Actual source code: cg.c
1: /*
2: This file implements the conjugate gradient method in PETSc as part of
3: KSP. You can use this as a starting point for implementing your own
4: Krylov method that is not provided with PETSc.
6: The following basic routines are required for each Krylov method.
7: KSPCreate_XXX() - Creates the Krylov context
8: KSPSetFromOptions_XXX() - Sets runtime options
9: KSPSolve_XXX() - Runs the Krylov method
10: KSPDestroy_XXX() - Destroys the Krylov context, freeing all
11: memory it needed
12: Here the "_XXX" denotes a particular implementation, in this case
13: we use _CG (e.g. KSPCreate_CG, KSPDestroy_CG). These routines
14: are actually called via the common user interface routines
15: KSPSetType(), KSPSetFromOptions(), KSPSolve(), and KSPDestroy() so the
16: application code interface remains identical for all preconditioners.
18: Other basic routines for the KSP objects include
19: KSPSetUp_XXX()
20: KSPView_XXX() - Prints details of solver being used.
22: Detailed Notes:
23: By default, this code implements the CG (Conjugate Gradient) method,
24: which is valid for real symmetric (and complex Hermitian) positive
25: definite matrices. Note that for the complex Hermitian case, the
26: VecDot() arguments within the code MUST remain in the order given
27: for correct computation of inner products.
29: Reference: Hestenes and Steifel, 1952.
31: By switching to the indefinite vector inner product, VecTDot(), the
32: same code is used for the complex symmetric case as well. The user
33: must call KSPCGSetType(ksp,KSP_CG_SYMMETRIC) or use the option
34: -ksp_cg_type symmetric to invoke this variant for the complex case.
35: Note, however, that the complex symmetric code is NOT valid for
36: all such matrices ... and thus we don't recommend using this method.
37: */
38: /*
39: cgimpl.h defines the simple data structured used to store information
40: related to the type of matrix (e.g. complex symmetric) being solved and
41: data used during the optional Lanczos process used to compute eigenvalues
42: */
43: #include <../src/ksp/ksp/impls/cg/cgimpl.h>
44: extern PetscErrorCode KSPComputeExtremeSingularValues_CG(KSP, PetscReal *, PetscReal *);
45: extern PetscErrorCode KSPComputeEigenvalues_CG(KSP, PetscInt, PetscReal *, PetscReal *, PetscInt *);
47: static PetscErrorCode KSPCGSetObjectiveTarget_CG(KSP ksp, PetscReal obj_min)
48: {
49: KSP_CG *cg = (KSP_CG *)ksp->data;
51: PetscFunctionBegin;
52: cg->obj_min = obj_min;
53: PetscFunctionReturn(PETSC_SUCCESS);
54: }
56: static PetscErrorCode KSPCGSetRadius_CG(KSP ksp, PetscReal radius)
57: {
58: KSP_CG *cg = (KSP_CG *)ksp->data;
60: PetscFunctionBegin;
61: cg->radius = radius;
62: PetscFunctionReturn(PETSC_SUCCESS);
63: }
65: static PetscErrorCode KSPCGGetObjFcn_CG(KSP ksp, PetscReal *obj)
66: {
67: KSP_CG *cg = (KSP_CG *)ksp->data;
69: PetscFunctionBegin;
70: *obj = cg->obj;
71: PetscFunctionReturn(PETSC_SUCCESS);
72: }
74: /*
75: KSPSetUp_CG - Sets up the workspace needed by the CG method.
77: This is called once, usually automatically by KSPSolve() or KSPSetUp()
78: but can be called directly by KSPSetUp()
79: */
80: static PetscErrorCode KSPSetUp_CG(KSP ksp)
81: {
82: KSP_CG *cgP = (KSP_CG *)ksp->data;
83: PetscInt maxit = ksp->max_it, nwork = 3;
85: PetscFunctionBegin;
86: /* get work vectors needed by CG */
87: if (cgP->singlereduction) nwork += 2;
88: PetscCall(KSPSetWorkVecs(ksp, nwork));
90: /*
91: If user requested computations of eigenvalues then allocate
92: work space needed
93: */
94: if (ksp->calc_sings) {
95: PetscCall(PetscFree4(cgP->e, cgP->d, cgP->ee, cgP->dd));
96: PetscCall(PetscMalloc4(maxit + 1, &cgP->e, maxit, &cgP->d, maxit, &cgP->ee, maxit, &cgP->dd));
98: ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_CG;
99: ksp->ops->computeeigenvalues = KSPComputeEigenvalues_CG;
100: }
101: PetscFunctionReturn(PETSC_SUCCESS);
102: }
104: /*
105: A macro used in the following KSPSolve_CG and KSPSolve_CG_SingleReduction routines
106: */
107: #define VecXDot(x, y, a) (cg->type == KSP_CG_HERMITIAN ? VecDot(x, y, a) : VecTDot(x, y, a))
109: /*
110: KSPSolve_CG - This routine actually applies the conjugate gradient method
112: Note : this routine can be replaced with another one (see below) which implements
113: another variant of CG.
115: Input Parameter:
116: . ksp - the Krylov space object that was set to use conjugate gradient, by, for
117: example, KSPCreate(MPI_Comm,KSP *ksp); KSPSetType(ksp,KSPCG);
118: */
119: static PetscErrorCode KSPSolve_CG(KSP ksp)
120: {
121: PetscInt i, stored_max_it, eigs;
122: PetscScalar dpi = 0.0, a = 1.0, beta, betaold = 1.0, b = 0, *e = NULL, *d = NULL, dpiold;
123: PetscReal dp = 0.0;
124: PetscReal r2, norm_p, norm_d, dMp;
125: Vec X, B, Z, R, P, W;
126: KSP_CG *cg;
127: Mat Amat, Pmat;
128: PetscBool diagonalscale, testobj;
130: PetscFunctionBegin;
131: PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale));
132: PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name);
134: cg = (KSP_CG *)ksp->data;
135: eigs = ksp->calc_sings;
136: stored_max_it = ksp->max_it;
137: X = ksp->vec_sol;
138: B = ksp->vec_rhs;
139: R = ksp->work[0];
140: Z = ksp->work[1];
141: P = ksp->work[2];
142: W = Z;
143: r2 = PetscSqr(cg->radius);
145: if (eigs) {
146: e = cg->e;
147: d = cg->d;
148: e[0] = 0.0;
149: }
150: PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));
152: ksp->its = 0;
153: if (!ksp->guess_zero) {
154: PetscCall(KSP_MatMult(ksp, Amat, X, R)); /* r <- b - Ax */
156: PetscCall(VecAYPX(R, -1.0, B));
157: if (cg->radius) { /* XXX direction? */
158: PetscCall(VecNorm(X, NORM_2, &norm_d));
159: norm_d *= norm_d;
160: }
161: } else {
162: PetscCall(VecCopy(B, R)); /* r <- b (x is 0) */
163: norm_d = 0.0;
164: }
165: /* This may be true only on a subset of MPI ranks; setting it here so it will be detected by the first norm computation below */
166: PetscCall(VecFlag(R, ksp->reason == KSP_DIVERGED_PC_FAILED));
168: switch (ksp->normtype) {
169: case KSP_NORM_PRECONDITIONED:
170: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
171: PetscCall(VecNorm(Z, NORM_2, &dp)); /* dp <- z'*z = e'*A'*B'*B*A*e */
172: KSPCheckNorm(ksp, dp);
173: break;
174: case KSP_NORM_UNPRECONDITIONED:
175: PetscCall(VecNorm(R, NORM_2, &dp)); /* dp <- r'*r = e'*A'*A*e */
176: KSPCheckNorm(ksp, dp);
177: break;
178: case KSP_NORM_NATURAL:
179: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
180: PetscCall(VecXDot(Z, R, &beta)); /* beta <- z'*r */
181: KSPCheckDot(ksp, beta);
182: dp = PetscSqrtReal(PetscAbsScalar(beta)); /* dp <- r'*z = r'*B*r = e'*A'*B*A*e */
183: break;
184: case KSP_NORM_NONE:
185: dp = 0.0;
186: break;
187: default:
188: SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "%s", KSPNormTypes[ksp->normtype]);
189: }
191: /* Initialize objective function
192: obj = 1/2 x^T A x - x^T b */
193: testobj = (PetscBool)(cg->obj_min < 0.0);
194: PetscCall(VecXDot(R, X, &a));
195: cg->obj = 0.5 * PetscRealPart(a);
196: PetscCall(VecXDot(B, X, &a));
197: cg->obj -= 0.5 * PetscRealPart(a);
199: if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " obj %g\n", ksp->its, (double)cg->obj));
200: PetscCall(KSPLogResidualHistory(ksp, dp));
201: PetscCall(KSPMonitor(ksp, ksp->its, dp));
202: ksp->rnorm = dp;
204: PetscCall((*ksp->converged)(ksp, ksp->its, dp, &ksp->reason, ksp->cnvP)); /* test for convergence */
206: if (!ksp->reason && testobj && cg->obj <= cg->obj_min) {
207: PetscCall(PetscInfo(ksp, "converged to objective target minimum\n"));
208: ksp->reason = KSP_CONVERGED_ATOL;
209: }
211: if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);
213: if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) { PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */ }
214: if (ksp->normtype != KSP_NORM_NATURAL) {
215: PetscCall(VecXDot(Z, R, &beta)); /* beta <- z'*r */
216: KSPCheckDot(ksp, beta);
217: }
219: i = 0;
220: do {
221: ksp->its = i + 1;
222: if (beta == 0.0) {
223: ksp->reason = KSP_CONVERGED_ATOL;
224: PetscCall(PetscInfo(ksp, "converged due to beta = 0\n"));
225: break;
226: #if !defined(PETSC_USE_COMPLEX)
227: } else if ((i > 0) && (beta * betaold < 0.0)) {
228: PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite preconditioner, beta %g, betaold %g", (double)PetscRealPart(beta), (double)PetscRealPart(betaold));
229: ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
230: PetscCall(PetscInfo(ksp, "diverging due to indefinite preconditioner\n"));
231: break;
232: #endif
233: }
234: if (!i) {
235: PetscCall(VecCopy(Z, P)); /* p <- z */
236: if (cg->radius) {
237: PetscCall(VecNorm(P, NORM_2, &norm_p));
238: norm_p *= norm_p;
239: dMp = 0.0;
240: if (!ksp->guess_zero) { PetscCall(VecDotRealPart(X, P, &dMp)); }
241: }
242: b = 0.0;
243: } else {
244: b = beta / betaold;
245: if (eigs) {
246: PetscCheck(ksp->max_it == stored_max_it, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Can not change maxit AND calculate eigenvalues");
247: e[i] = PetscSqrtReal(PetscAbsScalar(b)) / a;
248: }
249: PetscCall(VecAYPX(P, b, Z)); /* p <- z + b* p */
250: if (cg->radius) {
251: PetscCall(VecDotRealPart(X, P, &dMp));
252: PetscCall(VecNorm(P, NORM_2, &norm_p));
253: norm_p *= norm_p;
254: }
255: }
256: dpiold = dpi;
257: PetscCall(KSP_MatMult(ksp, Amat, P, W)); /* w <- Ap */
258: PetscCall(VecXDot(P, W, &dpi)); /* dpi <- p'w */
259: KSPCheckDot(ksp, dpi);
260: betaold = beta;
262: if ((dpi == 0.0) || ((i > 0) && ((PetscSign(PetscRealPart(dpi)) * PetscSign(PetscRealPart(dpiold))) < 0.0))) {
263: if (cg->radius) {
264: a = 0.0;
265: if (i == 0) {
266: if (norm_p > 0.0) {
267: a = PetscSqrtReal(r2 / norm_p);
268: } else {
269: PetscCall(VecNorm(R, NORM_2, &dp));
270: a = cg->radius > dp ? 1.0 : cg->radius / dp;
271: }
272: } else if (norm_p > 0.0) {
273: a = (PetscSqrtReal(dMp * dMp + norm_p * (r2 - norm_d)) - dMp) / norm_p;
274: }
275: PetscCall(VecAXPY(X, a, P)); /* x <- x + ap */
276: cg->obj += PetscRealPart(a * (0.5 * a * dpi - betaold));
277: }
278: if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " N obj %g\n", i + 1, (double)cg->obj));
279: if (ksp->converged_neg_curve) {
280: PetscCall(PetscInfo(ksp, "converged due to negative curvature: %g\n", (double)(PetscRealPart(dpi))));
281: ksp->reason = KSP_CONVERGED_NEG_CURVE;
282: } else {
283: PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite matrix, dpi %g, dpiold %g", (double)PetscRealPart(dpi), (double)PetscRealPart(dpiold));
284: ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
285: PetscCall(PetscInfo(ksp, "diverging due to indefinite matrix\n"));
286: }
287: break;
288: }
289: a = beta / dpi; /* a = beta/p'w */
290: if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b)) * e[i] + 1.0 / a;
291: if (cg->radius) { /* Steihaugh-Toint */
292: PetscReal norm_dp1 = norm_d + PetscRealPart(a) * (2.0 * dMp + PetscRealPart(a) * norm_p);
293: if (norm_dp1 > r2) {
294: ksp->reason = KSP_CONVERGED_STEP_LENGTH;
295: PetscCall(PetscInfo(ksp, "converged to the trust region radius %g\n", (double)cg->radius));
296: if (norm_p > 0.0) {
297: dp = (PetscSqrtReal(dMp * dMp + norm_p * (r2 - norm_d)) - dMp) / norm_p;
298: PetscCall(VecAXPY(X, dp, P)); /* x <- x + ap */
299: cg->obj += PetscRealPart(dp * (0.5 * dp * dpi - beta));
300: }
301: if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " R obj %g\n", i + 1, (double)cg->obj));
302: break;
303: }
304: }
305: PetscCall(VecAXPY(X, a, P)); /* x <- x + ap */
306: PetscCall(VecAXPY(R, -a, W)); /* r <- r - aw */
307: if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i + 2) {
308: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
309: PetscCall(VecNorm(Z, NORM_2, &dp)); /* dp <- z'*z */
310: KSPCheckNorm(ksp, dp);
311: } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i + 2) {
312: PetscCall(VecNorm(R, NORM_2, &dp)); /* dp <- r'*r */
313: KSPCheckNorm(ksp, dp);
314: } else if (ksp->normtype == KSP_NORM_NATURAL) {
315: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
316: PetscCall(VecXDot(Z, R, &beta)); /* beta <- r'*z */
317: KSPCheckDot(ksp, beta);
318: dp = PetscSqrtReal(PetscAbsScalar(beta));
319: } else {
320: dp = 0.0;
321: }
322: cg->obj -= PetscRealPart(0.5 * a * betaold);
323: if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " obj %g\n", i + 1, (double)cg->obj));
325: ksp->rnorm = dp;
326: PetscCall(KSPLogResidualHistory(ksp, dp));
327: PetscCall(KSPMonitor(ksp, i + 1, dp));
328: PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));
330: if (!ksp->reason && testobj && cg->obj <= cg->obj_min) {
331: PetscCall(PetscInfo(ksp, "converged to objective target minimum\n"));
332: ksp->reason = KSP_CONVERGED_ATOL;
333: }
335: if (ksp->reason) break;
337: if (cg->radius) {
338: PetscCall(VecNorm(X, NORM_2, &norm_d));
339: norm_d *= norm_d;
340: }
342: if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i + 2)) { PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */ }
343: if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i + 2)) {
344: PetscCall(VecXDot(Z, R, &beta)); /* beta <- z'*r */
345: KSPCheckDot(ksp, beta);
346: }
348: i++;
349: } while (i < ksp->max_it);
350: if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
351: PetscFunctionReturn(PETSC_SUCCESS);
352: }
354: /*
355: KSPSolve_CG_SingleReduction
357: This variant of CG is identical in exact arithmetic to the standard algorithm,
358: but is rearranged to use only a single reduction stage per iteration, using additional
359: intermediate vectors.
361: See KSPCGUseSingleReduction_CG()
363: */
364: static PetscErrorCode KSPSolve_CG_SingleReduction(KSP ksp)
365: {
366: PetscInt i, stored_max_it, eigs;
367: PetscScalar dpi = 0.0, a = 1.0, beta, betaold = 1.0, b = 0, *e = NULL, *d = NULL, delta, dpiold, tmp[2];
368: PetscReal dp = 0.0;
369: Vec X, B, Z, R, P, S, W, tmpvecs[2];
370: KSP_CG *cg;
371: Mat Amat, Pmat;
372: PetscBool diagonalscale;
374: PetscFunctionBegin;
375: PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale));
376: PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name);
378: cg = (KSP_CG *)ksp->data;
379: eigs = ksp->calc_sings;
380: stored_max_it = ksp->max_it;
381: X = ksp->vec_sol;
382: B = ksp->vec_rhs;
383: R = ksp->work[0];
384: Z = ksp->work[1];
385: P = ksp->work[2];
386: S = ksp->work[3];
387: W = ksp->work[4];
389: if (eigs) {
390: e = cg->e;
391: d = cg->d;
392: e[0] = 0.0;
393: }
394: PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));
396: ksp->its = 0;
397: if (!ksp->guess_zero) {
398: PetscCall(KSP_MatMult(ksp, Amat, X, R)); /* r <- b - Ax */
399: PetscCall(VecAYPX(R, -1.0, B));
400: } else {
401: PetscCall(VecCopy(B, R)); /* r <- b (x is 0) */
402: }
404: switch (ksp->normtype) {
405: case KSP_NORM_PRECONDITIONED:
406: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
407: PetscCall(VecNorm(Z, NORM_2, &dp)); /* dp <- z'*z = e'*A'*B'*B*A'*e' */
408: KSPCheckNorm(ksp, dp);
409: break;
410: case KSP_NORM_UNPRECONDITIONED:
411: PetscCall(VecNorm(R, NORM_2, &dp)); /* dp <- r'*r = e'*A'*A*e */
412: KSPCheckNorm(ksp, dp);
413: break;
414: case KSP_NORM_NATURAL:
415: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
416: PetscCall(KSP_MatMult(ksp, Amat, Z, S));
417: PetscCall(VecXDot(Z, S, &delta)); /* delta <- z'*A*z = r'*B*A*B*r */
418: PetscCall(VecXDot(Z, R, &beta)); /* beta <- z'*r */
419: KSPCheckDot(ksp, beta);
420: dp = PetscSqrtReal(PetscAbsScalar(beta)); /* dp <- r'*z = r'*B*r = e'*A'*B*A*e */
421: break;
422: case KSP_NORM_NONE:
423: dp = 0.0;
424: break;
425: default:
426: SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "%s", KSPNormTypes[ksp->normtype]);
427: }
428: PetscCall(KSPLogResidualHistory(ksp, dp));
429: PetscCall(KSPMonitor(ksp, 0, dp));
430: ksp->rnorm = dp;
432: PetscCall((*ksp->converged)(ksp, 0, dp, &ksp->reason, ksp->cnvP)); /* test for convergence */
433: if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);
435: if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) { PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */ }
436: if (ksp->normtype != KSP_NORM_NATURAL) {
437: PetscCall(KSP_MatMult(ksp, Amat, Z, S));
438: PetscCall(VecXDot(Z, S, &delta)); /* delta <- z'*A*z = r'*B*A*B*r */
439: PetscCall(VecXDot(Z, R, &beta)); /* beta <- z'*r */
440: KSPCheckDot(ksp, beta);
441: }
443: i = 0;
444: do {
445: ksp->its = i + 1;
446: if (beta == 0.0) {
447: ksp->reason = KSP_CONVERGED_ATOL;
448: PetscCall(PetscInfo(ksp, "converged due to beta = 0\n"));
449: break;
450: #if !defined(PETSC_USE_COMPLEX)
451: } else if ((i > 0) && (beta * betaold < 0.0)) {
452: PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite preconditioner");
453: ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
454: PetscCall(PetscInfo(ksp, "diverging due to indefinite preconditioner\n"));
455: break;
456: #endif
457: }
458: if (!i) {
459: PetscCall(VecCopy(Z, P)); /* p <- z */
460: b = 0.0;
461: } else {
462: b = beta / betaold;
463: if (eigs) {
464: PetscCheck(ksp->max_it == stored_max_it, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Can not change maxit AND calculate eigenvalues");
465: e[i] = PetscSqrtReal(PetscAbsScalar(b)) / a;
466: }
467: PetscCall(VecAYPX(P, b, Z)); /* p <- z + b* p */
468: }
469: dpiold = dpi;
470: if (!i) {
471: PetscCall(KSP_MatMult(ksp, Amat, P, W)); /* w <- Ap */
472: PetscCall(VecXDot(P, W, &dpi)); /* dpi <- p'w */
473: } else {
474: PetscCall(VecAYPX(W, beta / betaold, S)); /* w <- Ap */
475: dpi = delta - beta * beta * dpiold / (betaold * betaold); /* dpi <- p'w */
476: }
477: betaold = beta;
478: KSPCheckDot(ksp, beta);
480: if ((dpi == 0.0) || ((i > 0) && (PetscRealPart(dpi * dpiold) <= 0.0))) {
481: PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite matrix");
482: ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
483: PetscCall(PetscInfo(ksp, "diverging due to indefinite or negative definite matrix\n"));
484: break;
485: }
486: a = beta / dpi; /* a = beta/p'w */
487: if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b)) * e[i] + 1.0 / a;
488: PetscCall(VecAXPY(X, a, P)); /* x <- x + ap */
489: PetscCall(VecAXPY(R, -a, W)); /* r <- r - aw */
490: if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i + 2) {
491: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
492: PetscCall(KSP_MatMult(ksp, Amat, Z, S));
493: PetscCall(VecNorm(Z, NORM_2, &dp)); /* dp <- z'*z */
494: KSPCheckNorm(ksp, dp);
495: } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i + 2) {
496: PetscCall(VecNorm(R, NORM_2, &dp)); /* dp <- r'*r */
497: KSPCheckNorm(ksp, dp);
498: } else if (ksp->normtype == KSP_NORM_NATURAL) {
499: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
500: tmpvecs[0] = S;
501: tmpvecs[1] = R;
502: PetscCall(KSP_MatMult(ksp, Amat, Z, S));
503: PetscCall(VecMDot(Z, 2, tmpvecs, tmp)); /* delta <- z'*A*z = r'*B*A*B*r */
504: delta = tmp[0];
505: beta = tmp[1]; /* beta <- z'*r */
506: KSPCheckDot(ksp, beta);
507: dp = PetscSqrtReal(PetscAbsScalar(beta)); /* dp <- r'*z = r'*B*r = e'*A'*B*A*e */
508: } else {
509: dp = 0.0;
510: }
511: ksp->rnorm = dp;
512: PetscCall(KSPLogResidualHistory(ksp, dp));
513: PetscCall(KSPMonitor(ksp, i + 1, dp));
514: PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));
515: if (ksp->reason) break;
517: if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i + 2)) {
518: PetscCall(KSP_PCApply(ksp, R, Z)); /* z <- Br */
519: PetscCall(KSP_MatMult(ksp, Amat, Z, S));
520: }
521: if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i + 2)) {
522: tmpvecs[0] = S;
523: tmpvecs[1] = R;
524: PetscCall(VecMDot(Z, 2, tmpvecs, tmp));
525: delta = tmp[0];
526: beta = tmp[1]; /* delta <- z'*A*z = r'*B'*A*B*r */
527: KSPCheckDot(ksp, beta); /* beta <- z'*r */
528: }
530: i++;
531: } while (i < ksp->max_it);
532: if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
533: PetscFunctionReturn(PETSC_SUCCESS);
534: }
536: /*
537: KSPDestroy_CG - Frees resources allocated in KSPSetup_CG and clears function
538: compositions from KSPCreate_CG. If adding your own KSP implementation,
539: you must be sure to free all allocated resources here to prevent
540: leaks.
541: */
542: PetscErrorCode KSPDestroy_CG(KSP ksp)
543: {
544: KSP_CG *cg = (KSP_CG *)ksp->data;
546: PetscFunctionBegin;
547: PetscCall(PetscFree4(cg->e, cg->d, cg->ee, cg->dd));
548: PetscCall(KSPDestroyDefault(ksp));
549: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetObjectiveTarget_C", NULL));
550: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetRadius_C", NULL));
551: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetType_C", NULL));
552: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGUseSingleReduction_C", NULL));
553: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGGetObjFcn_C", NULL));
554: PetscFunctionReturn(PETSC_SUCCESS);
555: }
557: /*
558: KSPView_CG - Prints information about the current Krylov method being used.
559: If your Krylov method has special options or flags that information
560: should be printed here.
561: */
562: PetscErrorCode KSPView_CG(KSP ksp, PetscViewer viewer)
563: {
564: KSP_CG *cg = (KSP_CG *)ksp->data;
565: PetscBool iascii;
567: PetscFunctionBegin;
568: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
569: if (iascii) {
570: #if defined(PETSC_USE_COMPLEX)
571: PetscCall(PetscViewerASCIIPrintf(viewer, " variant %s\n", KSPCGTypes[cg->type]));
572: #endif
573: if (cg->singlereduction) PetscCall(PetscViewerASCIIPrintf(viewer, " using single-reduction variant\n"));
574: }
575: PetscFunctionReturn(PETSC_SUCCESS);
576: }
578: /*
579: KSPSetFromOptions_CG - Checks the options database for options related to the
580: conjugate gradient method.
581: */
582: PetscErrorCode KSPSetFromOptions_CG(KSP ksp, PetscOptionItems *PetscOptionsObject)
583: {
584: KSP_CG *cg = (KSP_CG *)ksp->data;
585: PetscBool flg;
587: PetscFunctionBegin;
588: PetscOptionsHeadBegin(PetscOptionsObject, "KSP CG and CGNE options");
589: #if defined(PETSC_USE_COMPLEX)
590: PetscCall(PetscOptionsEnum("-ksp_cg_type", "Matrix is Hermitian or complex symmetric", "KSPCGSetType", KSPCGTypes, (PetscEnum)cg->type, (PetscEnum *)&cg->type, NULL));
591: #endif
592: PetscCall(PetscOptionsBool("-ksp_cg_single_reduction", "Merge inner products into single MPI_Allreduce()", "KSPCGUseSingleReduction", cg->singlereduction, &cg->singlereduction, &flg));
593: if (flg) PetscCall(KSPCGUseSingleReduction(ksp, cg->singlereduction));
594: PetscOptionsHeadEnd();
595: PetscFunctionReturn(PETSC_SUCCESS);
596: }
598: /*
599: KSPCGSetType_CG - This is an option that is SPECIFIC to this particular Krylov method.
600: This routine is registered below in KSPCreate_CG() and called from the
601: routine KSPCGSetType() (see the file cgtype.c).
602: */
603: PetscErrorCode KSPCGSetType_CG(KSP ksp, KSPCGType type)
604: {
605: KSP_CG *cg = (KSP_CG *)ksp->data;
607: PetscFunctionBegin;
608: cg->type = type;
609: PetscFunctionReturn(PETSC_SUCCESS);
610: }
612: /*
613: KSPCGUseSingleReduction_CG
615: This routine sets a flag to use a variant of CG. Note that (in somewhat
616: atypical fashion) it also swaps out the routine called when KSPSolve()
617: is invoked.
618: */
619: static PetscErrorCode KSPCGUseSingleReduction_CG(KSP ksp, PetscBool flg)
620: {
621: KSP_CG *cg = (KSP_CG *)ksp->data;
623: PetscFunctionBegin;
624: cg->singlereduction = flg;
625: if (cg->singlereduction) {
626: ksp->ops->solve = KSPSolve_CG_SingleReduction;
627: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGGetObjFcn_C", NULL));
628: } else {
629: ksp->ops->solve = KSPSolve_CG;
630: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGGetObjFcn_C", KSPCGGetObjFcn_CG));
631: }
632: PetscFunctionReturn(PETSC_SUCCESS);
633: }
635: PETSC_INTERN PetscErrorCode KSPBuildResidual_CG(KSP ksp, Vec t, Vec v, Vec *V)
636: {
637: PetscFunctionBegin;
638: PetscCall(VecCopy(ksp->work[0], v));
639: *V = v;
640: PetscFunctionReturn(PETSC_SUCCESS);
641: }
643: /*MC
644: KSPCG - The Preconditioned Conjugate Gradient (PCG) iterative method {cite}`hs:52` and {cite}`malek2014preconditioning`
646: Options Database Keys:
647: + -ksp_cg_type Hermitian - (for complex matrices only) indicates the matrix is Hermitian, see `KSPCGSetType()`
648: . -ksp_cg_type symmetric - (for complex matrices only) indicates the matrix is symmetric
649: - -ksp_cg_single_reduction - performs both inner products needed in the algorithm with a single `MPI_Allreduce()` call, see `KSPCGUseSingleReduction()`
651: Level: beginner
653: Notes:
654: The PCG method requires both the matrix and preconditioner to be symmetric positive (or negative) (semi) definite.
656: Only left preconditioning is supported; there are several ways to motivate preconditioned CG, but they all produce the same algorithm.
657: One can interpret preconditioning A with B to mean any of the following\:
658: .vb
659: (1) Solve a left-preconditioned system BAx = Bb, using inv(B) to define an inner product in the algorithm.
660: (2) Solve a right-preconditioned system ABy = b, x = By, using B to define an inner product in the algorithm.
661: (3) Solve a symmetrically-preconditioned system, E^TAEy = E^Tb, x = Ey, where B = EE^T.
662: (4) Solve Ax=b with CG, but use the inner product defined by B to define the method [2].
663: In all cases, the resulting algorithm only requires application of B to vectors.
664: .ve
666: For complex numbers there are two different CG methods, one for Hermitian symmetric matrices and one for non-Hermitian symmetric matrices. Use
667: `KSPCGSetType()` to indicate which type you are using.
669: One can use `KSPSetComputeEigenvalues()` and `KSPComputeEigenvalues()` to compute the eigenvalues of the (preconditioned) operator
671: Developer Note:
672: KSPSolve_CG() should actually query the matrix to determine if it is Hermitian symmetric or not and NOT require the user to
673: indicate it to the `KSP` object.
675: .seealso: [](ch_ksp), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `KSPSetComputeEigenvalues()`, `KSPComputeEigenvalues()`
676: `KSPCGSetType()`, `KSPCGUseSingleReduction()`, `KSPPIPECG`, `KSPGROPPCG`
677: M*/
679: /*
680: KSPCreate_CG - Creates the data structure for the Krylov method CG and sets the
681: function pointers for all the routines it needs to call (KSPSolve_CG() etc)
683: It must be labeled as PETSC_EXTERN to be dynamically linkable in C++
684: */
685: PETSC_EXTERN PetscErrorCode KSPCreate_CG(KSP ksp)
686: {
687: KSP_CG *cg;
689: PetscFunctionBegin;
690: PetscCall(PetscNew(&cg));
691: #if !defined(PETSC_USE_COMPLEX)
692: cg->type = KSP_CG_SYMMETRIC;
693: #else
694: cg->type = KSP_CG_HERMITIAN;
695: #endif
696: cg->obj_min = 0.0;
697: ksp->data = (void *)cg;
699: PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_PRECONDITIONED, PC_LEFT, 3));
700: PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_LEFT, 2));
701: PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NATURAL, PC_LEFT, 2));
702: PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_LEFT, 1));
704: /*
705: Sets the functions that are associated with this data structure
706: (in C++ this is the same as defining virtual functions)
707: */
708: ksp->ops->setup = KSPSetUp_CG;
709: ksp->ops->solve = KSPSolve_CG;
710: ksp->ops->destroy = KSPDestroy_CG;
711: ksp->ops->view = KSPView_CG;
712: ksp->ops->setfromoptions = KSPSetFromOptions_CG;
713: ksp->ops->buildsolution = KSPBuildSolutionDefault;
714: ksp->ops->buildresidual = KSPBuildResidual_CG;
716: /*
717: Attach the function KSPCGSetType_CG() to this object. The routine
718: KSPCGSetType() checks for this attached function and calls it if it finds
719: it. (Sort of like a dynamic member function that can be added at run time
720: */
721: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetType_C", KSPCGSetType_CG));
722: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGUseSingleReduction_C", KSPCGUseSingleReduction_CG));
723: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetRadius_C", KSPCGSetRadius_CG));
724: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetObjectiveTarget_C", KSPCGSetObjectiveTarget_CG));
725: PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGGetObjFcn_C", KSPCGGetObjFcn_CG));
726: PetscFunctionReturn(PETSC_SUCCESS);
727: }