Actual source code: mis.c

  1: #include <petsc/private/matimpl.h>
  2: #include <../src/mat/impls/aij/seq/aij.h>
  3: #include <../src/mat/impls/aij/mpi/mpiaij.h>
  4: #include <petscsf.h>

  6: #define MIS_NOT_DONE       -2
  7: #define MIS_DELETED        -1
  8: #define MIS_REMOVED        -3
  9: #define MIS_IS_SELECTED(s) (s != MIS_DELETED && s != MIS_NOT_DONE && s != MIS_REMOVED)

 11: /*
 12:    MatCoarsenApply_MIS_private - parallel maximal independent set (MIS) with data locality info. MatAIJ specific!!!

 14:    Input Parameter:
 15:    . perm - serial permutation of rows of local to process in MIS
 16:    . Gmat - global matrix of graph (data not defined)
 17:    . strict_aggs - flag for whether to keep strict (non overlapping) aggregates in 'llist';

 19:    Output Parameter:
 20:    . a_selected - IS of selected vertices, includes 'ghost' nodes at end with natural local indices
 21:    . a_locals_llist - array of list of nodes rooted at selected nodes
 22: */
 23: static PetscErrorCode MatCoarsenApply_MIS_private(IS perm, Mat Gmat, PetscBool strict_aggs, PetscCoarsenData **a_locals_llist)
 24: {
 25:   Mat_SeqAIJ       *matA, *matB = NULL;
 26:   Mat_MPIAIJ       *mpimat = NULL;
 27:   MPI_Comm          comm;
 28:   PetscInt          num_fine_ghosts, kk, n, ix, j, *idx, *ii, Iend, my0, nremoved, gid, lid, cpid, lidj, sgid, t1, t2, slid, nDone, nselected = 0, state, statej;
 29:   PetscInt         *cpcol_gid, *cpcol_state, *lid_cprowID, *lid_gid, *cpcol_sel_gid, *icpcol_gid, *lid_state, *lid_parent_gid = NULL, nrm_tot = 0;
 30:   PetscBool        *lid_removed;
 31:   PetscBool         isMPI, isAIJ, isOK;
 32:   const PetscInt   *perm_ix;
 33:   const PetscInt    nloc = Gmat->rmap->n;
 34:   PetscCoarsenData *agg_lists;
 35:   PetscLayout       layout;
 36:   PetscSF           sf;
 37:   IS                info_is;

 39:   PetscFunctionBegin;
 40:   PetscCall(PetscObjectGetComm((PetscObject)Gmat, &comm));
 41:   PetscCall(ISCreate(comm, &info_is));
 42:   PetscCall(PetscInfo(info_is, "mis: nloc = %d\n", (int)nloc));
 43:   /* get submatrices */
 44:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)Gmat, MATMPIAIJ, &isMPI));
 45:   if (isMPI) {
 46:     mpimat = (Mat_MPIAIJ *)Gmat->data;
 47:     matA   = (Mat_SeqAIJ *)mpimat->A->data;
 48:     matB   = (Mat_SeqAIJ *)mpimat->B->data;
 49:     /* force compressed storage of B */
 50:     PetscCall(MatCheckCompressedRow(mpimat->B, matB->nonzerorowcnt, &matB->compressedrow, matB->i, Gmat->rmap->n, -1.0));
 51:   } else {
 52:     matA = (Mat_SeqAIJ *)Gmat->data;
 53:     PetscCall(PetscObjectBaseTypeCompare((PetscObject)Gmat, MATSEQAIJ, &isAIJ));
 54:     PetscCheck(isAIJ, comm, PETSC_ERR_PLIB, "Require AIJ matrix.");
 55:   }
 56:   PetscCall(MatGetOwnershipRange(Gmat, &my0, &Iend));
 57:   PetscCall(PetscMalloc4(nloc, &lid_gid, nloc, &lid_cprowID, nloc, &lid_removed, nloc, &lid_state));
 58:   if (strict_aggs) PetscCall(PetscMalloc1(nloc, &lid_parent_gid));
 59:   if (isMPI) {
 60:     for (kk = 0, gid = my0; kk < nloc; kk++, gid++) lid_gid[kk] = gid;
 61:     PetscCall(VecGetLocalSize(mpimat->lvec, &num_fine_ghosts));
 62:     PetscCall(PetscMalloc2(num_fine_ghosts, &cpcol_gid, num_fine_ghosts, &cpcol_state));
 63:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)Gmat), &sf));
 64:     PetscCall(MatGetLayouts(Gmat, &layout, NULL));
 65:     PetscCall(PetscSFSetGraphLayout(sf, layout, num_fine_ghosts, NULL, PETSC_COPY_VALUES, mpimat->garray));
 66:     PetscCall(PetscSFBcastBegin(sf, MPIU_INT, lid_gid, cpcol_gid, MPI_REPLACE));
 67:     PetscCall(PetscSFBcastEnd(sf, MPIU_INT, lid_gid, cpcol_gid, MPI_REPLACE));
 68:     for (kk = 0; kk < num_fine_ghosts; kk++) cpcol_state[kk] = MIS_NOT_DONE;
 69:   } else num_fine_ghosts = 0;

 71:   /* has ghost nodes for !strict and uses local indexing (yuck) */
 72:   PetscCall(PetscCDCreate(strict_aggs ? nloc : num_fine_ghosts + nloc, &agg_lists));
 73:   if (a_locals_llist) *a_locals_llist = agg_lists;

 75:   /* need an inverse map - locals */
 76:   for (kk = 0; kk < nloc; kk++) {
 77:     lid_cprowID[kk] = -1;
 78:     lid_removed[kk] = PETSC_FALSE;
 79:     if (strict_aggs) lid_parent_gid[kk] = -1.0;
 80:     lid_state[kk] = MIS_NOT_DONE;
 81:   }
 82:   /* set index into cmpressed row 'lid_cprowID' */
 83:   if (matB) {
 84:     for (ix = 0; ix < matB->compressedrow.nrows; ix++) {
 85:       lid = matB->compressedrow.rindex[ix];
 86:       if (lid >= 0) lid_cprowID[lid] = ix;
 87:     }
 88:   }
 89:   /* MIS */
 90:   nremoved = nDone = 0;

 92:   PetscCall(ISGetIndices(perm, &perm_ix));
 93:   while (nDone < nloc || PETSC_TRUE) { /* asynchronous not implemented */
 94:     /* check all vertices */
 95:     for (kk = 0; kk < nloc; kk++) {
 96:       lid   = perm_ix[kk];
 97:       state = lid_state[lid];
 98:       if (lid_removed[lid]) continue;
 99:       if (state == MIS_NOT_DONE) {
100:         /* parallel test, delete if selected ghost */
101:         isOK = PETSC_TRUE;
102:         if ((ix = lid_cprowID[lid]) != -1) { /* if I have any ghost neighbors */
103:           ii  = matB->compressedrow.i;
104:           n   = ii[ix + 1] - ii[ix];
105:           idx = matB->j + ii[ix];
106:           for (j = 0; j < n; j++) {
107:             cpid   = idx[j]; /* compressed row ID in B mat */
108:             gid    = cpcol_gid[cpid];
109:             statej = cpcol_state[cpid];
110:             PetscCheck(!MIS_IS_SELECTED(statej), PETSC_COMM_SELF, PETSC_ERR_SUP, "selected ghost: %d", (int)gid);
111:             if (statej == MIS_NOT_DONE && gid >= Iend) { /* should be (pe>rank), use gid as pe proxy */
112:               isOK = PETSC_FALSE;                        /* can not delete */
113:               break;
114:             }
115:           }
116:         } /* parallel test */
117:         if (isOK) { /* select or remove this vertex */
118:           nDone++;
119:           /* check for singleton */
120:           ii = matA->i;
121:           n  = ii[lid + 1] - ii[lid];
122:           if (n < 2) {
123:             /* if I have any ghost adj then not a sing */
124:             ix = lid_cprowID[lid];
125:             if (ix == -1 || !(matB->compressedrow.i[ix + 1] - matB->compressedrow.i[ix])) {
126:               nremoved++;
127:               nrm_tot++;
128:               lid_removed[lid] = PETSC_TRUE;
129:               continue;
130:               // lid_state[lidj] = MIS_REMOVED; /* add singleton to MIS (can cause low rank with elasticity on fine grid) */
131:             }
132:           }
133:           /* SELECTED state encoded with global index */
134:           lid_state[lid] = lid + my0;
135:           nselected++;
136:           if (strict_aggs) {
137:             PetscCall(PetscCDAppendID(agg_lists, lid, lid + my0));
138:           } else {
139:             PetscCall(PetscCDAppendID(agg_lists, lid, lid));
140:           }
141:           /* delete local adj */
142:           idx = matA->j + ii[lid];
143:           for (j = 0; j < n; j++) {
144:             lidj   = idx[j];
145:             statej = lid_state[lidj];
146:             if (statej == MIS_NOT_DONE) {
147:               nDone++;
148:               if (strict_aggs) {
149:                 PetscCall(PetscCDAppendID(agg_lists, lid, lidj + my0));
150:               } else {
151:                 PetscCall(PetscCDAppendID(agg_lists, lid, lidj));
152:               }
153:               lid_state[lidj] = MIS_DELETED; /* delete this */
154:             }
155:           }
156:           /* delete ghost adj of lid - deleted ghost done later for strict_aggs */
157:           if (!strict_aggs) {
158:             if ((ix = lid_cprowID[lid]) != -1) { /* if I have any ghost neighbors */
159:               ii  = matB->compressedrow.i;
160:               n   = ii[ix + 1] - ii[ix];
161:               idx = matB->j + ii[ix];
162:               for (j = 0; j < n; j++) {
163:                 cpid   = idx[j]; /* compressed row ID in B mat */
164:                 statej = cpcol_state[cpid];
165:                 if (statej == MIS_NOT_DONE) PetscCall(PetscCDAppendID(agg_lists, lid, nloc + cpid));
166:               }
167:             }
168:           }
169:         } /* selected */
170:       } /* not done vertex */
171:     } /* vertex loop */

173:     /* update ghost states and count todos */
174:     if (isMPI) {
175:       /* scatter states, check for done */
176:       PetscCall(PetscSFBcastBegin(sf, MPIU_INT, lid_state, cpcol_state, MPI_REPLACE));
177:       PetscCall(PetscSFBcastEnd(sf, MPIU_INT, lid_state, cpcol_state, MPI_REPLACE));
178:       ii = matB->compressedrow.i;
179:       for (ix = 0; ix < matB->compressedrow.nrows; ix++) {
180:         lid   = matB->compressedrow.rindex[ix]; /* local boundary node */
181:         state = lid_state[lid];
182:         if (state == MIS_NOT_DONE) {
183:           /* look at ghosts */
184:           n   = ii[ix + 1] - ii[ix];
185:           idx = matB->j + ii[ix];
186:           for (j = 0; j < n; j++) {
187:             cpid   = idx[j]; /* compressed row ID in B mat */
188:             statej = cpcol_state[cpid];
189:             if (MIS_IS_SELECTED(statej)) { /* lid is now deleted, do it */
190:               nDone++;
191:               lid_state[lid] = MIS_DELETED; /* delete this */
192:               if (!strict_aggs) {
193:                 lidj = nloc + cpid;
194:                 PetscCall(PetscCDAppendID(agg_lists, lidj, lid));
195:               } else {
196:                 sgid                = cpcol_gid[cpid];
197:                 lid_parent_gid[lid] = sgid; /* keep track of proc that I belong to */
198:               }
199:               break;
200:             }
201:           }
202:         }
203:       }
204:       /* all done? */
205:       t1 = nloc - nDone;
206:       PetscCallMPI(MPIU_Allreduce(&t1, &t2, 1, MPIU_INT, MPI_SUM, comm)); /* synchronous version */
207:       if (!t2) break;
208:     } else break; /* all done */
209:   } /* outer parallel MIS loop */
210:   PetscCall(ISRestoreIndices(perm, &perm_ix));
211:   PetscCall(PetscInfo(info_is, "\t removed %" PetscInt_FMT " of %" PetscInt_FMT " vertices.  %" PetscInt_FMT " selected.\n", nremoved, nloc, nselected));

213:   /* tell adj who my lid_parent_gid vertices belong to - fill in agg_lists selected ghost lists */
214:   if (strict_aggs && matB) {
215:     /* need to copy this to free buffer -- should do this globally */
216:     PetscCall(PetscMalloc2(num_fine_ghosts, &cpcol_sel_gid, num_fine_ghosts, &icpcol_gid));
217:     for (cpid = 0; cpid < num_fine_ghosts; cpid++) icpcol_gid[cpid] = cpcol_gid[cpid];

219:     /* get proc of deleted ghost */
220:     PetscCall(PetscSFBcastBegin(sf, MPIU_INT, lid_parent_gid, cpcol_sel_gid, MPI_REPLACE));
221:     PetscCall(PetscSFBcastEnd(sf, MPIU_INT, lid_parent_gid, cpcol_sel_gid, MPI_REPLACE));
222:     for (cpid = 0; cpid < num_fine_ghosts; cpid++) {
223:       sgid = cpcol_sel_gid[cpid];
224:       gid  = icpcol_gid[cpid];
225:       if (sgid >= my0 && sgid < Iend) { /* I own this deleted */
226:         slid = sgid - my0;
227:         PetscCall(PetscCDAppendID(agg_lists, slid, gid));
228:       }
229:     }
230:     PetscCall(PetscFree2(cpcol_sel_gid, icpcol_gid));
231:   }
232:   if (isMPI) {
233:     PetscCall(PetscSFDestroy(&sf));
234:     PetscCall(PetscFree2(cpcol_gid, cpcol_state));
235:   }
236:   PetscCall(PetscFree4(lid_gid, lid_cprowID, lid_removed, lid_state));
237:   if (strict_aggs) {
238:     // check sizes -- all vertices must get in graph
239:     PetscInt aa[2] = {0, nrm_tot}, bb[2], MM;

241:     PetscCall(PetscFree(lid_parent_gid));
242:     PetscCall(MatGetSize(Gmat, &MM, NULL));
243:     // check sizes -- all vertices must get in graph
244:     PetscCall(PetscCDCount(agg_lists, &aa[0]));
245:     PetscCallMPI(MPIU_Allreduce(aa, bb, 2, MPIU_INT, MPI_SUM, comm));
246:     if (MM != bb[0]) PetscCall(PetscInfo(info_is, "Warning: N = %" PetscInt_FMT ", sum of aggregates %" PetscInt_FMT ", %" PetscInt_FMT " removed total\n", MM, bb[0], bb[1]));
247:     PetscCheck(MM >= bb[0], comm, PETSC_ERR_PLIB, "Sum of aggs is too large");
248:   }
249:   PetscCall(ISDestroy(&info_is));
250:   PetscFunctionReturn(PETSC_SUCCESS);
251: }

253: /*
254:    MIS coarsen, simple greedy.
255: */
256: static PetscErrorCode MatCoarsenApply_MIS(MatCoarsen coarse)
257: {
258:   Mat mat = coarse->graph;

260:   PetscFunctionBegin;
261:   if (!coarse->perm) {
262:     IS       perm;
263:     PetscInt n, m;
264:     MPI_Comm comm;

266:     PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
267:     PetscCall(MatGetLocalSize(mat, &m, &n));
268:     PetscCall(ISCreateStride(comm, m, 0, 1, &perm));
269:     PetscCall(MatCoarsenApply_MIS_private(perm, mat, coarse->strict_aggs, &coarse->agg_lists));
270:     PetscCall(ISDestroy(&perm));
271:   } else {
272:     PetscCall(MatCoarsenApply_MIS_private(coarse->perm, mat, coarse->strict_aggs, &coarse->agg_lists));
273:   }
274:   PetscFunctionReturn(PETSC_SUCCESS);
275: }

277: static PetscErrorCode MatCoarsenView_MIS(MatCoarsen coarse, PetscViewer viewer)
278: {
279:   PetscMPIInt       rank;
280:   PetscBool         iascii;
281:   PetscViewerFormat format;

283:   PetscFunctionBegin;
284:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)coarse), &rank));
285:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
286:   PetscCall(PetscViewerGetFormat(viewer, &format));
287:   if (iascii && format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
288:     if (coarse->agg_lists) {
289:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
290:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "  [%d] MIS aggregator\n", rank));
291:       if (!rank) {
292:         PetscCDIntNd *pos, *pos2;
293:         for (PetscInt kk = 0; kk < coarse->agg_lists->size; kk++) {
294:           PetscCall(PetscCDGetHeadPos(coarse->agg_lists, kk, &pos));
295:           if ((pos2 = pos)) PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "selected %d: ", (int)kk));
296:           while (pos) {
297:             PetscInt gid1;
298:             PetscCall(PetscCDIntNdGetID(pos, &gid1));
299:             PetscCall(PetscCDGetNextPos(coarse->agg_lists, kk, &pos));
300:             PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, " %d ", (int)gid1));
301:           }
302:           if (pos2) PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "\n"));
303:         }
304:       }
305:       PetscCall(PetscViewerFlush(viewer));
306:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
307:     } else {
308:       PetscCall(PetscViewerASCIIPrintf(viewer, "  MIS aggregator lists are not available\n"));
309:     }
310:   }
311:   PetscFunctionReturn(PETSC_SUCCESS);
312: }

314: /*MC
315:    MATCOARSENMIS - Creates a coarsening object that uses a maximal independent set (MIS) algorithm

317:    Collective

319:    Input Parameter:
320: .  coarse - the coarsen context

322:    Level: beginner

324: .seealso: `MatCoarsen`, `MatCoarsenApply()`, `MatCoarsenGetData()`, `MatCoarsenSetType()`, `MatCoarsenType`
325: M*/
326: PETSC_EXTERN PetscErrorCode MatCoarsenCreate_MIS(MatCoarsen coarse)
327: {
328:   PetscFunctionBegin;
329:   coarse->ops->apply = MatCoarsenApply_MIS;
330:   coarse->ops->view  = MatCoarsenView_MIS;
331:   PetscFunctionReturn(PETSC_SUCCESS);
332: }