Actual source code: ex66.c

  1: /*   DMDA/KSP solving a system of linear equations.
  2:      Poisson equation in 2D:

  4:      div(grad p) = f,  0 < x,y < 1
  5:      with
  6:        forcing function f = -cos(m*pi*x)*cos(n*pi*y),
  7:        Periodic boundary conditions
  8:          p(x=0) = p(x=1)
  9:        Neuman boundary conditions
 10:          dp/dy = 0 for y = 0, y = 1.

 12:        This example uses the DM_BOUNDARY_MIRROR to implement the Neumann boundary conditions, see the manual pages for DMBoundaryType

 14:        Compare to ex50.c
 15: */

 17: static char help[] = "Solves 2D Poisson equation,\n\
 18:                       using mirrored boundaries to implement Neumann boundary conditions,\n\
 19:                       using multigrid.\n\n";

 21: #include <petscdm.h>
 22: #include <petscdmda.h>
 23: #include <petscksp.h>
 24: #include <petscsys.h>
 25: #include <petscvec.h>

 27: extern PetscErrorCode ComputeJacobian(KSP, Mat, Mat, void *);
 28: extern PetscErrorCode ComputeRHS(KSP, Vec, void *);

 30: typedef struct {
 31:   PetscScalar uu, tt;
 32: } UserContext;

 34: int main(int argc, char **argv)
 35: {
 36:   KSP         ksp;
 37:   DM          da;
 38:   UserContext user;

 41:   PetscInitialize(&argc, &argv, (char *)0, help);
 42:   KSPCreate(PETSC_COMM_WORLD, &ksp);
 43:   DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, DM_BOUNDARY_MIRROR, DMDA_STENCIL_STAR, 11, 11, PETSC_DECIDE, PETSC_DECIDE, 1, 1, NULL, NULL, &da);
 44:   DMSetFromOptions(da);
 45:   DMSetUp(da);
 46:   KSPSetDM(ksp, (DM)da);
 47:   DMSetApplicationContext(da, &user);

 49:   user.uu = 1.0;
 50:   user.tt = 1.0;

 52:   KSPSetComputeRHS(ksp, ComputeRHS, &user);
 53:   KSPSetComputeOperators(ksp, ComputeJacobian, &user);
 54:   KSPSetFromOptions(ksp);
 55:   KSPSolve(ksp, NULL, NULL);

 57:   DMDestroy(&da);
 58:   KSPDestroy(&ksp);
 59:   PetscFinalize();
 60:   return 0;
 61: }

 63: PetscErrorCode ComputeRHS(KSP ksp, Vec b, void *ctx)
 64: {
 65:   UserContext  *user = (UserContext *)ctx;
 66:   PetscInt      i, j, M, N, xm, ym, xs, ys;
 67:   PetscScalar   Hx, Hy, pi, uu, tt;
 68:   PetscScalar **array;
 69:   DM            da;
 70:   MatNullSpace  nullspace;

 73:   KSPGetDM(ksp, &da);
 74:   DMDAGetInfo(da, 0, &M, &N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 75:   uu = user->uu;
 76:   tt = user->tt;
 77:   pi = 4 * PetscAtanReal(1.0);
 78:   Hx = 1.0 / (PetscReal)(M);
 79:   Hy = 1.0 / (PetscReal)(N);

 81:   DMDAGetCorners(da, &xs, &ys, 0, &xm, &ym, 0); /* Fine grid */
 82:   DMDAVecGetArray(da, b, &array);
 83:   for (j = ys; j < ys + ym; j++) {
 84:     for (i = xs; i < xs + xm; i++) array[j][i] = -PetscCosScalar(uu * pi * ((PetscReal)i + 0.5) * Hx) * PetscCosScalar(tt * pi * ((PetscReal)j + 0.5) * Hy) * Hx * Hy;
 85:   }
 86:   DMDAVecRestoreArray(da, b, &array);
 87:   VecAssemblyBegin(b);
 88:   VecAssemblyEnd(b);

 90:   /* force right hand side to be consistent for singular matrix */
 91:   /* note this is really a hack, normally the model would provide you with a consistent right handside */
 92:   MatNullSpaceCreate(PETSC_COMM_WORLD, PETSC_TRUE, 0, 0, &nullspace);
 93:   MatNullSpaceRemove(nullspace, b);
 94:   MatNullSpaceDestroy(&nullspace);
 95:   return 0;
 96: }

 98: PetscErrorCode ComputeJacobian(KSP ksp, Mat J, Mat jac, void *ctx)
 99: {
100:   PetscInt     i, j, M, N, xm, ym, xs, ys;
101:   PetscScalar  v[5], Hx, Hy, HydHx, HxdHy;
102:   MatStencil   row, col[5];
103:   DM           da;
104:   MatNullSpace nullspace;

107:   KSPGetDM(ksp, &da);
108:   DMDAGetInfo(da, 0, &M, &N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
109:   Hx    = 1.0 / (PetscReal)(M);
110:   Hy    = 1.0 / (PetscReal)(N);
111:   HxdHy = Hx / Hy;
112:   HydHx = Hy / Hx;
113:   DMDAGetCorners(da, &xs, &ys, 0, &xm, &ym, 0);
114:   for (j = ys; j < ys + ym; j++) {
115:     for (i = xs; i < xs + xm; i++) {
116:       row.i    = i;
117:       row.j    = j;
118:       v[0]     = -HxdHy;
119:       col[0].i = i;
120:       col[0].j = j - 1;
121:       v[1]     = -HydHx;
122:       col[1].i = i - 1;
123:       col[1].j = j;
124:       v[2]     = 2.0 * (HxdHy + HydHx);
125:       col[2].i = i;
126:       col[2].j = j;
127:       v[3]     = -HydHx;
128:       col[3].i = i + 1;
129:       col[3].j = j;
130:       v[4]     = -HxdHy;
131:       col[4].i = i;
132:       col[4].j = j + 1;
133:       MatSetValuesStencil(jac, 1, &row, 5, col, v, ADD_VALUES);
134:     }
135:   }
136:   MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY);
137:   MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY);

139:   MatNullSpaceCreate(PETSC_COMM_WORLD, PETSC_TRUE, 0, 0, &nullspace);
140:   MatSetNullSpace(J, nullspace);
141:   MatNullSpaceDestroy(&nullspace);
142:   return 0;
143: }

145: /*TEST

147:    build:
148:       requires: !complex !single

150:    test:
151:       args: -pc_type mg -pc_mg_type full -ksp_monitor_short -da_refine 3 -mg_coarse_pc_type svd -ksp_view

153:    test:
154:       suffix: 2
155:       nsize: 4
156:       args: -pc_type mg -pc_mg_type full -ksp_monitor_short -da_refine 3 -mg_coarse_pc_type redundant -mg_coarse_redundant_pc_type svd -ksp_view

158: TEST*/