf;
395:   PetscInt           n0, n1, i;
396:   PetscPointFunc    *f0_func, *f1_func;
397:   PetscQuadrature    quad;
398:   PetscTabulation   *T, *TAux = NULL;
399:   PetscScalar       *f0, *f1, *u, *u_t = NULL, *u_x, *a, *a_x, *basisReal, *basisDerReal;
400:   const PetscScalar *constants;
401:   PetscReal         *x, cellScale;
402:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
403:   PetscInt           dim, numConstants, Nf, NfAux = 0, totDim, totDimAux = 0, cOffset = 0, cOffsetAux = 0, fOffset, e;
404:   const PetscReal   *quadPoints, *quadWeights;
405:   PetscInt           qdim, qNc, Nq, q, dE;

407:   PetscFunctionBegin;
408:   PetscCall(PetscDSGetDiscretization(ds, field, (PetscObject *)&fe));
409:   PetscCall(PetscFEGetSpatialDimension(fe, &dim));
410:   cellScale = (PetscReal)PetscPowInt(2, dim);
411:   PetscCall(PetscFEGetQuadrature(fe, &quad));
412:   PetscCall(PetscDSGetNumFields(ds, &Nf));
413:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
414:   PetscCall(PetscDSGetComponentOffsets(ds, &uOff));
415:   PetscCall(PetscDSGetComponentDerivativeOffsets(ds, &uOff_x));
416:   PetscCall(PetscDSGetFieldOffset(ds, field, &fOffset));
417:   PetscCall(PetscDSGetWeakForm(ds, &wf));
418:   PetscCall(PetscWeakFormGetResidual(wf, key.label, key.value, key.field, key.part, &n0, &f0_func, &n1, &f1_func));
419:   if (!n0 && !n1) PetscFunctionReturn(PETSC_SUCCESS);
420:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, coefficients_t ? &u_t : NULL, &u_x));
421:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, NULL, NULL));
422:   PetscCall(PetscDSGetWeakFormArrays(ds, &f0, &f1, NULL, NULL, NULL, NULL));
423:   PetscCall(PetscDSGetTabulation(ds, &T));
424:   PetscCall(PetscDSSetIntegrationParameters(ds, field, PETSC_DETERMINE));
425:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
426:   if (dsAux) {
427:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
428:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
429:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
430:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
431:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
432:     PetscCall(PetscDSGetTabulation(dsAux, &TAux));
433:     PetscCheck(T[0]->Np == TAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", T[0]->Np, TAux[0]->Np);
434:   }
435:   PetscCall(PetscQuadratureGetData(quad, &qdim, &qNc, &Nq, &quadPoints, &quadWeights));
436:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
437:   dE = cgeom->dimEmbed;
438:   PetscCheck(cgeom->dim == qdim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "FEGeom dim %" PetscInt_FMT " != %" PetscInt_FMT " quadrature dim", cgeom->dim, qdim);
439:   for (e = 0; e < Ne; ++e) {
440:     PetscFEGeom fegeom;

442:     fegeom.v = x; /* workspace */
443:     PetscCall(PetscArrayzero(f0, Nq * T[field]->Nc));
444:     PetscCall(PetscArrayzero(f1, Nq * T[field]->Nc * dE));
445:     for (q = 0; q < Nq; ++q) {
446:       PetscReal w;
447:       PetscInt  c, d;

449:       PetscCall(PetscFEGeomGetPoint(cgeom, e, q, &quadPoints[q * cgeom->dim], &fegeom));
450:       PetscCall(PetscDSSetCellParameters(ds, fegeom.detJ[0] * cellScale));
451:       w = fegeom.detJ[0] * quadWeights[q];
452:       if (debug > 1 && q < cgeom->numPoints) {
453:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  detJ: %g\n", (double)fegeom.detJ[0]));
454: #if !defined(PETSC_USE_COMPLEX)
455:         PetscCall(DMPrintCellMatrix(e, "invJ", dE, dE, fegeom.invJ));
456: #endif
457:       }
458:       PetscCall(PetscFEEvaluateFieldJets_Internal(ds, Nf, 0, q, T, &fegeom, &coefficients[cOffset], PetscSafePointerPlusOffset(coefficients_t, cOffset), u, u_x, u_t));
459:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, q, TAux, &fegeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
460:       for (i = 0; i < n0; ++i) f0_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, fegeom.v, numConstants, constants, &f0[q * T[field]->Nc]);
461:       for (c = 0; c < T[field]->Nc; ++c) f0[q * T[field]->Nc + c] *= w;
462:       for (i = 0; i < n1; ++i) f1_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, fegeom.v, numConstants, constants, &f1[q * T[field]->Nc * dE]);
463:       for (c = 0; c < T[field]->Nc; ++c)
464:         for (d = 0; d < dE; ++d) f1[(q * T[field]->Nc + c) * dE + d] *= w;
465:       if (debug) {
466:         // LCOV_EXCL_START
467:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT " wt %g x:", q, (double)quadWeights[q]));
468:         for (c = 0; c < dE; ++c) PetscCall(PetscPrintf(PETSC_COMM_SELF, " %g", (double)fegeom.v[c]));
469:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
470:         if (debug > 2) {
471:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "  field %" PetscInt_FMT ":", field));
472:           for (c = 0; c < T[field]->Nc; ++c) PetscCall(PetscPrintf(PETSC_COMM_SELF, " %g", (double)PetscRealPart(u[uOff[field] + c])));
473:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
474:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "  field der %" PetscInt_FMT ":", field));
475:           for (c = 0; c < T[field]->Nc * dE; ++c) PetscCall(PetscPrintf(PETSC_COMM_SELF, " %g", (double)PetscRealPart(u_x[uOff[field] + c])));
476:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
477:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "  resid %" PetscInt_FMT ":", field));
478:           for (c = 0; c < T[field]->Nc; ++c) PetscCall(PetscPrintf(PETSC_COMM_SELF, " %g", (double)PetscRealPart(f0[q * T[field]->Nc + c])));
479:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
480:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "  res der %" PetscInt_FMT ":", field));
481:           for (c = 0; c < T[field]->Nc; ++c) {
482:             for (d = 0; d < dE; ++d) PetscCall(PetscPrintf(PETSC_COMM_SELF, " %g", (double)PetscRealPart(f1[(q * T[field]->Nc + c) * dE + d])));
483:           }
484:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
485:         }
486:         // LCOV_EXCL_STOP
487:       }
488:     }
489:     PetscCall(PetscFEUpdateElementVec_Internal(fe, T[field], 0, basisReal, basisDerReal, e, cgeom, f0, f1, &elemVec[cOffset + fOffset]));
490:     cOffset += totDim;
491:     cOffsetAux += totDimAux;
492:   }
493:   PetscFunctionReturn(PETSC_SUCCESS);
494: }

496: PetscErrorCode PetscFEIntegrateBdResidual_Basic(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
497: {
498:   const PetscInt     debug = ds->printIntegrate;
499:   const PetscInt     field = key.field;
500:   PetscFE            fe;
501:   PetscInt           n0, n1, i;
502:   PetscBdPointFunc  *f0_func, *f1_func;
503:   PetscQuadrature    quad;
504:   PetscTabulation   *Tf, *TfAux = NULL;
505:   PetscScalar       *f0, *f1, *u, *u_t = NULL, *u_x, *a, *a_x, *basisReal, *basisDerReal;
506:   const PetscScalar *constants;
507:   PetscReal         *x, cellScale;
508:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
509:   PetscInt           dim, dimAux, numConstants, Nf, NfAux = 0, totDim, totDimAux = 0, cOffset = 0, cOffsetAux = 0, fOffset, e, NcI;
510:   PetscBool          auxOnBd = PETSC_FALSE;
511:   const PetscReal   *quadPoints, *quadWeights;
512:   PetscInt           qdim, qNc, Nq, q, dE;

514:   PetscFunctionBegin;
515:   PetscCall(PetscDSGetDiscretization(ds, field, (PetscObject *)&fe));
516:   PetscCall(PetscFEGetSpatialDimension(fe, &dim));
517:   cellScale = (PetscReal)PetscPowInt(2, dim);
518:   PetscCall(PetscFEGetFaceQuadrature(fe, &quad));
519:   PetscCall(PetscDSGetNumFields(ds, &Nf));
520:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
521:   PetscCall(PetscDSGetComponentOffsets(ds, &uOff));
522:   PetscCall(PetscDSGetComponentDerivativeOffsets(ds, &uOff_x));
523:   PetscCall(PetscDSGetFieldOffset(ds, field, &fOffset));
524:   PetscCall(PetscWeakFormGetBdResidual(wf, key.label, key.value, key.field, key.part, &n0, &f0_func, &n1, &f1_func));
525:   if (!n0 && !n1) PetscFunctionReturn(PETSC_SUCCESS);
526:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, coefficients_t ? &u_t : NULL, &u_x));
527:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, NULL, NULL));
528:   PetscCall(PetscDSGetWeakFormArrays(ds, &f0, &f1, NULL, NULL, NULL, NULL));
529:   PetscCall(PetscDSGetFaceTabulation(ds, &Tf));
530:   PetscCall(PetscDSSetIntegrationParameters(ds, field, PETSC_DETERMINE));
531:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
532:   if (dsAux) {
533:     PetscCall(PetscDSGetSpatialDimension(dsAux, &dimAux));
534:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
535:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
536:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
537:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
538:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
539:     auxOnBd = dimAux < dim ? PETSC_TRUE : PETSC_FALSE;
540:     if (auxOnBd) PetscCall(PetscDSGetTabulation(dsAux, &TfAux));
541:     else PetscCall(PetscDSGetFaceTabulation(dsAux, &TfAux));
542:     PetscCheck(Tf[0]->Np == TfAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", Tf[0]->Np, TfAux[0]->Np);
543:   }
544:   NcI = Tf[field]->Nc;
545:   PetscCall(PetscQuadratureGetData(quad, &qdim, &qNc, &Nq, &quadPoints, &quadWeights));
546:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
547:   dE = fgeom->dimEmbed;
548:   /* TODO FIX THIS */
549:   fgeom->dim = dim - 1;
550:   PetscCheck(fgeom->dim == qdim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "FEGeom dim %" PetscInt_FMT " != %" PetscInt_FMT " quadrature dim", fgeom->dim, qdim);
551:   for (e = 0; e < Ne; ++e) {
552:     PetscFEGeom    fegeom, cgeom;
553:     const PetscInt face = fgeom->face[e][0];

555:     fegeom.v = x; /* Workspace */
556:     PetscCall(PetscArrayzero(f0, Nq * NcI));
557:     PetscCall(PetscArrayzero(f1, Nq * NcI * dE));
558:     for (q = 0; q < Nq; ++q) {
559:       PetscReal w;
560:       PetscInt  c, d;

562:       PetscCall(PetscFEGeomGetPoint(fgeom, e, q, &quadPoints[q * fgeom->dim], &fegeom));
563:       PetscCall(PetscFEGeomGetCellPoint(fgeom, e, q, &cgeom));
564:       PetscCall(PetscDSSetCellParameters(ds, fegeom.detJ[0] * cellScale));
565:       w = fegeom.detJ[0] * quadWeights[q];
566:       if (debug > 1) {
567:         if ((fgeom->isAffine && q == 0) || (!fgeom->isAffine)) {
568:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "  detJ: %g\n", (double)fegeom.detJ[0]));
569: #if !defined(PETSC_USE_COMPLEX)
570:           PetscCall(DMPrintCellMatrix(e, "invJ", dim, dim, fegeom.invJ));
571:           PetscCall(DMPrintCellVector(e, "n", dim, fegeom.n));
572: #endif
573:         }
574:       }
575:       PetscCall(PetscFEEvaluateFieldJets_Internal(ds, Nf, face, q, Tf, &cgeom, &coefficients[cOffset], PetscSafePointerPlusOffset(coefficients_t, cOffset), u, u_x, u_t));
576:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, auxOnBd ? 0 : face, q, TfAux, &cgeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
577:       for (i = 0; i < n0; ++i) f0_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, fegeom.v, fegeom.n, numConstants, constants, &f0[q * NcI]);
578:       for (c = 0; c < NcI; ++c) f0[q * NcI + c] *= w;
579:       for (i = 0; i < n1; ++i) f1_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, fegeom.v, fegeom.n, numConstants, constants, &f1[q * NcI * dE]);
580:       for (c = 0; c < NcI; ++c)
581:         for (d = 0; d < dE; ++d) f1[(q * NcI + c) * dE + d] *= w;
582:       if (debug) {
583:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  elem %" PetscInt_FMT " quad point %" PetscInt_FMT "\n", e, q));
584:         for (c = 0; c < NcI; ++c) {
585:           if (n0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  f0[%" PetscInt_FMT "] %g\n", c, (double)PetscRealPart(f0[q * NcI + c])));
586:           if (n1) {
587:             for (d = 0; d < dim; ++d) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  f1[%" PetscInt_FMT ",%" PetscInt_FMT "] %g", c, d, (double)PetscRealPart(f1[(q * NcI + c) * dim + d])));
588:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
589:           }
590:         }
591:       }
592:     }
593:     PetscCall(PetscFEUpdateElementVec_Internal(fe, Tf[field], face, basisReal, basisDerReal, e, fgeom, f0, f1, &elemVec[cOffset + fOffset]));
594:     cOffset += totDim;
595:     cOffsetAux += totDimAux;
596:   }
597:   PetscFunctionReturn(PETSC_SUCCESS);
598: }

600: /*
601:   BdIntegral: Operates completely in the embedding dimension. The trick is to have special "face quadrature" so we only integrate over the face, but
602:               all transforms operate in the full space and are square.

604:   HybridIntegral: The discretization is lower dimensional. That means the transforms are non-square.
605:     1) DMPlexGetCellFields() retrieves from the hybrid cell, so it gets fields from both faces
606:     2) We need to assume that the orientation is 0 for both
607:     3) TODO We need to use a non-square Jacobian for the derivative maps, meaning the embedding dimension has to go to EvaluateFieldJets() and UpdateElementVec()
608: */
609: PETSC_INTERN PetscErrorCode PetscFEIntegrateHybridResidual_Basic(PetscDS ds, PetscDS dsIn, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
610: {
611:   const PetscInt     debug = ds->printIntegrate;
612:   const PetscInt     field = key.field;
613:   PetscFE            fe;
614:   PetscWeakForm      wf;
615:   PetscInt           n0, n1, i;
616:   PetscBdPointFunc  *f0_func, *f1_func;
617:   PetscQuadrature    quad;
618:   DMPolytopeType     ct;
619:   PetscTabulation   *Tf, *TfIn, *TfAux = NULL;
620:   PetscScalar       *f0, *f1, *u, *u_t = NULL, *u_x, *a, *a_x, *basisReal, *basisDerReal;
621:   const PetscScalar *constants;
622:   PetscReal         *x;
623:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
624:   PetscInt           dim, dimAux, numConstants, Nf, NfAux = 0, totDim, totDimIn, totDimAux = 0, cOffset = 0, cOffsetIn = 0, cOffsetAux = 0, fOffset, e, NcI, NcS;
625:   PetscBool          isCohesiveField, auxOnBd = PETSC_FALSE;
626:   const PetscReal   *quadPoints, *quadWeights;
627:   PetscInt           qdim, qNc, Nq, q, dE;

629:   PetscFunctionBegin;
630:   /* Hybrid discretization is posed directly on faces */
631:   PetscCall(PetscDSGetDiscretization(ds, field, (PetscObject *)&fe));
632:   PetscCall(PetscFEGetSpatialDimension(fe, &dim));
633:   PetscCall(PetscFEGetQuadrature(fe, &quad));
634:   PetscCall(PetscDSGetNumFields(ds, &Nf));
635:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
636:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
637:   PetscCall(PetscDSGetComponentOffsetsCohesive(dsIn, 0, &uOff)); // Change 0 to s for one-sided offsets
638:   PetscCall(PetscDSGetComponentDerivativeOffsetsCohesive(dsIn, s, &uOff_x));
639:   PetscCall(PetscDSGetFieldOffsetCohesive(ds, field, &fOffset));
640:   PetscCall(PetscDSGetWeakForm(ds, &wf));
641:   PetscCall(PetscWeakFormGetBdResidual(wf, key.label, key.value, key.field, key.part, &n0, &f0_func, &n1, &f1_func));
642:   if (!n0 && !n1) PetscFunctionReturn(PETSC_SUCCESS);
643:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, coefficients_t ? &u_t : NULL, &u_x));
644:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, NULL, NULL));
645:   PetscCall(PetscDSGetWeakFormArrays(ds, &f0, &f1, NULL, NULL, NULL, NULL));
646:   /* NOTE This is a bulk tabulation because the DS is a face discretization */
647:   PetscCall(PetscDSGetTabulation(ds, &Tf));
648:   PetscCall(PetscDSGetFaceTabulation(dsIn, &TfIn));
649:   PetscCall(PetscDSSetIntegrationParameters(ds, field, PETSC_DETERMINE));
650:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
651:   if (dsAux) {
652:     PetscCall(PetscDSGetSpatialDimension(dsAux, &dimAux));
653:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
654:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
655:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
656:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
657:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
658:     auxOnBd = dimAux == dim ? PETSC_TRUE : PETSC_FALSE;
659:     if (auxOnBd) PetscCall(PetscDSGetTabulation(dsAux, &TfAux));
660:     else PetscCall(PetscDSGetFaceTabulation(dsAux, &TfAux));
661:     PetscCheck(Tf[0]->Np == TfAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", Tf[0]->Np, TfAux[0]->Np);
662:   }
663:   PetscCall(PetscDSGetCohesive(ds, field, &isCohesiveField));
664:   NcI = Tf[field]->Nc;
665:   NcS = NcI;
666:   if (!isCohesiveField && s == 2) {
667:     // If we are integrating over a cohesive cell (s = 2) for a non-cohesive fields, we use both sides
668:     NcS *= 2;
669:   }
670:   PetscCall(PetscQuadratureGetData(quad, &qdim, &qNc, &Nq, &quadPoints, &quadWeights));
671:   PetscCall(PetscQuadratureGetCellType(quad, &ct));
672:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
673:   dE = fgeom->dimEmbed;
674:   PetscCheck(fgeom->dim == qdim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "FEGeom dim %" PetscInt_FMT " != %" PetscInt_FMT " quadrature dim", fgeom->dim, qdim);
675:   for (e = 0; e < Ne; ++e) {
676:     PetscFEGeom    fegeom;
677:     const PetscInt face[2]  = {fgeom->face[e * 2 + 0][0], fgeom->face[e * 2 + 1][2]};
678:     const PetscInt ornt[2]  = {fgeom->face[e * 2 + 0][1], fgeom->face[e * 2 + 1][3]};
679:     const PetscInt cornt[2] = {fgeom->face[e * 2 + 0][3], fgeom->face[e * 2 + 1][1]};

681:     fegeom.v = x; /* Workspace */
682:     PetscCall(PetscArrayzero(f0, Nq * NcS));
683:     PetscCall(PetscArrayzero(f1, Nq * NcS * dE));
684:     for (q = 0; q < Nq; ++q) {
685:       PetscInt  qpt[2];
686:       PetscReal w;
687:       PetscInt  c, d;

689:       PetscCall(PetscDSPermuteQuadPoint(ds, DMPolytopeTypeComposeOrientationInv(ct, cornt[0], ornt[0]), field, q, &qpt[0]));
690:       PetscCall(PetscDSPermuteQuadPoint(ds, DMPolytopeTypeComposeOrientationInv(ct, ornt[1], cornt[1]), field, q, &qpt[1]));
691:       PetscCall(PetscFEGeomGetPoint(fgeom, e * 2, q, &quadPoints[q * fgeom->dim], &fegeom));
692:       w = fegeom.detJ[0] * quadWeights[q];
693:       if (debug > 1 && q < fgeom->numPoints) {
694:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  detJ: %g\n", (double)fegeom.detJ[0]));
695: #if !defined(PETSC_USE_COMPLEX)
696:         PetscCall(DMPrintCellMatrix(e, "invJ", dim, dE, fegeom.invJ));
697: #endif
698:       }
699:       if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT " weight %g detJ %g\n", q, (double)quadWeights[q], (double)fegeom.detJ[0]));
700:       /* TODO Is this cell or face quadrature, meaning should we use 'q' or 'face*Nq+q' */
701:       PetscCall(PetscFEEvaluateFieldJets_Hybrid_Internal(ds, Nf, 0, q, Tf, face, qpt, TfIn, &fegeom, &coefficients[cOffsetIn], PetscSafePointerPlusOffset(coefficients_t, cOffsetIn), u, u_x, u_t));
702:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, auxOnBd ? 0 : face[s], auxOnBd ? q : qpt[s], TfAux, &fegeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
703:       for (i = 0; i < n0; ++i) f0_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, fegeom.v, fegeom.n, numConstants, constants, &f0[q * NcS]);
704:       for (c = 0; c < NcS; ++c) f0[q * NcS + c] *= w;
705:       for (i = 0; i < n1; ++i) f1_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, fegeom.v, fegeom.n, numConstants, constants, &f1[q * NcS * dE]);
706:       for (c = 0; c < NcS; ++c)
707:         for (d = 0; d < dE; ++d) f1[(q * NcS + c) * dE + d] *= w;
708:     }
709:     if (isCohesiveField) {
710:       PetscCall(PetscFEUpdateElementVec_Internal(fe, Tf[field], 0, basisReal, basisDerReal, e, fgeom, f0, f1, &elemVec[cOffset + fOffset]));
711:     } else {
712:       PetscCall(PetscFEUpdateElementVec_Hybrid_Internal(fe, Tf[field], 0, s, basisReal, basisDerReal, fgeom, f0, f1, &elemVec[cOffset + fOffset]));
713:     }
714:     cOffset += totDim;
715:     cOffsetIn += totDimIn;
716:     cOffsetAux += totDimAux;
717:   }
718:   PetscFunctionReturn(PETSC_SUCCESS);
719: }

721: PetscErrorCode PetscFEIntegrateJacobian_Basic(PetscDS ds, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
722: {
723:   const PetscInt     debug = ds->printIntegrate;
724:   PetscFE            feI, feJ;
725:   PetscWeakForm      wf;
726:   PetscPointJac     *g0_func, *g1_func, *g2_func, *g3_func;
727:   PetscInt           n0, n1, n2, n3, i;
728:   PetscInt           cOffset    = 0; /* Offset into coefficients[] for element e */
729:   PetscInt           cOffsetAux = 0; /* Offset into coefficientsAux[] for element e */
730:   PetscInt           eOffset    = 0; /* Offset into elemMat[] for element e */
731:   PetscInt           offsetI    = 0; /* Offset into an element vector for fieldI */
732:   PetscInt           offsetJ    = 0; /* Offset into an element vector for fieldJ */
733:   PetscQuadrature    quad;
734:   PetscTabulation   *T, *TAux = NULL;
735:   PetscScalar       *g0 = NULL, *g1 = NULL, *g2 = NULL, *g3 = NULL, *u, *u_t = NULL, *u_x, *a, *a_x, *basisReal, *basisDerReal, *testReal, *testDerReal;
736:   const PetscScalar *constants;
737:   PetscReal         *x, cellScale;
738:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
739:   PetscInt           NcI = 0, NcJ = 0;
740:   PetscInt           dim, numConstants, Nf, fieldI, fieldJ, NfAux = 0, totDim, totDimAux = 0, e;
741:   PetscInt           dE, Np;
742:   PetscBool          isAffine;
743:   const PetscReal   *quadPoints, *quadWeights;
744:   PetscInt           qNc, Nq, q;

746:   PetscFunctionBegin;
747:   PetscCall(PetscDSGetNumFields(ds, &Nf));
748:   fieldI = key.field / Nf;
749:   fieldJ = key.field % Nf;
750:   PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
751:   PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
752:   PetscCall(PetscFEGetSpatialDimension(feI, &dim));
753:   cellScale = (PetscReal)PetscPowInt(2, dim);
754:   PetscCall(PetscFEGetQuadrature(feI, &quad));
755:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
756:   PetscCall(PetscDSGetComponentOffsets(ds, &uOff));
757:   PetscCall(PetscDSGetComponentDerivativeOffsets(ds, &uOff_x));
758:   PetscCall(PetscDSGetWeakForm(ds, &wf));
759:   switch (jtype) {
760:   case PETSCFE_JACOBIAN_DYN:
761:     PetscCall(PetscWeakFormGetDynamicJacobian(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
762:     break;
763:   case PETSCFE_JACOBIAN_PRE:
764:     PetscCall(PetscWeakFormGetJacobianPreconditioner(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
765:     break;
766:   case PETSCFE_JACOBIAN:
767:     PetscCall(PetscWeakFormGetJacobian(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
768:     break;
769:   }
770:   if (!n0 && !n1 && !n2 && !n3) PetscFunctionReturn(PETSC_SUCCESS);
771:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, coefficients_t ? &u_t : NULL, &u_x));
772:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, &testReal, &testDerReal));
773:   PetscCall(PetscDSGetWeakFormArrays(ds, NULL, NULL, n0 ? &g0 : NULL, n1 ? &g1 : NULL, n2 ? &g2 : NULL, n3 ? &g3 : NULL));

775:   PetscCall(PetscDSGetTabulation(ds, &T));
776:   PetscCall(PetscDSGetFieldOffset(ds, fieldI, &offsetI));
777:   PetscCall(PetscDSGetFieldOffset(ds, fieldJ, &offsetJ));
778:   PetscCall(PetscDSSetIntegrationParameters(ds, fieldI, fieldJ));
779:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
780:   if (dsAux) {
781:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
782:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
783:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
784:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
785:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
786:     PetscCall(PetscDSGetTabulation(dsAux, &TAux));
787:     PetscCheck(T[0]->Np == TAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", T[0]->Np, TAux[0]->Np);
788:   }
789:   NcI      = T[fieldI]->Nc;
790:   NcJ      = T[fieldJ]->Nc;
791:   Np       = cgeom->numPoints;
792:   dE       = cgeom->dimEmbed;
793:   isAffine = cgeom->isAffine;
794:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
795:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);

797:   for (e = 0; e < Ne; ++e) {
798:     PetscFEGeom fegeom;

800:     fegeom.dim      = cgeom->dim;
801:     fegeom.dimEmbed = cgeom->dimEmbed;
802:     fegeom.xi       = NULL;
803:     if (isAffine) {
804:       fegeom.v    = x;
805:       fegeom.xi   = cgeom->xi;
806:       fegeom.J    = &cgeom->J[e * Np * dE * dE];
807:       fegeom.invJ = &cgeom->invJ[e * Np * dE * dE];
808:       fegeom.detJ = &cgeom->detJ[e * Np];
809:     }
810:     for (q = 0; q < Nq; ++q) {
811:       PetscReal w;
812:       PetscInt  c;

814:       if (isAffine) {
815:         CoordinatesRefToReal(dE, dim, fegeom.xi, &cgeom->v[e * Np * dE], fegeom.J, &quadPoints[q * dim], x);
816:       } else {
817:         fegeom.v    = &cgeom->v[(e * Np + q) * dE];
818:         fegeom.J    = &cgeom->J[(e * Np + q) * dE * dE];
819:         fegeom.invJ = &cgeom->invJ[(e * Np + q) * dE * dE];
820:         fegeom.detJ = &cgeom->detJ[e * Np + q];
821:       }
822:       PetscCall(PetscDSSetCellParameters(ds, fegeom.detJ[0] * cellScale));
823:       if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT " weight %g detJ %g\n", q, (double)quadWeights[q], (double)fegeom.detJ[0]));
824:       w = fegeom.detJ[0] * quadWeights[q];
825:       if (coefficients) PetscCall(PetscFEEvaluateFieldJets_Internal(ds, Nf, 0, q, T, &fegeom, &coefficients[cOffset], PetscSafePointerPlusOffset(coefficients_t, cOffset), u, u_x, u_t));
826:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, 0, q, TAux, &fegeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
827:       if (n0) {
828:         PetscCall(PetscArrayzero(g0, NcI * NcJ));
829:         for (i = 0; i < n0; ++i) g0_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, numConstants, constants, g0);
830:         for (c = 0; c < NcI * NcJ; ++c) g0[c] *= w;
831:       }
832:       if (n1) {
833:         PetscCall(PetscArrayzero(g1, NcI * NcJ * dE));
834:         for (i = 0; i < n1; ++i) g1_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, numConstants, constants, g1);
835:         for (c = 0; c < NcI * NcJ * dE; ++c) g1[c] *= w;
836:       }
837:       if (n2) {
838:         PetscCall(PetscArrayzero(g2, NcI * NcJ * dE));
839:         for (i = 0; i < n2; ++i) g2_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, numConstants, constants, g2);
840:         for (c = 0; c < NcI * NcJ * dE; ++c) g2[c] *= w;
841:       }
842:       if (n3) {
843:         PetscCall(PetscArrayzero(g3, NcI * NcJ * dE * dE));
844:         for (i = 0; i < n3; ++i) g3_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, numConstants, constants, g3);
845:         for (c = 0; c < NcI * NcJ * dE * dE; ++c) g3[c] *= w;
846:       }

848:       PetscCall(PetscFEUpdateElementMat_Internal(feI, feJ, 0, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, g0, g1, g2, g3, totDim, offsetI, offsetJ, elemMat + eOffset));
849:     }
850:     if (debug > 1) {
851:       PetscInt f, g;

853:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "Element matrix for fields %" PetscInt_FMT " and %" PetscInt_FMT "\n", fieldI, fieldJ));
854:       for (f = 0; f < T[fieldI]->Nb; ++f) {
855:         const PetscInt i = offsetI + f;
856:         for (g = 0; g < T[fieldJ]->Nb; ++g) {
857:           const PetscInt j = offsetJ + g;
858:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elemMat[%" PetscInt_FMT ", %" PetscInt_FMT "]: %g\n", f, g, (double)PetscRealPart(elemMat[eOffset + i * totDim + j])));
859:         }
860:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
861:       }
862:     }
863:     cOffset += totDim;
864:     cOffsetAux += totDimAux;
865:     eOffset += PetscSqr(totDim);
866:   }
867:   PetscFunctionReturn(PETSC_SUCCESS);
868: }

870: PETSC_INTERN PetscErrorCode PetscFEIntegrateBdJacobian_Basic(PetscDS ds, PetscWeakForm wf, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
871: {
872:   const PetscInt     debug = ds->printIntegrate;
873:   PetscFE            feI, feJ;
874:   PetscBdPointJac   *g0_func, *g1_func, *g2_func, *g3_func;
875:   PetscInt           n0, n1, n2, n3, i;
876:   PetscInt           cOffset    = 0; /* Offset into coefficients[] for element e */
877:   PetscInt           cOffsetAux = 0; /* Offset into coefficientsAux[] for element e */
878:   PetscInt           eOffset    = 0; /* Offset into elemMat[] for element e */
879:   PetscInt           offsetI    = 0; /* Offset into an element vector for fieldI */
880:   PetscInt           offsetJ    = 0; /* Offset into an element vector for fieldJ */
881:   PetscQuadrature    quad;
882:   PetscTabulation   *T, *TAux = NULL;
883:   PetscScalar       *g0, *g1, *g2, *g3, *u, *u_t = NULL, *u_x, *a, *a_x, *basisReal, *basisDerReal, *testReal, *testDerReal;
884:   const PetscScalar *constants;
885:   PetscReal         *x, cellScale;
886:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
887:   PetscInt           NcI = 0, NcJ = 0;
888:   PetscInt           dim, numConstants, Nf, fieldI, fieldJ, NfAux = 0, totDim, totDimAux = 0, e;
889:   PetscBool          isAffine;
890:   const PetscReal   *quadPoints, *quadWeights;
891:   PetscInt           qNc, Nq, q, Np, dE;

893:   PetscFunctionBegin;
894:   PetscCall(PetscDSGetNumFields(ds, &Nf));
895:   fieldI = key.field / Nf;
896:   fieldJ = key.field % Nf;
897:   PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
898:   PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
899:   PetscCall(PetscFEGetSpatialDimension(feI, &dim));
900:   cellScale = (PetscReal)PetscPowInt(2, dim);
901:   PetscCall(PetscFEGetFaceQuadrature(feI, &quad));
902:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
903:   PetscCall(PetscDSGetComponentOffsets(ds, &uOff));
904:   PetscCall(PetscDSGetComponentDerivativeOffsets(ds, &uOff_x));
905:   PetscCall(PetscDSGetFieldOffset(ds, fieldI, &offsetI));
906:   PetscCall(PetscDSGetFieldOffset(ds, fieldJ, &offsetJ));
907:   switch (jtype) {
908:   case PETSCFE_JACOBIAN_PRE:
909:     PetscCall(PetscWeakFormGetBdJacobianPreconditioner(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
910:     break;
911:   case PETSCFE_JACOBIAN:
912:     PetscCall(PetscWeakFormGetBdJacobian(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
913:     break;
914:   case PETSCFE_JACOBIAN_DYN:
915:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "PETSCFE_JACOBIAN_DYN is not supported for PetscFEIntegrateBdJacobian()");
916:   }
917:   if (!n0 && !n1 && !n2 && !n3) PetscFunctionReturn(PETSC_SUCCESS);
918:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, coefficients_t ? &u_t : NULL, &u_x));
919:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, &testReal, &testDerReal));
920:   PetscCall(PetscDSGetWeakFormArrays(ds, NULL, NULL, &g0, &g1, &g2, &g3));
921:   PetscCall(PetscDSGetFaceTabulation(ds, &T));
922:   PetscCall(PetscDSSetIntegrationParameters(ds, fieldI, fieldJ));
923:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
924:   if (dsAux) {
925:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
926:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
927:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
928:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
929:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
930:     PetscCall(PetscDSGetFaceTabulation(dsAux, &TAux));
931:   }
932:   NcI = T[fieldI]->Nc, NcJ = T[fieldJ]->Nc;
933:   Np       = fgeom->numPoints;
934:   dE       = fgeom->dimEmbed;
935:   isAffine = fgeom->isAffine;
936:   /* Initialize here in case the function is not defined */
937:   PetscCall(PetscArrayzero(g0, NcI * NcJ));
938:   PetscCall(PetscArrayzero(g1, NcI * NcJ * dE));
939:   PetscCall(PetscArrayzero(g2, NcI * NcJ * dE));
940:   PetscCall(PetscArrayzero(g3, NcI * NcJ * dE * dE));
941:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
942:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
943:   for (e = 0; e < Ne; ++e) {
944:     PetscFEGeom    fegeom, cgeom;
945:     const PetscInt face = fgeom->face[e][0];
946:     fegeom.n            = NULL;
947:     fegeom.v            = NULL;
948:     fegeom.xi           = NULL;
949:     fegeom.J            = NULL;
950:     fegeom.detJ         = NULL;
951:     fegeom.dim          = fgeom->dim;
952:     fegeom.dimEmbed     = fgeom->dimEmbed;
953:     cgeom.dim           = fgeom->dim;
954:     cgeom.dimEmbed      = fgeom->dimEmbed;
955:     if (isAffine) {
956:       fegeom.v    = x;
957:       fegeom.xi   = fgeom->xi;
958:       fegeom.J    = &fgeom->J[e * Np * dE * dE];
959:       fegeom.invJ = &fgeom->invJ[e * Np * dE * dE];
960:       fegeom.detJ = &fgeom->detJ[e * Np];
961:       fegeom.n    = &fgeom->n[e * Np * dE];

963:       cgeom.J    = &fgeom->suppJ[0][e * Np * dE * dE];
964:       cgeom.invJ = &fgeom->suppInvJ[0][e * Np * dE * dE];
965:       cgeom.detJ = &fgeom->suppDetJ[0][e * Np];
966:     }
967:     for (q = 0; q < Nq; ++q) {
968:       PetscReal w;
969:       PetscInt  c;

971:       if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT "\n", q));
972:       if (isAffine) {
973:         CoordinatesRefToReal(dE, dim - 1, fegeom.xi, &fgeom->v[e * Np * dE], fegeom.J, &quadPoints[q * (dim - 1)], x);
974:       } else {
975:         fegeom.v    = &fgeom->v[(e * Np + q) * dE];
976:         fegeom.J    = &fgeom->J[(e * Np + q) * dE * dE];
977:         fegeom.invJ = &fgeom->invJ[(e * Np + q) * dE * dE];
978:         fegeom.detJ = &fgeom->detJ[e * Np + q];
979:         fegeom.n    = &fgeom->n[(e * Np + q) * dE];

981:         cgeom.J    = &fgeom->suppJ[0][(e * Np + q) * dE * dE];
982:         cgeom.invJ = &fgeom->suppInvJ[0][(e * Np + q) * dE * dE];
983:         cgeom.detJ = &fgeom->suppDetJ[0][e * Np + q];
984:       }
985:       PetscCall(PetscDSSetCellParameters(ds, fegeom.detJ[0] * cellScale));
986:       w = fegeom.detJ[0] * quadWeights[q];
987:       if (coefficients) PetscCall(PetscFEEvaluateFieldJets_Internal(ds, Nf, face, q, T, &cgeom, &coefficients[cOffset], &coefficients_t[cOffset], u, u_x, u_t));
988:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, face, q, TAux, &cgeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
989:       if (n0) {
990:         PetscCall(PetscArrayzero(g0, NcI * NcJ));
991:         for (i = 0; i < n0; ++i) g0_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g0);
992:         for (c = 0; c < NcI * NcJ; ++c) g0[c] *= w;
993:       }
994:       if (n1) {
995:         PetscCall(PetscArrayzero(g1, NcI * NcJ * dE));
996:         for (i = 0; i < n1; ++i) g1_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g1);
997:         for (c = 0; c < NcI * NcJ * dim; ++c) g1[c] *= w;
998:       }
999:       if (n2) {
1000:         PetscCall(PetscArrayzero(g2, NcI * NcJ * dE));
1001:         for (i = 0; i < n2; ++i) g2_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g2);
1002:         for (c = 0; c < NcI * NcJ * dim; ++c) g2[c] *= w;
1003:       }
1004:       if (n3) {
1005:         PetscCall(PetscArrayzero(g3, NcI * NcJ * dE * dE));
1006:         for (i = 0; i < n3; ++i) g3_func[i](dE, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g3);
1007:         for (c = 0; c < NcI * NcJ * dim * dim; ++c) g3[c] *= w;
1008:       }

1010:       PetscCall(PetscFEUpdateElementMat_Internal(feI, feJ, face, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &cgeom, g0, g1, g2, g3, totDim, offsetI, offsetJ, elemMat + eOffset));
1011:     }
1012:     if (debug > 1) {
1013:       PetscInt fc, f, gc, g;

1015:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "Element matrix for fields %" PetscInt_FMT " and %" PetscInt_FMT "\n", fieldI, fieldJ));
1016:       for (fc = 0; fc < T[fieldI]->Nc; ++fc) {
1017:         for (f = 0; f < T[fieldI]->Nb; ++f) {
1018:           const PetscInt i = offsetI + f * T[fieldI]->Nc + fc;
1019:           for (gc = 0; gc < T[fieldJ]->Nc; ++gc) {
1020:             for (g = 0; g < T[fieldJ]->Nb; ++g) {
1021:               const PetscInt j = offsetJ + g * T[fieldJ]->Nc + gc;
1022:               PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elemMat[%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT "]: %g\n", f, fc, g, gc, (double)PetscRealPart(elemMat[eOffset + i * totDim + j])));
1023:             }
1024:           }
1025:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
1026:         }
1027:       }
1028:     }
1029:     cOffset += totDim;
1030:     cOffsetAux += totDimAux;
1031:     eOffset += PetscSqr(totDim);
1032:   }
1033:   PetscFunctionReturn(PETSC_SUCCESS);
1034: }

1036: PETSC_INTERN PetscErrorCode PetscFEIntegrateHybridJacobian_Basic(PetscDS ds, PetscDS dsIn, PetscFEJacobianType jtype, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1037: {
1038:   const PetscInt     debug = ds->printIntegrate;
1039:   PetscFE            feI, feJ;
1040:   PetscWeakForm      wf;
1041:   PetscBdPointJac   *g0_func, *g1_func, *g2_func, *g3_func;
1042:   PetscInt           n0, n1, n2, n3, i;
1043:   PetscInt           cOffset    = 0; /* Offset into coefficients[] for element e */
1044:   PetscInt           cOffsetAux = 0; /* Offset into coefficientsAux[] for element e */
1045:   PetscInt           eOffset    = 0; /* Offset into elemMat[] for element e */
1046:   PetscInt           offsetI    = 0; /* Offset into an element vector for fieldI */
1047:   PetscInt           offsetJ    = 0; /* Offset into an element vector for fieldJ */
1048:   PetscQuadrature    quad;
1049:   DMPolytopeType     ct;
1050:   PetscTabulation   *T, *TfIn, *TAux = NULL;
1051:   PetscScalar       *g0, *g1, *g2, *g3, *u, *u_t = NULL, *u_x, *a, *a_x, *basisReal, *basisDerReal, *testReal, *testDerReal;
1052:   const PetscScalar *constants;
1053:   PetscReal         *x;
1054:   PetscInt          *uOff, *uOff_x, *aOff = NULL, *aOff_x = NULL;
1055:   PetscInt           NcI = 0, NcJ = 0, NcS, NcT;
1056:   PetscInt           dim, dimAux, numConstants, Nf, fieldI, fieldJ, NfAux = 0, totDim, totDimAux = 0, e;
1057:   PetscBool          isCohesiveFieldI, isCohesiveFieldJ, auxOnBd = PETSC_FALSE;
1058:   const PetscReal   *quadPoints, *quadWeights;
1059:   PetscInt           qNc, Nq, q;

1061:   PetscFunctionBegin;
1062:   PetscCall(PetscDSGetNumFields(ds, &Nf));
1063:   fieldI = key.field / Nf;
1064:   fieldJ = key.field % Nf;
1065:   /* Hybrid discretization is posed directly on faces */
1066:   PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
1067:   PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
1068:   PetscCall(PetscFEGetSpatialDimension(feI, &dim));
1069:   PetscCall(PetscFEGetQuadrature(feI, &quad));
1070:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
1071:   PetscCall(PetscDSGetComponentOffsetsCohesive(ds, 0, &uOff)); // Change 0 to s for one-sided offsets
1072:   PetscCall(PetscDSGetComponentDerivativeOffsetsCohesive(ds, s, &uOff_x));
1073:   PetscCall(PetscDSGetWeakForm(ds, &wf));
1074:   switch (jtype) {
1075:   case PETSCFE_JACOBIAN_PRE:
1076:     PetscCall(PetscWeakFormGetBdJacobianPreconditioner(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
1077:     break;
1078:   case PETSCFE_JACOBIAN:
1079:     PetscCall(PetscWeakFormGetBdJacobian(wf, key.label, key.value, fieldI, fieldJ, key.part, &n0, &g0_func, &n1, &g1_func, &n2, &g2_func, &n3, &g3_func));
1080:     break;
1081:   case PETSCFE_JACOBIAN_DYN:
1082:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No boundary hybrid Jacobians :)");
1083:   }
1084:   if (!n0 && !n1 && !n2 && !n3) PetscFunctionReturn(PETSC_SUCCESS);
1085:   PetscCall(PetscDSGetEvaluationArrays(ds, &u, coefficients_t ? &u_t : NULL, &u_x));
1086:   PetscCall(PetscDSGetWorkspace(ds, &x, &basisReal, &basisDerReal, &testReal, &testDerReal));
1087:   PetscCall(PetscDSGetWeakFormArrays(ds, NULL, NULL, &g0, &g1, &g2, &g3));
1088:   PetscCall(PetscDSGetTabulation(ds, &T));
1089:   PetscCall(PetscDSGetFaceTabulation(dsIn, &TfIn));
1090:   PetscCall(PetscDSGetFieldOffsetCohesive(ds, fieldI, &offsetI));
1091:   PetscCall(PetscDSGetFieldOffsetCohesive(ds, fieldJ, &offsetJ));
1092:   PetscCall(PetscDSSetIntegrationParameters(ds, fieldI, fieldJ));
1093:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
1094:   if (dsAux) {
1095:     PetscCall(PetscDSGetSpatialDimension(dsAux, &dimAux));
1096:     PetscCall(PetscDSGetNumFields(dsAux, &NfAux));
1097:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
1098:     PetscCall(PetscDSGetComponentOffsets(dsAux, &aOff));
1099:     PetscCall(PetscDSGetComponentDerivativeOffsets(dsAux, &aOff_x));
1100:     PetscCall(PetscDSGetEvaluationArrays(dsAux, &a, NULL, &a_x));
1101:     auxOnBd = dimAux == dim ? PETSC_TRUE : PETSC_FALSE;
1102:     if (auxOnBd) PetscCall(PetscDSGetTabulation(dsAux, &TAux));
1103:     else PetscCall(PetscDSGetFaceTabulation(dsAux, &TAux));
1104:     PetscCheck(T[0]->Np == TAux[0]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of tabulation points %" PetscInt_FMT " != %" PetscInt_FMT " number of auxiliary tabulation points", T[0]->Np, TAux[0]->Np);
1105:   }
1106:   PetscCall(PetscDSGetCohesive(ds, fieldI, &isCohesiveFieldI));
1107:   PetscCall(PetscDSGetCohesive(ds, fieldJ, &isCohesiveFieldJ));
1108:   NcI = T[fieldI]->Nc;
1109:   NcJ = T[fieldJ]->Nc;
1110:   NcS = isCohesiveFieldI ? NcI : 2 * NcI;
1111:   NcT = isCohesiveFieldJ ? NcJ : 2 * NcJ;
1112:   if (!isCohesiveFieldI && s == 2) {
1113:     // If we are integrating over a cohesive cell (s = 2) for a non-cohesive fields, we use both sides
1114:     NcS *= 2;
1115:   }
1116:   if (!isCohesiveFieldJ && s == 2) {
1117:     // If we are integrating over a cohesive cell (s = 2) for a non-cohesive fields, we use both sides
1118:     NcT *= 2;
1119:   }
1120:   // The derivatives are constrained to be along the cell, so there are dim, not dE, components, even though
1121:   // the coordinates are in dE dimensions
1122:   PetscCall(PetscArrayzero(g0, NcS * NcT));
1123:   PetscCall(PetscArrayzero(g1, NcS * NcT * dim));
1124:   PetscCall(PetscArrayzero(g2, NcS * NcT * dim));
1125:   PetscCall(PetscArrayzero(g3, NcS * NcT * dim * dim));
1126:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1127:   PetscCall(PetscQuadratureGetCellType(quad, &ct));
1128:   PetscCheck(qNc == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only supports scalar quadrature, not %" PetscInt_FMT " components", qNc);
1129:   for (e = 0; e < Ne; ++e) {
1130:     PetscFEGeom    fegeom;
1131:     const PetscInt face[2]  = {fgeom->face[e * 2 + 0][0], fgeom->face[e * 2 + 1][2]};
1132:     const PetscInt ornt[2]  = {fgeom->face[e * 2 + 0][1], fgeom->face[e * 2 + 1][3]};
1133:     const PetscInt cornt[2] = {fgeom->face[e * 2 + 0][3], fgeom->face[e * 2 + 1][1]};

1135:     fegeom.v = x; /* Workspace */
1136:     for (q = 0; q < Nq; ++q) {
1137:       PetscInt  qpt[2];
1138:       PetscReal w;
1139:       PetscInt  c;

1141:       PetscCall(PetscDSPermuteQuadPoint(ds, DMPolytopeTypeComposeOrientationInv(ct, cornt[0], ornt[0]), fieldI, q, &qpt[0]));
1142:       PetscCall(PetscDSPermuteQuadPoint(ds, DMPolytopeTypeComposeOrientationInv(ct, ornt[1], cornt[1]), fieldI, q, &qpt[1]));
1143:       PetscCall(PetscFEGeomGetPoint(fgeom, e * 2, q, &quadPoints[q * fgeom->dim], &fegeom));
1144:       w = fegeom.detJ[0] * quadWeights[q];
1145:       if (debug > 1 && q < fgeom->numPoints) {
1146:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "  detJ: %g\n", (double)fegeom.detJ[0]));
1147: #if !defined(PETSC_USE_COMPLEX)
1148:         PetscCall(DMPrintCellMatrix(e, "invJ", dim, dim, fegeom.invJ));
1149: #endif
1150:       }
1151:       if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  quad point %" PetscInt_FMT "\n", q));
1152:       if (coefficients) PetscCall(PetscFEEvaluateFieldJets_Hybrid_Internal(ds, Nf, 0, q, T, face, qpt, TfIn, &fegeom, &coefficients[cOffset], PetscSafePointerPlusOffset(coefficients_t, cOffset), u, u_x, u_t));
1153:       if (dsAux) PetscCall(PetscFEEvaluateFieldJets_Internal(dsAux, NfAux, auxOnBd ? 0 : face[s], auxOnBd ? q : qpt[s], TAux, &fegeom, &coefficientsAux[cOffsetAux], NULL, a, a_x, NULL));
1154:       if (n0) {
1155:         PetscCall(PetscArrayzero(g0, NcS * NcT));
1156:         for (i = 0; i < n0; ++i) g0_func[i](dim, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g0);
1157:         for (c = 0; c < NcS * NcT; ++c) g0[c] *= w;
1158:       }
1159:       if (n1) {
1160:         PetscCall(PetscArrayzero(g1, NcS * NcT * dim));
1161:         for (i = 0; i < n1; ++i) g1_func[i](dim, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g1);
1162:         for (c = 0; c < NcS * NcT * dim; ++c) g1[c] *= w;
1163:       }
1164:       if (n2) {
1165:         PetscCall(PetscArrayzero(g2, NcS * NcT * dim));
1166:         for (i = 0; i < n2; ++i) g2_func[i](dim, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g2);
1167:         for (c = 0; c < NcS * NcT * dim; ++c) g2[c] *= w;
1168:       }
1169:       if (n3) {
1170:         PetscCall(PetscArrayzero(g3, NcS * NcT * dim * dim));
1171:         for (i = 0; i < n3; ++i) g3_func[i](dim, Nf, NfAux, uOff, uOff_x, u, u_t, u_x, aOff, aOff_x, a, NULL, a_x, t, u_tshift, fegeom.v, fegeom.n, numConstants, constants, g3);
1172:         for (c = 0; c < NcS * NcT * dim * dim; ++c) g3[c] *= w;
1173:       }

1175:       if (isCohesiveFieldI) {
1176:         if (isCohesiveFieldJ) {
1177:           PetscCall(PetscFEUpdateElementMat_Internal(feI, feJ, 0, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, g0, g1, g2, g3, totDim, offsetI, offsetJ, elemMat + eOffset));
1178:         } else {
1179:           PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 0, 0, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, g0, g1, g2, g3, eOffset, totDim, offsetI, offsetJ, elemMat));
1180:           PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 1, 1, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, &g0[NcI * NcJ], &g1[NcI * NcJ * dim], &g2[NcI * NcJ * dim], &g3[NcI * NcJ * dim * dim], eOffset, totDim, offsetI, offsetJ, elemMat));
1181:         }
1182:       } else {
1183:         if (s == 2) {
1184:           if (isCohesiveFieldJ) {
1185:             PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 0, 0, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, g0, g1, g2, g3, eOffset, totDim, offsetI, offsetJ, elemMat));
1186:             PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 1, 1, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, &g0[NcI * NcJ], &g1[NcI * NcJ * dim], &g2[NcI * NcJ * dim], &g3[NcI * NcJ * dim * dim], eOffset, totDim, offsetI, offsetJ, elemMat));
1187:           } else {
1188:             PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 0, 0, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, g0, g1, g2, g3, eOffset, totDim, offsetI, offsetJ, elemMat));
1189:             PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 0, 1, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, &g0[NcI * NcJ], &g1[NcI * NcJ * dim], &g2[NcI * NcJ * dim], &g3[NcI * NcJ * dim * dim], eOffset, totDim, offsetI, offsetJ, elemMat));
1190:             PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 1, 0, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, &g0[NcI * NcJ * 2], &g1[NcI * NcJ * dim * 2], &g2[NcI * NcJ * dim * 2], &g3[NcI * NcJ * dim * dim * 2], eOffset, totDim, offsetI, offsetJ, elemMat));
1191:             PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, 1, 1, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, &g0[NcI * NcJ * 3], &g1[NcI * NcJ * dim * 3], &g2[NcI * NcJ * dim * 3], &g3[NcI * NcJ * dim * dim * 3], eOffset, totDim, offsetI, offsetJ, elemMat));
1192:           }
1193:         } else
1194:           PetscCall(PetscFEUpdateElementMat_Hybrid_Internal(feI, isCohesiveFieldI, feJ, isCohesiveFieldJ, 0, s, s, q, T[fieldI], basisReal, basisDerReal, T[fieldJ], testReal, testDerReal, &fegeom, g0, g1, g2, g3, eOffset, totDim, offsetI, offsetJ, elemMat));
1195:       }
1196:     }
1197:     if (debug > 1) {
1198:       const PetscInt fS = 0 + (isCohesiveFieldI ? 0 : (s == 2 ? 0 : s * T[fieldI]->Nb));
1199:       const PetscInt fE = T[fieldI]->Nb + (isCohesiveFieldI ? 0 : (s == 2 ? T[fieldI]->Nb : s * T[fieldI]->Nb));
1200:       const PetscInt gS = 0 + (isCohesiveFieldJ ? 0 : (s == 2 ? 0 : s * T[fieldJ]->Nb));
1201:       const PetscInt gE = T[fieldJ]->Nb + (isCohesiveFieldJ ? 0 : (s == 2 ? T[fieldJ]->Nb : s * T[fieldJ]->Nb));
1202:       PetscInt       f, g;

1204:       PetscCall(PetscPrintf(PETSC_COMM_SELF, "Element matrix for fields %" PetscInt_FMT " and %" PetscInt_FMT " s %s totDim %" PetscInt_FMT " offsets (%" PetscInt_FMT ", %" PetscInt_FMT ", %" PetscInt_FMT ")\n", fieldI, fieldJ, s ? (s > 1 ? "Coh" : "Pos") : "Neg", totDim, eOffset, offsetI, offsetJ));
1205:       for (f = fS; f < fE; ++f) {
1206:         const PetscInt i = offsetI + f;
1207:         for (g = gS; g < gE; ++g) {
1208:           const PetscInt j = offsetJ + g;
1209:           PetscCheck(i < totDim && j < totDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fuck up %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, f, i, g, j);
1210:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elemMat[%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT "]: %g\n", f / NcI, f % NcI, g / NcJ, g % NcJ, (double)PetscRealPart(elemMat[eOffset + i * totDim + j])));
1211:         }
1212:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
1213:       }
1214:     }
1215:     cOffset += totDim;
1216:     cOffsetAux += totDimAux;
1217:     eOffset += PetscSqr(totDim);
1218:   }
1219:   PetscFunctionReturn(PETSC_SUCCESS);
1220: }

1222: static PetscErrorCode PetscFEInitialize_Basic(PetscFE fem)
1223: {
1224:   PetscFunctionBegin;
1225:   fem->ops->setfromoptions          = NULL;
1226:   fem->ops->setup                   = PetscFESetUp_Basic;
1227:   fem->ops->view                    = PetscFEView_Basic;
1228:   fem->ops->destroy                 = PetscFEDestroy_Basic;
1229:   fem->ops->getdimension            = PetscFEGetDimension_Basic;
1230:   fem->ops->computetabulation       = PetscFEComputeTabulation_Basic;
1231:   fem->ops->integrate               = PetscFEIntegrate_Basic;
1232:   fem->ops->integratebd             = PetscFEIntegrateBd_Basic;
1233:   fem->ops->integrateresidual       = PetscFEIntegrateResidual_Basic;
1234:   fem->ops->integratebdresidual     = PetscFEIntegrateBdResidual_Basic;
1235:   fem->ops->integratehybridresidual = PetscFEIntegrateHybridResidual_Basic;
1236:   fem->ops->integratejacobianaction = NULL /* PetscFEIntegrateJacobianAction_Basic */;
1237:   fem->ops->integratejacobian       = PetscFEIntegrateJacobian_Basic;
1238:   fem->ops->integratebdjacobian     = PetscFEIntegrateBdJacobian_Basic;
1239:   fem->ops->integratehybridjacobian = PetscFEIntegrateHybridJacobian_Basic;
1240:   PetscFunctionReturn(PETSC_SUCCESS);
1241: }

1243: /*MC
1244:   PETSCFEBASIC = "basic" - A `PetscFE` object that integrates with basic tiling and no vectorization

1246:   Level: intermediate

1248: .seealso: `PetscFE`, `PetscFEType`, `PetscFECreate()`, `PetscFESetType()`
1249: M*/

1251: PETSC_EXTERN PetscErrorCode PetscFECreate_Basic(PetscFE fem)
1252: {
1253:   PetscFE_Basic *b;

1255:   PetscFunctionBegin;
1257:   PetscCall(PetscNew(&b));
1258:   fem->data = b;

1260:   PetscCall(PetscFEInitialize_Basic(fem));
1261:   PetscFunctionReturn(PETSC_SUCCESS);
1262: }