Actual source code: ls.c

  1: #include <../src/snes/impls/ls/lsimpl.h>

  3: /*
  4:      This file implements a truncated Newton method with a line search,
  5:      for solving a system of nonlinear equations, using the KSP, Vec,
  6:      and Mat interfaces for linear solvers, vectors, and matrices,
  7:      respectively.

  9:      The following basic routines are required for each nonlinear solver:
 10:           SNESCreate_XXX()          - Creates a nonlinear solver context
 11:           SNESSetFromOptions_XXX()  - Sets runtime options
 12:           SNESSolve_XXX()           - Solves the nonlinear system
 13:           SNESDestroy_XXX()         - Destroys the nonlinear solver context
 14:      The suffix "_XXX" denotes a particular implementation, in this case
 15:      we use _NEWTONLS (e.g., SNESCreate_NEWTONLS, SNESSolve_NEWTONLS) for solving
 16:      systems of nonlinear equations with a line search (LS) method.
 17:      These routines are actually called via the common user interface
 18:      routines SNESCreate(), SNESSetFromOptions(), SNESSolve(), and
 19:      SNESDestroy(), so the application code interface remains identical
 20:      for all nonlinear solvers.

 22:      Another key routine is:
 23:           SNESSetUp_XXX()           - Prepares for the use of a nonlinear solver
 24:      by setting data structures and options.   The interface routine SNESSetUp()
 25:      is not usually called directly by the user, but instead is called by
 26:      SNESSolve() if necessary.

 28:      Additional basic routines are:
 29:           SNESView_XXX()            - Prints details of runtime options that
 30:                                       have actually been used.
 31:      These are called by application codes via the interface routines
 32:      SNESView().

 34:      The various types of solvers (preconditioners, Krylov subspace methods,
 35:      nonlinear solvers, timesteppers) are all organized similarly, so the
 36:      above description applies to these categories also.

 38: */

 40: /*
 41:      Checks if J^T F = 0 which implies we've found a local minimum of the norm of the function,
 42:     || F(u) ||_2 but not a zero, F(u) = 0. In the case when one cannot compute J^T F we use the fact that
 43:     0 = (J^T F)^T W = F^T J W iff W not in the null space of J. Thanks for Jorge More
 44:     for this trick. One assumes that the probability that W is in the null space of J is very, very small.
 45: */
 46: static PetscErrorCode SNESNEWTONLSCheckLocalMin_Private(SNES snes, Mat A, Vec F, PetscReal fnorm, PetscBool *ismin)
 47: {
 48:   PetscReal        a1;
 49:   PetscBool        hastranspose;
 50:   Vec              W;
 51:   SNESObjectiveFn *objective;

 53:   PetscFunctionBegin;
 54:   *ismin = PETSC_FALSE;
 55:   PetscCall(SNESGetObjective(snes, &objective, NULL));
 56:   if (!objective) {
 57:     PetscCall(MatHasOperation(A, MATOP_MULT_TRANSPOSE, &hastranspose));
 58:     PetscCall(VecDuplicate(F, &W));
 59:     if (hastranspose) {
 60:       /* Compute || J^T F|| */
 61:       PetscCall(MatMultTranspose(A, F, W));
 62:       PetscCall(VecNorm(W, NORM_2, &a1));
 63:       PetscCall(PetscInfo(snes, "|| J^T F|| %14.12e near zero implies found a local minimum\n", (double)(a1 / fnorm)));
 64:       if (a1 / fnorm < 1.e-4) *ismin = PETSC_TRUE;
 65:     } else {
 66:       Vec         work;
 67:       PetscScalar result;
 68:       PetscReal   wnorm;

 70:       PetscCall(VecSetRandom(W, NULL));
 71:       PetscCall(VecNorm(W, NORM_2, &wnorm));
 72:       PetscCall(VecDuplicate(W, &work));
 73:       PetscCall(MatMult(A, W, work));
 74:       PetscCall(VecDot(F, work, &result));
 75:       PetscCall(VecDestroy(&work));
 76:       a1 = PetscAbsScalar(result) / (fnorm * wnorm);
 77:       PetscCall(PetscInfo(snes, "(F^T J random)/(|| F ||*||random|| %14.12e near zero implies found a local minimum\n", (double)a1));
 78:       if (a1 < 1.e-4) *ismin = PETSC_TRUE;
 79:     }
 80:     PetscCall(VecDestroy(&W));
 81:   }
 82:   PetscFunctionReturn(PETSC_SUCCESS);
 83: }

 85: /*
 86:      Checks if J^T(F - J*X) = 0
 87: */
 88: static PetscErrorCode SNESNEWTONLSCheckResidual_Private(SNES snes, Mat A, Vec F, Vec X)
 89: {
 90:   PetscReal        a1, a2;
 91:   PetscBool        hastranspose;
 92:   SNESObjectiveFn *objective;

 94:   PetscFunctionBegin;
 95:   PetscCall(MatHasOperation(A, MATOP_MULT_TRANSPOSE, &hastranspose));
 96:   PetscCall(SNESGetObjective(snes, &objective, NULL));
 97:   if (hastranspose && !objective) {
 98:     Vec W1, W2;

100:     PetscCall(VecDuplicate(F, &W1));
101:     PetscCall(VecDuplicate(F, &W2));
102:     PetscCall(MatMult(A, X, W1));
103:     PetscCall(VecAXPY(W1, -1.0, F));

105:     /* Compute || J^T W|| */
106:     PetscCall(MatMultTranspose(A, W1, W2));
107:     PetscCall(VecNorm(W1, NORM_2, &a1));
108:     PetscCall(VecNorm(W2, NORM_2, &a2));
109:     if (a1 != 0.0) PetscCall(PetscInfo(snes, "||J^T(F-Ax)||/||F-AX|| %14.12e near zero implies inconsistent rhs\n", (double)(a2 / a1)));
110:     PetscCall(VecDestroy(&W1));
111:     PetscCall(VecDestroy(&W2));
112:   }
113:   PetscFunctionReturn(PETSC_SUCCESS);
114: }

116: // PetscClangLinter pragma disable: -fdoc-sowing-chars
117: /*
118:   SNESSolve_NEWTONLS - Solves a nonlinear system with a truncated Newton
119:   method with a line search.

121:   Input Parameter:
122: . snes - the SNES context

124: */
125: static PetscErrorCode SNESSolve_NEWTONLS(SNES snes)
126: {
127:   PetscInt             maxits, i, lits;
128:   SNESLineSearchReason lssucceed;
129:   PetscReal            fnorm, xnorm, ynorm;
130:   Vec                  Y, X, F;
131:   SNESLineSearch       linesearch;
132:   SNESConvergedReason  reason;
133:   PC                   pc;
134: #if defined(PETSC_USE_INFO)
135:   PetscReal gnorm;
136: #endif

138:   PetscFunctionBegin;
139:   PetscCheck(!snes->xl && !snes->xu && !snes->ops->computevariablebounds, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

141:   snes->numFailures            = 0;
142:   snes->numLinearSolveFailures = 0;
143:   snes->reason                 = SNES_CONVERGED_ITERATING;

145:   maxits = snes->max_its;        /* maximum number of iterations */
146:   X      = snes->vec_sol;        /* solution vector */
147:   F      = snes->vec_func;       /* residual vector */
148:   Y      = snes->vec_sol_update; /* newton step */

150:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
151:   snes->iter = 0;
152:   snes->norm = 0.0;
153:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
154:   PetscCall(SNESGetLineSearch(snes, &linesearch));

156:   /* compute the preconditioned function first in the case of left preconditioning with preconditioned function */
157:   if (snes->npc && snes->npcside == PC_LEFT && snes->functype == SNES_FUNCTION_PRECONDITIONED) {
158:     PetscCall(SNESApplyNPC(snes, X, NULL, F));
159:     PetscCall(SNESGetConvergedReason(snes->npc, &reason));
160:     if (reason < 0 && reason != SNES_DIVERGED_MAX_IT && reason != SNES_DIVERGED_TR_DELTA) {
161:       PetscCall(SNESSetConvergedReason(snes, SNES_DIVERGED_INNER));
162:       PetscFunctionReturn(PETSC_SUCCESS);
163:     }

165:     PetscCall(VecNormBegin(F, NORM_2, &fnorm));
166:     PetscCall(VecNormEnd(F, NORM_2, &fnorm));
167:   } else {
168:     if (!snes->vec_func_init_set) {
169:       PetscCall(SNESComputeFunction(snes, X, F));
170:     } else snes->vec_func_init_set = PETSC_FALSE;
171:   }

173:   PetscCall(VecNorm(F, NORM_2, &fnorm)); /* fnorm <- ||F||  */
174:   SNESCheckFunctionNorm(snes, fnorm);
175:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
176:   snes->norm = fnorm;
177:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
178:   PetscCall(SNESLogConvergenceHistory(snes, fnorm, 0));

180:   /* test convergence */
181:   PetscCall(SNESConverged(snes, 0, 0.0, 0.0, fnorm));
182:   PetscCall(SNESMonitor(snes, 0, fnorm));
183:   if (snes->reason) PetscFunctionReturn(PETSC_SUCCESS);

185:   /* hook state vector to BFGS preconditioner */
186:   PetscCall(KSPGetPC(snes->ksp, &pc));
187:   PetscCall(PCLMVMSetUpdateVec(pc, X));

189:   for (i = 0; i < maxits; i++) {
190:     /* Call general purpose update function */
191:     PetscTryTypeMethod(snes, update, snes->iter);
192:     PetscCall(VecNorm(snes->vec_func, NORM_2, &fnorm)); /* no-op unless update() function changed f() */

194:     /* apply the nonlinear preconditioner */
195:     if (snes->npc) {
196:       if (snes->npcside == PC_RIGHT) {
197:         PetscCall(SNESSetInitialFunction(snes->npc, F));
198:         PetscCall(PetscLogEventBegin(SNES_NPCSolve, snes->npc, X, snes->vec_rhs, 0));
199:         PetscCall(SNESSolve(snes->npc, snes->vec_rhs, X));
200:         PetscCall(PetscLogEventEnd(SNES_NPCSolve, snes->npc, X, snes->vec_rhs, 0));
201:         PetscCall(SNESGetConvergedReason(snes->npc, &reason));
202:         if (reason < 0 && reason != SNES_DIVERGED_MAX_IT && reason != SNES_DIVERGED_TR_DELTA) {
203:           PetscCall(SNESSetConvergedReason(snes, SNES_DIVERGED_INNER));
204:           PetscFunctionReturn(PETSC_SUCCESS);
205:         }
206:         PetscCall(SNESGetNPCFunction(snes, F, &fnorm));
207:       } else if (snes->npcside == PC_LEFT && snes->functype == SNES_FUNCTION_UNPRECONDITIONED) {
208:         PetscCall(SNESApplyNPC(snes, X, F, F));
209:         PetscCall(SNESGetConvergedReason(snes->npc, &reason));
210:         if (reason < 0 && reason != SNES_DIVERGED_MAX_IT && reason != SNES_DIVERGED_TR_DELTA) {
211:           PetscCall(SNESSetConvergedReason(snes, SNES_DIVERGED_INNER));
212:           PetscFunctionReturn(PETSC_SUCCESS);
213:         }
214:       }
215:     }

217:     /* Solve J Y = F, where J is Jacobian matrix */
218:     PetscCall(SNESComputeJacobian(snes, X, snes->jacobian, snes->jacobian_pre));
219:     SNESCheckJacobianDomainerror(snes);
220:     PetscCall(KSPSetOperators(snes->ksp, snes->jacobian, snes->jacobian_pre));
221:     PetscCall(KSPSolve(snes->ksp, F, Y));
222:     SNESCheckKSPSolve(snes);
223:     PetscCall(KSPGetIterationNumber(snes->ksp, &lits));
224:     PetscCall(PetscInfo(snes, "iter=%" PetscInt_FMT ", linear solve iterations=%" PetscInt_FMT "\n", snes->iter, lits));

226:     if (PetscLogPrintInfo) PetscCall(SNESNEWTONLSCheckResidual_Private(snes, snes->jacobian, F, Y));

228: #if defined(PETSC_USE_INFO)
229:     gnorm = fnorm;
230: #endif
231:     /* Compute a (scaled) negative update in the line search routine:
232:          X <- X - lambda*Y
233:        and evaluate F = function(X) (depends on the line search).
234:     */
235:     PetscCall(SNESLineSearchApply(linesearch, X, F, &fnorm, Y));
236:     PetscCall(SNESLineSearchGetReason(linesearch, &lssucceed));
237:     PetscCall(SNESLineSearchGetNorms(linesearch, &xnorm, &fnorm, &ynorm));
238:     PetscCall(PetscInfo(snes, "fnorm=%18.16e, gnorm=%18.16e, ynorm=%18.16e, lssucceed=%d\n", (double)gnorm, (double)fnorm, (double)ynorm, (int)lssucceed));
239:     if (snes->reason) break;
240:     SNESCheckFunctionNorm(snes, fnorm);
241:     if (lssucceed) {
242:       if (snes->stol * xnorm > ynorm) {
243:         snes->reason = SNES_CONVERGED_SNORM_RELATIVE;
244:         PetscFunctionReturn(PETSC_SUCCESS);
245:       }
246:       if (++snes->numFailures >= snes->maxFailures) {
247:         PetscBool ismin;
248:         snes->reason = SNES_DIVERGED_LINE_SEARCH;
249:         PetscCall(SNESNEWTONLSCheckLocalMin_Private(snes, snes->jacobian, F, fnorm, &ismin));
250:         if (ismin) snes->reason = SNES_DIVERGED_LOCAL_MIN;
251:         if (snes->errorifnotconverged && snes->reason) {
252:           PetscViewer monitor;
253:           PetscCall(SNESLineSearchGetDefaultMonitor(linesearch, &monitor));
254:           PetscCheck(monitor, PetscObjectComm((PetscObject)snes), PETSC_ERR_NOT_CONVERGED, "SNESSolve has not converged due to %s. Suggest running with -snes_linesearch_monitor", SNESConvergedReasons[snes->reason]);
255:           SETERRQ(PetscObjectComm((PetscObject)snes), PETSC_ERR_NOT_CONVERGED, "SNESSolve has not converged due %s.", SNESConvergedReasons[snes->reason]);
256:         }
257:         break;
258:       }
259:     }
260:     /* Monitor convergence */
261:     PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
262:     snes->iter  = i + 1;
263:     snes->norm  = fnorm;
264:     snes->ynorm = ynorm;
265:     snes->xnorm = xnorm;
266:     PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
267:     PetscCall(SNESLogConvergenceHistory(snes, snes->norm, lits));
268:     /* Test for convergence */
269:     PetscCall(SNESConverged(snes, snes->iter, xnorm, ynorm, fnorm));
270:     PetscCall(SNESMonitor(snes, snes->iter, snes->norm));
271:     if (snes->reason) break;
272:   }
273:   PetscFunctionReturn(PETSC_SUCCESS);
274: }

276: /*
277:    SNESSetUp_NEWTONLS - Sets up the internal data structures for the later use
278:    of the SNESNEWTONLS nonlinear solver.

280:    Input Parameter:
281: .  snes - the SNES context
282: .  x - the solution vector

284:    Application Interface Routine: SNESSetUp()

286:  */
287: static PetscErrorCode SNESSetUp_NEWTONLS(SNES snes)
288: {
289:   PetscFunctionBegin;
290:   PetscCall(SNESSetUpMatrices(snes));
291:   if (snes->npcside == PC_LEFT && snes->functype == SNES_FUNCTION_DEFAULT) snes->functype = SNES_FUNCTION_PRECONDITIONED;
292:   PetscFunctionReturn(PETSC_SUCCESS);
293: }

295: static PetscErrorCode SNESReset_NEWTONLS(SNES snes)
296: {
297:   PetscFunctionBegin;
298:   PetscFunctionReturn(PETSC_SUCCESS);
299: }

301: /*
302:    SNESDestroy_NEWTONLS - Destroys the private SNES_NEWTONLS context that was created
303:    with SNESCreate_NEWTONLS().

305:    Input Parameter:
306: .  snes - the SNES context

308:    Application Interface Routine: SNESDestroy()
309:  */
310: static PetscErrorCode SNESDestroy_NEWTONLS(SNES snes)
311: {
312:   PetscFunctionBegin;
313:   PetscCall(SNESReset_NEWTONLS(snes));
314:   PetscCall(PetscFree(snes->data));
315:   PetscFunctionReturn(PETSC_SUCCESS);
316: }

318: /*
319:    SNESView_NEWTONLS - Prints info from the SNESNEWTONLS data structure.

321:    Input Parameters:
322: .  SNES - the SNES context
323: .  viewer - visualization context

325:    Application Interface Routine: SNESView()
326: */
327: static PetscErrorCode SNESView_NEWTONLS(SNES snes, PetscViewer viewer)
328: {
329:   PetscBool iascii;

331:   PetscFunctionBegin;
332:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
333:   if (iascii) { }
334:   PetscFunctionReturn(PETSC_SUCCESS);
335: }

337: /*
338:    SNESSetFromOptions_NEWTONLS - Sets various parameters for the SNESNEWTONLS method.

340:    Input Parameter:
341: .  snes - the SNES context

343:    Application Interface Routine: SNESSetFromOptions()
344: */
345: static PetscErrorCode SNESSetFromOptions_NEWTONLS(SNES snes, PetscOptionItems *PetscOptionsObject)
346: {
347:   PetscFunctionBegin;
348:   PetscFunctionReturn(PETSC_SUCCESS);
349: }

351: /*MC
352:    SNESNEWTONLS - Newton based nonlinear solver that uses a line search

354:    Options Database Keys:
355: +   -snes_linesearch_type <bt>              - basic (or equivalently none), bt, l2, cp, nleqerr, shell.  Select line search type, see `SNESLineSearchSetType()`
356: .   -snes_linesearch_order <3>              - 2, 3. Selects the order of the line search for bt, see `SNESLineSearchSetOrder()`
357: .   -snes_linesearch_norms <true>           - Turns on/off computation of the norms for basic linesearch (`SNESLineSearchSetComputeNorms()`)
358: .   -snes_linesearch_alpha <alpha>          - Sets alpha used in determining if reduction in function norm is sufficient
359: .   -snes_linesearch_maxstep <maxstep>      - Sets the maximum stepsize the line search will use (if the 2-norm(y) > maxstep then scale y to be y = (maxstep/2-norm(y)) *y)
360: .   -snes_linesearch_minlambda <minlambda>  - Sets the minimum lambda the line search will tolerate
361: .   -snes_linesearch_monitor                - print information about the progress of line searches
362: -   -snes_linesearch_damping                - damping factor used for basic line search

364:    Level: beginner

366:    Note:
367:    This is the default nonlinear solver in `SNES`

369: .seealso: [](ch_snes), `SNESCreate()`, `SNES`, `SNESSetType()`, `SNESNEWTONTR`, `SNESQN`, `SNESLineSearchSetType()`, `SNESLineSearchSetOrder()`
370:           `SNESLineSearchSetPostCheck()`, `SNESLineSearchSetPreCheck()` `SNESLineSearchSetComputeNorms()`, `SNESGetLineSearch()`, `SNESLineSearchSetType()`
371: M*/
372: PETSC_EXTERN PetscErrorCode SNESCreate_NEWTONLS(SNES snes)
373: {
374:   SNES_NEWTONLS *neP;
375:   SNESLineSearch linesearch;

377:   PetscFunctionBegin;
378:   snes->ops->setup          = SNESSetUp_NEWTONLS;
379:   snes->ops->solve          = SNESSolve_NEWTONLS;
380:   snes->ops->destroy        = SNESDestroy_NEWTONLS;
381:   snes->ops->setfromoptions = SNESSetFromOptions_NEWTONLS;
382:   snes->ops->view           = SNESView_NEWTONLS;
383:   snes->ops->reset          = SNESReset_NEWTONLS;

385:   snes->npcside = PC_RIGHT;
386:   snes->usesksp = PETSC_TRUE;
387:   snes->usesnpc = PETSC_TRUE;

389:   PetscCall(SNESGetLineSearch(snes, &linesearch));
390:   if (!((PetscObject)linesearch)->type_name) PetscCall(SNESLineSearchSetType(linesearch, SNESLINESEARCHBT));

392:   snes->alwayscomputesfinalresidual = PETSC_TRUE;

394:   PetscCall(SNESParametersInitialize(snes));

396:   PetscCall(PetscNew(&neP));
397:   snes->data = (void *)neP;
398:   PetscFunctionReturn(PETSC_SUCCESS);
399: }