Actual source code: petscsystypes.h

  1: /* Portions of this code are under:
  2:    Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
  3: */

  5: #pragma once

  7: #include <petscconf.h>
  8: #include <petscconf_poison.h>
  9: #include <petscfix.h>
 10: #include <petscmacros.h>
 11: #include <stddef.h>

 13: /* SUBMANSEC = Sys */

 15: #include <limits.h> // INT_MIN, INT_MAX, CHAR_BIT

 17: #if defined(__clang__) || (PETSC_CPP_VERSION >= 17)
 18:   // clang allows both [[nodiscard]] and __attribute__((warn_unused_result)) on type
 19:   // definitions. GCC, however, does not, so check that we are using C++17 [[nodiscard]]
 20:   // instead of __attribute__((warn_unused_result))
 21:   #define PETSC_ERROR_CODE_NODISCARD PETSC_NODISCARD
 22: #else
 23:   #define PETSC_ERROR_CODE_NODISCARD
 24: #endif

 26: #ifdef PETSC_CLANG_STATIC_ANALYZER
 27:   #undef PETSC_USE_STRICT_PETSCERRORCODE
 28: #endif

 30: #ifdef PETSC_USE_STRICT_PETSCERRORCODE
 31:   #define PETSC_ERROR_CODE_TYPEDEF   typedef
 32:   #define PETSC_ERROR_CODE_ENUM_NAME PetscErrorCode
 33: #else
 34:   #define PETSC_ERROR_CODE_TYPEDEF
 35:   #define PETSC_ERROR_CODE_ENUM_NAME
 36: #endif

 38: /*E
 39:   PetscErrorCode - Datatype used to return PETSc error codes.

 41:   Level: beginner

 43:   Notes:
 44:   Virtually all PETSc functions return an error code. It is the callers responsibility to check
 45:   the value of the returned error code after each PETSc call to determine if any errors
 46:   occurred. A set of convenience macros (e.g. `PetscCall()`, `PetscCallVoid()`) are provided
 47:   for this purpose. Failing to properly check for errors is not supported, as errors may leave
 48:   PETSc in an undetermined state.

 50:   One can retrieve the error string corresponding to a particular error code using
 51:   `PetscErrorMessage()`.

 53:   The user can also configure PETSc with the `--with-strict-petscerrorcode` option to enable
 54:   compiler warnings when the returned error codes are not captured and checked. Users are
 55:   *heavily* encouraged to opt-in to this option, as it will become enabled by default in a
 56:   future release.

 58:   Developer Notes:
 59:   These are the generic error codes. These error codes are used in many different places in the
 60:   PETSc source code. The C-string versions are at defined in `PetscErrorStrings[]` in
 61:   `src/sys/error/err.c`, while the Fortran versions are defined in
 62:   `src/sys/f90-mod/petscerror.h`. Any changes here must also be made in both locations.

 64: .seealso: `PetscErrorMessage()`, `PetscCall()`, `SETERRQ()`
 65: E*/
 66: PETSC_ERROR_CODE_TYPEDEF enum PETSC_ERROR_CODE_NODISCARD {
 67:   PETSC_SUCCESS                   = 0,
 68:   PETSC_ERR_BOOLEAN_MACRO_FAILURE = 1, /* do not use */

 70:   PETSC_ERR_MIN_VALUE = 54, /* should always be one less than the smallest value */

 72:   PETSC_ERR_MEM            = 55, /* unable to allocate requested memory */
 73:   PETSC_ERR_SUP            = 56, /* no support for requested operation */
 74:   PETSC_ERR_SUP_SYS        = 57, /* no support for requested operation on this computer system */
 75:   PETSC_ERR_ORDER          = 58, /* operation done in wrong order */
 76:   PETSC_ERR_SIG            = 59, /* signal received */
 77:   PETSC_ERR_FP             = 72, /* floating point exception */
 78:   PETSC_ERR_COR            = 74, /* corrupted PETSc object */
 79:   PETSC_ERR_LIB            = 76, /* error in library called by PETSc */
 80:   PETSC_ERR_PLIB           = 77, /* PETSc library generated inconsistent data */
 81:   PETSC_ERR_MEMC           = 78, /* memory corruption */
 82:   PETSC_ERR_CONV_FAILED    = 82, /* iterative method (KSP or SNES) failed */
 83:   PETSC_ERR_USER           = 83, /* user has not provided needed function */
 84:   PETSC_ERR_SYS            = 88, /* error in system call */
 85:   PETSC_ERR_POINTER        = 70, /* pointer does not point to valid address */
 86:   PETSC_ERR_MPI_LIB_INCOMP = 87, /* MPI library at runtime is not compatible with MPI user compiled with */

 88:   PETSC_ERR_ARG_SIZ          = 60, /* nonconforming object sizes used in operation */
 89:   PETSC_ERR_ARG_IDN          = 61, /* two arguments not allowed to be the same */
 90:   PETSC_ERR_ARG_WRONG        = 62, /* wrong argument (but object probably ok) */
 91:   PETSC_ERR_ARG_CORRUPT      = 64, /* null or corrupted PETSc object as argument */
 92:   PETSC_ERR_ARG_OUTOFRANGE   = 63, /* input argument, out of range */
 93:   PETSC_ERR_ARG_BADPTR       = 68, /* invalid pointer argument */
 94:   PETSC_ERR_ARG_NOTSAMETYPE  = 69, /* two args must be same object type */
 95:   PETSC_ERR_ARG_NOTSAMECOMM  = 80, /* two args must be same communicators */
 96:   PETSC_ERR_ARG_WRONGSTATE   = 73, /* object in argument is in wrong state, e.g. unassembled mat */
 97:   PETSC_ERR_ARG_TYPENOTSET   = 89, /* the type of the object has not yet been set */
 98:   PETSC_ERR_ARG_INCOMP       = 75, /* two arguments are incompatible */
 99:   PETSC_ERR_ARG_NULL         = 85, /* argument is null that should not be */
100:   PETSC_ERR_ARG_UNKNOWN_TYPE = 86, /* type name doesn't match any registered type */

102:   PETSC_ERR_FILE_OPEN       = 65, /* unable to open file */
103:   PETSC_ERR_FILE_READ       = 66, /* unable to read from file */
104:   PETSC_ERR_FILE_WRITE      = 67, /* unable to write to file */
105:   PETSC_ERR_FILE_UNEXPECTED = 79, /* unexpected data in file */

107:   PETSC_ERR_MAT_LU_ZRPVT = 71, /* detected a zero pivot during LU factorization */
108:   PETSC_ERR_MAT_CH_ZRPVT = 81, /* detected a zero pivot during Cholesky factorization */

110:   PETSC_ERR_INT_OVERFLOW   = 84,
111:   PETSC_ERR_FLOP_COUNT     = 90,
112:   PETSC_ERR_NOT_CONVERGED  = 91,  /* solver did not converge */
113:   PETSC_ERR_MISSING_FACTOR = 92,  /* MatGetFactor() failed */
114:   PETSC_ERR_OPT_OVERWRITE  = 93,  /* attempted to over write options which should not be changed */
115:   PETSC_ERR_WRONG_MPI_SIZE = 94,  /* example/application run with number of MPI ranks it does not support */
116:   PETSC_ERR_USER_INPUT     = 95,  /* missing or incorrect user input */
117:   PETSC_ERR_GPU_RESOURCE   = 96,  /* unable to load a GPU resource, for example cuBLAS */
118:   PETSC_ERR_GPU            = 97,  /* An error from a GPU call, this may be due to lack of resources on the GPU or a true error in the call */
119:   PETSC_ERR_MPI            = 98,  /* general MPI error */
120:   PETSC_ERR_RETURN         = 99,  /* PetscError() incorrectly returned an error code of 0 */
121:   PETSC_ERR_MEM_LEAK       = 100, /* memory alloc/free imbalance */
122:   PETSC_ERR_MAX_VALUE      = 101, /* this is always the one more than the largest error code */

124:   /*
125:     do not use, exist purely to make the enum bounds equal that of a regular int (so conversion
126:     to int in main() is not undefined behavior)
127:   */
128:   PETSC_ERR_MIN_SIGNED_BOUND_DO_NOT_USE = INT_MIN,
129:   PETSC_ERR_MAX_SIGNED_BOUND_DO_NOT_USE = INT_MAX
130: } PETSC_ERROR_CODE_ENUM_NAME;

132: #ifndef PETSC_USE_STRICT_PETSCERRORCODE
133: typedef int PetscErrorCode;

135:   /*
136:   Needed so that C++ lambdas can deduce the return type as PetscErrorCode from
137:   PetscFunctionReturn(PETSC_SUCCESS). Otherwise we get

139:   error: return type '(unnamed enum at include/petscsystypes.h:50:1)' must match previous
140:   return type 'int' when lambda expression has unspecified explicit return type
141:   PetscFunctionReturn(PETSC_SUCCESS);
142:   ^
143: */
144:   #define PETSC_SUCCESS ((PetscErrorCode)0)
145: #endif

147: #undef PETSC_ERROR_CODE_NODISCARD
148: #undef PETSC_ERROR_CODE_TYPEDEF
149: #undef PETSC_ERROR_CODE_ENUM_NAME

151: /*MC
152:     PetscClassId - A unique id used to identify each PETSc class.

154:     Level: developer

156:     Note:
157:     Use `PetscClassIdRegister()` to obtain a new value for a new class being created. Usually
158:     XXXInitializePackage() calls it for each class it defines.

160:     Developer Note:
161:     Internal integer stored in the `_p_PetscObject` data structure. These are all computed by an offset from the lowest one, `PETSC_SMALLEST_CLASSID`.

163: .seealso: `PetscClassIdRegister()`, `PetscLogEventRegister()`, `PetscHeaderCreate()`
164: M*/
165: typedef int PetscClassId;

167: /*MC
168:     PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.

170:     Level: intermediate

172:     Notes:
173:     This is always a 32-bit integer, sometimes it is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
174:     standard C/Fortran integers are 32-bit then this is NOT the same as `PetscInt`; it remains 32-bit.

176:     `PetscMPIIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscMPIInt`, if not it
177:     generates a `PETSC_ERR_ARG_OUTOFRANGE` error.

179: .seealso: [](stylePetscCount), `PetscBLASInt`, `PetscInt`, `PetscMPIIntCast()`
180: M*/
181: typedef int PetscMPIInt;

183: /* Limit MPI to 32-bits */
184: enum {
185:   PETSC_MPI_INT_MIN = INT_MIN,
186:   PETSC_MPI_INT_MAX = INT_MAX
187: };

189: /*MC
190:     PetscSizeT - datatype used to represent sizes in memory (like `size_t`)

192:     Level: intermediate

194:     Notes:
195:     This is equivalent to `size_t`, but defined for consistency with Fortran, which lacks a native equivalent of `size_t`.

197: .seealso: `PetscInt`, `PetscInt64`, `PetscCount`
198: M*/
199: typedef size_t PetscSizeT;

201: /*MC
202:     PetscCount - signed datatype used to represent counts

204:     Level: intermediate

206:     Notes:
207:     This is equivalent to `ptrdiff_t`, but defined for consistency with Fortran, which lacks a native equivalent of `ptrdiff_t`.

209:     Use `PetscCount_FMT` to format with `PetscPrintf()`, `printf()`, and related functions.

211: .seealso: [](stylePetscCount), `PetscInt`, `PetscInt64`, `PetscSizeT`
212: M*/
213: typedef ptrdiff_t PetscCount;
214: #define PetscCount_FMT "td"

216: /*MC
217:     PetscEnum - datatype used to pass enum types within PETSc functions.

219:     Level: intermediate

221: .seealso: `PetscOptionsGetEnum()`, `PetscOptionsEnum()`, `PetscBagRegisterEnum()`
222: M*/
223: typedef enum {
224:   ENUM_DUMMY
225: } PetscEnum;

227: typedef short PetscShort;
228: typedef char  PetscChar;
229: typedef float PetscFloat;

231: /*MC
232:   PetscInt - PETSc type that represents an integer, used primarily to
233:              represent size of arrays and indexing into arrays. Its size can be configured with the option `--with-64-bit-indices` to be either 32-bit (default) or 64-bit.

235:   Level: beginner

237:   Notes:
238:   For MPI calls that require datatypes, use `MPIU_INT` as the datatype for `PetscInt`. It will automatically work correctly regardless of the size of `PetscInt`.

240: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscIntCast()`
241: M*/

243: #if defined(PETSC_HAVE_STDINT_H)
244:   #include <stdint.h>
245: #endif
246: #if defined(PETSC_HAVE_INTTYPES_H)
249:   #endif
250:   #include <inttypes.h>
251:   #if !defined(PRId64)
252:     #define PRId64 "ld"
253:   #endif
254: #endif

256: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && (defined(PETSC_HAVE_MPIUNI) || defined(PETSC_HAVE_MPI_INT64_T)) /* MPI_INT64_T is not guaranteed to be a macro */
257: typedef int64_t PetscInt64;

259:   #define PETSC_INT64_MIN INT64_MIN
260:   #define PETSC_INT64_MAX INT64_MAX

262: #elif (PETSC_SIZEOF_LONG_LONG == 8)
263: typedef long long PetscInt64;

265:   #define PETSC_INT64_MIN LLONG_MIN
266:   #define PETSC_INT64_MAX LLONG_MAX

268: #elif defined(PETSC_HAVE___INT64)
269: typedef __int64 PetscInt64;

271:   #define PETSC_INT64_MIN INT64_MIN
272:   #define PETSC_INT64_MAX INT64_MAX

274: #else
275:   #error "cannot determine PetscInt64 type"
276: #endif

278: #if PETSC_SIZEOF_SIZE_T == 4
279:   #define PETSC_COUNT_MIN INT_MIN
280:   #define PETSC_COUNT_MAX INT_MAX
281: #else
282:   #define PETSC_COUNT_MIN PETSC_INT64_MIN
283:   #define PETSC_COUNT_MAX PETSC_INT64_MAX
284: #endif

286: typedef int32_t PetscInt32;
287: #define PETSC_INT32_MIN INT32_MIN
288: #define PETSC_INT32_MAX INT32_MAX

290: #if defined(PETSC_USE_64BIT_INDICES)
291: typedef PetscInt64 PetscInt;

293:   #define PETSC_INT_MIN PETSC_INT64_MIN
294:   #define PETSC_INT_MAX PETSC_INT64_MAX
295:   #define PetscInt_FMT  PetscInt64_FMT
296: #else
297: typedef int PetscInt;

299: enum {
300:   PETSC_INT_MIN = INT_MIN,
301:   PETSC_INT_MAX = INT_MAX
302: };
303:   #define PetscInt_FMT "d"
304: #endif

306: #define PETSC_UINT16_MAX 65535

308: /* deprecated */
309: #define PETSC_MIN_INT    PETSC_INT_MIN
310: #define PETSC_MAX_INT    PETSC_INT_MAX
311: #define PETSC_MAX_UINT16 PETSC_UINT16_MAX

313: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && (defined(PETSC_HAVE_MPIUNI) || defined(PETSC_HAVE_MPI_INT64_T)) /* MPI_INT64_T is not guaranteed to be a macro */
314:   #define MPIU_INT64     MPI_INT64_T
315:   #define PetscInt64_FMT PRId64
316: #elif (PETSC_SIZEOF_LONG_LONG == 8)
317:   #define MPIU_INT64     MPI_LONG_LONG_INT
318:   #define PetscInt64_FMT "lld"
319: #elif defined(PETSC_HAVE___INT64)
320:   #define MPIU_INT64     MPI_INT64_T
321:   #define PetscInt64_FMT "ld"
322: #else
323:   #error "cannot determine PetscInt64 type"
324: #endif

326: #define MPIU_INT32     MPI_INT32_T
327: #define PetscInt32_FMT PRId32

329: /*MC
330:    PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.

332:    Level: intermediate

334:    Notes:
335:    Usually this is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
336:    standard C/Fortran integers are 32-bit then this may not be the same as `PetscInt`,
337:    except on some BLAS/LAPACK implementations that support 64-bit integers see the notes below.

339:    `PetscErrorCode` `PetscBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscBLASInt`, if not it
340:     generates a `PETSC_ERR_ARG_OUTOFRANGE` error

342:    Installation Notes\:
343:    ./configure automatically determines the size of the integers used by BLAS/LAPACK except when `--with-batch` is used
344:    in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64-bit and if so pass the flag `--known-64-bit-blas-indices`

346:    MATLAB ships with BLAS and LAPACK that use 64-bit integers, for example if you run ./configure with, the option
347:     `--with-blaslapack-lib`=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]

349:    MKL ships with both 32 and 64-bit integer versions of the BLAS and LAPACK. If you pass the flag `-with-64-bit-blas-indices` PETSc will link
350:    against the 64-bit version, otherwise it uses the 32-bit version

352:    OpenBLAS can be built to use 64-bit integers. The ./configure options `--download-openblas` `-with-64-bit-blas-indices` will build a 64-bit integer version

354:    External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64-bit integers to BLAS/LAPACK so cannot
355:    be used with PETSc when PETSc links against 64-bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
356:    these external libraries while using 64-bit integer BLAS/LAPACK.

358: .seealso: `PetscMPIInt`, `PetscInt`, `PetscBLASIntCast()`
359: M*/
360: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
361: typedef PetscInt64 PetscBLASInt;

363:   #define PETSC_BLAS_INT_MIN PETSC_INT64_MIN
364:   #define PETSC_BLAS_INT_MAX PETSC_INT64_MAX
365:   #define PetscBLASInt_FMT   PetscInt64_FMT
366: #else
367: typedef int PetscBLASInt;

369: enum {
370:   PETSC_BLAS_INT_MIN = INT_MIN,
371:   PETSC_BLAS_INT_MAX = INT_MAX
372: };

374:   #define PetscBLASInt_FMT "d"
375: #endif

377: /*MC
378:    PetscCuBLASInt - datatype used to represent 'int' parameters to cuBLAS/cuSOLVER functions.

380:    Level: intermediate

382:    Notes:
383:    As of this writing `PetscCuBLASInt` is always the system `int`.

385:   `PetscErrorCode` `PetscCuBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscCuBLASInt`, if not it
386:    generates a `PETSC_ERR_ARG_OUTOFRANGE` error

388: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscCuBLASIntCast()`
389: M*/
390: typedef int PetscCuBLASInt;

392: enum {
393:   PETSC_CUBLAS_INT_MIN = INT_MIN,
394:   PETSC_CUBLAS_INT_MAX = INT_MAX
395: };

397: /*MC
398:    PetscHipBLASInt - datatype used to represent 'int' parameters to hipBLAS/hipSOLVER functions.

400:    Level: intermediate

402:    Notes:
403:    `PetscHipBLASInt` is always the system `int`.

405:    `PetscErrorCode` `PetscHipBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscHipBLASInt`, if not it
406:    generates a `PETSC_ERR_ARG_OUTOFRANGE` error

408: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscHipBLASIntCast()`
409: M*/
410: typedef int PetscHipBLASInt;

412: enum {
413:   PETSC_HIPBLAS_INT_MIN = INT_MIN,
414:   PETSC_HIPBLAS_INT_MAX = INT_MAX
415: };

417: /*MC
418:    PetscExodusIIInt - datatype used to represent 'int' parameters to ExodusII functions.

420:    Level: intermediate

422:    Notes:
423:    This is the same as `int`

425: .seealso: `PetscMPIInt`, `PetscInt`, `PetscExodusIIFloat`, `PetscBLASIntCast()`
426: M*/
427: typedef int PetscExodusIIInt;
428: #define PetscExodusIIInt_FMT "d"

430: /*MC
431:    PetscExodusIIFloat - datatype used to represent 'float' parameters to ExodusII functions.

433:    Level: intermediate

435:    Notes:
436:    This is the same as `float`

438: .seealso: `PetscMPIInt`, `PetscInt`, `PetscExodusIIInt`, `PetscBLASIntCast()`
439: M*/
440: typedef float PetscExodusIIFloat;

442: /*E
443:    PetscBool  - Logical variable. Actually an enum in C and a logical in Fortran.

445:    Level: beginner

447:    Developer Note:
448:    Why have `PetscBool`, why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
449:    Boolean values. It is not easy to have a simple macro that will work properly in all circumstances with all three mechanisms.

451: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PetscBool3`
452: E*/
453: typedef enum {
454:   PETSC_FALSE,
455:   PETSC_TRUE
456: } PetscBool;
457: PETSC_EXTERN const char *const PetscBools[];

459: /*E
460:    PetscBool3  - Ternary logical variable. Actually an enum in C and a 4 byte integer in Fortran.

462:    Level: beginner

464:    Note:
465:    Should not be used with the if (flg) or if (!flg) syntax.

467: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PETSC_BOOL3_TRUE`, `PETSC_BOOL3_FALSE`, `PETSC_BOOL3_UNKNOWN`
468: E*/
469: typedef enum {
470:   PETSC_BOOL3_FALSE,
471:   PETSC_BOOL3_TRUE,
472:   PETSC_BOOL3_UNKNOWN = -1 /* the value is unknown at the time of query, but might be determined later */
473: } PetscBool3;

475: #define PetscBool3ToBool(a) ((a) == PETSC_BOOL3_TRUE ? PETSC_TRUE : PETSC_FALSE)
476: #define PetscBoolToBool3(a) ((a) == PETSC_TRUE ? PETSC_BOOL3_TRUE : PETSC_BOOL3_FALSE)

478: /*MC
479:    PetscReal - PETSc type that represents a real number version of `PetscScalar`

481:    Level: beginner

483:    Notes:
484:    For MPI calls that require datatypes, use `MPIU_REAL` as the datatype for `PetscReal` and `MPIU_SUM`, `MPIU_MAX`, etc. for operations.
485:    They will automatically work correctly regardless of the size of `PetscReal`.

487:    See `PetscScalar` for details on how to ./configure the size of `PetscReal`.

489: .seealso: `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`
490: M*/

492: #if defined(PETSC_USE_REAL_SINGLE)
493: typedef float PetscReal;
494: #elif defined(PETSC_USE_REAL_DOUBLE)
495: typedef double PetscReal;
496: #elif defined(PETSC_USE_REAL___FLOAT128)
497:   #if defined(__cplusplus)
498: extern "C" {
499:   #endif
500:   #include <quadmath.h>
501:   #if defined(__cplusplus)
502: }
503:   #endif
504: typedef __float128 PetscReal;
505: #elif defined(PETSC_USE_REAL___FP16)
506: typedef __fp16 PetscReal;
507: #endif /* PETSC_USE_REAL_* */

509: /*MC
510:    PetscComplex - PETSc type that represents a complex number with precision matching that of `PetscReal`.

512:    Synopsis:
513: #include <petscsys.h>
514:    PetscComplex number = 1. + 2.*PETSC_i;

516:    Level: beginner

518:    Notes:
519:    For MPI calls that require datatypes, use `MPIU_COMPLEX` as the datatype for `PetscComplex` and `MPIU_SUM` etc for operations.
520:    They will automatically work correctly regardless of the size of `PetscComplex`.

522:    See `PetscScalar` for details on how to ./configure the size of `PetscReal`

524:    Complex numbers are automatically available if PETSc was able to find a working complex implementation

526:     PETSc has a 'fix' for complex numbers to support expressions such as `std::complex<PetscReal>` + `PetscInt`, which are not supported by the standard
527:     C++ library, but are convenient for petsc users. If the C++ compiler is able to compile code in `petsccxxcomplexfix.h` (This is checked by
528:     configure), we include `petsccxxcomplexfix.h` to provide this convenience.

530:     If the fix causes conflicts, or one really does not want this fix for a particular C++ file, one can define `PETSC_SKIP_CXX_COMPLEX_FIX`
531:     at the beginning of the C++ file to skip the fix.

533: .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PETSC_i`
534: M*/
535: #if !defined(PETSC_SKIP_COMPLEX)
536:   #if defined(PETSC_CLANGUAGE_CXX)
537:     #if !defined(PETSC_USE_REAL___FP16) && !defined(PETSC_USE_REAL___FLOAT128)
538:       #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) /* enable complex for library code */
539:         #define PETSC_HAVE_COMPLEX 1
540:       #elif !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
541:         #define PETSC_HAVE_COMPLEX 1
542:       #endif
543:     #elif defined(PETSC_USE_REAL___FLOAT128) && defined(PETSC_HAVE_C99_COMPLEX)
544:       #define PETSC_HAVE_COMPLEX 1
545:     #endif
546:   #else /* !PETSC_CLANGUAGE_CXX */
547:     #if !defined(PETSC_USE_REAL___FP16)
549:         #define PETSC_HAVE_COMPLEX 1
550:       #elif defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
551:         #define PETSC_HAVE_COMPLEX 1
552:       #endif
553:     #endif
554:   #endif /* PETSC_CLANGUAGE_CXX */
555: #endif   /* !PETSC_SKIP_COMPLEX */

557: #if defined(PETSC_HAVE_COMPLEX)
558:   #if defined(__cplusplus) /* C++ complex support */
559:     /* Locate a C++ complex template library */
560:     #if defined(PETSC_DESIRE_KOKKOS_COMPLEX) /* Defined in petscvec_kokkos.hpp for *.kokkos.cxx files */
561:       #define petsccomplexlib Kokkos
562:       #include <Kokkos_Complex.hpp>
563:     #elif (defined(__CUDACC__) && defined(PETSC_HAVE_CUDA)) || (defined(__HIPCC__) && defined(PETSC_HAVE_HIP))
564:       #define petsccomplexlib thrust
565:       #include <thrust/complex.h>
566:     #elif defined(PETSC_USE_REAL___FLOAT128)
567:       #include <complex.h>
568:     #else
569:       #define petsccomplexlib std
570:       #include <complex>
571:     #endif

573:     /* Define PetscComplex based on the precision */
574:     #if defined(PETSC_USE_REAL_SINGLE)
575: typedef petsccomplexlib::complex<float> PetscComplex;
576:     #elif defined(PETSC_USE_REAL_DOUBLE)
577: typedef petsccomplexlib::complex<double> PetscComplex;
578:     #elif defined(PETSC_USE_REAL___FLOAT128)
579: typedef __complex128 PetscComplex;
580:     #endif

582:     /* Include a PETSc C++ complex 'fix'. Check PetscComplex manual page for details */
583:     #if defined(PETSC_HAVE_CXX_COMPLEX_FIX) && !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
584: #include <petsccxxcomplexfix.h>
585:     #endif
586:   #else /* c99 complex support */
587:     #include <complex.h>
588:     #if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
589: typedef float _Complex PetscComplex;
590:     #elif defined(PETSC_USE_REAL_DOUBLE)
591: typedef double _Complex PetscComplex;
592:     #elif defined(PETSC_USE_REAL___FLOAT128)
593: typedef __complex128 PetscComplex;
594:     #endif /* PETSC_USE_REAL_* */
595:   #endif   /* !__cplusplus */
596: #endif     /* PETSC_HAVE_COMPLEX */

598: /*MC
599:    PetscScalar - PETSc type that represents either a double precision real number, a double precision
600:                  complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
601:                  with `--with-scalar-type`=real,complex `--with-precision`=single,double,__float128,__fp16

603:    Level: beginner

605:    Note:
606:    For MPI calls that require datatypes, use `MPIU_SCALAR` as the datatype for `PetscScalar` and `MPIU_SUM`, etc for operations. They will automatically work correctly regardless of the size of `PetscScalar`.

608: .seealso: `PetscReal`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscRealPart()`, `PetscImaginaryPart()`
609: M*/

611: #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
612: typedef PetscComplex PetscScalar;
613: #else  /* PETSC_USE_COMPLEX */
614: typedef PetscReal PetscScalar;
615: #endif /* PETSC_USE_COMPLEX */

617: /*E
618:     PetscCopyMode  - Determines how an array or `PetscObject` passed to certain functions is copied or retained by the aggregate `PetscObject`

620:    Values for array input:
621: +   `PETSC_COPY_VALUES` - the array values are copied into new space, the user is free to reuse or delete the passed in array
622: .   `PETSC_OWN_POINTER` - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
623:                           delete the array. The array MUST have been obtained with `PetscMalloc()`. Hence this mode cannot be used in Fortran.
624: -   `PETSC_USE_POINTER` - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
625:                           the array but the user must delete the array after the object is destroyed.

627:    Values for PetscObject:
628: +   `PETSC_COPY_VALUES` - the input `PetscObject` is cloned into the aggregate `PetscObject`; the user is free to reuse/modify the input `PetscObject` without side effects.
629: .   `PETSC_OWN_POINTER` - the input `PetscObject` is referenced by pointer (with reference count), thus should not be modified by the user.
630:                           increases its reference count).
631: -   `PETSC_USE_POINTER` - invalid for `PetscObject` inputs.

633:    Level: beginner

635: .seealso: `PetscInsertMode`
636: E*/
637: typedef enum {
638:   PETSC_COPY_VALUES,
639:   PETSC_OWN_POINTER,
640:   PETSC_USE_POINTER
641: } PetscCopyMode;
642: PETSC_EXTERN const char *const PetscCopyModes[];

644: /*MC
645:     PETSC_FALSE - False value of `PetscBool`

647:     Level: beginner

649:     Note:
650:     Zero integer

652: .seealso: `PetscBool`, `PetscBool3`, `PETSC_TRUE`
653: M*/

655: /*MC
656:     PETSC_TRUE - True value of `PetscBool`

658:     Level: beginner

660:     Note:
661:     Nonzero integer

663: .seealso: `PetscBool`, `PetscBool3`, `PETSC_FALSE`
664: M*/

666: /*MC
667:     PetscLogDouble - Used for logging times

669:   Level: developer

671:   Note:
672:   Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.

674: .seealso: `PetscBool`, `PetscDataType`
675: M*/
676: typedef double PetscLogDouble;

678: /*E
679:     PetscDataType - Used for handling different basic data types.

681:    Level: beginner

683:    Notes:
684:    Use of this should be avoided if one can directly use `MPI_Datatype` instead.

686:    `PETSC_INT` is the datatype for a `PetscInt`, regardless of whether it is 4 or 8 bytes.
687:    `PETSC_REAL`, `PETSC_COMPLEX` and `PETSC_SCALAR` are the datatypes for `PetscReal`, `PetscComplex` and `PetscScalar`, regardless of their sizes.

689:    Developer Notes:
690:    It would be nice if we could always just use MPI Datatypes, why can we not?

692:    If you change any values in `PetscDatatype` make sure you update their usage in
693:    share/petsc/matlab/PetscBagRead.m and share/petsc/matlab/@PetscOpenSocket/read/write.m

695:    TODO:
696:    Remove use of improper `PETSC_ENUM`

698: .seealso: `PetscBinaryRead()`, `PetscBinaryWrite()`, `PetscDataTypeToMPIDataType()`,
699:           `PetscDataTypeGetSize()`
700: E*/
701: typedef enum {
702:   PETSC_DATATYPE_UNKNOWN = 0,
703:   PETSC_DOUBLE           = 1,
704:   PETSC_COMPLEX          = 2,
705:   PETSC_LONG             = 3,
706:   PETSC_SHORT            = 4,
707:   PETSC_FLOAT            = 5,
708:   PETSC_CHAR             = 6,
709:   PETSC_BIT_LOGICAL      = 7,
710:   PETSC_ENUM             = 8,
711:   PETSC_BOOL             = 9,
712:   PETSC___FLOAT128       = 10,
713:   PETSC_OBJECT           = 11,
714:   PETSC_FUNCTION         = 12,
715:   PETSC_STRING           = 13,
716:   PETSC___FP16           = 14,
717:   PETSC_STRUCT           = 15,
718:   PETSC_INT              = 16,
719:   PETSC_INT64            = 17,
720:   PETSC_COUNT            = 18,
721:   PETSC_INT32            = 19,
722: } PetscDataType;
723: PETSC_EXTERN const char *const PetscDataTypes[];

725: #if defined(PETSC_USE_REAL_SINGLE)
726:   #define PETSC_REAL PETSC_FLOAT
727: #elif defined(PETSC_USE_REAL_DOUBLE)
728:   #define PETSC_REAL PETSC_DOUBLE
729: #elif defined(PETSC_USE_REAL___FLOAT128)
730:   #define PETSC_REAL PETSC___FLOAT128
731: #elif defined(PETSC_USE_REAL___FP16)
732:   #define PETSC_REAL PETSC___FP16
733: #else
734:   #define PETSC_REAL PETSC_DOUBLE
735: #endif

737: #if defined(PETSC_USE_COMPLEX)
738:   #define PETSC_SCALAR PETSC_COMPLEX
739: #else
740:   #define PETSC_SCALAR PETSC_REAL
741: #endif

743: #define PETSC_FORTRANADDR PETSC_LONG

745: /*S
746:   PetscToken - 'Token' used for managing tokenizing strings

748:   Level: intermediate

750: .seealso: `PetscTokenCreate()`, `PetscTokenFind()`, `PetscTokenDestroy()`
751: S*/
752: typedef struct _p_PetscToken *PetscToken;

754: /*S
755:    PetscObject - any PETSc object, `PetscViewer`, `Mat`, `Vec`, `KSP` etc

757:    Level: beginner

759:    Notes:
760:    This is the base class from which all PETSc objects are derived from.

762:    In certain situations one can cast an object, for example a `Vec`, to a `PetscObject` with (`PetscObject`)vec

764: .seealso: `PetscObjectDestroy()`, `PetscObjectView()`, `PetscObjectGetName()`, `PetscObjectSetName()`, `PetscObjectReference()`, `PetscObjectDereference()`
765: S*/
766: typedef struct _p_PetscObject *PetscObject;

768: /*MC
769:     PetscObjectId - unique integer Id for a `PetscObject`

771:     Level: developer

773:     Note:
774:     Unlike pointer values, object ids are never reused so one may save a `PetscObjectId` and compare it to one obtained later from a `PetscObject` to determine
775:     if the objects are the same. Never compare two object pointer values.

777: .seealso: `PetscObjectState`, `PetscObjectGetId()`
778: M*/
779: typedef PetscInt64 PetscObjectId;

781: /*MC
782:     PetscObjectState - integer state for a `PetscObject`

784:     Level: developer

786:     Note:
787:     Object state is always-increasing and (for objects that track state) can be used to determine if an object has
788:     changed since the last time you interacted with it.  It is 64-bit so that it will not overflow for a very long time.

790: .seealso: `PetscObjectId`, `PetscObjectStateGet()`, `PetscObjectStateIncrease()`, `PetscObjectStateSet()`
791: M*/
792: typedef PetscInt64 PetscObjectState;

794: /*S
795:      PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
796:       by string name

798:    Level: advanced

800: .seealso: `PetscFunctionListAdd()`, `PetscFunctionListDestroy()`
801: S*/
802: typedef struct _n_PetscFunctionList *PetscFunctionList;

804: /*E
805:   PetscFileMode - Access mode for a file.

807:   Values:
808: +  `FILE_MODE_UNDEFINED`     - initial invalid value
809: .  `FILE_MODE_READ`          - open a file at its beginning for reading
810: .  `FILE_MODE_WRITE`         - open a file at its beginning for writing (will create if the file does not exist)
811: .  `FILE_MODE_APPEND`        - open a file at end for writing
812: .  `FILE_MODE_UPDATE`        - open a file for updating, meaning for reading and writing
813: -  `FILE_MODE_APPEND_UPDATE` - open a file for updating, meaning for reading and writing, at the end

815:   Level: beginner

817: .seealso: `PetscViewerFileSetMode()`
818: E*/
819: typedef enum {
820:   FILE_MODE_UNDEFINED = -1,
821:   FILE_MODE_READ      = 0,
822:   FILE_MODE_WRITE,
823:   FILE_MODE_APPEND,
824:   FILE_MODE_UPDATE,
825:   FILE_MODE_APPEND_UPDATE
826: } PetscFileMode;
827: PETSC_EXTERN const char *const PetscFileModes[];

829: typedef void *PetscDLHandle;
830: typedef enum {
831:   PETSC_DL_DECIDE = 0,
832:   PETSC_DL_NOW    = 1,
833:   PETSC_DL_LOCAL  = 2
834: } PetscDLMode;

836: /*S
837:    PetscObjectList - Linked list of PETSc objects, each accessible by string name

839:    Level: developer

841:    Note:
842:    Used by `PetscObjectCompose()` and `PetscObjectQuery()`

844: .seealso: `PetscObjectListAdd()`, `PetscObjectListDestroy()`, `PetscObjectListFind()`, `PetscObjectCompose()`, `PetscObjectQuery()`, `PetscFunctionList`
845: S*/
846: typedef struct _n_PetscObjectList *PetscObjectList;

848: /*S
849:    PetscDLLibrary - Linked list of dynamic libraries to search for functions

851:    Level: developer

853: .seealso: `PetscDLLibraryOpen()`
854: S*/
855: typedef struct _n_PetscDLLibrary *PetscDLLibrary;

857: /*S
858:    PetscContainer - Simple PETSc object that contains a pointer to any required data

860:    Level: advanced

862:    Note:
863:    This is useful to attach arbitrary data to a `PetscObject` with `PetscObjectCompose()` and `PetscObjectQuery()`

865: .seealso: `PetscObject`, `PetscContainerCreate()`, `PetscObjectCompose()`, `PetscObjectQuery()`
866: S*/
867: typedef struct _p_PetscContainer *PetscContainer;

869: /*S
870:    PetscRandom - Abstract PETSc object that manages generating random numbers

872:    Level: intermediate

874: .seealso: `PetscRandomCreate()`, `PetscRandomGetValue()`, `PetscRandomType`
875: S*/
876: typedef struct _p_PetscRandom *PetscRandom;

878: /*
879:    In binary files variables are stored using the following lengths,
880:   regardless of how they are stored in memory on any one particular
881:   machine. Use these rather than sizeof() in computing sizes for
882:   PetscBinarySeek().
883: */
884: #define PETSC_BINARY_INT_SIZE    (32 / 8)
885: #define PETSC_BINARY_FLOAT_SIZE  (32 / 8)
886: #define PETSC_BINARY_CHAR_SIZE   (8 / 8)
887: #define PETSC_BINARY_SHORT_SIZE  (16 / 8)
888: #define PETSC_BINARY_DOUBLE_SIZE (64 / 8)
889: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)

891: /*E
892:   PetscBinarySeekType - argument to `PetscBinarySeek()`

894:   Values:
895: +  `PETSC_BINARY_SEEK_SET` - offset is an absolute location in the file
896: .  `PETSC_BINARY_SEEK_CUR` - offset is an offset from the current location of the file pointer
897: -  `PETSC_BINARY_SEEK_END` - offset is an offset from the end of the file

899:   Level: advanced

901: .seealso: `PetscBinarySeek()`, `PetscBinarySynchronizedSeek()`
902: E*/
903: typedef enum {
904:   PETSC_BINARY_SEEK_SET = 0,
905:   PETSC_BINARY_SEEK_CUR = 1,
906:   PETSC_BINARY_SEEK_END = 2
907: } PetscBinarySeekType;

909: /*E
910:    PetscBuildTwoSidedType - algorithm for setting up two-sided communication for use with `PetscSF`

912:    Values:
913: +  `PETSC_BUILDTWOSIDED_ALLREDUCE`  - classical algorithm using an `MPI_Allreduce()` with
914:                                       a buffer of length equal to the communicator size. Not memory-scalable due to
915:                                       the large reduction size. Requires only an MPI-1 implementation.
916: .  `PETSC_BUILDTWOSIDED_IBARRIER`   - nonblocking algorithm based on `MPI_Issend()` and `MPI_Ibarrier()`.
917:                                       Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires an MPI-3 implementation.
918: -  `PETSC_BUILDTWOSIDED_REDSCATTER` - similar to above, but use more optimized function
919:                                       that only communicates the part of the reduction that is necessary.  Requires an MPI-2 implementation.

921:    Level: developer

923: .seealso: `PetscCommBuildTwoSided()`, `PetscCommBuildTwoSidedSetType()`, `PetscCommBuildTwoSidedGetType()`
924: E*/
925: typedef enum {
926:   PETSC_BUILDTWOSIDED_NOTSET     = -1,
927:   PETSC_BUILDTWOSIDED_ALLREDUCE  = 0,
928:   PETSC_BUILDTWOSIDED_IBARRIER   = 1,
929:   PETSC_BUILDTWOSIDED_REDSCATTER = 2
930:   /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
931: } PetscBuildTwoSidedType;
932: PETSC_EXTERN const char *const PetscBuildTwoSidedTypes[];

934: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
935: /*E
936:   InsertMode - How the entries are combined with the current values in the vectors or matrices

938:   Values:
939: +  `NOT_SET_VALUES`    - do not actually use the values
940: .  `INSERT_VALUES`     - replace the current values with the provided values, unless the index is marked as constrained by the `PetscSection`
941: .  `ADD_VALUES`        - add the values to the current values, unless the index is marked as constrained by the `PetscSection`
942: .  `MAX_VALUES`        - use the maximum of each current value and provided value
943: .  `MIN_VALUES`        - use the minimum of each current value and provided value
944: .  `INSERT_ALL_VALUES` - insert, even if indices that are not marked as constrained by the `PetscSection`
945: .  `ADD_ALL_VALUES`    - add, even if indices that are not marked as constrained by the `PetscSection`
946: .  `INSERT_BC_VALUES`  - insert, but ignore indices that are not marked as constrained by the `PetscSection`
947: -  `ADD_BC_VALUES`     - add, but ignore indices that are not marked as constrained by the `PetscSection`

949:   Level: beginner

951:   Note:
952:   The `PetscSection` that determines the effects of the `InsertMode` values can be obtained by the `Vec` object with `VecGetDM()`
953:   and `DMGetLocalSection()`.

955:   Not all options are supported for all operations or PETSc object types.

957: .seealso: `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
958:           `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`,
959:           `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`
960: E*/
961: typedef enum {
962:   NOT_SET_VALUES,
963:   INSERT_VALUES,
964:   ADD_VALUES,
965:   MAX_VALUES,
966:   MIN_VALUES,
967:   INSERT_ALL_VALUES,
968:   ADD_ALL_VALUES,
969:   INSERT_BC_VALUES,
970:   ADD_BC_VALUES
971: } InsertMode;

973: /*MC
974:     INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value

976:     Level: beginner

978: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
979:           `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `ADD_VALUES`,
980:           `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
981: M*/

983: /*MC
984:     ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
985:                  value into that location

987:     Level: beginner

989: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
990:           `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `INSERT_VALUES`,
991:           `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
992: M*/

994: /*MC
995:     MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location

997:     Level: beginner

999: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
1000: M*/

1002: /*MC
1003:     MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location

1005:     Level: beginner

1007: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
1008: M*/

1010: /*S
1011:    PetscSubcomm - A decomposition of an MPI communicator into subcommunicators

1013:    Values:
1014: +   `PETSC_SUBCOMM_GENERAL`    - similar to `MPI_Comm_split()` each process sets the new communicator (color) they will belong to and the order within that communicator
1015: .   `PETSC_SUBCOMM_CONTIGUOUS` - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
1016: -   `PETSC_SUBCOMM_INTERLACED` - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator

1018:    Sample Usage:
1019: .vb
1020:        PetscSubcommCreate()
1021:        PetscSubcommSetNumber()
1022:        PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
1023:        ccomm = PetscSubcommChild()
1024:        PetscSubcommDestroy()
1025: .ve

1027:    Example:
1028:    Consider a communicator with six processes split into 3 subcommunicators.
1029: .vb
1030:    PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1  the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
1031:    PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
1032: .ve

1034:    Level: advanced

1036:    Note:
1037:    After a call to `PetscSubcommSetType()`, `PetscSubcommSetTypeGeneral()`, or `PetscSubcommSetFromOptions()` one may call
1038: .vb
1039:      PetscSubcommChild() returns the associated subcommunicator on this process
1040:      PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
1041: .ve

1043:    Developer Note:
1044:    This is used in objects such as `PCREDUNDANT` to manage the subcommunicators on which the redundant computations
1045:    are performed.

1047: .seealso: `PetscSubcommCreate()`, `PetscSubcommSetNumber()`, `PetscSubcommSetType()`, `PetscSubcommView()`, `PetscSubcommSetFromOptions()`
1048: S*/
1049: typedef struct _n_PetscSubcomm *PetscSubcomm;
1050: typedef enum {
1051:   PETSC_SUBCOMM_GENERAL    = 0,
1052:   PETSC_SUBCOMM_CONTIGUOUS = 1,
1053:   PETSC_SUBCOMM_INTERLACED = 2
1054: } PetscSubcommType;
1055: PETSC_EXTERN const char *const PetscSubcommTypes[];

1057: /*S
1058:    PetscHeap - A simple class for managing heaps

1060:    Level: intermediate

1062: .seealso: `PetscHeapCreate()`, `PetscHeapAdd()`, `PetscHeapPop()`, `PetscHeapPeek()`, `PetscHeapStash()`, `PetscHeapUnstash()`, `PetscHeapView()`, `PetscHeapDestroy()`
1063: S*/
1064: typedef struct _PetscHeap *PetscHeap;

1066: typedef struct _n_PetscShmComm *PetscShmComm;
1067: typedef struct _n_PetscOmpCtrl *PetscOmpCtrl;

1069: /*S
1070:    PetscSegBuffer - a segmented extendable buffer

1072:    Level: developer

1074: .seealso: `PetscSegBufferCreate()`, `PetscSegBufferGet()`, `PetscSegBufferExtract()`, `PetscSegBufferDestroy()`
1075: S*/
1076: typedef struct _n_PetscSegBuffer *PetscSegBuffer;

1078: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;

1080: /*S
1081:      PetscBT - PETSc bitarrays, efficient storage of arrays of boolean values

1083:      Level: advanced

1085:      Notes:
1086:      The following routines do not have their own manual pages

1088: .vb
1089:      PetscBTCreate(m,&bt)         - creates a bit array with enough room to hold m values
1090:      PetscBTDestroy(&bt)          - destroys the bit array
1091:      PetscBTMemzero(m,bt)         - zeros the entire bit array (sets all values to false)
1092:      PetscBTSet(bt,index)         - sets a particular entry as true
1093:      PetscBTClear(bt,index)       - sets a particular entry as false
1094:      PetscBTLookup(bt,index)      - returns the value
1095:      PetscBTLookupSet(bt,index)   - returns the value and then sets it true
1096:      PetscBTLookupClear(bt,index) - returns the value and then sets it false
1097:      PetscBTLength(m)             - returns number of bytes in array with m bits
1098:      PetscBTView(m,bt,viewer)     - prints all the entries in a bit array
1099: .ve

1101:     PETSc does not check error flags on `PetscBTLookup()`, `PetcBTLookupSet()`, `PetscBTLength()` because error checking
1102:     would cost hundreds more cycles then the operation.

1104: S*/
1105: typedef char *PetscBT;

1107: /* The number of bits in a byte */
1108: #define PETSC_BITS_PER_BYTE CHAR_BIT