Actual source code: ntrdc.c

  1: #include <../src/snes/impls/ntrdc/ntrdcimpl.h>

  3: typedef struct {
  4:   SNES snes;
  5:   /*  Information on the regular SNES convergence test; which may have been user provided
  6:       Copied from tr.c (maybe able to disposed, but this is a private function) - Heeho
  7:       Same with SNESTR_KSPConverged_Private, SNESTR_KSPConverged_Destroy, and SNESTR_Converged_Private
  8:  */

 10:   PetscErrorCode (*convtest)(KSP, PetscInt, PetscReal, KSPConvergedReason *, void *);
 11:   PetscErrorCode (*convdestroy)(void *);
 12:   void *convctx;
 13: } SNES_TRDC_KSPConverged_Ctx;

 15: static PetscErrorCode SNESNewtonTRSetTolerances_TRDC(SNES snes, PetscReal delta_min, PetscReal delta_max, PetscReal delta_0)
 16: {
 17:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

 19:   PetscFunctionBegin;
 20:   if (delta_min == PETSC_DETERMINE) delta_min = 1.e-12;
 21:   if (delta_max == PETSC_DETERMINE) delta_max = 0.5;
 22:   if (delta_0 == PETSC_DETERMINE) delta_0 = 0.1;
 23:   if (delta_min != PETSC_CURRENT) tr->deltatol = delta_min;
 24:   if (delta_max != PETSC_CURRENT) tr->deltaM = delta_max;
 25:   if (delta_0 != PETSC_CURRENT) tr->delta0 = delta_0;
 26:   PetscFunctionReturn(PETSC_SUCCESS);
 27: }

 29: static PetscErrorCode SNESTRDC_KSPConverged_Private(KSP ksp, PetscInt n, PetscReal rnorm, KSPConvergedReason *reason, void *cctx)
 30: {
 31:   SNES_TRDC_KSPConverged_Ctx *ctx  = (SNES_TRDC_KSPConverged_Ctx *)cctx;
 32:   SNES                        snes = ctx->snes;
 33:   SNES_NEWTONTRDC            *neP  = (SNES_NEWTONTRDC *)snes->data;
 34:   Vec                         x;
 35:   PetscReal                   nrm;

 37:   PetscFunctionBegin;
 38:   PetscCall((*ctx->convtest)(ksp, n, rnorm, reason, ctx->convctx));
 39:   if (*reason) PetscCall(PetscInfo(snes, "Default or user provided convergence test KSP iterations=%" PetscInt_FMT ", rnorm=%g\n", n, (double)rnorm));
 40:   /* Determine norm of solution */
 41:   PetscCall(KSPBuildSolution(ksp, NULL, &x));
 42:   PetscCall(VecNorm(x, NORM_2, &nrm));
 43:   if (nrm >= neP->delta) {
 44:     PetscCall(PetscInfo(snes, "Ending linear iteration early, delta=%g, length=%g\n", (double)neP->delta, (double)nrm));
 45:     *reason = KSP_CONVERGED_STEP_LENGTH;
 46:   }
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode SNESTRDC_KSPConverged_Destroy(void *cctx)
 51: {
 52:   SNES_TRDC_KSPConverged_Ctx *ctx = (SNES_TRDC_KSPConverged_Ctx *)cctx;

 54:   PetscFunctionBegin;
 55:   PetscCall((*ctx->convdestroy)(ctx->convctx));
 56:   PetscCall(PetscFree(ctx));
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: /*
 61:    SNESTRDC_Converged_Private -test convergence JUST for
 62:    the trust region tolerance.

 64: */
 65: static PetscErrorCode SNESTRDC_Converged_Private(SNES snes, PetscInt it, PetscReal xnorm, PetscReal pnorm, PetscReal fnorm, SNESConvergedReason *reason, void *dummy)
 66: {
 67:   SNES_NEWTONTRDC *neP = (SNES_NEWTONTRDC *)snes->data;

 69:   PetscFunctionBegin;
 70:   *reason = SNES_CONVERGED_ITERATING;
 71:   if (neP->delta < xnorm * neP->deltatol) {
 72:     PetscCall(PetscInfo(snes, "Diverged due to too small a trust region %g<%g*%g\n", (double)neP->delta, (double)xnorm, (double)neP->deltatol));
 73:     *reason = SNES_DIVERGED_TR_DELTA;
 74:   } else if (snes->nfuncs >= snes->max_funcs && snes->max_funcs >= 0) {
 75:     PetscCall(PetscInfo(snes, "Exceeded maximum number of function evaluations: %" PetscInt_FMT "\n", snes->max_funcs));
 76:     *reason = SNES_DIVERGED_FUNCTION_COUNT;
 77:   }
 78:   PetscFunctionReturn(PETSC_SUCCESS);
 79: }

 81: /*@
 82:   SNESNewtonTRDCGetRhoFlag - Get whether the current solution update is within the trust-region.

 84:   Logically Collective

 86:   Input Parameter:
 87: . snes - the nonlinear solver object

 89:   Output Parameter:
 90: . rho_flag - `PETSC_FALSE` or `PETSC_TRUE`

 92:   Level: developer

 94: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCSetPreCheck()`,
 95:           `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`
 96: @*/
 97: PetscErrorCode SNESNewtonTRDCGetRhoFlag(SNES snes, PetscBool *rho_flag)
 98: {
 99:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

101:   PetscFunctionBegin;
103:   PetscAssertPointer(rho_flag, 2);
104:   *rho_flag = tr->rho_satisfied;
105:   PetscFunctionReturn(PETSC_SUCCESS);
106: }

108: /*@C
109:   SNESNewtonTRDCSetPreCheck - Sets a user function that is called before the search step has been determined.
110:   Allows the user a chance to change or override the trust region decision.

112:   Logically Collective

114:   Input Parameters:
115: + snes - the nonlinear solver object
116: . func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPreCheck()`
117: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

119:   Level: intermediate

121:   Note:
122:   This function is called BEFORE the function evaluation within the `SNESNEWTONTRDC` solver.

124: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`,
125:           `SNESNewtonTRDCGetRhoFlag()`
126: @*/
127: PetscErrorCode SNESNewtonTRDCSetPreCheck(SNES snes, PetscErrorCode (*func)(SNES, Vec, Vec, PetscBool *, void *), void *ctx)
128: {
129:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

131:   PetscFunctionBegin;
133:   if (func) tr->precheck = func;
134:   if (ctx) tr->precheckctx = ctx;
135:   PetscFunctionReturn(PETSC_SUCCESS);
136: }

138: /*@C
139:   SNESNewtonTRDCGetPreCheck - Gets the pre-check function optionally set with `SNESNewtonTRDCSetPreCheck()`

141:   Not Collective

143:   Input Parameter:
144: . snes - the nonlinear solver context

146:   Output Parameters:
147: + func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPreCheck()`
148: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

150:   Level: intermediate

152: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCPreCheck()`
153: @*/
154: PetscErrorCode SNESNewtonTRDCGetPreCheck(SNES snes, PetscErrorCode (**func)(SNES, Vec, Vec, PetscBool *, void *), void **ctx)
155: {
156:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

158:   PetscFunctionBegin;
160:   if (func) *func = tr->precheck;
161:   if (ctx) *ctx = tr->precheckctx;
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: /*@C
166:   SNESNewtonTRDCSetPostCheck - Sets a user function that is called after the search step has been determined but before the next
167:   function evaluation. Allows the user a chance to change or override the decision of the line search routine

169:   Logically Collective

171:   Input Parameters:
172: + snes - the nonlinear solver object
173: . func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPostCheck()`
174: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

176:   Level: intermediate

178:   Note:
179:   This function is called BEFORE the function evaluation within the `SNESNEWTONTRDC` solver while the function set in
180:   `SNESLineSearchSetPostCheck()` is called AFTER the function evaluation.

182: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCPostCheck()`, `SNESNewtonTRDCGetPostCheck()`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCGetPreCheck()`
183: @*/
184: PetscErrorCode SNESNewtonTRDCSetPostCheck(SNES snes, PetscErrorCode (*func)(SNES, Vec, Vec, Vec, PetscBool *, PetscBool *, void *), void *ctx)
185: {
186:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

188:   PetscFunctionBegin;
190:   if (func) tr->postcheck = func;
191:   if (ctx) tr->postcheckctx = ctx;
192:   PetscFunctionReturn(PETSC_SUCCESS);
193: }

195: /*@C
196:   SNESNewtonTRDCGetPostCheck - Gets the post-check function optionally set with `SNESNewtonTRDCSetPostCheck()`

198:   Not Collective

200:   Input Parameter:
201: . snes - the nonlinear solver context

203:   Output Parameters:
204: + func - [optional] function evaluation routine, for the calling sequence see `SNESNewtonTRDCPostCheck()`
205: - ctx  - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)

207:   Level: intermediate

209: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCPostCheck()`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCGetPreCheck()`
210: @*/
211: PetscErrorCode SNESNewtonTRDCGetPostCheck(SNES snes, PetscErrorCode (**func)(SNES, Vec, Vec, Vec, PetscBool *, PetscBool *, void *), void **ctx)
212: {
213:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

215:   PetscFunctionBegin;
217:   if (func) *func = tr->postcheck;
218:   if (ctx) *ctx = tr->postcheckctx;
219:   PetscFunctionReturn(PETSC_SUCCESS);
220: }

222: // PetscClangLinter pragma disable: -fdoc-internal-linkage
223: /*@C
224:    SNESNewtonTRDCPreCheck - Called before the step has been determined in `SNESNEWTONTRDC`

226:    Logically Collective

228:    Input Parameters:
229: +  snes - the solver
230: .  X - The last solution
231: -  Y - The step direction

233:    Output Parameter:
234: .  changed_Y - Indicator that the step direction `Y` has been changed.

236:    Level: developer

238: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCPostCheck()`
239: @*/
240: static PetscErrorCode SNESNewtonTRDCPreCheck(SNES snes, Vec X, Vec Y, PetscBool *changed_Y)
241: {
242:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

244:   PetscFunctionBegin;
245:   *changed_Y = PETSC_FALSE;
246:   if (tr->precheck) {
247:     PetscCall((*tr->precheck)(snes, X, Y, changed_Y, tr->precheckctx));
249:   }
250:   PetscFunctionReturn(PETSC_SUCCESS);
251: }

253: // PetscClangLinter pragma disable: -fdoc-internal-linkage
254: /*@C
255:    SNESNewtonTRDCPostCheck - Called after the step has been determined in `SNESNEWTONTRDC` but before the function evaluation at that step

257:    Logically Collective

259:    Input Parameters:
260: +  snes - the solver
261: .  X - The last solution
262: .  Y - The full step direction
263: -  W - The updated solution, W = X - Y

265:    Output Parameters:
266: +  changed_Y - indicator if step has been changed
267: -  changed_W - Indicator if the new candidate solution `W` has been changed.

269:    Level: developer

271:    Note:
272:      If `Y` is changed then `W` is recomputed as `X` - `Y`

274: .seealso: [](ch_snes), `SNES`, `SNESNEWTONTRDC`, `SNESNEWTONTRDC`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`, `SNESNewtonTRDCPreCheck()
275: @*/
276: static PetscErrorCode SNESNewtonTRDCPostCheck(SNES snes, Vec X, Vec Y, Vec W, PetscBool *changed_Y, PetscBool *changed_W)
277: {
278:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;

280:   PetscFunctionBegin;
281:   *changed_Y = PETSC_FALSE;
282:   *changed_W = PETSC_FALSE;
283:   if (tr->postcheck) {
284:     PetscCall((*tr->postcheck)(snes, X, Y, W, changed_Y, changed_W, tr->postcheckctx));
287:   }
288:   PetscFunctionReturn(PETSC_SUCCESS);
289: }

291: /*
292:    SNESSolve_NEWTONTRDC - Implements Newton's Method with trust-region subproblem and adds dogleg Cauchy
293:    (Steepest Descent direction) step and direction if the trust region is not satisfied for solving system of
294:    nonlinear equations

296: */
297: static PetscErrorCode SNESSolve_NEWTONTRDC(SNES snes)
298: {
299:   SNES_NEWTONTRDC            *neP = (SNES_NEWTONTRDC *)snes->data;
300:   Vec                         X, F, Y, G, W, GradF, YNtmp;
301:   Vec                         YCtmp;
302:   Mat                         jac;
303:   PetscInt                    maxits, i, j, lits, inner_count, bs;
304:   PetscReal                   rho, fnorm, gnorm, xnorm = 0, delta, ynorm, temp_xnorm, temp_ynorm; /* TRDC inner iteration */
305:   PetscReal                   inorms[99];                                                         /* need to make it dynamic eventually, fixed max block size of 99 for now */
306:   PetscReal                   deltaM, ynnorm, f0, mp, gTy, g, yTHy;                               /* rho calculation */
307:   PetscReal                   auk, gfnorm, ycnorm, c0, c1, c2, tau, tau_pos, tau_neg, gTBg;       /* Cauchy Point */
308:   KSP                         ksp;
309:   SNESConvergedReason         reason   = SNES_CONVERGED_ITERATING;
310:   PetscBool                   breakout = PETSC_FALSE;
311:   SNES_TRDC_KSPConverged_Ctx *ctx;
312:   PetscErrorCode (*convtest)(KSP, PetscInt, PetscReal, KSPConvergedReason *, void *), (*convdestroy)(void *);
313:   void *convctx;

315:   PetscFunctionBegin;
316:   maxits = snes->max_its;  /* maximum number of iterations */
317:   X      = snes->vec_sol;  /* solution vector */
318:   F      = snes->vec_func; /* residual vector */
319:   Y      = snes->work[0];  /* update vector */
320:   G      = snes->work[1];  /* updated residual */
321:   W      = snes->work[2];  /* temporary vector */
322:   GradF  = snes->work[3];  /* grad f = J^T F */
323:   YNtmp  = snes->work[4];  /* Newton solution */
324:   YCtmp  = snes->work[5];  /* Cauchy solution */

326:   PetscCheck(!snes->xl && !snes->xu && !snes->ops->computevariablebounds, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

328:   PetscCall(VecGetBlockSize(YNtmp, &bs));

330:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
331:   snes->iter = 0;
332:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));

334:   /* Set the linear stopping criteria to use the More' trick. From tr.c */
335:   PetscCall(SNESGetKSP(snes, &ksp));
336:   PetscCall(KSPGetConvergenceTest(ksp, &convtest, &convctx, &convdestroy));
337:   if (convtest != SNESTRDC_KSPConverged_Private) {
338:     PetscCall(PetscNew(&ctx));
339:     ctx->snes = snes;
340:     PetscCall(KSPGetAndClearConvergenceTest(ksp, &ctx->convtest, &ctx->convctx, &ctx->convdestroy));
341:     PetscCall(KSPSetConvergenceTest(ksp, SNESTRDC_KSPConverged_Private, ctx, SNESTRDC_KSPConverged_Destroy));
342:     PetscCall(PetscInfo(snes, "Using Krylov convergence test SNESTRDC_KSPConverged_Private\n"));
343:   }

345:   if (!snes->vec_func_init_set) {
346:     PetscCall(SNESComputeFunction(snes, X, F)); /* F(X) */
347:   } else snes->vec_func_init_set = PETSC_FALSE;

349:   PetscCall(VecNorm(F, NORM_2, &fnorm)); /* fnorm <- || F || */
350:   SNESCheckFunctionNorm(snes, fnorm);
351:   PetscCall(VecNorm(X, NORM_2, &xnorm)); /* xnorm <- || X || */

353:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
354:   snes->norm = fnorm;
355:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
356:   delta      = xnorm ? neP->delta0 * xnorm : neP->delta0; /* initial trust region size scaled by xnorm */
357:   deltaM     = xnorm ? neP->deltaM * xnorm : neP->deltaM; /* maximum trust region size scaled by xnorm */
358:   neP->delta = delta;
359:   PetscCall(SNESLogConvergenceHistory(snes, fnorm, 0));
360:   PetscCall(SNESMonitor(snes, 0, fnorm));

362:   neP->rho_satisfied = PETSC_FALSE;

364:   /* test convergence */
365:   PetscUseTypeMethod(snes, converged, snes->iter, 0.0, 0.0, fnorm, &snes->reason, snes->cnvP);
366:   if (snes->reason) PetscFunctionReturn(PETSC_SUCCESS);

368:   for (i = 0; i < maxits; i++) {
369:     PetscBool changed_y;
370:     PetscBool changed_w;

372:     /* dogleg method */
373:     PetscCall(SNESComputeJacobian(snes, X, snes->jacobian, snes->jacobian_pre));
374:     SNESCheckJacobianDomainerror(snes);
375:     PetscCall(KSPSetOperators(snes->ksp, snes->jacobian, snes->jacobian));
376:     PetscCall(KSPSolve(snes->ksp, F, YNtmp)); /* Quasi Newton Solution */
377:     SNESCheckKSPSolve(snes);                  /* this is necessary but old tr.c did not have it*/
378:     PetscCall(KSPGetIterationNumber(snes->ksp, &lits));
379:     PetscCall(SNESGetJacobian(snes, &jac, NULL, NULL, NULL));

381:     /* rescale Jacobian, Newton solution update, and re-calculate delta for multiphase (multivariable)
382:        for inner iteration and Cauchy direction calculation
383:     */
384:     if (bs > 1 && neP->auto_scale_multiphase) {
385:       PetscCall(VecStrideNormAll(YNtmp, NORM_INFINITY, inorms));
386:       for (j = 0; j < bs; j++) {
387:         if (neP->auto_scale_max > 1.0) {
388:           if (inorms[j] < 1.0 / neP->auto_scale_max) inorms[j] = 1.0 / neP->auto_scale_max;
389:         }
390:         PetscCall(VecStrideSet(W, j, inorms[j]));
391:         PetscCall(VecStrideScale(YNtmp, j, 1.0 / inorms[j]));
392:         PetscCall(VecStrideScale(X, j, 1.0 / inorms[j]));
393:       }
394:       PetscCall(VecNorm(X, NORM_2, &xnorm));
395:       if (i == 0) {
396:         delta = neP->delta0 * xnorm;
397:       } else {
398:         delta = neP->delta * xnorm;
399:       }
400:       deltaM = neP->deltaM * xnorm;
401:       PetscCall(MatDiagonalScale(jac, NULL, W));
402:     }

404:     /* calculating GradF of minimization function */
405:     PetscCall(MatMultTranspose(jac, F, GradF)); /* grad f = J^T F */
406:     PetscCall(VecNorm(YNtmp, NORM_2, &ynnorm)); /* ynnorm <- || Y_newton || */

408:     inner_count        = 0;
409:     neP->rho_satisfied = PETSC_FALSE;
410:     while (1) {
411:       if (ynnorm <= delta) { /* see if the Newton solution is within the trust region */
412:         PetscCall(VecCopy(YNtmp, Y));
413:       } else if (neP->use_cauchy) { /* use Cauchy direction if enabled */
414:         PetscCall(MatMult(jac, GradF, W));
415:         PetscCall(VecDotRealPart(W, W, &gTBg));     /* completes GradF^T J^T J GradF */
416:         PetscCall(VecNorm(GradF, NORM_2, &gfnorm)); /* grad f norm <- || grad f || */
417:         if (gTBg <= 0.0) {
418:           auk = PETSC_MAX_REAL;
419:         } else {
420:           auk = PetscSqr(gfnorm) / gTBg;
421:         }
422:         auk = PetscMin(delta / gfnorm, auk);
423:         PetscCall(VecCopy(GradF, YCtmp));           /* this could be improved */
424:         PetscCall(VecScale(YCtmp, auk));            /* YCtmp, Cauchy solution*/
425:         PetscCall(VecNorm(YCtmp, NORM_2, &ycnorm)); /* ycnorm <- || Y_cauchy || */
426:         if (ycnorm >= delta) {                      /* see if the Cauchy solution meets the criteria */
427:           PetscCall(VecCopy(YCtmp, Y));
428:           PetscCall(PetscInfo(snes, "DL evaluated. delta: %8.4e, ynnorm: %8.4e, ycnorm: %8.4e\n", (double)delta, (double)ynnorm, (double)ycnorm));
429:         } else {                                  /* take ratio, tau, of Cauchy and Newton direction and step */
430:           PetscCall(VecAXPY(YNtmp, -1.0, YCtmp)); /* YCtmp = A, YNtmp = B */
431:           PetscCall(VecNorm(YNtmp, NORM_2, &c0)); /* this could be improved */
432:           c0 = PetscSqr(c0);
433:           PetscCall(VecDotRealPart(YCtmp, YNtmp, &c1));
434:           c1 = 2.0 * c1;
435:           PetscCall(VecNorm(YCtmp, NORM_2, &c2)); /* this could be improved */
436:           c2      = PetscSqr(c2) - PetscSqr(delta);
437:           tau_pos = (c1 + PetscSqrtReal(PetscSqr(c1) - 4. * c0 * c2)) / (2. * c0); /* quadratic formula */
438:           tau_neg = (c1 - PetscSqrtReal(PetscSqr(c1) - 4. * c0 * c2)) / (2. * c0);
439:           tau     = PetscMax(tau_pos, tau_neg); /* can tau_neg > tau_pos? I don't think so, but just in case. */
440:           PetscCall(PetscInfo(snes, "DL evaluated. tau: %8.4e, ynnorm: %8.4e, ycnorm: %8.4e\n", (double)tau, (double)ynnorm, (double)ycnorm));
441:           PetscCall(VecWAXPY(W, tau, YNtmp, YCtmp));
442:           PetscCall(VecAXPY(W, -tau, YCtmp));
443:           PetscCall(VecCopy(W, Y)); /* this could be improved */
444:         }
445:       } else {
446:         /* if Cauchy is disabled, only use Newton direction */
447:         auk = delta / ynnorm;
448:         PetscCall(VecScale(YNtmp, auk));
449:         PetscCall(VecCopy(YNtmp, Y)); /* this could be improved (many VecCopy, VecNorm)*/
450:       }

452:       PetscCall(VecNorm(Y, NORM_2, &ynorm)); /* compute the final ynorm  */
453:       f0 = 0.5 * PetscSqr(fnorm);            /* minimizing function f(X) */
454:       PetscCall(MatMult(jac, Y, W));
455:       PetscCall(VecDotRealPart(W, W, &yTHy)); /* completes GradY^T J^T J GradY */
456:       PetscCall(VecDotRealPart(GradF, Y, &gTy));
457:       mp = f0 - gTy + 0.5 * yTHy; /* quadratic model to satisfy, -gTy because our update is X-Y*/

459:       /* scale back solution update */
460:       if (bs > 1 && neP->auto_scale_multiphase) {
461:         for (j = 0; j < bs; j++) {
462:           PetscCall(VecStrideScale(Y, j, inorms[j]));
463:           if (inner_count == 0) {
464:             /* TRDC inner algorithm does not need scaled X after calculating delta in the outer iteration */
465:             /* need to scale back X to match Y and provide proper update to the external code */
466:             PetscCall(VecStrideScale(X, j, inorms[j]));
467:           }
468:         }
469:         if (inner_count == 0) PetscCall(VecNorm(X, NORM_2, &temp_xnorm)); /* only in the first iteration */
470:         PetscCall(VecNorm(Y, NORM_2, &temp_ynorm));
471:       } else {
472:         temp_xnorm = xnorm;
473:         temp_ynorm = ynorm;
474:       }
475:       inner_count++;

477:       /* Evaluate the solution to meet the improvement ratio criteria */
478:       PetscCall(SNESNewtonTRDCPreCheck(snes, X, Y, &changed_y));
479:       PetscCall(VecWAXPY(W, -1.0, Y, X));
480:       PetscCall(SNESNewtonTRDCPostCheck(snes, X, Y, W, &changed_y, &changed_w));
481:       if (changed_y) PetscCall(VecWAXPY(W, -1.0, Y, X));
482:       PetscCall(VecCopy(Y, snes->vec_sol_update));
483:       PetscCall(SNESComputeFunction(snes, W, G)); /*  F(X-Y) = G */
484:       PetscCall(VecNorm(G, NORM_2, &gnorm));      /* gnorm <- || g || */
485:       SNESCheckFunctionNorm(snes, gnorm);
486:       g = 0.5 * PetscSqr(gnorm); /* minimizing function g(W) */
487:       if (f0 == mp) rho = 0.0;
488:       else rho = (f0 - g) / (f0 - mp); /* actual improvement over predicted improvement */

490:       if (rho < neP->eta2) {
491:         delta *= neP->t1; /* shrink the region */
492:       } else if (rho > neP->eta3) {
493:         delta = PetscMin(neP->t2 * delta, deltaM); /* expand the region, but not greater than deltaM */
494:       }

496:       neP->delta = delta;
497:       if (rho >= neP->eta1) {
498:         /* unscale delta and xnorm before going to the next outer iteration */
499:         if (bs > 1 && neP->auto_scale_multiphase) {
500:           neP->delta = delta / xnorm;
501:           xnorm      = temp_xnorm;
502:           ynorm      = temp_ynorm;
503:         }
504:         neP->rho_satisfied = PETSC_TRUE;
505:         break; /* the improvement ratio is satisfactory */
506:       }
507:       PetscCall(PetscInfo(snes, "Trying again in smaller region\n"));

509:       /* check to see if progress is hopeless */
510:       neP->itflag = PETSC_FALSE;
511:       /* both delta, ynorm, and xnorm are either scaled or unscaled */
512:       PetscCall(SNESTRDC_Converged_Private(snes, snes->iter, xnorm, ynorm, fnorm, &reason, snes->cnvP));
513:       /* if multiphase state changes, break out inner iteration */
514:       if (reason == SNES_BREAKOUT_INNER_ITER) {
515:         if (bs > 1 && neP->auto_scale_multiphase) {
516:           /* unscale delta and xnorm before going to the next outer iteration */
517:           neP->delta = delta / xnorm;
518:           xnorm      = temp_xnorm;
519:           ynorm      = temp_ynorm;
520:         }
521:         reason = SNES_CONVERGED_ITERATING;
522:         break;
523:       }
524:       if (reason == SNES_CONVERGED_SNORM_RELATIVE) reason = SNES_DIVERGED_INNER;
525:       if (reason) {
526:         if (reason < 0) {
527:           /* We're not progressing, so return with the current iterate */
528:           PetscCall(SNESMonitor(snes, i + 1, fnorm));
529:           breakout = PETSC_TRUE;
530:           break;
531:         } else if (reason > 0) {
532:           /* We're converged, so return with the current iterate and update solution */
533:           PetscCall(SNESMonitor(snes, i + 1, fnorm));
534:           breakout = PETSC_FALSE;
535:           break;
536:         }
537:       }
538:       snes->numFailures++;
539:     }
540:     if (!breakout) {
541:       /* Update function and solution vectors */
542:       fnorm = gnorm;
543:       PetscCall(VecCopy(G, F));
544:       PetscCall(VecCopy(W, X));
545:       /* Monitor convergence */
546:       PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
547:       snes->iter  = i + 1;
548:       snes->norm  = fnorm;
549:       snes->xnorm = xnorm;
550:       snes->ynorm = ynorm;
551:       PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
552:       PetscCall(SNESLogConvergenceHistory(snes, snes->norm, lits));
553:       PetscCall(SNESMonitor(snes, snes->iter, snes->norm));
554:       /* Test for convergence, xnorm = || X || */
555:       neP->itflag = PETSC_TRUE;
556:       if (snes->ops->converged != SNESConvergedSkip) PetscCall(VecNorm(X, NORM_2, &xnorm));
557:       PetscUseTypeMethod(snes, converged, snes->iter, xnorm, ynorm, fnorm, &reason, snes->cnvP);
558:       if (reason) break;
559:     } else break;
560:   }

562:   /* PetscCall(PetscFree(inorms)); */
563:   if (i == maxits) {
564:     PetscCall(PetscInfo(snes, "Maximum number of iterations has been reached: %" PetscInt_FMT "\n", maxits));
565:     if (!reason) reason = SNES_DIVERGED_MAX_IT;
566:   }
567:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
568:   snes->reason = reason;
569:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
570:   if (convtest != SNESTRDC_KSPConverged_Private) {
571:     PetscCall(KSPGetAndClearConvergenceTest(ksp, &ctx->convtest, &ctx->convctx, &ctx->convdestroy));
572:     PetscCall(PetscFree(ctx));
573:     PetscCall(KSPSetConvergenceTest(ksp, convtest, convctx, convdestroy));
574:   }
575:   PetscFunctionReturn(PETSC_SUCCESS);
576: }

578: static PetscErrorCode SNESSetUp_NEWTONTRDC(SNES snes)
579: {
580:   PetscFunctionBegin;
581:   PetscCall(SNESSetWorkVecs(snes, 6));
582:   PetscCall(SNESSetUpMatrices(snes));
583:   PetscFunctionReturn(PETSC_SUCCESS);
584: }

586: static PetscErrorCode SNESReset_NEWTONTRDC(SNES snes)
587: {
588:   PetscFunctionBegin;
589:   PetscFunctionReturn(PETSC_SUCCESS);
590: }

592: static PetscErrorCode SNESDestroy_NEWTONTRDC(SNES snes)
593: {
594:   PetscFunctionBegin;
595:   PetscCall(SNESReset_NEWTONTRDC(snes));
596:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonTRSetTolerances_C", NULL));
597:   PetscCall(PetscFree(snes->data));
598:   PetscFunctionReturn(PETSC_SUCCESS);
599: }

601: static PetscErrorCode SNESSetFromOptions_NEWTONTRDC(SNES snes, PetscOptionItems *PetscOptionsObject)
602: {
603:   SNES_NEWTONTRDC *ctx = (SNES_NEWTONTRDC *)snes->data;

605:   PetscFunctionBegin;
606:   PetscOptionsHeadBegin(PetscOptionsObject, "SNES trust region options for nonlinear equations");
607:   PetscCall(PetscOptionsReal("-snes_trdc_tol", "Trust region tolerance", "SNESNewtonTRSetTolerances", ctx->deltatol, &ctx->deltatol, NULL));
608:   PetscCall(PetscOptionsReal("-snes_trdc_eta1", "eta1", "None", ctx->eta1, &ctx->eta1, NULL));
609:   PetscCall(PetscOptionsReal("-snes_trdc_eta2", "eta2", "None", ctx->eta2, &ctx->eta2, NULL));
610:   PetscCall(PetscOptionsReal("-snes_trdc_eta3", "eta3", "None", ctx->eta3, &ctx->eta3, NULL));
611:   PetscCall(PetscOptionsReal("-snes_trdc_t1", "t1", "None", ctx->t1, &ctx->t1, NULL));
612:   PetscCall(PetscOptionsReal("-snes_trdc_t2", "t2", "None", ctx->t2, &ctx->t2, NULL));
613:   PetscCall(PetscOptionsReal("-snes_trdc_deltaM", "deltaM", "None", ctx->deltaM, &ctx->deltaM, NULL));
614:   PetscCall(PetscOptionsReal("-snes_trdc_delta0", "delta0", "None", ctx->delta0, &ctx->delta0, NULL));
615:   PetscCall(PetscOptionsReal("-snes_trdc_auto_scale_max", "auto_scale_max", "None", ctx->auto_scale_max, &ctx->auto_scale_max, NULL));
616:   PetscCall(PetscOptionsBool("-snes_trdc_use_cauchy", "use_cauchy", "use Cauchy step and direction", ctx->use_cauchy, &ctx->use_cauchy, NULL));
617:   PetscCall(PetscOptionsBool("-snes_trdc_auto_scale_multiphase", "auto_scale_multiphase", "Auto scaling for proper cauchy direction", ctx->auto_scale_multiphase, &ctx->auto_scale_multiphase, NULL));
618:   PetscOptionsHeadEnd();
619:   PetscFunctionReturn(PETSC_SUCCESS);
620: }

622: static PetscErrorCode SNESView_NEWTONTRDC(SNES snes, PetscViewer viewer)
623: {
624:   SNES_NEWTONTRDC *tr = (SNES_NEWTONTRDC *)snes->data;
625:   PetscBool        iascii;

627:   PetscFunctionBegin;
628:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
629:   if (iascii) {
630:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Trust region tolerance %g\n", (double)tr->deltatol));
631:     PetscCall(PetscViewerASCIIPrintf(viewer, "  eta1=%g, eta2=%g, eta3=%g\n", (double)tr->eta1, (double)tr->eta2, (double)tr->eta3));
632:     PetscCall(PetscViewerASCIIPrintf(viewer, "  delta0=%g, t1=%g, t2=%g, deltaM=%g\n", (double)tr->delta0, (double)tr->t1, (double)tr->t2, (double)tr->deltaM));
633:   }
634:   PetscFunctionReturn(PETSC_SUCCESS);
635: }

637: /*MC
638:       SNESNEWTONTRDC - Newton based nonlinear solver that uses trust-region dogleg method with Cauchy direction

640:    Options Database Keys:
641: +   -snes_trdc_tol <tol>                                     - trust region tolerance
642: .   -snes_trdc_eta1 <eta1>                                   - trust region parameter 0.0 <= eta1 <= eta2, rho >= eta1 breaks out of the inner iteration (default: eta1=0.001)
643: .   -snes_trdc_eta2 <eta2>                                   - trust region parameter 0.0 <= eta1 <= eta2, rho <= eta2 shrinks the trust region (default: eta2=0.25)
644: .   -snes_trdc_eta3 <eta3>                                   - trust region parameter eta3 > eta2, rho >= eta3 expands the trust region (default: eta3=0.75)
645: .   -snes_trdc_t1 <t1>                                       - trust region parameter, shrinking factor of trust region (default: 0.25)
646: .   -snes_trdc_t2 <t2>                                       - trust region parameter, expanding factor of trust region (default: 2.0)
647: .   -snes_trdc_deltaM <deltaM>                               - trust region parameter, max size of trust region, $deltaM*norm2(x)$ (default: 0.5)
648: .   -snes_trdc_delta0 <delta0>                               - trust region parameter, initial size of trust region, $delta0*norm2(x)$ (default: 0.1)
649: .   -snes_trdc_auto_scale_max <auto_scale_max>               - used with auto_scale_multiphase, caps the maximum auto-scaling factor
650: .   -snes_trdc_use_cauchy <use_cauchy>                       - True uses dogleg Cauchy (Steepest Descent direction) step & direction in the trust region algorithm
651: -   -snes_trdc_auto_scale_multiphase <auto_scale_multiphase> - True turns on auto-scaling for multivariable block matrix for Cauchy and trust region

653:    Level: advanced

655:    Notes:
656:    `SNESNEWTONTRDC` only works for root-finding problems and does not support objective functions.
657:    The main difference with respect to `SNESNEWTONTR` is that `SNESNEWTONTRDC` scales the trust region by the norm of the current linearization point.
658:    Future version may extend the `SNESNEWTONTR` code and deprecate `SNESNEWTONTRDC`.

660:    For details, see {cite}`park2021linear`

662: .seealso: [](ch_snes), `SNESCreate()`, `SNES`, `SNESSetType()`, `SNESNEWTONLS`, `SNESNewtonTRSetTolerances()`,
663:           `SNESNewtonTRDCPreCheck()`, `SNESNewtonTRDCGetPreCheck()`, `SNESNewtonTRDCSetPostCheck()`, `SNESNewtonTRDCGetPostCheck()`,
664:           `SNESNewtonTRDCGetRhoFlag()`, `SNESNewtonTRDCSetPreCheck()`
665: M*/
666: PETSC_EXTERN PetscErrorCode SNESCreate_NEWTONTRDC(SNES snes)
667: {
668:   SNES_NEWTONTRDC *neP;

670:   PetscFunctionBegin;
671:   snes->ops->setup          = SNESSetUp_NEWTONTRDC;
672:   snes->ops->solve          = SNESSolve_NEWTONTRDC;
673:   snes->ops->destroy        = SNESDestroy_NEWTONTRDC;
674:   snes->ops->setfromoptions = SNESSetFromOptions_NEWTONTRDC;
675:   snes->ops->view           = SNESView_NEWTONTRDC;
676:   snes->ops->reset          = SNESReset_NEWTONTRDC;

678:   snes->usesksp = PETSC_TRUE;
679:   snes->usesnpc = PETSC_FALSE;

681:   snes->alwayscomputesfinalresidual = PETSC_TRUE;

683:   PetscCall(SNESParametersInitialize(snes));

685:   PetscCall(PetscNew(&neP));
686:   snes->data                 = (void *)neP;
687:   neP->eta1                  = 0.001;
688:   neP->eta2                  = 0.25;
689:   neP->eta3                  = 0.75;
690:   neP->t1                    = 0.25;
691:   neP->t2                    = 2.0;
692:   neP->sigma                 = 0.0001;
693:   neP->itflag                = PETSC_FALSE;
694:   neP->rnorm0                = 0.0;
695:   neP->ttol                  = 0.0;
696:   neP->use_cauchy            = PETSC_TRUE;
697:   neP->auto_scale_multiphase = PETSC_FALSE;
698:   neP->auto_scale_max        = -1.0;
699:   neP->rho_satisfied         = PETSC_FALSE;
700:   neP->delta                 = 0.0;
701:   neP->deltaM                = 0.5;
702:   neP->delta0                = 0.1;
703:   neP->deltatol              = 1.e-12;

705:   /* for multiphase (multivariable) scaling */
706:   /* may be used for dynamic allocation of inorms, but it fails snes_tutorials-ex3_13
707:      on test forced DIVERGED_JACOBIAN_DOMAIN test. I will use static array for now.
708:   PetscCall(VecGetBlockSize(snes->work[0],&neP->bs));
709:   PetscCall(PetscCalloc1(neP->bs,&neP->inorms));
710:   */
711:   PetscCall(PetscObjectComposeFunction((PetscObject)snes, "SNESNewtonTRSetTolerances_C", SNESNewtonTRSetTolerances_TRDC));
712:   PetscFunctionReturn(PETSC_SUCCESS);
713: }