Actual source code: iterativ.c

  1: /*
  2:    This file contains some simple default routines.
  3:    These routines should be SHORT, since they will be included in every
  4:    executable image that uses the iterative routines (note that, through
  5:    the registry system, we provide a way to load only the truly necessary
  6:    files)
  7:  */
  8: #include <petsc/private/kspimpl.h>
  9: #include <petscdmshell.h>
 10: #include <petscdraw.h>

 12: /*@
 13:   KSPGetResidualNorm - Gets the last (possibly approximate and/or preconditioned) residual norm that has been computed.

 15:   Not Collective

 17:   Input Parameter:
 18: . ksp - the iterative context

 20:   Output Parameter:
 21: . rnorm - residual norm

 23:   Level: intermediate

 25:   Notes:
 26:   For some methods, such as `KSPGMRES`, the norm is not computed directly from the residual.

 28:   The type of norm used by the method can be controlled with `KSPSetNormType()`

 30:   Certain solvers, under certain conditions, may not compute the final residual norm in an iteration, in that case the previous norm is returned.

 32: .seealso: [](ch_ksp), `KSP`, `KSPSetNormType()`, `KSPBuildResidual()`, `KSPNormType`
 33: @*/
 34: PetscErrorCode KSPGetResidualNorm(KSP ksp, PetscReal *rnorm)
 35: {
 36:   PetscFunctionBegin;
 38:   PetscAssertPointer(rnorm, 2);
 39:   *rnorm = ksp->rnorm;
 40:   PetscFunctionReturn(PETSC_SUCCESS);
 41: }

 43: /*@
 44:   KSPGetIterationNumber - Gets the current iteration number; if the `KSPSolve()` is complete, returns the number of iterations used.

 46:   Not Collective

 48:   Input Parameter:
 49: . ksp - the iterative context

 51:   Output Parameter:
 52: . its - number of iterations

 54:   Level: intermediate

 56:   Note:
 57:   During the ith iteration this returns i-1

 59: .seealso: [](ch_ksp), `KSP`, `KSPGetResidualNorm()`, `KSPBuildResidual()`, `KSPGetTotalIterations()`
 60: @*/
 61: PetscErrorCode KSPGetIterationNumber(KSP ksp, PetscInt *its)
 62: {
 63:   PetscFunctionBegin;
 65:   PetscAssertPointer(its, 2);
 66:   *its = ksp->its;
 67:   PetscFunctionReturn(PETSC_SUCCESS);
 68: }

 70: /*@
 71:   KSPGetTotalIterations - Gets the total number of iterations this `KSP` object has performed since was created, counted over all linear solves

 73:   Not Collective

 75:   Input Parameter:
 76: . ksp - the iterative context

 78:   Output Parameter:
 79: . its - total number of iterations

 81:   Level: intermediate

 83:   Note:
 84:   Use `KSPGetIterationNumber()` to get the count for the most recent solve only
 85:   If this is called within a `KSPSolve()` (such as in a `KSPMonitor` routine) then it does not include iterations within that current solve

 87: .seealso: [](ch_ksp), `KSP`, `KSPBuildResidual()`, `KSPGetResidualNorm()`, `KSPGetIterationNumber()`
 88: @*/
 89: PetscErrorCode KSPGetTotalIterations(KSP ksp, PetscInt *its)
 90: {
 91:   PetscFunctionBegin;
 93:   PetscAssertPointer(its, 2);
 94:   *its = ksp->totalits;
 95:   PetscFunctionReturn(PETSC_SUCCESS);
 96: }

 98: /*@C
 99:   KSPMonitorResidual - Print the (possibly preconditioned, possibly approximate) residual norm at each iteration of an iterative solver.

101:   Collective

103:   Input Parameters:
104: + ksp   - iterative context
105: . n     - iteration number
106: . rnorm - (preconditioned) residual norm value (may be estimated).
107: - vf    - The viewer context

109:   Options Database Key:
110: . -ksp_monitor - Activates `KSPMonitorResidual()` to print the norm value at each iteration

112:   Level: intermediate

114:   Note:
115:   For some methods, such as `KSPGMRES`, the norm is not computed directly from the residual.

117:   The type of norm used by the method can be controlled with `KSPSetNormType()`

119:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
120:   to be used during the `KSP` solve.

122: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorResidualDraw()`, `KSPMonitorResidualDrawLG()`,
123:           `KSPMonitorResidualRange()`, `KSPMonitorTrueResidualDraw()`, `KSPMonitorTrueResidualDrawLG()`, `KSPMonitorTrueResidualMax()`,
124:           `KSPMonitorSingularValue()`, `KSPMonitorSolutionDrawLG()`, `KSPMonitorSolutionDraw()`, `KSPMonitorSolution()`,
125:           `KSPMonitorErrorDrawLG()`, `KSPMonitorErrorDraw()`, `KSPMonitorError()`
126: @*/
127: PetscErrorCode KSPMonitorResidual(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
128: {
129:   PetscViewer       viewer = vf->viewer;
130:   PetscViewerFormat format = vf->format;
131:   PetscInt          tablevel;
132:   const char       *prefix;

134:   PetscFunctionBegin;
136:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
137:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
138:   PetscCall(PetscViewerPushFormat(viewer, format));
139:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
140:   if (n == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual norms for %s solve.\n", prefix));
141:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Residual norm %14.12e\n", n, (double)rnorm));
142:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
143:   PetscCall(PetscViewerPopFormat(viewer));
144:   PetscFunctionReturn(PETSC_SUCCESS);
145: }

147: /*@C
148:   KSPMonitorResidualDraw - Plots the (possibly preconditioned) residual at each iteration of an iterative solver.

150:   Collective

152:   Input Parameters:
153: + ksp   - iterative context
154: . n     - iteration number
155: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
156: - vf    - The viewer context

158:   Options Database Key:
159: . -ksp_monitor draw - Activates `KSPMonitorResidualDraw()`

161:   Level: intermediate

163:   Note:
164:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
165:   to be used during the `KSP` solve.

167: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorResidual()`, `KSPMonitorResidualDrawLG()`
168: @*/
169: PetscErrorCode KSPMonitorResidualDraw(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
170: {
171:   PetscViewer       viewer = vf->viewer;
172:   PetscViewerFormat format = vf->format;
173:   Vec               r;

175:   PetscFunctionBegin;
177:   PetscCall(PetscViewerPushFormat(viewer, format));
178:   PetscCall(KSPBuildResidual(ksp, NULL, NULL, &r));
179:   PetscCall(PetscObjectSetName((PetscObject)r, "Residual"));
180:   PetscCall(PetscObjectCompose((PetscObject)r, "__Vec_bc_zero__", (PetscObject)ksp));
181:   PetscCall(VecView(r, viewer));
182:   PetscCall(PetscObjectCompose((PetscObject)r, "__Vec_bc_zero__", NULL));
183:   PetscCall(VecDestroy(&r));
184:   PetscCall(PetscViewerPopFormat(viewer));
185:   PetscFunctionReturn(PETSC_SUCCESS);
186: }

188: /*@C
189:   KSPMonitorResidualDrawLG - Plots the (possibly preconditioned) residual norm at each iteration of an iterative solver.

191:   Collective

193:   Input Parameters:
194: + ksp   - iterative context
195: . n     - iteration number
196: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
197: - vf    - The viewer context

199:   Options Database Key:
200: . -ksp_monitor draw::draw_lg - Activates `KSPMonitorResidualDrawLG()`

202:   Level: intermediate

204:   Notes:
205:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
206:   to be used during the `KSP` solve.

208:   Use `KSPMonitorResidualDrawLGCreate()` to create the context used with this monitor

210: .seealso: [](ch_ksp), `KSP`, `PETSCVIEWERDRAW`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorResidualDraw()`, `KSPMonitorResidual()`
211: @*/
212: PetscErrorCode KSPMonitorResidualDrawLG(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
213: {
214:   PetscViewer        viewer = vf->viewer;
215:   PetscViewerFormat  format = vf->format;
216:   PetscDrawLG        lg;
217:   KSPConvergedReason reason;
218:   PetscReal          x, y;

220:   PetscFunctionBegin;
222:   PetscCall(PetscViewerPushFormat(viewer, format));
223:   PetscCall(PetscViewerDrawGetDrawLG(viewer, 0, &lg));
224:   if (!n) PetscCall(PetscDrawLGReset(lg));
225:   x = (PetscReal)n;
226:   if (rnorm > 0.0) y = PetscLog10Real(rnorm);
227:   else y = -15.0;
228:   PetscCall(PetscDrawLGAddPoint(lg, &x, &y));
229:   PetscCall(KSPGetConvergedReason(ksp, &reason));
230:   if (n <= 20 || !(n % 5) || reason) {
231:     PetscCall(PetscDrawLGDraw(lg));
232:     PetscCall(PetscDrawLGSave(lg));
233:   }
234:   PetscCall(PetscViewerPopFormat(viewer));
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: /*@C
239:   KSPMonitorResidualDrawLGCreate - Creates the context for the (possibly preconditioned) residual norm monitor `KSPMonitorResidualDrawLG()`

241:   Collective

243:   Input Parameters:
244: + viewer - The `PetscViewer` of type `PETSCVIEWERDRAW`
245: . format - The viewer format
246: - ctx    - An optional user context

248:   Output Parameter:
249: . vf - The viewer context

251:   Level: intermediate

253: .seealso: [](ch_ksp), `KSP`, `PETSCVIEWERDRAW`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorResidualDrawLG()`,
254:           `PetscViewerFormat`, `PetscViewer`, `PetscViewerAndFormat`
255: @*/
256: PetscErrorCode KSPMonitorResidualDrawLGCreate(PetscViewer viewer, PetscViewerFormat format, void *ctx, PetscViewerAndFormat **vf)
257: {
258:   PetscFunctionBegin;
259:   PetscCall(PetscViewerAndFormatCreate(viewer, format, vf));
260:   (*vf)->data = ctx;
261:   PetscCall(PetscViewerMonitorLGSetUp(viewer, NULL, NULL, "Log Residual Norm", 1, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300));
262:   PetscFunctionReturn(PETSC_SUCCESS);
263: }

265: /*
266:   This is the same as KSPMonitorResidual() except it prints fewer digits of the residual as the residual gets smaller.
267:   This is because the later digits are meaningless and are often different on different machines; by using this routine different
268:   machines will usually generate the same output.

270:   Deprecated: Intentionally has no manual page
271: */
272: PetscErrorCode KSPMonitorResidualShort(KSP ksp, PetscInt its, PetscReal fnorm, PetscViewerAndFormat *vf)
273: {
274:   PetscViewer       viewer = vf->viewer;
275:   PetscViewerFormat format = vf->format;
276:   PetscInt          tablevel;
277:   const char       *prefix;

279:   PetscFunctionBegin;
281:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
282:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
283:   PetscCall(PetscViewerPushFormat(viewer, format));
284:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
285:   if (its == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual norms for %s solve.\n", prefix));
286:   if (fnorm > 1.e-9) PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Residual norm %g\n", its, (double)fnorm));
287:   else if (fnorm > 1.e-11) PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Residual norm %5.3e\n", its, (double)fnorm));
288:   else PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Residual norm < 1.e-11\n", its));
289:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
290:   PetscCall(PetscViewerPopFormat(viewer));
291:   PetscFunctionReturn(PETSC_SUCCESS);
292: }

294: PetscErrorCode KSPMonitorRange_Private(KSP ksp, PetscInt it, PetscReal *per)
295: {
296:   Vec                resid;
297:   const PetscScalar *r;
298:   PetscReal          rmax, pwork;
299:   PetscInt           i, n, N;

301:   PetscFunctionBegin;
302:   PetscCall(KSPBuildResidual(ksp, NULL, NULL, &resid));
303:   PetscCall(VecNorm(resid, NORM_INFINITY, &rmax));
304:   PetscCall(VecGetLocalSize(resid, &n));
305:   PetscCall(VecGetSize(resid, &N));
306:   PetscCall(VecGetArrayRead(resid, &r));
307:   pwork = 0.0;
308:   for (i = 0; i < n; ++i) pwork += (PetscAbsScalar(r[i]) > .20 * rmax);
309:   PetscCall(VecRestoreArrayRead(resid, &r));
310:   PetscCall(VecDestroy(&resid));
311:   PetscCallMPI(MPIU_Allreduce(&pwork, per, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)ksp)));
312:   *per = *per / N;
313:   PetscFunctionReturn(PETSC_SUCCESS);
314: }

316: /*@C
317:   KSPMonitorResidualRange - Prints the percentage of residual elements that are more than 10 percent of the maximum value.

319:   Collective

321:   Input Parameters:
322: + ksp   - iterative context
323: . it    - iteration number
324: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
325: - vf    - The viewer context

327:   Options Database Key:
328: . -ksp_monitor_range - Activates `KSPMonitorResidualRange()`

330:   Level: intermediate

332:   Note:
333:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
334:   to be used during the `KSP` solve.

336: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorResidual()`
337: @*/
338: PetscErrorCode KSPMonitorResidualRange(KSP ksp, PetscInt it, PetscReal rnorm, PetscViewerAndFormat *vf)
339: {
340:   static PetscReal  prev;
341:   PetscViewer       viewer = vf->viewer;
342:   PetscViewerFormat format = vf->format;
343:   PetscInt          tablevel;
344:   const char       *prefix;
345:   PetscReal         perc, rel;

347:   PetscFunctionBegin;
349:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
350:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
351:   PetscCall(PetscViewerPushFormat(viewer, format));
352:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
353:   if (!it) prev = rnorm;
354:   if (it == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual norms for %s solve.\n", prefix));
355:   PetscCall(KSPMonitorRange_Private(ksp, it, &perc));
356:   rel  = (prev - rnorm) / prev;
357:   prev = rnorm;
358:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP preconditioned resid norm %14.12e Percent values above 20 percent of maximum %5.2f relative decrease %5.2e ratio %5.2e\n", it, (double)rnorm, (double)(100 * perc), (double)rel, (double)(rel / perc)));
359:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
360:   PetscCall(PetscViewerPopFormat(viewer));
361:   PetscFunctionReturn(PETSC_SUCCESS);
362: }

364: /*@C
365:   KSPMonitorTrueResidual - Prints the true residual norm, as well as the (possibly preconditioned, possibly approximate) residual norm,
366:   at each iteration of a `KSPSolve()` iterative solver.

368:   Collective

370:   Input Parameters:
371: + ksp   - iterative context
372: . n     - iteration number
373: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
374: - vf    - The viewer context

376:   Options Database Key:
377: . -ksp_monitor_true_residual - Activates `KSPMonitorTrueResidual()` to print both norm values at each iteration

379:   Level: intermediate

381:   Notes:
382:   When using right preconditioning, the two norm values are equivalent.

384:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
385:   to be used during the `KSP` solve.

387: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorResidual()`, `KSPMonitorTrueResidualMaxNorm()`, `PetscViewerAndFormat`
388: @*/
389: PetscErrorCode KSPMonitorTrueResidual(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
390: {
391:   PetscViewer       viewer = vf->viewer;
392:   PetscViewerFormat format = vf->format;
393:   Vec               r;
394:   PetscReal         truenorm, bnorm;
395:   char              normtype[256];
396:   PetscInt          tablevel;
397:   const char       *prefix;

399:   PetscFunctionBegin;
401:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
402:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
403:   PetscCall(PetscStrncpy(normtype, KSPNormTypes[ksp->normtype], sizeof(normtype)));
404:   PetscCall(PetscStrtolower(normtype));
405:   PetscCall(KSPBuildResidual(ksp, NULL, NULL, &r));
406:   PetscCall(VecNorm(r, NORM_2, &truenorm));
407:   PetscCall(VecNorm(ksp->vec_rhs, NORM_2, &bnorm));
408:   PetscCall(VecDestroy(&r));

410:   PetscCall(PetscViewerPushFormat(viewer, format));
411:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
412:   if (n == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual norms for %s solve.\n", prefix));
413:   if (bnorm == 0) {
414:     PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP %s resid norm %14.12e true resid norm %14.12e ||r(i)||/||b|| inf\n", n, normtype, (double)rnorm, (double)truenorm));
415:   } else {
416:     PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP %s resid norm %14.12e true resid norm %14.12e ||r(i)||/||b|| %14.12e\n", n, normtype, (double)rnorm, (double)truenorm, (double)(truenorm / bnorm)));
417:   }
418:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
419:   PetscCall(PetscViewerPopFormat(viewer));
420:   PetscFunctionReturn(PETSC_SUCCESS);
421: }

423: /*@C
424:   KSPMonitorTrueResidualDraw - Plots the true residual at each iteration of an iterative solver.

426:   Collective

428:   Input Parameters:
429: + ksp   - iterative context
430: . n     - iteration number
431: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
432: - vf    - The viewer context of type `PETSCVIEWERDRAW`

434:   Options Database Key:
435: . -ksp_monitor_true_residual draw - Activates `KSPMonitorResidualDraw()`

437:   Level: intermediate

439:   Note:
440:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
441:   to be used during the `KSP` solve.

443: .seealso: [](ch_ksp), `PETSCVIEWERDRAW`, `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorResidual()`,
444:           `KSPMonitorTrueResidualDrawLG()`, `PetscViewerAndFormat`
445: @*/
446: PetscErrorCode KSPMonitorTrueResidualDraw(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
447: {
448:   PetscViewer       viewer = vf->viewer;
449:   PetscViewerFormat format = vf->format;
450:   Vec               r;

452:   PetscFunctionBegin;
454:   PetscCall(PetscViewerPushFormat(viewer, format));
455:   PetscCall(KSPBuildResidual(ksp, NULL, NULL, &r));
456:   PetscCall(PetscObjectSetName((PetscObject)r, "Residual"));
457:   PetscCall(PetscObjectCompose((PetscObject)r, "__Vec_bc_zero__", (PetscObject)ksp));
458:   PetscCall(VecView(r, viewer));
459:   PetscCall(PetscObjectCompose((PetscObject)r, "__Vec_bc_zero__", NULL));
460:   PetscCall(VecDestroy(&r));
461:   PetscCall(PetscViewerPopFormat(viewer));
462:   PetscFunctionReturn(PETSC_SUCCESS);
463: }

465: /*@C
466:   KSPMonitorTrueResidualDrawLG - Plots the true residual norm at each iteration of an iterative solver.

468:   Collective

470:   Input Parameters:
471: + ksp   - iterative context
472: . n     - iteration number
473: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
474: - vf    - The viewer context

476:   Options Database Key:
477: . -ksp_monitor_true_residual draw::draw_lg - Activates `KSPMonitorTrueResidualDrawLG()`

479:   Level: intermediate

481:   Notes:
482:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
483:   to be used during the `KSP` solve.

485:   Call `KSPMonitorTrueResidualDrawLGCreate()` to create the context needed for this monitor

487: .seealso: [](ch_ksp), `PETSCVIEWERDRAW`, `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorTrueResidualDraw()`, `KSPMonitorResidual`,
488:           `KSPMonitorTrueResidualDrawLGCreate()`
489: @*/
490: PetscErrorCode KSPMonitorTrueResidualDrawLG(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
491: {
492:   PetscViewer        viewer = vf->viewer;
493:   PetscViewerFormat  format = vf->format;
494:   Vec                r;
495:   KSPConvergedReason reason;
496:   PetscReal          truenorm, x[2], y[2];
497:   PetscDrawLG        lg;

499:   PetscFunctionBegin;
501:   PetscCall(KSPBuildResidual(ksp, NULL, NULL, &r));
502:   PetscCall(VecNorm(r, NORM_2, &truenorm));
503:   PetscCall(VecDestroy(&r));
504:   PetscCall(PetscViewerPushFormat(viewer, format));
505:   PetscCall(PetscViewerDrawGetDrawLG(viewer, 0, &lg));
506:   if (!n) PetscCall(PetscDrawLGReset(lg));
507:   x[0] = (PetscReal)n;
508:   if (rnorm > 0.0) y[0] = PetscLog10Real(rnorm);
509:   else y[0] = -15.0;
510:   x[1] = (PetscReal)n;
511:   if (truenorm > 0.0) y[1] = PetscLog10Real(truenorm);
512:   else y[1] = -15.0;
513:   PetscCall(PetscDrawLGAddPoint(lg, x, y));
514:   PetscCall(KSPGetConvergedReason(ksp, &reason));
515:   if (n <= 20 || !(n % 5) || reason) {
516:     PetscCall(PetscDrawLGDraw(lg));
517:     PetscCall(PetscDrawLGSave(lg));
518:   }
519:   PetscCall(PetscViewerPopFormat(viewer));
520:   PetscFunctionReturn(PETSC_SUCCESS);
521: }

523: /*@C
524:   KSPMonitorTrueResidualDrawLGCreate - Creates the context for the true residual monitor `KSPMonitorTrueResidualDrawLG()`

526:   Collective

528:   Input Parameters:
529: + viewer - The `PetscViewer` of type `PETSCVIEWERDRAW`
530: . format - The viewer format
531: - ctx    - An optional user context

533:   Output Parameter:
534: . vf - The viewer context

536:   Level: intermediate

538: .seealso: [](ch_ksp), `PETSCVIEWERDRAW`, `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `PetscViewerAndFormat`
539: @*/
540: PetscErrorCode KSPMonitorTrueResidualDrawLGCreate(PetscViewer viewer, PetscViewerFormat format, void *ctx, PetscViewerAndFormat **vf)
541: {
542:   const char *names[] = {"preconditioned", "true"};

544:   PetscFunctionBegin;
545:   PetscCall(PetscViewerAndFormatCreate(viewer, format, vf));
546:   (*vf)->data = ctx;
547:   PetscCall(PetscViewerMonitorLGSetUp(viewer, NULL, NULL, "Log Residual Norm", 2, names, PETSC_DECIDE, PETSC_DECIDE, 400, 300));
548:   PetscFunctionReturn(PETSC_SUCCESS);
549: }

551: /*@C
552:   KSPMonitorTrueResidualMax - Prints the true residual max norm at each iteration of an iterative solver.

554:   Collective

556:   Input Parameters:
557: + ksp   - iterative context
558: . n     - iteration number
559: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
560: - vf    - The viewer context

562:   Options Database Key:
563: . -ksp_monitor_true_residual_max - Activates `KSPMonitorTrueResidualMax()`

565:   Level: intermediate

567:   Note:
568:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
569:   to be used during the `KSP` solve.

571: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorResidual()`, `KSPMonitorTrueResidualMaxNorm()`
572: @*/
573: PetscErrorCode KSPMonitorTrueResidualMax(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
574: {
575:   PetscViewer       viewer = vf->viewer;
576:   PetscViewerFormat format = vf->format;
577:   Vec               r;
578:   PetscReal         truenorm, bnorm;
579:   char              normtype[256];
580:   PetscInt          tablevel;
581:   const char       *prefix;

583:   PetscFunctionBegin;
585:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
586:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
587:   PetscCall(PetscStrncpy(normtype, KSPNormTypes[ksp->normtype], sizeof(normtype)));
588:   PetscCall(PetscStrtolower(normtype));
589:   PetscCall(KSPBuildResidual(ksp, NULL, NULL, &r));
590:   PetscCall(VecNorm(r, NORM_INFINITY, &truenorm));
591:   PetscCall(VecNorm(ksp->vec_rhs, NORM_INFINITY, &bnorm));
592:   PetscCall(VecDestroy(&r));

594:   PetscCall(PetscViewerPushFormat(viewer, format));
595:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
596:   if (n == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual norms for %s solve.\n", prefix));
597:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP %s true resid max norm %14.12e ||r(i)||/||b|| %14.12e\n", n, normtype, (double)truenorm, (double)(truenorm / bnorm)));
598:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
599:   PetscCall(PetscViewerPopFormat(viewer));
600:   PetscFunctionReturn(PETSC_SUCCESS);
601: }

603: /*@C
604:   KSPMonitorError - Prints the error norm, as well as the (possibly preconditioned) residual norm, at each iteration of an iterative solver.

606:   Collective

608:   Input Parameters:
609: + ksp   - iterative context
610: . n     - iteration number
611: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
612: - vf    - The viewer context

614:   Options Database Key:
615: . -ksp_monitor_error - Activates `KSPMonitorError()`

617:   Level: intermediate

619:   Note:
620:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
621:   to be used during the `KSP` solve.

623: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorResidual()`, `KSPMonitorTrueResidualMaxNorm()`
624: @*/
625: PetscErrorCode KSPMonitorError(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
626: {
627:   PetscViewer       viewer = vf->viewer;
628:   PetscViewerFormat format = vf->format;
629:   DM                dm;
630:   Vec               sol;
631:   PetscReal        *errors;
632:   PetscInt          Nf, f;
633:   PetscInt          tablevel;
634:   const char       *prefix;

636:   PetscFunctionBegin;
638:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
639:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
640:   PetscCall(KSPGetDM(ksp, &dm));
641:   PetscCall(DMGetNumFields(dm, &Nf));
642:   PetscCall(DMGetGlobalVector(dm, &sol));
643:   PetscCall(KSPBuildSolution(ksp, sol, NULL));
644:   /* TODO: Make a different monitor that flips sign for SNES, Newton system is A dx = -b, so we need to negate the solution */
645:   PetscCall(VecScale(sol, -1.0));
646:   PetscCall(PetscCalloc1(Nf, &errors));
647:   PetscCall(DMComputeError(dm, sol, errors, NULL));

649:   PetscCall(PetscViewerPushFormat(viewer, format));
650:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
651:   if (n == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Error norms for %s solve.\n", prefix));
652:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Error norm %s", n, Nf > 1 ? "[" : ""));
653:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
654:   for (f = 0; f < Nf; ++f) {
655:     if (f > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ", "));
656:     PetscCall(PetscViewerASCIIPrintf(viewer, "%14.12e", (double)errors[f]));
657:   }
658:   PetscCall(PetscViewerASCIIPrintf(viewer, "%s resid norm %14.12e\n", Nf > 1 ? "]" : "", (double)rnorm));
659:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
660:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
661:   PetscCall(PetscViewerPopFormat(viewer));
662:   PetscCall(DMRestoreGlobalVector(dm, &sol));
663:   PetscFunctionReturn(PETSC_SUCCESS);
664: }

666: /*@C
667:   KSPMonitorErrorDraw - Plots the error at each iteration of an iterative solver.

669:   Collective

671:   Input Parameters:
672: + ksp   - iterative context
673: . n     - iteration number
674: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
675: - vf    - The viewer context

677:   Options Database Key:
678: . -ksp_monitor_error draw - Activates `KSPMonitorErrorDraw()`

680:   Level: intermediate

682:   Note:
683:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
684:   to be used during the `KSP` solve.

686: .seealso: [](ch_ksp), `PETSCVIEWERDRAW`, `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorErrorDrawLG()`
687: @*/
688: PetscErrorCode KSPMonitorErrorDraw(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
689: {
690:   PetscViewer       viewer = vf->viewer;
691:   PetscViewerFormat format = vf->format;
692:   DM                dm;
693:   Vec               sol, e;

695:   PetscFunctionBegin;
697:   PetscCall(PetscViewerPushFormat(viewer, format));
698:   PetscCall(KSPGetDM(ksp, &dm));
699:   PetscCall(DMGetGlobalVector(dm, &sol));
700:   PetscCall(KSPBuildSolution(ksp, sol, NULL));
701:   PetscCall(DMComputeError(dm, sol, NULL, &e));
702:   PetscCall(PetscObjectSetName((PetscObject)e, "Error"));
703:   PetscCall(PetscObjectCompose((PetscObject)e, "__Vec_bc_zero__", (PetscObject)ksp));
704:   PetscCall(VecView(e, viewer));
705:   PetscCall(PetscObjectCompose((PetscObject)e, "__Vec_bc_zero__", NULL));
706:   PetscCall(VecDestroy(&e));
707:   PetscCall(DMRestoreGlobalVector(dm, &sol));
708:   PetscCall(PetscViewerPopFormat(viewer));
709:   PetscFunctionReturn(PETSC_SUCCESS);
710: }

712: /*@C
713:   KSPMonitorErrorDrawLG - Plots the error and residual norm at each iteration of an iterative solver.

715:   Collective

717:   Input Parameters:
718: + ksp   - iterative context
719: . n     - iteration number
720: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
721: - vf    - The viewer context

723:   Options Database Key:
724: . -ksp_monitor_error draw::draw_lg - Activates `KSPMonitorTrueResidualDrawLG()`

726:   Level: intermediate

728:   Notes:
729:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
730:   to be used during the `KSP` solve.

732:   Call `KSPMonitorErrorDrawLGCreate()` to create the context used with this monitor

734: .seealso: [](ch_ksp), `PETSCVIEWERDRAW`, `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorErrorDraw()`
735: @*/
736: PetscErrorCode KSPMonitorErrorDrawLG(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
737: {
738:   PetscViewer        viewer = vf->viewer;
739:   PetscViewerFormat  format = vf->format;
740:   PetscDrawLG        lg;
741:   DM                 dm;
742:   Vec                sol;
743:   KSPConvergedReason reason;
744:   PetscReal         *x, *errors;
745:   PetscInt           Nf, f;

747:   PetscFunctionBegin;
749:   PetscCall(PetscViewerDrawGetDrawLG(viewer, 0, &lg));
750:   PetscCall(KSPGetDM(ksp, &dm));
751:   PetscCall(DMGetNumFields(dm, &Nf));
752:   PetscCall(DMGetGlobalVector(dm, &sol));
753:   PetscCall(KSPBuildSolution(ksp, sol, NULL));
754:   /* TODO: Make a different monitor that flips sign for SNES, Newton system is A dx = -b, so we need to negate the solution */
755:   PetscCall(VecScale(sol, -1.0));
756:   PetscCall(PetscCalloc2(Nf + 1, &x, Nf + 1, &errors));
757:   PetscCall(DMComputeError(dm, sol, errors, NULL));

759:   PetscCall(PetscViewerPushFormat(viewer, format));
760:   if (!n) PetscCall(PetscDrawLGReset(lg));
761:   for (f = 0; f < Nf; ++f) {
762:     x[f]      = (PetscReal)n;
763:     errors[f] = errors[f] > 0.0 ? PetscLog10Real(errors[f]) : -15.;
764:   }
765:   x[Nf]      = (PetscReal)n;
766:   errors[Nf] = rnorm > 0.0 ? PetscLog10Real(rnorm) : -15.;
767:   PetscCall(PetscDrawLGAddPoint(lg, x, errors));
768:   PetscCall(KSPGetConvergedReason(ksp, &reason));
769:   if (n <= 20 || !(n % 5) || reason) {
770:     PetscCall(PetscDrawLGDraw(lg));
771:     PetscCall(PetscDrawLGSave(lg));
772:   }
773:   PetscCall(PetscViewerPopFormat(viewer));
774:   PetscFunctionReturn(PETSC_SUCCESS);
775: }

777: /*@C
778:   KSPMonitorErrorDrawLGCreate - Creates the context for the error and preconditioned residual plotter `KSPMonitorErrorDrawLG()`

780:   Collective

782:   Input Parameters:
783: + viewer - The `PetscViewer`
784: . format - The viewer format
785: - ctx    - An optional user context

787:   Output Parameter:
788: . vf - The viewer context

790:   Level: intermediate

792: .seealso: [](ch_ksp), `PETSCVIEWERDRAW`, `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorErrorDrawLG()`
793: @*/
794: PetscErrorCode KSPMonitorErrorDrawLGCreate(PetscViewer viewer, PetscViewerFormat format, void *ctx, PetscViewerAndFormat **vf)
795: {
796:   KSP      ksp = (KSP)ctx;
797:   DM       dm;
798:   char   **names;
799:   PetscInt Nf, f;

801:   PetscFunctionBegin;
802:   PetscCall(KSPGetDM(ksp, &dm));
803:   PetscCall(DMGetNumFields(dm, &Nf));
804:   PetscCall(PetscMalloc1(Nf + 1, &names));
805:   for (f = 0; f < Nf; ++f) {
806:     PetscObject disc;
807:     const char *fname;
808:     char        lname[PETSC_MAX_PATH_LEN];

810:     PetscCall(DMGetField(dm, f, NULL, &disc));
811:     PetscCall(PetscObjectGetName(disc, &fname));
812:     PetscCall(PetscStrncpy(lname, fname, PETSC_MAX_PATH_LEN));
813:     PetscCall(PetscStrlcat(lname, " Error", PETSC_MAX_PATH_LEN));
814:     PetscCall(PetscStrallocpy(lname, &names[f]));
815:   }
816:   PetscCall(PetscStrallocpy("residual", &names[Nf]));
817:   PetscCall(PetscViewerAndFormatCreate(viewer, format, vf));
818:   (*vf)->data = ctx;
819:   PetscCall(PetscViewerMonitorLGSetUp(viewer, NULL, NULL, "Log Error Norm", Nf + 1, (const char **)names, PETSC_DECIDE, PETSC_DECIDE, 400, 300));
820:   for (f = 0; f <= Nf; ++f) PetscCall(PetscFree(names[f]));
821:   PetscCall(PetscFree(names));
822:   PetscFunctionReturn(PETSC_SUCCESS);
823: }

825: /*@C
826:   KSPMonitorSolution - Print the solution norm at each iteration of an iterative solver.

828:   Collective

830:   Input Parameters:
831: + ksp   - iterative context
832: . n     - iteration number
833: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
834: - vf    - The viewer context

836:   Options Database Key:
837: . -ksp_monitor_solution - Activates `KSPMonitorSolution()`

839:   Level: intermediate

841:   Note:
842:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
843:   to be used during the `KSP` solve.

845: .seealso: [](ch_ksp), `KSPMonitorSet()`, `KSPMonitorTrueResidual()`
846: @*/
847: PetscErrorCode KSPMonitorSolution(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
848: {
849:   PetscViewer       viewer = vf->viewer;
850:   PetscViewerFormat format = vf->format;
851:   Vec               x;
852:   PetscReal         snorm;
853:   PetscInt          tablevel;
854:   const char       *prefix;

856:   PetscFunctionBegin;
858:   PetscCall(KSPBuildSolution(ksp, NULL, &x));
859:   PetscCall(VecNorm(x, NORM_2, &snorm));
860:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
861:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
862:   PetscCall(PetscViewerPushFormat(viewer, format));
863:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
864:   if (n == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Solution norms for %s solve.\n", prefix));
865:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Solution norm %14.12e\n", n, (double)snorm));
866:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
867:   PetscCall(PetscViewerPopFormat(viewer));
868:   PetscFunctionReturn(PETSC_SUCCESS);
869: }

871: /*@C
872:   KSPMonitorSolutionDraw - Plots the solution at each iteration of an iterative solver.

874:   Collective

876:   Input Parameters:
877: + ksp   - iterative context
878: . n     - iteration number
879: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
880: - vf    - The viewer context

882:   Options Database Key:
883: . -ksp_monitor_solution draw - Activates `KSPMonitorSolutionDraw()`

885:   Level: intermediate

887:   Note:
888:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
889:   to be used during the `KSP` solve.

891: .seealso: [](ch_ksp), `KSPMonitorSet()`, `KSPMonitorTrueResidual()`
892: @*/
893: PetscErrorCode KSPMonitorSolutionDraw(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
894: {
895:   PetscViewer       viewer = vf->viewer;
896:   PetscViewerFormat format = vf->format;
897:   Vec               x;

899:   PetscFunctionBegin;
901:   PetscCall(KSPBuildSolution(ksp, NULL, &x));
902:   PetscCall(PetscViewerPushFormat(viewer, format));
903:   PetscCall(PetscObjectSetName((PetscObject)x, "Solution"));
904:   PetscCall(PetscObjectCompose((PetscObject)x, "__Vec_bc_zero__", (PetscObject)ksp));
905:   PetscCall(VecView(x, viewer));
906:   PetscCall(PetscObjectCompose((PetscObject)x, "__Vec_bc_zero__", NULL));
907:   PetscCall(PetscViewerPopFormat(viewer));
908:   PetscFunctionReturn(PETSC_SUCCESS);
909: }

911: /*@C
912:   KSPMonitorSolutionDrawLG - Plots the solution norm at each iteration of an iterative solver.

914:   Collective

916:   Input Parameters:
917: + ksp   - iterative context
918: . n     - iteration number
919: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
920: - vf    - The viewer context

922:   Options Database Key:
923: . -ksp_monitor_solution draw::draw_lg - Activates `KSPMonitorSolutionDrawLG()`

925:   Level: intermediate

927:   Notes:
928:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
929:   to be used during the `KSP` solve.

931:   Call `KSPMonitorSolutionDrawLGCreate()` to create the context needed with this monitor

933: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorTrueResidual()`, `KSPMonitorSolutionDrawLGCreate()`
934: @*/
935: PetscErrorCode KSPMonitorSolutionDrawLG(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
936: {
937:   PetscViewer        viewer = vf->viewer;
938:   PetscViewerFormat  format = vf->format;
939:   PetscDrawLG        lg;
940:   Vec                u;
941:   KSPConvergedReason reason;
942:   PetscReal          snorm, x, y;

944:   PetscFunctionBegin;
946:   PetscCall(PetscViewerDrawGetDrawLG(viewer, 0, &lg));
947:   PetscCall(KSPBuildSolution(ksp, NULL, &u));
948:   PetscCall(VecNorm(u, NORM_2, &snorm));
949:   PetscCall(PetscViewerPushFormat(viewer, format));
950:   if (!n) PetscCall(PetscDrawLGReset(lg));
951:   x = (PetscReal)n;
952:   if (snorm > 0.0) y = PetscLog10Real(snorm);
953:   else y = -15.0;
954:   PetscCall(PetscDrawLGAddPoint(lg, &x, &y));
955:   PetscCall(KSPGetConvergedReason(ksp, &reason));
956:   if (n <= 20 || !(n % 5) || reason) {
957:     PetscCall(PetscDrawLGDraw(lg));
958:     PetscCall(PetscDrawLGSave(lg));
959:   }
960:   PetscCall(PetscViewerPopFormat(viewer));
961:   PetscFunctionReturn(PETSC_SUCCESS);
962: }

964: /*@C
965:   KSPMonitorSolutionDrawLGCreate - Creates the context for the `KSP` monitor `KSPMonitorSolutionDrawLG()`

967:   Collective

969:   Input Parameters:
970: + viewer - The `PetscViewer`
971: . format - The viewer format
972: - ctx    - An optional user context

974:   Output Parameter:
975: . vf - The viewer context

977:   Level: intermediate

979:   Note:
980:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
981:   to be used during the `KSP` solve.

983: .seealso: [](ch_ksp), `KSPMonitorSet()`, `KSPMonitorTrueResidual()`
984: @*/
985: PetscErrorCode KSPMonitorSolutionDrawLGCreate(PetscViewer viewer, PetscViewerFormat format, void *ctx, PetscViewerAndFormat **vf)
986: {
987:   PetscFunctionBegin;
988:   PetscCall(PetscViewerAndFormatCreate(viewer, format, vf));
989:   (*vf)->data = ctx;
990:   PetscCall(PetscViewerMonitorLGSetUp(viewer, NULL, NULL, "Log Solution Norm", 1, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300));
991:   PetscFunctionReturn(PETSC_SUCCESS);
992: }

994: /*@C
995:   KSPMonitorSingularValue - Prints the two norm of the true residual and estimation of the extreme singular values of the preconditioned problem at each iteration.

997:   Logically Collective

999:   Input Parameters:
1000: + ksp   - the iterative context
1001: . n     - the iteration
1002: . rnorm - the two norm of the residual
1003: - vf    - The viewer context

1005:   Options Database Key:
1006: . -ksp_monitor_singular_value - Activates `KSPMonitorSingularValue()`

1008:   Level: intermediate

1010:   Notes:
1011:   The `KSPCG` solver uses the Lanczos technique for eigenvalue computation,
1012:   while `KSPGMRES` uses the Arnoldi technique; other iterative methods do
1013:   not currently compute singular values.

1015:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
1016:   to be used during the `KSP` solve.

1018:   Call `KSPMonitorSingularValueCreate()` to create the context needed by this monitor

1020: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPComputeExtremeSingularValues()`, `KSPMonitorSingularValueCreate()`
1021: @*/
1022: PetscErrorCode KSPMonitorSingularValue(KSP ksp, PetscInt n, PetscReal rnorm, PetscViewerAndFormat *vf)
1023: {
1024:   PetscViewer       viewer = vf->viewer;
1025:   PetscViewerFormat format = vf->format;
1026:   PetscReal         emin, emax;
1027:   PetscInt          tablevel;
1028:   const char       *prefix;

1030:   PetscFunctionBegin;
1033:   PetscCall(PetscObjectGetTabLevel((PetscObject)ksp, &tablevel));
1034:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ksp, &prefix));
1035:   PetscCall(PetscViewerPushFormat(viewer, format));
1036:   PetscCall(PetscViewerASCIIAddTab(viewer, tablevel));
1037:   if (n == 0 && prefix) PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual norms for %s solve.\n", prefix));
1038:   if (!ksp->calc_sings) {
1039:     PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Residual norm %14.12e\n", n, (double)rnorm));
1040:   } else {
1041:     PetscCall(KSPComputeExtremeSingularValues(ksp, &emax, &emin));
1042:     PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " KSP Residual norm %14.12e %% max %14.12e min %14.12e max/min %14.12e\n", n, (double)rnorm, (double)emax, (double)emin, (double)(emax / emin)));
1043:   }
1044:   PetscCall(PetscViewerASCIISubtractTab(viewer, tablevel));
1045:   PetscCall(PetscViewerPopFormat(viewer));
1046:   PetscFunctionReturn(PETSC_SUCCESS);
1047: }

1049: /*@C
1050:   KSPMonitorSingularValueCreate - Creates the singular value monitor context needed by `KSPMonitorSingularValue()`

1052:   Collective

1054:   Input Parameters:
1055: + viewer - The PetscViewer
1056: . format - The viewer format
1057: - ctx    - An optional user context

1059:   Output Parameter:
1060: . vf - The viewer context

1062:   Level: intermediate

1064: .seealso: [](ch_ksp), `KSP`, `KSPMonitorSet()`, `KSPMonitorSingularValue()`, `PetscViewer`
1065: @*/
1066: PetscErrorCode KSPMonitorSingularValueCreate(PetscViewer viewer, PetscViewerFormat format, void *ctx, PetscViewerAndFormat **vf)
1067: {
1068:   KSP ksp = (KSP)ctx;

1070:   PetscFunctionBegin;
1071:   PetscCall(PetscViewerAndFormatCreate(viewer, format, vf));
1072:   (*vf)->data = ctx;
1073:   PetscCall(KSPSetComputeSingularValues(ksp, PETSC_TRUE));
1074:   PetscFunctionReturn(PETSC_SUCCESS);
1075: }

1077: /*@C
1078:   KSPMonitorDynamicToleranceCreate - Creates the context used by `KSPMonitorDynamicTolerance()`

1080:   Logically Collective

1082:   Output Parameter:
1083: . ctx - a void pointer

1085:   Options Database Key:
1086: . -sub_ksp_dynamic_tolerance <coef> - coefficient of dynamic tolerance for inner solver, default is 1.0

1088:   Level: advanced

1090:   Note:
1091:   Use before calling `KSPMonitorSet()` with `KSPMonitorDynamicTolerance()`

1093:   The default coefficient for the tolerance can be changed with `KSPMonitorDynamicToleranceSetCoefficient()`

1095: .seealso: [](sec_flexibleksp), `KSP`, `KSPMonitorDynamicTolerance()`, `KSPMonitorDynamicToleranceDestroy()`, `KSPMonitorDynamicToleranceSetCoefficient()`
1096: @*/
1097: PetscErrorCode KSPMonitorDynamicToleranceCreate(void *ctx)
1098: {
1099:   KSPDynTolCtx *scale;

1101:   PetscFunctionBegin;
1102:   PetscCall(PetscMalloc1(1, &scale));
1103:   scale->bnrm   = -1.0;
1104:   scale->coef   = 1.0;
1105:   *(void **)ctx = scale;
1106:   PetscFunctionReturn(PETSC_SUCCESS);
1107: }

1109: /*@C
1110:   KSPMonitorDynamicToleranceSetCoefficient - Sets the coefficient in the context used by `KSPMonitorDynamicTolerance()`

1112:   Logically Collective

1114:   Output Parameters:
1115: + ctx   - the context for `KSPMonitorDynamicTolerance()`
1116: - coeff - the coefficient, default is 1.0

1118:   Options Database Key:
1119: . -sub_ksp_dynamic_tolerance <coef> - coefficient of dynamic tolerance for inner solver, default is 1.0

1121:   Level: advanced

1123:   Note:
1124:   Use before calling `KSPMonitorSet()` and after `KSPMonitorDynamicToleranceCreate()`

1126: .seealso: [](sec_flexibleksp), `KSP`, `KSPMonitorDynamicTolerance()`, `KSPMonitorDynamicToleranceDestroy()`, `KSPMonitorDynamicToleranceCreate()`
1127: @*/
1128: PetscErrorCode KSPMonitorDynamicToleranceSetCoefficient(void *ctx, PetscReal coeff)
1129: {
1130:   KSPDynTolCtx *scale = (KSPDynTolCtx *)ctx;

1132:   PetscFunctionBegin;
1133:   scale->coef = coeff;
1134:   PetscFunctionReturn(PETSC_SUCCESS);
1135: }

1137: /*@C
1138:   KSPMonitorDynamicTolerance - A monitor that changes the inner tolerance of nested preconditioners in every outer iteration in an adaptive way.

1140:   Collective

1142:   Input Parameters:
1143: + ksp   - iterative context
1144: . its   - iteration number (not used)
1145: . fnorm - the current residual norm
1146: - ctx   - context used by monitor

1148:   Options Database Key:
1149: . -sub_ksp_dynamic_tolerance <coef> - coefficient of dynamic tolerance for inner solver, default is 1.0

1151:   Level: advanced

1153:   Notes:
1154:   Applies for `PCKSP`, `PCBJACOBI`, and `PCDEFLATION` preconditioners

1156:   This may be useful for a flexible preconditioned Krylov method, such as `KSPFGMRES`, [](sec_flexibleksp) to
1157:   control the accuracy of the inner solves needed to guarantee convergence of the outer iterations.

1159:   This is not called directly by users, rather one calls `KSPMonitorSet()`, with this function as an argument, to cause the monitor
1160:   to be used during the `KSP` solve.

1162:   Use `KSPMonitorDynamicToleranceCreate()` and `KSPMonitorDynamicToleranceSetCoefficient()` to create the context needed by this
1163:   monitor function.

1165:   Pass the context and `KSPMonitorDynamicToleranceDestroy()` to `KSPMonitorSet()`

1167: .seealso: [](sec_flexibleksp), `KSP`, `KSPMonitorDynamicToleranceCreate()`, `KSPMonitorDynamicToleranceDestroy()`, `KSPMonitorDynamicToleranceSetCoefficient()`
1168: @*/
1169: PetscErrorCode KSPMonitorDynamicTolerance(KSP ksp, PetscInt its, PetscReal fnorm, void *ctx)
1170: {
1171:   PC            pc;
1172:   PetscReal     outer_rtol, outer_abstol, outer_dtol, inner_rtol;
1173:   PetscInt      outer_maxits, nksp, first, i;
1174:   KSPDynTolCtx *scale  = (KSPDynTolCtx *)ctx;
1175:   KSP          *subksp = NULL;
1176:   KSP           kspinner;
1177:   PetscBool     flg;

1179:   PetscFunctionBegin;
1180:   PetscCall(KSPGetPC(ksp, &pc));

1182:   /* compute inner_rtol */
1183:   if (scale->bnrm < 0.0) {
1184:     Vec b;
1185:     PetscCall(KSPGetRhs(ksp, &b));
1186:     PetscCall(VecNorm(b, NORM_2, &scale->bnrm));
1187:   }
1188:   PetscCall(KSPGetTolerances(ksp, &outer_rtol, &outer_abstol, &outer_dtol, &outer_maxits));
1189:   inner_rtol = PetscMin(scale->coef * scale->bnrm * outer_rtol / fnorm, 0.999);

1191:   /* if pc is ksp */
1192:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCKSP, &flg));
1193:   if (flg) {
1194:     PetscCall(PCKSPGetKSP(pc, &kspinner));
1195:     PetscCall(KSPSetTolerances(kspinner, inner_rtol, outer_abstol, outer_dtol, outer_maxits));
1196:     PetscFunctionReturn(PETSC_SUCCESS);
1197:   }

1199:   /* if pc is bjacobi */
1200:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCBJACOBI, &flg));
1201:   if (flg) {
1202:     PetscCall(PCBJacobiGetSubKSP(pc, &nksp, &first, &subksp));
1203:     if (subksp) {
1204:       for (i = 0; i < nksp; i++) PetscCall(KSPSetTolerances(subksp[i], inner_rtol, outer_abstol, outer_dtol, outer_maxits));
1205:       PetscFunctionReturn(PETSC_SUCCESS);
1206:     }
1207:   }

1209:   /* if pc is deflation*/
1210:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCDEFLATION, &flg));
1211:   if (flg) {
1212:     PetscCall(PCDeflationGetCoarseKSP(pc, &kspinner));
1213:     PetscCall(KSPSetTolerances(kspinner, inner_rtol, outer_abstol, outer_dtol, PETSC_CURRENT));
1214:     PetscFunctionReturn(PETSC_SUCCESS);
1215:   }

1217:   /* TODO: dynamic tolerance may apply to other types of pc */
1218:   PetscFunctionReturn(PETSC_SUCCESS);
1219: }

1221: /*@C
1222:   KSPMonitorDynamicToleranceDestroy - Destroy the monitor context used in `KSPMonitorDynamicTolerance()`

1224:   Input Parameter:
1225: . ctx - the monitor context

1227:   Level: advanced

1229:   Note:
1230:   This is not called directly but is passed to `KSPMonitorSet()` along with `KSPMonitorDynamicTolerance()`

1232: .seealso: [](ch_ksp), `KSP`, `KSPMonitorDynamicTolerance()`, `KSPMonitorSet()`, `KSPMonitorDynamicToleranceCreate()`
1233: @*/
1234: PetscErrorCode KSPMonitorDynamicToleranceDestroy(void **ctx)
1235: {
1236:   PetscFunctionBegin;
1237:   PetscCall(PetscFree(*ctx));
1238:   PetscFunctionReturn(PETSC_SUCCESS);
1239: }

1241: /*@C
1242:   KSPConvergedSkip - Convergence test that do not return as converged
1243:   until the maximum number of iterations is reached.

1245:   Collective

1247:   Input Parameters:
1248: + ksp   - iterative context
1249: . n     - iteration number
1250: . rnorm - 2-norm residual value (may be estimated)
1251: - dtx   - unused convergence context

1253:   Output Parameter:
1254: . reason - `KSP_CONVERGED_ITERATING` or `KSP_CONVERGED_ITS`

1256:   Options Database Key:
1257: . -ksp_convergence_test skip - skips the test

1259:   Level: advanced

1261:   Note:
1262:   This should be used as the convergence test with the option
1263:   `KSPSetNormType`(ksp,`KSP_NORM_NONE`), since norms of the residual are
1264:   not computed. Convergence is then declared after the maximum number
1265:   of iterations have been reached. Useful when one is using `KSPCG` or
1266:   `KSPBCGS`. [](sec_flexibleksp)

1268: .seealso: [](ch_ksp), `KSP`, `KSPCG`, `KSPBCGS`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`, `KSPSetNormType()`, [](sec_flexibleksp),
1269:           `KSPConvergedReason`
1270: @*/
1271: PetscErrorCode KSPConvergedSkip(KSP ksp, PetscInt n, PetscReal rnorm, KSPConvergedReason *reason, void *dtx)
1272: {
1273:   PetscFunctionBegin;
1275:   PetscAssertPointer(reason, 4);
1276:   *reason = KSP_CONVERGED_ITERATING;
1277:   if (n >= ksp->max_it) *reason = KSP_CONVERGED_ITS;
1278:   PetscFunctionReturn(PETSC_SUCCESS);
1279: }

1281: /*@
1282:   KSPSetConvergedNegativeCurvature - Allows to declare convergence and return `KSP_CONVERGED_NEG_CURVE` when negative curvature is detected

1284:   Collective

1286:   Input Parameters:
1287: + ksp - iterative context
1288: - flg - the Boolean value

1290:   Options Database Key:
1291: . -ksp_converged_neg_curve <bool> - Declare convergence if negative curvature is detected

1293:   Level: advanced

1295:   Note:
1296:   This is currently used only by a subset of the Krylov solvers, namely `KSPCG`, `KSPSTCG`, `KSPQCG`, `KSPGLTR`, `KSPNASH`, and `KSPMINRES`.

1298: .seealso: [](ch_ksp), `KSP`, `KSPConvergedReason`, `KSPGetConvergedNegativeCurvature()`
1299: @*/
1300: PetscErrorCode KSPSetConvergedNegativeCurvature(KSP ksp, PetscBool flg)
1301: {
1302:   PetscFunctionBegin;
1305:   ksp->converged_neg_curve = flg;
1306:   PetscFunctionReturn(PETSC_SUCCESS);
1307: }

1309: /*@
1310:   KSPGetConvergedNegativeCurvature - Get the flag to declare convergence if negative curvature is detected

1312:   Collective

1314:   Input Parameter:
1315: . ksp - iterative context

1317:   Output Parameter:
1318: . flg - the Boolean value

1320:   Level: advanced

1322: .seealso: [](ch_ksp), `KSP`, `KSPConvergedReason`, `KSPSetConvergedNegativeCurvature()`
1323: @*/
1324: PetscErrorCode KSPGetConvergedNegativeCurvature(KSP ksp, PetscBool *flg)
1325: {
1326:   PetscFunctionBegin;
1328:   PetscAssertPointer(flg, 2);
1329:   *flg = ksp->converged_neg_curve;
1330:   PetscFunctionReturn(PETSC_SUCCESS);
1331: }

1333: /*@C
1334:   KSPConvergedDefaultCreate - Creates and initializes the context used by the `KSPConvergedDefault()` function

1336:   Not Collective

1338:   Output Parameter:
1339: . ctx - convergence context

1341:   Level: intermediate

1343: .seealso: [](ch_ksp), `KSP`, `KSPConvergedDefault()`, `KSPConvergedDefaultDestroy()`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`,
1344:           `KSPConvergedSkip()`, `KSPConvergedReason`, `KSPGetConvergedReason()`, `KSPConvergedDefaultSetUIRNorm()`, `KSPConvergedDefaultSetUMIRNorm()`,
1345:           `KSPConvergedDefaultSetConvergedMaxits()`
1346: @*/
1347: PetscErrorCode KSPConvergedDefaultCreate(void **ctx) PeNS
1348: {
1349:   KSPConvergedDefaultCtx *cctx;

1351:   PetscFunctionBegin;
1352:   PetscCall(PetscNew(&cctx));
1353:   *ctx = cctx;
1354:   PetscFunctionReturn(PETSC_SUCCESS);
1355: }

1357: /*@
1358:   KSPConvergedDefaultSetUIRNorm - makes the default convergence test use $ || B*(b - A*(initial guess))||$
1359:   instead of $ || B*b ||$. In the case of right preconditioner or if `KSPSetNormType`(ksp,`KSP_NORM_UNPRECONDITIONED`)
1360:   is used there is no B in the above formula.

1362:   Collective

1364:   Input Parameters:
1365: . ksp - iterative context

1367:   Options Database Key:
1368: . -ksp_converged_use_initial_residual_norm <bool> - Use initial residual norm for computing relative convergence

1370:   Level: intermediate

1372:   Notes:
1373:   UIRNorm is short for Use Initial Residual Norm.

1375:   Use `KSPSetTolerances()` to alter the defaults for rtol, abstol, dtol.

1377:   The precise values of reason are macros such as `KSP_CONVERGED_RTOL`, which
1378:   are defined in petscksp.h.

1380:   If the convergence test is not `KSPConvergedDefault()` then this is ignored.

1382:   If right preconditioning is being used then B does not appear in the above formula.

1384: .seealso: [](ch_ksp), `KSP`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`, `KSPConvergedSkip()`, `KSPConvergedReason`, `KSPGetConvergedReason()`, `KSPConvergedDefaultSetUMIRNorm()`, `KSPConvergedDefaultSetConvergedMaxits()`
1385: @*/
1386: PetscErrorCode KSPConvergedDefaultSetUIRNorm(KSP ksp)
1387: {
1388:   KSPConvergedDefaultCtx *ctx = (KSPConvergedDefaultCtx *)ksp->cnvP;

1390:   PetscFunctionBegin;
1392:   if (ksp->converged != KSPConvergedDefault) PetscFunctionReturn(PETSC_SUCCESS);
1393:   PetscCheck(!ctx->mininitialrtol, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_WRONGSTATE, "Cannot use KSPConvergedDefaultSetUIRNorm() and KSPConvergedDefaultSetUMIRNorm() together");
1394:   ctx->initialrtol = PETSC_TRUE;
1395:   PetscFunctionReturn(PETSC_SUCCESS);
1396: }

1398: /*@
1399:   KSPConvergedDefaultSetUMIRNorm - makes the default convergence test use min(|| B*(b - A*(initial guess))||,|| B*b ||)
1400:   In the case of right preconditioner or if `KSPSetNormType`(ksp,`KSP_NORM_UNPRECONDITIONED`)
1401:   is used there is no B in the above formula.

1403:   Collective

1405:   Input Parameters:
1406: . ksp - iterative context

1408:   Options Database Key:
1409: . -ksp_converged_use_min_initial_residual_norm <bool> - Use minimum of initial residual norm and b for computing relative convergence

1411:   Level: intermediate

1413:   Notes:
1414:   UMIRNorm is short for Use Minimum Initial Residual Norm.

1416:   Use `KSPSetTolerances()` to alter the defaults for rtol, abstol, dtol.

1418: .seealso: [](ch_ksp), `KSP`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`, `KSPConvergedSkip()`, `KSPConvergedReason`, `KSPGetConvergedReason()`, `KSPConvergedDefaultSetUIRNorm()`, `KSPConvergedDefaultSetConvergedMaxits()`
1419: @*/
1420: PetscErrorCode KSPConvergedDefaultSetUMIRNorm(KSP ksp)
1421: {
1422:   KSPConvergedDefaultCtx *ctx = (KSPConvergedDefaultCtx *)ksp->cnvP;

1424:   PetscFunctionBegin;
1426:   if (ksp->converged != KSPConvergedDefault) PetscFunctionReturn(PETSC_SUCCESS);
1427:   PetscCheck(!ctx->initialrtol, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_WRONGSTATE, "Cannot use KSPConvergedDefaultSetUIRNorm() and KSPConvergedDefaultSetUMIRNorm() together");
1428:   ctx->mininitialrtol = PETSC_TRUE;
1429:   PetscFunctionReturn(PETSC_SUCCESS);
1430: }

1432: /*@
1433:   KSPConvergedDefaultSetConvergedMaxits - allows the default convergence test to declare convergence and return `KSP_CONVERGED_ITS` if the maximum number of iterations is reached

1435:   Collective

1437:   Input Parameters:
1438: + ksp - iterative context
1439: - flg - boolean flag

1441:   Options Database Key:
1442: . -ksp_converged_maxits <bool> - Declare convergence if the maximum number of iterations is reached

1444:   Level: intermediate

1446: .seealso: [](ch_ksp), `KSP`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`, `KSPConvergedSkip()`, `KSPConvergedReason`, `KSPGetConvergedReason()`, `KSPConvergedDefaultSetUMIRNorm()`, `KSPConvergedDefaultSetUIRNorm()`
1447: @*/
1448: PetscErrorCode KSPConvergedDefaultSetConvergedMaxits(KSP ksp, PetscBool flg)
1449: {
1450:   KSPConvergedDefaultCtx *ctx = (KSPConvergedDefaultCtx *)ksp->cnvP;

1452:   PetscFunctionBegin;
1455:   if (ksp->converged != KSPConvergedDefault) PetscFunctionReturn(PETSC_SUCCESS);
1456:   ctx->convmaxits = flg;
1457:   PetscFunctionReturn(PETSC_SUCCESS);
1458: }

1460: /*@C
1461:   KSPConvergedDefault - Default code to determine convergence of the linear iterative solvers

1463:   Collective

1465:   Input Parameters:
1466: + ksp   - iterative context
1467: . n     - iteration number
1468: . rnorm - residual norm (may be estimated, depending on the method may be the preconditioned residual norm)
1469: - ctx   - convergence context which must be created by `KSPConvergedDefaultCreate()`

1471:   Output Parameter:
1472: . reason - the convergence reason; it is positive if the iteration has converged,
1473:            negative if the iteration has diverged, and `KSP_CONVERGED_ITERATING` otherwise

1475:   Options Database Keys:
1476: + -ksp_max_it                                  - maximum number of linear iterations
1477: . -ksp_min_it                                  - minimum number of linear iterations, defaults to 0
1478: . -ksp_rtol rtol                               - relative tolerance used in default determination of convergence, i.e. if residual norm decreases by this factor than convergence is declared
1479: . -ksp_atol abstol                             - absolute tolerance used in default convergence test, i.e. if residual norm is less than this then convergence is declared
1480: . -ksp_divtol tol                              - if residual norm increases by this factor than divergence is declared
1481: . -ksp_converged_use_initial_residual_norm     - see `KSPConvergedDefaultSetUIRNorm()`
1482: . -ksp_converged_use_min_initial_residual_norm - see `KSPConvergedDefaultSetUMIRNorm()`
1483: - -ksp_converged_maxits                        - see `KSPConvergedDefaultSetConvergedMaxits()`

1485:   Level: advanced

1487:   Notes:
1488:   `KSPConvergedDefault()` reaches convergence when   rnorm < MAX (rtol * rnorm_0, abstol);
1489:   Divergence is detected if rnorm > dtol * rnorm_0, or when failures are detected throughout the iteration.
1490:   By default, reaching the maximum number of iterations is considered divergence (i.e. KSP_DIVERGED_ITS).
1491:   In order to have PETSc declaring convergence in such a case (i.e. `KSP_CONVERGED_ITS`), users can use `KSPConvergedDefaultSetConvergedMaxits()`

1493:   where\:
1494: +     `rtol` - relative tolerance,
1495: .     `abstol` - absolute tolerance.
1496: .     `dtol` - divergence tolerance,
1497: -     `rnorm_0` - the two norm of the right-hand side (or the preconditioned norm, depending on what was set with
1498:   `KSPSetNormType()`. When initial guess is non-zero you
1499:   can call `KSPConvergedDefaultSetUIRNorm()` to use the norm of (b - A*(initial guess))
1500:   as the starting point for relative norm convergence testing, that is as `rnorm_0`.
1501:   Call `KSPConvergedDefaultSetUMIRNorm()` to use the minimum of the norm of (b - A*(initial guess)) and the norm of b as the starting point.

1503:   Use `KSPSetTolerances()` to alter the defaults for `rtol`, `abstol`, `dtol`.

1505:   Use `KSPSetNormType()` (or `-ksp_norm_type <none,preconditioned,unpreconditioned,natural>`) to change the norm used for computing rnorm

1507:   The precise values of reason are available in `KSPConvergedReason`

1509:   This routine is used by `KSP` by default so the user generally never needs call it directly.

1511:   Use `KSPSetConvergenceTest()` to provide your own test instead of using this one.

1513:   Call `KSPSetConvergenceTest()` with the `ctx`, as created above and the destruction function `KSPConvergedDefaultDestroy()`

1515: .seealso: [](ch_ksp), `KSP`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`, `KSPConvergedSkip()`, `KSPConvergedReason`, `KSPGetConvergedReason()`, `KSPSetMinimumIterations()`,
1516:           `KSPConvergedDefaultSetUIRNorm()`, `KSPConvergedDefaultSetUMIRNorm()`, `KSPConvergedDefaultSetConvergedMaxits()`, `KSPConvergedDefaultCreate()`, `KSPConvergedDefaultDestroy()`
1517: @*/
1518: PetscErrorCode KSPConvergedDefault(KSP ksp, PetscInt n, PetscReal rnorm, KSPConvergedReason *reason, void *ctx)
1519: {
1520:   KSPConvergedDefaultCtx *cctx = (KSPConvergedDefaultCtx *)ctx;
1521:   KSPNormType             normtype;

1523:   PetscFunctionBegin;
1526:   PetscAssertPointer(reason, 4);
1527:   PetscCheck(cctx, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_NULL, "Convergence context must have been created with KSPConvergedDefaultCreate()");
1528:   *reason = KSP_CONVERGED_ITERATING;

1530:   if (cctx->convmaxits && n >= ksp->max_it) {
1531:     *reason = KSP_CONVERGED_ITS;
1532:     PetscCall(PetscInfo(ksp, "Linear solver has converged. Maximum number of iterations reached %" PetscInt_FMT "\n", n));
1533:     PetscFunctionReturn(PETSC_SUCCESS);
1534:   }
1535:   PetscCall(KSPGetNormType(ksp, &normtype));
1536:   if (normtype == KSP_NORM_NONE) PetscFunctionReturn(PETSC_SUCCESS);

1538:   if (!n) {
1539:     /* if user gives initial guess need to compute norm of b */
1540:     if (!ksp->guess_zero && !cctx->initialrtol) {
1541:       PetscReal snorm = 0.0;
1542:       if (ksp->normtype == KSP_NORM_UNPRECONDITIONED || ksp->pc_side == PC_RIGHT) {
1543:         PetscCall(PetscInfo(ksp, "user has provided nonzero initial guess, computing 2-norm of RHS\n"));
1544:         PetscCall(VecNorm(ksp->vec_rhs, NORM_2, &snorm)); /*     <- b'*b */
1545:       } else {
1546:         Vec z;
1547:         /* Should avoid allocating the z vector each time but cannot stash it in cctx because if KSPReset() is called the vector size might change */
1548:         PetscCall(VecDuplicate(ksp->vec_rhs, &z));
1549:         PetscCall(KSP_PCApply(ksp, ksp->vec_rhs, z));
1550:         if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
1551:           PetscCall(PetscInfo(ksp, "user has provided nonzero initial guess, computing 2-norm of preconditioned RHS\n"));
1552:           PetscCall(VecNorm(z, NORM_2, &snorm)); /*    dp <- b'*B'*B*b */
1553:         } else if (ksp->normtype == KSP_NORM_NATURAL) {
1554:           PetscScalar norm;
1555:           PetscCall(PetscInfo(ksp, "user has provided nonzero initial guess, computing natural norm of RHS\n"));
1556:           PetscCall(VecDot(ksp->vec_rhs, z, &norm));
1557:           snorm = PetscSqrtReal(PetscAbsScalar(norm)); /*    dp <- b'*B*b */
1558:         }
1559:         PetscCall(VecDestroy(&z));
1560:       }
1561:       /* handle special case of zero RHS and nonzero guess */
1562:       if (!snorm) {
1563:         PetscCall(PetscInfo(ksp, "Special case, user has provided nonzero initial guess and zero RHS\n"));
1564:         snorm = rnorm;
1565:       }
1566:       if (cctx->mininitialrtol) ksp->rnorm0 = PetscMin(snorm, rnorm);
1567:       else ksp->rnorm0 = snorm;
1568:     } else {
1569:       ksp->rnorm0 = rnorm;
1570:     }
1571:     ksp->ttol = PetscMax(ksp->rtol * ksp->rnorm0, ksp->abstol);
1572:   }

1574:   if (n <= ksp->chknorm) PetscFunctionReturn(PETSC_SUCCESS);

1576:   if (PetscIsInfOrNanReal(rnorm)) {
1577:     PCFailedReason pcreason;
1578:     PetscCall(PCReduceFailedReason(ksp->pc));
1579:     PetscCall(PCGetFailedReason(ksp->pc, &pcreason));
1580:     if (pcreason) {
1581:       *reason = KSP_DIVERGED_PC_FAILED;
1582:       PetscCall(PetscInfo(ksp, "Linear solver pcsetup fails, declaring divergence \n"));
1583:     } else {
1584:       *reason = KSP_DIVERGED_NANORINF;
1585:       PetscCall(PetscInfo(ksp, "Linear solver has created a not a number (NaN) as the residual norm, declaring divergence \n"));
1586:     }
1587:     PetscFunctionReturn(PETSC_SUCCESS);
1588:   }

1590:   if (n < ksp->min_it) PetscFunctionReturn(PETSC_SUCCESS);

1592:   if (rnorm <= ksp->ttol) {
1593:     if (rnorm < ksp->abstol) {
1594:       PetscCall(PetscInfo(ksp, "Linear solver has converged. Residual norm %14.12e is less than absolute tolerance %14.12e at iteration %" PetscInt_FMT "\n", (double)rnorm, (double)ksp->abstol, n));
1595:       *reason = KSP_CONVERGED_ATOL;
1596:     } else {
1597:       if (cctx->initialrtol) {
1598:         PetscCall(PetscInfo(ksp, "Linear solver has converged. Residual norm %14.12e is less than relative tolerance %14.12e times initial residual norm %14.12e at iteration %" PetscInt_FMT "\n", (double)rnorm, (double)ksp->rtol, (double)ksp->rnorm0, n));
1599:       } else {
1600:         PetscCall(PetscInfo(ksp, "Linear solver has converged. Residual norm %14.12e is less than relative tolerance %14.12e times initial right-hand side norm %14.12e at iteration %" PetscInt_FMT "\n", (double)rnorm, (double)ksp->rtol, (double)ksp->rnorm0, n));
1601:       }
1602:       *reason = KSP_CONVERGED_RTOL;
1603:     }
1604:   } else if (rnorm >= ksp->divtol * ksp->rnorm0) {
1605:     PetscCall(PetscInfo(ksp, "Linear solver is diverging. Initial right hand size norm %14.12e, current residual norm %14.12e at iteration %" PetscInt_FMT "\n", (double)ksp->rnorm0, (double)rnorm, n));
1606:     *reason = KSP_DIVERGED_DTOL;
1607:   }
1608:   PetscFunctionReturn(PETSC_SUCCESS);
1609: }

1611: /*@C
1612:   KSPConvergedDefaultDestroy - Frees the space used by the `KSPConvergedDefault()` function context

1614:   Not Collective

1616:   Input Parameter:
1617: . ctx - convergence context

1619:   Level: intermediate

1621:   Note:
1622:   Pass this function name into `KSPSetConvergenceTest()` along with the context obtained with `KSPConvergedDefaultCreate()` and `KSPConvergedDefault()`

1624: .seealso: [](ch_ksp), `KSP`, `KSPConvergedDefault()`, `KSPConvergedDefaultCreate()`, `KSPSetConvergenceTest()`, `KSPSetTolerances()`, `KSPConvergedSkip()`,
1625:           `KSPConvergedReason`, `KSPGetConvergedReason()`, `KSPConvergedDefaultSetUIRNorm()`, `KSPConvergedDefaultSetUMIRNorm()`
1626: @*/
1627: PetscErrorCode KSPConvergedDefaultDestroy(void *ctx)
1628: {
1629:   KSPConvergedDefaultCtx *cctx = (KSPConvergedDefaultCtx *)ctx;

1631:   PetscFunctionBegin;
1632:   PetscCall(VecDestroy(&cctx->work));
1633:   PetscCall(PetscFree(ctx));
1634:   PetscFunctionReturn(PETSC_SUCCESS);
1635: }

1637: // PetscClangLinter pragma disable: -fdoc-sowing-chars
1638: /*
1639:   KSPBuildSolutionDefault - Default code to build/move the solution.

1641:   Collective

1643:   Input Parameters:
1644: + ksp - iterative context
1645: - v   - pointer to the user's vector

1647:   Output Parameter:
1648: . V - pointer to a vector containing the solution

1650:   Level: advanced

1652:   Note:
1653:   Some `KSP` methods such as `KSPGMRES` do not compute the explicit solution at each iteration, this routine takes the information
1654:   they have computed during the previous iterations and uses it to compute the explicit solution

1656:   Developer Note:
1657:   This is `PETSC_EXTERN` because it may be used by user written plugin `KSPType` implementations

1659: .seealso: [](ch_ksp), `KSP`, `KSPGetSolution()`, `KSPBuildResidualDefault()`
1660: */
1661: PetscErrorCode KSPBuildSolutionDefault(KSP ksp, Vec v, Vec *V)
1662: {
1663:   PetscFunctionBegin;
1664:   if (ksp->pc_side == PC_RIGHT) {
1665:     if (ksp->pc) {
1666:       PetscCheck(v, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Not working with right preconditioner");
1667:       PetscCall(KSP_PCApply(ksp, ksp->vec_sol, v));
1668:       *V = v;
1669:     } else {
1670:       if (v) {
1671:         PetscCall(VecCopy(ksp->vec_sol, v));
1672:         *V = v;
1673:       } else *V = ksp->vec_sol;
1674:     }
1675:   } else if (ksp->pc_side == PC_SYMMETRIC) {
1676:     if (ksp->pc) {
1677:       PetscCheck(!ksp->transpose_solve, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Not working with symmetric preconditioner and transpose solve");
1678:       PetscCheck(v, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Not working with symmetric preconditioner");
1679:       PetscCall(PCApplySymmetricRight(ksp->pc, ksp->vec_sol, v));
1680:       *V = v;
1681:     } else {
1682:       if (v) {
1683:         PetscCall(VecCopy(ksp->vec_sol, v));
1684:         *V = v;
1685:       } else *V = ksp->vec_sol;
1686:     }
1687:   } else {
1688:     if (v) {
1689:       PetscCall(VecCopy(ksp->vec_sol, v));
1690:       *V = v;
1691:     } else *V = ksp->vec_sol;
1692:   }
1693:   PetscFunctionReturn(PETSC_SUCCESS);
1694: }

1696: /*@
1697:   KSPBuildResidualDefault - Default code to compute the residual.

1699:   Collecive on ksp

1701:   Input Parameters:
1702: + ksp - iterative context
1703: . t   - pointer to temporary vector
1704: - v   - pointer to user vector

1706:   Output Parameter:
1707: . V - pointer to a vector containing the residual

1709:   Level: advanced

1711:   Note:
1712:   Some `KSP` methods such as `KSPGMRES` do not compute the explicit residual at each iteration, this routine takes the information
1713:   they have computed during the previous iterations and uses it to compute the explicit residual via the formula r = b - A*x.

1715:   Developer Note:
1716:   This is `PETSC_EXTERN` because it may be used by user written plugin `KSPType` implementations

1718: .seealso: [](ch_ksp), `KSP`, `KSPBuildSolutionDefault()`
1719: @*/
1720: PetscErrorCode KSPBuildResidualDefault(KSP ksp, Vec t, Vec v, Vec *V)
1721: {
1722:   Mat Amat, Pmat;

1724:   PetscFunctionBegin;
1725:   if (!ksp->pc) PetscCall(KSPGetPC(ksp, &ksp->pc));
1726:   PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));
1727:   PetscCall(KSPBuildSolution(ksp, t, NULL));
1728:   PetscCall(KSP_MatMult(ksp, Amat, t, v));
1729:   PetscCall(VecAYPX(v, -1.0, ksp->vec_rhs));
1730:   *V = v;
1731:   PetscFunctionReturn(PETSC_SUCCESS);
1732: }

1734: /*@C
1735:   KSPCreateVecs - Gets a number of work vectors suitably sized for the operator in the `KSP`

1737:   Collective

1739:   Input Parameters:
1740: + ksp    - iterative context
1741: . rightn - number of right work vectors to allocate
1742: - leftn  - number of left work vectors to allocate

1744:   Output Parameters:
1745: + right - the array of vectors created
1746: - left  - the array of left vectors

1748:   Level: advanced

1750:   Notes:
1751:   The right vector has as many elements as the matrix has columns. The left
1752:   vector has as many elements as the matrix has rows, see `MatSetSizes()` for details on the layout of the vectors.

1754:   The vectors are new vectors that are not owned by the `KSP`, they should be destroyed with calls to `VecDestroyVecs()` when no longer needed.

1756:   Developer Note:
1757:   First tries to duplicate the rhs and solution vectors of the `KSP`, if they do not exist tries to get them from the matrix with `MatCreateVecs()`, if
1758:   that does not exist tries to get them from the `DM` (if it is provided) with `DMCreateGlobalVectors()`.

1760: .seealso: [](ch_ksp), `MatCreateVecs()`, `VecDestroyVecs()`, `KSPSetWorkVecs()`
1761: @*/
1762: PetscErrorCode KSPCreateVecs(KSP ksp, PetscInt rightn, Vec *right[], PetscInt leftn, Vec *left[])
1763: {
1764:   Vec       vecr = NULL, vecl = NULL;
1765:   PetscBool matset, pmatset, isshell, preferdm = PETSC_FALSE;
1766:   Mat       mat = NULL;

1768:   PetscFunctionBegin;
1769:   if (ksp->dm) {
1770:     PetscCall(PetscObjectTypeCompare((PetscObject)ksp->dm, DMSHELL, &isshell));
1771:     preferdm = isshell ? PETSC_FALSE : PETSC_TRUE;
1772:   }
1773:   if (rightn) {
1774:     PetscCheck(right, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_INCOMP, "You asked for right vectors but did not pass a pointer to hold them");
1775:     if (ksp->vec_sol) vecr = ksp->vec_sol;
1776:     else {
1777:       if (preferdm) {
1778:         PetscCall(DMGetGlobalVector(ksp->dm, &vecr));
1779:       } else if (ksp->pc) {
1780:         PetscCall(PCGetOperatorsSet(ksp->pc, &matset, &pmatset));
1781:         /* check for mat before pmat because for KSPLSQR pmat may be a different size than mat since pmat maybe mat'*mat */
1782:         if (matset) {
1783:           PetscCall(PCGetOperators(ksp->pc, &mat, NULL));
1784:           PetscCall(MatCreateVecs(mat, &vecr, NULL));
1785:         } else if (pmatset) {
1786:           PetscCall(PCGetOperators(ksp->pc, NULL, &mat));
1787:           PetscCall(MatCreateVecs(mat, &vecr, NULL));
1788:         }
1789:       }
1790:       if (!vecr && ksp->dm) PetscCall(DMGetGlobalVector(ksp->dm, &vecr));
1791:       PetscCheck(vecr, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_WRONGSTATE, "You requested a vector from a KSP that cannot provide one");
1792:     }
1793:     PetscCall(VecDuplicateVecs(vecr, rightn, right));
1794:     if (!ksp->vec_sol) {
1795:       if (preferdm) {
1796:         PetscCall(DMRestoreGlobalVector(ksp->dm, &vecr));
1797:       } else if (mat) {
1798:         PetscCall(VecDestroy(&vecr));
1799:       } else if (ksp->dm) {
1800:         PetscCall(DMRestoreGlobalVector(ksp->dm, &vecr));
1801:       }
1802:     }
1803:   }
1804:   if (leftn) {
1805:     PetscCheck(left, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_INCOMP, "You asked for left vectors but did not pass a pointer to hold them");
1806:     if (ksp->vec_rhs) vecl = ksp->vec_rhs;
1807:     else {
1808:       if (preferdm) {
1809:         PetscCall(DMGetGlobalVector(ksp->dm, &vecl));
1810:       } else if (ksp->pc) {
1811:         PetscCall(PCGetOperatorsSet(ksp->pc, &matset, &pmatset));
1812:         /* check for mat before pmat because for KSPLSQR pmat may be a different size than mat since pmat maybe mat'*mat */
1813:         if (matset) {
1814:           PetscCall(PCGetOperators(ksp->pc, &mat, NULL));
1815:           PetscCall(MatCreateVecs(mat, NULL, &vecl));
1816:         } else if (pmatset) {
1817:           PetscCall(PCGetOperators(ksp->pc, NULL, &mat));
1818:           PetscCall(MatCreateVecs(mat, NULL, &vecl));
1819:         }
1820:       }
1821:       if (!vecl && ksp->dm) PetscCall(DMGetGlobalVector(ksp->dm, &vecl));
1822:       PetscCheck(vecl, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_WRONGSTATE, "You requested a vector from a KSP that cannot provide one");
1823:     }
1824:     PetscCall(VecDuplicateVecs(vecl, leftn, left));
1825:     if (!ksp->vec_rhs) {
1826:       if (preferdm) {
1827:         PetscCall(DMRestoreGlobalVector(ksp->dm, &vecl));
1828:       } else if (mat) {
1829:         PetscCall(VecDestroy(&vecl));
1830:       } else if (ksp->dm) {
1831:         PetscCall(DMRestoreGlobalVector(ksp->dm, &vecl));
1832:       }
1833:     }
1834:   }
1835:   PetscFunctionReturn(PETSC_SUCCESS);
1836: }

1838: /*@
1839:   KSPSetWorkVecs - Sets a number of work vectors into a `KSP` object

1841:   Collective

1843:   Input Parameters:
1844: + ksp - iterative context
1845: - nw  - number of work vectors to allocate

1847:   Level: developer

1849:   Developer Note:
1850:   This is `PETSC_EXTERN` because it may be used by user written plugin `KSPType` implementations

1852: .seealso: [](ch_ksp), `KSP`, `KSPCreateVecs()`
1853: @*/
1854: PetscErrorCode KSPSetWorkVecs(KSP ksp, PetscInt nw)
1855: {
1856:   PetscFunctionBegin;
1857:   PetscCall(VecDestroyVecs(ksp->nwork, &ksp->work));
1858:   ksp->nwork = nw;
1859:   PetscCall(KSPCreateVecs(ksp, nw, &ksp->work, 0, NULL));
1860:   PetscFunctionReturn(PETSC_SUCCESS);
1861: }

1863: // PetscClangLinter pragma disable: -fdoc-sowing-chars
1864: /*
1865:   KSPDestroyDefault - Destroys a iterative context variable for methods with no separate context.  Preferred calling sequence `KSPDestroy()`.

1867:   Input Parameter:
1868: . ksp - the iterative context

1870:   Level: advanced

1872:   Developer Note:
1873:   This is `PETSC_EXTERN` because it may be used by user written plugin `KSPType` implementations

1875: .seealso: [](ch_ksp), `KSP`, `KSPDestroy()`
1876: */
1877: PetscErrorCode KSPDestroyDefault(KSP ksp)
1878: {
1879:   PetscFunctionBegin;
1881:   PetscCall(PetscFree(ksp->data));
1882:   PetscFunctionReturn(PETSC_SUCCESS);
1883: }

1885: /*@
1886:   KSPGetConvergedReason - Gets the reason the `KSP` iteration was stopped.

1888:   Not Collective

1890:   Input Parameter:
1891: . ksp - the `KSP` context

1893:   Output Parameter:
1894: . reason - negative value indicates diverged, positive value converged, see `KSPConvergedReason` for the possible values

1896:   Options Database Key:
1897: . -ksp_converged_reason - prints the reason to standard out when the solve ends

1899:   Level: intermediate

1901:   Note:
1902:   If this routine is called before or doing the `KSPSolve()` the value of `KSP_CONVERGED_ITERATING` is returned

1904: .seealso: [](ch_ksp), `KSPConvergedReason`, `KSP`, `KSPSetConvergenceTest()`, `KSPConvergedDefault()`, `KSPSetTolerances()`,
1905:           `KSPConvergedReasonView()`, `KSPGetConvergedReasonString()`
1906: @*/
1907: PetscErrorCode KSPGetConvergedReason(KSP ksp, KSPConvergedReason *reason)
1908: {
1909:   PetscFunctionBegin;
1911:   PetscAssertPointer(reason, 2);
1912:   *reason = ksp->reason;
1913:   PetscFunctionReturn(PETSC_SUCCESS);
1914: }

1916: /*@C
1917:   KSPGetConvergedReasonString - Return a human readable string for a `KSPConvergedReason`

1919:   Not Collective

1921:   Input Parameter:
1922: . ksp - the `KSP` context

1924:   Output Parameter:
1925: . strreason - a human readable string that describes ksp converged reason

1927:   Level: beginner

1929: .seealso: [](ch_ksp), `KSP`, `KSPGetConvergedReason()`
1930: @*/
1931: PetscErrorCode KSPGetConvergedReasonString(KSP ksp, const char *strreason[])
1932: {
1933:   PetscFunctionBegin;
1935:   PetscAssertPointer(strreason, 2);
1936:   *strreason = KSPConvergedReasons[ksp->reason];
1937:   PetscFunctionReturn(PETSC_SUCCESS);
1938: }

1940: #include <petsc/private/dmimpl.h>
1941: /*@
1942:   KSPSetDM - Sets the `DM` that may be used by some preconditioners and that may be used to construct the linear system

1944:   Logically Collective

1946:   Input Parameters:
1947: + ksp - the `KSP`
1948: - dm  - the `DM`, cannot be `NULL` to remove a previously set `DM`

1950:   Level: intermediate

1952:   Notes:
1953:   If this is used then the `KSP` will attempt to use the `DM` to create the matrix and use the routine set with
1954:   `DMKSPSetComputeOperators()`. Use `KSPSetDMActive`(ksp,`PETSC_FALSE`) to instead use the matrix you've provided with
1955:   `KSPSetOperators()`.

1957:   A `DM` can only be used for solving one problem at a time because information about the problem is stored on the `DM`,
1958:   even when not using interfaces like `DMKSPSetComputeOperators()`.  Use `DMClone()` to get a distinct `DM` when solving
1959:   different problems using the same function space.

1961: .seealso: [](ch_ksp), `KSP`, `DM`, `KSPGetDM()`, `KSPSetDMActive()`, `KSPSetComputeOperators()`, `KSPSetComputeRHS()`, `KSPSetComputeInitialGuess()`, `DMKSPSetComputeOperators()`, `DMKSPSetComputeRHS()`, `DMKSPSetComputeInitialGuess()`
1962: @*/
1963: PetscErrorCode KSPSetDM(KSP ksp, DM dm)
1964: {
1965:   PC pc;

1967:   PetscFunctionBegin;
1970:   PetscCall(PetscObjectReference((PetscObject)dm));
1971:   if (ksp->dm) { /* Move the DMSNES context over to the new DM unless the new DM already has one */
1972:     if (ksp->dm->dmksp && !dm->dmksp) {
1973:       DMKSP kdm;
1974:       PetscCall(DMCopyDMKSP(ksp->dm, dm));
1975:       PetscCall(DMGetDMKSP(ksp->dm, &kdm));
1976:       if (kdm->originaldm == ksp->dm) kdm->originaldm = dm; /* Grant write privileges to the replacement DM */
1977:     }
1978:     PetscCall(DMDestroy(&ksp->dm));
1979:   }
1980:   ksp->dm     = dm;
1981:   ksp->dmAuto = PETSC_FALSE;
1982:   PetscCall(KSPGetPC(ksp, &pc));
1983:   PetscCall(PCSetDM(pc, dm));
1984:   ksp->dmActive = PETSC_TRUE;
1985:   PetscFunctionReturn(PETSC_SUCCESS);
1986: }

1988: /*@
1989:   KSPSetDMActive - Indicates the `DM` should be used to generate the linear system matrix and right-hand side vector

1991:   Logically Collective

1993:   Input Parameters:
1994: + ksp - the `KSP`
1995: - flg - use the `DM`

1997:   Level: intermediate

1999:   Note:
2000:   By default `KSPSetDM()` sets the `DM` as active, call `KSPSetDMActive`(ksp,`PETSC_FALSE`); after `KSPSetDM`(ksp,dm) to not have the `KSP` object use the `DM` to generate the matrices.

2002: .seealso: [](ch_ksp), `KSP`, `DM`, `KSPGetDM()`, `KSPSetDM()`, `SNESSetDM()`, `KSPSetComputeOperators()`, `KSPSetComputeRHS()`, `KSPSetComputeInitialGuess()`
2003: @*/
2004: PetscErrorCode KSPSetDMActive(KSP ksp, PetscBool flg)
2005: {
2006:   PetscFunctionBegin;
2009:   ksp->dmActive = flg;
2010:   PetscFunctionReturn(PETSC_SUCCESS);
2011: }

2013: /*@
2014:   KSPGetDM - Gets the `DM` that may be used by some preconditioners and that may be used to construct the linear system

2016:   Not Collective

2018:   Input Parameter:
2019: . ksp - the `KSP`

2021:   Output Parameter:
2022: . dm - the `DM`

2024:   Level: intermediate

2026: .seealso: [](ch_ksp), `KSP`, `DM`, `KSPSetDM()`, `KSPSetDMActive()`
2027: @*/
2028: PetscErrorCode KSPGetDM(KSP ksp, DM *dm)
2029: {
2030:   PetscFunctionBegin;
2032:   if (!ksp->dm) {
2033:     PetscCall(DMShellCreate(PetscObjectComm((PetscObject)ksp), &ksp->dm));
2034:     ksp->dmAuto = PETSC_TRUE;
2035:   }
2036:   *dm = ksp->dm;
2037:   PetscFunctionReturn(PETSC_SUCCESS);
2038: }

2040: /*@
2041:   KSPSetApplicationContext - Sets the optional user-defined context for the linear solver.

2043:   Logically Collective

2045:   Input Parameters:
2046: + ksp - the `KSP` context
2047: - ctx - user context

2049:   Level: intermediate

2051:   Notes:
2052:   The user context is a way for users to attach any information to the `KSP` that they may need later when interacting with the `KSP`

2054:   Use `KSPGetApplicationContext()` to get access to the context at a later time.

2056:   Fortran Note:
2057:   This only works when `ctx` is a Fortran derived type (it cannot be a `PetscObject`), we recommend writing a Fortran interface definition for this
2058:   function that tells the Fortran compiler the derived data type that is passed in as the `ctx` argument. See `KSPGetApplicationContext()` for
2059:   an example.

2061: .seealso: [](ch_ksp), `KSP`, `KSPGetApplicationContext()`
2062: @*/
2063: PetscErrorCode KSPSetApplicationContext(KSP ksp, void *ctx)
2064: {
2065:   PC pc;

2067:   PetscFunctionBegin;
2069:   ksp->ctx = ctx;
2070:   PetscCall(KSPGetPC(ksp, &pc));
2071:   PetscCall(PCSetApplicationContext(pc, ctx));
2072:   PetscFunctionReturn(PETSC_SUCCESS);
2073: }

2075: /*@
2076:   KSPGetApplicationContext - Gets the user-defined context for the linear solver set with `KSPSetApplicationContext()`

2078:   Not Collective

2080:   Input Parameter:
2081: . ksp - `KSP` context

2083:   Output Parameter:
2084: . ctx - a pointer to the user context

2086:   Level: intermediate

2088:   Fortran Notes:
2089:   This only works when the context is a Fortran derived type (it cannot be a `PetscObject`) and you **must** write a Fortran interface definition for this
2090:   function that tells the Fortran compiler the derived data type that is returned as the `ctx` argument. For example,
2091: .vb
2092:   Interface KSPGetApplicationContext
2093:     Subroutine KSPGetApplicationContext(ksp,ctx,ierr)
2094:   #include <petsc/finclude/petscksp.h>
2095:       use petscksp
2096:       KSP ksp
2097:       type(tUsertype), pointer :: ctx
2098:       PetscErrorCode ierr
2099:     End Subroutine
2100:   End Interface KSPGetApplicationContext
2101: .ve

2103:   The prototype for `ctx` must be
2104: .vb
2105:   type(tUsertype), pointer :: ctx
2106: .ve

2108: .seealso: [](ch_ksp), `KSP`, `KSPSetApplicationContext()`
2109: @*/
2110: PetscErrorCode KSPGetApplicationContext(KSP ksp, PeCtx ctx)
2111: {
2112:   PetscFunctionBegin;
2114:   *(void **)ctx = ksp->ctx;
2115:   PetscFunctionReturn(PETSC_SUCCESS);
2116: }

2118: #include <petsc/private/pcimpl.h>

2120: /*@
2121:   KSPCheckSolve - Checks if the `PCSetUp()` or `KSPSolve()` failed and set the error flag for the outer `PC`. A `KSP_DIVERGED_ITS` is
2122:   not considered a failure in this context

2124:   Collective

2126:   Input Parameters:
2127: + ksp - the linear solver `KSP` context.
2128: . pc  - the preconditioner context
2129: - vec - a vector that will be initialized with Inf to indicate lack of convergence

2131:   Level: developer

2133:   Note:
2134:   This is called within `PCApply()` implementations to check if an error has been detected on any particular MPI processes. By initializing the vector
2135:   with Inf the next call to `KSPCheckNorm()` or `KSPCheckDot()` will provide the same information to all the MPI processes that an error occurred on
2136:   at least one of the processes.

2138:   This may be called by a subset of the processes in the `PC`.

2140:   Developer Note:
2141:   This is used to manage returning with appropriate information from preconditioners whose inner `KSP` solvers have failed in some way

2143: .seealso: [](ch_ksp), `KSP`, `KSPCreate()`, `KSPSetType()`, `KSPCheckNorm()`, `KSPCheckDot()`
2144: @*/
2145: PetscErrorCode KSPCheckSolve(KSP ksp, PC pc, Vec vec)
2146: {
2147:   PCFailedReason pcreason;
2148:   PC             subpc;

2150:   PetscFunctionBegin;
2151:   PetscCall(KSPGetPC(ksp, &subpc));
2152:   PetscCall(PCGetFailedReason(subpc, &pcreason));
2153:   PetscCall(VecFlag(vec, pcreason || (ksp->reason < 0 && ksp->reason != KSP_DIVERGED_ITS)));
2154:   if (pcreason || (ksp->reason < 0 && ksp->reason != KSP_DIVERGED_ITS)) {
2155:     PetscCheck(!pc->erroriffailure, PETSC_COMM_SELF, PETSC_ERR_NOT_CONVERGED, "Detected not converged in KSP inner solve: KSP reason %s PC reason %s", KSPConvergedReasons[ksp->reason], PCFailedReasons[pcreason]);
2156:     PetscCall(PetscInfo(ksp, "Detected not converged in KSP inner solve: KSP reason %s PC reason %s\n", KSPConvergedReasons[ksp->reason], PCFailedReasons[pcreason]));
2157:     pc->failedreason = PC_SUBPC_ERROR;
2158:   }
2159:   PetscFunctionReturn(PETSC_SUCCESS);
2160: }