Actual source code: ex62.c

  1: static char help[] = "Stokes Problem discretized with finite elements,\n\
  2: using a parallel unstructured mesh (DMPLEX) to represent the domain.\n\n\n";

  4: /*
  5: For the isoviscous Stokes problem, which we discretize using the finite
  6: element method on an unstructured mesh, the weak form equations are

  8:   < \nabla v, \nabla u + {\nabla u}^T > - < \nabla\cdot v, p > - < v, f > = 0
  9:   < q, -\nabla\cdot u >                                                   = 0

 11: Viewing:

 13: To produce nice output, use

 15:   -dm_refine 3 -dm_view hdf5:sol1.h5 -error_vec_view hdf5:sol1.h5::append -snes_view_solution hdf5:sol1.h5::append -exact_vec_view hdf5:sol1.h5::append

 17: You can get a LaTeX view of the mesh, with point numbering using

 19:   -dm_view :mesh.tex:ascii_latex -dm_plex_view_scale 8.0

 21: The data layout can be viewed using

 23:   -dm_petscsection_view

 25: Lots of information about the FEM assembly can be printed using

 27:   -dm_plex_print_fem 3
 28: */

 30: #include <petscdmplex.h>
 31: #include <petscsnes.h>
 32: #include <petscds.h>
 33: #include <petscbag.h>

 35: // TODO: Plot residual by fields after each smoother iterate

 37: typedef enum {
 38:   SOL_QUADRATIC,
 39:   SOL_TRIG,
 40:   SOL_UNKNOWN
 41: } SolType;
 42: const char *SolTypes[] = {"quadratic", "trig", "unknown", "SolType", "SOL_", 0};

 44: typedef struct {
 45:   PetscScalar mu; /* dynamic shear viscosity */
 46: } Parameter;

 48: typedef struct {
 49:   PetscBag bag; /* Problem parameters */
 50:   SolType  sol; /* MMS solution */
 51: } AppCtx;

 53: static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
 54: {
 55:   const PetscReal mu = PetscRealPart(constants[0]);
 56:   const PetscInt  Nc = uOff[1] - uOff[0];
 57:   PetscInt        c, d;

 59:   for (c = 0; c < Nc; ++c) {
 60:     for (d = 0; d < dim; ++d) f1[c * dim + d] = mu * (u_x[c * dim + d] + u_x[d * dim + c]);
 61:     f1[c * dim + c] -= u[uOff[1]];
 62:   }
 63: }

 65: static void f0_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
 66: {
 67:   PetscInt d;
 68:   for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] -= u_x[d * dim + d];
 69: }

 71: static void g1_pu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
 72: {
 73:   PetscInt d;
 74:   for (d = 0; d < dim; ++d) g1[d * dim + d] = -1.0; /* < q, -\nabla\cdot u > */
 75: }

 77: static void g2_up(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[])
 78: {
 79:   PetscInt d;
 80:   for (d = 0; d < dim; ++d) g2[d * dim + d] = -1.0; /* -< \nabla\cdot v, p > */
 81: }

 83: static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
 84: {
 85:   const PetscReal mu = PetscRealPart(constants[0]);
 86:   const PetscInt  Nc = uOff[1] - uOff[0];
 87:   PetscInt        c, d;

 89:   for (c = 0; c < Nc; ++c) {
 90:     for (d = 0; d < dim; ++d) {
 91:       g3[((c * Nc + c) * dim + d) * dim + d] += mu; /* < \nabla v, \nabla u > */
 92:       g3[((c * Nc + d) * dim + d) * dim + c] += mu; /* < \nabla v, {\nabla u}^T > */
 93:     }
 94:   }
 95: }

 97: static void g0_pp(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
 98: {
 99:   const PetscReal mu = PetscRealPart(constants[0]);

101:   g0[0] = 1.0 / mu;
102: }

104: /* Quadratic MMS Solution
105:    2D:

107:      u = x^2 + y^2
108:      v = 2 x^2 - 2xy
109:      p = x + y - 1
110:      f = <1 - 4 mu, 1 - 4 mu>

112:    so that

114:      e(u) = (grad u + grad u^T) = / 4x  4x \
115:                                   \ 4x -4x /
116:      div mu e(u) - \nabla p + f = mu <4, 4> - <1, 1> + <1 - 4 mu, 1 - 4 mu> = 0
117:      \nabla \cdot u             = 2x - 2x = 0

119:    3D:

121:      u = 2 x^2 + y^2 + z^2
122:      v = 2 x^2 - 2xy
123:      w = 2 x^2 - 2xz
124:      p = x + y + z - 3/2
125:      f = <1 - 8 mu, 1 - 4 mu, 1 - 4 mu>

127:    so that

129:      e(u) = (grad u + grad u^T) = / 8x  4x  4x \
130:                                   | 4x -4x  0  |
131:                                   \ 4x  0  -4x /
132:      div mu e(u) - \nabla p + f = mu <8, 4, 4> - <1, 1, 1> + <1 - 8 mu, 1 - 4 mu, 1 - 4 mu> = 0
133:      \nabla \cdot u             = 4x - 2x - 2x = 0
134: */
135: static PetscErrorCode quadratic_u(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
136: {
137:   PetscInt c;

139:   u[0] = (dim - 1) * PetscSqr(x[0]);
140:   for (c = 1; c < Nc; ++c) {
141:     u[0] += PetscSqr(x[c]);
142:     u[c] = 2.0 * PetscSqr(x[0]) - 2.0 * x[0] * x[c];
143:   }
144:   return PETSC_SUCCESS;
145: }

147: static PetscErrorCode quadratic_p(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
148: {
149:   PetscInt d;

151:   u[0] = -0.5 * dim;
152:   for (d = 0; d < dim; ++d) u[0] += x[d];
153:   return PETSC_SUCCESS;
154: }

156: static void f0_quadratic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
157: {
158:   const PetscReal mu = PetscRealPart(constants[0]);
159:   PetscInt        d;

161:   f0[0] = (dim - 1) * 4.0 * mu - 1.0;
162:   for (d = 1; d < dim; ++d) f0[d] = 4.0 * mu - 1.0;
163: }

165: /* Trigonometric MMS Solution
166:    2D:

168:      u = sin(pi x) + sin(pi y)
169:      v = -pi cos(pi x) y
170:      p = sin(2 pi x) + sin(2 pi y)
171:      f = <2pi cos(2 pi x) + mu pi^2 sin(pi x) + mu pi^2 sin(pi y), 2pi cos(2 pi y) - mu pi^3 cos(pi x) y>

173:    so that

175:      e(u) = (grad u + grad u^T) = /        2pi cos(pi x)             pi cos(pi y) + pi^2 sin(pi x) y \
176:                                   \ pi cos(pi y) + pi^2 sin(pi x) y          -2pi cos(pi x)          /
177:      div mu e(u) - \nabla p + f = mu <-pi^2 sin(pi x) - pi^2 sin(pi y), pi^3 cos(pi x) y> - <2pi cos(2 pi x), 2pi cos(2 pi y)> + <f_x, f_y> = 0
178:      \nabla \cdot u             = pi cos(pi x) - pi cos(pi x) = 0

180:    3D:

182:      u = 2 sin(pi x) + sin(pi y) + sin(pi z)
183:      v = -pi cos(pi x) y
184:      w = -pi cos(pi x) z
185:      p = sin(2 pi x) + sin(2 pi y) + sin(2 pi z)
186:      f = <2pi cos(2 pi x) + mu 2pi^2 sin(pi x) + mu pi^2 sin(pi y) + mu pi^2 sin(pi z), 2pi cos(2 pi y) - mu pi^3 cos(pi x) y, 2pi cos(2 pi z) - mu pi^3 cos(pi x) z>

188:    so that

190:      e(u) = (grad u + grad u^T) = /        4pi cos(pi x)             pi cos(pi y) + pi^2 sin(pi x) y  pi cos(pi z) + pi^2 sin(pi x) z \
191:                                   | pi cos(pi y) + pi^2 sin(pi x) y          -2pi cos(pi x)                        0                  |
192:                                   \ pi cos(pi z) + pi^2 sin(pi x) z               0                         -2pi cos(pi x)            /
193:      div mu e(u) - \nabla p + f = mu <-2pi^2 sin(pi x) - pi^2 sin(pi y) - pi^2 sin(pi z), pi^3 cos(pi x) y, pi^3 cos(pi x) z> - <2pi cos(2 pi x), 2pi cos(2 pi y), 2pi cos(2 pi z)> + <f_x, f_y, f_z> = 0
194:      \nabla \cdot u             = 2 pi cos(pi x) - pi cos(pi x) - pi cos(pi x) = 0
195: */
196: static PetscErrorCode trig_u(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
197: {
198:   PetscInt c;

200:   u[0] = (dim - 1) * PetscSinReal(PETSC_PI * x[0]);
201:   for (c = 1; c < Nc; ++c) {
202:     u[0] += PetscSinReal(PETSC_PI * x[c]);
203:     u[c] = -PETSC_PI * PetscCosReal(PETSC_PI * x[0]) * x[c];
204:   }
205:   return PETSC_SUCCESS;
206: }

208: static PetscErrorCode trig_p(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
209: {
210:   PetscInt d;

212:   for (d = 0, u[0] = 0.0; d < dim; ++d) u[0] += PetscSinReal(2.0 * PETSC_PI * x[d]);
213:   return PETSC_SUCCESS;
214: }

216: static void f0_trig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
217: {
218:   const PetscReal mu = PetscRealPart(constants[0]);
219:   PetscInt        d;

221:   f0[0] = -2.0 * PETSC_PI * PetscCosReal(2.0 * PETSC_PI * x[0]) - (dim - 1) * mu * PetscSqr(PETSC_PI) * PetscSinReal(PETSC_PI * x[0]);
222:   for (d = 1; d < dim; ++d) {
223:     f0[0] -= mu * PetscSqr(PETSC_PI) * PetscSinReal(PETSC_PI * x[d]);
224:     f0[d] = -2.0 * PETSC_PI * PetscCosReal(2.0 * PETSC_PI * x[d]) + mu * PetscPowRealInt(PETSC_PI, 3) * PetscCosReal(PETSC_PI * x[0]) * x[d];
225:   }
226: }

228: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
229: {
230:   PetscInt sol;

232:   PetscFunctionBeginUser;
233:   options->sol = SOL_QUADRATIC;
234:   PetscOptionsBegin(comm, "", "Stokes Problem Options", "DMPLEX");
235:   sol = options->sol;
236:   PetscCall(PetscOptionsEList("-sol", "The MMS solution", "ex62.c", SolTypes, PETSC_STATIC_ARRAY_LENGTH(SolTypes) - 3, SolTypes[options->sol], &sol, NULL));
237:   options->sol = (SolType)sol;
238:   PetscOptionsEnd();
239:   PetscFunctionReturn(PETSC_SUCCESS);
240: }

242: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
243: {
244:   PetscFunctionBeginUser;
245:   PetscCall(DMCreate(comm, dm));
246:   PetscCall(DMSetType(*dm, DMPLEX));
247:   PetscCall(DMSetFromOptions(*dm));
248:   PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
249:   PetscFunctionReturn(PETSC_SUCCESS);
250: }

252: static PetscErrorCode SetupParameters(MPI_Comm comm, AppCtx *ctx)
253: {
254:   Parameter *p;

256:   PetscFunctionBeginUser;
257:   /* setup PETSc parameter bag */
258:   PetscCall(PetscBagCreate(PETSC_COMM_SELF, sizeof(Parameter), &ctx->bag));
259:   PetscCall(PetscBagGetData(ctx->bag, (void **)&p));
260:   PetscCall(PetscBagSetName(ctx->bag, "par", "Stokes Parameters"));
261:   PetscCall(PetscBagRegisterScalar(ctx->bag, &p->mu, 1.0, "mu", "Dynamic Shear Viscosity, Pa s"));
262:   PetscCall(PetscBagSetFromOptions(ctx->bag));
263:   {
264:     PetscViewer       viewer;
265:     PetscViewerFormat format;
266:     PetscBool         flg;

268:     PetscCall(PetscOptionsGetViewer(comm, NULL, NULL, "-param_view", &viewer, &format, &flg));
269:     if (flg) {
270:       PetscCall(PetscViewerPushFormat(viewer, format));
271:       PetscCall(PetscBagView(ctx->bag, viewer));
272:       PetscCall(PetscViewerFlush(viewer));
273:       PetscCall(PetscViewerPopFormat(viewer));
274:       PetscCall(PetscOptionsRestoreViewer(&viewer));
275:     }
276:   }
277:   PetscFunctionReturn(PETSC_SUCCESS);
278: }

280: static PetscErrorCode SetupEqn(DM dm, AppCtx *user)
281: {
282:   PetscErrorCode (*exactFuncs[2])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *);
283:   PetscDS        ds;
284:   DMLabel        label;
285:   const PetscInt id = 1;

287:   PetscFunctionBeginUser;
288:   PetscCall(DMGetDS(dm, &ds));
289:   switch (user->sol) {
290:   case SOL_QUADRATIC:
291:     PetscCall(PetscDSSetResidual(ds, 0, f0_quadratic_u, f1_u));
292:     exactFuncs[0] = quadratic_u;
293:     exactFuncs[1] = quadratic_p;
294:     break;
295:   case SOL_TRIG:
296:     PetscCall(PetscDSSetResidual(ds, 0, f0_trig_u, f1_u));
297:     exactFuncs[0] = trig_u;
298:     exactFuncs[1] = trig_p;
299:     break;
300:   default:
301:     SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unsupported solution type: %s (%d)", SolTypes[PetscMin(user->sol, SOL_UNKNOWN)], user->sol);
302:   }
303:   PetscCall(PetscDSSetResidual(ds, 1, f0_p, NULL));
304:   PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_uu));
305:   PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
306:   PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
307:   PetscCall(PetscDSSetJacobianPreconditioner(ds, 0, 0, NULL, NULL, NULL, g3_uu));
308:   PetscCall(PetscDSSetJacobianPreconditioner(ds, 1, 1, g0_pp, NULL, NULL, NULL));

310:   PetscCall(PetscDSSetExactSolution(ds, 0, exactFuncs[0], user));
311:   PetscCall(PetscDSSetExactSolution(ds, 1, exactFuncs[1], user));

313:   PetscCall(DMGetLabel(dm, "marker", &label));
314:   PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))exactFuncs[0], NULL, user, NULL));

316:   /* Make constant values available to pointwise functions */
317:   {
318:     Parameter  *param;
319:     PetscScalar constants[1];

321:     PetscCall(PetscBagGetData(user->bag, (void **)&param));
322:     constants[0] = param->mu; /* dynamic shear viscosity, Pa s */
323:     PetscCall(PetscDSSetConstants(ds, 1, constants));
324:   }
325:   PetscFunctionReturn(PETSC_SUCCESS);
326: }

328: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
329: {
330:   PetscInt c;
331:   for (c = 0; c < Nc; ++c) u[c] = 0.0;
332:   return PETSC_SUCCESS;
333: }
334: static PetscErrorCode one(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
335: {
336:   PetscInt c;
337:   for (c = 0; c < Nc; ++c) u[c] = 1.0;
338:   return PETSC_SUCCESS;
339: }

341: static PetscErrorCode CreatePressureNullSpace(DM dm, PetscInt origField, PetscInt field, MatNullSpace *nullspace)
342: {
343:   Vec vec;
344:   PetscErrorCode (*funcs[2])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx) = {zero, one};

346:   PetscFunctionBeginUser;
347:   PetscCheck(origField == 1, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Field %" PetscInt_FMT " should be 1 for pressure", origField);
348:   funcs[field] = one;
349:   {
350:     PetscDS ds;
351:     PetscCall(DMGetDS(dm, &ds));
352:     PetscCall(PetscObjectViewFromOptions((PetscObject)ds, NULL, "-ds_view"));
353:   }
354:   PetscCall(DMCreateGlobalVector(dm, &vec));
355:   PetscCall(DMProjectFunction(dm, 0.0, funcs, NULL, INSERT_ALL_VALUES, vec));
356:   PetscCall(VecNormalize(vec, NULL));
357:   PetscCall(MatNullSpaceCreate(PetscObjectComm((PetscObject)dm), PETSC_FALSE, 1, &vec, nullspace));
358:   PetscCall(VecDestroy(&vec));
359:   /* New style for field null spaces */
360:   {
361:     PetscObject  pressure;
362:     MatNullSpace nullspacePres;

364:     PetscCall(DMGetField(dm, field, NULL, &pressure));
365:     PetscCall(MatNullSpaceCreate(PetscObjectComm(pressure), PETSC_TRUE, 0, NULL, &nullspacePres));
366:     PetscCall(PetscObjectCompose(pressure, "nullspace", (PetscObject)nullspacePres));
367:     PetscCall(MatNullSpaceDestroy(&nullspacePres));
368:   }
369:   PetscFunctionReturn(PETSC_SUCCESS);
370: }

372: static PetscErrorCode SetupProblem(DM dm, PetscErrorCode (*setupEqn)(DM, AppCtx *), AppCtx *user)
373: {
374:   DM              cdm = dm;
375:   PetscQuadrature q   = NULL;
376:   PetscBool       simplex;
377:   PetscInt        dim, Nf = 2, f, Nc[2];
378:   const char     *name[2]   = {"velocity", "pressure"};
379:   const char     *prefix[2] = {"vel_", "pres_"};

381:   PetscFunctionBegin;
382:   PetscCall(DMGetDimension(dm, &dim));
383:   PetscCall(DMPlexIsSimplex(dm, &simplex));
384:   Nc[0] = dim;
385:   Nc[1] = 1;
386:   for (f = 0; f < Nf; ++f) {
387:     PetscFE fe;

389:     PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, Nc[f], simplex, prefix[f], -1, &fe));
390:     PetscCall(PetscObjectSetName((PetscObject)fe, name[f]));
391:     if (!q) PetscCall(PetscFEGetQuadrature(fe, &q));
392:     PetscCall(PetscFESetQuadrature(fe, q));
393:     PetscCall(DMSetField(dm, f, NULL, (PetscObject)fe));
394:     PetscCall(PetscFEDestroy(&fe));
395:   }
396:   PetscCall(DMCreateDS(dm));
397:   PetscCall((*setupEqn)(dm, user));
398:   while (cdm) {
399:     PetscCall(DMCopyDisc(dm, cdm));
400:     PetscCall(DMSetNullSpaceConstructor(cdm, 1, CreatePressureNullSpace));
401:     PetscCall(DMGetCoarseDM(cdm, &cdm));
402:   }
403:   PetscFunctionReturn(PETSC_SUCCESS);
404: }

406: int main(int argc, char **argv)
407: {
408:   SNES   snes;
409:   DM     dm;
410:   Vec    u;
411:   AppCtx user;

413:   PetscFunctionBeginUser;
414:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
415:   PetscCall(ProcessOptions(PETSC_COMM_WORLD, &user));
416:   PetscCall(CreateMesh(PETSC_COMM_WORLD, &user, &dm));
417:   PetscCall(SNESCreate(PetscObjectComm((PetscObject)dm), &snes));
418:   PetscCall(SNESSetDM(snes, dm));
419:   PetscCall(DMSetApplicationContext(dm, &user));

421:   PetscCall(SetupParameters(PETSC_COMM_WORLD, &user));
422:   PetscCall(SetupProblem(dm, SetupEqn, &user));
423:   PetscCall(DMPlexCreateClosureIndex(dm, NULL));

425:   PetscCall(DMCreateGlobalVector(dm, &u));
426:   PetscCall(DMPlexSetSNESLocalFEM(dm, PETSC_FALSE, &user));
427:   PetscCall(SNESSetFromOptions(snes));
428:   PetscCall(DMSNESCheckFromOptions(snes, u));
429:   PetscCall(PetscObjectSetName((PetscObject)u, "Solution"));
430:   {
431:     Mat          J;
432:     MatNullSpace sp;

434:     PetscCall(SNESSetUp(snes));
435:     PetscCall(CreatePressureNullSpace(dm, 1, 1, &sp));
436:     PetscCall(SNESGetJacobian(snes, &J, NULL, NULL, NULL));
437:     PetscCall(MatSetNullSpace(J, sp));
438:     PetscCall(MatNullSpaceDestroy(&sp));
439:     PetscCall(PetscObjectSetName((PetscObject)J, "Jacobian"));
440:     PetscCall(MatViewFromOptions(J, NULL, "-J_view"));
441:   }
442:   PetscCall(SNESSolve(snes, NULL, u));

444:   PetscCall(VecDestroy(&u));
445:   PetscCall(SNESDestroy(&snes));
446:   PetscCall(DMDestroy(&dm));
447:   PetscCall(PetscBagDestroy(&user.bag));
448:   PetscCall(PetscFinalize());
449:   return 0;
450: }
451: /*TEST

453:   test:
454:     suffix: 2d_p2_p1_check
455:     requires: triangle
456:     args: -sol quadratic -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001

458:   test:
459:     suffix: 2d_p2_p1_check_parallel
460:     nsize: {{2 3 5}}
461:     requires: triangle
462:     args: -sol quadratic -dm_refine 2 -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001

464:   test:
465:     suffix: 3d_p2_p1_check
466:     requires: ctetgen
467:     args: -sol quadratic -dm_plex_dim 3 -dm_plex_box_faces 2,2,2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001

469:   test:
470:     suffix: 3d_p2_p1_check_parallel
471:     nsize: {{2 3 5}}
472:     requires: ctetgen
473:     args: -sol quadratic -dm_refine 0 -dm_plex_dim 3 -dm_plex_box_faces 2,2,2 -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001

475:   test:
476:     suffix: 2d_p2_p1_conv
477:     requires: triangle
478:     # Using -dm_refine 3 gives L_2 convergence rate: [3.0, 2.1]
479:     args: -sol trig -vel_petscspace_degree 2 -pres_petscspace_degree 1 -snes_convergence_estimate -convest_num_refine 2 -ksp_error_if_not_converged \
480:       -ksp_atol 1e-10 -ksp_error_if_not_converged -pc_use_amat \
481:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition a11 -pc_fieldsplit_off_diag_use_amat \
482:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type lu

484:   test:
485:     suffix: 2d_p2_p1_conv_gamg
486:     requires: triangle
487:     args: -sol trig -vel_petscspace_degree 2 -pres_petscspace_degree 1 -snes_convergence_estimate -convest_num_refine 2 \
488:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition full \
489:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type gamg -fieldsplit_pressure_mg_coarse_pc_type svd

491:   test:
492:     suffix: 3d_p2_p1_conv
493:     requires: ctetgen !single
494:     # Using -dm_refine 2 -convest_num_refine 2 gives L_2 convergence rate: [2.8, 2.8]
495:     args: -sol trig -dm_plex_dim 3 -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -snes_convergence_estimate -convest_num_refine 1 \
496:       -ksp_atol 1e-10 -ksp_error_if_not_converged -pc_use_amat \
497:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition a11 -pc_fieldsplit_off_diag_use_amat \
498:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type lu

500:   test:
501:     suffix: 2d_q2_q1_check
502:     args: -sol quadratic -dm_plex_simplex 0 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001

504:   test:
505:     suffix: 3d_q2_q1_check
506:     args: -sol quadratic -dm_plex_simplex 0 -dm_plex_dim 3 -dm_plex_box_faces 2,2,2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001

508:   test:
509:     suffix: 2d_q2_q1_conv
510:     # Using -dm_refine 3 -convest_num_refine 1 gives L_2 convergence rate: [3.0, 2.1]
511:     args: -sol trig -dm_plex_simplex 0 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -snes_convergence_estimate -convest_num_refine 1 -ksp_error_if_not_converged \
512:       -ksp_atol 1e-10 -ksp_error_if_not_converged -pc_use_amat \
513:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition a11 -pc_fieldsplit_off_diag_use_amat \
514:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type lu

516:   test:
517:     suffix: 3d_q2_q1_conv
518:     requires: !single
519:     # Using -dm_refine 2 -convest_num_refine 2 gives L_2 convergence rate: [2.8, 2.4]
520:     args: -sol trig -dm_plex_simplex 0 -dm_plex_dim 3 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -snes_convergence_estimate -convest_num_refine 1 \
521:       -ksp_atol 1e-10 -ksp_error_if_not_converged -pc_use_amat \
522:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition a11 -pc_fieldsplit_off_diag_use_amat \
523:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type lu

525:   test:
526:     suffix: 2d_p3_p2_check
527:     requires: triangle
528:     args: -sol quadratic -vel_petscspace_degree 3 -pres_petscspace_degree 2 -dmsnes_check 0.0001

530:   test:
531:     suffix: 3d_p3_p2_check
532:     requires: ctetgen !single
533:     args: -sol quadratic -dm_plex_dim 3 -dm_plex_box_faces 2,2,2 -vel_petscspace_degree 3 -pres_petscspace_degree 2 -dmsnes_check 0.0001

535:   test:
536:     suffix: 2d_p3_p2_conv
537:     requires: triangle
538:     # Using -dm_refine 2 gives L_2 convergence rate: [3.8, 3.0]
539:     args: -sol trig -vel_petscspace_degree 3 -pres_petscspace_degree 2 -snes_convergence_estimate -convest_num_refine 2 -ksp_error_if_not_converged \
540:       -ksp_atol 1e-10 -ksp_error_if_not_converged -pc_use_amat \
541:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition a11 -pc_fieldsplit_off_diag_use_amat \
542:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type lu

544:   test:
545:     suffix: 3d_p3_p2_conv
546:     requires: ctetgen long_runtime
547:     # Using -dm_refine 1 -convest_num_refine 2 gives L_2 convergence rate: [3.6, 3.9]
548:     args: -sol trig -dm_plex_dim 3 -dm_refine 1 -vel_petscspace_degree 3 -pres_petscspace_degree 2 -snes_convergence_estimate -convest_num_refine 2 \
549:       -ksp_atol 1e-10 -ksp_error_if_not_converged -pc_use_amat \
550:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition a11 -pc_fieldsplit_off_diag_use_amat \
551:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type lu

553:   test:
554:     suffix: 2d_q1_p0_conv
555:     requires: !single
556:     # Using -dm_refine 3 gives L_2 convergence rate: [1.9, 1.0]
557:     args: -sol quadratic -dm_plex_simplex 0 -vel_petscspace_degree 1 -pres_petscspace_degree 0 -snes_convergence_estimate -convest_num_refine 2 \
558:       -ksp_atol 1e-10 -petscds_jac_pre 0 \
559:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition full \
560:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type gamg -fieldsplit_pressure_mg_levels_pc_type jacobi -fieldsplit_pressure_mg_coarse_pc_type svd -fieldsplit_pressure_pc_gamg_aggressive_coarsening 0

562:   test:
563:     suffix: 3d_q1_p0_conv
564:     requires: !single
565:     # Using -dm_refine 2 -convest_num_refine 2 gives L_2 convergence rate: [1.7, 1.0]
566:     args: -sol quadratic -dm_plex_simplex 0 -dm_plex_dim 3 -dm_refine 1 -vel_petscspace_degree 1 -pres_petscspace_degree 0 -snes_convergence_estimate -convest_num_refine 1 \
567:       -ksp_atol 1e-10 -petscds_jac_pre 0 \
568:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition full \
569:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type gamg -fieldsplit_pressure_mg_levels_pc_type jacobi -fieldsplit_pressure_mg_coarse_pc_type svd -fieldsplit_pressure_pc_gamg_aggressive_coarsening 0

571:   # Stokes preconditioners
572:   #   Block diagonal \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}
573:   test:
574:     suffix: 2d_p2_p1_block_diagonal
575:     requires: triangle
576:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
577:       -snes_error_if_not_converged \
578:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-4 -ksp_error_if_not_converged \
579:       -pc_type fieldsplit -pc_fieldsplit_type additive -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_pc_type jacobi
580:   #   Block triangular \begin{pmatrix} A & B \\ 0 & I \end{pmatrix}
581:   test:
582:     suffix: 2d_p2_p1_block_triangular
583:     requires: triangle
584:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
585:       -snes_error_if_not_converged \
586:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -ksp_error_if_not_converged \
587:       -pc_type fieldsplit -pc_fieldsplit_type multiplicative -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_pc_type jacobi
588:   #   Diagonal Schur complement \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix}
589:   test:
590:     suffix: 2d_p2_p1_schur_diagonal
591:     requires: triangle
592:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
593:       -snes_error_if_not_converged \
594:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -ksp_error_if_not_converged -pc_use_amat \
595:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type diag -pc_fieldsplit_off_diag_use_amat \
596:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
597:   #   Upper triangular Schur complement \begin{pmatrix} A & B \\ 0 & S \end{pmatrix}
598:   test:
599:     suffix: 2d_p2_p1_schur_upper
600:     requires: triangle
601:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -dmsnes_check 0.0001 \
602:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -ksp_error_if_not_converged -pc_use_amat \
603:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type upper -pc_fieldsplit_off_diag_use_amat \
604:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
605:   #   Lower triangular Schur complement \begin{pmatrix} A & B \\ 0 & S \end{pmatrix}
606:   test:
607:     suffix: 2d_p2_p1_schur_lower
608:     requires: triangle
609:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
610:       -snes_error_if_not_converged \
611:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -ksp_error_if_not_converged -pc_use_amat \
612:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type lower -pc_fieldsplit_off_diag_use_amat \
613:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
614:   #   Full Schur complement \begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}
615:   test:
616:     suffix: 2d_p2_p1_schur_full
617:     requires: triangle
618:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
619:       -snes_error_if_not_converged \
620:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -ksp_error_if_not_converged -pc_use_amat \
621:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type full -pc_fieldsplit_off_diag_use_amat \
622:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
623:   #   Full Schur + Velocity GMG
624:   test:
625:     suffix: 2d_p2_p1_gmg_vcycle
626:     TODO: broken (requires subDMs hooks)
627:     requires: triangle
628:     args: -sol quadratic -dm_refine_hierarchy 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
629:       -ksp_type fgmres -ksp_atol 1e-9 -snes_error_if_not_converged -pc_use_amat \
630:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_off_diag_use_amat \
631:         -fieldsplit_velocity_pc_type mg -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type gamg -fieldsplit_pressure_pc_gamg_esteig_ksp_max_it 10 -fieldsplit_pressure_mg_levels_pc_type sor -fieldsplit_pressure_mg_coarse_pc_type svd
632:   #   SIMPLE \begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B^T diag(A)^{-1} B \end{pmatrix} \begin{pmatrix} I & diag(A)^{-1} B \\ 0 & I \end{pmatrix}
633:   test:
634:     suffix: 2d_p2_p1_simple
635:     requires: triangle
636:     args: -sol quadratic -dm_refine 2 -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
637:       -snes_error_if_not_converged \
638:       -ksp_type fgmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -ksp_error_if_not_converged \
639:       -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type full \
640:         -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi \
641:         -fieldsplit_pressure_inner_ksp_type preonly -fieldsplit_pressure_inner_pc_type jacobi -fieldsplit_pressure_upper_ksp_type preonly -fieldsplit_pressure_upper_pc_type jacobi
642:   #   FETI-DP solvers (these solvers are quite inefficient, they are here to exercise the code)
643:   test:
644:     suffix: 2d_p2_p1_fetidp
645:     requires: triangle mumps
646:     nsize: 5
647:     args: -sol quadratic -dm_refine 2 -dm_mat_type is -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
648:       -snes_error_if_not_converged \
649:       -ksp_type fetidp -ksp_rtol 1.0e-8 \
650:       -ksp_fetidp_saddlepoint -fetidp_ksp_type cg \
651:         -fetidp_fieldsplit_p_ksp_max_it 1 -fetidp_fieldsplit_p_ksp_type richardson -fetidp_fieldsplit_p_ksp_richardson_scale 200 -fetidp_fieldsplit_p_pc_type none \
652:         -fetidp_bddc_pc_bddc_dirichlet_pc_factor_mat_solver_type mumps -fetidp_bddc_pc_bddc_neumann_pc_factor_mat_solver_type mumps -fetidp_fieldsplit_lag_ksp_type preonly
653:   test:
654:     suffix: 2d_q2_q1_fetidp
655:     requires: mumps
656:     nsize: 5
657:     args: -sol quadratic -dm_plex_simplex 0 -dm_refine 2 -dm_mat_type is -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
658:       -ksp_type fetidp -ksp_rtol 1.0e-8 -ksp_error_if_not_converged \
659:       -ksp_fetidp_saddlepoint -fetidp_ksp_type cg \
660:         -fetidp_fieldsplit_p_ksp_max_it 1 -fetidp_fieldsplit_p_ksp_type richardson -fetidp_fieldsplit_p_ksp_richardson_scale 200 -fetidp_fieldsplit_p_pc_type none \
661:         -fetidp_bddc_pc_bddc_dirichlet_pc_factor_mat_solver_type mumps -fetidp_bddc_pc_bddc_neumann_pc_factor_mat_solver_type mumps -fetidp_fieldsplit_lag_ksp_type preonly
662:   test:
663:     suffix: 3d_p2_p1_fetidp
664:     requires: ctetgen mumps suitesparse
665:     nsize: 5
666:     args: -sol quadratic -dm_plex_dim 3 -dm_plex_box_faces 2,2,2 -dm_refine 1 -dm_mat_type is -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
667:       -snes_error_if_not_converged \
668:       -ksp_type fetidp -ksp_rtol 1.0e-9  \
669:       -ksp_fetidp_saddlepoint -fetidp_ksp_type cg \
670:         -fetidp_fieldsplit_p_ksp_max_it 1 -fetidp_fieldsplit_p_ksp_type richardson -fetidp_fieldsplit_p_ksp_richardson_scale 1000 -fetidp_fieldsplit_p_pc_type none \
671:         -fetidp_bddc_pc_bddc_use_deluxe_scaling -fetidp_bddc_pc_bddc_benign_trick -fetidp_bddc_pc_bddc_deluxe_singlemat \
672:         -fetidp_pc_discrete_harmonic -fetidp_harmonic_pc_factor_mat_solver_type petsc -fetidp_harmonic_pc_type cholesky \
673:         -fetidp_bddelta_pc_factor_mat_solver_type umfpack -fetidp_fieldsplit_lag_ksp_type preonly -fetidp_bddc_sub_schurs_mat_solver_type mumps -fetidp_bddc_sub_schurs_mat_mumps_icntl_14 100000 \
674:         -fetidp_bddelta_pc_factor_mat_ordering_type external \
675:         -fetidp_bddc_pc_bddc_dirichlet_pc_factor_mat_solver_type umfpack -fetidp_bddc_pc_bddc_neumann_pc_factor_mat_solver_type umfpack \
676:         -fetidp_bddc_pc_bddc_dirichlet_pc_factor_mat_ordering_type external -fetidp_bddc_pc_bddc_neumann_pc_factor_mat_ordering_type external
677:   test:
678:     suffix: 3d_q2_q1_fetidp
679:     requires: suitesparse
680:     nsize: 5
681:     args: -sol quadratic -dm_plex_simplex 0 -dm_plex_dim 3 -dm_plex_box_faces 2,2,2 -dm_refine 1 -dm_mat_type is -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
682:       -snes_error_if_not_converged \
683:       -ksp_type fetidp -ksp_rtol 1.0e-8 \
684:       -ksp_fetidp_saddlepoint -fetidp_ksp_type cg \
685:         -fetidp_fieldsplit_p_ksp_max_it 1 -fetidp_fieldsplit_p_ksp_type richardson -fetidp_fieldsplit_p_ksp_richardson_scale 2000 -fetidp_fieldsplit_p_pc_type none \
686:         -fetidp_pc_discrete_harmonic -fetidp_harmonic_pc_factor_mat_solver_type petsc -fetidp_harmonic_pc_type cholesky \
687:         -fetidp_bddc_pc_bddc_symmetric -fetidp_fieldsplit_lag_ksp_type preonly \
688:         -fetidp_bddc_pc_bddc_dirichlet_pc_factor_mat_solver_type umfpack -fetidp_bddc_pc_bddc_neumann_pc_factor_mat_solver_type umfpack \
689:         -fetidp_bddc_pc_bddc_dirichlet_pc_factor_mat_ordering_type external -fetidp_bddc_pc_bddc_neumann_pc_factor_mat_ordering_type external
690:   #   BDDC solvers (these solvers are quite inefficient, they are here to exercise the code)
691:   test:
692:     suffix: 2d_p2_p1_bddc
693:     nsize: 2
694:     requires: triangle !single
695:     args: -sol quadratic -dm_plex_box_faces 2,2,2 -dm_refine 1 -dm_mat_type is -petscpartitioner_type simple -vel_petscspace_degree 2 -pres_petscspace_degree 1 -petscds_jac_pre 0 \
696:       -snes_error_if_not_converged \
697:       -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-8 -ksp_error_if_not_converged \
698:         -pc_type bddc -pc_bddc_corner_selection -pc_bddc_dirichlet_pc_type svd -pc_bddc_neumann_pc_type svd -pc_bddc_coarse_redundant_pc_type svd
699:   #   Vanka
700:   test:
701:     suffix: 2d_q1_p0_vanka
702:     requires: double !complex
703:     args: -sol quadratic -dm_plex_simplex 0 -dm_refine 2 -vel_petscspace_degree 1 -pres_petscspace_degree 0 -petscds_jac_pre 0 \
704:       -snes_rtol 1.0e-4 \
705:       -ksp_type fgmres -ksp_atol 1e-5 -ksp_error_if_not_converged \
706:       -pc_type patch -pc_patch_partition_of_unity 0 -pc_patch_construct_codim 0 -pc_patch_construct_type vanka \
707:         -sub_ksp_type preonly -sub_pc_type lu
708:   test:
709:     suffix: 2d_q1_p0_vanka_denseinv
710:     requires: double !complex
711:     args: -sol quadratic -dm_plex_simplex 0 -dm_refine 2 -vel_petscspace_degree 1 -pres_petscspace_degree 0 -petscds_jac_pre 0 \
712:       -snes_rtol 1.0e-4 \
713:       -ksp_type fgmres -ksp_atol 1e-5 -ksp_error_if_not_converged \
714:       -pc_type patch -pc_patch_partition_of_unity 0 -pc_patch_construct_codim 0 -pc_patch_construct_type vanka \
715:         -pc_patch_dense_inverse -pc_patch_sub_mat_type seqdense
716:   #   Vanka smoother
717:   test:
718:     suffix: 2d_q1_p0_gmg_vanka
719:     requires: double !complex
720:     args: -sol quadratic -dm_plex_simplex 0 -dm_refine_hierarchy 2 -vel_petscspace_degree 1 -pres_petscspace_degree 0 -petscds_jac_pre 0 \
721:       -snes_rtol 1.0e-4 \
722:       -ksp_type fgmres -ksp_atol 1e-5 -ksp_error_if_not_converged \
723:       -pc_type mg \
724:         -mg_levels_ksp_type gmres -mg_levels_ksp_max_it 30 \
725:         -mg_levels_pc_type patch -mg_levels_pc_patch_partition_of_unity 0 -mg_levels_pc_patch_construct_codim 0 -mg_levels_pc_patch_construct_type vanka \
726:           -mg_levels_sub_ksp_type preonly -mg_levels_sub_pc_type lu \
727:         -mg_coarse_pc_type svd

729: TEST*/