Actual source code: glle.c

  1: #include <../src/ts/impls/implicit/glle/glle.h>
  2: #include <petscdm.h>
  3: #include <petscblaslapack.h>

  5: static const char       *TSGLLEErrorDirections[] = {"FORWARD", "BACKWARD", "TSGLLEErrorDirection", "TSGLLEERROR_", NULL};
  6: static PetscFunctionList TSGLLEList;
  7: static PetscFunctionList TSGLLEAcceptList;
  8: static PetscBool         TSGLLEPackageInitialized;
  9: static PetscBool         TSGLLERegisterAllCalled;

 11: /* This function is pure */
 12: static PetscScalar Factorial(PetscInt n)
 13: {
 14:   PetscInt i;
 15:   if (n < 12) { /* Can compute with 32-bit integers */
 16:     PetscInt f = 1;
 17:     for (i = 2; i <= n; i++) f *= i;
 18:     return (PetscScalar)f;
 19:   } else {
 20:     PetscScalar f = 1.;
 21:     for (i = 2; i <= n; i++) f *= (PetscScalar)i;
 22:     return f;
 23:   }
 24: }

 26: /* This function is pure */
 27: static PetscScalar CPowF(PetscScalar c, PetscInt p)
 28: {
 29:   return PetscPowRealInt(PetscRealPart(c), p) / Factorial(p);
 30: }

 32: static PetscErrorCode TSGLLEGetVecs(TS ts, DM dm, Vec *Z, Vec *Ydotstage)
 33: {
 34:   TS_GLLE *gl = (TS_GLLE *)ts->data;

 36:   PetscFunctionBegin;
 37:   if (Z) {
 38:     if (dm && dm != ts->dm) {
 39:       PetscCall(DMGetNamedGlobalVector(dm, "TSGLLE_Z", Z));
 40:     } else *Z = gl->Z;
 41:   }
 42:   if (Ydotstage) {
 43:     if (dm && dm != ts->dm) {
 44:       PetscCall(DMGetNamedGlobalVector(dm, "TSGLLE_Ydot", Ydotstage));
 45:     } else *Ydotstage = gl->Ydot[gl->stage];
 46:   }
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode TSGLLERestoreVecs(TS ts, DM dm, Vec *Z, Vec *Ydotstage)
 51: {
 52:   PetscFunctionBegin;
 53:   if (Z) {
 54:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSGLLE_Z", Z));
 55:   }
 56:   if (Ydotstage) {
 57:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSGLLE_Ydot", Ydotstage));
 58:   }
 59:   PetscFunctionReturn(PETSC_SUCCESS);
 60: }

 62: static PetscErrorCode DMCoarsenHook_TSGLLE(DM fine, DM coarse, void *ctx)
 63: {
 64:   PetscFunctionBegin;
 65:   PetscFunctionReturn(PETSC_SUCCESS);
 66: }

 68: static PetscErrorCode DMRestrictHook_TSGLLE(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
 69: {
 70:   TS  ts = (TS)ctx;
 71:   Vec Ydot, Ydot_c;

 73:   PetscFunctionBegin;
 74:   PetscCall(TSGLLEGetVecs(ts, fine, NULL, &Ydot));
 75:   PetscCall(TSGLLEGetVecs(ts, coarse, NULL, &Ydot_c));
 76:   PetscCall(MatRestrict(restrct, Ydot, Ydot_c));
 77:   PetscCall(VecPointwiseMult(Ydot_c, rscale, Ydot_c));
 78:   PetscCall(TSGLLERestoreVecs(ts, fine, NULL, &Ydot));
 79:   PetscCall(TSGLLERestoreVecs(ts, coarse, NULL, &Ydot_c));
 80:   PetscFunctionReturn(PETSC_SUCCESS);
 81: }

 83: static PetscErrorCode DMSubDomainHook_TSGLLE(DM dm, DM subdm, void *ctx)
 84: {
 85:   PetscFunctionBegin;
 86:   PetscFunctionReturn(PETSC_SUCCESS);
 87: }

 89: static PetscErrorCode DMSubDomainRestrictHook_TSGLLE(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
 90: {
 91:   TS  ts = (TS)ctx;
 92:   Vec Ydot, Ydot_s;

 94:   PetscFunctionBegin;
 95:   PetscCall(TSGLLEGetVecs(ts, dm, NULL, &Ydot));
 96:   PetscCall(TSGLLEGetVecs(ts, subdm, NULL, &Ydot_s));

 98:   PetscCall(VecScatterBegin(gscat, Ydot, Ydot_s, INSERT_VALUES, SCATTER_FORWARD));
 99:   PetscCall(VecScatterEnd(gscat, Ydot, Ydot_s, INSERT_VALUES, SCATTER_FORWARD));

101:   PetscCall(TSGLLERestoreVecs(ts, dm, NULL, &Ydot));
102:   PetscCall(TSGLLERestoreVecs(ts, subdm, NULL, &Ydot_s));
103:   PetscFunctionReturn(PETSC_SUCCESS);
104: }

106: static PetscErrorCode TSGLLESchemeCreate(PetscInt p, PetscInt q, PetscInt r, PetscInt s, const PetscScalar *c, const PetscScalar *a, const PetscScalar *b, const PetscScalar *u, const PetscScalar *v, TSGLLEScheme *inscheme)
107: {
108:   TSGLLEScheme scheme;
109:   PetscInt     j;

111:   PetscFunctionBegin;
112:   PetscCheck(p >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Scheme order must be positive");
113:   PetscCheck(r >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "At least one item must be carried between steps");
114:   PetscCheck(s >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "At least one stage is required");
115:   PetscAssertPointer(inscheme, 10);
116:   *inscheme = NULL;
117:   PetscCall(PetscNew(&scheme));
118:   scheme->p = p;
119:   scheme->q = q;
120:   scheme->r = r;
121:   scheme->s = s;

123:   PetscCall(PetscMalloc5(s, &scheme->c, s * s, &scheme->a, r * s, &scheme->b, r * s, &scheme->u, r * r, &scheme->v));
124:   PetscCall(PetscArraycpy(scheme->c, c, s));
125:   for (j = 0; j < s * s; j++) scheme->a[j] = (PetscAbsScalar(a[j]) < 1e-12) ? 0 : a[j];
126:   for (j = 0; j < r * s; j++) scheme->b[j] = (PetscAbsScalar(b[j]) < 1e-12) ? 0 : b[j];
127:   for (j = 0; j < s * r; j++) scheme->u[j] = (PetscAbsScalar(u[j]) < 1e-12) ? 0 : u[j];
128:   for (j = 0; j < r * r; j++) scheme->v[j] = (PetscAbsScalar(v[j]) < 1e-12) ? 0 : v[j];

130:   PetscCall(PetscMalloc6(r, &scheme->alpha, r, &scheme->beta, r, &scheme->gamma, 3 * s, &scheme->phi, 3 * r, &scheme->psi, r, &scheme->stage_error));
131:   {
132:     PetscInt     i, j, k, ss = s + 2;
133:     PetscBLASInt m, n, one = 1, *ipiv, lwork, info, ldb;
134:     PetscReal    rcond, *sing, *workreal;
135:     PetscScalar *ImV, *H, *bmat, *workscalar, *c = scheme->c, *a = scheme->a, *b = scheme->b, *u = scheme->u, *v = scheme->v;
136:     PetscBLASInt rank;

138:     PetscCall(PetscBLASIntCast(4 * ((s + 3) * 3 + 3), &lwork));
139:     PetscCall(PetscMalloc7(PetscSqr(r), &ImV, 3 * s, &H, 3 * ss, &bmat, lwork, &workscalar, 5 * (3 + r), &workreal, r + s, &sing, r + s, &ipiv));

141:     /* column-major input */
142:     for (i = 0; i < r - 1; i++) {
143:       for (j = 0; j < r - 1; j++) ImV[i + j * r] = 1.0 * (i == j) - v[(i + 1) * r + j + 1];
144:     }
145:     /* Build right-hand side for alpha (tp - glm.B(2:end,:)*(glm.c.^(p)./factorial(p))) */
146:     for (i = 1; i < r; i++) {
147:       scheme->alpha[i] = 1. / Factorial(p + 1 - i);
148:       for (j = 0; j < s; j++) scheme->alpha[i] -= b[i * s + j] * CPowF(c[j], p);
149:     }
150:     PetscCall(PetscBLASIntCast(r - 1, &m));
151:     PetscCall(PetscBLASIntCast(r, &n));
152:     PetscCallBLAS("LAPACKgesv", LAPACKgesv_(&m, &one, ImV, &n, ipiv, scheme->alpha + 1, &n, &info));
153:     PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to GESV");
154:     PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Bad LU factorization");

156:     /* Build right-hand side for beta (tp1 - glm.B(2:end,:)*(glm.c.^(p+1)./factorial(p+1)) - e.alpha) */
157:     for (i = 1; i < r; i++) {
158:       scheme->beta[i] = 1. / Factorial(p + 2 - i) - scheme->alpha[i];
159:       for (j = 0; j < s; j++) scheme->beta[i] -= b[i * s + j] * CPowF(c[j], p + 1);
160:     }
161:     PetscCallBLAS("LAPACKgetrs", LAPACKgetrs_("No transpose", &m, &one, ImV, &n, ipiv, scheme->beta + 1, &n, &info));
162:     PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to GETRS");
163:     PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Should not happen");

165:     /* Build stage_error vector
166:            xi = glm.c.^(p+1)/factorial(p+1) - glm.A*glm.c.^p/factorial(p) + glm.U(:,2:end)*e.alpha;
167:     */
168:     for (i = 0; i < s; i++) {
169:       scheme->stage_error[i] = CPowF(c[i], p + 1);
170:       for (j = 0; j < s; j++) scheme->stage_error[i] -= a[i * s + j] * CPowF(c[j], p);
171:       for (j = 1; j < r; j++) scheme->stage_error[i] += u[i * r + j] * scheme->alpha[j];
172:     }

174:     /* alpha[0] (epsilon in B,J,W 2007)
175:            epsilon = 1/factorial(p+1) - B(1,:)*c.^p/factorial(p) + V(1,2:end)*e.alpha;
176:     */
177:     scheme->alpha[0] = 1. / Factorial(p + 1);
178:     for (j = 0; j < s; j++) scheme->alpha[0] -= b[0 * s + j] * CPowF(c[j], p);
179:     for (j = 1; j < r; j++) scheme->alpha[0] += v[0 * r + j] * scheme->alpha[j];

181:     /* right-hand side for gamma (glm.B(2:end,:)*e.xi - e.epsilon*eye(s-1,1)) */
182:     for (i = 1; i < r; i++) {
183:       scheme->gamma[i] = (i == 1 ? -1. : 0) * scheme->alpha[0];
184:       for (j = 0; j < s; j++) scheme->gamma[i] += b[i * s + j] * scheme->stage_error[j];
185:     }
186:     PetscCallBLAS("LAPACKgetrs", LAPACKgetrs_("No transpose", &m, &one, ImV, &n, ipiv, scheme->gamma + 1, &n, &info));
187:     PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to GETRS");
188:     PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Should not happen");

190:     /* beta[0] (rho in B,J,W 2007)
191:         e.rho = 1/factorial(p+2) - glm.B(1,:)*glm.c.^(p+1)/factorial(p+1) ...
192:             + glm.V(1,2:end)*e.beta;% - e.epsilon;
193:     % Note: The paper (B,J,W 2007) includes the last term in their definition
194:     * */
195:     scheme->beta[0] = 1. / Factorial(p + 2);
196:     for (j = 0; j < s; j++) scheme->beta[0] -= b[0 * s + j] * CPowF(c[j], p + 1);
197:     for (j = 1; j < r; j++) scheme->beta[0] += v[0 * r + j] * scheme->beta[j];

199:     /* gamma[0] (sigma in B,J,W 2007)
200:     *   e.sigma = glm.B(1,:)*e.xi + glm.V(1,2:end)*e.gamma;
201:     * */
202:     scheme->gamma[0] = 0.0;
203:     for (j = 0; j < s; j++) scheme->gamma[0] += b[0 * s + j] * scheme->stage_error[j];
204:     for (j = 1; j < r; j++) scheme->gamma[0] += v[0 * s + j] * scheme->gamma[j];

206:     /* Assemble H
207:     *    % " PetscInt_FMT "etermine the error estimators phi
208:        H = [[cpow(glm.c,p) + C*e.alpha] [cpow(glm.c,p+1) + C*e.beta] ...
209:                [e.xi - C*(e.gamma + 0*e.epsilon*eye(s-1,1))]]';
210:     % Paper has formula above without the 0, but that term must be left
211:     % out to satisfy the conditions they propose and to make the
212:     % example schemes work
213:     e.H = H;
214:     e.phi = (H \ [1 0 0;1 1 0;0 0 -1])';
215:     e.psi = -e.phi*C;
216:     * */
217:     for (j = 0; j < s; j++) {
218:       H[0 + j * 3] = CPowF(c[j], p);
219:       H[1 + j * 3] = CPowF(c[j], p + 1);
220:       H[2 + j * 3] = scheme->stage_error[j];
221:       for (k = 1; k < r; k++) {
222:         H[0 + j * 3] += CPowF(c[j], k - 1) * scheme->alpha[k];
223:         H[1 + j * 3] += CPowF(c[j], k - 1) * scheme->beta[k];
224:         H[2 + j * 3] -= CPowF(c[j], k - 1) * scheme->gamma[k];
225:       }
226:     }
227:     bmat[0 + 0 * ss] = 1.;
228:     bmat[0 + 1 * ss] = 0.;
229:     bmat[0 + 2 * ss] = 0.;
230:     bmat[1 + 0 * ss] = 1.;
231:     bmat[1 + 1 * ss] = 1.;
232:     bmat[1 + 2 * ss] = 0.;
233:     bmat[2 + 0 * ss] = 0.;
234:     bmat[2 + 1 * ss] = 0.;
235:     bmat[2 + 2 * ss] = -1.;
236:     m                = 3;
237:     PetscCall(PetscBLASIntCast(s, &n));
238:     PetscCall(PetscBLASIntCast(ss, &ldb));
239:     rcond = 1e-12;
240: #if defined(PETSC_USE_COMPLEX)
241:     /* ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, INFO) */
242:     PetscCallBLAS("LAPACKgelss", LAPACKgelss_(&m, &n, &m, H, &m, bmat, &ldb, sing, &rcond, &rank, workscalar, &lwork, workreal, &info));
243: #else
244:     /* DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO) */
245:     PetscCallBLAS("LAPACKgelss", LAPACKgelss_(&m, &n, &m, H, &m, bmat, &ldb, sing, &rcond, &rank, workscalar, &lwork, &info));
246: #endif
247:     PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to GELSS");
248:     PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "SVD failed to converge");

250:     for (j = 0; j < 3; j++) {
251:       for (k = 0; k < s; k++) scheme->phi[k + j * s] = bmat[k + j * ss];
252:     }

254:     /* the other part of the error estimator, psi in B,J,W 2007 */
255:     scheme->psi[0 * r + 0] = 0.;
256:     scheme->psi[1 * r + 0] = 0.;
257:     scheme->psi[2 * r + 0] = 0.;
258:     for (j = 1; j < r; j++) {
259:       scheme->psi[0 * r + j] = 0.;
260:       scheme->psi[1 * r + j] = 0.;
261:       scheme->psi[2 * r + j] = 0.;
262:       for (k = 0; k < s; k++) {
263:         scheme->psi[0 * r + j] -= CPowF(c[k], j - 1) * scheme->phi[0 * s + k];
264:         scheme->psi[1 * r + j] -= CPowF(c[k], j - 1) * scheme->phi[1 * s + k];
265:         scheme->psi[2 * r + j] -= CPowF(c[k], j - 1) * scheme->phi[2 * s + k];
266:       }
267:     }
268:     PetscCall(PetscFree7(ImV, H, bmat, workscalar, workreal, sing, ipiv));
269:   }
270:   /* Check which properties are satisfied */
271:   scheme->stiffly_accurate = PETSC_TRUE;
272:   if (scheme->c[s - 1] != 1.) scheme->stiffly_accurate = PETSC_FALSE;
273:   for (j = 0; j < s; j++)
274:     if (a[(s - 1) * s + j] != b[j]) scheme->stiffly_accurate = PETSC_FALSE;
275:   for (j = 0; j < r; j++)
276:     if (u[(s - 1) * r + j] != v[j]) scheme->stiffly_accurate = PETSC_FALSE;
277:   scheme->fsal = scheme->stiffly_accurate; /* FSAL is stronger */
278:   for (j = 0; j < s - 1; j++)
279:     if (r > 1 && b[1 * s + j] != 0.) scheme->fsal = PETSC_FALSE;
280:   if (b[1 * s + r - 1] != 1.) scheme->fsal = PETSC_FALSE;
281:   for (j = 0; j < r; j++)
282:     if (r > 1 && v[1 * r + j] != 0.) scheme->fsal = PETSC_FALSE;

284:   *inscheme = scheme;
285:   PetscFunctionReturn(PETSC_SUCCESS);
286: }

288: static PetscErrorCode TSGLLESchemeDestroy(TSGLLEScheme sc)
289: {
290:   PetscFunctionBegin;
291:   PetscCall(PetscFree5(sc->c, sc->a, sc->b, sc->u, sc->v));
292:   PetscCall(PetscFree6(sc->alpha, sc->beta, sc->gamma, sc->phi, sc->psi, sc->stage_error));
293:   PetscCall(PetscFree(sc));
294:   PetscFunctionReturn(PETSC_SUCCESS);
295: }

297: static PetscErrorCode TSGLLEDestroy_Default(TS_GLLE *gl)
298: {
299:   PetscInt i;

301:   PetscFunctionBegin;
302:   for (i = 0; i < gl->nschemes; i++) {
303:     if (gl->schemes[i]) PetscCall(TSGLLESchemeDestroy(gl->schemes[i]));
304:   }
305:   PetscCall(PetscFree(gl->schemes));
306:   gl->nschemes = 0;
307:   PetscCall(PetscMemzero(gl->type_name, sizeof(gl->type_name)));
308:   PetscFunctionReturn(PETSC_SUCCESS);
309: }

311: static PetscErrorCode TSGLLEViewTable_Private(PetscViewer viewer, PetscInt m, PetscInt n, const PetscScalar a[], const char name[])
312: {
313:   PetscBool iascii;
314:   PetscInt  i, j;

316:   PetscFunctionBegin;
317:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
318:   if (iascii) {
319:     PetscCall(PetscViewerASCIIPrintf(viewer, "%30s = [", name));
320:     for (i = 0; i < m; i++) {
321:       if (i) PetscCall(PetscViewerASCIIPrintf(viewer, "%30s   [", ""));
322:       PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
323:       for (j = 0; j < n; j++) PetscCall(PetscViewerASCIIPrintf(viewer, " %12.8g", (double)PetscRealPart(a[i * n + j])));
324:       PetscCall(PetscViewerASCIIPrintf(viewer, "]\n"));
325:       PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
326:     }
327:   }
328:   PetscFunctionReturn(PETSC_SUCCESS);
329: }

331: static PetscErrorCode TSGLLESchemeView(TSGLLEScheme sc, PetscBool view_details, PetscViewer viewer)
332: {
333:   PetscBool iascii;

335:   PetscFunctionBegin;
336:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
337:   if (iascii) {
338:     PetscCall(PetscViewerASCIIPrintf(viewer, "GL scheme p,q,r,s = %" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT "\n", sc->p, sc->q, sc->r, sc->s));
339:     PetscCall(PetscViewerASCIIPushTab(viewer));
340:     PetscCall(PetscViewerASCIIPrintf(viewer, "Stiffly accurate: %s,  FSAL: %s\n", sc->stiffly_accurate ? "yes" : "no", sc->fsal ? "yes" : "no"));
341:     PetscCall(PetscViewerASCIIPrintf(viewer, "Leading error constants: %10.3e  %10.3e  %10.3e\n", (double)PetscRealPart(sc->alpha[0]), (double)PetscRealPart(sc->beta[0]), (double)PetscRealPart(sc->gamma[0])));
342:     PetscCall(TSGLLEViewTable_Private(viewer, 1, sc->s, sc->c, "Abscissas c"));
343:     if (view_details) {
344:       PetscCall(TSGLLEViewTable_Private(viewer, sc->s, sc->s, sc->a, "A"));
345:       PetscCall(TSGLLEViewTable_Private(viewer, sc->r, sc->s, sc->b, "B"));
346:       PetscCall(TSGLLEViewTable_Private(viewer, sc->s, sc->r, sc->u, "U"));
347:       PetscCall(TSGLLEViewTable_Private(viewer, sc->r, sc->r, sc->v, "V"));

349:       PetscCall(TSGLLEViewTable_Private(viewer, 3, sc->s, sc->phi, "Error estimate phi"));
350:       PetscCall(TSGLLEViewTable_Private(viewer, 3, sc->r, sc->psi, "Error estimate psi"));
351:       PetscCall(TSGLLEViewTable_Private(viewer, 1, sc->r, sc->alpha, "Modify alpha"));
352:       PetscCall(TSGLLEViewTable_Private(viewer, 1, sc->r, sc->beta, "Modify beta"));
353:       PetscCall(TSGLLEViewTable_Private(viewer, 1, sc->r, sc->gamma, "Modify gamma"));
354:       PetscCall(TSGLLEViewTable_Private(viewer, 1, sc->s, sc->stage_error, "Stage error xi"));
355:     }
356:     PetscCall(PetscViewerASCIIPopTab(viewer));
357:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Viewer type %s not supported", ((PetscObject)viewer)->type_name);
358:   PetscFunctionReturn(PETSC_SUCCESS);
359: }

361: static PetscErrorCode TSGLLEEstimateHigherMoments_Default(TSGLLEScheme sc, PetscReal h, Vec Ydot[], Vec Xold[], Vec hm[])
362: {
363:   PetscInt i;

365:   PetscFunctionBegin;
366:   PetscCheck(sc->r <= 64 && sc->s <= 64, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Ridiculous number of stages or items passed between stages");
367:   /* build error vectors*/
368:   for (i = 0; i < 3; i++) {
369:     PetscScalar phih[64];
370:     PetscInt    j;
371:     for (j = 0; j < sc->s; j++) phih[j] = sc->phi[i * sc->s + j] * h;
372:     PetscCall(VecZeroEntries(hm[i]));
373:     PetscCall(VecMAXPY(hm[i], sc->s, phih, Ydot));
374:     PetscCall(VecMAXPY(hm[i], sc->r, &sc->psi[i * sc->r], Xold));
375:   }
376:   PetscFunctionReturn(PETSC_SUCCESS);
377: }

379: static PetscErrorCode TSGLLECompleteStep_Rescale(TSGLLEScheme sc, PetscReal h, TSGLLEScheme next_sc, PetscReal next_h, Vec Ydot[], Vec Xold[], Vec X[])
380: {
381:   PetscScalar brow[32], vrow[32];
382:   PetscInt    i, j, r, s;

384:   PetscFunctionBegin;
385:   /* Build the new solution from (X,Ydot) */
386:   r = sc->r;
387:   s = sc->s;
388:   for (i = 0; i < r; i++) {
389:     PetscCall(VecZeroEntries(X[i]));
390:     for (j = 0; j < s; j++) brow[j] = h * sc->b[i * s + j];
391:     PetscCall(VecMAXPY(X[i], s, brow, Ydot));
392:     for (j = 0; j < r; j++) vrow[j] = sc->v[i * r + j];
393:     PetscCall(VecMAXPY(X[i], r, vrow, Xold));
394:   }
395:   PetscFunctionReturn(PETSC_SUCCESS);
396: }

398: static PetscErrorCode TSGLLECompleteStep_RescaleAndModify(TSGLLEScheme sc, PetscReal h, TSGLLEScheme next_sc, PetscReal next_h, Vec Ydot[], Vec Xold[], Vec X[])
399: {
400:   PetscScalar brow[32], vrow[32];
401:   PetscReal   ratio;
402:   PetscInt    i, j, p, r, s;

404:   PetscFunctionBegin;
405:   /* Build the new solution from (X,Ydot) */
406:   p     = sc->p;
407:   r     = sc->r;
408:   s     = sc->s;
409:   ratio = next_h / h;
410:   for (i = 0; i < r; i++) {
411:     PetscCall(VecZeroEntries(X[i]));
412:     for (j = 0; j < s; j++) {
413:       brow[j] = h * (PetscPowRealInt(ratio, i) * sc->b[i * s + j] + (PetscPowRealInt(ratio, i) - PetscPowRealInt(ratio, p + 1)) * (+sc->alpha[i] * sc->phi[0 * s + j]) + (PetscPowRealInt(ratio, i) - PetscPowRealInt(ratio, p + 2)) * (+sc->beta[i] * sc->phi[1 * s + j] + sc->gamma[i] * sc->phi[2 * s + j]));
414:     }
415:     PetscCall(VecMAXPY(X[i], s, brow, Ydot));
416:     for (j = 0; j < r; j++) {
417:       vrow[j] = (PetscPowRealInt(ratio, i) * sc->v[i * r + j] + (PetscPowRealInt(ratio, i) - PetscPowRealInt(ratio, p + 1)) * (+sc->alpha[i] * sc->psi[0 * r + j]) + (PetscPowRealInt(ratio, i) - PetscPowRealInt(ratio, p + 2)) * (+sc->beta[i] * sc->psi[1 * r + j] + sc->gamma[i] * sc->psi[2 * r + j]));
418:     }
419:     PetscCall(VecMAXPY(X[i], r, vrow, Xold));
420:   }
421:   if (r < next_sc->r) {
422:     PetscCheck(r + 1 == next_sc->r, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cannot accommodate jump in r greater than 1");
423:     PetscCall(VecZeroEntries(X[r]));
424:     for (j = 0; j < s; j++) brow[j] = h * PetscPowRealInt(ratio, p + 1) * sc->phi[0 * s + j];
425:     PetscCall(VecMAXPY(X[r], s, brow, Ydot));
426:     for (j = 0; j < r; j++) vrow[j] = PetscPowRealInt(ratio, p + 1) * sc->psi[0 * r + j];
427:     PetscCall(VecMAXPY(X[r], r, vrow, Xold));
428:   }
429:   PetscFunctionReturn(PETSC_SUCCESS);
430: }

432: static PetscErrorCode TSGLLECreate_IRKS(TS ts)
433: {
434:   TS_GLLE *gl = (TS_GLLE *)ts->data;

436:   PetscFunctionBegin;
437:   gl->Destroy               = TSGLLEDestroy_Default;
438:   gl->EstimateHigherMoments = TSGLLEEstimateHigherMoments_Default;
439:   gl->CompleteStep          = TSGLLECompleteStep_RescaleAndModify;
440:   PetscCall(PetscMalloc1(10, &gl->schemes));
441:   gl->nschemes = 0;

443:   {
444:     /* p=1,q=1, r=s=2, A- and L-stable with error estimates of order 2 and 3
445:     * Listed in Butcher & Podhaisky 2006. On error estimation in general linear methods for stiff ODE.
446:     * irks(0.3,0,[.3,1],[1],1)
447:     * Note: can be made to have classical order (not stage order) 2 by replacing 0.3 with 1-sqrt(1/2)
448:     * but doing so would sacrifice the error estimator.
449:     */
450:     const PetscScalar c[2]    = {3. / 10., 1.};
451:     const PetscScalar a[2][2] = {
452:       {3. / 10., 0       },
453:       {7. / 10., 3. / 10.}
454:     };
455:     const PetscScalar b[2][2] = {
456:       {7. / 10., 3. / 10.},
457:       {0,        1       }
458:     };
459:     const PetscScalar u[2][2] = {
460:       {1, 0},
461:       {1, 0}
462:     };
463:     const PetscScalar v[2][2] = {
464:       {1, 0},
465:       {0, 0}
466:     };
467:     PetscCall(TSGLLESchemeCreate(1, 1, 2, 2, c, *a, *b, *u, *v, &gl->schemes[gl->nschemes++]));
468:   }

470:   {
471:     /* p=q=2, r=s=3: irks(4/9,0,[1:3]/3,[0.33852],1) */
472:     /* http://www.math.auckland.ac.nz/~hpod/atlas/i2a.html */
473:     const PetscScalar c[3]    = {1. / 3., 2. / 3., 1};
474:     const PetscScalar a[3][3] = {
475:       {4. / 9.,              0,                     0      },
476:       {1.03750643704090e+00, 4. / 9.,               0      },
477:       {7.67024779410304e-01, -3.81140216918943e-01, 4. / 9.}
478:     };
479:     const PetscScalar b[3][3] = {
480:       {0.767024779410304,  -0.381140216918943, 4. / 9.          },
481:       {0.000000000000000,  0.000000000000000,  1.000000000000000},
482:       {-2.075048385225385, 0.621728385225383,  1.277197204924873}
483:     };
484:     const PetscScalar u[3][3] = {
485:       {1.0000000000000000, -0.1111111111111109, -0.0925925925925922},
486:       {1.0000000000000000, -0.8152842148186744, -0.4199095530877056},
487:       {1.0000000000000000, 0.1696709930641948,  0.0539741070314165 }
488:     };
489:     const PetscScalar v[3][3] = {
490:       {1.0000000000000000, 0.1696709930641948, 0.0539741070314165},
491:       {0.000000000000000,  0.000000000000000,  0.000000000000000 },
492:       {0.000000000000000,  0.176122795075129,  0.000000000000000 }
493:     };
494:     PetscCall(TSGLLESchemeCreate(2, 2, 3, 3, c, *a, *b, *u, *v, &gl->schemes[gl->nschemes++]));
495:   }
496:   {
497:     /* p=q=3, r=s=4: irks(9/40,0,[1:4]/4,[0.3312 1.0050],[0.49541 1;1 0]) */
498:     const PetscScalar c[4]    = {0.25, 0.5, 0.75, 1.0};
499:     const PetscScalar a[4][4] = {
500:       {9. / 40.,             0,                     0,                 0       },
501:       {2.11286958887701e-01, 9. / 40.,              0,                 0       },
502:       {9.46338294287584e-01, -3.42942861246094e-01, 9. / 40.,          0       },
503:       {0.521490453970721,    -0.662474225622980,    0.490476425459734, 9. / 40.}
504:     };
505:     const PetscScalar b[4][4] = {
506:       {0.521490453970721,  -0.662474225622980, 0.490476425459734,  9. / 40.         },
507:       {0.000000000000000,  0.000000000000000,  0.000000000000000,  1.000000000000000},
508:       {-0.084677029310348, 1.390757514776085,  -1.568157386206001, 2.023192696767826},
509:       {0.465383797936408,  1.478273530625148,  -1.930836081010182, 1.644872111193354}
510:     };
511:     const PetscScalar u[4][4] = {
512:       {1.00000000000000000, 0.02500000000001035,  -0.02499999999999053, -0.00442708333332865},
513:       {1.00000000000000000, 0.06371304111232945,  -0.04032173972189845, -0.01389438413189452},
514:       {1.00000000000000000, -0.07839543304147778, 0.04738685705116663,  0.02032603595928376 },
515:       {1.00000000000000000, 0.42550734619251651,  0.10800718022400080,  -0.01726712647760034}
516:     };
517:     const PetscScalar v[4][4] = {
518:       {1.00000000000000000, 0.42550734619251651, 0.10800718022400080, -0.01726712647760034},
519:       {0.000000000000000,   0.000000000000000,   0.000000000000000,   0.000000000000000   },
520:       {0.000000000000000,   -1.761115796027561,  -0.521284157173780,  0.258249384305463   },
521:       {0.000000000000000,   -1.657693358744728,  -1.052227765232394,  0.521284157173780   }
522:     };
523:     PetscCall(TSGLLESchemeCreate(3, 3, 4, 4, c, *a, *b, *u, *v, &gl->schemes[gl->nschemes++]));
524:   }
525:   {
526:     /* p=q=4, r=s=5:
527:           irks(3/11,0,[1:5]/5, [0.1715   -0.1238    0.6617],...
528:           [ -0.0812    0.4079    1.0000
529:              1.0000         0         0
530:              0.8270    1.0000         0])
531:     */
532:     const PetscScalar c[5]    = {0.2, 0.4, 0.6, 0.8, 1.0};
533:     const PetscScalar a[5][5] = {
534:       {2.72727272727352e-01,  0.00000000000000e+00,  0.00000000000000e+00,  0.00000000000000e+00, 0.00000000000000e+00},
535:       {-1.03980153733431e-01, 2.72727272727405e-01,  0.00000000000000e+00,  0.00000000000000e+00, 0.00000000000000e+00},
536:       {-1.58615400341492e+00, 7.44168951881122e-01,  2.72727272727309e-01,  0.00000000000000e+00, 0.00000000000000e+00},
537:       {-8.73658042865628e-01, 5.37884671894595e-01,  -1.63298538799523e-01, 2.72727272726996e-01, 0.00000000000000e+00},
538:       {2.95489397443992e-01,  -1.18481693910097e+00, -6.68029812659953e-01, 1.00716687860943e+00, 2.72727272727288e-01}
539:     };
540:     const PetscScalar b[5][5] = {
541:       {2.95489397443992e-01,  -1.18481693910097e+00, -6.68029812659953e-01, 1.00716687860943e+00,  2.72727272727288e-01},
542:       {0.00000000000000e+00,  1.11022302462516e-16,  -2.22044604925031e-16, 0.00000000000000e+00,  1.00000000000000e+00},
543:       {-4.05882503986005e+00, -4.00924006567769e+00, -1.38930610972481e+00, 4.45223930308488e+00,  6.32331093108427e-01},
544:       {8.35690179937017e+00,  -2.26640927349732e+00, 6.86647884973826e+00,  -5.22595158025740e+00, 4.50893068837431e+00},
545:       {1.27656267027479e+01,  2.80882153840821e+00,  8.91173096522890e+00,  -1.07936444078906e+01, 4.82534148988854e+00}
546:     };
547:     const PetscScalar u[5][5] = {
548:       {1.00000000000000e+00, -7.27272727273551e-02, -3.45454545454419e-02, -4.12121212119565e-03, -2.96969696964014e-04},
549:       {1.00000000000000e+00, 2.31252881006154e-01,  -8.29487834416481e-03, -9.07191207681020e-03, -1.70378403743473e-03},
550:       {1.00000000000000e+00, 1.16925777880663e+00,  3.59268562942635e-02,  -4.09013451730615e-02, -1.02411119670164e-02},
551:       {1.00000000000000e+00, 1.02634463704356e+00,  1.59375044913405e-01,  1.89673015035370e-03,  -4.89987231897569e-03},
552:       {1.00000000000000e+00, 1.27746320298021e+00,  2.37186008132728e-01,  -8.28694373940065e-02, -5.34396510196430e-02}
553:     };
554:     const PetscScalar v[5][5] = {
555:       {1.00000000000000e+00, 1.27746320298021e+00,  2.37186008132728e-01,  -8.28694373940065e-02, -5.34396510196430e-02},
556:       {0.00000000000000e+00, -1.77635683940025e-15, -1.99840144432528e-15, -9.99200722162641e-16, -3.33066907387547e-16},
557:       {0.00000000000000e+00, 4.37280081906924e+00,  5.49221645016377e-02,  -8.88913177394943e-02, 1.12879077989154e-01 },
558:       {0.00000000000000e+00, -1.22399504837280e+01, -5.21287338448645e+00, -8.03952325565291e-01, 4.60298678047147e-01 },
559:       {0.00000000000000e+00, -1.85178762883829e+01, -5.21411849862624e+00, -1.04283436528809e+00, 7.49030161063651e-01 }
560:     };
561:     PetscCall(TSGLLESchemeCreate(4, 4, 5, 5, c, *a, *b, *u, *v, &gl->schemes[gl->nschemes++]));
562:   }
563:   {
564:     /* p=q=5, r=s=6;
565:        irks(1/3,0,[1:6]/6,...
566:           [-0.0489    0.4228   -0.8814    0.9021],...
567:           [-0.3474   -0.6617    0.6294    0.2129
568:             0.0044   -0.4256   -0.1427   -0.8936
569:            -0.8267    0.4821    0.1371   -0.2557
570:            -0.4426   -0.3855   -0.7514    0.3014])
571:     */
572:     const PetscScalar c[6]    = {1. / 6, 2. / 6, 3. / 6, 4. / 6, 5. / 6, 1.};
573:     const PetscScalar a[6][6] = {
574:       {3.33333333333940e-01,  0,                     0,                     0,                     0,                    0                   },
575:       {-8.64423857333350e-02, 3.33333333332888e-01,  0,                     0,                     0,                    0                   },
576:       {-2.16850174258252e+00, -2.23619072028839e+00, 3.33333333335204e-01,  0,                     0,                    0                   },
577:       {-4.73160970138997e+00, -3.89265344629268e+00, -2.76318716520933e-01, 3.33333333335759e-01,  0,                    0                   },
578:       {-6.75187540297338e+00, -7.90756533769377e+00, 7.90245051802259e-01,  -4.48352364517632e-01, 3.33333333328483e-01, 0                   },
579:       {-4.26488287921548e+00, -1.19320395589302e+01, 3.38924509887755e+00,  -2.23969848002481e+00, 6.62807710124007e-01, 3.33333333335440e-01}
580:     };
581:     const PetscScalar b[6][6] = {
582:       {-4.26488287921548e+00, -1.19320395589302e+01, 3.38924509887755e+00,  -2.23969848002481e+00, 6.62807710124007e-01,  3.33333333335440e-01 },
583:       {-8.88178419700125e-16, 4.44089209850063e-16,  -1.54737334057131e-15, -8.88178419700125e-16, 0.00000000000000e+00,  1.00000000000001e+00 },
584:       {-2.87780425770651e+01, -1.13520448264971e+01, 2.62002318943161e+01,  2.56943874812797e+01,  -3.06702268304488e+01, 6.68067773510103e+00 },
585:       {5.47971245256474e+01,  6.80366875868284e+01,  -6.50952588861999e+01, -8.28643975339097e+01, 8.17416943896414e+01,  -1.17819043489036e+01},
586:       {-2.33332114788869e+02, 6.12942539462634e+01,  -4.91850135865944e+01, 1.82716844135480e+02,  -1.29788173979395e+02, 3.09968095651099e+01 },
587:       {-1.72049132343751e+02, 8.60194713593999e+00,  7.98154219170200e-01,  1.50371386053218e+02,  -1.18515423962066e+02, 2.50898277784663e+01 }
588:     };
589:     const PetscScalar u[6][6] = {
590:       {1.00000000000000e+00, -1.66666666666870e-01, -4.16666666664335e-02, -3.85802469124815e-03, -2.25051440302250e-04, -9.64506172339142e-06},
591:       {1.00000000000000e+00, 8.64423857327162e-02,  -4.11484912671353e-02, -1.11450903217645e-02, -1.47651050487126e-03, -1.34395070766826e-04},
592:       {1.00000000000000e+00, 4.57135912953434e+00,  1.06514719719137e+00,  1.33517564218007e-01,  1.11365952968659e-02,  6.12382756769504e-04 },
593:       {1.00000000000000e+00, 9.23391519753404e+00,  2.22431212392095e+00,  2.91823807741891e-01,  2.52058456411084e-02,  1.22800542949647e-03 },
594:       {1.00000000000000e+00, 1.48175480533865e+01,  3.73439117461835e+00,  5.14648336541804e-01,  4.76430038853402e-02,  2.56798515502156e-03 },
595:       {1.00000000000000e+00, 1.50512347758335e+01,  4.10099701165164e+00,  5.66039141003603e-01,  3.91213893800891e-02,  -2.99136269067853e-03}
596:     };
597:     const PetscScalar v[6][6] = {
598:       {1.00000000000000e+00, 1.50512347758335e+01,  4.10099701165164e+00,  5.66039141003603e-01,  3.91213893800891e-02,  -2.99136269067853e-03},
599:       {0.00000000000000e+00, -4.88498130835069e-15, -6.43929354282591e-15, -3.55271367880050e-15, -1.22124532708767e-15, -3.12250225675825e-16},
600:       {0.00000000000000e+00, 1.22250171233141e+01,  -1.77150760606169e+00, 3.54516769879390e-01,  6.22298845883398e-01,  2.31647447450276e-01 },
601:       {0.00000000000000e+00, -4.48339457331040e+01, -3.57363126641880e-01, 5.18750173123425e-01,  6.55727990241799e-02,  1.63175368287079e-01 },
602:       {0.00000000000000e+00, 1.37297394708005e+02,  -1.60145272991317e+00, -5.05319555199441e+00, 1.55328940390990e-01,  9.16629423682464e-01 },
603:       {0.00000000000000e+00, 1.05703241119022e+02,  -1.16610260983038e+00, -2.99767252773859e+00, -1.13472315553890e-01, 1.09742849254729e+00 }
604:     };
605:     PetscCall(TSGLLESchemeCreate(5, 5, 6, 6, c, *a, *b, *u, *v, &gl->schemes[gl->nschemes++]));
606:   }
607:   PetscFunctionReturn(PETSC_SUCCESS);
608: }

610: /*@
611:   TSGLLESetType - sets the class of general linear method, `TSGLLE` to use for time-stepping

613:   Collective

615:   Input Parameters:
616: + ts   - the `TS` context
617: - type - a method

619:   Options Database Key:
620: . -ts_gl_type <type> - sets the method, use -help for a list of available method (e.g. irks)

622:   Level: intermediate

624:   Notes:
625:   See "petsc/include/petscts.h" for available methods (for instance)
626: .    TSGLLE_IRKS - Diagonally implicit methods with inherent Runge-Kutta stability (for stiff problems)

628:   Normally, it is best to use the `TSSetFromOptions()` command and then set the `TSGLLE` type
629:   from the options database rather than by using this routine.  Using the options database
630:   provides the user with maximum flexibility in evaluating the many different solvers.  The
631:   `TSGLLESetType()` routine is provided for those situations where it is necessary to set the
632:   timestepping solver independently of the command line or options database.  This might be the
633:   case, for example, when the choice of solver changes during the execution of the program, and
634:   the user's application is taking responsibility for choosing the appropriate method.

636: .seealso: [](ch_ts), `TS`, `TSGLLEType`, `TSGLLE`
637: @*/
638: PetscErrorCode TSGLLESetType(TS ts, TSGLLEType type)
639: {
640:   PetscFunctionBegin;
642:   PetscAssertPointer(type, 2);
643:   PetscTryMethod(ts, "TSGLLESetType_C", (TS, TSGLLEType), (ts, type));
644:   PetscFunctionReturn(PETSC_SUCCESS);
645: }

647: /*@C
648:   TSGLLESetAcceptType - sets the acceptance test for `TSGLLE`

650:   Logically Collective

652:   Input Parameters:
653: + ts   - the `TS` context
654: - type - the type

656:   Options Database Key:
657: . -ts_gl_accept_type <type> - sets the method used to determine whether to accept or reject a step

659:   Level: intermediate

661:   Notes:
662:   Time integrators that need to control error must have the option to reject a time step based
663:   on local error estimates. This function allows different schemes to be set.

665: .seealso: [](ch_ts), `TS`, `TSGLLE`, `TSGLLEAcceptRegister()`, `TSGLLEAdapt`
666: @*/
667: PetscErrorCode TSGLLESetAcceptType(TS ts, TSGLLEAcceptType type)
668: {
669:   PetscFunctionBegin;
671:   PetscAssertPointer(type, 2);
672:   PetscTryMethod(ts, "TSGLLESetAcceptType_C", (TS, TSGLLEAcceptType), (ts, type));
673:   PetscFunctionReturn(PETSC_SUCCESS);
674: }

676: /*@
677:   TSGLLEGetAdapt - gets the `TSGLLEAdapt` object from the `TS`

679:   Not Collective

681:   Input Parameter:
682: . ts - the `TS` context

684:   Output Parameter:
685: . adapt - the `TSGLLEAdapt` context

687:   Level: advanced

689:   Note:
690:   This allows the user set options on the `TSGLLEAdapt` object. Usually it is better to do this
691:   using the options database, so this function is rarely needed.

693: .seealso: [](ch_ts), `TS`, `TSGLLE`, `TSGLLEAdapt`, `TSGLLEAdaptRegister()`
694: @*/
695: PetscErrorCode TSGLLEGetAdapt(TS ts, TSGLLEAdapt *adapt)
696: {
697:   PetscFunctionBegin;
699:   PetscAssertPointer(adapt, 2);
700:   PetscUseMethod(ts, "TSGLLEGetAdapt_C", (TS, TSGLLEAdapt *), (ts, adapt));
701:   PetscFunctionReturn(PETSC_SUCCESS);
702: }

704: static PetscErrorCode TSGLLEAccept_Always(TS ts, PetscReal tleft, PetscReal h, const PetscReal enorms[], PetscBool *accept)
705: {
706:   PetscFunctionBegin;
707:   *accept = PETSC_TRUE;
708:   PetscFunctionReturn(PETSC_SUCCESS);
709: }

711: static PetscErrorCode TSGLLEUpdateWRMS(TS ts)
712: {
713:   TS_GLLE     *gl = (TS_GLLE *)ts->data;
714:   PetscScalar *x, *w;
715:   PetscInt     n, i;

717:   PetscFunctionBegin;
718:   PetscCall(VecGetArray(gl->X[0], &x));
719:   PetscCall(VecGetArray(gl->W, &w));
720:   PetscCall(VecGetLocalSize(gl->W, &n));
721:   for (i = 0; i < n; i++) w[i] = 1. / (gl->wrms_atol + gl->wrms_rtol * PetscAbsScalar(x[i]));
722:   PetscCall(VecRestoreArray(gl->X[0], &x));
723:   PetscCall(VecRestoreArray(gl->W, &w));
724:   PetscFunctionReturn(PETSC_SUCCESS);
725: }

727: static PetscErrorCode TSGLLEVecNormWRMS(TS ts, Vec X, PetscReal *nrm)
728: {
729:   TS_GLLE     *gl = (TS_GLLE *)ts->data;
730:   PetscScalar *x, *w;
731:   PetscReal    sum = 0.0, gsum;
732:   PetscInt     n, N, i;

734:   PetscFunctionBegin;
735:   PetscCall(VecGetArray(X, &x));
736:   PetscCall(VecGetArray(gl->W, &w));
737:   PetscCall(VecGetLocalSize(gl->W, &n));
738:   for (i = 0; i < n; i++) sum += PetscAbsScalar(PetscSqr(x[i] * w[i]));
739:   PetscCall(VecRestoreArray(X, &x));
740:   PetscCall(VecRestoreArray(gl->W, &w));
741:   PetscCallMPI(MPIU_Allreduce(&sum, &gsum, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)ts)));
742:   PetscCall(VecGetSize(gl->W, &N));
743:   *nrm = PetscSqrtReal(gsum / (1. * N));
744:   PetscFunctionReturn(PETSC_SUCCESS);
745: }

747: static PetscErrorCode TSGLLESetType_GLLE(TS ts, TSGLLEType type)
748: {
749:   PetscBool same;
750:   TS_GLLE  *gl = (TS_GLLE *)ts->data;
751:   PetscErrorCode (*r)(TS);

753:   PetscFunctionBegin;
754:   if (gl->type_name[0]) {
755:     PetscCall(PetscStrcmp(gl->type_name, type, &same));
756:     if (same) PetscFunctionReturn(PETSC_SUCCESS);
757:     PetscCall((*gl->Destroy)(gl));
758:   }

760:   PetscCall(PetscFunctionListFind(TSGLLEList, type, &r));
761:   PetscCheck(r, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown TSGLLE type \"%s\" given", type);
762:   PetscCall((*r)(ts));
763:   PetscCall(PetscStrncpy(gl->type_name, type, sizeof(gl->type_name)));
764:   PetscFunctionReturn(PETSC_SUCCESS);
765: }

767: static PetscErrorCode TSGLLESetAcceptType_GLLE(TS ts, TSGLLEAcceptType type)
768: {
769:   TSGLLEAcceptFn *r;
770:   TS_GLLE        *gl = (TS_GLLE *)ts->data;

772:   PetscFunctionBegin;
773:   PetscCall(PetscFunctionListFind(TSGLLEAcceptList, type, &r));
774:   PetscCheck(r, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown TSGLLEAccept type \"%s\" given", type);
775:   gl->Accept = r;
776:   PetscCall(PetscStrncpy(gl->accept_name, type, sizeof(gl->accept_name)));
777:   PetscFunctionReturn(PETSC_SUCCESS);
778: }

780: static PetscErrorCode TSGLLEGetAdapt_GLLE(TS ts, TSGLLEAdapt *adapt)
781: {
782:   TS_GLLE *gl = (TS_GLLE *)ts->data;

784:   PetscFunctionBegin;
785:   if (!gl->adapt) {
786:     PetscCall(TSGLLEAdaptCreate(PetscObjectComm((PetscObject)ts), &gl->adapt));
787:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)gl->adapt, (PetscObject)ts, 1));
788:   }
789:   *adapt = gl->adapt;
790:   PetscFunctionReturn(PETSC_SUCCESS);
791: }

793: static PetscErrorCode TSGLLEChooseNextScheme(TS ts, PetscReal h, const PetscReal hmnorm[], PetscInt *next_scheme, PetscReal *next_h, PetscBool *finish)
794: {
795:   TS_GLLE  *gl = (TS_GLLE *)ts->data;
796:   PetscInt  i, n, cur_p, cur, next_sc, candidates[64], orders[64];
797:   PetscReal errors[64], costs[64], tleft;

799:   PetscFunctionBegin;
800:   cur   = -1;
801:   cur_p = gl->schemes[gl->current_scheme]->p;
802:   tleft = ts->max_time - (ts->ptime + ts->time_step);
803:   for (i = 0, n = 0; i < gl->nschemes; i++) {
804:     TSGLLEScheme sc = gl->schemes[i];
805:     if (sc->p < gl->min_order || gl->max_order < sc->p) continue;
806:     if (sc->p == cur_p - 1) errors[n] = PetscAbsScalar(sc->alpha[0]) * hmnorm[0];
807:     else if (sc->p == cur_p) errors[n] = PetscAbsScalar(sc->alpha[0]) * hmnorm[1];
808:     else if (sc->p == cur_p + 1) errors[n] = PetscAbsScalar(sc->alpha[0]) * (hmnorm[2] + hmnorm[3]);
809:     else continue;
810:     candidates[n] = i;
811:     orders[n]     = PetscMin(sc->p, sc->q); /* order of global truncation error */
812:     costs[n]      = sc->s;                  /* estimate the cost as the number of stages */
813:     if (i == gl->current_scheme) cur = n;
814:     n++;
815:   }
816:   PetscCheck(cur >= 0 && gl->nschemes > cur, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Current scheme not found in scheme list");
817:   PetscCall(TSGLLEAdaptChoose(gl->adapt, n, orders, errors, costs, cur, h, tleft, &next_sc, next_h, finish));
818:   *next_scheme = candidates[next_sc];
819:   PetscCall(PetscInfo(ts, "Adapt chose scheme %" PetscInt_FMT " (%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT ",%" PetscInt_FMT ") with step size %6.2e, finish=%s\n", *next_scheme, gl->schemes[*next_scheme]->p, gl->schemes[*next_scheme]->q,
820:                       gl->schemes[*next_scheme]->r, gl->schemes[*next_scheme]->s, (double)*next_h, PetscBools[*finish]));
821:   PetscFunctionReturn(PETSC_SUCCESS);
822: }

824: static PetscErrorCode TSGLLEGetMaxSizes(TS ts, PetscInt *max_r, PetscInt *max_s)
825: {
826:   TS_GLLE *gl = (TS_GLLE *)ts->data;

828:   PetscFunctionBegin;
829:   *max_r = gl->schemes[gl->nschemes - 1]->r;
830:   *max_s = gl->schemes[gl->nschemes - 1]->s;
831:   PetscFunctionReturn(PETSC_SUCCESS);
832: }

834: static PetscErrorCode TSSolve_GLLE(TS ts)
835: {
836:   TS_GLLE            *gl = (TS_GLLE *)ts->data;
837:   PetscInt            i, k, its, lits, max_r, max_s;
838:   PetscBool           final_step, finish;
839:   SNESConvergedReason snesreason;

841:   PetscFunctionBegin;
842:   PetscCall(TSMonitor(ts, ts->steps, ts->ptime, ts->vec_sol));

844:   PetscCall(TSGLLEGetMaxSizes(ts, &max_r, &max_s));
845:   PetscCall(VecCopy(ts->vec_sol, gl->X[0]));
846:   for (i = 1; i < max_r; i++) PetscCall(VecZeroEntries(gl->X[i]));
847:   PetscCall(TSGLLEUpdateWRMS(ts));

849:   if (0) {
850:     /* Find consistent initial data for DAE */
851:     gl->stage_time = ts->ptime + ts->time_step;
852:     gl->scoeff     = 1.;
853:     gl->stage      = 0;

855:     PetscCall(VecCopy(ts->vec_sol, gl->Z));
856:     PetscCall(VecCopy(ts->vec_sol, gl->Y));
857:     PetscCall(SNESSolve(ts->snes, NULL, gl->Y));
858:     PetscCall(SNESGetIterationNumber(ts->snes, &its));
859:     PetscCall(SNESGetLinearSolveIterations(ts->snes, &lits));
860:     PetscCall(SNESGetConvergedReason(ts->snes, &snesreason));

862:     ts->snes_its += its;
863:     ts->ksp_its += lits;
864:     if (snesreason < 0 && ts->max_snes_failures != PETSC_UNLIMITED && ++ts->num_snes_failures >= ts->max_snes_failures) {
865:       ts->reason = TS_DIVERGED_NONLINEAR_SOLVE;
866:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", nonlinear solve failures %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, ts->num_snes_failures));
867:       PetscFunctionReturn(PETSC_SUCCESS);
868:     }
869:   }

871:   PetscCheck(gl->current_scheme >= 0, PETSC_COMM_SELF, PETSC_ERR_ORDER, "A starting scheme has not been provided");

873:   for (k = 0, final_step = PETSC_FALSE, finish = PETSC_FALSE; k < ts->max_steps && !finish; k++) {
874:     PetscInt           j, r, s, next_scheme = 0, rejections;
875:     PetscReal          h, hmnorm[4], enorm[3], next_h;
876:     PetscBool          accept;
877:     const PetscScalar *c, *a, *u;
878:     Vec               *X, *Ydot, Y;
879:     TSGLLEScheme       scheme = gl->schemes[gl->current_scheme];

881:     r    = scheme->r;
882:     s    = scheme->s;
883:     c    = scheme->c;
884:     a    = scheme->a;
885:     u    = scheme->u;
886:     h    = ts->time_step;
887:     X    = gl->X;
888:     Ydot = gl->Ydot;
889:     Y    = gl->Y;

891:     if (ts->ptime > ts->max_time) break;

893:     /*
894:       We only call PreStep at the start of each STEP, not each STAGE.  This is because it is
895:       possible to fail (have to restart a step) after multiple stages.
896:     */
897:     PetscCall(TSPreStep(ts));

899:     rejections = 0;
900:     while (1) {
901:       for (i = 0; i < s; i++) {
902:         PetscScalar shift;
903:         gl->scoeff     = 1. / PetscRealPart(a[i * s + i]);
904:         shift          = gl->scoeff / ts->time_step;
905:         gl->stage      = i;
906:         gl->stage_time = ts->ptime + PetscRealPart(c[i]) * h;

908:         /*
909:         * Stage equation: Y = h A Y' + U X
910:         * We assume that A is lower-triangular so that we can solve the stages (Y,Y') sequentially
911:         * Build the affine vector z_i = -[1/(h a_ii)](h sum_j a_ij y'_j + sum_j u_ij x_j)
912:         * Then y'_i = z + 1/(h a_ii) y_i
913:         */
914:         PetscCall(VecZeroEntries(gl->Z));
915:         for (j = 0; j < r; j++) PetscCall(VecAXPY(gl->Z, -shift * u[i * r + j], X[j]));
916:         for (j = 0; j < i; j++) PetscCall(VecAXPY(gl->Z, -shift * h * a[i * s + j], Ydot[j]));
917:         /* Note: Z is used within function evaluation, Ydot = Z + shift*Y */

919:         /* Compute an estimate of Y to start Newton iteration */
920:         if (gl->extrapolate) {
921:           if (i == 0) {
922:             /* Linear extrapolation on the first stage */
923:             PetscCall(VecWAXPY(Y, c[i] * h, X[1], X[0]));
924:           } else {
925:             /* Linear extrapolation from the last stage */
926:             PetscCall(VecAXPY(Y, (c[i] - c[i - 1]) * h, Ydot[i - 1]));
927:           }
928:         } else if (i == 0) { /* Directly use solution from the last step, otherwise reuse the last stage (do nothing) */
929:           PetscCall(VecCopy(X[0], Y));
930:         }

932:         /* Solve this stage (Ydot[i] is computed during function evaluation) */
933:         PetscCall(SNESSolve(ts->snes, NULL, Y));
934:         PetscCall(SNESGetIterationNumber(ts->snes, &its));
935:         PetscCall(SNESGetLinearSolveIterations(ts->snes, &lits));
936:         PetscCall(SNESGetConvergedReason(ts->snes, &snesreason));
937:         ts->snes_its += its;
938:         ts->ksp_its += lits;
939:         if (snesreason < 0 && ts->max_snes_failures != PETSC_UNLIMITED && ++ts->num_snes_failures >= ts->max_snes_failures) {
940:           ts->reason = TS_DIVERGED_NONLINEAR_SOLVE;
941:           PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", nonlinear solve failures %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, ts->num_snes_failures));
942:           PetscFunctionReturn(PETSC_SUCCESS);
943:         }
944:       }

946:       gl->stage_time = ts->ptime + ts->time_step;

948:       PetscCall((*gl->EstimateHigherMoments)(scheme, h, Ydot, gl->X, gl->himom));
949:       /* hmnorm[i] = h^{p+i}x^{(p+i)} with i=0,1,2; hmnorm[3] = h^{p+2}(dx'/dx) x^{(p+1)} */
950:       for (i = 0; i < 3; i++) PetscCall(TSGLLEVecNormWRMS(ts, gl->himom[i], &hmnorm[i + 1]));
951:       enorm[0] = PetscRealPart(scheme->alpha[0]) * hmnorm[1];
952:       enorm[1] = PetscRealPart(scheme->beta[0]) * hmnorm[2];
953:       enorm[2] = PetscRealPart(scheme->gamma[0]) * hmnorm[3];
954:       PetscCall((*gl->Accept)(ts, ts->max_time - gl->stage_time, h, enorm, &accept));
955:       if (accept) goto accepted;
956:       rejections++;
957:       PetscCall(PetscInfo(ts, "Step %" PetscInt_FMT " (t=%g) not accepted, rejections=%" PetscInt_FMT "\n", k, (double)gl->stage_time, rejections));
958:       if (rejections > gl->max_step_rejections) break;
959:       /*
960:         There are lots of reasons why a step might be rejected, including solvers not converging and other factors that
961:         TSGLLEChooseNextScheme does not support.  Additionally, the error estimates may be very screwed up, so I'm not
962:         convinced that it's safe to just compute a new error estimate using the same interface as the current adaptor
963:         (the adaptor interface probably has to change).  Here we make an arbitrary and naive choice.  This assumes that
964:         steps were written in Nordsieck form.  The "correct" method would be to re-complete the previous time step with
965:         the correct "next" step size.  It is unclear to me whether the present ad-hoc method of rescaling X is stable.
966:       */
967:       h *= 0.5;
968:       for (i = 1; i < scheme->r; i++) PetscCall(VecScale(X[i], PetscPowRealInt(0.5, i)));
969:     }
970:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_CONV_FAILED, "Time step %" PetscInt_FMT " (t=%g) not accepted after %" PetscInt_FMT " failures", k, (double)gl->stage_time, rejections);

972:   accepted:
973:     /* This term is not error, but it *would* be the leading term for a lower order method */
974:     PetscCall(TSGLLEVecNormWRMS(ts, gl->X[scheme->r - 1], &hmnorm[0]));
975:     /* Correct scaling so that these are equivalent to norms of the Nordsieck vectors */

977:     PetscCall(PetscInfo(ts, "Last moment norm %10.2e, estimated error norms %10.2e %10.2e %10.2e\n", (double)hmnorm[0], (double)enorm[0], (double)enorm[1], (double)enorm[2]));
978:     if (!final_step) {
979:       PetscCall(TSGLLEChooseNextScheme(ts, h, hmnorm, &next_scheme, &next_h, &final_step));
980:     } else {
981:       /* Dummy values to complete the current step in a consistent manner */
982:       next_scheme = gl->current_scheme;
983:       next_h      = h;
984:       finish      = PETSC_TRUE;
985:     }

987:     X        = gl->Xold;
988:     gl->Xold = gl->X;
989:     gl->X    = X;
990:     PetscCall((*gl->CompleteStep)(scheme, h, gl->schemes[next_scheme], next_h, Ydot, gl->Xold, gl->X));

992:     PetscCall(TSGLLEUpdateWRMS(ts));

994:     /* Post the solution for the user, we could avoid this copy with a small bit of cleverness */
995:     PetscCall(VecCopy(gl->X[0], ts->vec_sol));
996:     ts->ptime += h;
997:     ts->steps++;

999:     PetscCall(TSPostEvaluate(ts));
1000:     PetscCall(TSPostStep(ts));
1001:     PetscCall(TSMonitor(ts, ts->steps, ts->ptime, ts->vec_sol));

1003:     gl->current_scheme = next_scheme;
1004:     ts->time_step      = next_h;
1005:   }
1006:   PetscFunctionReturn(PETSC_SUCCESS);
1007: }

1009: /*------------------------------------------------------------*/

1011: static PetscErrorCode TSReset_GLLE(TS ts)
1012: {
1013:   TS_GLLE *gl = (TS_GLLE *)ts->data;
1014:   PetscInt max_r, max_s;

1016:   PetscFunctionBegin;
1017:   if (gl->setupcalled) {
1018:     PetscCall(TSGLLEGetMaxSizes(ts, &max_r, &max_s));
1019:     PetscCall(VecDestroyVecs(max_r, &gl->Xold));
1020:     PetscCall(VecDestroyVecs(max_r, &gl->X));
1021:     PetscCall(VecDestroyVecs(max_s, &gl->Ydot));
1022:     PetscCall(VecDestroyVecs(3, &gl->himom));
1023:     PetscCall(VecDestroy(&gl->W));
1024:     PetscCall(VecDestroy(&gl->Y));
1025:     PetscCall(VecDestroy(&gl->Z));
1026:   }
1027:   gl->setupcalled = PETSC_FALSE;
1028:   PetscFunctionReturn(PETSC_SUCCESS);
1029: }

1031: static PetscErrorCode TSDestroy_GLLE(TS ts)
1032: {
1033:   TS_GLLE *gl = (TS_GLLE *)ts->data;

1035:   PetscFunctionBegin;
1036:   PetscCall(TSReset_GLLE(ts));
1037:   if (ts->dm) {
1038:     PetscCall(DMCoarsenHookRemove(ts->dm, DMCoarsenHook_TSGLLE, DMRestrictHook_TSGLLE, ts));
1039:     PetscCall(DMSubDomainHookRemove(ts->dm, DMSubDomainHook_TSGLLE, DMSubDomainRestrictHook_TSGLLE, ts));
1040:   }
1041:   if (gl->adapt) PetscCall(TSGLLEAdaptDestroy(&gl->adapt));
1042:   if (gl->Destroy) PetscCall((*gl->Destroy)(gl));
1043:   PetscCall(PetscFree(ts->data));
1044:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLLESetType_C", NULL));
1045:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLLESetAcceptType_C", NULL));
1046:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLLEGetAdapt_C", NULL));
1047:   PetscFunctionReturn(PETSC_SUCCESS);
1048: }

1050: /*
1051:     This defines the nonlinear equation that is to be solved with SNES
1052:     g(x) = f(t,x,z+shift*x) = 0
1053: */
1054: static PetscErrorCode SNESTSFormFunction_GLLE(SNES snes, Vec x, Vec f, TS ts)
1055: {
1056:   TS_GLLE *gl = (TS_GLLE *)ts->data;
1057:   Vec      Z, Ydot;
1058:   DM       dm, dmsave;

1060:   PetscFunctionBegin;
1061:   PetscCall(SNESGetDM(snes, &dm));
1062:   PetscCall(TSGLLEGetVecs(ts, dm, &Z, &Ydot));
1063:   PetscCall(VecWAXPY(Ydot, gl->scoeff / ts->time_step, x, Z));
1064:   dmsave = ts->dm;
1065:   ts->dm = dm;
1066:   PetscCall(TSComputeIFunction(ts, gl->stage_time, x, Ydot, f, PETSC_FALSE));
1067:   ts->dm = dmsave;
1068:   PetscCall(TSGLLERestoreVecs(ts, dm, &Z, &Ydot));
1069:   PetscFunctionReturn(PETSC_SUCCESS);
1070: }

1072: static PetscErrorCode SNESTSFormJacobian_GLLE(SNES snes, Vec x, Mat A, Mat B, TS ts)
1073: {
1074:   TS_GLLE *gl = (TS_GLLE *)ts->data;
1075:   Vec      Z, Ydot;
1076:   DM       dm, dmsave;

1078:   PetscFunctionBegin;
1079:   PetscCall(SNESGetDM(snes, &dm));
1080:   PetscCall(TSGLLEGetVecs(ts, dm, &Z, &Ydot));
1081:   dmsave = ts->dm;
1082:   ts->dm = dm;
1083:   /* gl->Xdot will have already been computed in SNESTSFormFunction_GLLE */
1084:   PetscCall(TSComputeIJacobian(ts, gl->stage_time, x, gl->Ydot[gl->stage], gl->scoeff / ts->time_step, A, B, PETSC_FALSE));
1085:   ts->dm = dmsave;
1086:   PetscCall(TSGLLERestoreVecs(ts, dm, &Z, &Ydot));
1087:   PetscFunctionReturn(PETSC_SUCCESS);
1088: }

1090: static PetscErrorCode TSSetUp_GLLE(TS ts)
1091: {
1092:   TS_GLLE *gl = (TS_GLLE *)ts->data;
1093:   PetscInt max_r, max_s;
1094:   DM       dm;

1096:   PetscFunctionBegin;
1097:   gl->setupcalled = PETSC_TRUE;
1098:   PetscCall(TSGLLEGetMaxSizes(ts, &max_r, &max_s));
1099:   PetscCall(VecDuplicateVecs(ts->vec_sol, max_r, &gl->X));
1100:   PetscCall(VecDuplicateVecs(ts->vec_sol, max_r, &gl->Xold));
1101:   PetscCall(VecDuplicateVecs(ts->vec_sol, max_s, &gl->Ydot));
1102:   PetscCall(VecDuplicateVecs(ts->vec_sol, 3, &gl->himom));
1103:   PetscCall(VecDuplicate(ts->vec_sol, &gl->W));
1104:   PetscCall(VecDuplicate(ts->vec_sol, &gl->Y));
1105:   PetscCall(VecDuplicate(ts->vec_sol, &gl->Z));

1107:   /* Default acceptance tests and adaptivity */
1108:   if (!gl->Accept) PetscCall(TSGLLESetAcceptType(ts, TSGLLEACCEPT_ALWAYS));
1109:   if (!gl->adapt) PetscCall(TSGLLEGetAdapt(ts, &gl->adapt));

1111:   if (gl->current_scheme < 0) {
1112:     PetscInt i;
1113:     for (i = 0;; i++) {
1114:       if (gl->schemes[i]->p == gl->start_order) break;
1115:       PetscCheck(i + 1 != gl->nschemes, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No schemes available with requested start order %" PetscInt_FMT, i);
1116:     }
1117:     gl->current_scheme = i;
1118:   }
1119:   PetscCall(TSGetDM(ts, &dm));
1120:   PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSGLLE, DMRestrictHook_TSGLLE, ts));
1121:   PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSGLLE, DMSubDomainRestrictHook_TSGLLE, ts));
1122:   PetscFunctionReturn(PETSC_SUCCESS);
1123: }
1124: /*------------------------------------------------------------*/

1126: static PetscErrorCode TSSetFromOptions_GLLE(TS ts, PetscOptionItems *PetscOptionsObject)
1127: {
1128:   TS_GLLE *gl         = (TS_GLLE *)ts->data;
1129:   char     tname[256] = TSGLLE_IRKS, completef[256] = "rescale-and-modify";

1131:   PetscFunctionBegin;
1132:   PetscOptionsHeadBegin(PetscOptionsObject, "General Linear ODE solver options");
1133:   {
1134:     PetscBool flg;
1135:     PetscCall(PetscOptionsFList("-ts_gl_type", "Type of GL method", "TSGLLESetType", TSGLLEList, gl->type_name[0] ? gl->type_name : tname, tname, sizeof(tname), &flg));
1136:     if (flg || !gl->type_name[0]) PetscCall(TSGLLESetType(ts, tname));
1137:     PetscCall(PetscOptionsInt("-ts_gl_max_step_rejections", "Maximum number of times to attempt a step", "None", gl->max_step_rejections, &gl->max_step_rejections, NULL));
1138:     PetscCall(PetscOptionsInt("-ts_gl_max_order", "Maximum order to try", "TSGLLESetMaxOrder", gl->max_order, &gl->max_order, NULL));
1139:     PetscCall(PetscOptionsInt("-ts_gl_min_order", "Minimum order to try", "TSGLLESetMinOrder", gl->min_order, &gl->min_order, NULL));
1140:     PetscCall(PetscOptionsInt("-ts_gl_start_order", "Initial order to try", "TSGLLESetMinOrder", gl->start_order, &gl->start_order, NULL));
1141:     PetscCall(PetscOptionsEnum("-ts_gl_error_direction", "Which direction to look when estimating error", "TSGLLESetErrorDirection", TSGLLEErrorDirections, (PetscEnum)gl->error_direction, (PetscEnum *)&gl->error_direction, NULL));
1142:     PetscCall(PetscOptionsBool("-ts_gl_extrapolate", "Extrapolate stage solution from previous solution (sometimes unstable)", "TSGLLESetExtrapolate", gl->extrapolate, &gl->extrapolate, NULL));
1143:     PetscCall(PetscOptionsReal("-ts_gl_atol", "Absolute tolerance", "TSGLLESetTolerances", gl->wrms_atol, &gl->wrms_atol, NULL));
1144:     PetscCall(PetscOptionsReal("-ts_gl_rtol", "Relative tolerance", "TSGLLESetTolerances", gl->wrms_rtol, &gl->wrms_rtol, NULL));
1145:     PetscCall(PetscOptionsString("-ts_gl_complete", "Method to use for completing the step", "none", completef, completef, sizeof(completef), &flg));
1146:     if (flg) {
1147:       PetscBool match1, match2;
1148:       PetscCall(PetscStrcmp(completef, "rescale", &match1));
1149:       PetscCall(PetscStrcmp(completef, "rescale-and-modify", &match2));
1150:       if (match1) gl->CompleteStep = TSGLLECompleteStep_Rescale;
1151:       else if (match2) gl->CompleteStep = TSGLLECompleteStep_RescaleAndModify;
1152:       else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "%s", completef);
1153:     }
1154:     {
1155:       char type[256] = TSGLLEACCEPT_ALWAYS;
1156:       PetscCall(PetscOptionsFList("-ts_gl_accept_type", "Method to use for determining whether to accept a step", "TSGLLESetAcceptType", TSGLLEAcceptList, gl->accept_name[0] ? gl->accept_name : type, type, sizeof(type), &flg));
1157:       if (flg || !gl->accept_name[0]) PetscCall(TSGLLESetAcceptType(ts, type));
1158:     }
1159:     {
1160:       TSGLLEAdapt adapt;
1161:       PetscCall(TSGLLEGetAdapt(ts, &adapt));
1162:       PetscCall(TSGLLEAdaptSetFromOptions(adapt, PetscOptionsObject));
1163:     }
1164:   }
1165:   PetscOptionsHeadEnd();
1166:   PetscFunctionReturn(PETSC_SUCCESS);
1167: }

1169: static PetscErrorCode TSView_GLLE(TS ts, PetscViewer viewer)
1170: {
1171:   TS_GLLE  *gl = (TS_GLLE *)ts->data;
1172:   PetscInt  i;
1173:   PetscBool iascii, details;

1175:   PetscFunctionBegin;
1176:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1177:   if (iascii) {
1178:     PetscCall(PetscViewerASCIIPrintf(viewer, "  min order %" PetscInt_FMT ", max order %" PetscInt_FMT ", current order %" PetscInt_FMT "\n", gl->min_order, gl->max_order, gl->schemes[gl->current_scheme]->p));
1179:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Error estimation: %s\n", TSGLLEErrorDirections[gl->error_direction]));
1180:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Extrapolation: %s\n", gl->extrapolate ? "yes" : "no"));
1181:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Acceptance test: %s\n", gl->accept_name[0] ? gl->accept_name : "(not yet set)"));
1182:     PetscCall(PetscViewerASCIIPushTab(viewer));
1183:     PetscCall(TSGLLEAdaptView(gl->adapt, viewer));
1184:     PetscCall(PetscViewerASCIIPopTab(viewer));
1185:     PetscCall(PetscViewerASCIIPrintf(viewer, "  type: %s\n", gl->type_name[0] ? gl->type_name : "(not yet set)"));
1186:     PetscCall(PetscViewerASCIIPrintf(viewer, "Schemes within family (%" PetscInt_FMT "):\n", gl->nschemes));
1187:     details = PETSC_FALSE;
1188:     PetscCall(PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject)ts)->prefix, "-ts_gl_view_detailed", &details, NULL));
1189:     PetscCall(PetscViewerASCIIPushTab(viewer));
1190:     for (i = 0; i < gl->nschemes; i++) PetscCall(TSGLLESchemeView(gl->schemes[i], details, viewer));
1191:     if (gl->View) PetscCall((*gl->View)(gl, viewer));
1192:     PetscCall(PetscViewerASCIIPopTab(viewer));
1193:   }
1194:   PetscFunctionReturn(PETSC_SUCCESS);
1195: }

1197: /*@C
1198:   TSGLLERegister -  adds a `TSGLLE` implementation

1200:   Not Collective, No Fortran Support

1202:   Input Parameters:
1203: + sname    - name of user-defined general linear scheme
1204: - function - routine to create method context

1206:   Level: advanced

1208:   Note:
1209:   `TSGLLERegister()` may be called multiple times to add several user-defined families.

1211:   Example Usage:
1212: .vb
1213:   TSGLLERegister("my_scheme", MySchemeCreate);
1214: .ve

1216:   Then, your scheme can be chosen with the procedural interface via
1217: $ TSGLLESetType(ts, "my_scheme")
1218:   or at runtime via the option
1219: $ -ts_gl_type my_scheme

1221: .seealso: [](ch_ts), `TSGLLE`, `TSGLLEType`, `TSGLLERegisterAll()`
1222: @*/
1223: PetscErrorCode TSGLLERegister(const char sname[], PetscErrorCode (*function)(TS))
1224: {
1225:   PetscFunctionBegin;
1226:   PetscCall(TSGLLEInitializePackage());
1227:   PetscCall(PetscFunctionListAdd(&TSGLLEList, sname, function));
1228:   PetscFunctionReturn(PETSC_SUCCESS);
1229: }

1231: /*@C
1232:   TSGLLEAcceptRegister -  adds a `TSGLLE` acceptance scheme

1234:   Not Collective

1236:   Input Parameters:
1237: + sname    - name of user-defined acceptance scheme
1238: - function - routine to create method context, see `TSGLLEAcceptFn` for the calling sequence

1240:   Level: advanced

1242:   Note:
1243:   `TSGLLEAcceptRegister()` may be called multiple times to add several user-defined families.

1245:   Example Usage:
1246: .vb
1247:   TSGLLEAcceptRegister("my_scheme", MySchemeCreate);
1248: .ve

1250:   Then, your scheme can be chosen with the procedural interface via
1251: .vb
1252:   TSGLLESetAcceptType(ts, "my_scheme")
1253: .ve
1254:   or at runtime via the option `-ts_gl_accept_type my_scheme`

1256: .seealso: [](ch_ts), `TSGLLE`, `TSGLLEType`, `TSGLLERegisterAll()`, `TSGLLEAcceptFn`
1257: @*/
1258: PetscErrorCode TSGLLEAcceptRegister(const char sname[], TSGLLEAcceptFn *function)
1259: {
1260:   PetscFunctionBegin;
1261:   PetscCall(PetscFunctionListAdd(&TSGLLEAcceptList, sname, function));
1262:   PetscFunctionReturn(PETSC_SUCCESS);
1263: }

1265: /*@C
1266:   TSGLLERegisterAll - Registers all of the general linear methods in `TSGLLE`

1268:   Not Collective

1270:   Level: advanced

1272: .seealso: [](ch_ts), `TSGLLE`, `TSGLLERegisterDestroy()`
1273: @*/
1274: PetscErrorCode TSGLLERegisterAll(void)
1275: {
1276:   PetscFunctionBegin;
1277:   if (TSGLLERegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
1278:   TSGLLERegisterAllCalled = PETSC_TRUE;

1280:   PetscCall(TSGLLERegister(TSGLLE_IRKS, TSGLLECreate_IRKS));
1281:   PetscCall(TSGLLEAcceptRegister(TSGLLEACCEPT_ALWAYS, TSGLLEAccept_Always));
1282:   PetscFunctionReturn(PETSC_SUCCESS);
1283: }

1285: /*@C
1286:   TSGLLEInitializePackage - This function initializes everything in the `TSGLLE` package. It is called
1287:   from `TSInitializePackage()`.

1289:   Level: developer

1291: .seealso: [](ch_ts), `PetscInitialize()`, `TSInitializePackage()`, `TSGLLEFinalizePackage()`
1292: @*/
1293: PetscErrorCode TSGLLEInitializePackage(void)
1294: {
1295:   PetscFunctionBegin;
1296:   if (TSGLLEPackageInitialized) PetscFunctionReturn(PETSC_SUCCESS);
1297:   TSGLLEPackageInitialized = PETSC_TRUE;
1298:   PetscCall(TSGLLERegisterAll());
1299:   PetscCall(PetscRegisterFinalize(TSGLLEFinalizePackage));
1300:   PetscFunctionReturn(PETSC_SUCCESS);
1301: }

1303: /*@C
1304:   TSGLLEFinalizePackage - This function destroys everything in the `TSGLLE` package. It is
1305:   called from `PetscFinalize()`.

1307:   Level: developer

1309: .seealso: [](ch_ts), `PetscFinalize()`, `TSGLLEInitializePackage()`, `TSInitializePackage()`
1310: @*/
1311: PetscErrorCode TSGLLEFinalizePackage(void)
1312: {
1313:   PetscFunctionBegin;
1314:   PetscCall(PetscFunctionListDestroy(&TSGLLEList));
1315:   PetscCall(PetscFunctionListDestroy(&TSGLLEAcceptList));
1316:   TSGLLEPackageInitialized = PETSC_FALSE;
1317:   TSGLLERegisterAllCalled  = PETSC_FALSE;
1318:   PetscFunctionReturn(PETSC_SUCCESS);
1319: }

1321: /* ------------------------------------------------------------ */
1322: /*MC
1323:   TSGLLE - DAE solver using implicit General Linear methods {cite}`butcher_2007` {cite}`butcher2016numerical`

1325:   Options Database Keys:
1326: +  -ts_gl_type <type> - the class of general linear method (irks)
1327: .  -ts_gl_rtol <tol>  - relative error
1328: .  -ts_gl_atol <tol>  - absolute error
1329: .  -ts_gl_min_order <p> - minimum order method to consider (default=1)
1330: .  -ts_gl_max_order <p> - maximum order method to consider (default=3)
1331: .  -ts_gl_start_order <p> - order of starting method (default=1)
1332: .  -ts_gl_complete <method> - method to use for completing the step (rescale-and-modify or rescale)
1333: -  -ts_adapt_type <method> - adaptive controller to use (none step both)

1335:   Level: beginner

1337:   Notes:
1338:   These methods contain Runge-Kutta and multistep schemes as special cases. These special cases
1339:   have some fundamental limitations. For example, diagonally implicit Runge-Kutta cannot have
1340:   stage order greater than 1 which limits their applicability to very stiff systems.
1341:   Meanwhile, multistep methods cannot be A-stable for order greater than 2 and BDF are not
1342:   0-stable for order greater than 6. GL methods can be A- and L-stable with arbitrarily high
1343:   stage order and reliable error estimates for both 1 and 2 orders higher to facilitate
1344:   adaptive step sizes and adaptive order schemes. All this is possible while preserving a
1345:   singly diagonally implicit structure.

1347:   This integrator can be applied to DAE.

1349:   Diagonally implicit general linear (DIGL) methods are a generalization of diagonally implicit
1350:   Runge-Kutta (DIRK). They are represented by the tableau

1352: .vb
1353:   A  |  U
1354:   -------
1355:   B  |  V
1356: .ve

1358:   combined with a vector c of abscissa. "Diagonally implicit" means that $A$ is lower
1359:   triangular. A step of the general method reads

1361:   $$
1362:   \begin{align*}
1363:   [ Y ] = [A  U] [  Y'   ] \\
1364:   [X^k] = [B  V] [X^{k-1}]
1365:   \end{align*}
1366:   $$

1368:   where Y is the multivector of stage values, $Y'$ is the multivector of stage derivatives, $X^k$
1369:   is the Nordsieck vector of the solution at step $k$. The Nordsieck vector consists of the first
1370:   $r$ moments of the solution, given by

1372:   $$
1373:   X = [x_0,x_1,...,x_{r-1}] = [x, h x', h^2 x'', ..., h^{r-1} x^{(r-1)} ]
1374:   $$

1376:   If $A$ is lower triangular, we can solve the stages $(Y, Y')$ sequentially

1378:   $$
1379:   y_i = h \sum_{j=0}^{s-1} (a_{ij} y'_j) + \sum_{j=0}^{r-1} u_{ij} x_j, \, \,   i=0,...,{s-1}
1380:   $$

1382:   and then construct the pieces to carry to the next step

1384:   $$
1385:   xx_i = h \sum_{j=0}^{s-1} b_{ij} y'_j  + \sum_{j=0}^{r-1} v_{ij} x_j,  \, \,  i=0,...,{r-1}
1386:   $$

1388:   Note that when the equations are cast in implicit form, we are using the stage equation to
1389:   define $y'_i$ in terms of $y_i$ and known stuff ($y_j$ for $j<i$ and $x_j$ for all $j$).

1391:   Error estimation

1393:   At present, the most attractive GL methods for stiff problems are singly diagonally implicit
1394:   schemes which posses Inherent Runge-Kutta Stability (`TSIRKS`).  These methods have $r=s$, the
1395:   number of items passed between steps is equal to the number of stages.  The order and
1396:   stage-order are one less than the number of stages.  We use the error estimates in the 2007
1397:   paper which provide the following estimates

1399:   $$
1400:   \begin{align*}
1401:   h^{p+1} X^{(p+1)}          = \phi_0^T Y' + [0 \psi_0^T] Xold \\
1402:   h^{p+2} X^{(p+2)}          = \phi_1^T Y' + [0 \psi_1^T] Xold \\
1403:   h^{p+2} (dx'/dx) X^{(p+1)} = \phi_2^T Y' + [0 \psi_2^T] Xold
1404:   \end{align*}
1405:   $$

1407:   These estimates are accurate to $ O(h^{p+3})$.

1409:   Changing the step size

1411:   Uses the generalized "rescale and modify" scheme, see equation (4.5) of {cite}`butcher_2007`.

1413: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSType`
1414: M*/
1415: PETSC_EXTERN PetscErrorCode TSCreate_GLLE(TS ts)
1416: {
1417:   TS_GLLE *gl;

1419:   PetscFunctionBegin;
1420:   PetscCall(TSGLLEInitializePackage());

1422:   PetscCall(PetscNew(&gl));
1423:   ts->data = (void *)gl;

1425:   ts->ops->reset          = TSReset_GLLE;
1426:   ts->ops->destroy        = TSDestroy_GLLE;
1427:   ts->ops->view           = TSView_GLLE;
1428:   ts->ops->setup          = TSSetUp_GLLE;
1429:   ts->ops->solve          = TSSolve_GLLE;
1430:   ts->ops->setfromoptions = TSSetFromOptions_GLLE;
1431:   ts->ops->snesfunction   = SNESTSFormFunction_GLLE;
1432:   ts->ops->snesjacobian   = SNESTSFormJacobian_GLLE;

1434:   ts->usessnes = PETSC_TRUE;

1436:   gl->max_step_rejections = 1;
1437:   gl->min_order           = 1;
1438:   gl->max_order           = 3;
1439:   gl->start_order         = 1;
1440:   gl->current_scheme      = -1;
1441:   gl->extrapolate         = PETSC_FALSE;

1443:   gl->wrms_atol = 1e-8;
1444:   gl->wrms_rtol = 1e-5;

1446:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLLESetType_C", &TSGLLESetType_GLLE));
1447:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLLESetAcceptType_C", &TSGLLESetAcceptType_GLLE));
1448:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLLEGetAdapt_C", &TSGLLEGetAdapt_GLLE));
1449:   PetscFunctionReturn(PETSC_SUCCESS);
1450: }