Actual source code: cg.c

  1: /*
  2:     This file implements the conjugate gradient method in PETSc as part of
  3:     KSP. You can use this as a starting point for implementing your own
  4:     Krylov method that is not provided with PETSc.

  6:     The following basic routines are required for each Krylov method.
  7:         KSPCreate_XXX()          - Creates the Krylov context
  8:         KSPSetFromOptions_XXX()  - Sets runtime options
  9:         KSPSolve_XXX()           - Runs the Krylov method
 10:         KSPDestroy_XXX()         - Destroys the Krylov context, freeing all
 11:                                    memory it needed
 12:     Here the "_XXX" denotes a particular implementation, in this case
 13:     we use _CG (e.g. KSPCreate_CG, KSPDestroy_CG). These routines
 14:     are actually called via the common user interface routines
 15:     KSPSetType(), KSPSetFromOptions(), KSPSolve(), and KSPDestroy() so the
 16:     application code interface remains identical for all preconditioners.

 18:     Other basic routines for the KSP objects include
 19:         KSPSetUp_XXX()
 20:         KSPView_XXX()            - Prints details of solver being used.

 22:     Detailed Notes:
 23:     By default, this code implements the CG (Conjugate Gradient) method,
 24:     which is valid for real symmetric (and complex Hermitian) positive
 25:     definite matrices. Note that for the complex Hermitian case, the
 26:     VecDot() arguments within the code MUST remain in the order given
 27:     for correct computation of inner products.

 29:     Reference: Hestenes and Steifel, 1952.

 31:     By switching to the indefinite vector inner product, VecTDot(), the
 32:     same code is used for the complex symmetric case as well.  The user
 33:     must call KSPCGSetType(ksp,KSP_CG_SYMMETRIC) or use the option
 34:     -ksp_cg_type symmetric to invoke this variant for the complex case.
 35:     Note, however, that the complex symmetric code is NOT valid for
 36:     all such matrices ... and thus we don't recommend using this method.
 37: */
 38: /*
 39:     cgimpl.h defines the simple data structured used to store information
 40:     related to the type of matrix (e.g. complex symmetric) being solved and
 41:     data used during the optional Lanczos process used to compute eigenvalues
 42: */
 43: #include <../src/ksp/ksp/impls/cg/cgimpl.h>
 44: extern PetscErrorCode KSPComputeExtremeSingularValues_CG(KSP, PetscReal *, PetscReal *);
 45: extern PetscErrorCode KSPComputeEigenvalues_CG(KSP, PetscInt, PetscReal *, PetscReal *, PetscInt *);

 47: static PetscErrorCode KSPCGSetObjectiveTarget_CG(KSP ksp, PetscReal obj_min)
 48: {
 49:   KSP_CG *cg = (KSP_CG *)ksp->data;

 51:   PetscFunctionBegin;
 52:   cg->obj_min = obj_min;
 53:   PetscFunctionReturn(PETSC_SUCCESS);
 54: }

 56: static PetscErrorCode KSPCGSetRadius_CG(KSP ksp, PetscReal radius)
 57: {
 58:   KSP_CG *cg = (KSP_CG *)ksp->data;

 60:   PetscFunctionBegin;
 61:   cg->radius = radius;
 62:   PetscFunctionReturn(PETSC_SUCCESS);
 63: }

 65: /*
 66:      KSPSetUp_CG - Sets up the workspace needed by the CG method.

 68:       This is called once, usually automatically by KSPSolve() or KSPSetUp()
 69:      but can be called directly by KSPSetUp()
 70: */
 71: static PetscErrorCode KSPSetUp_CG(KSP ksp)
 72: {
 73:   KSP_CG  *cgP   = (KSP_CG *)ksp->data;
 74:   PetscInt maxit = ksp->max_it, nwork = 3;

 76:   PetscFunctionBegin;
 77:   /* get work vectors needed by CG */
 78:   if (cgP->singlereduction) nwork += 2;
 79:   PetscCall(KSPSetWorkVecs(ksp, nwork));

 81:   /*
 82:      If user requested computations of eigenvalues then allocate
 83:      work space needed
 84:   */
 85:   if (ksp->calc_sings) {
 86:     PetscCall(PetscFree4(cgP->e, cgP->d, cgP->ee, cgP->dd));
 87:     PetscCall(PetscMalloc4(maxit + 1, &cgP->e, maxit, &cgP->d, maxit, &cgP->ee, maxit, &cgP->dd));

 89:     ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_CG;
 90:     ksp->ops->computeeigenvalues           = KSPComputeEigenvalues_CG;
 91:   }
 92:   PetscFunctionReturn(PETSC_SUCCESS);
 93: }

 95: /*
 96:      A macro used in the following KSPSolve_CG and KSPSolve_CG_SingleReduction routines
 97: */
 98: #define VecXDot(x, y, a) (cg->type == KSP_CG_HERMITIAN ? VecDot(x, y, a) : VecTDot(x, y, a))

100: /*
101:      KSPSolve_CG - This routine actually applies the conjugate gradient method

103:      Note : this routine can be replaced with another one (see below) which implements
104:             another variant of CG.

106:    Input Parameter:
107: .     ksp - the Krylov space object that was set to use conjugate gradient, by, for
108:             example, KSPCreate(MPI_Comm,KSP *ksp); KSPSetType(ksp,KSPCG);
109: */
110: static PetscErrorCode KSPSolve_CG(KSP ksp)
111: {
112:   PetscInt    i, stored_max_it, eigs;
113:   PetscScalar dpi = 0.0, a = 1.0, beta, betaold = 1.0, b = 0, *e = NULL, *d = NULL, dpiold;
114:   PetscReal   dp = 0.0;
115:   PetscReal   r2, norm_p, norm_d, dMp;
116:   Vec         X, B, Z, R, P, W;
117:   KSP_CG     *cg;
118:   Mat         Amat, Pmat;
119:   PetscBool   diagonalscale, testobj;

121:   PetscFunctionBegin;
122:   PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale));
123:   PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name);

125:   cg            = (KSP_CG *)ksp->data;
126:   eigs          = ksp->calc_sings;
127:   stored_max_it = ksp->max_it;
128:   X             = ksp->vec_sol;
129:   B             = ksp->vec_rhs;
130:   R             = ksp->work[0];
131:   Z             = ksp->work[1];
132:   P             = ksp->work[2];
133:   W             = Z;
134:   r2            = PetscSqr(cg->radius);

136:   if (eigs) {
137:     e    = cg->e;
138:     d    = cg->d;
139:     e[0] = 0.0;
140:   }
141:   PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));

143:   ksp->its = 0;
144:   if (!ksp->guess_zero) {
145:     PetscCall(KSP_MatMult(ksp, Amat, X, R)); /*    r <- b - Ax                       */

147:     PetscCall(VecAYPX(R, -1.0, B));
148:     if (cg->radius) { /* XXX direction? */
149:       PetscCall(VecNorm(X, NORM_2, &norm_d));
150:       norm_d *= norm_d;
151:     }
152:   } else {
153:     PetscCall(VecCopy(B, R)); /*    r <- b (x is 0)                   */
154:     norm_d = 0.0;
155:   }
156:   /* This may be true only on a subset of MPI ranks; setting it here so it will be detected by the first norm computation below */
157:   if (ksp->reason == KSP_DIVERGED_PC_FAILED) PetscCall(VecSetInf(R));

159:   switch (ksp->normtype) {
160:   case KSP_NORM_PRECONDITIONED:
161:     PetscCall(KSP_PCApply(ksp, R, Z));  /*    z <- Br                           */
162:     PetscCall(VecNorm(Z, NORM_2, &dp)); /*    dp <- z'*z = e'*A'*B'*B*A*e       */
163:     KSPCheckNorm(ksp, dp);
164:     break;
165:   case KSP_NORM_UNPRECONDITIONED:
166:     PetscCall(VecNorm(R, NORM_2, &dp)); /*    dp <- r'*r = e'*A'*A*e            */
167:     KSPCheckNorm(ksp, dp);
168:     break;
169:   case KSP_NORM_NATURAL:
170:     PetscCall(KSP_PCApply(ksp, R, Z)); /*    z <- Br                           */
171:     PetscCall(VecXDot(Z, R, &beta));   /*    beta <- z'*r                      */
172:     KSPCheckDot(ksp, beta);
173:     dp = PetscSqrtReal(PetscAbsScalar(beta)); /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
174:     break;
175:   case KSP_NORM_NONE:
176:     dp = 0.0;
177:     break;
178:   default:
179:     SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "%s", KSPNormTypes[ksp->normtype]);
180:   }

182:   /* Initialize objective function
183:      obj = 1/2 x^T A x - x^T b */
184:   testobj = (PetscBool)(cg->obj_min < 0.0);
185:   PetscCall(VecXDot(R, X, &a));
186:   cg->obj = 0.5 * PetscRealPart(a);
187:   PetscCall(VecXDot(B, X, &a));
188:   cg->obj -= 0.5 * PetscRealPart(a);

190:   if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " obj %g\n", ksp->its, (double)cg->obj));
191:   PetscCall(KSPLogResidualHistory(ksp, dp));
192:   PetscCall(KSPMonitor(ksp, ksp->its, dp));
193:   ksp->rnorm = dp;

195:   PetscCall((*ksp->converged)(ksp, ksp->its, dp, &ksp->reason, ksp->cnvP)); /* test for convergence */

197:   if (!ksp->reason && testobj && cg->obj <= cg->obj_min) {
198:     PetscCall(PetscInfo(ksp, "converged to objective target minimum\n"));
199:     ksp->reason = KSP_CONVERGED_ATOL;
200:   }

202:   if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);

204:   if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) { PetscCall(KSP_PCApply(ksp, R, Z)); /*     z <- Br                           */ }
205:   if (ksp->normtype != KSP_NORM_NATURAL) {
206:     PetscCall(VecXDot(Z, R, &beta)); /*     beta <- z'*r                      */
207:     KSPCheckDot(ksp, beta);
208:   }

210:   i = 0;
211:   do {
212:     ksp->its = i + 1;
213:     if (beta == 0.0) {
214:       ksp->reason = KSP_CONVERGED_ATOL;
215:       PetscCall(PetscInfo(ksp, "converged due to beta = 0\n"));
216:       break;
217: #if !defined(PETSC_USE_COMPLEX)
218:     } else if ((i > 0) && (beta * betaold < 0.0)) {
219:       PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite preconditioner, beta %g, betaold %g", (double)PetscRealPart(beta), (double)PetscRealPart(betaold));
220:       ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
221:       PetscCall(PetscInfo(ksp, "diverging due to indefinite preconditioner\n"));
222:       break;
223: #endif
224:     }
225:     if (!i) {
226:       PetscCall(VecCopy(Z, P)); /*     p <- z                           */
227:       if (cg->radius) {
228:         PetscCall(VecNorm(P, NORM_2, &norm_p));
229:         norm_p *= norm_p;
230:         dMp = 0.0;
231:         if (!ksp->guess_zero) { PetscCall(VecDotRealPart(X, P, &dMp)); }
232:       }
233:       b = 0.0;
234:     } else {
235:       b = beta / betaold;
236:       if (eigs) {
237:         PetscCheck(ksp->max_it == stored_max_it, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Can not change maxit AND calculate eigenvalues");
238:         e[i] = PetscSqrtReal(PetscAbsScalar(b)) / a;
239:       }
240:       PetscCall(VecAYPX(P, b, Z)); /*     p <- z + b* p                    */
241:       if (cg->radius) {
242:         PetscCall(VecDotRealPart(X, P, &dMp));
243:         PetscCall(VecNorm(P, NORM_2, &norm_p));
244:         norm_p *= norm_p;
245:       }
246:     }
247:     dpiold = dpi;
248:     PetscCall(KSP_MatMult(ksp, Amat, P, W)); /*     w <- Ap                          */
249:     PetscCall(VecXDot(P, W, &dpi));          /*     dpi <- p'w                       */
250:     KSPCheckDot(ksp, dpi);
251:     betaold = beta;

253:     if ((dpi == 0.0) || ((i > 0) && ((PetscSign(PetscRealPart(dpi)) * PetscSign(PetscRealPart(dpiold))) < 0.0))) {
254:       if (cg->radius) {
255:         a = 0.0;
256:         if (i == 0) {
257:           if (norm_p > 0.0) {
258:             a = PetscSqrtReal(r2 / norm_p);
259:           } else {
260:             PetscCall(VecNorm(R, NORM_2, &dp));
261:             a = cg->radius > dp ? 1.0 : cg->radius / dp;
262:           }
263:         } else if (norm_p > 0.0) {
264:           a = (PetscSqrtReal(dMp * dMp + norm_p * (r2 - norm_d)) - dMp) / norm_p;
265:         }
266:         PetscCall(VecAXPY(X, a, P)); /*     x <- x + ap                      */
267:         cg->obj += PetscRealPart(a * (0.5 * a * dpi - betaold));
268:       }
269:       if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " N obj %g\n", i + 1, (double)cg->obj));
270:       if (ksp->converged_neg_curve) {
271:         PetscCall(PetscInfo(ksp, "converged due to negative curvature: %g\n", (double)(PetscRealPart(dpi))));
272:         ksp->reason = KSP_CONVERGED_NEG_CURVE;
273:       } else {
274:         PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite matrix, dpi %g, dpiold %g", (double)PetscRealPart(dpi), (double)PetscRealPart(dpiold));
275:         ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
276:         PetscCall(PetscInfo(ksp, "diverging due to indefinite matrix\n"));
277:       }
278:       break;
279:     }
280:     a = beta / dpi; /*     a = beta/p'w                     */
281:     if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b)) * e[i] + 1.0 / a;
282:     if (cg->radius) { /* Steihaugh-Toint */
283:       PetscReal norm_dp1 = norm_d + PetscRealPart(a) * (2.0 * dMp + PetscRealPart(a) * norm_p);
284:       if (norm_dp1 > r2) {
285:         ksp->reason = KSP_CONVERGED_STEP_LENGTH;
286:         PetscCall(PetscInfo(ksp, "converged to the trust region radius %g\n", (double)cg->radius));
287:         if (norm_p > 0.0) {
288:           dp = (PetscSqrtReal(dMp * dMp + norm_p * (r2 - norm_d)) - dMp) / norm_p;
289:           PetscCall(VecAXPY(X, dp, P)); /*     x <- x + ap                      */
290:           cg->obj += PetscRealPart(dp * (0.5 * dp * dpi - beta));
291:         }
292:         if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " R obj %g\n", i + 1, (double)cg->obj));
293:         break;
294:       }
295:     }
296:     PetscCall(VecAXPY(X, a, P));  /*     x <- x + ap                      */
297:     PetscCall(VecAXPY(R, -a, W)); /*     r <- r - aw                      */
298:     if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i + 2) {
299:       PetscCall(KSP_PCApply(ksp, R, Z));  /*     z <- Br                          */
300:       PetscCall(VecNorm(Z, NORM_2, &dp)); /*     dp <- z'*z                       */
301:       KSPCheckNorm(ksp, dp);
302:     } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i + 2) {
303:       PetscCall(VecNorm(R, NORM_2, &dp)); /*     dp <- r'*r                       */
304:       KSPCheckNorm(ksp, dp);
305:     } else if (ksp->normtype == KSP_NORM_NATURAL) {
306:       PetscCall(KSP_PCApply(ksp, R, Z)); /*     z <- Br                          */
307:       PetscCall(VecXDot(Z, R, &beta));   /*     beta <- r'*z                     */
308:       KSPCheckDot(ksp, beta);
309:       dp = PetscSqrtReal(PetscAbsScalar(beta));
310:     } else {
311:       dp = 0.0;
312:     }
313:     cg->obj -= PetscRealPart(0.5 * a * betaold);
314:     if (testobj) PetscCall(PetscInfo(ksp, "it %" PetscInt_FMT " obj %g\n", i + 1, (double)cg->obj));

316:     ksp->rnorm = dp;
317:     PetscCall(KSPLogResidualHistory(ksp, dp));
318:     PetscCall(KSPMonitor(ksp, i + 1, dp));
319:     PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));

321:     if (!ksp->reason && testobj && cg->obj <= cg->obj_min) {
322:       PetscCall(PetscInfo(ksp, "converged to objective target minimum\n"));
323:       ksp->reason = KSP_CONVERGED_ATOL;
324:     }

326:     if (ksp->reason) break;

328:     if (cg->radius) {
329:       PetscCall(VecNorm(X, NORM_2, &norm_d));
330:       norm_d *= norm_d;
331:     }

333:     if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i + 2)) { PetscCall(KSP_PCApply(ksp, R, Z)); /*     z <- Br                          */ }
334:     if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i + 2)) {
335:       PetscCall(VecXDot(Z, R, &beta)); /*     beta <- z'*r                     */
336:       KSPCheckDot(ksp, beta);
337:     }

339:     i++;
340:   } while (i < ksp->max_it);
341:   if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
342:   PetscFunctionReturn(PETSC_SUCCESS);
343: }

345: /*
346:        KSPSolve_CG_SingleReduction

348:        This variant of CG is identical in exact arithmetic to the standard algorithm,
349:        but is rearranged to use only a single reduction stage per iteration, using additional
350:        intermediate vectors.

352:        See KSPCGUseSingleReduction_CG()

354: */
355: static PetscErrorCode KSPSolve_CG_SingleReduction(KSP ksp)
356: {
357:   PetscInt    i, stored_max_it, eigs;
358:   PetscScalar dpi = 0.0, a = 1.0, beta, betaold = 1.0, b = 0, *e = NULL, *d = NULL, delta, dpiold, tmp[2];
359:   PetscReal   dp = 0.0;
360:   Vec         X, B, Z, R, P, S, W, tmpvecs[2];
361:   KSP_CG     *cg;
362:   Mat         Amat, Pmat;
363:   PetscBool   diagonalscale;

365:   PetscFunctionBegin;
366:   PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale));
367:   PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name);

369:   cg            = (KSP_CG *)ksp->data;
370:   eigs          = ksp->calc_sings;
371:   stored_max_it = ksp->max_it;
372:   X             = ksp->vec_sol;
373:   B             = ksp->vec_rhs;
374:   R             = ksp->work[0];
375:   Z             = ksp->work[1];
376:   P             = ksp->work[2];
377:   S             = ksp->work[3];
378:   W             = ksp->work[4];

380:   if (eigs) {
381:     e    = cg->e;
382:     d    = cg->d;
383:     e[0] = 0.0;
384:   }
385:   PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));

387:   ksp->its = 0;
388:   if (!ksp->guess_zero) {
389:     PetscCall(KSP_MatMult(ksp, Amat, X, R)); /*    r <- b - Ax                       */
390:     PetscCall(VecAYPX(R, -1.0, B));
391:   } else {
392:     PetscCall(VecCopy(B, R)); /*    r <- b (x is 0)                   */
393:   }

395:   switch (ksp->normtype) {
396:   case KSP_NORM_PRECONDITIONED:
397:     PetscCall(KSP_PCApply(ksp, R, Z));  /*    z <- Br                           */
398:     PetscCall(VecNorm(Z, NORM_2, &dp)); /*    dp <- z'*z = e'*A'*B'*B*A'*e'     */
399:     KSPCheckNorm(ksp, dp);
400:     break;
401:   case KSP_NORM_UNPRECONDITIONED:
402:     PetscCall(VecNorm(R, NORM_2, &dp)); /*    dp <- r'*r = e'*A'*A*e            */
403:     KSPCheckNorm(ksp, dp);
404:     break;
405:   case KSP_NORM_NATURAL:
406:     PetscCall(KSP_PCApply(ksp, R, Z)); /*    z <- Br                           */
407:     PetscCall(KSP_MatMult(ksp, Amat, Z, S));
408:     PetscCall(VecXDot(Z, S, &delta)); /*    delta <- z'*A*z = r'*B*A*B*r      */
409:     PetscCall(VecXDot(Z, R, &beta));  /*    beta <- z'*r                      */
410:     KSPCheckDot(ksp, beta);
411:     dp = PetscSqrtReal(PetscAbsScalar(beta)); /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
412:     break;
413:   case KSP_NORM_NONE:
414:     dp = 0.0;
415:     break;
416:   default:
417:     SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "%s", KSPNormTypes[ksp->normtype]);
418:   }
419:   PetscCall(KSPLogResidualHistory(ksp, dp));
420:   PetscCall(KSPMonitor(ksp, 0, dp));
421:   ksp->rnorm = dp;

423:   PetscCall((*ksp->converged)(ksp, 0, dp, &ksp->reason, ksp->cnvP)); /* test for convergence */
424:   if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);

426:   if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) { PetscCall(KSP_PCApply(ksp, R, Z)); /*    z <- Br                           */ }
427:   if (ksp->normtype != KSP_NORM_NATURAL) {
428:     PetscCall(KSP_MatMult(ksp, Amat, Z, S));
429:     PetscCall(VecXDot(Z, S, &delta)); /*    delta <- z'*A*z = r'*B*A*B*r      */
430:     PetscCall(VecXDot(Z, R, &beta));  /*    beta <- z'*r                      */
431:     KSPCheckDot(ksp, beta);
432:   }

434:   i = 0;
435:   do {
436:     ksp->its = i + 1;
437:     if (beta == 0.0) {
438:       ksp->reason = KSP_CONVERGED_ATOL;
439:       PetscCall(PetscInfo(ksp, "converged due to beta = 0\n"));
440:       break;
441: #if !defined(PETSC_USE_COMPLEX)
442:     } else if ((i > 0) && (beta * betaold < 0.0)) {
443:       PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite preconditioner");
444:       ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
445:       PetscCall(PetscInfo(ksp, "diverging due to indefinite preconditioner\n"));
446:       break;
447: #endif
448:     }
449:     if (!i) {
450:       PetscCall(VecCopy(Z, P)); /*    p <- z                           */
451:       b = 0.0;
452:     } else {
453:       b = beta / betaold;
454:       if (eigs) {
455:         PetscCheck(ksp->max_it == stored_max_it, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Can not change maxit AND calculate eigenvalues");
456:         e[i] = PetscSqrtReal(PetscAbsScalar(b)) / a;
457:       }
458:       PetscCall(VecAYPX(P, b, Z)); /*    p <- z + b* p                     */
459:     }
460:     dpiold = dpi;
461:     if (!i) {
462:       PetscCall(KSP_MatMult(ksp, Amat, P, W)); /*    w <- Ap                           */
463:       PetscCall(VecXDot(P, W, &dpi));          /*    dpi <- p'w                        */
464:     } else {
465:       PetscCall(VecAYPX(W, beta / betaold, S));                 /*    w <- Ap                           */
466:       dpi = delta - beta * beta * dpiold / (betaold * betaold); /*    dpi <- p'w                        */
467:     }
468:     betaold = beta;
469:     KSPCheckDot(ksp, beta);

471:     if ((dpi == 0.0) || ((i > 0) && (PetscRealPart(dpi * dpiold) <= 0.0))) {
472:       PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite matrix");
473:       ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
474:       PetscCall(PetscInfo(ksp, "diverging due to indefinite or negative definite matrix\n"));
475:       break;
476:     }
477:     a = beta / dpi; /*    a = beta/p'w                      */
478:     if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b)) * e[i] + 1.0 / a;
479:     PetscCall(VecAXPY(X, a, P));  /*    x <- x + ap                       */
480:     PetscCall(VecAXPY(R, -a, W)); /*    r <- r - aw                       */
481:     if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i + 2) {
482:       PetscCall(KSP_PCApply(ksp, R, Z)); /*    z <- Br                           */
483:       PetscCall(KSP_MatMult(ksp, Amat, Z, S));
484:       PetscCall(VecNorm(Z, NORM_2, &dp)); /*    dp <- z'*z                        */
485:       KSPCheckNorm(ksp, dp);
486:     } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i + 2) {
487:       PetscCall(VecNorm(R, NORM_2, &dp)); /*    dp <- r'*r                        */
488:       KSPCheckNorm(ksp, dp);
489:     } else if (ksp->normtype == KSP_NORM_NATURAL) {
490:       PetscCall(KSP_PCApply(ksp, R, Z)); /*    z <- Br                           */
491:       tmpvecs[0] = S;
492:       tmpvecs[1] = R;
493:       PetscCall(KSP_MatMult(ksp, Amat, Z, S));
494:       PetscCall(VecMDot(Z, 2, tmpvecs, tmp)); /*    delta <- z'*A*z = r'*B*A*B*r      */
495:       delta = tmp[0];
496:       beta  = tmp[1]; /*    beta <- z'*r                      */
497:       KSPCheckDot(ksp, beta);
498:       dp = PetscSqrtReal(PetscAbsScalar(beta)); /*    dp <- r'*z = r'*B*r = e'*A'*B*A*e */
499:     } else {
500:       dp = 0.0;
501:     }
502:     ksp->rnorm = dp;
503:     PetscCall(KSPLogResidualHistory(ksp, dp));
504:     PetscCall(KSPMonitor(ksp, i + 1, dp));
505:     PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));
506:     if (ksp->reason) break;

508:     if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i + 2)) {
509:       PetscCall(KSP_PCApply(ksp, R, Z)); /*    z <- Br                           */
510:       PetscCall(KSP_MatMult(ksp, Amat, Z, S));
511:     }
512:     if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i + 2)) {
513:       tmpvecs[0] = S;
514:       tmpvecs[1] = R;
515:       PetscCall(VecMDot(Z, 2, tmpvecs, tmp));
516:       delta = tmp[0];
517:       beta  = tmp[1];         /*    delta <- z'*A*z = r'*B'*A*B*r     */
518:       KSPCheckDot(ksp, beta); /*    beta <- z'*r                      */
519:     }

521:     i++;
522:   } while (i < ksp->max_it);
523:   if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
524:   PetscFunctionReturn(PETSC_SUCCESS);
525: }

527: /*
528:      KSPDestroy_CG - Frees resources allocated in KSPSetup_CG and clears function
529:                      compositions from KSPCreate_CG. If adding your own KSP implementation,
530:                      you must be sure to free all allocated resources here to prevent
531:                      leaks.
532: */
533: PetscErrorCode KSPDestroy_CG(KSP ksp)
534: {
535:   KSP_CG *cg = (KSP_CG *)ksp->data;

537:   PetscFunctionBegin;
538:   PetscCall(PetscFree4(cg->e, cg->d, cg->ee, cg->dd));
539:   PetscCall(KSPDestroyDefault(ksp));
540:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetObjectiveTarget_C", NULL));
541:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetRadius_C", NULL));
542:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetType_C", NULL));
543:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGUseSingleReduction_C", NULL));
544:   PetscFunctionReturn(PETSC_SUCCESS);
545: }

547: /*
548:      KSPView_CG - Prints information about the current Krylov method being used.
549:                   If your Krylov method has special options or flags that information
550:                   should be printed here.
551: */
552: PetscErrorCode KSPView_CG(KSP ksp, PetscViewer viewer)
553: {
554:   KSP_CG   *cg = (KSP_CG *)ksp->data;
555:   PetscBool iascii;

557:   PetscFunctionBegin;
558:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
559:   if (iascii) {
560: #if defined(PETSC_USE_COMPLEX)
561:     PetscCall(PetscViewerASCIIPrintf(viewer, "  variant %s\n", KSPCGTypes[cg->type]));
562: #endif
563:     if (cg->singlereduction) PetscCall(PetscViewerASCIIPrintf(viewer, "  using single-reduction variant\n"));
564:   }
565:   PetscFunctionReturn(PETSC_SUCCESS);
566: }

568: /*
569:     KSPSetFromOptions_CG - Checks the options database for options related to the
570:                            conjugate gradient method.
571: */
572: PetscErrorCode KSPSetFromOptions_CG(KSP ksp, PetscOptionItems *PetscOptionsObject)
573: {
574:   KSP_CG   *cg = (KSP_CG *)ksp->data;
575:   PetscBool flg;

577:   PetscFunctionBegin;
578:   PetscOptionsHeadBegin(PetscOptionsObject, "KSP CG and CGNE options");
579: #if defined(PETSC_USE_COMPLEX)
580:   PetscCall(PetscOptionsEnum("-ksp_cg_type", "Matrix is Hermitian or complex symmetric", "KSPCGSetType", KSPCGTypes, (PetscEnum)cg->type, (PetscEnum *)&cg->type, NULL));
581: #endif
582:   PetscCall(PetscOptionsBool("-ksp_cg_single_reduction", "Merge inner products into single MPI_Allreduce()", "KSPCGUseSingleReduction", cg->singlereduction, &cg->singlereduction, &flg));
583:   if (flg) PetscCall(KSPCGUseSingleReduction(ksp, cg->singlereduction));
584:   PetscOptionsHeadEnd();
585:   PetscFunctionReturn(PETSC_SUCCESS);
586: }

588: /*
589:     KSPCGSetType_CG - This is an option that is SPECIFIC to this particular Krylov method.
590:                       This routine is registered below in KSPCreate_CG() and called from the
591:                       routine KSPCGSetType() (see the file cgtype.c).
592: */
593: PetscErrorCode KSPCGSetType_CG(KSP ksp, KSPCGType type)
594: {
595:   KSP_CG *cg = (KSP_CG *)ksp->data;

597:   PetscFunctionBegin;
598:   cg->type = type;
599:   PetscFunctionReturn(PETSC_SUCCESS);
600: }

602: /*
603:     KSPCGUseSingleReduction_CG

605:     This routine sets a flag to use a variant of CG. Note that (in somewhat
606:     atypical fashion) it also swaps out the routine called when KSPSolve()
607:     is invoked.
608: */
609: static PetscErrorCode KSPCGUseSingleReduction_CG(KSP ksp, PetscBool flg)
610: {
611:   KSP_CG *cg = (KSP_CG *)ksp->data;

613:   PetscFunctionBegin;
614:   cg->singlereduction = flg;
615:   if (cg->singlereduction) {
616:     ksp->ops->solve = KSPSolve_CG_SingleReduction;
617:   } else {
618:     ksp->ops->solve = KSPSolve_CG;
619:   }
620:   PetscFunctionReturn(PETSC_SUCCESS);
621: }

623: PETSC_INTERN PetscErrorCode KSPBuildResidual_CG(KSP ksp, Vec t, Vec v, Vec *V)
624: {
625:   PetscFunctionBegin;
626:   PetscCall(VecCopy(ksp->work[0], v));
627:   *V = v;
628:   PetscFunctionReturn(PETSC_SUCCESS);
629: }

631: /*MC
632:    KSPCG - The Preconditioned Conjugate Gradient (PCG) iterative method {cite}`hs:52` and {cite}`malek2014preconditioning`

634:    Options Database Keys:
635: +   -ksp_cg_type Hermitian - (for complex matrices only) indicates the matrix is Hermitian, see `KSPCGSetType()`
636: .   -ksp_cg_type symmetric - (for complex matrices only) indicates the matrix is symmetric
637: -   -ksp_cg_single_reduction - performs both inner products needed in the algorithm with a single `MPI_Allreduce()` call, see `KSPCGUseSingleReduction()`

639:    Level: beginner

641:    Notes:
642:    The PCG method requires both the matrix and preconditioner to be symmetric positive (or negative) (semi) definite.

644:    Only left preconditioning is supported; there are several ways to motivate preconditioned CG, but they all produce the same algorithm.
645:    One can interpret preconditioning A with B to mean any of the following\:
646: .vb
647:    (1) Solve a left-preconditioned system BAx = Bb, using inv(B) to define an inner product in the algorithm.
648:    (2) Solve a right-preconditioned system ABy = b, x = By, using B to define an inner product in the algorithm.
649:    (3) Solve a symmetrically-preconditioned system, E^TAEy = E^Tb, x = Ey, where B = EE^T.
650:    (4) Solve Ax=b with CG, but use the inner product defined by B to define the method [2].
651:    In all cases, the resulting algorithm only requires application of B to vectors.
652: .ve

654:    For complex numbers there are two different CG methods, one for Hermitian symmetric matrices and one for non-Hermitian symmetric matrices. Use
655:    `KSPCGSetType()` to indicate which type you are using.

657:    One can use `KSPSetComputeEigenvalues()` and `KSPComputeEigenvalues()` to compute the eigenvalues of the (preconditioned) operator

659:    Developer Note:
660:     KSPSolve_CG() should actually query the matrix to determine if it is Hermitian symmetric or not and NOT require the user to
661:    indicate it to the `KSP` object.

663: .seealso: [](ch_ksp), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `KSPSetComputeEigenvalues()`, `KSPComputeEigenvalues()`
664:           `KSPCGSetType()`, `KSPCGUseSingleReduction()`, `KSPPIPECG`, `KSPGROPPCG`
665: M*/

667: /*
668:     KSPCreate_CG - Creates the data structure for the Krylov method CG and sets the
669:        function pointers for all the routines it needs to call (KSPSolve_CG() etc)

671:     It must be labeled as PETSC_EXTERN to be dynamically linkable in C++
672: */
673: PETSC_EXTERN PetscErrorCode KSPCreate_CG(KSP ksp)
674: {
675:   KSP_CG *cg;

677:   PetscFunctionBegin;
678:   PetscCall(PetscNew(&cg));
679: #if !defined(PETSC_USE_COMPLEX)
680:   cg->type = KSP_CG_SYMMETRIC;
681: #else
682:   cg->type = KSP_CG_HERMITIAN;
683: #endif
684:   cg->obj_min = 0.0;
685:   ksp->data   = (void *)cg;

687:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_PRECONDITIONED, PC_LEFT, 3));
688:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_LEFT, 2));
689:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NATURAL, PC_LEFT, 2));
690:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_LEFT, 1));

692:   /*
693:        Sets the functions that are associated with this data structure
694:        (in C++ this is the same as defining virtual functions)
695:   */
696:   ksp->ops->setup          = KSPSetUp_CG;
697:   ksp->ops->solve          = KSPSolve_CG;
698:   ksp->ops->destroy        = KSPDestroy_CG;
699:   ksp->ops->view           = KSPView_CG;
700:   ksp->ops->setfromoptions = KSPSetFromOptions_CG;
701:   ksp->ops->buildsolution  = KSPBuildSolutionDefault;
702:   ksp->ops->buildresidual  = KSPBuildResidual_CG;

704:   /*
705:       Attach the function KSPCGSetType_CG() to this object. The routine
706:       KSPCGSetType() checks for this attached function and calls it if it finds
707:       it. (Sort of like a dynamic member function that can be added at run time
708:   */
709:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetType_C", KSPCGSetType_CG));
710:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGUseSingleReduction_C", KSPCGUseSingleReduction_CG));
711:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetRadius_C", KSPCGSetRadius_CG));
712:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetObjectiveTarget_C", KSPCGSetObjectiveTarget_CG));
713:   PetscFunctionReturn(PETSC_SUCCESS);
714: }