Actual source code: plexfem.c

  1: #include <petsc/private/dmpleximpl.h>
  2: #include <petscsf.h>

  4: #include <petscblaslapack.h>
  5: #include <petsc/private/hashsetij.h>
  6: #include <petsc/private/petscfeimpl.h>
  7: #include <petsc/private/petscfvimpl.h>

  9: PetscBool  Clementcite       = PETSC_FALSE;
 10: const char ClementCitation[] = "@article{clement1975approximation,\n"
 11:                                "  title   = {Approximation by finite element functions using local regularization},\n"
 12:                                "  author  = {Philippe Cl{\\'e}ment},\n"
 13:                                "  journal = {Revue fran{\\c{c}}aise d'automatique, informatique, recherche op{\\'e}rationnelle. Analyse num{\\'e}rique},\n"
 14:                                "  volume  = {9},\n"
 15:                                "  number  = {R2},\n"
 16:                                "  pages   = {77--84},\n"
 17:                                "  year    = {1975}\n}\n";

 19: static PetscErrorCode DMPlexConvertPlex(DM dm, DM *plex, PetscBool copy)
 20: {
 21:   PetscBool isPlex;

 23:   PetscFunctionBegin;
 24:   PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
 25:   if (isPlex) {
 26:     *plex = dm;
 27:     PetscCall(PetscObjectReference((PetscObject)dm));
 28:   } else {
 29:     PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
 30:     if (!*plex) {
 31:       PetscCall(DMConvert(dm, DMPLEX, plex));
 32:       PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
 33:     } else {
 34:       PetscCall(PetscObjectReference((PetscObject)*plex));
 35:     }
 36:     if (copy) {
 37:       DMSubDomainHookLink link;

 39:       PetscCall(DMCopyDS(dm, PETSC_DETERMINE, PETSC_DETERMINE, *plex));
 40:       PetscCall(DMCopyAuxiliaryVec(dm, *plex));
 41:       /* Run the subdomain hook (this will copy the DMSNES/DMTS) */
 42:       for (link = dm->subdomainhook; link; link = link->next) {
 43:         if (link->ddhook) PetscCall((*link->ddhook)(dm, *plex, link->ctx));
 44:       }
 45:     }
 46:   }
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode PetscContainerCtxDestroy_PetscFEGeom(void **ctx)
 51: {
 52:   PetscFEGeom *geom = (PetscFEGeom *)*ctx;

 54:   PetscFunctionBegin;
 55:   PetscCall(PetscFEGeomDestroy(&geom));
 56:   PetscFunctionReturn(PETSC_SUCCESS);
 57: }

 59: static PetscErrorCode DMPlexGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
 60: {
 61:   char           composeStr[33] = {0};
 62:   PetscObjectId  id;
 63:   PetscContainer container;

 65:   PetscFunctionBegin;
 66:   PetscCall(PetscObjectGetId((PetscObject)quad, &id));
 67:   PetscCall(PetscSNPrintf(composeStr, 32, "DMPlexGetFEGeom_%" PetscInt64_FMT "\n", id));
 68:   PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
 69:   if (container) {
 70:     PetscCall(PetscContainerGetPointer(container, (void **)geom));
 71:   } else {
 72:     PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
 73:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
 74:     PetscCall(PetscContainerSetPointer(container, (void *)*geom));
 75:     PetscCall(PetscContainerSetCtxDestroy(container, PetscContainerCtxDestroy_PetscFEGeom));
 76:     PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
 77:     PetscCall(PetscContainerDestroy(&container));
 78:   }
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: static PetscErrorCode DMPlexRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
 83: {
 84:   PetscFunctionBegin;
 85:   *geom = NULL;
 86:   PetscFunctionReturn(PETSC_SUCCESS);
 87: }

 89: /*@
 90:   DMPlexGetScale - Get the scale for the specified fundamental unit

 92:   Not Collective

 94:   Input Parameters:
 95: + dm   - the `DM`
 96: - unit - The SI unit

 98:   Output Parameter:
 99: . scale - The value used to scale all quantities with this unit

101:   Level: advanced

103: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetScale()`, `PetscUnit`
104: @*/
105: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
106: {
107:   DM_Plex *mesh = (DM_Plex *)dm->data;

109:   PetscFunctionBegin;
111:   PetscAssertPointer(scale, 3);
112:   *scale = mesh->scale[unit];
113:   PetscFunctionReturn(PETSC_SUCCESS);
114: }

116: /*@
117:   DMPlexSetScale - Set the scale for the specified fundamental unit

119:   Not Collective

121:   Input Parameters:
122: + dm    - the `DM`
123: . unit  - The SI unit
124: - scale - The value used to scale all quantities with this unit

126:   Level: advanced

128: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetScale()`, `PetscUnit`
129: @*/
130: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
131: {
132:   DM_Plex *mesh = (DM_Plex *)dm->data;

134:   PetscFunctionBegin;
136:   mesh->scale[unit] = scale;
137:   PetscFunctionReturn(PETSC_SUCCESS);
138: }

140: PetscErrorCode DMPlexGetUseCeed_Plex(DM dm, PetscBool *useCeed)
141: {
142:   DM_Plex *mesh = (DM_Plex *)dm->data;

144:   PetscFunctionBegin;
145:   *useCeed = mesh->useCeed;
146:   PetscFunctionReturn(PETSC_SUCCESS);
147: }
148: PetscErrorCode DMPlexSetUseCeed_Plex(DM dm, PetscBool useCeed)
149: {
150:   DM_Plex *mesh = (DM_Plex *)dm->data;

152:   PetscFunctionBegin;
153:   mesh->useCeed = useCeed;
154:   PetscFunctionReturn(PETSC_SUCCESS);
155: }

157: /*@
158:   DMPlexGetUseCeed - Get flag for using the LibCEED backend

160:   Not collective

162:   Input Parameter:
163: . dm - The `DM`

165:   Output Parameter:
166: . useCeed - The flag

168:   Level: intermediate

170: .seealso: `DMPlexSetUseCeed()`
171: @*/
172: PetscErrorCode DMPlexGetUseCeed(DM dm, PetscBool *useCeed)
173: {
174:   PetscFunctionBegin;
176:   PetscAssertPointer(useCeed, 2);
177:   *useCeed = PETSC_FALSE;
178:   PetscTryMethod(dm, "DMPlexGetUseCeed_C", (DM, PetscBool *), (dm, useCeed));
179:   PetscFunctionReturn(PETSC_SUCCESS);
180: }

182: /*@
183:   DMPlexSetUseCeed - Set flag for using the LibCEED backend

185:   Not collective

187:   Input Parameters:
188: + dm      - The `DM`
189: - useCeed - The flag

191:   Level: intermediate

193: .seealso: `DMPlexGetUseCeed()`
194: @*/
195: PetscErrorCode DMPlexSetUseCeed(DM dm, PetscBool useCeed)
196: {
197:   PetscFunctionBegin;
200:   PetscUseMethod(dm, "DMPlexSetUseCeed_C", (DM, PetscBool), (dm, useCeed));
201:   PetscFunctionReturn(PETSC_SUCCESS);
202: }

204: /*@
205:   DMPlexGetUseMatClosurePermutation - Get flag for using a closure permutation for matrix insertion

207:   Not collective

209:   Input Parameter:
210: . dm - The `DM`

212:   Output Parameter:
213: . useClPerm - The flag

215:   Level: intermediate

217: .seealso: `DMPlexSetUseMatClosurePermutation()`
218: @*/
219: PetscErrorCode DMPlexGetUseMatClosurePermutation(DM dm, PetscBool *useClPerm)
220: {
221:   DM_Plex *mesh = (DM_Plex *)dm->data;

223:   PetscFunctionBegin;
225:   PetscAssertPointer(useClPerm, 2);
226:   *useClPerm = mesh->useMatClPerm;
227:   PetscFunctionReturn(PETSC_SUCCESS);
228: }

230: /*@
231:   DMPlexSetUseMatClosurePermutation - Set flag for using a closure permutation for matrix insertion

233:   Not collective

235:   Input Parameters:
236: + dm        - The `DM`
237: - useClPerm - The flag

239:   Level: intermediate

241: .seealso: `DMPlexGetUseMatClosurePermutation()`
242: @*/
243: PetscErrorCode DMPlexSetUseMatClosurePermutation(DM dm, PetscBool useClPerm)
244: {
245:   DM_Plex *mesh = (DM_Plex *)dm->data;

247:   PetscFunctionBegin;
250:   mesh->useMatClPerm = useClPerm;
251:   PetscFunctionReturn(PETSC_SUCCESS);
252: }

254: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nc, PetscScalar *mode, void *ctx)
255: {
256:   const PetscInt eps[3][3][3] = {
257:     {{0, 0, 0},  {0, 0, 1},  {0, -1, 0}},
258:     {{0, 0, -1}, {0, 0, 0},  {1, 0, 0} },
259:     {{0, 1, 0},  {-1, 0, 0}, {0, 0, 0} }
260:   };
261:   PetscInt *ctxInt = (PetscInt *)ctx;
262:   PetscInt  dim2   = ctxInt[0];
263:   PetscInt  d      = ctxInt[1];
264:   PetscInt  i, j, k = dim > 2 ? d - dim : d;

266:   PetscFunctionBegin;
267:   PetscCheck(dim == dim2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %" PetscInt_FMT " does not match context dimension %" PetscInt_FMT, dim, dim2);
268:   for (i = 0; i < dim; i++) mode[i] = 0.;
269:   if (d < dim) {
270:     mode[d] = 1.; /* Translation along axis d */
271:   } else {
272:     for (i = 0; i < dim; i++) {
273:       for (j = 0; j < dim; j++) { mode[j] += eps[i][j][k] * X[i]; /* Rotation about axis d */ }
274:     }
275:   }
276:   PetscFunctionReturn(PETSC_SUCCESS);
277: }

279: /*@
280:   DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation

282:   Collective

284:   Input Parameters:
285: + dm    - the `DM`
286: - field - The field number for the rigid body space, or 0 for the default

288:   Output Parameter:
289: . sp - the null space

291:   Level: advanced

293:   Note:
294:   This is necessary to provide a suitable coarse space for algebraic multigrid

296: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`, `PCGAMG`
297: @*/
298: PetscErrorCode DMPlexCreateRigidBody(DM dm, PetscInt field, MatNullSpace *sp)
299: {
300:   PetscErrorCode (**func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *);
301:   MPI_Comm     comm;
302:   Vec          mode[6];
303:   PetscSection section, globalSection;
304:   PetscInt     dim, dimEmbed, Nf, n, m, mmin, d, i, j;
305:   void       **ctxs;

307:   PetscFunctionBegin;
308:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
309:   PetscCall(DMGetDimension(dm, &dim));
310:   PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
311:   PetscCall(DMGetNumFields(dm, &Nf));
312:   PetscCheck(!Nf || !(field < 0 || field >= Nf), comm, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, Nf);
313:   if (dim == 1 && Nf < 2) {
314:     PetscCall(MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp));
315:     PetscFunctionReturn(PETSC_SUCCESS);
316:   }
317:   PetscCall(DMGetLocalSection(dm, &section));
318:   PetscCall(DMGetGlobalSection(dm, &globalSection));
319:   PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
320:   PetscCall(PetscCalloc2(Nf, &func, Nf, &ctxs));
321:   m = (dim * (dim + 1)) / 2;
322:   PetscCall(VecCreate(comm, &mode[0]));
323:   PetscCall(VecSetType(mode[0], dm->vectype));
324:   PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
325:   PetscCall(VecSetUp(mode[0]));
326:   PetscCall(VecGetSize(mode[0], &n));
327:   mmin        = PetscMin(m, n);
328:   func[field] = DMPlexProjectRigidBody_Private;
329:   for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
330:   for (d = 0; d < m; d++) {
331:     PetscInt ctx[2];

333:     ctxs[field] = (void *)(&ctx[0]);
334:     ctx[0]      = dimEmbed;
335:     ctx[1]      = d;
336:     PetscCall(DMProjectFunction(dm, 0.0, func, ctxs, INSERT_VALUES, mode[d]));
337:   }
338:   /* Orthonormalize system */
339:   for (i = 0; i < mmin; ++i) {
340:     PetscScalar dots[6];

342:     PetscCall(VecNormalize(mode[i], NULL));
343:     PetscCall(VecMDot(mode[i], mmin - i - 1, mode + i + 1, dots + i + 1));
344:     for (j = i + 1; j < mmin; ++j) {
345:       dots[j] *= -1.0;
346:       PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
347:     }
348:   }
349:   PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, mmin, mode, sp));
350:   for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
351:   PetscCall(PetscFree2(func, ctxs));
352:   PetscFunctionReturn(PETSC_SUCCESS);
353: }

355: /*@
356:   DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation

358:   Collective

360:   Input Parameters:
361: + dm    - the `DM`
362: . nb    - The number of bodies
363: . label - The `DMLabel` marking each domain
364: . nids  - The number of ids per body
365: - ids   - An array of the label ids in sequence for each domain

367:   Output Parameter:
368: . sp - the null space

370:   Level: advanced

372:   Note:
373:   This is necessary to provide a suitable coarse space for algebraic multigrid

375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`
376: @*/
377: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
378: {
379:   MPI_Comm     comm;
380:   PetscSection section, globalSection;
381:   Vec         *mode;
382:   PetscScalar *dots;
383:   PetscInt     dim, dimEmbed, n, m, b, d, i, j, off;

385:   PetscFunctionBegin;
386:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
387:   PetscCall(DMGetDimension(dm, &dim));
388:   PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
389:   PetscCall(DMGetLocalSection(dm, &section));
390:   PetscCall(DMGetGlobalSection(dm, &globalSection));
391:   PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
392:   m = nb * (dim * (dim + 1)) / 2;
393:   PetscCall(PetscMalloc2(m, &mode, m, &dots));
394:   PetscCall(VecCreate(comm, &mode[0]));
395:   PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
396:   PetscCall(VecSetUp(mode[0]));
397:   for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
398:   for (b = 0, off = 0; b < nb; ++b) {
399:     for (d = 0; d < m / nb; ++d) {
400:       PetscInt ctx[2];
401:       PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
402:       void *voidctx                                                                                   = (void *)(&ctx[0]);

404:       ctx[0] = dimEmbed;
405:       ctx[1] = d;
406:       PetscCall(DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]));
407:       off += nids[b];
408:     }
409:   }
410:   /* Orthonormalize system */
411:   for (i = 0; i < m; ++i) {
412:     PetscScalar dots[6];

414:     PetscCall(VecNormalize(mode[i], NULL));
415:     PetscCall(VecMDot(mode[i], m - i - 1, mode + i + 1, dots + i + 1));
416:     for (j = i + 1; j < m; ++j) {
417:       dots[j] *= -1.0;
418:       PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
419:     }
420:   }
421:   PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp));
422:   for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
423:   PetscCall(PetscFree2(mode, dots));
424:   PetscFunctionReturn(PETSC_SUCCESS);
425: }

427: /*@
428:   DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
429:   are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
430:   evaluating the dual space basis of that point.

432:   Input Parameters:
433: + dm     - the `DMPLEX` object
434: - height - the maximum projection height >= 0

436:   Level: advanced

438:   Notes:
439:   A basis function is associated with the point in its transitively-closed support whose mesh
440:   height is highest (w.r.t. DAG height), but not greater than the maximum projection height,
441:   which is set with this function.  By default, the maximum projection height is zero, which
442:   means that only mesh cells are used to project basis functions.  A height of one, for
443:   example, evaluates a cell-interior basis functions using its cells dual space basis, but all
444:   other basis functions with the dual space basis of a face.

446: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
447: @*/
448: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
449: {
450:   DM_Plex *plex = (DM_Plex *)dm->data;

452:   PetscFunctionBegin;
454:   plex->maxProjectionHeight = height;
455:   PetscFunctionReturn(PETSC_SUCCESS);
456: }

458: /*@
459:   DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
460:   DMPlexProjectXXXLocal() functions.

462:   Input Parameter:
463: . dm - the `DMPLEX` object

465:   Output Parameter:
466: . height - the maximum projection height

468:   Level: intermediate

470: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
471: @*/
472: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
473: {
474:   DM_Plex *plex = (DM_Plex *)dm->data;

476:   PetscFunctionBegin;
478:   *height = plex->maxProjectionHeight;
479:   PetscFunctionReturn(PETSC_SUCCESS);
480: }

482: typedef struct {
483:   PetscReal    alpha; /* The first Euler angle, and in 2D the only one */
484:   PetscReal    beta;  /* The second Euler angle */
485:   PetscReal    gamma; /* The third Euler angle */
486:   PetscInt     dim;   /* The dimension of R */
487:   PetscScalar *R;     /* The rotation matrix, transforming a vector in the local basis to the global basis */
488:   PetscScalar *RT;    /* The transposed rotation matrix, transforming a vector in the global basis to the local basis */
489: } RotCtx;

491: /*
492:   Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
493:   we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
494:   $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
495:   $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
496:   $ The XYZ system rotates a third time about the z axis by gamma.
497: */
498: static PetscErrorCode DMPlexBasisTransformSetUp_Rotation_Internal(DM dm, void *ctx)
499: {
500:   RotCtx   *rc  = (RotCtx *)ctx;
501:   PetscInt  dim = rc->dim;
502:   PetscReal c1, s1, c2, s2, c3, s3;

504:   PetscFunctionBegin;
505:   PetscCall(PetscMalloc2(PetscSqr(dim), &rc->R, PetscSqr(dim), &rc->RT));
506:   switch (dim) {
507:   case 2:
508:     c1       = PetscCosReal(rc->alpha);
509:     s1       = PetscSinReal(rc->alpha);
510:     rc->R[0] = c1;
511:     rc->R[1] = s1;
512:     rc->R[2] = -s1;
513:     rc->R[3] = c1;
514:     PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
515:     DMPlex_Transpose2D_Internal(rc->RT);
516:     break;
517:   case 3:
518:     c1       = PetscCosReal(rc->alpha);
519:     s1       = PetscSinReal(rc->alpha);
520:     c2       = PetscCosReal(rc->beta);
521:     s2       = PetscSinReal(rc->beta);
522:     c3       = PetscCosReal(rc->gamma);
523:     s3       = PetscSinReal(rc->gamma);
524:     rc->R[0] = c1 * c3 - c2 * s1 * s3;
525:     rc->R[1] = c3 * s1 + c1 * c2 * s3;
526:     rc->R[2] = s2 * s3;
527:     rc->R[3] = -c1 * s3 - c2 * c3 * s1;
528:     rc->R[4] = c1 * c2 * c3 - s1 * s3;
529:     rc->R[5] = c3 * s2;
530:     rc->R[6] = s1 * s2;
531:     rc->R[7] = -c1 * s2;
532:     rc->R[8] = c2;
533:     PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
534:     DMPlex_Transpose3D_Internal(rc->RT);
535:     break;
536:   default:
537:     SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Dimension %" PetscInt_FMT " not supported", dim);
538:   }
539:   PetscFunctionReturn(PETSC_SUCCESS);
540: }

542: static PetscErrorCode DMPlexBasisTransformDestroy_Rotation_Internal(DM dm, void *ctx)
543: {
544:   RotCtx *rc = (RotCtx *)ctx;

546:   PetscFunctionBegin;
547:   PetscCall(PetscFree2(rc->R, rc->RT));
548:   PetscCall(PetscFree(rc));
549:   PetscFunctionReturn(PETSC_SUCCESS);
550: }

552: static PetscErrorCode DMPlexBasisTransformGetMatrix_Rotation_Internal(DM dm, const PetscReal x[], PetscBool l2g, const PetscScalar **A, void *ctx)
553: {
554:   RotCtx *rc = (RotCtx *)ctx;

556:   PetscFunctionBeginHot;
557:   PetscAssertPointer(ctx, 5);
558:   if (l2g) {
559:     *A = rc->R;
560:   } else {
561:     *A = rc->RT;
562:   }
563:   PetscFunctionReturn(PETSC_SUCCESS);
564: }

566: PetscErrorCode DMPlexBasisTransformApplyReal_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscReal *y, PetscReal *z, void *ctx)
567: {
568:   PetscFunctionBegin;
569: #if defined(PETSC_USE_COMPLEX)
570:   switch (dim) {
571:   case 2: {
572:     PetscScalar yt[2] = {y[0], y[1]}, zt[2] = {0.0, 0.0};

574:     PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
575:     z[0] = PetscRealPart(zt[0]);
576:     z[1] = PetscRealPart(zt[1]);
577:   } break;
578:   case 3: {
579:     PetscScalar yt[3] = {y[0], y[1], y[2]}, zt[3] = {0.0, 0.0, 0.0};

581:     PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
582:     z[0] = PetscRealPart(zt[0]);
583:     z[1] = PetscRealPart(zt[1]);
584:     z[2] = PetscRealPart(zt[2]);
585:   } break;
586:   }
587: #else
588:   PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, y, z, ctx));
589: #endif
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: PetscErrorCode DMPlexBasisTransformApply_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscScalar *y, PetscScalar *z, void *ctx)
594: {
595:   const PetscScalar *A;

597:   PetscFunctionBeginHot;
598:   PetscCall((*dm->transformGetMatrix)(dm, x, l2g, &A, ctx));
599:   switch (dim) {
600:   case 2:
601:     DMPlex_Mult2D_Internal(A, 1, y, z);
602:     break;
603:   case 3:
604:     DMPlex_Mult3D_Internal(A, 1, y, z);
605:     break;
606:   }
607:   PetscFunctionReturn(PETSC_SUCCESS);
608: }

610: static PetscErrorCode DMPlexBasisTransformField_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscInt f, PetscBool l2g, PetscScalar *a)
611: {
612:   PetscSection       ts;
613:   const PetscScalar *ta, *tva;
614:   PetscInt           dof;

616:   PetscFunctionBeginHot;
617:   PetscCall(DMGetLocalSection(tdm, &ts));
618:   PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
619:   PetscCall(VecGetArrayRead(tv, &ta));
620:   PetscCall(DMPlexPointLocalFieldRead(tdm, p, f, ta, &tva));
621:   if (l2g) {
622:     switch (dof) {
623:     case 4:
624:       DMPlex_Mult2D_Internal(tva, 1, a, a);
625:       break;
626:     case 9:
627:       DMPlex_Mult3D_Internal(tva, 1, a, a);
628:       break;
629:     }
630:   } else {
631:     switch (dof) {
632:     case 4:
633:       DMPlex_MultTranspose2D_Internal(tva, 1, a, a);
634:       break;
635:     case 9:
636:       DMPlex_MultTranspose3D_Internal(tva, 1, a, a);
637:       break;
638:     }
639:   }
640:   PetscCall(VecRestoreArrayRead(tv, &ta));
641:   PetscFunctionReturn(PETSC_SUCCESS);
642: }

644: static PetscErrorCode DMPlexBasisTransformFieldTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt pf, PetscInt f, PetscInt pg, PetscInt g, PetscBool l2g, PetscInt lda, PetscScalar *a)
645: {
646:   PetscSection       s, ts;
647:   const PetscScalar *ta, *tvaf, *tvag;
648:   PetscInt           fdof, gdof, fpdof, gpdof;

650:   PetscFunctionBeginHot;
651:   PetscCall(DMGetLocalSection(dm, &s));
652:   PetscCall(DMGetLocalSection(tdm, &ts));
653:   PetscCall(PetscSectionGetFieldDof(s, pf, f, &fpdof));
654:   PetscCall(PetscSectionGetFieldDof(s, pg, g, &gpdof));
655:   PetscCall(PetscSectionGetFieldDof(ts, pf, f, &fdof));
656:   PetscCall(PetscSectionGetFieldDof(ts, pg, g, &gdof));
657:   PetscCall(VecGetArrayRead(tv, &ta));
658:   PetscCall(DMPlexPointLocalFieldRead(tdm, pf, f, ta, &tvaf));
659:   PetscCall(DMPlexPointLocalFieldRead(tdm, pg, g, ta, &tvag));
660:   if (l2g) {
661:     switch (fdof) {
662:     case 4:
663:       DMPlex_MatMult2D_Internal(tvaf, gpdof, lda, a, a);
664:       break;
665:     case 9:
666:       DMPlex_MatMult3D_Internal(tvaf, gpdof, lda, a, a);
667:       break;
668:     }
669:     switch (gdof) {
670:     case 4:
671:       DMPlex_MatMultTransposeLeft2D_Internal(tvag, fpdof, lda, a, a);
672:       break;
673:     case 9:
674:       DMPlex_MatMultTransposeLeft3D_Internal(tvag, fpdof, lda, a, a);
675:       break;
676:     }
677:   } else {
678:     switch (fdof) {
679:     case 4:
680:       DMPlex_MatMultTranspose2D_Internal(tvaf, gpdof, lda, a, a);
681:       break;
682:     case 9:
683:       DMPlex_MatMultTranspose3D_Internal(tvaf, gpdof, lda, a, a);
684:       break;
685:     }
686:     switch (gdof) {
687:     case 4:
688:       DMPlex_MatMultLeft2D_Internal(tvag, fpdof, lda, a, a);
689:       break;
690:     case 9:
691:       DMPlex_MatMultLeft3D_Internal(tvag, fpdof, lda, a, a);
692:       break;
693:     }
694:   }
695:   PetscCall(VecRestoreArrayRead(tv, &ta));
696:   PetscFunctionReturn(PETSC_SUCCESS);
697: }

699: PetscErrorCode DMPlexBasisTransformPoint_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool fieldActive[], PetscBool l2g, PetscScalar *a)
700: {
701:   PetscSection    s;
702:   PetscSection    clSection;
703:   IS              clPoints;
704:   const PetscInt *clp;
705:   PetscInt       *points = NULL;
706:   PetscInt        Nf, f, Np, cp, dof, d = 0;

708:   PetscFunctionBegin;
709:   PetscCall(DMGetLocalSection(dm, &s));
710:   PetscCall(PetscSectionGetNumFields(s, &Nf));
711:   PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
712:   for (f = 0; f < Nf; ++f) {
713:     for (cp = 0; cp < Np * 2; cp += 2) {
714:       PetscCall(PetscSectionGetFieldDof(s, points[cp], f, &dof));
715:       if (!dof) continue;
716:       if (fieldActive[f]) PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, points[cp], f, l2g, &a[d]));
717:       d += dof;
718:     }
719:   }
720:   PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
721:   PetscFunctionReturn(PETSC_SUCCESS);
722: }

724: PetscErrorCode DMPlexBasisTransformPointTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool l2g, PetscInt lda, PetscScalar *a)
725: {
726:   PetscSection    s;
727:   PetscSection    clSection;
728:   IS              clPoints;
729:   const PetscInt *clp;
730:   PetscInt       *points = NULL;
731:   PetscInt        Nf, f, g, Np, cpf, cpg, fdof, gdof, r, c = 0;

733:   PetscFunctionBegin;
734:   PetscCall(DMGetLocalSection(dm, &s));
735:   PetscCall(PetscSectionGetNumFields(s, &Nf));
736:   PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
737:   for (f = 0, r = 0; f < Nf; ++f) {
738:     for (cpf = 0; cpf < Np * 2; cpf += 2) {
739:       PetscCall(PetscSectionGetFieldDof(s, points[cpf], f, &fdof));
740:       for (g = 0, c = 0; g < Nf; ++g) {
741:         for (cpg = 0; cpg < Np * 2; cpg += 2) {
742:           PetscCall(PetscSectionGetFieldDof(s, points[cpg], g, &gdof));
743:           PetscCall(DMPlexBasisTransformFieldTensor_Internal(dm, tdm, tv, points[cpf], f, points[cpg], g, l2g, lda, &a[r * lda + c]));
744:           c += gdof;
745:         }
746:       }
747:       PetscCheck(c == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of columns %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
748:       r += fdof;
749:     }
750:   }
751:   PetscCheck(r == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of rows %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
752:   PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
753:   PetscFunctionReturn(PETSC_SUCCESS);
754: }

756: static PetscErrorCode DMPlexBasisTransform_Internal(DM dm, Vec lv, PetscBool l2g)
757: {
758:   DM                 tdm;
759:   Vec                tv;
760:   PetscSection       ts, s;
761:   const PetscScalar *ta;
762:   PetscScalar       *a, *va;
763:   PetscInt           pStart, pEnd, p, Nf, f;

765:   PetscFunctionBegin;
766:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
767:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
768:   PetscCall(DMGetLocalSection(tdm, &ts));
769:   PetscCall(DMGetLocalSection(dm, &s));
770:   PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
771:   PetscCall(PetscSectionGetNumFields(s, &Nf));
772:   PetscCall(VecGetArray(lv, &a));
773:   PetscCall(VecGetArrayRead(tv, &ta));
774:   for (p = pStart; p < pEnd; ++p) {
775:     for (f = 0; f < Nf; ++f) {
776:       PetscCall(DMPlexPointLocalFieldRef(dm, p, f, a, &va));
777:       PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, p, f, l2g, va));
778:     }
779:   }
780:   PetscCall(VecRestoreArray(lv, &a));
781:   PetscCall(VecRestoreArrayRead(tv, &ta));
782:   PetscFunctionReturn(PETSC_SUCCESS);
783: }

785: /*@
786:   DMPlexGlobalToLocalBasis - Transform the values in the given local vector from the global basis to the local basis

788:   Input Parameters:
789: + dm - The `DM`
790: - lv - A local vector with values in the global basis

792:   Output Parameter:
793: . lv - A local vector with values in the local basis

795:   Level: developer

797:   Note:
798:   This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user will have a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.

800: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexLocalToGlobalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
801: @*/
802: PetscErrorCode DMPlexGlobalToLocalBasis(DM dm, Vec lv)
803: {
804:   PetscFunctionBegin;
807:   PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_FALSE));
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: /*@
812:   DMPlexLocalToGlobalBasis - Transform the values in the given local vector from the local basis to the global basis

814:   Input Parameters:
815: + dm - The `DM`
816: - lv - A local vector with values in the local basis

818:   Output Parameter:
819: . lv - A local vector with values in the global basis

821:   Level: developer

823:   Note:
824:   This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user would want a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.

826: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
827: @*/
828: PetscErrorCode DMPlexLocalToGlobalBasis(DM dm, Vec lv)
829: {
830:   PetscFunctionBegin;
833:   PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_TRUE));
834:   PetscFunctionReturn(PETSC_SUCCESS);
835: }

837: /*@
838:   DMPlexCreateBasisRotation - Create an internal transformation from the global basis, used to specify boundary conditions
839:   and global solutions, to a local basis, appropriate for discretization integrals and assembly.

841:   Input Parameters:
842: + dm    - The `DM`
843: . alpha - The first Euler angle, and in 2D the only one
844: . beta  - The second Euler angle
845: - gamma - The third Euler angle

847:   Level: developer

849:   Note:
850:   Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
851:   we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows
852: .vb
853:    The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
854:    The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
855:    The XYZ system rotates a third time about the z axis by gamma.
856: .ve

858: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`
859: @*/
860: PetscErrorCode DMPlexCreateBasisRotation(DM dm, PetscReal alpha, PetscReal beta, PetscReal gamma)
861: {
862:   RotCtx  *rc;
863:   PetscInt cdim;

865:   PetscFunctionBegin;
866:   PetscCall(DMGetCoordinateDim(dm, &cdim));
867:   PetscCall(PetscMalloc1(1, &rc));
868:   dm->transformCtx       = rc;
869:   dm->transformSetUp     = DMPlexBasisTransformSetUp_Rotation_Internal;
870:   dm->transformDestroy   = DMPlexBasisTransformDestroy_Rotation_Internal;
871:   dm->transformGetMatrix = DMPlexBasisTransformGetMatrix_Rotation_Internal;
872:   rc->dim                = cdim;
873:   rc->alpha              = alpha;
874:   rc->beta               = beta;
875:   rc->gamma              = gamma;
876:   PetscCall((*dm->transformSetUp)(dm, dm->transformCtx));
877:   PetscCall(DMConstructBasisTransform_Internal(dm));
878:   PetscFunctionReturn(PETSC_SUCCESS);
879: }

881: /*@C
882:   DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector using a function of the coordinates

884:   Input Parameters:
885: + dm     - The `DM`, with a `PetscDS` that matches the problem being constrained
886: . time   - The time
887: . field  - The field to constrain
888: . Nc     - The number of constrained field components, or 0 for all components
889: . comps  - An array of constrained component numbers, or `NULL` for all components
890: . label  - The `DMLabel` defining constrained points
891: . numids - The number of `DMLabel` ids for constrained points
892: . ids    - An array of ids for constrained points
893: . func   - A pointwise function giving boundary values
894: - ctx    - An optional user context for bcFunc

896:   Output Parameter:
897: . locX - A local vector to receives the boundary values

899:   Level: developer

901: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMLabel`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
902: @*/
903: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
904: {
905:   PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
906:   void   **ctxs;
907:   PetscInt numFields;

909:   PetscFunctionBegin;
910:   PetscCall(DMGetNumFields(dm, &numFields));
911:   PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
912:   funcs[field] = func;
913:   ctxs[field]  = ctx;
914:   PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX));
915:   PetscCall(PetscFree2(funcs, ctxs));
916:   PetscFunctionReturn(PETSC_SUCCESS);
917: }

919: /*@C
920:   DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector using a function of the coordinates and field data

922:   Input Parameters:
923: + dm     - The `DM`, with a `PetscDS` that matches the problem being constrained
924: . time   - The time
925: . locU   - A local vector with the input solution values
926: . field  - The field to constrain
927: . Nc     - The number of constrained field components, or 0 for all components
928: . comps  - An array of constrained component numbers, or `NULL` for all components
929: . label  - The `DMLabel` defining constrained points
930: . numids - The number of `DMLabel` ids for constrained points
931: . ids    - An array of ids for constrained points
932: . func   - A pointwise function giving boundary values
933: - ctx    - An optional user context for bcFunc

935:   Output Parameter:
936: . locX - A local vector to receives the boundary values

938:   Level: developer

940: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
941: @*/
942: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
943: {
944:   void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
945:   void   **ctxs;
946:   PetscInt numFields;

948:   PetscFunctionBegin;
949:   PetscCall(DMGetNumFields(dm, &numFields));
950:   PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
951:   funcs[field] = func;
952:   ctxs[field]  = ctx;
953:   PetscCall(DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
954:   PetscCall(PetscFree2(funcs, ctxs));
955:   PetscFunctionReturn(PETSC_SUCCESS);
956: }

958: /*@C
959:   DMPlexInsertBoundaryValuesEssentialBdField - Insert boundary values into a local vector using a function of the coordinates and boundary field data

961:   Collective

963:   Input Parameters:
964: + dm     - The `DM`, with a `PetscDS` that matches the problem being constrained
965: . time   - The time
966: . locU   - A local vector with the input solution values
967: . field  - The field to constrain
968: . Nc     - The number of constrained field components, or 0 for all components
969: . comps  - An array of constrained component numbers, or `NULL` for all components
970: . label  - The `DMLabel` defining constrained points
971: . numids - The number of `DMLabel` ids for constrained points
972: . ids    - An array of ids for constrained points
973: . func   - A pointwise function giving boundary values, the calling sequence is given in `DMProjectBdFieldLabelLocal()`
974: - ctx    - An optional user context for `func`

976:   Output Parameter:
977: . locX - A local vector to receive the boundary values

979:   Level: developer

981: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectBdFieldLabelLocal()`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
982: @*/
983: PetscErrorCode DMPlexInsertBoundaryValuesEssentialBdField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
984: {
985:   void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
986:   void   **ctxs;
987:   PetscInt numFields;

989:   PetscFunctionBegin;
990:   PetscCall(DMGetNumFields(dm, &numFields));
991:   PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
992:   funcs[field] = func;
993:   ctxs[field]  = ctx;
994:   PetscCall(DMProjectBdFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
995:   PetscCall(PetscFree2(funcs, ctxs));
996:   PetscFunctionReturn(PETSC_SUCCESS);
997: }

999: /*@C
1000:   DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector

1002:   Input Parameters:
1003: + dm           - The `DM`, with a `PetscDS` that matches the problem being constrained
1004: . time         - The time
1005: . faceGeometry - A vector with the FVM face geometry information
1006: . cellGeometry - A vector with the FVM cell geometry information
1007: . Grad         - A vector with the FVM cell gradient information
1008: . field        - The field to constrain
1009: . Nc           - The number of constrained field components, or 0 for all components
1010: . comps        - An array of constrained component numbers, or `NULL` for all components
1011: . label        - The `DMLabel` defining constrained points
1012: . numids       - The number of `DMLabel` ids for constrained points
1013: . ids          - An array of ids for constrained points
1014: . func         - A pointwise function giving boundary values
1015: - ctx          - An optional user context for bcFunc

1017:   Output Parameter:
1018: . locX - A local vector to receives the boundary values

1020:   Level: developer

1022:   Note:
1023:   This implementation currently ignores the numcomps/comps argument from `DMAddBoundary()`

1025: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
1026: @*/
1027: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *), void *ctx, Vec locX)
1028: {
1029:   PetscDS            prob;
1030:   PetscSF            sf;
1031:   DM                 dmFace, dmCell, dmGrad;
1032:   const PetscScalar *facegeom, *cellgeom = NULL, *grad;
1033:   const PetscInt    *leaves;
1034:   PetscScalar       *x, *fx;
1035:   PetscInt           dim, nleaves, loc, fStart, fEnd, pdim, i;
1036:   PetscErrorCode     ierru = PETSC_SUCCESS;

1038:   PetscFunctionBegin;
1039:   PetscCall(DMGetPointSF(dm, &sf));
1040:   PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL));
1041:   nleaves = PetscMax(0, nleaves);
1042:   PetscCall(DMGetDimension(dm, &dim));
1043:   PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1044:   PetscCall(DMGetDS(dm, &prob));
1045:   PetscCall(VecGetDM(faceGeometry, &dmFace));
1046:   PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
1047:   if (cellGeometry) {
1048:     PetscCall(VecGetDM(cellGeometry, &dmCell));
1049:     PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
1050:   }
1051:   if (Grad) {
1052:     PetscFV fv;

1054:     PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fv));
1055:     PetscCall(VecGetDM(Grad, &dmGrad));
1056:     PetscCall(VecGetArrayRead(Grad, &grad));
1057:     PetscCall(PetscFVGetNumComponents(fv, &pdim));
1058:     PetscCall(DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1059:   }
1060:   PetscCall(VecGetArray(locX, &x));
1061:   for (i = 0; i < numids; ++i) {
1062:     IS              faceIS;
1063:     const PetscInt *faces;
1064:     PetscInt        numFaces, f;

1066:     PetscCall(DMLabelGetStratumIS(label, ids[i], &faceIS));
1067:     if (!faceIS) continue; /* No points with that id on this process */
1068:     PetscCall(ISGetLocalSize(faceIS, &numFaces));
1069:     PetscCall(ISGetIndices(faceIS, &faces));
1070:     for (f = 0; f < numFaces; ++f) {
1071:       const PetscInt   face = faces[f], *cells;
1072:       PetscFVFaceGeom *fg;

1074:       if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
1075:       PetscCall(PetscFindInt(face, nleaves, (PetscInt *)leaves, &loc));
1076:       if (loc >= 0) continue;
1077:       PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
1078:       PetscCall(DMPlexGetSupport(dm, face, &cells));
1079:       if (Grad) {
1080:         PetscFVCellGeom *cg;
1081:         PetscScalar     *cx, *cgrad;
1082:         PetscScalar     *xG;
1083:         PetscReal        dx[3];
1084:         PetscInt         d;

1086:         PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg));
1087:         PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &cx));
1088:         PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad));
1089:         PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1090:         DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
1091:         for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d * dim], dx);
1092:         PetscCall((*func)(time, fg->centroid, fg->normal, fx, xG, ctx));
1093:       } else {
1094:         PetscScalar *xI;
1095:         PetscScalar *xG;

1097:         PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &xI));
1098:         PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1099:         ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
1100:         if (ierru) {
1101:           PetscCall(ISRestoreIndices(faceIS, &faces));
1102:           PetscCall(ISDestroy(&faceIS));
1103:           goto cleanup;
1104:         }
1105:       }
1106:     }
1107:     PetscCall(ISRestoreIndices(faceIS, &faces));
1108:     PetscCall(ISDestroy(&faceIS));
1109:   }
1110: cleanup:
1111:   PetscCall(VecRestoreArray(locX, &x));
1112:   if (Grad) {
1113:     PetscCall(DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1114:     PetscCall(VecRestoreArrayRead(Grad, &grad));
1115:   }
1116:   if (cellGeometry) PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
1117:   PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
1118:   PetscCall(ierru);
1119:   PetscFunctionReturn(PETSC_SUCCESS);
1120: }

1122: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
1123: {
1124:   PetscInt c;
1125:   for (c = 0; c < Nc; ++c) u[c] = 0.0;
1126:   return PETSC_SUCCESS;
1127: }

1129: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1130: {
1131:   PetscObject isZero;
1132:   PetscDS     prob;
1133:   PetscInt    numBd, b;

1135:   PetscFunctionBegin;
1136:   PetscCall(DMGetDS(dm, &prob));
1137:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1138:   PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1139:   PetscCall(PetscDSUpdateBoundaryLabels(prob, dm));
1140:   for (b = 0; b < numBd; ++b) {
1141:     PetscWeakForm           wf;
1142:     DMBoundaryConditionType type;
1143:     const char             *name;
1144:     DMLabel                 label;
1145:     PetscInt                field, Nc;
1146:     const PetscInt         *comps;
1147:     PetscObject             obj;
1148:     PetscClassId            id;
1149:     void (*bvfunc)(void);
1150:     PetscInt        numids;
1151:     const PetscInt *ids;
1152:     void           *ctx;

1154:     PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, &bvfunc, NULL, &ctx));
1155:     if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1156:     PetscCall(DMGetField(dm, field, NULL, &obj));
1157:     PetscCall(PetscObjectGetClassId(obj, &id));
1158:     if (id == PETSCFE_CLASSID) {
1159:       switch (type) {
1160:         /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1161:       case DM_BC_ESSENTIAL: {
1162:         PetscSimplePointFn *func = (PetscSimplePointFn *)bvfunc;

1164:         if (isZero) func = zero;
1165:         PetscCall(DMPlexLabelAddCells(dm, label));
1166:         PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func, ctx, locX));
1167:         PetscCall(DMPlexLabelClearCells(dm, label));
1168:       } break;
1169:       case DM_BC_ESSENTIAL_FIELD: {
1170:         PetscPointFunc func = (PetscPointFunc)bvfunc;

1172:         PetscCall(DMPlexLabelAddCells(dm, label));
1173:         PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func, ctx, locX));
1174:         PetscCall(DMPlexLabelClearCells(dm, label));
1175:       } break;
1176:       default:
1177:         break;
1178:       }
1179:     } else if (id == PETSCFV_CLASSID) {
1180:       {
1181:         PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *) = (PetscErrorCode (*)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *))bvfunc;

1183:         if (!faceGeomFVM) continue;
1184:         PetscCall(DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids, func, ctx, locX));
1185:       }
1186:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1187:   }
1188:   PetscFunctionReturn(PETSC_SUCCESS);
1189: }

1191: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1192: {
1193:   PetscObject isZero;
1194:   PetscDS     prob;
1195:   PetscInt    numBd, b;

1197:   PetscFunctionBegin;
1198:   if (!locX) PetscFunctionReturn(PETSC_SUCCESS);
1199:   PetscCall(DMGetDS(dm, &prob));
1200:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1201:   PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1202:   for (b = 0; b < numBd; ++b) {
1203:     PetscWeakForm           wf;
1204:     DMBoundaryConditionType type;
1205:     const char             *name;
1206:     DMLabel                 label;
1207:     PetscInt                field, Nc;
1208:     const PetscInt         *comps;
1209:     PetscObject             obj;
1210:     PetscClassId            id;
1211:     PetscInt                numids;
1212:     const PetscInt         *ids;
1213:     void (*bvfunc)(void);
1214:     void *ctx;

1216:     PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, NULL, &bvfunc, &ctx));
1217:     if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1218:     PetscCall(DMGetField(dm, field, NULL, &obj));
1219:     PetscCall(PetscObjectGetClassId(obj, &id));
1220:     if (id == PETSCFE_CLASSID) {
1221:       switch (type) {
1222:         /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1223:       case DM_BC_ESSENTIAL: {
1224:         PetscSimplePointFn *func_t = (PetscSimplePointFn *)bvfunc;

1226:         if (isZero) func_t = zero;
1227:         PetscCall(DMPlexLabelAddCells(dm, label));
1228:         PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1229:         PetscCall(DMPlexLabelClearCells(dm, label));
1230:       } break;
1231:       case DM_BC_ESSENTIAL_FIELD: {
1232:         PetscPointFunc func_t = (PetscPointFunc)bvfunc;

1234:         PetscCall(DMPlexLabelAddCells(dm, label));
1235:         PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1236:         PetscCall(DMPlexLabelClearCells(dm, label));
1237:       } break;
1238:       default:
1239:         break;
1240:       }
1241:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1242:   }
1243:   PetscFunctionReturn(PETSC_SUCCESS);
1244: }

1246: /*@
1247:   DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector

1249:   Not Collective

1251:   Input Parameters:
1252: + dm              - The `DM`
1253: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1254: . time            - The time
1255: . faceGeomFVM     - Face geometry data for FV discretizations
1256: . cellGeomFVM     - Cell geometry data for FV discretizations
1257: - gradFVM         - Gradient reconstruction data for FV discretizations

1259:   Output Parameter:
1260: . locX - Solution updated with boundary values

1262:   Level: intermediate

1264: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`, `DMAddBoundary()`
1265: @*/
1266: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1267: {
1268:   PetscFunctionBegin;
1274:   PetscTryMethod(dm, "DMPlexInsertBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX, time, faceGeomFVM, cellGeomFVM, gradFVM));
1275:   PetscFunctionReturn(PETSC_SUCCESS);
1276: }

1278: /*@
1279:   DMPlexInsertTimeDerivativeBoundaryValues - Puts coefficients which represent boundary values of the time derivative into the local solution vector

1281:   Input Parameters:
1282: + dm              - The `DM`
1283: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1284: . time            - The time
1285: . faceGeomFVM     - Face geometry data for FV discretizations
1286: . cellGeomFVM     - Cell geometry data for FV discretizations
1287: - gradFVM         - Gradient reconstruction data for FV discretizations

1289:   Output Parameter:
1290: . locX_t - Solution updated with boundary values

1292:   Level: developer

1294: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`
1295: @*/
1296: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues(DM dm, PetscBool insertEssential, Vec locX_t, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1297: {
1298:   PetscFunctionBegin;
1304:   PetscTryMethod(dm, "DMPlexInsertTimeDerivativeBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX_t, time, faceGeomFVM, cellGeomFVM, gradFVM));
1305:   PetscFunctionReturn(PETSC_SUCCESS);
1306: }

1308: // Handle non-essential (e.g. outflow) boundary values
1309: PetscErrorCode DMPlexInsertBoundaryValuesFVM(DM dm, PetscFV fv, Vec locX, PetscReal time, Vec *locGradient)
1310: {
1311:   DM  dmGrad;
1312:   Vec cellGeometryFVM, faceGeometryFVM, locGrad = NULL;

1314:   PetscFunctionBegin;
1318:   if (locGradient) {
1319:     PetscAssertPointer(locGradient, 5);
1320:     *locGradient = NULL;
1321:   }
1322:   PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
1323:   /* Reconstruct and limit cell gradients */
1324:   PetscCall(DMPlexGetGradientDM(dm, fv, &dmGrad));
1325:   if (dmGrad) {
1326:     Vec      grad;
1327:     PetscInt fStart, fEnd;

1329:     PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1330:     PetscCall(DMGetGlobalVector(dmGrad, &grad));
1331:     PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
1332:     /* Communicate gradient values */
1333:     PetscCall(DMGetLocalVector(dmGrad, &locGrad));
1334:     PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
1335:     PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
1336:     PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
1337:   }
1338:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, time, faceGeometryFVM, cellGeometryFVM, locGrad));
1339:   if (locGradient) *locGradient = locGrad;
1340:   else if (locGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
1341:   PetscFunctionReturn(PETSC_SUCCESS);
1342: }

1344: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1345: {
1346:   Vec localX;

1348:   PetscFunctionBegin;
1349:   PetscCall(DMGetLocalVector(dm, &localX));
1350:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL));
1351:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1352:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1353:   PetscCall(DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff));
1354:   PetscCall(DMRestoreLocalVector(dm, &localX));
1355:   PetscFunctionReturn(PETSC_SUCCESS);
1356: }

1358: /*@C
1359:   DMPlexComputeL2DiffLocal - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.

1361:   Collective

1363:   Input Parameters:
1364: + dm     - The `DM`
1365: . time   - The time
1366: . funcs  - The functions to evaluate for each field component
1367: . ctxs   - Optional array of contexts to pass to each function, or `NULL`.
1368: - localX - The coefficient vector u_h, a local vector

1370:   Output Parameter:
1371: . diff - The diff ||u - u_h||_2

1373:   Level: developer

1375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1376: @*/
1377: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
1378: {
1379:   const PetscInt   debug = ((DM_Plex *)dm->data)->printL2;
1380:   DM               tdm;
1381:   Vec              tv;
1382:   PetscSection     section;
1383:   PetscQuadrature  quad;
1384:   PetscFEGeom      fegeom;
1385:   PetscScalar     *funcVal, *interpolant;
1386:   PetscReal       *coords, *gcoords;
1387:   PetscReal        localDiff = 0.0;
1388:   const PetscReal *quadWeights;
1389:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, c, field, fieldOffset;
1390:   PetscBool        transform;

1392:   PetscFunctionBegin;
1393:   PetscCall(DMGetDimension(dm, &dim));
1394:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
1395:   fegeom.dimEmbed = coordDim;
1396:   PetscCall(DMGetLocalSection(dm, &section));
1397:   PetscCall(PetscSectionGetNumFields(section, &numFields));
1398:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1399:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1400:   PetscCall(DMHasBasisTransform(dm, &transform));
1401:   PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
1402:   for (field = 0; field < numFields; ++field) {
1403:     PetscObject  obj;
1404:     PetscClassId id;
1405:     PetscInt     Nc;

1407:     PetscCall(DMGetField(dm, field, NULL, &obj));
1408:     PetscCall(PetscObjectGetClassId(obj, &id));
1409:     if (id == PETSCFE_CLASSID) {
1410:       PetscFE fe = (PetscFE)obj;

1412:       PetscCall(PetscFEGetQuadrature(fe, &quad));
1413:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
1414:     } else if (id == PETSCFV_CLASSID) {
1415:       PetscFV fv = (PetscFV)obj;

1417:       PetscCall(PetscFVGetQuadrature(fv, &quad));
1418:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
1419:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1420:     numComponents += Nc;
1421:   }
1422:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1423:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1424:   PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * (Nq + 1), &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1425:   PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
1426:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
1427:   for (c = cStart; c < cEnd; ++c) {
1428:     PetscScalar *x        = NULL;
1429:     PetscReal    elemDiff = 0.0;
1430:     PetscInt     qc       = 0;

1432:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1433:     PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));

1435:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1436:       PetscObject  obj;
1437:       PetscClassId id;
1438:       void *const  ctx = ctxs ? ctxs[field] : NULL;
1439:       PetscInt     Nb, Nc, q, fc;

1441:       PetscCall(DMGetField(dm, field, NULL, &obj));
1442:       PetscCall(PetscObjectGetClassId(obj, &id));
1443:       if (id == PETSCFE_CLASSID) {
1444:         PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1445:         PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1446:       } else if (id == PETSCFV_CLASSID) {
1447:         PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1448:         Nb = 1;
1449:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1450:       if (debug) {
1451:         char title[1024];
1452:         PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1453:         PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1454:       }
1455:       for (q = 0; q < Nq; ++q) {
1456:         PetscFEGeom    qgeom;
1457:         PetscErrorCode ierr;

1459:         qgeom.dimEmbed = fegeom.dimEmbed;
1460:         qgeom.J        = &fegeom.J[q * coordDim * coordDim];
1461:         qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
1462:         qgeom.detJ     = &fegeom.detJ[q];
1463:         PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", point %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1464:         if (transform) {
1465:           gcoords = &coords[coordDim * Nq];
1466:           PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1467:         } else {
1468:           gcoords = &coords[coordDim * q];
1469:         }
1470:         PetscCall(PetscArrayzero(funcVal, Nc));
1471:         ierr = (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1472:         if (ierr) {
1473:           PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1474:           PetscCall(DMRestoreLocalVector(dm, &localX));
1475:           PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1476:         }
1477:         if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1478:         if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1479:         else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1480:         else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1481:         for (fc = 0; fc < Nc; ++fc) {
1482:           const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1483:           if (debug)
1484:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elem %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g (%g, %g)\n", c, field, fc, (double)(coordDim > 0 ? coords[coordDim * q] : 0), (double)(coordDim > 1 ? coords[coordDim * q + 1] : 0), (double)(coordDim > 2 ? coords[coordDim * q + 2] : 0),
1485:                                   (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q]), (double)PetscRealPart(interpolant[fc]), (double)PetscRealPart(funcVal[fc])));
1486:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1487:         }
1488:       }
1489:       fieldOffset += Nb;
1490:       qc += Nc;
1491:     }
1492:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1493:     if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1494:     localDiff += elemDiff;
1495:   }
1496:   PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1497:   PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1498:   *diff = PetscSqrtReal(*diff);
1499:   PetscFunctionReturn(PETSC_SUCCESS);
1500: }

1502: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
1503: {
1504:   const PetscInt   debug = ((DM_Plex *)dm->data)->printL2;
1505:   DM               tdm;
1506:   PetscSection     section;
1507:   PetscQuadrature  quad;
1508:   Vec              localX, tv;
1509:   PetscScalar     *funcVal, *interpolant;
1510:   const PetscReal *quadWeights;
1511:   PetscFEGeom      fegeom;
1512:   PetscReal       *coords, *gcoords;
1513:   PetscReal        localDiff = 0.0;
1514:   PetscInt         dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, c, field, fieldOffset;
1515:   PetscBool        transform;

1517:   PetscFunctionBegin;
1518:   PetscCall(DMGetDimension(dm, &dim));
1519:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
1520:   fegeom.dimEmbed = coordDim;
1521:   PetscCall(DMGetLocalSection(dm, &section));
1522:   PetscCall(PetscSectionGetNumFields(section, &numFields));
1523:   PetscCall(DMGetLocalVector(dm, &localX));
1524:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1525:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1526:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1527:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1528:   PetscCall(DMHasBasisTransform(dm, &transform));
1529:   for (field = 0; field < numFields; ++field) {
1530:     PetscFE  fe;
1531:     PetscInt Nc;

1533:     PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1534:     PetscCall(PetscFEGetQuadrature(fe, &quad));
1535:     PetscCall(PetscFEGetNumComponents(fe, &Nc));
1536:     numComponents += Nc;
1537:   }
1538:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1539:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1540:   /* PetscCall(DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX)); */
1541:   PetscCall(PetscMalloc6(numComponents, &funcVal, coordDim * (Nq + 1), &coords, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ, numComponents * coordDim, &interpolant, Nq, &fegeom.detJ));
1542:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1543:   for (c = cStart; c < cEnd; ++c) {
1544:     PetscScalar *x        = NULL;
1545:     PetscReal    elemDiff = 0.0;
1546:     PetscInt     qc       = 0;

1548:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1549:     PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));

1551:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1552:       PetscFE     fe;
1553:       void *const ctx = ctxs ? ctxs[field] : NULL;
1554:       PetscInt    Nb, Nc, q, fc;

1556:       PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1557:       PetscCall(PetscFEGetDimension(fe, &Nb));
1558:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
1559:       if (debug) {
1560:         char title[1024];
1561:         PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1562:         PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1563:       }
1564:       for (q = 0; q < Nq; ++q) {
1565:         PetscFEGeom    qgeom;
1566:         PetscErrorCode ierr;

1568:         qgeom.dimEmbed = fegeom.dimEmbed;
1569:         qgeom.J        = &fegeom.J[q * coordDim * coordDim];
1570:         qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
1571:         qgeom.detJ     = &fegeom.detJ[q];
1572:         PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1573:         if (transform) {
1574:           gcoords = &coords[coordDim * Nq];
1575:           PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1576:         } else {
1577:           gcoords = &coords[coordDim * q];
1578:         }
1579:         PetscCall(PetscArrayzero(funcVal, Nc));
1580:         ierr = (*funcs[field])(coordDim, time, gcoords, n, Nc, funcVal, ctx);
1581:         if (ierr) {
1582:           PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1583:           PetscCall(DMRestoreLocalVector(dm, &localX));
1584:           PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1585:         }
1586:         if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1587:         PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[fieldOffset], &qgeom, q, interpolant));
1588:         /* Overwrite with the dot product if the normal is given */
1589:         if (n) {
1590:           for (fc = 0; fc < Nc; ++fc) {
1591:             PetscScalar sum = 0.0;
1592:             PetscInt    d;
1593:             for (d = 0; d < dim; ++d) sum += interpolant[fc * dim + d] * n[d];
1594:             interpolant[fc] = sum;
1595:           }
1596:         }
1597:         for (fc = 0; fc < Nc; ++fc) {
1598:           const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1599:           if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elem %" PetscInt_FMT " fieldDer %" PetscInt_FMT ",%" PetscInt_FMT " diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1600:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1601:         }
1602:       }
1603:       fieldOffset += Nb;
1604:       qc += Nc;
1605:     }
1606:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1607:     if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1608:     localDiff += elemDiff;
1609:   }
1610:   PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1611:   PetscCall(DMRestoreLocalVector(dm, &localX));
1612:   PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1613:   *diff = PetscSqrtReal(*diff);
1614:   PetscFunctionReturn(PETSC_SUCCESS);
1615: }

1617: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1618: {
1619:   const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1620:   DM             tdm;
1621:   DMLabel        depthLabel;
1622:   PetscSection   section;
1623:   Vec            localX, tv;
1624:   PetscReal     *localDiff;
1625:   PetscInt       dim, depth, dE, Nf, f, Nds, s;
1626:   PetscBool      transform;
1627:   PetscMPIInt    Nfi;

1629:   PetscFunctionBegin;
1630:   PetscCall(DMGetDimension(dm, &dim));
1631:   PetscCall(DMGetCoordinateDim(dm, &dE));
1632:   PetscCall(DMGetLocalSection(dm, &section));
1633:   PetscCall(DMGetLocalVector(dm, &localX));
1634:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1635:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1636:   PetscCall(DMHasBasisTransform(dm, &transform));
1637:   PetscCall(DMGetNumFields(dm, &Nf));
1638:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
1639:   PetscCall(DMLabelGetNumValues(depthLabel, &depth));

1641:   PetscCall(VecSet(localX, 0.0));
1642:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1643:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1644:   PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1645:   PetscCall(DMGetNumDS(dm, &Nds));
1646:   PetscCall(PetscCalloc1(Nf, &localDiff));
1647:   for (s = 0; s < Nds; ++s) {
1648:     PetscDS          ds;
1649:     DMLabel          label;
1650:     IS               fieldIS, pointIS;
1651:     const PetscInt  *fields, *points = NULL;
1652:     PetscQuadrature  quad;
1653:     const PetscReal *quadPoints, *quadWeights;
1654:     PetscFEGeom      fegeom;
1655:     PetscReal       *coords, *gcoords;
1656:     PetscScalar     *funcVal, *interpolant;
1657:     PetscBool        isCohesive;
1658:     PetscInt         qNc, Nq, totNc, cStart = 0, cEnd, c, dsNf;

1660:     PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
1661:     PetscCall(ISGetIndices(fieldIS, &fields));
1662:     PetscCall(PetscDSIsCohesive(ds, &isCohesive));
1663:     PetscCall(PetscDSGetNumFields(ds, &dsNf));
1664:     PetscCall(PetscDSGetTotalComponents(ds, &totNc));
1665:     PetscCall(PetscDSGetQuadrature(ds, &quad));
1666:     PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1667:     PetscCheck(!(qNc != 1) || !(qNc != totNc), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, totNc);
1668:     PetscCall(PetscCalloc6(totNc, &funcVal, totNc, &interpolant, dE * (Nq + 1), &coords, Nq, &fegeom.detJ, dE * dE * Nq, &fegeom.J, dE * dE * Nq, &fegeom.invJ));
1669:     if (!label) {
1670:       PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1671:     } else {
1672:       PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
1673:       PetscCall(ISGetLocalSize(pointIS, &cEnd));
1674:       PetscCall(ISGetIndices(pointIS, &points));
1675:     }
1676:     for (c = cStart; c < cEnd; ++c) {
1677:       const PetscInt  cell = points ? points[c] : c;
1678:       PetscScalar    *x    = NULL;
1679:       const PetscInt *cone;
1680:       PetscInt        qc = 0, fOff = 0, dep;

1682:       PetscCall(DMLabelGetValue(depthLabel, cell, &dep));
1683:       if (dep != depth - 1) continue;
1684:       if (isCohesive) {
1685:         PetscCall(DMPlexGetCone(dm, cell, &cone));
1686:         PetscCall(DMPlexComputeCellGeometryFEM(dm, cone[0], quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1687:       } else {
1688:         PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1689:       }
1690:       PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, cell, 0, NULL, &x));
1691:       for (f = 0; f < dsNf; ++f) {
1692:         PetscObject  obj;
1693:         PetscClassId id;
1694:         void *const  ctx = ctxs ? ctxs[fields[f]] : NULL;
1695:         PetscInt     Nb, Nc, q, fc;
1696:         PetscReal    elemDiff = 0.0;
1697:         PetscBool    cohesive;

1699:         PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
1700:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
1701:         PetscCall(PetscObjectGetClassId(obj, &id));
1702:         if (id == PETSCFE_CLASSID) {
1703:           PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1704:           PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1705:         } else if (id == PETSCFV_CLASSID) {
1706:           PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1707:           Nb = 1;
1708:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1709:         if (isCohesive && !cohesive) {
1710:           fOff += Nb * 2;
1711:           qc += Nc;
1712:           continue;
1713:         }
1714:         if (debug) {
1715:           char title[1024];
1716:           PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, fields[f]));
1717:           PetscCall(DMPrintCellVector(cell, title, Nb, &x[fOff]));
1718:         }
1719:         for (q = 0; q < Nq; ++q) {
1720:           PetscFEGeom    qgeom;
1721:           PetscErrorCode ierr;

1723:           qgeom.dimEmbed = fegeom.dimEmbed;
1724:           qgeom.J        = &fegeom.J[q * dE * dE];
1725:           qgeom.invJ     = &fegeom.invJ[q * dE * dE];
1726:           qgeom.detJ     = &fegeom.detJ[q];
1727:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for cell %" PetscInt_FMT ", quadrature point %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
1728:           if (transform) {
1729:             gcoords = &coords[dE * Nq];
1730:             PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[dE * q], PETSC_TRUE, dE, &coords[dE * q], gcoords, dm->transformCtx));
1731:           } else {
1732:             gcoords = &coords[dE * q];
1733:           }
1734:           for (fc = 0; fc < Nc; ++fc) funcVal[fc] = 0.;
1735:           ierr = (*funcs[fields[f]])(dE, time, gcoords, Nc, funcVal, ctx);
1736:           if (ierr) {
1737:             PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1738:             PetscCall(DMRestoreLocalVector(dm, &localX));
1739:             PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1740:           }
1741:           if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[dE * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1742:           /* Call once for each face, except for lagrange field */
1743:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fOff], &qgeom, q, interpolant));
1744:           else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fOff], q, interpolant));
1745:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1746:           for (fc = 0; fc < Nc; ++fc) {
1747:             const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1748:             if (debug)
1749:               PetscCall(PetscPrintf(PETSC_COMM_SELF, "    cell %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g\n", cell, fields[f], fc, (double)(dE > 0 ? coords[dE * q] : 0), (double)(dE > 1 ? coords[dE * q + 1] : 0), (double)(dE > 2 ? coords[dE * q + 2] : 0),
1750:                                     (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1751:             elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1752:           }
1753:         }
1754:         fOff += Nb;
1755:         qc += Nc;
1756:         localDiff[fields[f]] += elemDiff;
1757:         if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  cell %" PetscInt_FMT " field %" PetscInt_FMT " cum diff %g\n", cell, fields[f], (double)localDiff[fields[f]]));
1758:       }
1759:       PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1760:     }
1761:     if (label) {
1762:       PetscCall(ISRestoreIndices(pointIS, &points));
1763:       PetscCall(ISDestroy(&pointIS));
1764:     }
1765:     PetscCall(ISRestoreIndices(fieldIS, &fields));
1766:     PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1767:   }
1768:   PetscCall(DMRestoreLocalVector(dm, &localX));
1769:   PetscCall(PetscMPIIntCast(Nf, &Nfi));
1770:   PetscCallMPI(MPIU_Allreduce(localDiff, diff, Nfi, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1771:   PetscCall(PetscFree(localDiff));
1772:   for (f = 0; f < Nf; ++f) diff[f] = PetscSqrtReal(diff[f]);
1773:   PetscFunctionReturn(PETSC_SUCCESS);
1774: }

1776: /*@C
1777:   DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.

1779:   Collective

1781:   Input Parameters:
1782: + dm    - The `DM`
1783: . time  - The time
1784: . funcs - The functions to evaluate for each field component: `NULL` means that component does not contribute to error calculation
1785: . ctxs  - Optional array of contexts to pass to each function, or `NULL`.
1786: - X     - The coefficient vector u_h

1788:   Output Parameter:
1789: . D - A `Vec` which holds the difference ||u - u_h||_2 for each cell

1791:   Level: developer

1793: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1794: @*/
1795: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
1796: {
1797:   PetscSection     section;
1798:   PetscQuadrature  quad;
1799:   Vec              localX;
1800:   PetscFEGeom      fegeom;
1801:   PetscScalar     *funcVal, *interpolant;
1802:   PetscReal       *coords;
1803:   const PetscReal *quadPoints, *quadWeights;
1804:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, c, field, fieldOffset;

1806:   PetscFunctionBegin;
1807:   PetscCall(VecSet(D, 0.0));
1808:   PetscCall(DMGetDimension(dm, &dim));
1809:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
1810:   PetscCall(DMGetLocalSection(dm, &section));
1811:   PetscCall(PetscSectionGetNumFields(section, &numFields));
1812:   PetscCall(DMGetLocalVector(dm, &localX));
1813:   PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1814:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1815:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1816:   for (field = 0; field < numFields; ++field) {
1817:     PetscObject  obj;
1818:     PetscClassId id;
1819:     PetscInt     Nc;

1821:     PetscCall(DMGetField(dm, field, NULL, &obj));
1822:     PetscCall(PetscObjectGetClassId(obj, &id));
1823:     if (id == PETSCFE_CLASSID) {
1824:       PetscFE fe = (PetscFE)obj;

1826:       PetscCall(PetscFEGetQuadrature(fe, &quad));
1827:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
1828:     } else if (id == PETSCFV_CLASSID) {
1829:       PetscFV fv = (PetscFV)obj;

1831:       PetscCall(PetscFVGetQuadrature(fv, &quad));
1832:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
1833:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1834:     numComponents += Nc;
1835:   }
1836:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1837:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1838:   PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1839:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1840:   for (c = cStart; c < cEnd; ++c) {
1841:     PetscScalar *x        = NULL;
1842:     PetscScalar  elemDiff = 0.0;
1843:     PetscInt     qc       = 0;

1845:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1846:     PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));

1848:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1849:       PetscObject  obj;
1850:       PetscClassId id;
1851:       void *const  ctx = ctxs ? ctxs[field] : NULL;
1852:       PetscInt     Nb, Nc, q, fc;

1854:       PetscCall(DMGetField(dm, field, NULL, &obj));
1855:       PetscCall(PetscObjectGetClassId(obj, &id));
1856:       if (id == PETSCFE_CLASSID) {
1857:         PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1858:         PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1859:       } else if (id == PETSCFV_CLASSID) {
1860:         PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1861:         Nb = 1;
1862:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1863:       if (funcs[field]) {
1864:         for (q = 0; q < Nq; ++q) {
1865:           PetscFEGeom qgeom;

1867:           qgeom.dimEmbed = fegeom.dimEmbed;
1868:           qgeom.J        = &fegeom.J[q * coordDim * coordDim];
1869:           qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
1870:           qgeom.detJ     = &fegeom.detJ[q];
1871:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1872:           PetscCall((*funcs[field])(coordDim, time, &coords[q * coordDim], Nc, funcVal, ctx));
1873: #if defined(needs_fix_with_return_code_argument)
1874:           if (ierr) {
1875:             PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1876:             PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1877:             PetscCall(DMRestoreLocalVector(dm, &localX));
1878:           }
1879: #endif
1880:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1881:           else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1882:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1883:           for (fc = 0; fc < Nc; ++fc) {
1884:             const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1885:             elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1886:           }
1887:         }
1888:       }
1889:       fieldOffset += Nb;
1890:       qc += Nc;
1891:     }
1892:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1893:     PetscCall(VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES));
1894:   }
1895:   PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1896:   PetscCall(DMRestoreLocalVector(dm, &localX));
1897:   PetscCall(VecSqrtAbs(D));
1898:   PetscFunctionReturn(PETSC_SUCCESS);
1899: }

1901: /*@
1902:   DMPlexComputeL2FluxDiffVecLocal - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`

1904:   Collective

1906:   Input Parameters:
1907: + lu  - The local `Vec` containing the primal solution
1908: . f   - The field number for the potential
1909: . lmu - The local `Vec` containing the mixed solution
1910: - mf  - The field number for the flux

1912:   Output Parameter:
1913: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$

1915:   Level: advanced

1917:   Notes:
1918:   We assume that the `DM` for each solution has the same topology, geometry, and quadrature.

1920:   This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.

1922: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVec()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1923: @*/
1924: PetscErrorCode DMPlexComputeL2FluxDiffVecLocal(Vec lu, PetscInt f, Vec lmu, PetscInt mf, Vec eFlux)
1925: {
1926:   DM               dm, mdm, edm;
1927:   PetscFE          fe, mfe;
1928:   PetscFEGeom      fegeom;
1929:   PetscQuadrature  quad;
1930:   const PetscReal *quadWeights;
1931:   PetscReal       *coords;
1932:   PetscScalar     *interpolant, *minterpolant, *earray;
1933:   PetscInt         cdim, mcdim, cStart, cEnd, Nc, mNc, qNc, Nq;
1934:   MPI_Comm         comm;

1936:   PetscFunctionBegin;
1937:   PetscCall(VecGetDM(lu, &dm));
1938:   PetscCall(VecGetDM(lmu, &mdm));
1939:   PetscCall(VecGetDM(eFlux, &edm));
1940:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
1941:   PetscCall(VecSet(eFlux, 0.0));

1943:   // Check if the both problems are on the same mesh
1944:   PetscCall(DMGetCoordinateDim(dm, &cdim));
1945:   PetscCall(DMGetCoordinateDim(mdm, &mcdim));
1946:   PetscCheck(cdim == mcdim, comm, PETSC_ERR_ARG_SIZ, "primal coordinate Dim %" PetscInt_FMT " != %" PetscInt_FMT " mixed coordinate Dim", cdim, mcdim);
1947:   fegeom.dimEmbed = cdim;

1949:   PetscCall(DMGetField(dm, f, NULL, (PetscObject *)&fe));
1950:   PetscCall(DMGetField(mdm, mf, NULL, (PetscObject *)&mfe));
1951:   PetscCall(PetscFEGetNumComponents(fe, &Nc));
1952:   PetscCall(PetscFEGetNumComponents(mfe, &mNc));
1953:   PetscCall(PetscFEGetQuadrature(fe, &quad));
1954:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1955:   PetscCheck(qNc == 1 || qNc == mNc, comm, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, mNc);

1957:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1958:   PetscCall(VecGetArrayWrite(eFlux, &earray));
1959:   PetscCall(PetscMalloc6(Nc * cdim, &interpolant, mNc * cdim, &minterpolant, cdim * (Nq + 1), &coords, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ, Nq, &fegeom.detJ));
1960:   for (PetscInt c = cStart; c < cEnd; ++c) {
1961:     PetscScalar *x            = NULL;
1962:     PetscScalar *mx           = NULL;
1963:     PetscScalar *eval         = NULL;
1964:     PetscReal    fluxElemDiff = 0.0;

1966:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1967:     PetscCall(DMPlexVecGetClosure(dm, NULL, lu, c, NULL, &x));
1968:     PetscCall(DMPlexVecGetClosure(mdm, NULL, lmu, c, NULL, &mx));

1970:     for (PetscInt q = 0; q < Nq; ++q) {
1971:       PetscFEGeom qgeom;

1973:       qgeom.dimEmbed = fegeom.dimEmbed;
1974:       qgeom.J        = &fegeom.J[q * cdim * cdim];
1975:       qgeom.invJ     = &fegeom.invJ[q * cdim * cdim];
1976:       qgeom.detJ     = &fegeom.detJ[q];

1978:       PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);

1980:       PetscCall(PetscFEInterpolate_Static(mfe, &mx[0], &qgeom, q, minterpolant));
1981:       PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[0], &qgeom, q, interpolant));

1983:       /* Now take the elementwise difference and store that in a vector. */
1984:       for (PetscInt fc = 0; fc < mNc; ++fc) {
1985:         const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : fc)];
1986:         fluxElemDiff += PetscSqr(PetscRealPart(interpolant[fc] - minterpolant[fc])) * wt * fegeom.detJ[q];
1987:       }
1988:     }
1989:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, lu, c, NULL, &x));
1990:     PetscCall(DMPlexVecRestoreClosure(mdm, NULL, lmu, c, NULL, &mx));
1991:     PetscCall(DMPlexPointGlobalRef(edm, c, earray, (void *)&eval));
1992:     if (eval) eval[0] = fluxElemDiff;
1993:   }
1994:   PetscCall(PetscFree6(interpolant, minterpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1995:   PetscCall(VecRestoreArrayWrite(eFlux, &earray));

1997:   PetscCall(VecAssemblyBegin(eFlux));
1998:   PetscCall(VecAssemblyEnd(eFlux));
1999:   PetscCall(VecSqrtAbs(eFlux));
2000:   PetscFunctionReturn(PETSC_SUCCESS);
2001: }

2003: /*@
2004:   DMPlexComputeL2FluxDiffVec - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`

2006:   Collective

2008:   Input Parameters:
2009: + u  - The global `Vec` containing the primal solution
2010: . f  - The field number for the potential
2011: . mu - The global `Vec` containing the mixed solution
2012: - mf - The field number for the flux

2014:   Output Parameter:
2015: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$

2017:   Level: advanced

2019:   Notes:
2020:   We assume that the `DM` for each solution has the same topology, geometry, and quadrature.

2022:   This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.

2024: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVecLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2025: @*/
2026: PetscErrorCode DMPlexComputeL2FluxDiffVec(Vec u, PetscInt f, Vec mu, PetscInt mf, Vec eFlux)
2027: {
2028:   DM  dm, mdm;
2029:   Vec lu, lmu;

2031:   PetscFunctionBegin;
2032:   PetscCall(VecGetDM(u, &dm));
2033:   PetscCall(DMGetLocalVector(dm, &lu));
2034:   PetscCall(DMGlobalToLocal(dm, u, INSERT_VALUES, lu));
2035:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, lu, 0.0, NULL, NULL, NULL));

2037:   PetscCall(VecGetDM(mu, &mdm));
2038:   PetscCall(DMGetLocalVector(mdm, &lmu));
2039:   PetscCall(DMGlobalToLocal(mdm, mu, INSERT_VALUES, lmu));
2040:   PetscCall(DMPlexInsertBoundaryValues(mdm, PETSC_TRUE, lmu, 0.0, NULL, NULL, NULL));

2042:   PetscCall(DMPlexComputeL2FluxDiffVecLocal(lu, f, lmu, mf, eFlux));

2044:   PetscCall(DMRestoreLocalVector(dm, &lu));
2045:   PetscCall(DMRestoreLocalVector(mdm, &lmu));
2046:   PetscFunctionReturn(PETSC_SUCCESS);
2047: }

2049: /*@
2050:   DMPlexComputeClementInterpolant - This function computes the L2 projection of the cellwise values of a function u onto P1

2052:   Collective

2054:   Input Parameters:
2055: + dm   - The `DM`
2056: - locX - The coefficient vector u_h

2058:   Output Parameter:
2059: . locC - A `Vec` which holds the Clement interpolant of the function

2061:   Level: developer

2063:   Note:
2064:   $ u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume

2066: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2067: @*/
2068: PetscErrorCode DMPlexComputeClementInterpolant(DM dm, Vec locX, Vec locC)
2069: {
2070:   PetscInt         debug = ((DM_Plex *)dm->data)->printFEM;
2071:   DM               dmc;
2072:   PetscQuadrature  quad;
2073:   PetscScalar     *interpolant, *valsum;
2074:   PetscFEGeom      fegeom;
2075:   PetscReal       *coords;
2076:   const PetscReal *quadPoints, *quadWeights;
2077:   PetscInt         dim, cdim, Nf, f, Nc = 0, Nq, qNc, cStart, cEnd, vStart, vEnd, v;

2079:   PetscFunctionBegin;
2080:   PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2081:   PetscCall(VecGetDM(locC, &dmc));
2082:   PetscCall(VecSet(locC, 0.0));
2083:   PetscCall(DMGetDimension(dm, &dim));
2084:   PetscCall(DMGetCoordinateDim(dm, &cdim));
2085:   fegeom.dimEmbed = cdim;
2086:   PetscCall(DMGetNumFields(dm, &Nf));
2087:   PetscCheck(Nf > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2088:   for (f = 0; f < Nf; ++f) {
2089:     PetscObject  obj;
2090:     PetscClassId id;
2091:     PetscInt     fNc;

2093:     PetscCall(DMGetField(dm, f, NULL, &obj));
2094:     PetscCall(PetscObjectGetClassId(obj, &id));
2095:     if (id == PETSCFE_CLASSID) {
2096:       PetscFE fe = (PetscFE)obj;

2098:       PetscCall(PetscFEGetQuadrature(fe, &quad));
2099:       PetscCall(PetscFEGetNumComponents(fe, &fNc));
2100:     } else if (id == PETSCFV_CLASSID) {
2101:       PetscFV fv = (PetscFV)obj;

2103:       PetscCall(PetscFVGetQuadrature(fv, &quad));
2104:       PetscCall(PetscFVGetNumComponents(fv, &fNc));
2105:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2106:     Nc += fNc;
2107:   }
2108:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2109:   PetscCheck(qNc == 1, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " > 1", qNc);
2110:   PetscCall(PetscMalloc6(Nc * 2, &valsum, Nc, &interpolant, cdim * Nq, &coords, Nq, &fegeom.detJ, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ));
2111:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2112:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2113:   for (v = vStart; v < vEnd; ++v) {
2114:     PetscScalar volsum = 0.0;
2115:     PetscInt   *star   = NULL;
2116:     PetscInt    starSize, st, fc;

2118:     PetscCall(PetscArrayzero(valsum, Nc));
2119:     PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2120:     for (st = 0; st < starSize * 2; st += 2) {
2121:       const PetscInt cell = star[st];
2122:       PetscScalar   *val  = &valsum[Nc];
2123:       PetscScalar   *x    = NULL;
2124:       PetscReal      vol  = 0.0;
2125:       PetscInt       foff = 0;

2127:       if ((cell < cStart) || (cell >= cEnd)) continue;
2128:       PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2129:       PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2130:       for (f = 0; f < Nf; ++f) {
2131:         PetscObject  obj;
2132:         PetscClassId id;
2133:         PetscInt     Nb, fNc, q;

2135:         PetscCall(PetscArrayzero(val, Nc));
2136:         PetscCall(DMGetField(dm, f, NULL, &obj));
2137:         PetscCall(PetscObjectGetClassId(obj, &id));
2138:         if (id == PETSCFE_CLASSID) {
2139:           PetscCall(PetscFEGetNumComponents((PetscFE)obj, &fNc));
2140:           PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2141:         } else if (id == PETSCFV_CLASSID) {
2142:           PetscCall(PetscFVGetNumComponents((PetscFV)obj, &fNc));
2143:           Nb = 1;
2144:         } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2145:         for (q = 0; q < Nq; ++q) {
2146:           const PetscReal wt = quadWeights[q] * fegeom.detJ[q];
2147:           PetscFEGeom     qgeom;

2149:           qgeom.dimEmbed = fegeom.dimEmbed;
2150:           qgeom.J        = &fegeom.J[q * cdim * cdim];
2151:           qgeom.invJ     = &fegeom.invJ[q * cdim * cdim];
2152:           qgeom.detJ     = &fegeom.detJ[q];
2153:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2154:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[foff], &qgeom, q, interpolant));
2155:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2156:           for (fc = 0; fc < fNc; ++fc) val[foff + fc] += interpolant[fc] * wt;
2157:           vol += wt;
2158:         }
2159:         foff += Nb;
2160:       }
2161:       PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2162:       for (fc = 0; fc < Nc; ++fc) valsum[fc] += val[fc];
2163:       volsum += vol;
2164:       if (debug) {
2165:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " value: [", v, cell));
2166:         for (fc = 0; fc < Nc; ++fc) {
2167:           if (fc) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2168:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(val[fc])));
2169:         }
2170:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2171:       }
2172:     }
2173:     for (fc = 0; fc < Nc; ++fc) valsum[fc] /= volsum;
2174:     PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2175:     PetscCall(DMPlexVecSetClosure(dmc, NULL, locC, v, valsum, INSERT_VALUES));
2176:   }
2177:   PetscCall(PetscFree6(valsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2178:   PetscFunctionReturn(PETSC_SUCCESS);
2179: }

2181: /*@
2182:   DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1

2184:   Collective

2186:   Input Parameters:
2187: + dm   - The `DM`
2188: - locX - The coefficient vector u_h

2190:   Output Parameter:
2191: . locC - A `Vec` which holds the Clement interpolant of the gradient

2193:   Level: developer

2195:   Note:
2196:   $\nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume

2198: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2199: @*/
2200: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
2201: {
2202:   DM_Plex         *mesh  = (DM_Plex *)dm->data;
2203:   PetscInt         debug = mesh->printFEM;
2204:   DM               dmC;
2205:   PetscQuadrature  quad;
2206:   PetscScalar     *interpolant, *gradsum;
2207:   PetscFEGeom      fegeom;
2208:   PetscReal       *coords;
2209:   const PetscReal *quadPoints, *quadWeights;
2210:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, vStart, vEnd, v, field, fieldOffset;

2212:   PetscFunctionBegin;
2213:   PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2214:   PetscCall(VecGetDM(locC, &dmC));
2215:   PetscCall(VecSet(locC, 0.0));
2216:   PetscCall(DMGetDimension(dm, &dim));
2217:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
2218:   fegeom.dimEmbed = coordDim;
2219:   PetscCall(DMGetNumFields(dm, &numFields));
2220:   PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2221:   for (field = 0; field < numFields; ++field) {
2222:     PetscObject  obj;
2223:     PetscClassId id;
2224:     PetscInt     Nc;

2226:     PetscCall(DMGetField(dm, field, NULL, &obj));
2227:     PetscCall(PetscObjectGetClassId(obj, &id));
2228:     if (id == PETSCFE_CLASSID) {
2229:       PetscFE fe = (PetscFE)obj;

2231:       PetscCall(PetscFEGetQuadrature(fe, &quad));
2232:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
2233:     } else if (id == PETSCFV_CLASSID) {
2234:       PetscFV fv = (PetscFV)obj;

2236:       PetscCall(PetscFVGetQuadrature(fv, &quad));
2237:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
2238:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2239:     numComponents += Nc;
2240:   }
2241:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2242:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
2243:   PetscCall(PetscMalloc6(coordDim * numComponents * 2, &gradsum, coordDim * numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
2244:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2245:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2246:   for (v = vStart; v < vEnd; ++v) {
2247:     PetscScalar volsum = 0.0;
2248:     PetscInt   *star   = NULL;
2249:     PetscInt    starSize, st, d, fc;

2251:     PetscCall(PetscArrayzero(gradsum, coordDim * numComponents));
2252:     PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2253:     for (st = 0; st < starSize * 2; st += 2) {
2254:       const PetscInt cell = star[st];
2255:       PetscScalar   *grad = &gradsum[coordDim * numComponents];
2256:       PetscScalar   *x    = NULL;
2257:       PetscReal      vol  = 0.0;

2259:       if ((cell < cStart) || (cell >= cEnd)) continue;
2260:       PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2261:       PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2262:       for (field = 0, fieldOffset = 0; field < numFields; ++field) {
2263:         PetscObject  obj;
2264:         PetscClassId id;
2265:         PetscInt     Nb, Nc, q, qc = 0;

2267:         PetscCall(PetscArrayzero(grad, coordDim * numComponents));
2268:         PetscCall(DMGetField(dm, field, NULL, &obj));
2269:         PetscCall(PetscObjectGetClassId(obj, &id));
2270:         if (id == PETSCFE_CLASSID) {
2271:           PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
2272:           PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2273:         } else if (id == PETSCFV_CLASSID) {
2274:           PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
2275:           Nb = 1;
2276:         } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2277:         for (q = 0; q < Nq; ++q) {
2278:           PetscFEGeom qgeom;

2280:           qgeom.dimEmbed = fegeom.dimEmbed;
2281:           qgeom.J        = &fegeom.J[q * coordDim * coordDim];
2282:           qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
2283:           qgeom.detJ     = &fegeom.detJ[q];
2284:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2285:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolateGradient_Static((PetscFE)obj, 1, &x[fieldOffset], &qgeom, q, interpolant));
2286:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2287:           for (fc = 0; fc < Nc; ++fc) {
2288:             const PetscReal wt = quadWeights[q * qNc + qc];

2290:             for (d = 0; d < coordDim; ++d) grad[fc * coordDim + d] += interpolant[fc * dim + d] * wt * fegeom.detJ[q];
2291:           }
2292:           vol += quadWeights[q * qNc] * fegeom.detJ[q];
2293:         }
2294:         fieldOffset += Nb;
2295:         qc += Nc;
2296:       }
2297:       PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2298:       for (fc = 0; fc < numComponents; ++fc) {
2299:         for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] += grad[fc * coordDim + d];
2300:       }
2301:       volsum += vol;
2302:       if (debug) {
2303:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " gradient: [", v, cell));
2304:         for (fc = 0; fc < numComponents; ++fc) {
2305:           for (d = 0; d < coordDim; ++d) {
2306:             if (fc || d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2307:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc * coordDim + d])));
2308:           }
2309:         }
2310:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2311:       }
2312:     }
2313:     for (fc = 0; fc < numComponents; ++fc) {
2314:       for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] /= volsum;
2315:     }
2316:     PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2317:     PetscCall(DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES));
2318:   }
2319:   PetscCall(PetscFree6(gradsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2320:   PetscFunctionReturn(PETSC_SUCCESS);
2321: }

2323: PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec locX, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
2324: {
2325:   DM           dmAux = NULL, plexA = NULL;
2326:   PetscDS      prob, probAux       = NULL;
2327:   PetscSection section, sectionAux;
2328:   Vec          locA;
2329:   PetscInt     dim, numCells = cEnd - cStart, c, f;
2330:   PetscBool    useFVM = PETSC_FALSE;
2331:   /* DS */
2332:   PetscInt           Nf, totDim, *uOff, *uOff_x, numConstants;
2333:   PetscInt           NfAux, totDimAux, *aOff;
2334:   PetscScalar       *u, *a = NULL;
2335:   const PetscScalar *constants;
2336:   /* Geometry */
2337:   PetscFEGeom       *cgeomFEM;
2338:   DM                 dmGrad;
2339:   PetscQuadrature    affineQuad      = NULL;
2340:   Vec                cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
2341:   PetscFVCellGeom   *cgeomFVM;
2342:   const PetscScalar *lgrad;
2343:   PetscInt           maxDegree;
2344:   DMField            coordField;
2345:   IS                 cellIS;

2347:   PetscFunctionBegin;
2348:   PetscCall(DMGetDS(dm, &prob));
2349:   PetscCall(DMGetDimension(dm, &dim));
2350:   PetscCall(DMGetLocalSection(dm, &section));
2351:   PetscCall(DMGetNumFields(dm, &Nf));
2352:   /* Determine which discretizations we have */
2353:   for (f = 0; f < Nf; ++f) {
2354:     PetscObject  obj;
2355:     PetscClassId id;

2357:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2358:     PetscCall(PetscObjectGetClassId(obj, &id));
2359:     if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
2360:   }
2361:   /* Read DS information */
2362:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2363:   PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2364:   PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2365:   PetscCall(ISCreateStride(PETSC_COMM_SELF, numCells, cStart, 1, &cellIS));
2366:   PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2367:   /* Read Auxiliary DS information */
2368:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2369:   if (locA) {
2370:     PetscCall(VecGetDM(locA, &dmAux));
2371:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2372:     PetscCall(DMGetDS(dmAux, &probAux));
2373:     PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2374:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
2375:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2376:     PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2377:   }
2378:   /* Allocate data  arrays */
2379:   PetscCall(PetscCalloc1(numCells * totDim, &u));
2380:   if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
2381:   /* Read out geometry */
2382:   PetscCall(DMGetCoordinateField(dm, &coordField));
2383:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
2384:   if (maxDegree <= 1) {
2385:     PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
2386:     if (affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &cgeomFEM));
2387:   }
2388:   if (useFVM) {
2389:     PetscFV   fv = NULL;
2390:     Vec       grad;
2391:     PetscInt  fStart, fEnd;
2392:     PetscBool compGrad;

2394:     for (f = 0; f < Nf; ++f) {
2395:       PetscObject  obj;
2396:       PetscClassId id;

2398:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2399:       PetscCall(PetscObjectGetClassId(obj, &id));
2400:       if (id == PETSCFV_CLASSID) {
2401:         fv = (PetscFV)obj;
2402:         break;
2403:       }
2404:     }
2405:     PetscCall(PetscFVGetComputeGradients(fv, &compGrad));
2406:     PetscCall(PetscFVSetComputeGradients(fv, PETSC_TRUE));
2407:     PetscCall(DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM));
2408:     PetscCall(DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad));
2409:     PetscCall(PetscFVSetComputeGradients(fv, compGrad));
2410:     PetscCall(VecGetArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2411:     /* Reconstruct and limit cell gradients */
2412:     PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
2413:     PetscCall(DMGetGlobalVector(dmGrad, &grad));
2414:     PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
2415:     /* Communicate gradient values */
2416:     PetscCall(DMGetLocalVector(dmGrad, &locGrad));
2417:     PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
2418:     PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
2419:     PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
2420:     /* Handle non-essential (e.g. outflow) boundary values */
2421:     PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad));
2422:     PetscCall(VecGetArrayRead(locGrad, &lgrad));
2423:   }
2424:   /* Read out data from inputs */
2425:   for (c = cStart; c < cEnd; ++c) {
2426:     PetscScalar *x = NULL;
2427:     PetscInt     i;

2429:     PetscCall(DMPlexVecGetClosure(dm, section, locX, c, NULL, &x));
2430:     for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
2431:     PetscCall(DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x));
2432:     if (dmAux) {
2433:       PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, c, NULL, &x));
2434:       for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
2435:       PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, c, NULL, &x));
2436:     }
2437:   }
2438:   /* Do integration for each field */
2439:   for (f = 0; f < Nf; ++f) {
2440:     PetscObject  obj;
2441:     PetscClassId id;
2442:     PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

2444:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2445:     PetscCall(PetscObjectGetClassId(obj, &id));
2446:     if (id == PETSCFE_CLASSID) {
2447:       PetscFE         fe = (PetscFE)obj;
2448:       PetscQuadrature q;
2449:       PetscFEGeom    *chunkGeom = NULL;
2450:       PetscInt        Nq, Nb;

2452:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2453:       PetscCall(PetscFEGetQuadrature(fe, &q));
2454:       PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2455:       PetscCall(PetscFEGetDimension(fe, &Nb));
2456:       blockSize = Nb * Nq;
2457:       batchSize = numBlocks * blockSize;
2458:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2459:       numChunks = numCells / (numBatches * batchSize);
2460:       Ne        = numChunks * numBatches * batchSize;
2461:       Nr        = numCells % (numBatches * batchSize);
2462:       offset    = numCells - Nr;
2463:       if (!affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, q, PETSC_FALSE, &cgeomFEM));
2464:       PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
2465:       PetscCall(PetscFEIntegrate(prob, f, Ne, chunkGeom, u, probAux, a, cintegral));
2466:       PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &chunkGeom));
2467:       PetscCall(PetscFEIntegrate(prob, f, Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &cintegral[offset * Nf]));
2468:       PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &chunkGeom));
2469:       if (!affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2470:     } else if (id == PETSCFV_CLASSID) {
2471:       PetscInt       foff;
2472:       PetscPointFunc obj_func;

2474:       PetscCall(PetscDSGetObjective(prob, f, &obj_func));
2475:       PetscCall(PetscDSGetFieldOffset(prob, f, &foff));
2476:       if (obj_func) {
2477:         for (c = 0; c < numCells; ++c) {
2478:           PetscScalar *u_x;
2479:           PetscScalar  lint = 0.;

2481:           PetscCall(DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x));
2482:           obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim * c + foff], NULL, u_x, aOff, NULL, PetscSafePointerPlusOffset(a, totDimAux * c), NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
2483:           cintegral[c * Nf + f] += PetscRealPart(lint) * cgeomFVM[c].volume;
2484:         }
2485:       }
2486:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2487:   }
2488:   /* Cleanup data arrays */
2489:   if (useFVM) {
2490:     PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
2491:     PetscCall(VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2492:     PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
2493:     PetscCall(VecDestroy(&faceGeometryFVM));
2494:     PetscCall(VecDestroy(&cellGeometryFVM));
2495:     PetscCall(DMDestroy(&dmGrad));
2496:   }
2497:   if (dmAux) PetscCall(PetscFree(a));
2498:   PetscCall(DMDestroy(&plexA));
2499:   PetscCall(PetscFree(u));
2500:   /* Cleanup */
2501:   if (affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2502:   PetscCall(PetscQuadratureDestroy(&affineQuad));
2503:   PetscCall(ISDestroy(&cellIS));
2504:   PetscFunctionReturn(PETSC_SUCCESS);
2505: }

2507: /*@
2508:   DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user

2510:   Input Parameters:
2511: + dm   - The mesh
2512: . X    - Global input vector
2513: - user - The user context

2515:   Output Parameter:
2516: . integral - Integral for each field

2518:   Level: developer

2520: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2521: @*/
2522: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
2523: {
2524:   PetscInt     printFEM;
2525:   PetscScalar *cintegral, *lintegral;
2526:   PetscInt     Nf, f, cellHeight, cStart, cEnd, cell;
2527:   Vec          locX;
2528:   PetscMPIInt  Nfi;

2530:   PetscFunctionBegin;
2533:   PetscAssertPointer(integral, 3);
2534:   PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2535:   PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2536:   PetscCall(DMGetNumFields(dm, &Nf));
2537:   PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2538:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2539:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2540:   PetscCall(PetscCalloc2(Nf, &lintegral, (cEnd - cStart) * Nf, &cintegral));
2541:   /* Get local solution with boundary values */
2542:   PetscCall(DMGetLocalVector(dm, &locX));
2543:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2544:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2545:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2546:   PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2547:   PetscCall(DMRestoreLocalVector(dm, &locX));
2548:   printFEM = ((DM_Plex *)dm->data)->printFEM;
2549:   /* Sum up values */
2550:   for (cell = cStart; cell < cEnd; ++cell) {
2551:     const PetscInt c = cell - cStart;

2553:     if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2554:     for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c * Nf + f];
2555:   }
2556:   PetscCall(PetscMPIIntCast(Nf, &Nfi));
2557:   PetscCallMPI(MPIU_Allreduce(lintegral, integral, Nfi, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
2558:   if (printFEM) {
2559:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "Integral:"));
2560:     for (f = 0; f < Nf; ++f) PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), " %g", (double)PetscRealPart(integral[f])));
2561:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "\n"));
2562:   }
2563:   PetscCall(PetscFree2(lintegral, cintegral));
2564:   PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2565:   PetscCall(DMDestroy(&dm));
2566:   PetscFunctionReturn(PETSC_SUCCESS);
2567: }

2569: /*@
2570:   DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user

2572:   Input Parameters:
2573: + dm   - The mesh
2574: . X    - Global input vector
2575: - user - The user context

2577:   Output Parameter:
2578: . F - Cellwise integrals for each field

2580:   Level: developer

2582: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2583: @*/
2584: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
2585: {
2586:   PetscInt     printFEM;
2587:   DM           dmF;
2588:   PetscSection sectionF = NULL;
2589:   PetscScalar *cintegral, *af;
2590:   PetscInt     Nf, f, cellHeight, cStart, cEnd, cell, n;
2591:   Vec          locX;

2593:   PetscFunctionBegin;
2597:   PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2598:   PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2599:   PetscCall(DMGetNumFields(dm, &Nf));
2600:   PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2601:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2602:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2603:   PetscCall(PetscCalloc1((cEnd - cStart) * Nf, &cintegral));
2604:   /* Get local solution with boundary values */
2605:   PetscCall(DMGetLocalVector(dm, &locX));
2606:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2607:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2608:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2609:   PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2610:   PetscCall(DMRestoreLocalVector(dm, &locX));
2611:   /* Put values in F */
2612:   PetscCall(VecGetArray(F, &af));
2613:   PetscCall(VecGetDM(F, &dmF));
2614:   if (dmF) PetscCall(DMGetLocalSection(dmF, &sectionF));
2615:   PetscCall(VecGetLocalSize(F, &n));
2616:   PetscCheck(n >= (cEnd - cStart) * Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Vector size %" PetscInt_FMT " < %" PetscInt_FMT, n, (cEnd - cStart) * Nf);
2617:   printFEM = ((DM_Plex *)dm->data)->printFEM;
2618:   for (cell = cStart; cell < cEnd; ++cell) {
2619:     const PetscInt c   = cell - cStart;
2620:     PetscInt       dof = Nf, off = c * Nf;

2622:     if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2623:     if (sectionF) {
2624:       PetscCall(PetscSectionGetDof(sectionF, cell, &dof));
2625:       PetscCall(PetscSectionGetOffset(sectionF, cell, &off));
2626:     }
2627:     PetscCheck(dof == Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %" PetscInt_FMT " != %" PetscInt_FMT, dof, Nf);
2628:     for (f = 0; f < Nf; ++f) af[off + f] = cintegral[c * Nf + f];
2629:   }
2630:   PetscCall(VecRestoreArray(F, &af));
2631:   PetscCall(PetscFree(cintegral));
2632:   PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2633:   PetscCall(DMDestroy(&dm));
2634:   PetscFunctionReturn(PETSC_SUCCESS);
2635: }

2637: static PetscErrorCode DMPlexComputeBdIntegral_Internal(DM dm, Vec locX, IS pointIS, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *fintegral, void *user)
2638: {
2639:   DM                 plex = NULL, plexA = NULL;
2640:   DMEnclosureType    encAux;
2641:   PetscDS            prob, probAux       = NULL;
2642:   PetscSection       section, sectionAux = NULL;
2643:   Vec                locA = NULL;
2644:   DMField            coordField;
2645:   PetscInt           Nf, totDim, *uOff, *uOff_x;
2646:   PetscInt           NfAux = 0, totDimAux = 0, *aOff = NULL;
2647:   PetscScalar       *u, *a = NULL;
2648:   const PetscScalar *constants;
2649:   PetscInt           numConstants, f;

2651:   PetscFunctionBegin;
2652:   PetscCall(DMGetCoordinateField(dm, &coordField));
2653:   PetscCall(DMConvert(dm, DMPLEX, &plex));
2654:   PetscCall(DMGetDS(dm, &prob));
2655:   PetscCall(DMGetLocalSection(dm, &section));
2656:   PetscCall(PetscSectionGetNumFields(section, &Nf));
2657:   /* Determine which discretizations we have */
2658:   for (f = 0; f < Nf; ++f) {
2659:     PetscObject  obj;
2660:     PetscClassId id;

2662:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2663:     PetscCall(PetscObjectGetClassId(obj, &id));
2664:     PetscCheck(id != PETSCFV_CLASSID, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Not supported for FVM (field %" PetscInt_FMT ")", f);
2665:   }
2666:   /* Read DS information */
2667:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2668:   PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2669:   PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2670:   PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2671:   /* Read Auxiliary DS information */
2672:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2673:   if (locA) {
2674:     DM dmAux;

2676:     PetscCall(VecGetDM(locA, &dmAux));
2677:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
2678:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2679:     PetscCall(DMGetDS(dmAux, &probAux));
2680:     PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2681:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
2682:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2683:     PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2684:   }
2685:   /* Integrate over points */
2686:   {
2687:     PetscFEGeom    *fgeom, *chunkGeom = NULL;
2688:     PetscInt        maxDegree;
2689:     PetscQuadrature qGeom = NULL;
2690:     const PetscInt *points;
2691:     PetscInt        numFaces, face, Nq, field;
2692:     PetscInt        numChunks, chunkSize, chunk, Nr, offset;

2694:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
2695:     PetscCall(ISGetIndices(pointIS, &points));
2696:     PetscCall(PetscCalloc2(numFaces * totDim, &u, (locA ? (size_t)numFaces * totDimAux : 0), &a));
2697:     PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
2698:     for (face = 0; face < numFaces; ++face) {
2699:       const PetscInt point = points[face], *support;
2700:       PetscScalar   *x     = NULL;

2702:       PetscCall(DMPlexGetSupport(dm, point, &support));
2703:       PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
2704:       for (PetscInt i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
2705:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
2706:       if (locA) {
2707:         PetscInt subp;
2708:         PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
2709:         PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
2710:         for (PetscInt i = 0; i < totDimAux; ++i) a[f * totDimAux + i] = x[i];
2711:         PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
2712:       }
2713:     }
2714:     for (field = 0; field < Nf; ++field) {
2715:       PetscFE fe;

2717:       PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2718:       if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
2719:       if (!qGeom) {
2720:         PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
2721:         PetscCall(PetscObjectReference((PetscObject)qGeom));
2722:       }
2723:       PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
2724:       PetscCall(DMPlexGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2725:       /* Get blocking */
2726:       {
2727:         PetscQuadrature q;
2728:         PetscInt        numBatches, batchSize, numBlocks, blockSize;
2729:         PetscInt        Nq, Nb;

2731:         PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2732:         PetscCall(PetscFEGetQuadrature(fe, &q));
2733:         PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2734:         PetscCall(PetscFEGetDimension(fe, &Nb));
2735:         blockSize = Nb * Nq;
2736:         batchSize = numBlocks * blockSize;
2737:         chunkSize = numBatches * batchSize;
2738:         PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2739:         numChunks = numFaces / chunkSize;
2740:         Nr        = numFaces % chunkSize;
2741:         offset    = numFaces - Nr;
2742:       }
2743:       /* Do integration for each field */
2744:       for (chunk = 0; chunk < numChunks; ++chunk) {
2745:         PetscCall(PetscFEGeomGetChunk(fgeom, chunk * chunkSize, (chunk + 1) * chunkSize, &chunkGeom));
2746:         PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], chunkSize, chunkGeom, &u[chunk * chunkSize * totDim], probAux, PetscSafePointerPlusOffset(a, chunk * chunkSize * totDimAux), &fintegral[chunk * chunkSize * Nf]));
2747:         PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
2748:       }
2749:       PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
2750:       PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &fintegral[offset * Nf]));
2751:       PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
2752:       /* Cleanup data arrays */
2753:       PetscCall(DMPlexRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2754:       PetscCall(PetscQuadratureDestroy(&qGeom));
2755:     }
2756:     PetscCall(PetscFree2(u, a));
2757:     PetscCall(ISRestoreIndices(pointIS, &points));
2758:   }
2759:   if (plex) PetscCall(DMDestroy(&plex));
2760:   if (plexA) PetscCall(DMDestroy(&plexA));
2761:   PetscFunctionReturn(PETSC_SUCCESS);
2762: }

2764: /*@C
2765:   DMPlexComputeBdIntegral - Form the integral over the specified boundary from the global input X using pointwise functions specified by the user

2767:   Input Parameters:
2768: + dm      - The mesh
2769: . X       - Global input vector
2770: . label   - The boundary `DMLabel`
2771: . numVals - The number of label values to use, or `PETSC_DETERMINE` for all values
2772: . vals    - The label values to use, or NULL for all values
2773: . funcs   - The functions to integrate along the boundary for each field
2774: - user    - The user context

2776:   Output Parameter:
2777: . integral - Integral for each field

2779:   Level: developer

2781: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeIntegralFEM()`, `DMPlexComputeBdResidualFEM()`
2782: @*/
2783: PetscErrorCode DMPlexComputeBdIntegral(DM dm, Vec X, DMLabel label, PetscInt numVals, const PetscInt vals[], void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *integral, void *user)
2784: {
2785:   Vec          locX;
2786:   PetscSection section;
2787:   DMLabel      depthLabel;
2788:   IS           facetIS;
2789:   PetscInt     dim, Nf, f, v;

2791:   PetscFunctionBegin;
2795:   if (vals) PetscAssertPointer(vals, 5);
2796:   PetscAssertPointer(integral, 7);
2797:   PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2798:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
2799:   PetscCall(DMGetDimension(dm, &dim));
2800:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
2801:   PetscCall(DMGetLocalSection(dm, &section));
2802:   PetscCall(PetscSectionGetNumFields(section, &Nf));
2803:   /* Get local solution with boundary values */
2804:   PetscCall(DMGetLocalVector(dm, &locX));
2805:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2806:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2807:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2808:   /* Loop over label values */
2809:   PetscCall(PetscArrayzero(integral, Nf));
2810:   for (v = 0; v < numVals; ++v) {
2811:     IS           pointIS;
2812:     PetscInt     numFaces, face;
2813:     PetscScalar *fintegral;

2815:     PetscCall(DMLabelGetStratumIS(label, vals[v], &pointIS));
2816:     if (!pointIS) continue; /* No points with that id on this process */
2817:     {
2818:       IS isectIS;

2820:       /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
2821:       PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
2822:       PetscCall(ISDestroy(&pointIS));
2823:       pointIS = isectIS;
2824:     }
2825:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
2826:     PetscCall(PetscCalloc1(numFaces * Nf, &fintegral));
2827:     PetscCall(DMPlexComputeBdIntegral_Internal(dm, locX, pointIS, funcs, fintegral, user));
2828:     /* Sum point contributions into integral */
2829:     for (f = 0; f < Nf; ++f)
2830:       for (face = 0; face < numFaces; ++face) integral[f] += fintegral[face * Nf + f];
2831:     PetscCall(PetscFree(fintegral));
2832:     PetscCall(ISDestroy(&pointIS));
2833:   }
2834:   PetscCall(DMRestoreLocalVector(dm, &locX));
2835:   PetscCall(ISDestroy(&facetIS));
2836:   PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2837:   PetscFunctionReturn(PETSC_SUCCESS);
2838: }

2840: /*@
2841:   DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix from the coarse `DM` to a uniformly refined `DM`.

2843:   Input Parameters:
2844: + dmc       - The coarse mesh
2845: . dmf       - The fine mesh
2846: . isRefined - Flag indicating regular refinement, rather than the same topology
2847: - user      - The user context

2849:   Output Parameter:
2850: . In - The interpolation matrix

2852:   Level: developer

2854: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorGeneral()`
2855: @*/
2856: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, PetscBool isRefined, Mat In, void *user)
2857: {
2858:   DM_Plex     *mesh = (DM_Plex *)dmc->data;
2859:   const char  *name = "Interpolator";
2860:   PetscFE     *feRef;
2861:   PetscFV     *fvRef;
2862:   PetscSection fsection, fglobalSection;
2863:   PetscSection csection, cglobalSection;
2864:   PetscScalar *elemMat;
2865:   PetscInt     dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, c;
2866:   PetscInt     cTotDim = 0, rTotDim = 0;

2868:   PetscFunctionBegin;
2869:   PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2870:   PetscCall(DMGetDimension(dmf, &dim));
2871:   PetscCall(DMGetLocalSection(dmf, &fsection));
2872:   PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
2873:   PetscCall(DMGetLocalSection(dmc, &csection));
2874:   PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
2875:   PetscCall(PetscSectionGetNumFields(fsection, &Nf));
2876:   PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
2877:   PetscCall(PetscCalloc2(Nf, &feRef, Nf, &fvRef));
2878:   for (f = 0; f < Nf; ++f) {
2879:     PetscObject  obj, objc;
2880:     PetscClassId id, idc;
2881:     PetscInt     rNb = 0, Nc = 0, cNb = 0;

2883:     PetscCall(DMGetField(dmf, f, NULL, &obj));
2884:     PetscCall(PetscObjectGetClassId(obj, &id));
2885:     if (id == PETSCFE_CLASSID) {
2886:       PetscFE fe = (PetscFE)obj;

2888:       if (isRefined) {
2889:         PetscCall(PetscFERefine(fe, &feRef[f]));
2890:       } else {
2891:         PetscCall(PetscObjectReference((PetscObject)fe));
2892:         feRef[f] = fe;
2893:       }
2894:       PetscCall(PetscFEGetDimension(feRef[f], &rNb));
2895:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
2896:     } else if (id == PETSCFV_CLASSID) {
2897:       PetscFV        fv = (PetscFV)obj;
2898:       PetscDualSpace Q;

2900:       if (isRefined) {
2901:         PetscCall(PetscFVRefine(fv, &fvRef[f]));
2902:       } else {
2903:         PetscCall(PetscObjectReference((PetscObject)fv));
2904:         fvRef[f] = fv;
2905:       }
2906:       PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
2907:       PetscCall(PetscDualSpaceGetDimension(Q, &rNb));
2908:       PetscCall(PetscFVGetDualSpace(fv, &Q));
2909:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
2910:     }
2911:     PetscCall(DMGetField(dmc, f, NULL, &objc));
2912:     PetscCall(PetscObjectGetClassId(objc, &idc));
2913:     if (idc == PETSCFE_CLASSID) {
2914:       PetscFE fe = (PetscFE)objc;

2916:       PetscCall(PetscFEGetDimension(fe, &cNb));
2917:     } else if (id == PETSCFV_CLASSID) {
2918:       PetscFV        fv = (PetscFV)obj;
2919:       PetscDualSpace Q;

2921:       PetscCall(PetscFVGetDualSpace(fv, &Q));
2922:       PetscCall(PetscDualSpaceGetDimension(Q, &cNb));
2923:     }
2924:     rTotDim += rNb;
2925:     cTotDim += cNb;
2926:   }
2927:   PetscCall(PetscMalloc1(rTotDim * cTotDim, &elemMat));
2928:   PetscCall(PetscArrayzero(elemMat, rTotDim * cTotDim));
2929:   for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
2930:     PetscDualSpace   Qref;
2931:     PetscQuadrature  f;
2932:     const PetscReal *qpoints, *qweights;
2933:     PetscReal       *points;
2934:     PetscInt         npoints = 0, Nc, Np, fpdim, i, k, p, d;

2936:     /* Compose points from all dual basis functionals */
2937:     if (feRef[fieldI]) {
2938:       PetscCall(PetscFEGetDualSpace(feRef[fieldI], &Qref));
2939:       PetscCall(PetscFEGetNumComponents(feRef[fieldI], &Nc));
2940:     } else {
2941:       PetscCall(PetscFVGetDualSpace(fvRef[fieldI], &Qref));
2942:       PetscCall(PetscFVGetNumComponents(fvRef[fieldI], &Nc));
2943:     }
2944:     PetscCall(PetscDualSpaceGetDimension(Qref, &fpdim));
2945:     for (i = 0; i < fpdim; ++i) {
2946:       PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2947:       PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL));
2948:       npoints += Np;
2949:     }
2950:     PetscCall(PetscMalloc1(npoints * dim, &points));
2951:     for (i = 0, k = 0; i < fpdim; ++i) {
2952:       PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2953:       PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL));
2954:       for (p = 0; p < Np; ++p, ++k)
2955:         for (d = 0; d < dim; ++d) points[k * dim + d] = qpoints[p * dim + d];
2956:     }

2958:     for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
2959:       PetscObject  obj;
2960:       PetscClassId id;
2961:       PetscInt     NcJ = 0, cpdim = 0, j, qNc;

2963:       PetscCall(DMGetField(dmc, fieldJ, NULL, &obj));
2964:       PetscCall(PetscObjectGetClassId(obj, &id));
2965:       if (id == PETSCFE_CLASSID) {
2966:         PetscFE         fe = (PetscFE)obj;
2967:         PetscTabulation T  = NULL;

2969:         /* Evaluate basis at points */
2970:         PetscCall(PetscFEGetNumComponents(fe, &NcJ));
2971:         PetscCall(PetscFEGetDimension(fe, &cpdim));
2972:         /* For now, fields only interpolate themselves */
2973:         if (fieldI == fieldJ) {
2974:           PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
2975:           PetscCall(PetscFECreateTabulation(fe, 1, npoints, points, 0, &T));
2976:           for (i = 0, k = 0; i < fpdim; ++i) {
2977:             PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2978:             PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
2979:             PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
2980:             for (p = 0; p < Np; ++p, ++k) {
2981:               for (j = 0; j < cpdim; ++j) {
2982:                 /*
2983:                    cTotDim:            Total columns in element interpolation matrix, sum of number of dual basis functionals in each field
2984:                    offsetI, offsetJ:   Offsets into the larger element interpolation matrix for different fields
2985:                    fpdim, i, cpdim, j: Dofs for fine and coarse grids, correspond to dual space basis functionals
2986:                    qNC, Nc, Ncj, c:    Number of components in this field
2987:                    Np, p:              Number of quad points in the fine grid functional i
2988:                    k:                  i*Np + p, overall point number for the interpolation
2989:                 */
2990:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += T->T[0][k * cpdim * NcJ + j * Nc + c] * qweights[p * qNc + c];
2991:               }
2992:             }
2993:           }
2994:           PetscCall(PetscTabulationDestroy(&T));
2995:         }
2996:       } else if (id == PETSCFV_CLASSID) {
2997:         PetscFV fv = (PetscFV)obj;

2999:         /* Evaluate constant function at points */
3000:         PetscCall(PetscFVGetNumComponents(fv, &NcJ));
3001:         cpdim = 1;
3002:         /* For now, fields only interpolate themselves */
3003:         if (fieldI == fieldJ) {
3004:           PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
3005:           for (i = 0, k = 0; i < fpdim; ++i) {
3006:             PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3007:             PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
3008:             PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
3009:             for (p = 0; p < Np; ++p, ++k) {
3010:               for (j = 0; j < cpdim; ++j) {
3011:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += 1.0 * qweights[p * qNc + c];
3012:               }
3013:             }
3014:           }
3015:         }
3016:       }
3017:       offsetJ += cpdim;
3018:     }
3019:     offsetI += fpdim;
3020:     PetscCall(PetscFree(points));
3021:   }
3022:   if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat));
3023:   /* Preallocate matrix */
3024:   {
3025:     Mat          preallocator;
3026:     PetscScalar *vals;
3027:     PetscInt    *cellCIndices, *cellFIndices;
3028:     PetscInt     locRows, locCols, cell;

3030:     PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3031:     PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &preallocator));
3032:     PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
3033:     PetscCall(MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3034:     PetscCall(MatSetUp(preallocator));
3035:     PetscCall(PetscCalloc3(rTotDim * cTotDim, &vals, cTotDim, &cellCIndices, rTotDim, &cellFIndices));
3036:     for (cell = cStart; cell < cEnd; ++cell) {
3037:       if (isRefined) {
3038:         PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices));
3039:         PetscCall(MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES));
3040:       } else {
3041:         PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, preallocator, cell, vals, INSERT_VALUES));
3042:       }
3043:     }
3044:     PetscCall(PetscFree3(vals, cellCIndices, cellFIndices));
3045:     PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
3046:     PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
3047:     PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In));
3048:     PetscCall(MatDestroy(&preallocator));
3049:   }
3050:   /* Fill matrix */
3051:   PetscCall(MatZeroEntries(In));
3052:   for (c = cStart; c < cEnd; ++c) {
3053:     if (isRefined) {
3054:       PetscCall(DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES));
3055:     } else {
3056:       PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, In, c, elemMat, INSERT_VALUES));
3057:     }
3058:   }
3059:   for (f = 0; f < Nf; ++f) PetscCall(PetscFEDestroy(&feRef[f]));
3060:   PetscCall(PetscFree2(feRef, fvRef));
3061:   PetscCall(PetscFree(elemMat));
3062:   PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3063:   PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3064:   if (mesh->printFEM > 1) {
3065:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)In), "%s:\n", name));
3066:     PetscCall(MatFilter(In, 1.0e-10, PETSC_FALSE, PETSC_FALSE));
3067:     PetscCall(MatView(In, NULL));
3068:   }
3069:   PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3070:   PetscFunctionReturn(PETSC_SUCCESS);
3071: }

3073: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
3074: {
3075:   SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_SUP, "Laziness");
3076: }

3078: /*@
3079:   DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix from the coarse `DM` to a non-nested fine `DM`.

3081:   Input Parameters:
3082: + dmf  - The fine mesh
3083: . dmc  - The coarse mesh
3084: - user - The user context

3086:   Output Parameter:
3087: . In - The interpolation matrix

3089:   Level: developer

3091: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3092: @*/
3093: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
3094: {
3095:   DM_Plex     *mesh = (DM_Plex *)dmf->data;
3096:   const char  *name = "Interpolator";
3097:   PetscDS      prob;
3098:   Mat          interp;
3099:   PetscSection fsection, globalFSection;
3100:   PetscSection csection, globalCSection;
3101:   PetscInt     locRows, locCols;
3102:   PetscReal   *x, *v0, *J, *invJ, detJ;
3103:   PetscReal   *v0c, *Jc, *invJc, detJc;
3104:   PetscScalar *elemMat;
3105:   PetscInt     dim, Nf, field, totDim, cStart, cEnd, cell, ccell, s;

3107:   PetscFunctionBegin;
3108:   PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3109:   PetscCall(DMGetCoordinateDim(dmc, &dim));
3110:   PetscCall(DMGetDS(dmc, &prob));
3111:   PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3112:   PetscCall(PetscDSGetNumFields(prob, &Nf));
3113:   PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3114:   PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3115:   PetscCall(DMGetLocalSection(dmf, &fsection));
3116:   PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3117:   PetscCall(DMGetLocalSection(dmc, &csection));
3118:   PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3119:   PetscCall(DMPlexGetSimplexOrBoxCells(dmf, 0, &cStart, &cEnd));
3120:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3121:   PetscCall(PetscMalloc1(totDim, &elemMat));

3123:   PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3124:   PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &interp));
3125:   PetscCall(MatSetType(interp, MATPREALLOCATOR));
3126:   PetscCall(MatSetSizes(interp, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3127:   PetscCall(MatSetUp(interp));
3128:   for (s = 0; s < 2; ++s) {
3129:     for (field = 0; field < Nf; ++field) {
3130:       PetscObject      obj;
3131:       PetscClassId     id;
3132:       PetscDualSpace   Q = NULL;
3133:       PetscTabulation  T = NULL;
3134:       PetscQuadrature  f;
3135:       const PetscReal *qpoints, *qweights;
3136:       PetscInt         Nc, qNc, Np, fpdim, off, i, d;

3138:       PetscCall(PetscDSGetFieldOffset(prob, field, &off));
3139:       PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3140:       PetscCall(PetscObjectGetClassId(obj, &id));
3141:       if (id == PETSCFE_CLASSID) {
3142:         PetscFE fe = (PetscFE)obj;

3144:         PetscCall(PetscFEGetDualSpace(fe, &Q));
3145:         PetscCall(PetscFEGetNumComponents(fe, &Nc));
3146:         if (s) PetscCall(PetscFECreateTabulation(fe, 1, 1, x, 0, &T));
3147:       } else if (id == PETSCFV_CLASSID) {
3148:         PetscFV fv = (PetscFV)obj;

3150:         PetscCall(PetscFVGetDualSpace(fv, &Q));
3151:         Nc = 1;
3152:       } else SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
3153:       PetscCall(PetscDualSpaceGetDimension(Q, &fpdim));
3154:       /* For each fine grid cell */
3155:       for (cell = cStart; cell < cEnd; ++cell) {
3156:         PetscInt *findices, *cindices;
3157:         PetscInt  numFIndices, numCIndices;

3159:         PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3160:         PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3161:         PetscCheck(numFIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %" PetscInt_FMT " != %" PetscInt_FMT " dual basis vecs", numFIndices, totDim);
3162:         for (i = 0; i < fpdim; ++i) {
3163:           Vec                pointVec;
3164:           PetscScalar       *pV;
3165:           PetscSF            coarseCellSF = NULL;
3166:           const PetscSFNode *coarseCells;
3167:           PetscInt           numCoarseCells, cpdim, row = findices[i + off], q, c, j;

3169:           /* Get points from the dual basis functional quadrature */
3170:           PetscCall(PetscDualSpaceGetFunctional(Q, i, &f));
3171:           PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights));
3172:           PetscCheck(qNc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, Nc);
3173:           PetscCall(VecCreateSeq(PETSC_COMM_SELF, Np * dim, &pointVec));
3174:           PetscCall(VecSetBlockSize(pointVec, dim));
3175:           PetscCall(VecGetArray(pointVec, &pV));
3176:           for (q = 0; q < Np; ++q) {
3177:             const PetscReal xi0[3] = {-1., -1., -1.};

3179:             /* Transform point to real space */
3180:             CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3181:             for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3182:           }
3183:           PetscCall(VecRestoreArray(pointVec, &pV));
3184:           /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3185:           /* OPT: Read this out from preallocation information */
3186:           PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3187:           /* Update preallocation info */
3188:           PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3189:           PetscCheck(numCoarseCells == Np, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3190:           PetscCall(VecGetArray(pointVec, &pV));
3191:           for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3192:             PetscReal       pVReal[3];
3193:             const PetscReal xi0[3] = {-1., -1., -1.};

3195:             PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3196:             if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetDimension((PetscFE)obj, &cpdim));
3197:             else cpdim = 1;

3199:             if (s) {
3200:               /* Transform points from real space to coarse reference space */
3201:               PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3202:               for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3203:               CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);

3205:               if (id == PETSCFE_CLASSID) {
3206:                 /* Evaluate coarse basis on contained point */
3207:                 PetscCall(PetscFEComputeTabulation((PetscFE)obj, 1, x, 0, T));
3208:                 PetscCall(PetscArrayzero(elemMat, cpdim));
3209:                 /* Get elemMat entries by multiplying by weight */
3210:                 for (j = 0; j < cpdim; ++j) {
3211:                   for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * qweights[ccell * qNc + c];
3212:                 }
3213:               } else {
3214:                 for (j = 0; j < cpdim; ++j) {
3215:                   for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * qweights[ccell * qNc + c];
3216:                 }
3217:               }
3218:               if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3219:             }
3220:             /* Update interpolator */
3221:             PetscCheck(numCIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, totDim);
3222:             PetscCall(MatSetValues(interp, 1, &row, cpdim, &cindices[off], elemMat, INSERT_VALUES));
3223:             PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3224:           }
3225:           PetscCall(VecRestoreArray(pointVec, &pV));
3226:           PetscCall(PetscSFDestroy(&coarseCellSF));
3227:           PetscCall(VecDestroy(&pointVec));
3228:         }
3229:         PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3230:       }
3231:       if (s && id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3232:     }
3233:     if (!s) {
3234:       PetscCall(MatAssemblyBegin(interp, MAT_FINAL_ASSEMBLY));
3235:       PetscCall(MatAssemblyEnd(interp, MAT_FINAL_ASSEMBLY));
3236:       PetscCall(MatPreallocatorPreallocate(interp, PETSC_TRUE, In));
3237:       PetscCall(MatDestroy(&interp));
3238:       interp = In;
3239:     }
3240:   }
3241:   PetscCall(PetscFree3(v0, J, invJ));
3242:   PetscCall(PetscFree3(v0c, Jc, invJc));
3243:   PetscCall(PetscFree(elemMat));
3244:   PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3245:   PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3246:   PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3247:   PetscFunctionReturn(PETSC_SUCCESS);
3248: }

3250: /*@
3251:   DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix from the coarse `DM` to a non-nested fine `DM`.

3253:   Input Parameters:
3254: + dmf  - The fine mesh
3255: . dmc  - The coarse mesh
3256: - user - The user context

3258:   Output Parameter:
3259: . mass - The mass matrix

3261:   Level: developer

3263: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeMassMatrixNested()`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeInterpolatorGeneral()`
3264: @*/
3265: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
3266: {
3267:   DM_Plex     *mesh = (DM_Plex *)dmf->data;
3268:   const char  *name = "Mass Matrix";
3269:   PetscDS      prob;
3270:   PetscSection fsection, csection, globalFSection, globalCSection;
3271:   PetscHSetIJ  ht;
3272:   PetscLayout  rLayout;
3273:   PetscInt    *dnz, *onz;
3274:   PetscInt     locRows, rStart, rEnd;
3275:   PetscReal   *x, *v0, *J, *invJ, detJ;
3276:   PetscReal   *v0c, *Jc, *invJc, detJc;
3277:   PetscScalar *elemMat;
3278:   PetscInt     dim, Nf, field, totDim, cStart, cEnd, cell, ccell;

3280:   PetscFunctionBegin;
3281:   PetscCall(DMGetCoordinateDim(dmc, &dim));
3282:   PetscCall(DMGetDS(dmc, &prob));
3283:   PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3284:   PetscCall(PetscDSGetNumFields(prob, &Nf));
3285:   PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3286:   PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3287:   PetscCall(DMGetLocalSection(dmf, &fsection));
3288:   PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3289:   PetscCall(DMGetLocalSection(dmc, &csection));
3290:   PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3291:   PetscCall(DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd));
3292:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3293:   PetscCall(PetscMalloc1(totDim, &elemMat));

3295:   PetscCall(MatGetLocalSize(mass, &locRows, NULL));
3296:   PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)mass), &rLayout));
3297:   PetscCall(PetscLayoutSetLocalSize(rLayout, locRows));
3298:   PetscCall(PetscLayoutSetBlockSize(rLayout, 1));
3299:   PetscCall(PetscLayoutSetUp(rLayout));
3300:   PetscCall(PetscLayoutGetRange(rLayout, &rStart, &rEnd));
3301:   PetscCall(PetscLayoutDestroy(&rLayout));
3302:   PetscCall(PetscCalloc2(locRows, &dnz, locRows, &onz));
3303:   PetscCall(PetscHSetIJCreate(&ht));
3304:   for (field = 0; field < Nf; ++field) {
3305:     PetscObject      obj;
3306:     PetscClassId     id;
3307:     PetscQuadrature  quad;
3308:     const PetscReal *qpoints;
3309:     PetscInt         Nq, Nc, i, d;

3311:     PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3312:     PetscCall(PetscObjectGetClassId(obj, &id));
3313:     if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3314:     else PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3315:     PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL));
3316:     /* For each fine grid cell */
3317:     for (cell = cStart; cell < cEnd; ++cell) {
3318:       Vec                pointVec;
3319:       PetscScalar       *pV;
3320:       PetscSF            coarseCellSF = NULL;
3321:       const PetscSFNode *coarseCells;
3322:       PetscInt           numCoarseCells, q, c;
3323:       PetscInt          *findices, *cindices;
3324:       PetscInt           numFIndices, numCIndices;

3326:       PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3327:       PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3328:       /* Get points from the quadrature */
3329:       PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3330:       PetscCall(VecSetBlockSize(pointVec, dim));
3331:       PetscCall(VecGetArray(pointVec, &pV));
3332:       for (q = 0; q < Nq; ++q) {
3333:         const PetscReal xi0[3] = {-1., -1., -1.};

3335:         /* Transform point to real space */
3336:         CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3337:         for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3338:       }
3339:       PetscCall(VecRestoreArray(pointVec, &pV));
3340:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3341:       PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3342:       PetscCall(PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view"));
3343:       /* Update preallocation info */
3344:       PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3345:       PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3346:       {
3347:         PetscHashIJKey key;
3348:         PetscBool      missing;

3350:         for (i = 0; i < numFIndices; ++i) {
3351:           key.i = findices[i];
3352:           if (key.i >= 0) {
3353:             /* Get indices for coarse elements */
3354:             for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3355:               PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3356:               for (c = 0; c < numCIndices; ++c) {
3357:                 key.j = cindices[c];
3358:                 if (key.j < 0) continue;
3359:                 PetscCall(PetscHSetIJQueryAdd(ht, key, &missing));
3360:                 if (missing) {
3361:                   if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i - rStart];
3362:                   else ++onz[key.i - rStart];
3363:                 }
3364:               }
3365:               PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3366:             }
3367:           }
3368:         }
3369:       }
3370:       PetscCall(PetscSFDestroy(&coarseCellSF));
3371:       PetscCall(VecDestroy(&pointVec));
3372:       PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3373:     }
3374:   }
3375:   PetscCall(PetscHSetIJDestroy(&ht));
3376:   PetscCall(MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL));
3377:   PetscCall(MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
3378:   PetscCall(PetscFree2(dnz, onz));
3379:   for (field = 0; field < Nf; ++field) {
3380:     PetscObject      obj;
3381:     PetscClassId     id;
3382:     PetscTabulation  T, Tfine;
3383:     PetscQuadrature  quad;
3384:     const PetscReal *qpoints, *qweights;
3385:     PetscInt         Nq, Nc, i, d;

3387:     PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3388:     PetscCall(PetscObjectGetClassId(obj, &id));
3389:     if (id == PETSCFE_CLASSID) {
3390:       PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3391:       PetscCall(PetscFEGetCellTabulation((PetscFE)obj, 1, &Tfine));
3392:       PetscCall(PetscFECreateTabulation((PetscFE)obj, 1, 1, x, 0, &T));
3393:     } else {
3394:       PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3395:     }
3396:     PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights));
3397:     /* For each fine grid cell */
3398:     for (cell = cStart; cell < cEnd; ++cell) {
3399:       Vec                pointVec;
3400:       PetscScalar       *pV;
3401:       PetscSF            coarseCellSF = NULL;
3402:       const PetscSFNode *coarseCells;
3403:       PetscInt           numCoarseCells, cpdim, q, c, j;
3404:       PetscInt          *findices, *cindices;
3405:       PetscInt           numFIndices, numCIndices;

3407:       PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3408:       PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3409:       /* Get points from the quadrature */
3410:       PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3411:       PetscCall(VecSetBlockSize(pointVec, dim));
3412:       PetscCall(VecGetArray(pointVec, &pV));
3413:       for (q = 0; q < Nq; ++q) {
3414:         const PetscReal xi0[3] = {-1., -1., -1.};

3416:         /* Transform point to real space */
3417:         CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3418:         for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3419:       }
3420:       PetscCall(VecRestoreArray(pointVec, &pV));
3421:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3422:       PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3423:       /* Update matrix */
3424:       PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3425:       PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3426:       PetscCall(VecGetArray(pointVec, &pV));
3427:       for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3428:         PetscReal       pVReal[3];
3429:         const PetscReal xi0[3] = {-1., -1., -1.};

3431:         PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3432:         /* Transform points from real space to coarse reference space */
3433:         PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3434:         for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3435:         CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);

3437:         if (id == PETSCFE_CLASSID) {
3438:           PetscFE fe = (PetscFE)obj;

3440:           /* Evaluate coarse basis on contained point */
3441:           PetscCall(PetscFEGetDimension(fe, &cpdim));
3442:           PetscCall(PetscFEComputeTabulation(fe, 1, x, 0, T));
3443:           /* Get elemMat entries by multiplying by weight */
3444:           for (i = 0; i < numFIndices; ++i) {
3445:             PetscCall(PetscArrayzero(elemMat, cpdim));
3446:             for (j = 0; j < cpdim; ++j) {
3447:               for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * Tfine->T[0][(ccell * numFIndices + i) * Nc + c] * qweights[ccell * Nc + c] * detJ;
3448:             }
3449:             /* Update interpolator */
3450:             if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3451:             PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3452:             PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3453:           }
3454:         } else {
3455:           cpdim = 1;
3456:           for (i = 0; i < numFIndices; ++i) {
3457:             PetscCall(PetscArrayzero(elemMat, cpdim));
3458:             for (j = 0; j < cpdim; ++j) {
3459:               for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * 1.0 * qweights[ccell * Nc + c] * detJ;
3460:             }
3461:             /* Update interpolator */
3462:             if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3463:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "Nq: %" PetscInt_FMT " %" PetscInt_FMT " Nf: %" PetscInt_FMT " %" PetscInt_FMT " Nc: %" PetscInt_FMT " %" PetscInt_FMT "\n", ccell, Nq, i, numFIndices, j, numCIndices));
3464:             PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3465:             PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3466:           }
3467:         }
3468:         PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3469:       }
3470:       PetscCall(VecRestoreArray(pointVec, &pV));
3471:       PetscCall(PetscSFDestroy(&coarseCellSF));
3472:       PetscCall(VecDestroy(&pointVec));
3473:       PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3474:     }
3475:     if (id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3476:   }
3477:   PetscCall(PetscFree3(v0, J, invJ));
3478:   PetscCall(PetscFree3(v0c, Jc, invJc));
3479:   PetscCall(PetscFree(elemMat));
3480:   PetscCall(MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY));
3481:   PetscCall(MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY));
3482:   PetscFunctionReturn(PETSC_SUCCESS);
3483: }

3485: /*@
3486:   DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns

3488:   Input Parameters:
3489: + dmc  - The coarse mesh
3490: . dmf  - The fine mesh
3491: - user - The user context

3493:   Output Parameter:
3494: . sc - The mapping

3496:   Level: developer

3498: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3499: @*/
3500: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
3501: {
3502:   PetscDS      prob;
3503:   PetscFE     *feRef;
3504:   PetscFV     *fvRef;
3505:   Vec          fv, cv;
3506:   IS           fis, cis;
3507:   PetscSection fsection, fglobalSection, csection, cglobalSection;
3508:   PetscInt    *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
3509:   PetscInt     cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, c, dim, d, startC, endC, offsetC, offsetF, m;
3510:   PetscBool   *needAvg;

3512:   PetscFunctionBegin;
3513:   PetscCall(PetscLogEventBegin(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3514:   PetscCall(DMGetDimension(dmf, &dim));
3515:   PetscCall(DMGetLocalSection(dmf, &fsection));
3516:   PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
3517:   PetscCall(DMGetLocalSection(dmc, &csection));
3518:   PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
3519:   PetscCall(PetscSectionGetNumFields(fsection, &Nf));
3520:   PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
3521:   PetscCall(DMGetDS(dmc, &prob));
3522:   PetscCall(PetscCalloc3(Nf, &feRef, Nf, &fvRef, Nf, &needAvg));
3523:   for (f = 0; f < Nf; ++f) {
3524:     PetscObject  obj;
3525:     PetscClassId id;
3526:     PetscInt     fNb = 0, Nc = 0;

3528:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
3529:     PetscCall(PetscObjectGetClassId(obj, &id));
3530:     if (id == PETSCFE_CLASSID) {
3531:       PetscFE    fe = (PetscFE)obj;
3532:       PetscSpace sp;
3533:       PetscInt   maxDegree;

3535:       PetscCall(PetscFERefine(fe, &feRef[f]));
3536:       PetscCall(PetscFEGetDimension(feRef[f], &fNb));
3537:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
3538:       PetscCall(PetscFEGetBasisSpace(fe, &sp));
3539:       PetscCall(PetscSpaceGetDegree(sp, NULL, &maxDegree));
3540:       if (!maxDegree) needAvg[f] = PETSC_TRUE;
3541:     } else if (id == PETSCFV_CLASSID) {
3542:       PetscFV        fv = (PetscFV)obj;
3543:       PetscDualSpace Q;

3545:       PetscCall(PetscFVRefine(fv, &fvRef[f]));
3546:       PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
3547:       PetscCall(PetscDualSpaceGetDimension(Q, &fNb));
3548:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
3549:       needAvg[f] = PETSC_TRUE;
3550:     }
3551:     fTotDim += fNb;
3552:   }
3553:   PetscCall(PetscDSGetTotalDimension(prob, &cTotDim));
3554:   PetscCall(PetscMalloc1(cTotDim, &cmap));
3555:   for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
3556:     PetscFE        feC;
3557:     PetscFV        fvC;
3558:     PetscDualSpace QF, QC;
3559:     PetscInt       order = -1, NcF, NcC, fpdim, cpdim;

3561:     if (feRef[field]) {
3562:       PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&feC));
3563:       PetscCall(PetscFEGetNumComponents(feC, &NcC));
3564:       PetscCall(PetscFEGetNumComponents(feRef[field], &NcF));
3565:       PetscCall(PetscFEGetDualSpace(feRef[field], &QF));
3566:       PetscCall(PetscDualSpaceGetOrder(QF, &order));
3567:       PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3568:       PetscCall(PetscFEGetDualSpace(feC, &QC));
3569:       PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3570:     } else {
3571:       PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fvC));
3572:       PetscCall(PetscFVGetNumComponents(fvC, &NcC));
3573:       PetscCall(PetscFVGetNumComponents(fvRef[field], &NcF));
3574:       PetscCall(PetscFVGetDualSpace(fvRef[field], &QF));
3575:       PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3576:       PetscCall(PetscFVGetDualSpace(fvC, &QC));
3577:       PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3578:     }
3579:     PetscCheck(NcF == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, NcF, NcC);
3580:     for (c = 0; c < cpdim; ++c) {
3581:       PetscQuadrature  cfunc;
3582:       const PetscReal *cqpoints, *cqweights;
3583:       PetscInt         NqcC, NpC;
3584:       PetscBool        found = PETSC_FALSE;

3586:       PetscCall(PetscDualSpaceGetFunctional(QC, c, &cfunc));
3587:       PetscCall(PetscQuadratureGetData(cfunc, NULL, &NqcC, &NpC, &cqpoints, &cqweights));
3588:       PetscCheck(NqcC == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcC, NcC);
3589:       PetscCheck(NpC == 1 || !feRef[field], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
3590:       for (f = 0; f < fpdim; ++f) {
3591:         PetscQuadrature  ffunc;
3592:         const PetscReal *fqpoints, *fqweights;
3593:         PetscReal        sum = 0.0;
3594:         PetscInt         NqcF, NpF;

3596:         PetscCall(PetscDualSpaceGetFunctional(QF, f, &ffunc));
3597:         PetscCall(PetscQuadratureGetData(ffunc, NULL, &NqcF, &NpF, &fqpoints, &fqweights));
3598:         PetscCheck(NqcF == NcF, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcF, NcF);
3599:         if (NpC != NpF) continue;
3600:         for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
3601:         if (sum > 1.0e-9) continue;
3602:         for (d = 0; d < NcC; ++d) sum += PetscAbsReal(cqweights[d] * fqweights[d]);
3603:         if (sum < 1.0e-9) continue;
3604:         cmap[offsetC + c] = offsetF + f;
3605:         found             = PETSC_TRUE;
3606:         break;
3607:       }
3608:       if (!found) {
3609:         /* TODO We really want the average here, but some asshole put VecScatter in the interface */
3610:         if (fvRef[field] || (feRef[field] && order == 0)) {
3611:           cmap[offsetC + c] = offsetF + 0;
3612:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
3613:       }
3614:     }
3615:     offsetC += cpdim;
3616:     offsetF += fpdim;
3617:   }
3618:   for (f = 0; f < Nf; ++f) {
3619:     PetscCall(PetscFEDestroy(&feRef[f]));
3620:     PetscCall(PetscFVDestroy(&fvRef[f]));
3621:   }
3622:   PetscCall(PetscFree3(feRef, fvRef, needAvg));

3624:   PetscCall(DMGetGlobalVector(dmf, &fv));
3625:   PetscCall(DMGetGlobalVector(dmc, &cv));
3626:   PetscCall(VecGetOwnershipRange(cv, &startC, &endC));
3627:   PetscCall(PetscSectionGetConstrainedStorageSize(cglobalSection, &m));
3628:   PetscCall(PetscMalloc2(cTotDim, &cellCIndices, fTotDim, &cellFIndices));
3629:   PetscCall(PetscMalloc1(m, &cindices));
3630:   PetscCall(PetscMalloc1(m, &findices));
3631:   for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
3632:   for (c = cStart; c < cEnd; ++c) {
3633:     PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices));
3634:     for (d = 0; d < cTotDim; ++d) {
3635:       if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
3636:       PetscCheck(!(findices[cellCIndices[d] - startC] >= 0) || !(findices[cellCIndices[d] - startC] != cellFIndices[cmap[d]]), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cell %" PetscInt_FMT " Coarse dof %" PetscInt_FMT " maps to both %" PetscInt_FMT " and %" PetscInt_FMT, c, cindices[cellCIndices[d] - startC], findices[cellCIndices[d] - startC], cellFIndices[cmap[d]]);
3637:       cindices[cellCIndices[d] - startC] = cellCIndices[d];
3638:       findices[cellCIndices[d] - startC] = cellFIndices[cmap[d]];
3639:     }
3640:   }
3641:   PetscCall(PetscFree(cmap));
3642:   PetscCall(PetscFree2(cellCIndices, cellFIndices));

3644:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis));
3645:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis));
3646:   PetscCall(VecScatterCreate(cv, cis, fv, fis, sc));
3647:   PetscCall(ISDestroy(&cis));
3648:   PetscCall(ISDestroy(&fis));
3649:   PetscCall(DMRestoreGlobalVector(dmf, &fv));
3650:   PetscCall(DMRestoreGlobalVector(dmc, &cv));
3651:   PetscCall(PetscLogEventEnd(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3652:   PetscFunctionReturn(PETSC_SUCCESS);
3653: }

3655: /*@C
3656:   DMPlexGetCellFields - Retrieve the field values values for a chunk of cells

3658:   Input Parameters:
3659: + dm     - The `DM`
3660: . cellIS - The cells to include
3661: . locX   - A local vector with the solution fields
3662: . locX_t - A local vector with solution field time derivatives, or NULL
3663: - locA   - A local vector with auxiliary fields, or NULL

3665:   Output Parameters:
3666: + u   - The field coefficients
3667: . u_t - The fields derivative coefficients
3668: - a   - The auxiliary field coefficients

3670:   Level: developer

3672: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3673: @*/
3674: PetscErrorCode DMPlexGetCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3675: {
3676:   DM              plex, plexA = NULL;
3677:   DMEnclosureType encAux;
3678:   PetscSection    section, sectionAux;
3679:   PetscDS         prob;
3680:   const PetscInt *cells;
3681:   PetscInt        cStart, cEnd, numCells, totDim, totDimAux, c;

3683:   PetscFunctionBegin;
3688:   PetscAssertPointer(u, 6);
3689:   PetscAssertPointer(u_t, 7);
3690:   PetscAssertPointer(a, 8);
3691:   PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3692:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3693:   PetscCall(DMGetLocalSection(dm, &section));
3694:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
3695:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3696:   if (locA) {
3697:     DM      dmAux;
3698:     PetscDS probAux;

3700:     PetscCall(VecGetDM(locA, &dmAux));
3701:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3702:     PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3703:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
3704:     PetscCall(DMGetDS(dmAux, &probAux));
3705:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3706:   }
3707:   numCells = cEnd - cStart;
3708:   PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3709:   if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3710:   else *u_t = NULL;
3711:   if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3712:   else *a = NULL;
3713:   for (c = cStart; c < cEnd; ++c) {
3714:     const PetscInt cell = cells ? cells[c] : c;
3715:     const PetscInt cind = c - cStart;
3716:     PetscScalar   *x = NULL, *x_t = NULL, *ul = *u, *ul_t = *u_t, *al = *a;
3717:     PetscInt       i;

3719:     PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x));
3720:     for (i = 0; i < totDim; ++i) ul[cind * totDim + i] = x[i];
3721:     PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x));
3722:     if (locX_t) {
3723:       PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t));
3724:       for (i = 0; i < totDim; ++i) ul_t[cind * totDim + i] = x_t[i];
3725:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t));
3726:     }
3727:     if (locA) {
3728:       PetscInt subcell;
3729:       PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3730:       PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3731:       for (i = 0; i < totDimAux; ++i) al[cind * totDimAux + i] = x[i];
3732:       PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3733:     }
3734:   }
3735:   PetscCall(DMDestroy(&plex));
3736:   if (locA) PetscCall(DMDestroy(&plexA));
3737:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3738:   PetscFunctionReturn(PETSC_SUCCESS);
3739: }

3741: /*@C
3742:   DMPlexRestoreCellFields - Restore the field values values for a chunk of cells

3744:   Input Parameters:
3745: + dm     - The `DM`
3746: . cellIS - The cells to include
3747: . locX   - A local vector with the solution fields
3748: . locX_t - A local vector with solution field time derivatives, or NULL
3749: - locA   - A local vector with auxiliary fields, or NULL

3751:   Output Parameters:
3752: + u   - The field coefficients
3753: . u_t - The fields derivative coefficients
3754: - a   - The auxiliary field coefficients

3756:   Level: developer

3758: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3759: @*/
3760: PetscErrorCode DMPlexRestoreCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3761: {
3762:   PetscFunctionBegin;
3763:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u));
3764:   if (locX_t) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u_t));
3765:   if (locA) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, a));
3766:   PetscFunctionReturn(PETSC_SUCCESS);
3767: }

3769: static PetscErrorCode DMPlexGetHybridCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3770: {
3771:   DM              plex, plexA = NULL;
3772:   DMEnclosureType encAux;
3773:   PetscSection    section, sectionAux;
3774:   PetscDS         ds, dsIn;
3775:   const PetscInt *cells;
3776:   PetscInt        cStart, cEnd, numCells, c, totDim, totDimAux, Nf, f;

3778:   PetscFunctionBegin;
3784:   PetscAssertPointer(u, 6);
3785:   PetscAssertPointer(u_t, 7);
3786:   PetscAssertPointer(a, 8);
3787:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3788:   numCells = cEnd - cStart;
3789:   PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3790:   PetscCall(DMGetLocalSection(dm, &section));
3791:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
3792:   PetscCall(PetscDSGetNumFields(dsIn, &Nf));
3793:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDim));
3794:   if (locA) {
3795:     DM      dmAux;
3796:     PetscDS probAux;

3798:     PetscCall(VecGetDM(locA, &dmAux));
3799:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3800:     PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3801:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
3802:     PetscCall(DMGetDS(dmAux, &probAux));
3803:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3804:   }
3805:   PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3806:   if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3807:   else {
3808:     *u_t = NULL;
3809:   }
3810:   if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3811:   else {
3812:     *a = NULL;
3813:   }
3814:   // Loop over cohesive cells
3815:   for (c = cStart; c < cEnd; ++c) {
3816:     const PetscInt  cell = cells ? cells[c] : c;
3817:     const PetscInt  cind = c - cStart;
3818:     PetscScalar    *xf = NULL, *xc = NULL, *x = NULL, *xf_t = NULL, *xc_t = NULL;
3819:     PetscScalar    *ul = &(*u)[cind * totDim], *ul_t = PetscSafePointerPlusOffset(*u_t, cind * totDim);
3820:     const PetscInt *cone, *ornt;
3821:     PetscInt        Nx = 0, Nxf, s;

3823:     PetscCall(DMPlexGetCone(dm, cell, &cone));
3824:     PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3825:     // Put in cohesive unknowns
3826:     PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, &Nxf, &xf));
3827:     if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &xf_t));
3828:     for (f = 0; f < Nf; ++f) {
3829:       PetscInt  fdofIn, foff, foffIn;
3830:       PetscBool cohesive;

3832:       PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3833:       if (!cohesive) continue;
3834:       PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3835:       PetscCall(PetscDSGetFieldOffsetCohesive(ds, f, &foff));
3836:       PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3837:       for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + i] = xf[foff + i];
3838:       if (locX_t)
3839:         for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + i] = xf_t[foff + i];
3840:       Nx += fdofIn;
3841:     }
3842:     PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, &Nxf, &xf));
3843:     if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &xf_t));
3844:     // Loop over sides of surface
3845:     for (s = 0; s < 2; ++s) {
3846:       const PetscInt *support;
3847:       const PetscInt  face = cone[s];
3848:       PetscInt        ssize, ncell, Nxc;

3850:       // I don't think I need the face to have 0 orientation in the hybrid cell
3851:       //PetscCheck(!ornt[s], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", face, cell, ornt[s]);
3852:       PetscCall(DMPlexGetSupport(dm, face, &support));
3853:       PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3854:       if (support[0] == cell) ncell = support[1];
3855:       else if (support[1] == cell) ncell = support[0];
3856:       else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3857:       // Get closure of both face and cell, stick in cell for normal fields and face for cohesive fields
3858:       PetscCall(DMPlexVecGetClosure(plex, section, locX, ncell, &Nxc, &xc));
3859:       if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3860:       for (f = 0; f < Nf; ++f) {
3861:         PetscInt  fdofIn, foffIn;
3862:         PetscBool cohesive;

3864:         PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3865:         if (cohesive) continue;
3866:         PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3867:         PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3868:         for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + s * fdofIn + i] = xc[foffIn + i];
3869:         if (locX_t)
3870:           for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + s * fdofIn + i] = xc_t[foffIn + i];
3871:         Nx += fdofIn;
3872:       }
3873:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, ncell, &Nxc, &xc));
3874:       if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3875:     }
3876:     PetscCheck(Nx == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for cell %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, cell, totDim);

3878:     if (locA) {
3879:       PetscScalar *al = &(*a)[cind * totDimAux];
3880:       PetscInt     subcell;

3882:       PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3883:       PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3884:       PetscCheck(Nx == totDimAux, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subcell %" PetscInt_FMT "does not match DS size %" PetscInt_FMT, Nx, subcell, totDimAux);
3885:       for (PetscInt i = 0; i < totDimAux; ++i) al[i] = x[i];
3886:       PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3887:     }
3888:   }
3889:   PetscCall(DMDestroy(&plex));
3890:   PetscCall(DMDestroy(&plexA));
3891:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3892:   PetscFunctionReturn(PETSC_SUCCESS);
3893: }

3895: /*
3896:   DMPlexGetHybridFields - Get the field values for the negative side (s = 0) and positive side (s = 1) of the interface

3898:   Input Parameters:
3899: + dm      - The full domain DM
3900: . dmX     - An array of DM for the field, say an auxiliary DM, indexed by s
3901: . dsX     - An array of PetscDS for the field, indexed by s
3902: . cellIS  - The interface cells for which we want values
3903: . locX    - An array of local vectors with the field values, indexed by s
3904: - useCell - Flag to have values come from neighboring cell rather than endcap face

3906:   Output Parameter:
3907: . x       - An array of field values, indexed by s

3909:   Note:
3910:   The arrays in `x` will be allocated using `DMGetWorkArray()`, and must be returned using `DMPlexRestoreHybridFields()`.

3912:   Level: advanced

3914: .seealso: `DMPlexRestoreHybridFields()`, `DMGetWorkArray()`
3915: */
3916: static PetscErrorCode DMPlexGetHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3917: {
3918:   DM              plexX[2];
3919:   DMEnclosureType encX[2];
3920:   PetscSection    sectionX[2];
3921:   const PetscInt *cells;
3922:   PetscInt        cStart, cEnd, numCells, c, s, totDimX[2];

3924:   PetscFunctionBegin;
3925:   PetscAssertPointer(locX, 5);
3926:   if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3927:   PetscAssertPointer(dmX, 2);
3928:   PetscAssertPointer(dsX, 3);
3930:   PetscAssertPointer(x, 7);
3931:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3932:   numCells = cEnd - cStart;
3933:   for (s = 0; s < 2; ++s) {
3937:     PetscCall(DMPlexConvertPlex(dmX[s], &plexX[s], PETSC_FALSE));
3938:     PetscCall(DMGetEnclosureRelation(dmX[s], dm, &encX[s]));
3939:     PetscCall(DMGetLocalSection(dmX[s], &sectionX[s]));
3940:     PetscCall(PetscDSGetTotalDimension(dsX[s], &totDimX[s]));
3941:     PetscCall(DMGetWorkArray(dmX[s], numCells * totDimX[s], MPIU_SCALAR, &x[s]));
3942:   }
3943:   for (c = cStart; c < cEnd; ++c) {
3944:     const PetscInt  cell = cells ? cells[c] : c;
3945:     const PetscInt  cind = c - cStart;
3946:     const PetscInt *cone, *ornt;

3948:     PetscCall(DMPlexGetCone(dm, cell, &cone));
3949:     PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3950:     //PetscCheck(!ornt[0], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", cone[0], cell, ornt[0]);
3951:     for (s = 0; s < 2; ++s) {
3952:       const PetscInt tdX     = totDimX[s];
3953:       PetscScalar   *closure = NULL, *xl = &x[s][cind * tdX];
3954:       PetscInt       face = cone[s], point = face, subpoint, Nx, i;

3956:       if (useCell) {
3957:         const PetscInt *support;
3958:         PetscInt        ssize;

3960:         PetscCall(DMPlexGetSupport(dm, face, &support));
3961:         PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3962:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", face, cell, ssize);
3963:         if (support[0] == cell) point = support[1];
3964:         else if (support[1] == cell) point = support[0];
3965:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3966:       }
3967:       PetscCall(DMGetEnclosurePoint(plexX[s], dm, encX[s], point, &subpoint));
3968:       PetscCall(DMPlexVecGetOrientedClosure_Internal(plexX[s], sectionX[s], PETSC_FALSE, locX[s], subpoint, ornt[s], &Nx, &closure));
3969:       PetscCheck(Nx == tdX, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subpoint %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, subpoint, tdX);
3970:       for (i = 0; i < Nx; ++i) xl[i] = closure[i];
3971:       PetscCall(DMPlexVecRestoreClosure(plexX[s], sectionX[s], locX[s], subpoint, &Nx, &closure));
3972:     }
3973:   }
3974:   for (s = 0; s < 2; ++s) PetscCall(DMDestroy(&plexX[s]));
3975:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3976:   PetscFunctionReturn(PETSC_SUCCESS);
3977: }

3979: static PetscErrorCode DMPlexRestoreHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3980: {
3981:   PetscFunctionBegin;
3982:   if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3983:   PetscCall(DMRestoreWorkArray(dmX[0], 0, MPIU_SCALAR, &x[0]));
3984:   PetscCall(DMRestoreWorkArray(dmX[1], 0, MPIU_SCALAR, &x[1]));
3985:   PetscFunctionReturn(PETSC_SUCCESS);
3986: }

3988: /*@C
3989:   DMPlexGetFaceFields - Retrieve the field values values for a chunk of faces

3991:   Input Parameters:
3992: + dm           - The `DM`
3993: . fStart       - The first face to include
3994: . fEnd         - The first face to exclude
3995: . locX         - A local vector with the solution fields
3996: . locX_t       - A local vector with solution field time derivatives, or NULL
3997: . faceGeometry - A local vector with face geometry
3998: . cellGeometry - A local vector with cell geometry
3999: - locGrad      - A local vector with field gradients, or NULL

4001:   Output Parameters:
4002: + Nface - The number of faces with field values
4003: . uL    - The field values at the left side of the face
4004: - uR    - The field values at the right side of the face

4006:   Level: developer

4008: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4009: @*/
4010: PetscErrorCode DMPlexGetFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4011: {
4012:   DM                 dmFace, dmCell, dmGrad = NULL;
4013:   PetscSection       section;
4014:   PetscDS            prob;
4015:   DMLabel            ghostLabel;
4016:   const PetscScalar *facegeom, *cellgeom, *x, *lgrad;
4017:   PetscBool         *isFE;
4018:   PetscInt           dim, Nf, f, Nc, numFaces = fEnd - fStart, iface, face;

4020:   PetscFunctionBegin;
4027:   PetscAssertPointer(uL, 10);
4028:   PetscAssertPointer(uR, 11);
4029:   PetscCall(DMGetDimension(dm, &dim));
4030:   PetscCall(DMGetDS(dm, &prob));
4031:   PetscCall(DMGetLocalSection(dm, &section));
4032:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4033:   PetscCall(PetscDSGetTotalComponents(prob, &Nc));
4034:   PetscCall(PetscMalloc1(Nf, &isFE));
4035:   for (f = 0; f < Nf; ++f) {
4036:     PetscObject  obj;
4037:     PetscClassId id;

4039:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4040:     PetscCall(PetscObjectGetClassId(obj, &id));
4041:     if (id == PETSCFE_CLASSID) {
4042:       isFE[f] = PETSC_TRUE;
4043:     } else if (id == PETSCFV_CLASSID) {
4044:       isFE[f] = PETSC_FALSE;
4045:     } else {
4046:       isFE[f] = PETSC_FALSE;
4047:     }
4048:   }
4049:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4050:   PetscCall(VecGetArrayRead(locX, &x));
4051:   PetscCall(VecGetDM(faceGeometry, &dmFace));
4052:   PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4053:   PetscCall(VecGetDM(cellGeometry, &dmCell));
4054:   PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4055:   if (locGrad) {
4056:     PetscCall(VecGetDM(locGrad, &dmGrad));
4057:     PetscCall(VecGetArrayRead(locGrad, &lgrad));
4058:   }
4059:   PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uL));
4060:   PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uR));
4061:   /* Right now just eat the extra work for FE (could make a cell loop) */
4062:   for (face = fStart, iface = 0; face < fEnd; ++face) {
4063:     const PetscInt  *cells;
4064:     PetscFVFaceGeom *fg;
4065:     PetscFVCellGeom *cgL, *cgR;
4066:     PetscScalar     *xL, *xR, *gL, *gR;
4067:     PetscScalar     *uLl = *uL, *uRl = *uR;
4068:     PetscInt         ghost, nsupp, nchild;

4070:     PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4071:     PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4072:     PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4073:     if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4074:     PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4075:     PetscCall(DMPlexGetSupport(dm, face, &cells));
4076:     PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4077:     PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4078:     for (f = 0; f < Nf; ++f) {
4079:       PetscInt off;

4081:       PetscCall(PetscDSGetComponentOffset(prob, f, &off));
4082:       if (isFE[f]) {
4083:         const PetscInt *cone;
4084:         PetscInt        comp, coneSizeL, coneSizeR, faceLocL, faceLocR, ldof, rdof, d;

4086:         xL = xR = NULL;
4087:         PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4088:         PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[0], &ldof, &xL));
4089:         PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[1], &rdof, &xR));
4090:         PetscCall(DMPlexGetCone(dm, cells[0], &cone));
4091:         PetscCall(DMPlexGetConeSize(dm, cells[0], &coneSizeL));
4092:         for (faceLocL = 0; faceLocL < coneSizeL; ++faceLocL)
4093:           if (cone[faceLocL] == face) break;
4094:         PetscCall(DMPlexGetCone(dm, cells[1], &cone));
4095:         PetscCall(DMPlexGetConeSize(dm, cells[1], &coneSizeR));
4096:         for (faceLocR = 0; faceLocR < coneSizeR; ++faceLocR)
4097:           if (cone[faceLocR] == face) break;
4098:         PetscCheck(faceLocL != coneSizeL || faceLocR != coneSizeR, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %" PetscInt_FMT " in cone of cell %" PetscInt_FMT " or cell %" PetscInt_FMT, face, cells[0], cells[1]);
4099:         /* Check that FEM field has values in the right cell (sometimes its an FV ghost cell) */
4100:         /* TODO: this is a hack that might not be right for nonconforming */
4101:         if (faceLocL < coneSizeL) {
4102:           PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocL, xL, &uLl[iface * Nc + off]));
4103:           if (rdof == ldof && faceLocR < coneSizeR) PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4104:           else {
4105:             for (d = 0; d < comp; ++d) uRl[iface * Nc + off + d] = uLl[iface * Nc + off + d];
4106:           }
4107:         } else {
4108:           PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4109:           PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4110:           for (d = 0; d < comp; ++d) uLl[iface * Nc + off + d] = uRl[iface * Nc + off + d];
4111:         }
4112:         PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[0], &ldof, &xL));
4113:         PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[1], &rdof, &xR));
4114:       } else {
4115:         PetscFV  fv;
4116:         PetscInt numComp, c;

4118:         PetscCall(PetscDSGetDiscretization(prob, f, (PetscObject *)&fv));
4119:         PetscCall(PetscFVGetNumComponents(fv, &numComp));
4120:         PetscCall(DMPlexPointLocalFieldRead(dm, cells[0], f, x, &xL));
4121:         PetscCall(DMPlexPointLocalFieldRead(dm, cells[1], f, x, &xR));
4122:         if (dmGrad) {
4123:           PetscReal dxL[3], dxR[3];

4125:           PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], lgrad, &gL));
4126:           PetscCall(DMPlexPointLocalRead(dmGrad, cells[1], lgrad, &gR));
4127:           DMPlex_WaxpyD_Internal(dim, -1, cgL->centroid, fg->centroid, dxL);
4128:           DMPlex_WaxpyD_Internal(dim, -1, cgR->centroid, fg->centroid, dxR);
4129:           for (c = 0; c < numComp; ++c) {
4130:             uLl[iface * Nc + off + c] = xL[c] + DMPlex_DotD_Internal(dim, &gL[c * dim], dxL);
4131:             uRl[iface * Nc + off + c] = xR[c] + DMPlex_DotD_Internal(dim, &gR[c * dim], dxR);
4132:           }
4133:         } else {
4134:           for (c = 0; c < numComp; ++c) {
4135:             uLl[iface * Nc + off + c] = xL[c];
4136:             uRl[iface * Nc + off + c] = xR[c];
4137:           }
4138:         }
4139:       }
4140:     }
4141:     ++iface;
4142:   }
4143:   *Nface = iface;
4144:   PetscCall(VecRestoreArrayRead(locX, &x));
4145:   PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4146:   PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4147:   if (locGrad) PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
4148:   PetscCall(PetscFree(isFE));
4149:   PetscFunctionReturn(PETSC_SUCCESS);
4150: }

4152: /*@C
4153:   DMPlexRestoreFaceFields - Restore the field values values for a chunk of faces

4155:   Input Parameters:
4156: + dm           - The `DM`
4157: . fStart       - The first face to include
4158: . fEnd         - The first face to exclude
4159: . locX         - A local vector with the solution fields
4160: . locX_t       - A local vector with solution field time derivatives, or NULL
4161: . faceGeometry - A local vector with face geometry
4162: . cellGeometry - A local vector with cell geometry
4163: - locGrad      - A local vector with field gradients, or NULL

4165:   Output Parameters:
4166: + Nface - The number of faces with field values
4167: . uL    - The field values at the left side of the face
4168: - uR    - The field values at the right side of the face

4170:   Level: developer

4172: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4173: @*/
4174: PetscErrorCode DMPlexRestoreFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4175: {
4176:   PetscFunctionBegin;
4177:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uL));
4178:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uR));
4179:   PetscFunctionReturn(PETSC_SUCCESS);
4180: }

4182: /*@C
4183:   DMPlexGetFaceGeometry - Retrieve the geometric values for a chunk of faces

4185:   Input Parameters:
4186: + dm           - The `DM`
4187: . fStart       - The first face to include
4188: . fEnd         - The first face to exclude
4189: . faceGeometry - A local vector with face geometry
4190: - cellGeometry - A local vector with cell geometry

4192:   Output Parameters:
4193: + Nface - The number of faces with field values
4194: . fgeom - The extract the face centroid and normal
4195: - vol   - The cell volume

4197:   Level: developer

4199: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4200: @*/
4201: PetscErrorCode DMPlexGetFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4202: {
4203:   DM                 dmFace, dmCell;
4204:   DMLabel            ghostLabel;
4205:   const PetscScalar *facegeom, *cellgeom;
4206:   PetscInt           dim, numFaces = fEnd - fStart, iface, face;

4208:   PetscFunctionBegin;
4212:   PetscAssertPointer(fgeom, 7);
4213:   PetscAssertPointer(vol, 8);
4214:   PetscCall(DMGetDimension(dm, &dim));
4215:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4216:   PetscCall(VecGetDM(faceGeometry, &dmFace));
4217:   PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4218:   PetscCall(VecGetDM(cellGeometry, &dmCell));
4219:   PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4220:   PetscCall(PetscMalloc1(numFaces, fgeom));
4221:   PetscCall(DMGetWorkArray(dm, numFaces * 2, MPIU_SCALAR, vol));
4222:   for (face = fStart, iface = 0; face < fEnd; ++face) {
4223:     const PetscInt  *cells;
4224:     PetscFVFaceGeom *fg;
4225:     PetscFVCellGeom *cgL, *cgR;
4226:     PetscFVFaceGeom *fgeoml = *fgeom;
4227:     PetscReal       *voll   = *vol;
4228:     PetscInt         ghost, d, nchild, nsupp;

4230:     PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4231:     PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4232:     PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4233:     if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4234:     PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4235:     PetscCall(DMPlexGetSupport(dm, face, &cells));
4236:     PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4237:     PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4238:     for (d = 0; d < dim; ++d) {
4239:       fgeoml[iface].centroid[d] = fg->centroid[d];
4240:       fgeoml[iface].normal[d]   = fg->normal[d];
4241:     }
4242:     voll[iface * 2 + 0] = cgL->volume;
4243:     voll[iface * 2 + 1] = cgR->volume;
4244:     ++iface;
4245:   }
4246:   *Nface = iface;
4247:   PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4248:   PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4249:   PetscFunctionReturn(PETSC_SUCCESS);
4250: }

4252: /*@C
4253:   DMPlexRestoreFaceGeometry - Restore the field values values for a chunk of faces

4255:   Input Parameters:
4256: + dm           - The `DM`
4257: . fStart       - The first face to include
4258: . fEnd         - The first face to exclude
4259: . faceGeometry - A local vector with face geometry
4260: - cellGeometry - A local vector with cell geometry

4262:   Output Parameters:
4263: + Nface - The number of faces with field values
4264: . fgeom - The extract the face centroid and normal
4265: - vol   - The cell volume

4267:   Level: developer

4269: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4270: @*/
4271: PetscErrorCode DMPlexRestoreFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4272: {
4273:   PetscFunctionBegin;
4274:   PetscCall(PetscFree(*fgeom));
4275:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_REAL, vol));
4276:   PetscFunctionReturn(PETSC_SUCCESS);
4277: }

4279: PetscErrorCode DMSNESGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4280: {
4281:   char           composeStr[33] = {0};
4282:   PetscObjectId  id;
4283:   PetscContainer container;

4285:   PetscFunctionBegin;
4286:   PetscCall(PetscObjectGetId((PetscObject)quad, &id));
4287:   PetscCall(PetscSNPrintf(composeStr, 32, "DMSNESGetFEGeom_%" PetscInt64_FMT "\n", id));
4288:   PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
4289:   if (container) {
4290:     PetscCall(PetscContainerGetPointer(container, (void **)geom));
4291:   } else {
4292:     PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
4293:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
4294:     PetscCall(PetscContainerSetPointer(container, (void *)*geom));
4295:     PetscCall(PetscContainerSetCtxDestroy(container, PetscContainerCtxDestroy_PetscFEGeom));
4296:     PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
4297:     PetscCall(PetscContainerDestroy(&container));
4298:   }
4299:   PetscFunctionReturn(PETSC_SUCCESS);
4300: }

4302: PetscErrorCode DMSNESRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4303: {
4304:   PetscFunctionBegin;
4305:   *geom = NULL;
4306:   PetscFunctionReturn(PETSC_SUCCESS);
4307: }

4309: PetscErrorCode DMPlexComputeResidual_Patch_Internal(DM dm, PetscSection section, IS cellIS, PetscReal t, Vec locX, Vec locX_t, Vec locF, void *user)
4310: {
4311:   DM_Plex        *mesh       = (DM_Plex *)dm->data;
4312:   const char     *name       = "Residual";
4313:   DM              dmAux      = NULL;
4314:   DMLabel         ghostLabel = NULL;
4315:   PetscDS         prob       = NULL;
4316:   PetscDS         probAux    = NULL;
4317:   PetscBool       useFEM     = PETSC_FALSE;
4318:   PetscBool       isImplicit = (locX_t || t == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
4319:   DMField         coordField = NULL;
4320:   Vec             locA;
4321:   PetscScalar    *u = NULL, *u_t, *a, *uL = NULL, *uR = NULL;
4322:   IS              chunkIS;
4323:   const PetscInt *cells;
4324:   PetscInt        cStart, cEnd, numCells;
4325:   PetscInt        Nf, f, totDim, totDimAux, numChunks, cellChunkSize, chunk, fStart, fEnd;
4326:   PetscInt        maxDegree = PETSC_INT_MAX;
4327:   PetscFormKey    key;
4328:   PetscQuadrature affineQuad = NULL, *quads = NULL;
4329:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;

4331:   PetscFunctionBegin;
4332:   PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4333:   /* FEM+FVM */
4334:   /* 1: Get sizes from dm and dmAux */
4335:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4336:   PetscCall(DMGetDS(dm, &prob));
4337:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4338:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4339:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
4340:   if (locA) {
4341:     PetscCall(VecGetDM(locA, &dmAux));
4342:     PetscCall(DMGetDS(dmAux, &probAux));
4343:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4344:   }
4345:   /* 2: Get geometric data */
4346:   for (f = 0; f < Nf; ++f) {
4347:     PetscObject  obj;
4348:     PetscClassId id;
4349:     PetscBool    fimp;

4351:     PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4352:     if (isImplicit != fimp) continue;
4353:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4354:     PetscCall(PetscObjectGetClassId(obj, &id));
4355:     if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
4356:     PetscCheck(id != PETSCFV_CLASSID, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Use of FVM with PCPATCH not yet implemented");
4357:   }
4358:   if (useFEM) {
4359:     PetscCall(DMGetCoordinateField(dm, &coordField));
4360:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4361:     if (maxDegree <= 1) {
4362:       PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
4363:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4364:     } else {
4365:       PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
4366:       for (f = 0; f < Nf; ++f) {
4367:         PetscObject  obj;
4368:         PetscClassId id;
4369:         PetscBool    fimp;

4371:         PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4372:         if (isImplicit != fimp) continue;
4373:         PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4374:         PetscCall(PetscObjectGetClassId(obj, &id));
4375:         if (id == PETSCFE_CLASSID) {
4376:           PetscFE fe = (PetscFE)obj;

4378:           PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
4379:           PetscCall(PetscObjectReference((PetscObject)quads[f]));
4380:           PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4381:         }
4382:       }
4383:     }
4384:   }
4385:   /* Loop over chunks */
4386:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4387:   PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
4388:   if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
4389:   numCells      = cEnd - cStart;
4390:   numChunks     = 1;
4391:   cellChunkSize = numCells / numChunks;
4392:   numChunks     = PetscMin(1, numCells);
4393:   key.label     = NULL;
4394:   key.value     = 0;
4395:   key.part      = 0;
4396:   for (chunk = 0; chunk < numChunks; ++chunk) {
4397:     PetscScalar     *elemVec, *fluxL = NULL, *fluxR = NULL;
4398:     PetscReal       *vol   = NULL;
4399:     PetscFVFaceGeom *fgeom = NULL;
4400:     PetscInt         cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
4401:     PetscInt         numFaces = 0;

4403:     /* Extract field coefficients */
4404:     if (useFEM) {
4405:       PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
4406:       PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4407:       PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4408:       PetscCall(PetscArrayzero(elemVec, numCells * totDim));
4409:     }
4410:     /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
4411:     /* Loop over fields */
4412:     for (f = 0; f < Nf; ++f) {
4413:       PetscObject  obj;
4414:       PetscClassId id;
4415:       PetscBool    fimp;
4416:       PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

4418:       key.field = f;
4419:       PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4420:       if (isImplicit != fimp) continue;
4421:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4422:       PetscCall(PetscObjectGetClassId(obj, &id));
4423:       if (id == PETSCFE_CLASSID) {
4424:         PetscFE         fe        = (PetscFE)obj;
4425:         PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[f];
4426:         PetscFEGeom    *chunkGeom = NULL;
4427:         PetscQuadrature quad      = affineQuad ? affineQuad : quads[f];
4428:         PetscInt        Nq, Nb;

4430:         PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4431:         PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4432:         PetscCall(PetscFEGetDimension(fe, &Nb));
4433:         blockSize = Nb;
4434:         batchSize = numBlocks * blockSize;
4435:         PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4436:         numChunks = numCells / (numBatches * batchSize);
4437:         Ne        = numChunks * numBatches * batchSize;
4438:         Nr        = numCells % (numBatches * batchSize);
4439:         offset    = numCells - Nr;
4440:         /* Integrate FE residual to get elemVec (need fields at quadrature points) */
4441:         /*   For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
4442:         PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
4443:         PetscCall(PetscFEIntegrateResidual(prob, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4444:         PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
4445:         PetscCall(PetscFEIntegrateResidual(prob, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, &elemVec[offset * totDim]));
4446:         PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
4447:       } else if (id == PETSCFV_CLASSID) {
4448:         PetscFV fv = (PetscFV)obj;

4450:         Ne = numFaces;
4451:         /* Riemann solve over faces (need fields at face centroids) */
4452:         /*   We need to evaluate FE fields at those coordinates */
4453:         PetscCall(PetscFVIntegrateRHSFunction(fv, prob, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
4454:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
4455:     }
4456:     /* Loop over domain */
4457:     if (useFEM) {
4458:       /* Add elemVec to locX */
4459:       for (c = cS; c < cE; ++c) {
4460:         const PetscInt cell = cells ? cells[c] : c;
4461:         const PetscInt cind = c - cStart;

4463:         if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
4464:         if (ghostLabel) {
4465:           PetscInt ghostVal;

4467:           PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4468:           if (ghostVal > 0) continue;
4469:         }
4470:         PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
4471:       }
4472:     }
4473:     /* Handle time derivative */
4474:     if (locX_t) {
4475:       PetscScalar *x_t, *fa;

4477:       PetscCall(VecGetArray(locF, &fa));
4478:       PetscCall(VecGetArray(locX_t, &x_t));
4479:       for (f = 0; f < Nf; ++f) {
4480:         PetscFV      fv;
4481:         PetscObject  obj;
4482:         PetscClassId id;
4483:         PetscInt     pdim, d;

4485:         PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4486:         PetscCall(PetscObjectGetClassId(obj, &id));
4487:         if (id != PETSCFV_CLASSID) continue;
4488:         fv = (PetscFV)obj;
4489:         PetscCall(PetscFVGetNumComponents(fv, &pdim));
4490:         for (c = cS; c < cE; ++c) {
4491:           const PetscInt cell = cells ? cells[c] : c;
4492:           PetscScalar   *u_t, *r;

4494:           if (ghostLabel) {
4495:             PetscInt ghostVal;

4497:             PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4498:             if (ghostVal > 0) continue;
4499:           }
4500:           PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
4501:           PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
4502:           for (d = 0; d < pdim; ++d) r[d] += u_t[d];
4503:         }
4504:       }
4505:       PetscCall(VecRestoreArray(locX_t, &x_t));
4506:       PetscCall(VecRestoreArray(locF, &fa));
4507:     }
4508:     if (useFEM) {
4509:       PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4510:       PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4511:     }
4512:   }
4513:   if (useFEM) PetscCall(ISDestroy(&chunkIS));
4514:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
4515:   /* TODO Could include boundary residual here (see DMPlexComputeResidual_Internal) */
4516:   if (useFEM) {
4517:     if (maxDegree <= 1) {
4518:       PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4519:       PetscCall(PetscQuadratureDestroy(&affineQuad));
4520:     } else {
4521:       for (f = 0; f < Nf; ++f) {
4522:         PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4523:         PetscCall(PetscQuadratureDestroy(&quads[f]));
4524:       }
4525:       PetscCall(PetscFree2(quads, geoms));
4526:     }
4527:   }
4528:   PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4529:   PetscFunctionReturn(PETSC_SUCCESS);
4530: }

4532: /*
4533:   We always assemble JacP, and if the matrix is different from Jac and two different sets of point functions are provided, we also assemble Jac

4535:   X   - The local solution vector
4536:   X_t - The local solution time derivative vector, or NULL
4537: */
4538: PetscErrorCode DMPlexComputeJacobian_Patch_Internal(DM dm, PetscSection section, PetscSection globalSection, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *ctx)
4539: {
4540:   DM_Plex        *mesh = (DM_Plex *)dm->data;
4541:   const char     *name = "Jacobian", *nameP = "JacobianPre";
4542:   DM              dmAux = NULL;
4543:   PetscDS         prob, probAux = NULL;
4544:   PetscSection    sectionAux = NULL;
4545:   Vec             A;
4546:   DMField         coordField;
4547:   PetscFEGeom    *cgeomFEM;
4548:   PetscQuadrature qGeom = NULL;
4549:   Mat             J = Jac, JP = JacP;
4550:   PetscScalar    *work, *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL, *elemMatD = NULL;
4551:   PetscBool       hasJac, hasPrec, hasDyn, assembleJac, *isFE, hasFV = PETSC_FALSE;
4552:   const PetscInt *cells;
4553:   PetscFormKey    key;
4554:   PetscInt        Nf, fieldI, fieldJ, maxDegree, numCells, cStart, cEnd, numChunks, chunkSize, chunk, totDim, totDimAux = 0, sz, wsz, off = 0, offCell = 0;

4556:   PetscFunctionBegin;
4557:   PetscCall(ISGetLocalSize(cellIS, &numCells));
4558:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4559:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4560:   PetscCall(DMGetDS(dm, &prob));
4561:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &A));
4562:   if (A) {
4563:     PetscCall(VecGetDM(A, &dmAux));
4564:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
4565:     PetscCall(DMGetDS(dmAux, &probAux));
4566:   }
4567:   /* Get flags */
4568:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4569:   PetscCall(DMGetWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4570:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
4571:     PetscObject  disc;
4572:     PetscClassId id;
4573:     PetscCall(PetscDSGetDiscretization(prob, fieldI, &disc));
4574:     PetscCall(PetscObjectGetClassId(disc, &id));
4575:     if (id == PETSCFE_CLASSID) {
4576:       isFE[fieldI] = PETSC_TRUE;
4577:     } else if (id == PETSCFV_CLASSID) {
4578:       hasFV        = PETSC_TRUE;
4579:       isFE[fieldI] = PETSC_FALSE;
4580:     }
4581:   }
4582:   PetscCall(PetscDSHasJacobian(prob, &hasJac));
4583:   PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
4584:   PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
4585:   assembleJac = hasJac && hasPrec && (Jac != JacP) ? PETSC_TRUE : PETSC_FALSE;
4586:   hasDyn      = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
4587:   if (hasFV) PetscCall(MatSetOption(JP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE)); /* No allocated space for FV stuff, so ignore the zero entries */
4588:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4589:   if (probAux) PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4590:   /* Compute batch sizes */
4591:   if (isFE[0]) {
4592:     PetscFE         fe;
4593:     PetscQuadrature q;
4594:     PetscInt        numQuadPoints, numBatches, batchSize, numBlocks, blockSize, Nb;

4596:     PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4597:     PetscCall(PetscFEGetQuadrature(fe, &q));
4598:     PetscCall(PetscQuadratureGetData(q, NULL, NULL, &numQuadPoints, NULL, NULL));
4599:     PetscCall(PetscFEGetDimension(fe, &Nb));
4600:     PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4601:     blockSize = Nb * numQuadPoints;
4602:     batchSize = numBlocks * blockSize;
4603:     chunkSize = numBatches * batchSize;
4604:     numChunks = numCells / chunkSize + numCells % chunkSize;
4605:     PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4606:   } else {
4607:     chunkSize = numCells;
4608:     numChunks = 1;
4609:   }
4610:   /* Get work space */
4611:   wsz = (((X ? 1 : 0) + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize;
4612:   PetscCall(DMGetWorkArray(dm, wsz, MPIU_SCALAR, &work));
4613:   PetscCall(PetscArrayzero(work, wsz));
4614:   off      = 0;
4615:   u        = X ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4616:   u_t      = X_t ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4617:   a        = dmAux ? (sz = chunkSize * totDimAux, off += sz, work + off - sz) : NULL;
4618:   elemMat  = hasJac ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4619:   elemMatP = hasPrec ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4620:   elemMatD = hasDyn ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4621:   PetscCheck(off == wsz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Error is workspace size %" PetscInt_FMT " should be %" PetscInt_FMT, off, wsz);
4622:   /* Setup geometry */
4623:   PetscCall(DMGetCoordinateField(dm, &coordField));
4624:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4625:   if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
4626:   if (!qGeom) {
4627:     PetscFE fe;

4629:     PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4630:     PetscCall(PetscFEGetQuadrature(fe, &qGeom));
4631:     PetscCall(PetscObjectReference((PetscObject)qGeom));
4632:   }
4633:   PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4634:   /* Compute volume integrals */
4635:   if (assembleJac) PetscCall(MatZeroEntries(J));
4636:   PetscCall(MatZeroEntries(JP));
4637:   key.label = NULL;
4638:   key.value = 0;
4639:   key.part  = 0;
4640:   for (chunk = 0; chunk < numChunks; ++chunk, offCell += chunkSize) {
4641:     const PetscInt Ncell = PetscMin(chunkSize, numCells - offCell);
4642:     PetscInt       c;

4644:     /* Extract values */
4645:     for (c = 0; c < Ncell; ++c) {
4646:       const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4647:       PetscScalar   *x = NULL, *x_t = NULL;
4648:       PetscInt       i;

4650:       if (X) {
4651:         PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
4652:         for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
4653:         PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
4654:       }
4655:       if (X_t) {
4656:         PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
4657:         for (i = 0; i < totDim; ++i) u_t[c * totDim + i] = x_t[i];
4658:         PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
4659:       }
4660:       if (dmAux) {
4661:         PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, A, cell, NULL, &x));
4662:         for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
4663:         PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, A, cell, NULL, &x));
4664:       }
4665:     }
4666:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
4667:       PetscFE fe;
4668:       PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
4669:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
4670:         key.field = fieldI * Nf + fieldJ;
4671:         if (hasJac) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMat));
4672:         if (hasPrec) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatP));
4673:         if (hasDyn) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatD));
4674:       }
4675:       /* For finite volume, add the identity */
4676:       if (!isFE[fieldI]) {
4677:         PetscFV  fv;
4678:         PetscInt eOffset = 0, Nc, fc, foff;

4680:         PetscCall(PetscDSGetFieldOffset(prob, fieldI, &foff));
4681:         PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
4682:         PetscCall(PetscFVGetNumComponents(fv, &Nc));
4683:         for (c = 0; c < chunkSize; ++c, eOffset += totDim * totDim) {
4684:           for (fc = 0; fc < Nc; ++fc) {
4685:             const PetscInt i = foff + fc;
4686:             if (hasJac) elemMat[eOffset + i * totDim + i] = 1.0;
4687:             if (hasPrec) elemMatP[eOffset + i * totDim + i] = 1.0;
4688:           }
4689:         }
4690:       }
4691:     }
4692:     /*   Add contribution from X_t */
4693:     if (hasDyn) {
4694:       for (c = 0; c < chunkSize * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
4695:     }
4696:     /* Insert values into matrix */
4697:     for (c = 0; c < Ncell; ++c) {
4698:       const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4699:       if (mesh->printFEM > 1) {
4700:         if (hasJac) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[(c - cStart) * totDim * totDim]));
4701:         if (hasPrec) PetscCall(DMPrintCellMatrix(cell, nameP, totDim, totDim, &elemMatP[(c - cStart) * totDim * totDim]));
4702:       }
4703:       if (assembleJac) PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4704:       PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JP, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4705:     }
4706:   }
4707:   /* Cleanup */
4708:   PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4709:   PetscCall(PetscQuadratureDestroy(&qGeom));
4710:   if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
4711:   PetscCall(DMRestoreWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4712:   PetscCall(DMRestoreWorkArray(dm, ((1 + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize, MPIU_SCALAR, &work));
4713:   /* Compute boundary integrals */
4714:   /* PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, ctx)); */
4715:   /* Assemble matrix */
4716:   if (assembleJac) {
4717:     PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
4718:     PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
4719:   }
4720:   PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
4721:   PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
4722:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4723:   PetscFunctionReturn(PETSC_SUCCESS);
4724: }

4726: /* FEM Assembly Function */

4728: static PetscErrorCode DMConvertPlex_Internal(DM dm, DM *plex, PetscBool copy)
4729: {
4730:   PetscBool isPlex;

4732:   PetscFunctionBegin;
4733:   PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
4734:   if (isPlex) {
4735:     *plex = dm;
4736:     PetscCall(PetscObjectReference((PetscObject)dm));
4737:   } else {
4738:     PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
4739:     if (!*plex) {
4740:       PetscCall(DMConvert(dm, DMPLEX, plex));
4741:       PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
4742:     } else {
4743:       PetscCall(PetscObjectReference((PetscObject)*plex));
4744:     }
4745:     if (copy) PetscCall(DMCopyAuxiliaryVec(dm, *plex));
4746:   }
4747:   PetscFunctionReturn(PETSC_SUCCESS);
4748: }

4750: /*@
4751:   DMPlexGetGeometryFVM - Return precomputed geometric data

4753:   Collective

4755:   Input Parameter:
4756: . dm - The `DM`

4758:   Output Parameters:
4759: + facegeom  - The values precomputed from face geometry
4760: . cellgeom  - The values precomputed from cell geometry
4761: - minRadius - The minimum radius over the mesh of an inscribed sphere in a cell

4763:   Level: developer

4765: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMTSSetRHSFunctionLocal()`
4766: @*/
4767: PetscErrorCode DMPlexGetGeometryFVM(DM dm, Vec *facegeom, Vec *cellgeom, PetscReal *minRadius)
4768: {
4769:   DM plex;

4771:   PetscFunctionBegin;
4773:   PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4774:   PetscCall(DMPlexGetDataFVM(plex, NULL, cellgeom, facegeom, NULL));
4775:   if (minRadius) PetscCall(DMPlexGetMinRadius(plex, minRadius));
4776:   PetscCall(DMDestroy(&plex));
4777:   PetscFunctionReturn(PETSC_SUCCESS);
4778: }

4780: /*@
4781:   DMPlexGetGradientDM - Return gradient data layout

4783:   Collective

4785:   Input Parameters:
4786: + dm - The `DM`
4787: - fv - The `PetscFV`

4789:   Output Parameter:
4790: . dmGrad - The layout for gradient values

4792:   Level: developer

4794: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetGeometryFVM()`
4795: @*/
4796: PetscErrorCode DMPlexGetGradientDM(DM dm, PetscFV fv, DM *dmGrad)
4797: {
4798:   DM        plex;
4799:   PetscBool computeGradients;

4801:   PetscFunctionBegin;
4804:   PetscAssertPointer(dmGrad, 3);
4805:   PetscCall(PetscFVGetComputeGradients(fv, &computeGradients));
4806:   if (!computeGradients) {
4807:     *dmGrad = NULL;
4808:     PetscFunctionReturn(PETSC_SUCCESS);
4809:   }
4810:   PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4811:   PetscCall(DMPlexGetDataFVM(plex, fv, NULL, NULL, dmGrad));
4812:   PetscCall(DMDestroy(&plex));
4813:   PetscFunctionReturn(PETSC_SUCCESS);
4814: }

4816: static PetscErrorCode DMPlexComputeBdResidual_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF, DMField coordField, IS facetIS)
4817: {
4818:   DM_Plex        *mesh = (DM_Plex *)dm->data;
4819:   DM              plex = NULL, plexA = NULL;
4820:   const char     *name = "BdResidual";
4821:   DMEnclosureType encAux;
4822:   PetscDS         prob, probAux       = NULL;
4823:   PetscSection    section, sectionAux = NULL;
4824:   Vec             locA = NULL;
4825:   PetscScalar    *u = NULL, *u_t = NULL, *a = NULL, *elemVec = NULL;
4826:   PetscInt        totDim, totDimAux = 0;

4828:   PetscFunctionBegin;
4829:   PetscCall(DMConvert(dm, DMPLEX, &plex));
4830:   PetscCall(DMGetLocalSection(dm, &section));
4831:   PetscCall(DMGetDS(dm, &prob));
4832:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4833:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
4834:   if (locA) {
4835:     DM dmAux;

4837:     PetscCall(VecGetDM(locA, &dmAux));
4838:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
4839:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
4840:     PetscCall(DMGetDS(plexA, &probAux));
4841:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4842:     PetscCall(DMGetLocalSection(plexA, &sectionAux));
4843:   }
4844:   {
4845:     PetscFEGeom    *fgeom;
4846:     PetscInt        maxDegree;
4847:     PetscQuadrature qGeom = NULL;
4848:     IS              pointIS;
4849:     const PetscInt *points;
4850:     PetscInt        numFaces, face, Nq;

4852:     PetscCall(DMLabelGetStratumIS(key.label, key.value, &pointIS));
4853:     if (!pointIS) goto end; /* No points with that id on this process */
4854:     {
4855:       IS isectIS;

4857:       /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
4858:       PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
4859:       PetscCall(ISDestroy(&pointIS));
4860:       pointIS = isectIS;
4861:     }
4862:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
4863:     PetscCall(ISGetIndices(pointIS, &points));
4864:     PetscCall(PetscMalloc4(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, numFaces * totDim, &elemVec, (locA ? (size_t)numFaces * totDimAux : 0), &a));
4865:     PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
4866:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
4867:     if (!qGeom) {
4868:       PetscFE fe;

4870:       PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4871:       PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
4872:       PetscCall(PetscObjectReference((PetscObject)qGeom));
4873:     }
4874:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
4875:     PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4876:     for (face = 0; face < numFaces; ++face) {
4877:       const PetscInt point = points[face], *support;
4878:       PetscScalar   *x     = NULL;
4879:       PetscInt       i;

4881:       PetscCall(DMPlexGetSupport(dm, point, &support));
4882:       PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
4883:       for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
4884:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
4885:       if (locX_t) {
4886:         PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
4887:         for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
4888:         PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
4889:       }
4890:       if (locA) {
4891:         PetscInt subp;

4893:         PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
4894:         PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
4895:         for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
4896:         PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
4897:       }
4898:     }
4899:     PetscCall(PetscArrayzero(elemVec, numFaces * totDim));
4900:     {
4901:       PetscFE      fe;
4902:       PetscInt     Nb;
4903:       PetscFEGeom *chunkGeom = NULL;
4904:       /* Conforming batches */
4905:       PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
4906:       /* Remainder */
4907:       PetscInt Nr, offset;

4909:       PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4910:       PetscCall(PetscFEGetDimension(fe, &Nb));
4911:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4912:       /* TODO: documentation is unclear about what is going on with these numbers: how should Nb / Nq factor in ? */
4913:       blockSize = Nb;
4914:       batchSize = numBlocks * blockSize;
4915:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4916:       numChunks = numFaces / (numBatches * batchSize);
4917:       Ne        = numChunks * numBatches * batchSize;
4918:       Nr        = numFaces % (numBatches * batchSize);
4919:       offset    = numFaces - Nr;
4920:       PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
4921:       PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4922:       PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
4923:       PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
4924:       PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
4925:       PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
4926:     }
4927:     for (face = 0; face < numFaces; ++face) {
4928:       const PetscInt point = points[face], *support;

4930:       if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(point, name, totDim, &elemVec[face * totDim]));
4931:       PetscCall(DMPlexGetSupport(plex, point, &support));
4932:       PetscCall(DMPlexVecSetClosure(plex, NULL, locF, support[0], &elemVec[face * totDim], ADD_ALL_VALUES));
4933:     }
4934:     PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4935:     PetscCall(PetscQuadratureDestroy(&qGeom));
4936:     PetscCall(ISRestoreIndices(pointIS, &points));
4937:     PetscCall(ISDestroy(&pointIS));
4938:     PetscCall(PetscFree4(u, u_t, elemVec, a));
4939:   }
4940: end:
4941:   if (mesh->printFEM) {
4942:     PetscSection s;
4943:     Vec          locFbc;
4944:     PetscInt     pStart, pEnd, maxDof;
4945:     PetscScalar *zeroes;

4947:     PetscCall(DMGetLocalSection(dm, &s));
4948:     PetscCall(VecDuplicate(locF, &locFbc));
4949:     PetscCall(VecCopy(locF, locFbc));
4950:     PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
4951:     PetscCall(PetscSectionGetMaxDof(s, &maxDof));
4952:     PetscCall(PetscCalloc1(maxDof, &zeroes));
4953:     for (PetscInt p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, s, p, zeroes, INSERT_BC_VALUES));
4954:     PetscCall(PetscFree(zeroes));
4955:     PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
4956:     PetscCall(VecDestroy(&locFbc));
4957:   }
4958:   PetscCall(DMDestroy(&plex));
4959:   PetscCall(DMDestroy(&plexA));
4960:   PetscFunctionReturn(PETSC_SUCCESS);
4961: }

4963: PetscErrorCode DMPlexComputeBdResidualSingle(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF)
4964: {
4965:   DMField  coordField;
4966:   DMLabel  depthLabel;
4967:   IS       facetIS;
4968:   PetscInt dim;

4970:   PetscFunctionBegin;
4971:   PetscCall(DMGetDimension(dm, &dim));
4972:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4973:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4974:   PetscCall(DMGetCoordinateField(dm, &coordField));
4975:   PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
4976:   PetscCall(ISDestroy(&facetIS));
4977:   PetscFunctionReturn(PETSC_SUCCESS);
4978: }

4980: static PetscErrorCode DMPlexComputeBdResidual_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
4981: {
4982:   PetscDS  prob;
4983:   PetscInt numBd, bd;
4984:   DMField  coordField = NULL;
4985:   IS       facetIS    = NULL;
4986:   DMLabel  depthLabel;
4987:   PetscInt dim;

4989:   PetscFunctionBegin;
4990:   PetscCall(DMGetDS(dm, &prob));
4991:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4992:   PetscCall(DMGetDimension(dm, &dim));
4993:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4994:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
4995:   for (bd = 0; bd < numBd; ++bd) {
4996:     PetscWeakForm           wf;
4997:     DMBoundaryConditionType type;
4998:     DMLabel                 label;
4999:     const PetscInt         *values;
5000:     PetscInt                field, numValues, v;
5001:     PetscObject             obj;
5002:     PetscClassId            id;
5003:     PetscFormKey            key;

5005:     PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &field, NULL, NULL, NULL, NULL, NULL));
5006:     if (type & DM_BC_ESSENTIAL) continue;
5007:     PetscCall(PetscDSGetDiscretization(prob, field, &obj));
5008:     PetscCall(PetscObjectGetClassId(obj, &id));
5009:     if (id != PETSCFE_CLASSID) continue;
5010:     if (!facetIS) {
5011:       DMLabel  depthLabel;
5012:       PetscInt dim;

5014:       PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5015:       PetscCall(DMGetDimension(dm, &dim));
5016:       PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5017:     }
5018:     PetscCall(DMGetCoordinateField(dm, &coordField));
5019:     for (v = 0; v < numValues; ++v) {
5020:       key.label = label;
5021:       key.value = values[v];
5022:       key.field = field;
5023:       key.part  = 0;
5024:       PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
5025:     }
5026:   }
5027:   PetscCall(ISDestroy(&facetIS));
5028:   PetscFunctionReturn(PETSC_SUCCESS);
5029: }

5031: PetscErrorCode DMPlexComputeResidual_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5032: {
5033:   DM_Plex        *mesh       = (DM_Plex *)dm->data;
5034:   const char     *name       = "Residual";
5035:   DM              dmAux      = NULL;
5036:   DM              dmGrad     = NULL;
5037:   DMLabel         ghostLabel = NULL;
5038:   PetscDS         ds         = NULL;
5039:   PetscDS         dsAux      = NULL;
5040:   PetscSection    section    = NULL;
5041:   PetscBool       useFEM     = PETSC_FALSE;
5042:   PetscBool       useFVM     = PETSC_FALSE;
5043:   PetscBool       isImplicit = (locX_t || time == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
5044:   PetscFV         fvm        = NULL;
5045:   DMField         coordField = NULL;
5046:   Vec             locA, cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
5047:   PetscScalar    *u = NULL, *u_t, *a, *uL, *uR;
5048:   IS              chunkIS;
5049:   const PetscInt *cells;
5050:   PetscInt        cStart, cEnd, numCells;
5051:   PetscInt        Nf, f, totDim, totDimAux, numChunks, cellChunkSize, faceChunkSize, chunk, fStart, fEnd;
5052:   PetscInt        maxDegree  = PETSC_INT_MAX;
5053:   PetscQuadrature affineQuad = NULL, *quads = NULL;
5054:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;

5056:   PetscFunctionBegin;
5057:   PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5058:   if (!cellIS) goto end;
5059:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5060:   if (cStart >= cEnd) goto end;
5061:   /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5062:   /* TODO The FVM geometry is over-manipulated. Make the precalc functions return exactly what we need */
5063:   /* FEM+FVM */
5064:   PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
5065:   /* 1: Get sizes from dm and dmAux */
5066:   PetscCall(DMGetLocalSection(dm, &section));
5067:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5068:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, NULL));
5069:   PetscCall(PetscDSGetNumFields(ds, &Nf));
5070:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5071:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
5072:   if (locA) {
5073:     PetscInt subcell;
5074:     PetscCall(VecGetDM(locA, &dmAux));
5075:     PetscCall(DMGetEnclosurePoint(dmAux, dm, DM_ENC_UNKNOWN, cells ? cells[cStart] : cStart, &subcell));
5076:     PetscCall(DMGetCellDS(dmAux, subcell, &dsAux, NULL));
5077:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5078:   }
5079:   /* 2: Get geometric data */
5080:   for (f = 0; f < Nf; ++f) {
5081:     PetscObject  obj;
5082:     PetscClassId id;
5083:     PetscBool    fimp;

5085:     PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5086:     if (isImplicit != fimp) continue;
5087:     PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5088:     PetscCall(PetscObjectGetClassId(obj, &id));
5089:     if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
5090:     if (id == PETSCFV_CLASSID) {
5091:       useFVM = PETSC_TRUE;
5092:       fvm    = (PetscFV)obj;
5093:     }
5094:   }
5095:   if (useFEM) {
5096:     PetscCall(DMGetCoordinateField(dm, &coordField));
5097:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5098:     if (maxDegree <= 1) {
5099:       PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
5100:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5101:     } else {
5102:       PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5103:       for (f = 0; f < Nf; ++f) {
5104:         PetscObject  obj;
5105:         PetscClassId id;
5106:         PetscBool    fimp;

5108:         PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5109:         if (isImplicit != fimp) continue;
5110:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5111:         PetscCall(PetscObjectGetClassId(obj, &id));
5112:         if (id == PETSCFE_CLASSID) {
5113:           PetscFE fe = (PetscFE)obj;

5115:           PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5116:           PetscCall(PetscObjectReference((PetscObject)quads[f]));
5117:           PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5118:         }
5119:       }
5120:     }
5121:   }
5122:   // Handle non-essential (e.g. outflow) boundary values
5123:   if (useFVM) {
5124:     PetscCall(DMPlexInsertBoundaryValuesFVM(dm, fvm, locX, time, &locGrad));
5125:     PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
5126:     PetscCall(DMPlexGetGradientDM(dm, fvm, &dmGrad));
5127:   }
5128:   /* Loop over chunks */
5129:   if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
5130:   numCells      = cEnd - cStart;
5131:   numChunks     = 1;
5132:   cellChunkSize = numCells / numChunks;
5133:   faceChunkSize = (fEnd - fStart) / numChunks;
5134:   numChunks     = PetscMin(1, numCells);
5135:   for (chunk = 0; chunk < numChunks; ++chunk) {
5136:     PetscScalar     *elemVec, *fluxL, *fluxR;
5137:     PetscReal       *vol;
5138:     PetscFVFaceGeom *fgeom;
5139:     PetscInt         cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5140:     PetscInt         fS = fStart + chunk * faceChunkSize, fE = PetscMin(fS + faceChunkSize, fEnd), numFaces = 0, face;

5142:     /* Extract field coefficients */
5143:     if (useFEM) {
5144:       PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
5145:       PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5146:       PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5147:       PetscCall(PetscArrayzero(elemVec, numCells * totDim));
5148:     }
5149:     if (useFVM) {
5150:       PetscCall(DMPlexGetFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5151:       PetscCall(DMPlexGetFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5152:       PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5153:       PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5154:       PetscCall(PetscArrayzero(fluxL, numFaces * totDim));
5155:       PetscCall(PetscArrayzero(fluxR, numFaces * totDim));
5156:     }
5157:     /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
5158:     /* Loop over fields */
5159:     for (f = 0; f < Nf; ++f) {
5160:       PetscObject  obj;
5161:       PetscClassId id;
5162:       PetscBool    fimp;
5163:       PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

5165:       key.field = f;
5166:       PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5167:       if (isImplicit != fimp) continue;
5168:       PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5169:       PetscCall(PetscObjectGetClassId(obj, &id));
5170:       if (id == PETSCFE_CLASSID) {
5171:         PetscFE         fe        = (PetscFE)obj;
5172:         PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[f];
5173:         PetscFEGeom    *chunkGeom = NULL;
5174:         PetscQuadrature quad      = affineQuad ? affineQuad : quads[f];
5175:         PetscInt        Nq, Nb;

5177:         PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5178:         PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5179:         PetscCall(PetscFEGetDimension(fe, &Nb));
5180:         blockSize = Nb;
5181:         batchSize = numBlocks * blockSize;
5182:         PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5183:         numChunks = numCells / (numBatches * batchSize);
5184:         Ne        = numChunks * numBatches * batchSize;
5185:         Nr        = numCells % (numBatches * batchSize);
5186:         offset    = numCells - Nr;
5187:         /* Integrate FE residual to get elemVec (need fields at quadrature points) */
5188:         /*   For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
5189:         PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
5190:         PetscCall(PetscFEIntegrateResidual(ds, key, Ne, chunkGeom, u, u_t, dsAux, a, t, elemVec));
5191:         PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
5192:         PetscCall(PetscFEIntegrateResidual(ds, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
5193:         PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
5194:       } else if (id == PETSCFV_CLASSID) {
5195:         PetscFV fv = (PetscFV)obj;

5197:         Ne = numFaces;
5198:         /* Riemann solve over faces (need fields at face centroids) */
5199:         /*   We need to evaluate FE fields at those coordinates */
5200:         PetscCall(PetscFVIntegrateRHSFunction(fv, ds, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
5201:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
5202:     }
5203:     /* Loop over domain */
5204:     if (useFEM) {
5205:       /* Add elemVec to locX */
5206:       for (c = cS; c < cE; ++c) {
5207:         const PetscInt cell = cells ? cells[c] : c;
5208:         const PetscInt cind = c - cStart;

5210:         if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
5211:         if (ghostLabel) {
5212:           PetscInt ghostVal;

5214:           PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5215:           if (ghostVal > 0) continue;
5216:         }
5217:         PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
5218:       }
5219:     }
5220:     if (useFVM) {
5221:       PetscScalar *fa;
5222:       PetscInt     iface;

5224:       PetscCall(VecGetArray(locF, &fa));
5225:       for (f = 0; f < Nf; ++f) {
5226:         PetscFV      fv;
5227:         PetscObject  obj;
5228:         PetscClassId id;
5229:         PetscInt     cdim, foff, pdim;

5231:         PetscCall(DMGetCoordinateDim(dm, &cdim));
5232:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5233:         PetscCall(PetscDSGetFieldOffset(ds, f, &foff));
5234:         PetscCall(PetscObjectGetClassId(obj, &id));
5235:         if (id != PETSCFV_CLASSID) continue;
5236:         fv = (PetscFV)obj;
5237:         PetscCall(PetscFVGetNumComponents(fv, &pdim));
5238:         /* Accumulate fluxes to cells */
5239:         for (face = fS, iface = 0; face < fE; ++face) {
5240:           const PetscInt *scells;
5241:           PetscScalar    *fL = NULL, *fR = NULL;
5242:           PetscInt        ghost, d, nsupp, nchild;

5244:           PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
5245:           PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
5246:           PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
5247:           if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
5248:           PetscCall(DMPlexGetSupport(dm, face, &scells));
5249:           PetscCall(DMLabelGetValue(ghostLabel, scells[0], &ghost));
5250:           if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[0], f, fa, &fL));
5251:           PetscCall(DMLabelGetValue(ghostLabel, scells[1], &ghost));
5252:           if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[1], f, fa, &fR));
5253:           if (mesh->printFVM > 1) {
5254:             PetscCall(DMPrintCellVectorReal(face, "Residual: normal", cdim, fgeom[iface].normal));
5255:             PetscCall(DMPrintCellVector(face, "Residual: left state", pdim, &uL[iface * totDim + foff]));
5256:             PetscCall(DMPrintCellVector(face, "Residual: right state", pdim, &uR[iface * totDim + foff]));
5257:             PetscCall(DMPrintCellVector(face, "Residual: left flux", pdim, &fluxL[iface * totDim + foff]));
5258:             PetscCall(DMPrintCellVector(face, "Residual: right flux", pdim, &fluxR[iface * totDim + foff]));
5259:           }
5260:           for (d = 0; d < pdim; ++d) {
5261:             if (fL) fL[d] -= fluxL[iface * totDim + foff + d];
5262:             if (fR) fR[d] += fluxR[iface * totDim + foff + d];
5263:           }
5264:           ++iface;
5265:         }
5266:       }
5267:       PetscCall(VecRestoreArray(locF, &fa));
5268:     }
5269:     /* Handle time derivative */
5270:     if (locX_t) {
5271:       PetscScalar *x_t, *fa;

5273:       PetscCall(VecGetArray(locF, &fa));
5274:       PetscCall(VecGetArray(locX_t, &x_t));
5275:       for (f = 0; f < Nf; ++f) {
5276:         PetscFV      fv;
5277:         PetscObject  obj;
5278:         PetscClassId id;
5279:         PetscInt     pdim, d;

5281:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5282:         PetscCall(PetscObjectGetClassId(obj, &id));
5283:         if (id != PETSCFV_CLASSID) continue;
5284:         fv = (PetscFV)obj;
5285:         PetscCall(PetscFVGetNumComponents(fv, &pdim));
5286:         for (c = cS; c < cE; ++c) {
5287:           const PetscInt cell = cells ? cells[c] : c;
5288:           PetscScalar   *u_t, *r;

5290:           if (ghostLabel) {
5291:             PetscInt ghostVal;

5293:             PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5294:             if (ghostVal > 0) continue;
5295:           }
5296:           PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
5297:           PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
5298:           for (d = 0; d < pdim; ++d) r[d] += u_t[d];
5299:         }
5300:       }
5301:       PetscCall(VecRestoreArray(locX_t, &x_t));
5302:       PetscCall(VecRestoreArray(locF, &fa));
5303:     }
5304:     if (useFEM) {
5305:       PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5306:       PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5307:     }
5308:     if (useFVM) {
5309:       PetscCall(DMPlexRestoreFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5310:       PetscCall(DMPlexRestoreFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5311:       PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5312:       PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5313:       if (dmGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
5314:     }
5315:   }
5316:   if (useFEM) PetscCall(ISDestroy(&chunkIS));
5317:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));

5319:   if (useFEM) {
5320:     PetscCall(DMPlexComputeBdResidual_Internal(dm, locX, locX_t, t, locF, user));

5322:     if (maxDegree <= 1) {
5323:       PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5324:       PetscCall(PetscQuadratureDestroy(&affineQuad));
5325:     } else {
5326:       for (f = 0; f < Nf; ++f) {
5327:         PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5328:         PetscCall(PetscQuadratureDestroy(&quads[f]));
5329:       }
5330:       PetscCall(PetscFree2(quads, geoms));
5331:     }
5332:   }

5334:   /* FEM */
5335:   /* 1: Get sizes from dm and dmAux */
5336:   /* 2: Get geometric data */
5337:   /* 3: Handle boundary values */
5338:   /* 4: Loop over domain */
5339:   /*   Extract coefficients */
5340:   /* Loop over fields */
5341:   /*   Set tiling for FE*/
5342:   /*   Integrate FE residual to get elemVec */
5343:   /*     Loop over subdomain */
5344:   /*       Loop over quad points */
5345:   /*         Transform coords to real space */
5346:   /*         Evaluate field and aux fields at point */
5347:   /*         Evaluate residual at point */
5348:   /*         Transform residual to real space */
5349:   /*       Add residual to elemVec */
5350:   /* Loop over domain */
5351:   /*   Add elemVec to locX */

5353:   /* FVM */
5354:   /* Get geometric data */
5355:   /* If using gradients */
5356:   /*   Compute gradient data */
5357:   /*   Loop over domain faces */
5358:   /*     Count computational faces */
5359:   /*     Reconstruct cell gradient */
5360:   /*   Loop over domain cells */
5361:   /*     Limit cell gradients */
5362:   /* Handle boundary values */
5363:   /* Loop over domain faces */
5364:   /*   Read out field, centroid, normal, volume for each side of face */
5365:   /* Riemann solve over faces */
5366:   /* Loop over domain faces */
5367:   /*   Accumulate fluxes to cells */
5368:   /* TODO Change printFEM to printDisc here */
5369:   if (mesh->printFEM) {
5370:     Vec          locFbc;
5371:     PetscInt     pStart, pEnd, p, maxDof;
5372:     PetscScalar *zeroes;

5374:     PetscCall(VecDuplicate(locF, &locFbc));
5375:     PetscCall(VecCopy(locF, locFbc));
5376:     PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5377:     PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5378:     PetscCall(PetscCalloc1(maxDof, &zeroes));
5379:     for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5380:     PetscCall(PetscFree(zeroes));
5381:     PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5382:     PetscCall(VecDestroy(&locFbc));
5383:   }
5384: end:
5385:   PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5386:   PetscFunctionReturn(PETSC_SUCCESS);
5387: }

5389: /*
5390:   1) Allow multiple kernels for BdResidual for hybrid DS

5392:   DONE 2) Get out dsAux for either side at the same time as cohesive cell dsAux

5394:   DONE 3) Change DMGetCellFields() to get different aux data a[] for each side
5395:      - I think I just need to replace a[] with the closure from each face

5397:   4) Run both kernels for each non-hybrid field with correct dsAux, and then hybrid field as before
5398: */
5399: PetscErrorCode DMPlexComputeResidual_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5400: {
5401:   DM_Plex        *mesh       = (DM_Plex *)dm->data;
5402:   const char     *name       = "Hybrid Residual";
5403:   DM              dmAux[3]   = {NULL, NULL, NULL};
5404:   DMLabel         ghostLabel = NULL;
5405:   PetscDS         ds         = NULL;
5406:   PetscDS         dsIn       = NULL;
5407:   PetscDS         dsAux[3]   = {NULL, NULL, NULL};
5408:   Vec             locA[3]    = {NULL, NULL, NULL};
5409:   DM              dmScale[3] = {NULL, NULL, NULL};
5410:   PetscDS         dsScale[3] = {NULL, NULL, NULL};
5411:   Vec             locS[3]    = {NULL, NULL, NULL};
5412:   PetscSection    section    = NULL;
5413:   DMField         coordField = NULL;
5414:   PetscScalar    *a[3]       = {NULL, NULL, NULL};
5415:   PetscScalar    *s[3]       = {NULL, NULL, NULL};
5416:   PetscScalar    *u          = NULL, *u_t;
5417:   PetscScalar    *elemVecNeg, *elemVecPos, *elemVecCoh;
5418:   IS              chunkIS;
5419:   const PetscInt *cells;
5420:   PetscInt       *faces;
5421:   PetscInt        cStart, cEnd, numCells;
5422:   PetscInt        Nf, f, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
5423:   PetscInt        maxDegree  = PETSC_INT_MAX;
5424:   PetscQuadrature affineQuad = NULL, *quads = NULL;
5425:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;

5427:   PetscFunctionBegin;
5428:   PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5429:   if (!cellIS) goto end;
5430:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5431:   PetscCall(ISGetLocalSize(cellIS, &numCells));
5432:   if (cStart >= cEnd) goto end;
5433:   if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
5434:     const char *name;
5435:     PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
5436:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
5437:   }
5438:   /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5439:   /* FEM */
5440:   /* 1: Get sizes from dm and dmAux */
5441:   PetscCall(DMGetLocalSection(dm, &section));
5442:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5443:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
5444:   PetscCall(PetscDSGetNumFields(ds, &Nf));
5445:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5446:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
5447:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
5448:   if (locA[2]) {
5449:     const PetscInt cellStart = cells ? cells[cStart] : cStart;

5451:     PetscCall(VecGetDM(locA[2], &dmAux[2]));
5452:     PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
5453:     PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
5454:     {
5455:       const PetscInt *cone;
5456:       PetscInt        c;

5458:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5459:       for (c = 0; c < 2; ++c) {
5460:         const PetscInt *support;
5461:         PetscInt        ssize, s;

5463:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5464:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5465:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5466:         if (support[0] == cellStart) s = 1;
5467:         else if (support[1] == cellStart) s = 0;
5468:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5469:         PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
5470:         PetscCheck(locA[c], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must have auxiliary vector for (%p, %" PetscInt_FMT ", %" PetscInt_FMT ")", (void *)key[c].label, key[c].value, key[c].part);
5471:         if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
5472:         else dmAux[c] = dmAux[2];
5473:         PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
5474:         PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
5475:       }
5476:     }
5477:   }
5478:   /* Handle mass matrix scaling
5479:        The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
5480:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
5481:   if (locS[2]) {
5482:     const PetscInt cellStart = cells ? cells[cStart] : cStart;
5483:     PetscInt       Nb, Nbs;

5485:     PetscCall(VecGetDM(locS[2], &dmScale[2]));
5486:     PetscCall(DMGetCellDS(dmScale[2], cellStart, &dsScale[2], NULL));
5487:     PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
5488:     // BRAD: This is not set correctly
5489:     key[2].field = 2;
5490:     PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
5491:     PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
5492:     PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
5493:     {
5494:       const PetscInt *cone;
5495:       PetscInt        c;

5497:       locS[1] = locS[0] = locS[2];
5498:       dmScale[1] = dmScale[0] = dmScale[2];
5499:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5500:       for (c = 0; c < 2; ++c) {
5501:         const PetscInt *support;
5502:         PetscInt        ssize, s;

5504:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5505:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5506:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5507:         if (support[0] == cellStart) s = 1;
5508:         else if (support[1] == cellStart) s = 0;
5509:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5510:         PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
5511:         PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
5512:       }
5513:     }
5514:   }
5515:   /* 2: Setup geometric data */
5516:   PetscCall(DMGetCoordinateField(dm, &coordField));
5517:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5518:   if (maxDegree > 1) {
5519:     PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5520:     for (f = 0; f < Nf; ++f) {
5521:       PetscFE fe;

5523:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5524:       if (fe) {
5525:         PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5526:         PetscCall(PetscObjectReference((PetscObject)quads[f]));
5527:       }
5528:     }
5529:   }
5530:   /* Loop over chunks */
5531:   cellChunkSize = numCells;
5532:   numChunks     = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
5533:   PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
5534:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
5535:   /* Extract field coefficients */
5536:   /* NOTE This needs the end cap faces to have identical orientations */
5537:   PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5538:   PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5539:   PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5540:   PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecNeg));
5541:   PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecPos));
5542:   PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecCoh));
5543:   for (chunk = 0; chunk < numChunks; ++chunk) {
5544:     PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;

5546:     PetscCall(PetscArrayzero(elemVecNeg, cellChunkSize * totDim));
5547:     PetscCall(PetscArrayzero(elemVecPos, cellChunkSize * totDim));
5548:     PetscCall(PetscArrayzero(elemVecCoh, cellChunkSize * totDim));
5549:     /* Get faces */
5550:     for (c = cS; c < cE; ++c) {
5551:       const PetscInt  cell = cells ? cells[c] : c;
5552:       const PetscInt *cone;
5553:       PetscCall(DMPlexGetCone(dm, cell, &cone));
5554:       faces[(c - cS) * 2 + 0] = cone[0];
5555:       faces[(c - cS) * 2 + 1] = cone[1];
5556:     }
5557:     PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
5558:     /* Get geometric data */
5559:     if (maxDegree <= 1) {
5560:       if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
5561:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
5562:     } else {
5563:       for (f = 0; f < Nf; ++f) {
5564:         if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
5565:       }
5566:     }
5567:     /* Loop over fields */
5568:     for (f = 0; f < Nf; ++f) {
5569:       PetscFE         fe;
5570:       PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[f];
5571:       PetscFEGeom    *chunkGeom = NULL, *remGeom = NULL;
5572:       PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5573:       PetscInt        numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
5574:       PetscBool       isCohesiveField;

5576:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5577:       if (!fe) continue;
5578:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5579:       PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5580:       PetscCall(PetscFEGetDimension(fe, &Nb));
5581:       blockSize = Nb;
5582:       batchSize = numBlocks * blockSize;
5583:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5584:       numChunks = numCells / (numBatches * batchSize);
5585:       Ne        = numChunks * numBatches * batchSize;
5586:       Nr        = numCells % (numBatches * batchSize);
5587:       offset    = numCells - Nr;
5588:       PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
5589:       PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
5590:       PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
5591:       chunkGeom->isCohesive = remGeom->isCohesive = PETSC_TRUE;
5592:       key[0].field                                = f;
5593:       key[1].field                                = f;
5594:       key[2].field                                = f;
5595:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, elemVecNeg));
5596:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, &elemVecNeg[offset * totDim]));
5597:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, elemVecPos));
5598:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, &elemVecPos[offset * totDim]));
5599:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, elemVecCoh));
5600:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, &elemVecCoh[offset * totDim]));
5601:       PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
5602:       PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
5603:     }
5604:     /* Add elemVec to locX */
5605:     for (c = cS; c < cE; ++c) {
5606:       const PetscInt cell = cells ? cells[c] : c;
5607:       const PetscInt cind = c - cStart;
5608:       PetscInt       i;

5610:       /* Scale element values */
5611:       if (locS[0]) {
5612:         PetscInt  Nb, off = cind * totDim, soff = cind * totDimScale[0];
5613:         PetscBool cohesive;

5615:         for (f = 0; f < Nf; ++f) {
5616:           PetscCall(PetscDSGetFieldSize(ds, f, &Nb));
5617:           PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
5618:           if (f == key[2].field) {
5619:             PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
5620:             // No cohesive scaling field is currently input
5621:             for (i = 0; i < Nb; ++i) elemVecCoh[off + i] += s[0][soff + i] * elemVecNeg[off + i] + s[1][soff + i] * elemVecPos[off + i];
5622:             off += Nb;
5623:           } else {
5624:             const PetscInt N = cohesive ? Nb : Nb * 2;

5626:             for (i = 0; i < N; ++i) elemVecCoh[off + i] += elemVecNeg[off + i] + elemVecPos[off + i];
5627:             off += N;
5628:           }
5629:         }
5630:       } else {
5631:         for (i = cind * totDim; i < (cind + 1) * totDim; ++i) elemVecCoh[i] += elemVecNeg[i] + elemVecPos[i];
5632:       }
5633:       if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVecCoh[cind * totDim]));
5634:       if (ghostLabel) {
5635:         PetscInt ghostVal;

5637:         PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5638:         if (ghostVal > 0) continue;
5639:       }
5640:       PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVecCoh[cind * totDim], ADD_ALL_VALUES));
5641:     }
5642:   }
5643:   PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5644:   PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5645:   PetscCall(DMPlexRestoreHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5646:   PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecNeg));
5647:   PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecPos));
5648:   PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecCoh));
5649:   PetscCall(PetscFree(faces));
5650:   PetscCall(ISDestroy(&chunkIS));
5651:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5652:   if (maxDegree <= 1) {
5653:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5654:     PetscCall(PetscQuadratureDestroy(&affineQuad));
5655:   } else {
5656:     for (f = 0; f < Nf; ++f) {
5657:       if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5658:       if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
5659:     }
5660:     PetscCall(PetscFree2(quads, geoms));
5661:   }
5662:   if (mesh->printFEM) {
5663:     Vec          locFbc;
5664:     PetscInt     pStart, pEnd, p, maxDof;
5665:     PetscScalar *zeroes;

5667:     PetscCall(VecDuplicate(locF, &locFbc));
5668:     PetscCall(VecCopy(locF, locFbc));
5669:     PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5670:     PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5671:     PetscCall(PetscCalloc1(maxDof, &zeroes));
5672:     for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5673:     PetscCall(PetscFree(zeroes));
5674:     PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5675:     PetscCall(VecDestroy(&locFbc));
5676:   }
5677: end:
5678:   PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5679:   PetscFunctionReturn(PETSC_SUCCESS);
5680: }

5682: static PetscErrorCode DMPlexComputeBdJacobian_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt fieldI, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP, DMField coordField, IS facetIS)
5683: {
5684:   DM_Plex        *mesh = (DM_Plex *)dm->data;
5685:   DM              plex = NULL, plexA = NULL, tdm;
5686:   DMEnclosureType encAux;
5687:   PetscDS         ds, dsAux           = NULL;
5688:   PetscSection    section, sectionAux = NULL;
5689:   PetscSection    globalSection;
5690:   Vec             locA = NULL, tv;
5691:   PetscScalar    *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL;
5692:   PetscInt        v;
5693:   PetscInt        Nf, totDim, totDimAux = 0;
5694:   PetscBool       hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, transform;

5696:   PetscFunctionBegin;
5697:   PetscCall(DMHasBasisTransform(dm, &transform));
5698:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5699:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5700:   PetscCall(DMGetLocalSection(dm, &section));
5701:   PetscCall(DMGetDS(dm, &ds));
5702:   PetscCall(PetscDSGetNumFields(ds, &Nf));
5703:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5704:   PetscCall(PetscWeakFormHasBdJacobian(wf, &hasJac));
5705:   PetscCall(PetscWeakFormHasBdJacobianPreconditioner(wf, &hasPrec));
5706:   if (!hasJac && !hasPrec) PetscFunctionReturn(PETSC_SUCCESS);
5707:   PetscCall(DMConvert(dm, DMPLEX, &plex));
5708:   PetscCall(DMGetAuxiliaryVec(dm, label, values[0], 0, &locA));
5709:   if (locA) {
5710:     DM dmAux;

5712:     PetscCall(VecGetDM(locA, &dmAux));
5713:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5714:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
5715:     PetscCall(DMGetDS(plexA, &dsAux));
5716:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5717:     PetscCall(DMGetLocalSection(plexA, &sectionAux));
5718:   }

5720:   PetscCall(DMGetGlobalSection(dm, &globalSection));
5721:   for (v = 0; v < numValues; ++v) {
5722:     PetscFEGeom    *fgeom;
5723:     PetscInt        maxDegree;
5724:     PetscQuadrature qGeom = NULL;
5725:     IS              pointIS;
5726:     const PetscInt *points;
5727:     PetscFormKey    key;
5728:     PetscInt        numFaces, face, Nq;

5730:     key.label = label;
5731:     key.value = values[v];
5732:     key.part  = 0;
5733:     PetscCall(DMLabelGetStratumIS(label, values[v], &pointIS));
5734:     if (!pointIS) continue; /* No points with that id on this process */
5735:     {
5736:       IS isectIS;

5738:       /* TODO: Special cases of ISIntersect where it is quick to check a prior if one is a superset of the other */
5739:       PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
5740:       PetscCall(ISDestroy(&pointIS));
5741:       pointIS = isectIS;
5742:     }
5743:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
5744:     PetscCall(ISGetIndices(pointIS, &points));
5745:     PetscCall(PetscMalloc5(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, (hasJac ? (size_t)numFaces * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numFaces * totDim * totDim : 0), &elemMatP, (locA ? (size_t)numFaces * totDimAux : 0), &a));
5746:     PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
5747:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
5748:     if (!qGeom) {
5749:       PetscFE fe;

5751:       PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5752:       PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
5753:       PetscCall(PetscObjectReference((PetscObject)qGeom));
5754:     }
5755:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5756:     PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5757:     for (face = 0; face < numFaces; ++face) {
5758:       const PetscInt point = points[face], *support;
5759:       PetscScalar   *x     = NULL;
5760:       PetscInt       i;

5762:       PetscCall(DMPlexGetSupport(dm, point, &support));
5763:       PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
5764:       for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
5765:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
5766:       if (locX_t) {
5767:         PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
5768:         for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
5769:         PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
5770:       }
5771:       if (locA) {
5772:         PetscInt subp;
5773:         PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
5774:         PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
5775:         for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
5776:         PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
5777:       }
5778:     }
5779:     if (elemMat) PetscCall(PetscArrayzero(elemMat, numFaces * totDim * totDim));
5780:     if (elemMatP) PetscCall(PetscArrayzero(elemMatP, numFaces * totDim * totDim));
5781:     {
5782:       PetscFE  fe;
5783:       PetscInt Nb;
5784:       /* Conforming batches */
5785:       PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5786:       /* Remainder */
5787:       PetscFEGeom *chunkGeom = NULL;
5788:       PetscInt     fieldJ, Nr, offset;

5790:       PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5791:       PetscCall(PetscFEGetDimension(fe, &Nb));
5792:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5793:       blockSize = Nb;
5794:       batchSize = numBlocks * blockSize;
5795:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5796:       numChunks = numFaces / (numBatches * batchSize);
5797:       Ne        = numChunks * numBatches * batchSize;
5798:       Nr        = numFaces % (numBatches * batchSize);
5799:       offset    = numFaces - Nr;
5800:       PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
5801:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5802:         key.field = fieldI * Nf + fieldJ;
5803:         if (hasJac) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMat));
5804:         if (hasPrec) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMatP));
5805:       }
5806:       PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
5807:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5808:         key.field = fieldI * Nf + fieldJ;
5809:         if (hasJac)
5810:           PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
5811:         if (hasPrec)
5812:           PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
5813:       }
5814:       PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
5815:     }
5816:     for (face = 0; face < numFaces; ++face) {
5817:       const PetscInt point = points[face], *support;

5819:       /* Transform to global basis before insertion in Jacobian */
5820:       PetscCall(DMPlexGetSupport(plex, point, &support));
5821:       if (hasJac && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMat[face * totDim * totDim]));
5822:       if (hasPrec && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMatP[face * totDim * totDim]));
5823:       if (hasPrec) {
5824:         if (hasJac) {
5825:           if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5826:           PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5827:         }
5828:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMatP[face * totDim * totDim]));
5829:         PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, support[0], &elemMatP[face * totDim * totDim], ADD_VALUES));
5830:       } else {
5831:         if (hasJac) {
5832:           if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5833:           PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5834:         }
5835:       }
5836:     }
5837:     PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5838:     PetscCall(PetscQuadratureDestroy(&qGeom));
5839:     PetscCall(ISRestoreIndices(pointIS, &points));
5840:     PetscCall(ISDestroy(&pointIS));
5841:     PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, a));
5842:   }
5843:   if (plex) PetscCall(DMDestroy(&plex));
5844:   if (plexA) PetscCall(DMDestroy(&plexA));
5845:   PetscFunctionReturn(PETSC_SUCCESS);
5846: }

5848: PetscErrorCode DMPlexComputeBdJacobianSingle(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt field, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP)
5849: {
5850:   DMField  coordField;
5851:   DMLabel  depthLabel;
5852:   IS       facetIS;
5853:   PetscInt dim;

5855:   PetscFunctionBegin;
5856:   PetscCall(DMGetDimension(dm, &dim));
5857:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5858:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5859:   PetscCall(DMGetCoordinateField(dm, &coordField));
5860:   PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, field, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5861:   PetscCall(ISDestroy(&facetIS));
5862:   PetscFunctionReturn(PETSC_SUCCESS);
5863: }

5865: static PetscErrorCode DMPlexComputeBdJacobian_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, PetscReal X_tShift, Mat Jac, Mat JacP, void *user)
5866: {
5867:   PetscDS  prob;
5868:   PetscInt dim, numBd, bd;
5869:   DMLabel  depthLabel;
5870:   DMField  coordField = NULL;
5871:   IS       facetIS;

5873:   PetscFunctionBegin;
5874:   PetscCall(DMGetDS(dm, &prob));
5875:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5876:   PetscCall(DMGetDimension(dm, &dim));
5877:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5878:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
5879:   PetscCall(DMGetCoordinateField(dm, &coordField));
5880:   for (bd = 0; bd < numBd; ++bd) {
5881:     PetscWeakForm           wf;
5882:     DMBoundaryConditionType type;
5883:     DMLabel                 label;
5884:     const PetscInt         *values;
5885:     PetscInt                fieldI, numValues;
5886:     PetscObject             obj;
5887:     PetscClassId            id;

5889:     PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &fieldI, NULL, NULL, NULL, NULL, NULL));
5890:     if (type & DM_BC_ESSENTIAL) continue;
5891:     PetscCall(PetscDSGetDiscretization(prob, fieldI, &obj));
5892:     PetscCall(PetscObjectGetClassId(obj, &id));
5893:     if (id != PETSCFE_CLASSID) continue;
5894:     PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, fieldI, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5895:   }
5896:   PetscCall(ISDestroy(&facetIS));
5897:   PetscFunctionReturn(PETSC_SUCCESS);
5898: }

5900: PetscErrorCode DMPlexComputeJacobian_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *user)
5901: {
5902:   DM_Plex        *mesh  = (DM_Plex *)dm->data;
5903:   const char     *name  = "Jacobian";
5904:   DM              dmAux = NULL, plex, tdm;
5905:   DMEnclosureType encAux;
5906:   Vec             A, tv;
5907:   DMField         coordField;
5908:   PetscDS         prob, probAux = NULL;
5909:   PetscSection    section, globalSection, sectionAux;
5910:   PetscScalar    *elemMat, *elemMatP, *elemMatD, *u, *u_t, *a = NULL;
5911:   const PetscInt *cells;
5912:   PetscInt        Nf, fieldI, fieldJ;
5913:   PetscInt        totDim, totDimAux = 0, cStart, cEnd, numCells, c;
5914:   PetscBool       hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, hasDyn, hasFV = PETSC_FALSE, transform;

5916:   PetscFunctionBegin;
5917:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
5918:   PetscCall(DMGetLocalSection(dm, &section));
5919:   PetscCall(DMGetGlobalSection(dm, &globalSection));
5920:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
5921:   if (A) {
5922:     PetscCall(VecGetDM(A, &dmAux));
5923:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5924:     PetscCall(DMConvert(dmAux, DMPLEX, &plex));
5925:     PetscCall(DMGetLocalSection(plex, &sectionAux));
5926:     PetscCall(DMGetDS(dmAux, &probAux));
5927:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
5928:   }
5929:   PetscCall(DMGetCoordinateField(dm, &coordField));
5930:   if (!cellIS) goto end;
5931:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5932:   PetscCall(ISGetLocalSize(cellIS, &numCells));
5933:   if (cStart >= cEnd) goto end;
5934:   PetscCall(DMHasBasisTransform(dm, &transform));
5935:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5936:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5937:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
5938:   PetscCall(PetscDSGetNumFields(prob, &Nf));
5939:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
5940:   PetscCall(PetscDSHasJacobian(prob, &hasJac));
5941:   PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
5942:   /* user passed in the same matrix, avoid double contributions and
5943:      only assemble the Jacobian */
5944:   if (hasJac && Jac == JacP) hasPrec = PETSC_FALSE;
5945:   PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
5946:   hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
5947:   PetscCall(PetscMalloc5(numCells * totDim, &u, (X_t ? (size_t)numCells * totDim : 0), &u_t, (hasJac ? (size_t)numCells * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numCells * totDim * totDim : 0), &elemMatP, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD));
5948:   if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
5949:   for (c = cStart; c < cEnd; ++c) {
5950:     const PetscInt cell = cells ? cells[c] : c;
5951:     const PetscInt cind = c - cStart;
5952:     PetscScalar   *x = NULL, *x_t = NULL;
5953:     PetscInt       i;

5955:     PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
5956:     for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
5957:     PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
5958:     if (X_t) {
5959:       PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
5960:       for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
5961:       PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
5962:     }
5963:     if (dmAux) {
5964:       PetscInt subcell;
5965:       PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
5966:       PetscCall(DMPlexVecGetClosure(plex, sectionAux, A, subcell, NULL, &x));
5967:       for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
5968:       PetscCall(DMPlexVecRestoreClosure(plex, sectionAux, A, subcell, NULL, &x));
5969:     }
5970:   }
5971:   if (hasJac) PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
5972:   if (hasPrec) PetscCall(PetscArrayzero(elemMatP, numCells * totDim * totDim));
5973:   if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
5974:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
5975:     PetscClassId    id;
5976:     PetscFE         fe;
5977:     PetscQuadrature qGeom = NULL;
5978:     PetscInt        Nb;
5979:     /* Conforming batches */
5980:     PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5981:     /* Remainder */
5982:     PetscInt     Nr, offset, Nq;
5983:     PetscInt     maxDegree;
5984:     PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;

5986:     PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
5987:     PetscCall(PetscObjectGetClassId((PetscObject)fe, &id));
5988:     if (id == PETSCFV_CLASSID) {
5989:       hasFV = PETSC_TRUE;
5990:       continue;
5991:     }
5992:     PetscCall(PetscFEGetDimension(fe, &Nb));
5993:     PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5994:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5995:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
5996:     if (!qGeom) {
5997:       PetscCall(PetscFEGetQuadrature(fe, &qGeom));
5998:       PetscCall(PetscObjectReference((PetscObject)qGeom));
5999:     }
6000:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6001:     PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6002:     blockSize = Nb;
6003:     batchSize = numBlocks * blockSize;
6004:     PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6005:     numChunks = numCells / (numBatches * batchSize);
6006:     Ne        = numChunks * numBatches * batchSize;
6007:     Nr        = numCells % (numBatches * batchSize);
6008:     offset    = numCells - Nr;
6009:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6010:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6011:     for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6012:       key.field = fieldI * Nf + fieldJ;
6013:       if (hasJac) {
6014:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6015:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6016:       }
6017:       if (hasPrec) {
6018:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatP));
6019:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
6020:       }
6021:       if (hasDyn) {
6022:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6023:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatD[offset * totDim * totDim]));
6024:       }
6025:     }
6026:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6027:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6028:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6029:     PetscCall(PetscQuadratureDestroy(&qGeom));
6030:   }
6031:   /*   Add contribution from X_t */
6032:   if (hasDyn) {
6033:     for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6034:   }
6035:   if (hasFV) {
6036:     PetscClassId id;
6037:     PetscFV      fv;
6038:     PetscInt     offsetI, NcI, NbI = 1, fc, f;

6040:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
6041:       PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
6042:       PetscCall(PetscDSGetFieldOffset(prob, fieldI, &offsetI));
6043:       PetscCall(PetscObjectGetClassId((PetscObject)fv, &id));
6044:       if (id != PETSCFV_CLASSID) continue;
6045:       /* Put in the weighted identity */
6046:       PetscCall(PetscFVGetNumComponents(fv, &NcI));
6047:       for (c = cStart; c < cEnd; ++c) {
6048:         const PetscInt cind    = c - cStart;
6049:         const PetscInt eOffset = cind * totDim * totDim;
6050:         PetscReal      vol;

6052:         PetscCall(DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL));
6053:         for (fc = 0; fc < NcI; ++fc) {
6054:           for (f = 0; f < NbI; ++f) {
6055:             const PetscInt i = offsetI + f * NcI + fc;
6056:             if (hasPrec) {
6057:               if (hasJac) elemMat[eOffset + i * totDim + i] = vol;
6058:               elemMatP[eOffset + i * totDim + i] = vol;
6059:             } else {
6060:               elemMat[eOffset + i * totDim + i] = vol;
6061:             }
6062:           }
6063:         }
6064:       }
6065:     }
6066:     /* No allocated space for FV stuff, so ignore the zero entries */
6067:     PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
6068:   }
6069:   /* Insert values into matrix */
6070:   for (c = cStart; c < cEnd; ++c) {
6071:     const PetscInt cell = cells ? cells[c] : c;
6072:     const PetscInt cind = c - cStart;

6074:     /* Transform to global basis before insertion in Jacobian */
6075:     if (transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, cell, PETSC_TRUE, totDim, &elemMat[cind * totDim * totDim]));
6076:     if (hasPrec) {
6077:       if (hasJac) {
6078:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6079:         PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6080:       }
6081:       if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatP[cind * totDim * totDim]));
6082:       PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatP[cind * totDim * totDim], ADD_VALUES));
6083:     } else {
6084:       if (hasJac) {
6085:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6086:         PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6087:       }
6088:     }
6089:   }
6090:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6091:   if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
6092:   PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, elemMatD));
6093:   if (dmAux) {
6094:     PetscCall(PetscFree(a));
6095:     PetscCall(DMDestroy(&plex));
6096:   }
6097:   /* Compute boundary integrals */
6098:   PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, user));
6099:   /* Assemble matrix */
6100: end: {
6101:   PetscBool assOp = hasJac && hasPrec ? PETSC_TRUE : PETSC_FALSE, gassOp;

6103:   PetscCallMPI(MPIU_Allreduce(&assOp, &gassOp, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
6104:   if (hasJac && hasPrec) {
6105:     PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
6106:     PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
6107:   }
6108: }
6109:   PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
6110:   PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
6111:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6112:   PetscFunctionReturn(PETSC_SUCCESS);
6113: }

6115: PetscErrorCode DMPlexComputeJacobian_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Mat Jac, Mat JacP, void *user)
6116: {
6117:   DM_Plex        *mesh          = (DM_Plex *)dm->data;
6118:   const char     *name          = "Hybrid Jacobian";
6119:   DM              dmAux[3]      = {NULL, NULL, NULL};
6120:   DMLabel         ghostLabel    = NULL;
6121:   DM              plex          = NULL;
6122:   DM              plexA         = NULL;
6123:   PetscDS         ds            = NULL;
6124:   PetscDS         dsIn          = NULL;
6125:   PetscDS         dsAux[3]      = {NULL, NULL, NULL};
6126:   Vec             locA[3]       = {NULL, NULL, NULL};
6127:   DM              dmScale[3]    = {NULL, NULL, NULL};
6128:   PetscDS         dsScale[3]    = {NULL, NULL, NULL};
6129:   Vec             locS[3]       = {NULL, NULL, NULL};
6130:   PetscSection    section       = NULL;
6131:   PetscSection    sectionAux[3] = {NULL, NULL, NULL};
6132:   DMField         coordField    = NULL;
6133:   PetscScalar    *a[3]          = {NULL, NULL, NULL};
6134:   PetscScalar    *s[3]          = {NULL, NULL, NULL};
6135:   PetscScalar    *u             = NULL, *u_t;
6136:   PetscScalar    *elemMatNeg, *elemMatPos, *elemMatCoh;
6137:   PetscScalar    *elemMatNegP, *elemMatPosP, *elemMatCohP;
6138:   PetscSection    globalSection;
6139:   IS              chunkIS;
6140:   const PetscInt *cells;
6141:   PetscInt       *faces;
6142:   PetscInt        cStart, cEnd, numCells;
6143:   PetscInt        Nf, fieldI, fieldJ, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
6144:   PetscInt        maxDegree  = PETSC_INT_MAX;
6145:   PetscQuadrature affineQuad = NULL, *quads = NULL;
6146:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;
6147:   PetscBool       hasBdJac, hasBdPrec;

6149:   PetscFunctionBegin;
6150:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6151:   if (!cellIS) goto end;
6152:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6153:   PetscCall(ISGetLocalSize(cellIS, &numCells));
6154:   if (cStart >= cEnd) goto end;
6155:   if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
6156:     const char *name;
6157:     PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
6158:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
6159:   }
6160:   PetscCall(DMConvert(dm, DMPLEX, &plex));
6161:   PetscCall(DMGetLocalSection(dm, &section));
6162:   PetscCall(DMGetGlobalSection(dm, &globalSection));
6163:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
6164:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
6165:   PetscCall(PetscDSGetNumFields(ds, &Nf));
6166:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
6167:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
6168:   PetscCall(PetscDSHasBdJacobian(ds, &hasBdJac));
6169:   PetscCall(PetscDSHasBdJacobianPreconditioner(ds, &hasBdPrec));
6170:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
6171:   if (locA[2]) {
6172:     const PetscInt cellStart = cells ? cells[cStart] : cStart;

6174:     PetscCall(VecGetDM(locA[2], &dmAux[2]));
6175:     PetscCall(DMConvert(dmAux[2], DMPLEX, &plexA));
6176:     PetscCall(DMGetLocalSection(dmAux[2], &sectionAux[2]));
6177:     PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
6178:     PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
6179:     {
6180:       const PetscInt *cone;
6181:       PetscInt        c;

6183:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6184:       for (c = 0; c < 2; ++c) {
6185:         const PetscInt *support;
6186:         PetscInt        ssize, s;

6188:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6189:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6190:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6191:         if (support[0] == cellStart) s = 1;
6192:         else if (support[1] == cellStart) s = 0;
6193:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6194:         PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
6195:         if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
6196:         else dmAux[c] = dmAux[2];
6197:         PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
6198:         PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
6199:       }
6200:     }
6201:   }
6202:   /* Handle mass matrix scaling
6203:        The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
6204:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
6205:   if (locS[2]) {
6206:     const PetscInt cellStart = cells ? cells[cStart] : cStart;
6207:     PetscInt       Nb, Nbs;

6209:     PetscCall(VecGetDM(locS[2], &dmScale[2]));
6210:     PetscCall(DMGetCellDS(dmScale[2], cells ? cells[cStart] : cStart, &dsScale[2], NULL));
6211:     PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
6212:     // BRAD: This is not set correctly
6213:     key[2].field = 2;
6214:     PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
6215:     PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
6216:     PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
6217:     {
6218:       const PetscInt *cone;
6219:       PetscInt        c;

6221:       locS[1] = locS[0] = locS[2];
6222:       dmScale[1] = dmScale[0] = dmScale[2];
6223:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6224:       for (c = 0; c < 2; ++c) {
6225:         const PetscInt *support;
6226:         PetscInt        ssize, s;

6228:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6229:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6230:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6231:         if (support[0] == cellStart) s = 1;
6232:         else if (support[1] == cellStart) s = 0;
6233:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6234:         PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
6235:         PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
6236:       }
6237:     }
6238:   }
6239:   /* 2: Setup geometric data */
6240:   PetscCall(DMGetCoordinateField(dm, &coordField));
6241:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6242:   if (maxDegree > 1) {
6243:     PetscInt f;
6244:     PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
6245:     for (f = 0; f < Nf; ++f) {
6246:       PetscFE fe;

6248:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
6249:       if (fe) {
6250:         PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
6251:         PetscCall(PetscObjectReference((PetscObject)quads[f]));
6252:       }
6253:     }
6254:   }
6255:   /* Loop over chunks */
6256:   cellChunkSize = numCells;
6257:   numChunks     = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
6258:   PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
6259:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 1 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
6260:   /* Extract field coefficients */
6261:   /* NOTE This needs the end cap faces to have identical orientations */
6262:   PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6263:   PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6264:   PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
6265:   PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6266:   PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6267:   PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6268:   PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6269:   PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6270:   PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6271:   for (chunk = 0; chunk < numChunks; ++chunk) {
6272:     PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;

6274:     if (hasBdJac) {
6275:       PetscCall(PetscArrayzero(elemMatNeg, cellChunkSize * totDim * totDim));
6276:       PetscCall(PetscArrayzero(elemMatPos, cellChunkSize * totDim * totDim));
6277:       PetscCall(PetscArrayzero(elemMatCoh, cellChunkSize * totDim * totDim));
6278:     }
6279:     if (hasBdPrec) {
6280:       PetscCall(PetscArrayzero(elemMatNegP, cellChunkSize * totDim * totDim));
6281:       PetscCall(PetscArrayzero(elemMatPosP, cellChunkSize * totDim * totDim));
6282:       PetscCall(PetscArrayzero(elemMatCohP, cellChunkSize * totDim * totDim));
6283:     }
6284:     /* Get faces */
6285:     for (c = cS; c < cE; ++c) {
6286:       const PetscInt  cell = cells ? cells[c] : c;
6287:       const PetscInt *cone;
6288:       PetscCall(DMPlexGetCone(plex, cell, &cone));
6289:       faces[(c - cS) * 2 + 0] = cone[0];
6290:       faces[(c - cS) * 2 + 1] = cone[1];
6291:     }
6292:     PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
6293:     if (maxDegree <= 1) {
6294:       if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
6295:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
6296:     } else {
6297:       PetscInt f;
6298:       for (f = 0; f < Nf; ++f) {
6299:         if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
6300:       }
6301:     }

6303:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
6304:       PetscFE         feI;
6305:       PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[fieldI];
6306:       PetscFEGeom    *chunkGeom = NULL, *remGeom = NULL;
6307:       PetscQuadrature quad = affineQuad ? affineQuad : quads[fieldI];
6308:       PetscInt        numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
6309:       PetscBool       isCohesiveField;

6311:       PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
6312:       if (!feI) continue;
6313:       PetscCall(PetscFEGetTileSizes(feI, NULL, &numBlocks, NULL, &numBatches));
6314:       PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
6315:       PetscCall(PetscFEGetDimension(feI, &Nb));
6316:       blockSize = Nb;
6317:       batchSize = numBlocks * blockSize;
6318:       PetscCall(PetscFESetTileSizes(feI, blockSize, numBlocks, batchSize, numBatches));
6319:       numChunks = numCells / (numBatches * batchSize);
6320:       Ne        = numChunks * numBatches * batchSize;
6321:       Nr        = numCells % (numBatches * batchSize);
6322:       offset    = numCells - Nr;
6323:       PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
6324:       PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
6325:       PetscCall(PetscDSGetCohesive(ds, fieldI, &isCohesiveField));
6326:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6327:         PetscFE feJ;

6329:         PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
6330:         if (!feJ) continue;
6331:         key[0].field = fieldI * Nf + fieldJ;
6332:         key[1].field = fieldI * Nf + fieldJ;
6333:         key[2].field = fieldI * Nf + fieldJ;
6334:         if (hasBdJac) {
6335:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNeg));
6336:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, X_tShift, &elemMatNeg[offset * totDim * totDim]));
6337:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPos));
6338:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, X_tShift, &elemMatPos[offset * totDim * totDim]));
6339:         }
6340:         if (hasBdPrec) {
6341:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNegP));
6342:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], &a[0][offset * totDimAux[0]], t, X_tShift, &elemMatNegP[offset * totDim * totDim]));
6343:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPosP));
6344:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], &a[1][offset * totDimAux[1]], t, X_tShift, &elemMatPosP[offset * totDim * totDim]));
6345:         }
6346:         if (hasBdJac) {
6347:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCoh));
6348:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, X_tShift, &elemMatCoh[offset * totDim * totDim]));
6349:         }
6350:         if (hasBdPrec) {
6351:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCohP));
6352:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], &a[2][offset * totDimAux[2]], t, X_tShift, &elemMatCohP[offset * totDim * totDim]));
6353:         }
6354:       }
6355:       PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
6356:       PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
6357:     }
6358:     /* Insert values into matrix */
6359:     for (c = cS; c < cE; ++c) {
6360:       const PetscInt cell = cells ? cells[c] : c;
6361:       const PetscInt cind = c - cS, coff = cind * totDim * totDim;
6362:       PetscInt       i, j;

6364:       /* Scale element values */
6365:       if (locS[0]) {
6366:         PetscInt  Nb, soff = cind * totDimScale[0], off = 0;
6367:         PetscBool cohesive;

6369:         for (fieldI = 0; fieldI < Nf; ++fieldI) {
6370:           PetscCall(PetscDSGetFieldSize(ds, fieldI, &Nb));
6371:           PetscCall(PetscDSGetCohesive(ds, fieldI, &cohesive));

6373:           if (fieldI == key[2].field) {
6374:             PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
6375:             for (i = 0; i < Nb; ++i) {
6376:               for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNeg[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPos[coff + (off + i) * totDim + j];
6377:               if (hasBdPrec)
6378:                 for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNegP[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPosP[coff + (off + i) * totDim + j];
6379:             }
6380:             off += Nb;
6381:           } else {
6382:             const PetscInt N = cohesive ? Nb : Nb * 2;

6384:             for (i = 0; i < N; ++i) {
6385:               for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += elemMatNeg[coff + (off + i) * totDim + j] + elemMatPos[coff + (off + i) * totDim + j];
6386:               if (hasBdPrec)
6387:                 for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += elemMatNegP[coff + (off + i) * totDim + j] + elemMatPosP[coff + (off + i) * totDim + j];
6388:             }
6389:             off += N;
6390:           }
6391:         }
6392:       } else {
6393:         for (i = 0; i < totDim * totDim; ++i) elemMatCoh[coff + i] += elemMatNeg[coff + i] + elemMatPos[coff + i];
6394:         if (hasBdPrec)
6395:           for (i = 0; i < totDim * totDim; ++i) elemMatCohP[coff + i] += elemMatNegP[coff + i] + elemMatPosP[coff + i];
6396:       }
6397:       if (hasBdPrec) {
6398:         if (hasBdJac) {
6399:           if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6400:           PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6401:         }
6402:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCohP[cind * totDim * totDim]));
6403:         PetscCall(DMPlexMatSetClosure(plex, section, globalSection, JacP, cell, &elemMatCohP[cind * totDim * totDim], ADD_VALUES));
6404:       } else if (hasBdJac) {
6405:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6406:         PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6407:       }
6408:     }
6409:   }
6410:   PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6411:   PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6412:   PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6413:   PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6414:   PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6415:   PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6416:   PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6417:   PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6418:   PetscCall(PetscFree(faces));
6419:   PetscCall(ISDestroy(&chunkIS));
6420:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6421:   if (maxDegree <= 1) {
6422:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
6423:     PetscCall(PetscQuadratureDestroy(&affineQuad));
6424:   } else {
6425:     PetscInt f;
6426:     for (f = 0; f < Nf; ++f) {
6427:       if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
6428:       if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
6429:     }
6430:     PetscCall(PetscFree2(quads, geoms));
6431:   }
6432:   if (dmAux[2]) PetscCall(DMDestroy(&plexA));
6433:   PetscCall(DMDestroy(&plex));
6434: end:
6435:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6436:   PetscFunctionReturn(PETSC_SUCCESS);
6437: }

6439: /*
6440:   DMPlexComputeJacobian_Action_Internal - Form the local portion of the Jacobian action Z = J(X) Y at the local solution X using pointwise functions specified by the user.

6442:   Input Parameters:
6443: + dm     - The mesh
6444: . key    - The PetscWeakFormKey indicating where integration should happen
6445: . cellIS - The cells to integrate over
6446: . t      - The time
6447: . X_tShift - The multiplier for the Jacobian with respect to X_t
6448: . X      - Local solution vector
6449: . X_t    - Time-derivative of the local solution vector
6450: . Y      - Local input vector
6451: - user   - the user context

6453:   Output Parameter:
6454: . Z - Local output vector

6456:   Note:
6457:   We form the residual one batch of elements at a time. This allows us to offload work onto an accelerator,
6458:   like a GPU, or vectorize on a multicore machine.
6459: */
6460: PetscErrorCode DMPlexComputeJacobian_Action_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Vec Y, Vec Z, void *user)
6461: {
6462:   DM_Plex        *mesh  = (DM_Plex *)dm->data;
6463:   const char     *name  = "Jacobian";
6464:   DM              dmAux = NULL, plex, plexAux = NULL;
6465:   DMEnclosureType encAux;
6466:   Vec             A;
6467:   DMField         coordField;
6468:   PetscDS         prob, probAux = NULL;
6469:   PetscQuadrature quad;
6470:   PetscSection    section, globalSection, sectionAux;
6471:   PetscScalar    *elemMat, *elemMatD, *u, *u_t, *a = NULL, *y, *z;
6472:   const PetscInt *cells;
6473:   PetscInt        Nf, fieldI, fieldJ;
6474:   PetscInt        totDim, totDimAux = 0, cStart, cEnd, numCells, c;
6475:   PetscBool       hasDyn;

6477:   PetscFunctionBegin;
6478:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6479:   PetscCall(DMConvert(dm, DMPLEX, &plex));
6480:   PetscCall(ISGetLocalSize(cellIS, &numCells));
6481:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6482:   PetscCall(DMGetLocalSection(dm, &section));
6483:   PetscCall(DMGetGlobalSection(dm, &globalSection));
6484:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
6485:   PetscCall(PetscDSGetNumFields(prob, &Nf));
6486:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
6487:   PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
6488:   hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
6489:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
6490:   if (A) {
6491:     PetscCall(VecGetDM(A, &dmAux));
6492:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
6493:     PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
6494:     PetscCall(DMGetLocalSection(plexAux, &sectionAux));
6495:     PetscCall(DMGetDS(dmAux, &probAux));
6496:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
6497:   }
6498:   PetscCall(VecSet(Z, 0.0));
6499:   PetscCall(PetscMalloc6(numCells * totDim, &u, (X_t ? (size_t)numCells * totDim : 0), &u_t, numCells * totDim * totDim, &elemMat, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD, numCells * totDim, &y, totDim, &z));
6500:   if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
6501:   PetscCall(DMGetCoordinateField(dm, &coordField));
6502:   for (c = cStart; c < cEnd; ++c) {
6503:     const PetscInt cell = cells ? cells[c] : c;
6504:     const PetscInt cind = c - cStart;
6505:     PetscScalar   *x = NULL, *x_t = NULL;
6506:     PetscInt       i;

6508:     PetscCall(DMPlexVecGetClosure(plex, section, X, cell, NULL, &x));
6509:     for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
6510:     PetscCall(DMPlexVecRestoreClosure(plex, section, X, cell, NULL, &x));
6511:     if (X_t) {
6512:       PetscCall(DMPlexVecGetClosure(plex, section, X_t, cell, NULL, &x_t));
6513:       for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
6514:       PetscCall(DMPlexVecRestoreClosure(plex, section, X_t, cell, NULL, &x_t));
6515:     }
6516:     if (dmAux) {
6517:       PetscInt subcell;
6518:       PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
6519:       PetscCall(DMPlexVecGetClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6520:       for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
6521:       PetscCall(DMPlexVecRestoreClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6522:     }
6523:     PetscCall(DMPlexVecGetClosure(plex, section, Y, cell, NULL, &x));
6524:     for (i = 0; i < totDim; ++i) y[cind * totDim + i] = x[i];
6525:     PetscCall(DMPlexVecRestoreClosure(plex, section, Y, cell, NULL, &x));
6526:   }
6527:   PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
6528:   if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
6529:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
6530:     PetscFE  fe;
6531:     PetscInt Nb;
6532:     /* Conforming batches */
6533:     PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
6534:     /* Remainder */
6535:     PetscInt        Nr, offset, Nq;
6536:     PetscQuadrature qGeom = NULL;
6537:     PetscInt        maxDegree;
6538:     PetscFEGeom    *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;

6540:     PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
6541:     PetscCall(PetscFEGetQuadrature(fe, &quad));
6542:     PetscCall(PetscFEGetDimension(fe, &Nb));
6543:     PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
6544:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6545:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
6546:     if (!qGeom) {
6547:       PetscCall(PetscFEGetQuadrature(fe, &qGeom));
6548:       PetscCall(PetscObjectReference((PetscObject)qGeom));
6549:     }
6550:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6551:     PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6552:     blockSize = Nb;
6553:     batchSize = numBlocks * blockSize;
6554:     PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6555:     numChunks = numCells / (numBatches * batchSize);
6556:     Ne        = numChunks * numBatches * batchSize;
6557:     Nr        = numCells % (numBatches * batchSize);
6558:     offset    = numCells - Nr;
6559:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6560:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6561:     for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6562:       key.field = fieldI * Nf + fieldJ;
6563:       PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6564:       PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6565:       if (hasDyn) {
6566:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6567:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, X_tShift, &elemMatD[offset * totDim * totDim]));
6568:       }
6569:     }
6570:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6571:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6572:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6573:     PetscCall(PetscQuadratureDestroy(&qGeom));
6574:   }
6575:   if (hasDyn) {
6576:     for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6577:   }
6578:   for (c = cStart; c < cEnd; ++c) {
6579:     const PetscInt     cell = cells ? cells[c] : c;
6580:     const PetscInt     cind = c - cStart;
6581:     const PetscBLASInt one  = 1;
6582:     PetscBLASInt       M;
6583:     const PetscScalar  a = 1.0, b = 0.0;

6585:     PetscCall(PetscBLASIntCast(totDim, &M));
6586:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &M, &M, &a, &elemMat[cind * totDim * totDim], &M, &y[cind * totDim], &one, &b, z, &one));
6587:     if (mesh->printFEM > 1) {
6588:       PetscCall(DMPrintCellMatrix(c, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6589:       PetscCall(DMPrintCellVector(c, "Y", totDim, &y[cind * totDim]));
6590:       PetscCall(DMPrintCellVector(c, "Z", totDim, z));
6591:     }
6592:     PetscCall(DMPlexVecSetClosure(dm, section, Z, cell, z, ADD_VALUES));
6593:   }
6594:   PetscCall(PetscFree6(u, u_t, elemMat, elemMatD, y, z));
6595:   if (mesh->printFEM) {
6596:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)Z), "Z:\n"));
6597:     PetscCall(VecView(Z, NULL));
6598:   }
6599:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6600:   PetscCall(PetscFree(a));
6601:   PetscCall(DMDestroy(&plexAux));
6602:   PetscCall(DMDestroy(&plex));
6603:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6604:   PetscFunctionReturn(PETSC_SUCCESS);
6605: }

6607: static void f0_1(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
6608: {
6609:   f0[0] = u[0];
6610: }

6612: static void f0_x(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
6613: {
6614:   f0[0] = x[(int)PetscRealPart(constants[0])] * u[0];
6615: }

6617: static void f0_x2(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
6618: {
6619:   PetscInt d;

6621:   f0[0] = 0.0;
6622:   for (d = 0; d < dim; ++d) f0[0] += PetscSqr(x[d]) * u[0];
6623: }

6625: /*@
6626:   DMPlexComputeMoments - Compute the first three moments for a field

6628:   Noncollective

6630:   Input Parameters:
6631: + dm - the `DMPLEX`
6632: - u  - the field

6634:   Output Parameter:
6635: . moments - the field moments

6637:   Level: intermediate

6639:   Note:
6640:   The `moments` array should be of length Nc + 2, where Nc is the number of components for the field.

6642: .seealso: `DM`, `DMPLEX`, `DMSwarmComputeMoments()`
6643: @*/
6644: PetscErrorCode DMPlexComputeMoments(DM dm, Vec u, PetscReal moments[])
6645: {
6646:   PetscDS            ds;
6647:   PetscScalar        mom, constants[1];
6648:   const PetscScalar *oldConstants;
6649:   PetscInt           Nf, field = 0, Ncon, *comp;
6650:   MPI_Comm           comm;
6651:   void              *user;

6653:   PetscFunctionBeginUser;
6654:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
6655:   PetscCall(DMGetApplicationContext(dm, &user));
6656:   PetscCall(DMGetDS(dm, &ds));
6657:   PetscCall(PetscDSGetNumFields(ds, &Nf));
6658:   PetscCall(PetscDSGetComponents(ds, &comp));
6659:   PetscCall(PetscDSGetConstants(ds, &Ncon, &oldConstants));
6660:   PetscCall(PetscDSSetConstants(ds, 1, constants));
6661:   PetscCheck(Nf == 1, comm, PETSC_ERR_ARG_WRONG, "We currently only support 1 field, not %" PetscInt_FMT, Nf);
6662:   PetscCall(PetscDSSetObjective(ds, field, &f0_1));
6663:   PetscCall(DMPlexComputeIntegralFEM(dm, u, &mom, user));
6664:   moments[0] = PetscRealPart(mom);
6665:   for (PetscInt c = 0; c < comp[0]; ++c) {
6666:     constants[0] = c;
6667:     PetscCall(PetscDSSetObjective(ds, field, &f0_x));
6668:     PetscCall(DMPlexComputeIntegralFEM(dm, u, &mom, user));
6669:     moments[c + 1] = PetscRealPart(mom);
6670:   }
6671:   PetscCall(PetscDSSetObjective(ds, field, &f0_x2));
6672:   PetscCall(DMPlexComputeIntegralFEM(dm, u, &mom, user));
6673:   moments[comp[0] + 1] = PetscRealPart(mom);
6674:   PetscCall(PetscDSSetConstants(ds, Ncon, (PetscScalar *)oldConstants));
6675:   PetscFunctionReturn(PETSC_SUCCESS);
6676: }