Actual source code: plexfem.c
1: #include <petsc/private/dmpleximpl.h>
2: #include <petscsf.h>
4: #include <petscblaslapack.h>
5: #include <petsc/private/hashsetij.h>
6: #include <petsc/private/petscfeimpl.h>
7: #include <petsc/private/petscfvimpl.h>
9: PetscBool Clementcite = PETSC_FALSE;
10: const char ClementCitation[] = "@article{clement1975approximation,\n"
11: " title = {Approximation by finite element functions using local regularization},\n"
12: " author = {Philippe Cl{\\'e}ment},\n"
13: " journal = {Revue fran{\\c{c}}aise d'automatique, informatique, recherche op{\\'e}rationnelle. Analyse num{\\'e}rique},\n"
14: " volume = {9},\n"
15: " number = {R2},\n"
16: " pages = {77--84},\n"
17: " year = {1975}\n}\n";
19: static PetscErrorCode DMPlexConvertPlex(DM dm, DM *plex, PetscBool copy)
20: {
21: PetscBool isPlex;
23: PetscFunctionBegin;
24: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
25: if (isPlex) {
26: *plex = dm;
27: PetscCall(PetscObjectReference((PetscObject)dm));
28: } else {
29: PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
30: if (!*plex) {
31: PetscCall(DMConvert(dm, DMPLEX, plex));
32: PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
33: } else {
34: PetscCall(PetscObjectReference((PetscObject)*plex));
35: }
36: if (copy) {
37: DMSubDomainHookLink link;
39: PetscCall(DMCopyDS(dm, PETSC_DETERMINE, PETSC_DETERMINE, *plex));
40: PetscCall(DMCopyAuxiliaryVec(dm, *plex));
41: /* Run the subdomain hook (this will copy the DMSNES/DMTS) */
42: for (link = dm->subdomainhook; link; link = link->next) {
43: if (link->ddhook) PetscCall((*link->ddhook)(dm, *plex, link->ctx));
44: }
45: }
46: }
47: PetscFunctionReturn(PETSC_SUCCESS);
48: }
50: static PetscErrorCode PetscContainerCtxDestroy_PetscFEGeom(void **ctx)
51: {
52: PetscFEGeom *geom = (PetscFEGeom *)*ctx;
54: PetscFunctionBegin;
55: PetscCall(PetscFEGeomDestroy(&geom));
56: PetscFunctionReturn(PETSC_SUCCESS);
57: }
59: static PetscErrorCode DMPlexGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscFEGeomMode mode, PetscFEGeom **geom)
60: {
61: char composeStr[33] = {0};
62: PetscObjectId id;
63: PetscContainer container;
65: PetscFunctionBegin;
66: PetscCall(PetscObjectGetId((PetscObject)quad, &id));
67: PetscCall(PetscSNPrintf(composeStr, 32, "DMPlexGetFEGeom_%" PetscInt64_FMT "\n", id));
68: PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
69: if (container) {
70: PetscCall(PetscContainerGetPointer(container, (void **)geom));
71: } else {
72: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, mode, geom));
73: PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
74: PetscCall(PetscContainerSetPointer(container, (void *)*geom));
75: PetscCall(PetscContainerSetCtxDestroy(container, PetscContainerCtxDestroy_PetscFEGeom));
76: PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
77: PetscCall(PetscContainerDestroy(&container));
78: }
79: PetscFunctionReturn(PETSC_SUCCESS);
80: }
82: static PetscErrorCode DMPlexRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscFEGeomMode mode, PetscFEGeom **geom)
83: {
84: PetscFunctionBegin;
85: *geom = NULL;
86: PetscFunctionReturn(PETSC_SUCCESS);
87: }
89: /*@
90: DMPlexGetScale - Get the scale for the specified fundamental unit
92: Not Collective
94: Input Parameters:
95: + dm - the `DM`
96: - unit - The SI unit
98: Output Parameter:
99: . scale - The value used to scale all quantities with this unit
101: Level: advanced
103: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetScale()`, `PetscUnit`
104: @*/
105: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
106: {
107: DM_Plex *mesh = (DM_Plex *)dm->data;
109: PetscFunctionBegin;
111: PetscAssertPointer(scale, 3);
112: *scale = mesh->scale[unit];
113: PetscFunctionReturn(PETSC_SUCCESS);
114: }
116: /*@
117: DMPlexSetScale - Set the scale for the specified fundamental unit
119: Not Collective
121: Input Parameters:
122: + dm - the `DM`
123: . unit - The SI unit
124: - scale - The value used to scale all quantities with this unit
126: Level: advanced
128: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetScale()`, `PetscUnit`
129: @*/
130: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
131: {
132: DM_Plex *mesh = (DM_Plex *)dm->data;
134: PetscFunctionBegin;
136: mesh->scale[unit] = scale;
137: PetscFunctionReturn(PETSC_SUCCESS);
138: }
140: PetscErrorCode DMPlexGetUseCeed_Plex(DM dm, PetscBool *useCeed)
141: {
142: DM_Plex *mesh = (DM_Plex *)dm->data;
144: PetscFunctionBegin;
145: *useCeed = mesh->useCeed;
146: PetscFunctionReturn(PETSC_SUCCESS);
147: }
148: PetscErrorCode DMPlexSetUseCeed_Plex(DM dm, PetscBool useCeed)
149: {
150: DM_Plex *mesh = (DM_Plex *)dm->data;
152: PetscFunctionBegin;
153: mesh->useCeed = useCeed;
154: PetscFunctionReturn(PETSC_SUCCESS);
155: }
157: /*@
158: DMPlexGetUseCeed - Get flag for using the LibCEED backend
160: Not collective
162: Input Parameter:
163: . dm - The `DM`
165: Output Parameter:
166: . useCeed - The flag
168: Level: intermediate
170: .seealso: `DMPlexSetUseCeed()`
171: @*/
172: PetscErrorCode DMPlexGetUseCeed(DM dm, PetscBool *useCeed)
173: {
174: PetscFunctionBegin;
176: PetscAssertPointer(useCeed, 2);
177: *useCeed = PETSC_FALSE;
178: PetscTryMethod(dm, "DMPlexGetUseCeed_C", (DM, PetscBool *), (dm, useCeed));
179: PetscFunctionReturn(PETSC_SUCCESS);
180: }
182: /*@
183: DMPlexSetUseCeed - Set flag for using the LibCEED backend
185: Not collective
187: Input Parameters:
188: + dm - The `DM`
189: - useCeed - The flag
191: Level: intermediate
193: .seealso: `DMPlexGetUseCeed()`
194: @*/
195: PetscErrorCode DMPlexSetUseCeed(DM dm, PetscBool useCeed)
196: {
197: PetscFunctionBegin;
200: PetscUseMethod(dm, "DMPlexSetUseCeed_C", (DM, PetscBool), (dm, useCeed));
201: PetscFunctionReturn(PETSC_SUCCESS);
202: }
204: /*@
205: DMPlexGetUseMatClosurePermutation - Get flag for using a closure permutation for matrix insertion
207: Not collective
209: Input Parameter:
210: . dm - The `DM`
212: Output Parameter:
213: . useClPerm - The flag
215: Level: intermediate
217: .seealso: `DMPlexSetUseMatClosurePermutation()`
218: @*/
219: PetscErrorCode DMPlexGetUseMatClosurePermutation(DM dm, PetscBool *useClPerm)
220: {
221: DM_Plex *mesh = (DM_Plex *)dm->data;
223: PetscFunctionBegin;
225: PetscAssertPointer(useClPerm, 2);
226: *useClPerm = mesh->useMatClPerm;
227: PetscFunctionReturn(PETSC_SUCCESS);
228: }
230: /*@
231: DMPlexSetUseMatClosurePermutation - Set flag for using a closure permutation for matrix insertion
233: Not collective
235: Input Parameters:
236: + dm - The `DM`
237: - useClPerm - The flag
239: Level: intermediate
241: .seealso: `DMPlexGetUseMatClosurePermutation()`
242: @*/
243: PetscErrorCode DMPlexSetUseMatClosurePermutation(DM dm, PetscBool useClPerm)
244: {
245: DM_Plex *mesh = (DM_Plex *)dm->data;
247: PetscFunctionBegin;
250: mesh->useMatClPerm = useClPerm;
251: PetscFunctionReturn(PETSC_SUCCESS);
252: }
254: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nc, PetscScalar *mode, void *ctx)
255: {
256: const PetscInt eps[3][3][3] = {
257: {{0, 0, 0}, {0, 0, 1}, {0, -1, 0}},
258: {{0, 0, -1}, {0, 0, 0}, {1, 0, 0} },
259: {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0} }
260: };
261: PetscInt *ctxInt = (PetscInt *)ctx;
262: PetscInt dim2 = ctxInt[0];
263: PetscInt d = ctxInt[1];
264: PetscInt i, j, k = dim > 2 ? d - dim : d;
266: PetscFunctionBegin;
267: PetscCheck(dim == dim2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %" PetscInt_FMT " does not match context dimension %" PetscInt_FMT, dim, dim2);
268: for (i = 0; i < dim; i++) mode[i] = 0.;
269: if (d < dim) {
270: mode[d] = 1.; /* Translation along axis d */
271: } else {
272: for (i = 0; i < dim; i++) {
273: for (j = 0; j < dim; j++) { mode[j] += eps[i][j][k] * X[i]; /* Rotation about axis d */ }
274: }
275: }
276: PetscFunctionReturn(PETSC_SUCCESS);
277: }
279: /*@
280: DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation
282: Collective
284: Input Parameters:
285: + dm - the `DM`
286: - field - The field number for the rigid body space, or 0 for the default
288: Output Parameter:
289: . sp - the null space
291: Level: advanced
293: Note:
294: This is necessary to provide a suitable coarse space for algebraic multigrid
296: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`, `PCGAMG`
297: @*/
298: PetscErrorCode DMPlexCreateRigidBody(DM dm, PetscInt field, MatNullSpace *sp)
299: {
300: PetscErrorCode (**func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *);
301: MPI_Comm comm;
302: Vec mode[6];
303: PetscSection section, globalSection;
304: PetscInt dim, dimEmbed, Nf, n, m, mmin, d, i, j;
305: void **ctxs;
307: PetscFunctionBegin;
308: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
309: PetscCall(DMGetDimension(dm, &dim));
310: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
311: PetscCall(DMGetNumFields(dm, &Nf));
312: PetscCheck(!Nf || !(field < 0 || field >= Nf), comm, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, Nf);
313: if (dim == 1 && Nf < 2) {
314: PetscCall(MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp));
315: PetscFunctionReturn(PETSC_SUCCESS);
316: }
317: PetscCall(DMGetLocalSection(dm, §ion));
318: PetscCall(DMGetGlobalSection(dm, &globalSection));
319: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
320: PetscCall(PetscCalloc2(Nf, &func, Nf, &ctxs));
321: m = (dim * (dim + 1)) / 2;
322: PetscCall(VecCreate(comm, &mode[0]));
323: PetscCall(VecSetType(mode[0], dm->vectype));
324: PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
325: PetscCall(VecSetUp(mode[0]));
326: PetscCall(VecGetSize(mode[0], &n));
327: mmin = PetscMin(m, n);
328: func[field] = DMPlexProjectRigidBody_Private;
329: for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
330: for (d = 0; d < m; d++) {
331: PetscInt ctx[2];
333: ctxs[field] = (void *)(&ctx[0]);
334: ctx[0] = dimEmbed;
335: ctx[1] = d;
336: PetscCall(DMProjectFunction(dm, 0.0, func, ctxs, INSERT_VALUES, mode[d]));
337: }
338: /* Orthonormalize system */
339: for (i = 0; i < mmin; ++i) {
340: PetscScalar dots[6];
342: PetscCall(VecNormalize(mode[i], NULL));
343: PetscCall(VecMDot(mode[i], mmin - i - 1, mode + i + 1, dots + i + 1));
344: for (j = i + 1; j < mmin; ++j) {
345: dots[j] *= -1.0;
346: PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
347: }
348: }
349: PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, mmin, mode, sp));
350: for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
351: PetscCall(PetscFree2(func, ctxs));
352: PetscFunctionReturn(PETSC_SUCCESS);
353: }
355: /*@
356: DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation
358: Collective
360: Input Parameters:
361: + dm - the `DM`
362: . nb - The number of bodies
363: . label - The `DMLabel` marking each domain
364: . nids - The number of ids per body
365: - ids - An array of the label ids in sequence for each domain
367: Output Parameter:
368: . sp - the null space
370: Level: advanced
372: Note:
373: This is necessary to provide a suitable coarse space for algebraic multigrid
375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`
376: @*/
377: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
378: {
379: MPI_Comm comm;
380: PetscSection section, globalSection;
381: Vec *mode;
382: PetscScalar *dots;
383: PetscInt dim, dimEmbed, n, m, b, d, i, j, off;
385: PetscFunctionBegin;
386: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
387: PetscCall(DMGetDimension(dm, &dim));
388: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
389: PetscCall(DMGetLocalSection(dm, §ion));
390: PetscCall(DMGetGlobalSection(dm, &globalSection));
391: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
392: m = nb * (dim * (dim + 1)) / 2;
393: PetscCall(PetscMalloc2(m, &mode, m, &dots));
394: PetscCall(VecCreate(comm, &mode[0]));
395: PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
396: PetscCall(VecSetUp(mode[0]));
397: for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
398: for (b = 0, off = 0; b < nb; ++b) {
399: for (d = 0; d < m / nb; ++d) {
400: PetscInt ctx[2];
401: PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
402: void *voidctx = (void *)(&ctx[0]);
404: ctx[0] = dimEmbed;
405: ctx[1] = d;
406: PetscCall(DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]));
407: off += nids[b];
408: }
409: }
410: /* Orthonormalize system */
411: for (i = 0; i < m; ++i) {
412: PetscScalar dots[6];
414: PetscCall(VecNormalize(mode[i], NULL));
415: PetscCall(VecMDot(mode[i], m - i - 1, mode + i + 1, dots + i + 1));
416: for (j = i + 1; j < m; ++j) {
417: dots[j] *= -1.0;
418: PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
419: }
420: }
421: PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp));
422: for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
423: PetscCall(PetscFree2(mode, dots));
424: PetscFunctionReturn(PETSC_SUCCESS);
425: }
427: /*@
428: DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
429: are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
430: evaluating the dual space basis of that point.
432: Input Parameters:
433: + dm - the `DMPLEX` object
434: - height - the maximum projection height >= 0
436: Level: advanced
438: Notes:
439: A basis function is associated with the point in its transitively-closed support whose mesh
440: height is highest (w.r.t. DAG height), but not greater than the maximum projection height,
441: which is set with this function. By default, the maximum projection height is zero, which
442: means that only mesh cells are used to project basis functions. A height of one, for
443: example, evaluates a cell-interior basis functions using its cells dual space basis, but all
444: other basis functions with the dual space basis of a face.
446: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
447: @*/
448: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
449: {
450: DM_Plex *plex = (DM_Plex *)dm->data;
452: PetscFunctionBegin;
454: plex->maxProjectionHeight = height;
455: PetscFunctionReturn(PETSC_SUCCESS);
456: }
458: /*@
459: DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
460: DMPlexProjectXXXLocal() functions.
462: Input Parameter:
463: . dm - the `DMPLEX` object
465: Output Parameter:
466: . height - the maximum projection height
468: Level: intermediate
470: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
471: @*/
472: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
473: {
474: DM_Plex *plex = (DM_Plex *)dm->data;
476: PetscFunctionBegin;
478: *height = plex->maxProjectionHeight;
479: PetscFunctionReturn(PETSC_SUCCESS);
480: }
482: typedef struct {
483: PetscReal alpha; /* The first Euler angle, and in 2D the only one */
484: PetscReal beta; /* The second Euler angle */
485: PetscReal gamma; /* The third Euler angle */
486: PetscInt dim; /* The dimension of R */
487: PetscScalar *R; /* The rotation matrix, transforming a vector in the local basis to the global basis */
488: PetscScalar *RT; /* The transposed rotation matrix, transforming a vector in the global basis to the local basis */
489: } RotCtx;
491: /*
492: Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
493: we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
494: $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
495: $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
496: $ The XYZ system rotates a third time about the z axis by gamma.
497: */
498: static PetscErrorCode DMPlexBasisTransformSetUp_Rotation_Internal(DM dm, void *ctx)
499: {
500: RotCtx *rc = (RotCtx *)ctx;
501: PetscInt dim = rc->dim;
502: PetscReal c1, s1, c2, s2, c3, s3;
504: PetscFunctionBegin;
505: PetscCall(PetscMalloc2(PetscSqr(dim), &rc->R, PetscSqr(dim), &rc->RT));
506: switch (dim) {
507: case 2:
508: c1 = PetscCosReal(rc->alpha);
509: s1 = PetscSinReal(rc->alpha);
510: rc->R[0] = c1;
511: rc->R[1] = s1;
512: rc->R[2] = -s1;
513: rc->R[3] = c1;
514: PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
515: DMPlex_Transpose2D_Internal(rc->RT);
516: break;
517: case 3:
518: c1 = PetscCosReal(rc->alpha);
519: s1 = PetscSinReal(rc->alpha);
520: c2 = PetscCosReal(rc->beta);
521: s2 = PetscSinReal(rc->beta);
522: c3 = PetscCosReal(rc->gamma);
523: s3 = PetscSinReal(rc->gamma);
524: rc->R[0] = c1 * c3 - c2 * s1 * s3;
525: rc->R[1] = c3 * s1 + c1 * c2 * s3;
526: rc->R[2] = s2 * s3;
527: rc->R[3] = -c1 * s3 - c2 * c3 * s1;
528: rc->R[4] = c1 * c2 * c3 - s1 * s3;
529: rc->R[5] = c3 * s2;
530: rc->R[6] = s1 * s2;
531: rc->R[7] = -c1 * s2;
532: rc->R[8] = c2;
533: PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
534: DMPlex_Transpose3D_Internal(rc->RT);
535: break;
536: default:
537: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Dimension %" PetscInt_FMT " not supported", dim);
538: }
539: PetscFunctionReturn(PETSC_SUCCESS);
540: }
542: static PetscErrorCode DMPlexBasisTransformDestroy_Rotation_Internal(DM dm, void *ctx)
543: {
544: RotCtx *rc = (RotCtx *)ctx;
546: PetscFunctionBegin;
547: PetscCall(PetscFree2(rc->R, rc->RT));
548: PetscCall(PetscFree(rc));
549: PetscFunctionReturn(PETSC_SUCCESS);
550: }
552: static PetscErrorCode DMPlexBasisTransformGetMatrix_Rotation_Internal(DM dm, const PetscReal x[], PetscBool l2g, const PetscScalar **A, void *ctx)
553: {
554: RotCtx *rc = (RotCtx *)ctx;
556: PetscFunctionBeginHot;
557: PetscAssertPointer(ctx, 5);
558: if (l2g) {
559: *A = rc->R;
560: } else {
561: *A = rc->RT;
562: }
563: PetscFunctionReturn(PETSC_SUCCESS);
564: }
566: PetscErrorCode DMPlexBasisTransformApplyReal_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscReal *y, PetscReal *z, void *ctx)
567: {
568: PetscFunctionBegin;
569: #if defined(PETSC_USE_COMPLEX)
570: switch (dim) {
571: case 2: {
572: PetscScalar yt[2] = {y[0], y[1]}, zt[2] = {0.0, 0.0};
574: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
575: z[0] = PetscRealPart(zt[0]);
576: z[1] = PetscRealPart(zt[1]);
577: } break;
578: case 3: {
579: PetscScalar yt[3] = {y[0], y[1], y[2]}, zt[3] = {0.0, 0.0, 0.0};
581: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
582: z[0] = PetscRealPart(zt[0]);
583: z[1] = PetscRealPart(zt[1]);
584: z[2] = PetscRealPart(zt[2]);
585: } break;
586: }
587: #else
588: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, y, z, ctx));
589: #endif
590: PetscFunctionReturn(PETSC_SUCCESS);
591: }
593: PetscErrorCode DMPlexBasisTransformApply_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscScalar *y, PetscScalar *z, void *ctx)
594: {
595: const PetscScalar *A;
597: PetscFunctionBeginHot;
598: PetscCall((*dm->transformGetMatrix)(dm, x, l2g, &A, ctx));
599: switch (dim) {
600: case 2:
601: DMPlex_Mult2D_Internal(A, 1, y, z);
602: break;
603: case 3:
604: DMPlex_Mult3D_Internal(A, 1, y, z);
605: break;
606: }
607: PetscFunctionReturn(PETSC_SUCCESS);
608: }
610: static PetscErrorCode DMPlexBasisTransformField_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscInt f, PetscBool l2g, PetscScalar *a)
611: {
612: PetscSection ts;
613: const PetscScalar *ta, *tva;
614: PetscInt dof;
616: PetscFunctionBeginHot;
617: PetscCall(DMGetLocalSection(tdm, &ts));
618: PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
619: PetscCall(VecGetArrayRead(tv, &ta));
620: PetscCall(DMPlexPointLocalFieldRead(tdm, p, f, ta, &tva));
621: if (l2g) {
622: switch (dof) {
623: case 4:
624: DMPlex_Mult2D_Internal(tva, 1, a, a);
625: break;
626: case 9:
627: DMPlex_Mult3D_Internal(tva, 1, a, a);
628: break;
629: }
630: } else {
631: switch (dof) {
632: case 4:
633: DMPlex_MultTranspose2D_Internal(tva, 1, a, a);
634: break;
635: case 9:
636: DMPlex_MultTranspose3D_Internal(tva, 1, a, a);
637: break;
638: }
639: }
640: PetscCall(VecRestoreArrayRead(tv, &ta));
641: PetscFunctionReturn(PETSC_SUCCESS);
642: }
644: static PetscErrorCode DMPlexBasisTransformFieldTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt pf, PetscInt f, PetscInt pg, PetscInt g, PetscBool l2g, PetscInt lda, PetscScalar *a)
645: {
646: PetscSection s, ts;
647: const PetscScalar *ta, *tvaf, *tvag;
648: PetscInt fdof, gdof, fpdof, gpdof;
650: PetscFunctionBeginHot;
651: PetscCall(DMGetLocalSection(dm, &s));
652: PetscCall(DMGetLocalSection(tdm, &ts));
653: PetscCall(PetscSectionGetFieldDof(s, pf, f, &fpdof));
654: PetscCall(PetscSectionGetFieldDof(s, pg, g, &gpdof));
655: PetscCall(PetscSectionGetFieldDof(ts, pf, f, &fdof));
656: PetscCall(PetscSectionGetFieldDof(ts, pg, g, &gdof));
657: PetscCall(VecGetArrayRead(tv, &ta));
658: PetscCall(DMPlexPointLocalFieldRead(tdm, pf, f, ta, &tvaf));
659: PetscCall(DMPlexPointLocalFieldRead(tdm, pg, g, ta, &tvag));
660: if (l2g) {
661: switch (fdof) {
662: case 4:
663: DMPlex_MatMult2D_Internal(tvaf, gpdof, lda, a, a);
664: break;
665: case 9:
666: DMPlex_MatMult3D_Internal(tvaf, gpdof, lda, a, a);
667: break;
668: }
669: switch (gdof) {
670: case 4:
671: DMPlex_MatMultTransposeLeft2D_Internal(tvag, fpdof, lda, a, a);
672: break;
673: case 9:
674: DMPlex_MatMultTransposeLeft3D_Internal(tvag, fpdof, lda, a, a);
675: break;
676: }
677: } else {
678: switch (fdof) {
679: case 4:
680: DMPlex_MatMultTranspose2D_Internal(tvaf, gpdof, lda, a, a);
681: break;
682: case 9:
683: DMPlex_MatMultTranspose3D_Internal(tvaf, gpdof, lda, a, a);
684: break;
685: }
686: switch (gdof) {
687: case 4:
688: DMPlex_MatMultLeft2D_Internal(tvag, fpdof, lda, a, a);
689: break;
690: case 9:
691: DMPlex_MatMultLeft3D_Internal(tvag, fpdof, lda, a, a);
692: break;
693: }
694: }
695: PetscCall(VecRestoreArrayRead(tv, &ta));
696: PetscFunctionReturn(PETSC_SUCCESS);
697: }
699: PetscErrorCode DMPlexBasisTransformPoint_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool fieldActive[], PetscBool l2g, PetscScalar *a)
700: {
701: PetscSection s;
702: PetscSection clSection;
703: IS clPoints;
704: const PetscInt *clp;
705: PetscInt *points = NULL;
706: PetscInt Nf, f, Np, cp, dof, d = 0;
708: PetscFunctionBegin;
709: PetscCall(DMGetLocalSection(dm, &s));
710: PetscCall(PetscSectionGetNumFields(s, &Nf));
711: PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
712: for (f = 0; f < Nf; ++f) {
713: for (cp = 0; cp < Np * 2; cp += 2) {
714: PetscCall(PetscSectionGetFieldDof(s, points[cp], f, &dof));
715: if (!dof) continue;
716: if (fieldActive[f]) PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, points[cp], f, l2g, &a[d]));
717: d += dof;
718: }
719: }
720: PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
721: PetscFunctionReturn(PETSC_SUCCESS);
722: }
724: PetscErrorCode DMPlexBasisTransformPointTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool l2g, PetscInt lda, PetscScalar *a)
725: {
726: PetscSection s;
727: PetscSection clSection;
728: IS clPoints;
729: const PetscInt *clp;
730: PetscInt *points = NULL;
731: PetscInt Nf, f, g, Np, cpf, cpg, fdof, gdof, r, c = 0;
733: PetscFunctionBegin;
734: PetscCall(DMGetLocalSection(dm, &s));
735: PetscCall(PetscSectionGetNumFields(s, &Nf));
736: PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
737: for (f = 0, r = 0; f < Nf; ++f) {
738: for (cpf = 0; cpf < Np * 2; cpf += 2) {
739: PetscCall(PetscSectionGetFieldDof(s, points[cpf], f, &fdof));
740: for (g = 0, c = 0; g < Nf; ++g) {
741: for (cpg = 0; cpg < Np * 2; cpg += 2) {
742: PetscCall(PetscSectionGetFieldDof(s, points[cpg], g, &gdof));
743: PetscCall(DMPlexBasisTransformFieldTensor_Internal(dm, tdm, tv, points[cpf], f, points[cpg], g, l2g, lda, &a[r * lda + c]));
744: c += gdof;
745: }
746: }
747: PetscCheck(c == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of columns %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
748: r += fdof;
749: }
750: }
751: PetscCheck(r == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of rows %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
752: PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
753: PetscFunctionReturn(PETSC_SUCCESS);
754: }
756: static PetscErrorCode DMPlexBasisTransform_Internal(DM dm, Vec lv, PetscBool l2g)
757: {
758: DM tdm;
759: Vec tv;
760: PetscSection ts, s;
761: const PetscScalar *ta;
762: PetscScalar *a, *va;
763: PetscInt pStart, pEnd, p, Nf, f;
765: PetscFunctionBegin;
766: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
767: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
768: PetscCall(DMGetLocalSection(tdm, &ts));
769: PetscCall(DMGetLocalSection(dm, &s));
770: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
771: PetscCall(PetscSectionGetNumFields(s, &Nf));
772: PetscCall(VecGetArray(lv, &a));
773: PetscCall(VecGetArrayRead(tv, &ta));
774: for (p = pStart; p < pEnd; ++p) {
775: for (f = 0; f < Nf; ++f) {
776: PetscCall(DMPlexPointLocalFieldRef(dm, p, f, a, &va));
777: PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, p, f, l2g, va));
778: }
779: }
780: PetscCall(VecRestoreArray(lv, &a));
781: PetscCall(VecRestoreArrayRead(tv, &ta));
782: PetscFunctionReturn(PETSC_SUCCESS);
783: }
785: /*@
786: DMPlexGlobalToLocalBasis - Transform the values in the given local vector from the global basis to the local basis
788: Input Parameters:
789: + dm - The `DM`
790: - lv - A local vector with values in the global basis
792: Output Parameter:
793: . lv - A local vector with values in the local basis
795: Level: developer
797: Note:
798: This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user will have a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.
800: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexLocalToGlobalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
801: @*/
802: PetscErrorCode DMPlexGlobalToLocalBasis(DM dm, Vec lv)
803: {
804: PetscFunctionBegin;
807: PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_FALSE));
808: PetscFunctionReturn(PETSC_SUCCESS);
809: }
811: /*@
812: DMPlexLocalToGlobalBasis - Transform the values in the given local vector from the local basis to the global basis
814: Input Parameters:
815: + dm - The `DM`
816: - lv - A local vector with values in the local basis
818: Output Parameter:
819: . lv - A local vector with values in the global basis
821: Level: developer
823: Note:
824: This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user would want a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.
826: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
827: @*/
828: PetscErrorCode DMPlexLocalToGlobalBasis(DM dm, Vec lv)
829: {
830: PetscFunctionBegin;
833: PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_TRUE));
834: PetscFunctionReturn(PETSC_SUCCESS);
835: }
837: /*@
838: DMPlexCreateBasisRotation - Create an internal transformation from the global basis, used to specify boundary conditions
839: and global solutions, to a local basis, appropriate for discretization integrals and assembly.
841: Input Parameters:
842: + dm - The `DM`
843: . alpha - The first Euler angle, and in 2D the only one
844: . beta - The second Euler angle
845: - gamma - The third Euler angle
847: Level: developer
849: Note:
850: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
851: we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows
852: .vb
853: The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
854: The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
855: The XYZ system rotates a third time about the z axis by gamma.
856: .ve
858: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`
859: @*/
860: PetscErrorCode DMPlexCreateBasisRotation(DM dm, PetscReal alpha, PetscReal beta, PetscReal gamma)
861: {
862: RotCtx *rc;
863: PetscInt cdim;
865: PetscFunctionBegin;
866: PetscCall(DMGetCoordinateDim(dm, &cdim));
867: PetscCall(PetscMalloc1(1, &rc));
868: dm->transformCtx = rc;
869: dm->transformSetUp = DMPlexBasisTransformSetUp_Rotation_Internal;
870: dm->transformDestroy = DMPlexBasisTransformDestroy_Rotation_Internal;
871: dm->transformGetMatrix = DMPlexBasisTransformGetMatrix_Rotation_Internal;
872: rc->dim = cdim;
873: rc->alpha = alpha;
874: rc->beta = beta;
875: rc->gamma = gamma;
876: PetscCall((*dm->transformSetUp)(dm, dm->transformCtx));
877: PetscCall(DMConstructBasisTransform_Internal(dm));
878: PetscFunctionReturn(PETSC_SUCCESS);
879: }
881: /*@C
882: DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector using a function of the coordinates
884: Input Parameters:
885: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
886: . time - The time
887: . field - The field to constrain
888: . Nc - The number of constrained field components, or 0 for all components
889: . comps - An array of constrained component numbers, or `NULL` for all components
890: . label - The `DMLabel` defining constrained points
891: . numids - The number of `DMLabel` ids for constrained points
892: . ids - An array of ids for constrained points
893: . func - A pointwise function giving boundary values
894: - ctx - An optional user context for bcFunc
896: Output Parameter:
897: . locX - A local vector to receives the boundary values
899: Level: developer
901: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMLabel`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
902: @*/
903: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
904: {
905: PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
906: void **ctxs;
907: PetscInt numFields;
909: PetscFunctionBegin;
910: PetscCall(DMGetNumFields(dm, &numFields));
911: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
912: funcs[field] = func;
913: ctxs[field] = ctx;
914: PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX));
915: PetscCall(PetscFree2(funcs, ctxs));
916: PetscFunctionReturn(PETSC_SUCCESS);
917: }
919: /*@C
920: DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector using a function of the coordinates and field data
922: Input Parameters:
923: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
924: . time - The time
925: . locU - A local vector with the input solution values
926: . field - The field to constrain
927: . Nc - The number of constrained field components, or 0 for all components
928: . comps - An array of constrained component numbers, or `NULL` for all components
929: . label - The `DMLabel` defining constrained points
930: . numids - The number of `DMLabel` ids for constrained points
931: . ids - An array of ids for constrained points
932: . func - A pointwise function giving boundary values
933: - ctx - An optional user context for bcFunc
935: Output Parameter:
936: . locX - A local vector to receives the boundary values
938: Level: developer
940: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
941: @*/
942: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
943: {
944: void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
945: void **ctxs;
946: PetscInt numFields;
948: PetscFunctionBegin;
949: PetscCall(DMGetNumFields(dm, &numFields));
950: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
951: funcs[field] = func;
952: ctxs[field] = ctx;
953: PetscCall(DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
954: PetscCall(PetscFree2(funcs, ctxs));
955: PetscFunctionReturn(PETSC_SUCCESS);
956: }
958: /*@C
959: DMPlexInsertBoundaryValuesEssentialBdField - Insert boundary values into a local vector using a function of the coordinates and boundary field data
961: Collective
963: Input Parameters:
964: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
965: . time - The time
966: . locU - A local vector with the input solution values
967: . field - The field to constrain
968: . Nc - The number of constrained field components, or 0 for all components
969: . comps - An array of constrained component numbers, or `NULL` for all components
970: . label - The `DMLabel` defining constrained points
971: . numids - The number of `DMLabel` ids for constrained points
972: . ids - An array of ids for constrained points
973: . func - A pointwise function giving boundary values, the calling sequence is given in `DMProjectBdFieldLabelLocal()`
974: - ctx - An optional user context for `func`
976: Output Parameter:
977: . locX - A local vector to receive the boundary values
979: Level: developer
981: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectBdFieldLabelLocal()`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
982: @*/
983: PetscErrorCode DMPlexInsertBoundaryValuesEssentialBdField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
984: {
985: void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
986: void **ctxs;
987: PetscInt numFields;
989: PetscFunctionBegin;
990: PetscCall(DMGetNumFields(dm, &numFields));
991: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
992: funcs[field] = func;
993: ctxs[field] = ctx;
994: PetscCall(DMProjectBdFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
995: PetscCall(PetscFree2(funcs, ctxs));
996: PetscFunctionReturn(PETSC_SUCCESS);
997: }
999: /*@C
1000: DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector
1002: Input Parameters:
1003: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
1004: . time - The time
1005: . faceGeometry - A vector with the FVM face geometry information
1006: . cellGeometry - A vector with the FVM cell geometry information
1007: . Grad - A vector with the FVM cell gradient information
1008: . field - The field to constrain
1009: . Nc - The number of constrained field components, or 0 for all components
1010: . comps - An array of constrained component numbers, or `NULL` for all components
1011: . label - The `DMLabel` defining constrained points
1012: . numids - The number of `DMLabel` ids for constrained points
1013: . ids - An array of ids for constrained points
1014: . func - A pointwise function giving boundary values
1015: - ctx - An optional user context for bcFunc
1017: Output Parameter:
1018: . locX - A local vector to receives the boundary values
1020: Level: developer
1022: Note:
1023: This implementation currently ignores the numcomps/comps argument from `DMAddBoundary()`
1025: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
1026: @*/
1027: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *), void *ctx, Vec locX)
1028: {
1029: PetscDS prob;
1030: PetscSF sf;
1031: DM dmFace, dmCell, dmGrad;
1032: const PetscScalar *facegeom, *cellgeom = NULL, *grad;
1033: const PetscInt *leaves;
1034: PetscScalar *x, *fx;
1035: PetscInt dim, nleaves, loc, fStart, fEnd, pdim, i;
1036: PetscErrorCode ierru = PETSC_SUCCESS;
1038: PetscFunctionBegin;
1039: PetscCall(DMGetPointSF(dm, &sf));
1040: PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL));
1041: nleaves = PetscMax(0, nleaves);
1042: PetscCall(DMGetDimension(dm, &dim));
1043: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1044: PetscCall(DMGetDS(dm, &prob));
1045: PetscCall(VecGetDM(faceGeometry, &dmFace));
1046: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
1047: if (cellGeometry) {
1048: PetscCall(VecGetDM(cellGeometry, &dmCell));
1049: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
1050: }
1051: if (Grad) {
1052: PetscFV fv;
1054: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fv));
1055: PetscCall(VecGetDM(Grad, &dmGrad));
1056: PetscCall(VecGetArrayRead(Grad, &grad));
1057: PetscCall(PetscFVGetNumComponents(fv, &pdim));
1058: PetscCall(DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1059: }
1060: PetscCall(VecGetArray(locX, &x));
1061: for (i = 0; i < numids; ++i) {
1062: IS faceIS;
1063: const PetscInt *faces;
1064: PetscInt numFaces, f;
1066: PetscCall(DMLabelGetStratumIS(label, ids[i], &faceIS));
1067: if (!faceIS) continue; /* No points with that id on this process */
1068: PetscCall(ISGetLocalSize(faceIS, &numFaces));
1069: PetscCall(ISGetIndices(faceIS, &faces));
1070: for (f = 0; f < numFaces; ++f) {
1071: const PetscInt face = faces[f], *cells;
1072: PetscFVFaceGeom *fg;
1074: if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
1075: PetscCall(PetscFindInt(face, nleaves, (PetscInt *)leaves, &loc));
1076: if (loc >= 0) continue;
1077: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
1078: PetscCall(DMPlexGetSupport(dm, face, &cells));
1079: if (Grad) {
1080: PetscFVCellGeom *cg;
1081: PetscScalar *cx, *cgrad;
1082: PetscScalar *xG;
1083: PetscReal dx[3];
1084: PetscInt d;
1086: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg));
1087: PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &cx));
1088: PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad));
1089: PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1090: DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
1091: for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d * dim], dx);
1092: PetscCall((*func)(time, fg->centroid, fg->normal, fx, xG, ctx));
1093: } else {
1094: PetscScalar *xI;
1095: PetscScalar *xG;
1097: PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &xI));
1098: PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1099: ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
1100: if (ierru) {
1101: PetscCall(ISRestoreIndices(faceIS, &faces));
1102: PetscCall(ISDestroy(&faceIS));
1103: goto cleanup;
1104: }
1105: }
1106: }
1107: PetscCall(ISRestoreIndices(faceIS, &faces));
1108: PetscCall(ISDestroy(&faceIS));
1109: }
1110: cleanup:
1111: PetscCall(VecRestoreArray(locX, &x));
1112: if (Grad) {
1113: PetscCall(DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1114: PetscCall(VecRestoreArrayRead(Grad, &grad));
1115: }
1116: if (cellGeometry) PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
1117: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
1118: PetscCall(ierru);
1119: PetscFunctionReturn(PETSC_SUCCESS);
1120: }
1122: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
1123: {
1124: PetscInt c;
1125: for (c = 0; c < Nc; ++c) u[c] = 0.0;
1126: return PETSC_SUCCESS;
1127: }
1129: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1130: {
1131: PetscObject isZero;
1132: PetscDS prob;
1133: PetscInt numBd, b;
1135: PetscFunctionBegin;
1136: PetscCall(DMGetDS(dm, &prob));
1137: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1138: PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1139: PetscCall(PetscDSUpdateBoundaryLabels(prob, dm));
1140: for (b = 0; b < numBd; ++b) {
1141: PetscWeakForm wf;
1142: DMBoundaryConditionType type;
1143: const char *name;
1144: DMLabel label;
1145: PetscInt field, Nc;
1146: const PetscInt *comps;
1147: PetscObject obj;
1148: PetscClassId id;
1149: void (*bvfunc)(void);
1150: PetscInt numids;
1151: const PetscInt *ids;
1152: void *ctx;
1154: PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, &bvfunc, NULL, &ctx));
1155: if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1156: PetscCall(DMGetField(dm, field, NULL, &obj));
1157: PetscCall(PetscObjectGetClassId(obj, &id));
1158: if (id == PETSCFE_CLASSID) {
1159: switch (type) {
1160: /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1161: case DM_BC_ESSENTIAL: {
1162: PetscSimplePointFn *func = (PetscSimplePointFn *)bvfunc;
1164: if (isZero) func = zero;
1165: PetscCall(DMPlexLabelAddCells(dm, label));
1166: PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func, ctx, locX));
1167: PetscCall(DMPlexLabelClearCells(dm, label));
1168: } break;
1169: case DM_BC_ESSENTIAL_FIELD: {
1170: PetscPointFunc func = (PetscPointFunc)bvfunc;
1172: PetscCall(DMPlexLabelAddCells(dm, label));
1173: PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func, ctx, locX));
1174: PetscCall(DMPlexLabelClearCells(dm, label));
1175: } break;
1176: default:
1177: break;
1178: }
1179: } else if (id == PETSCFV_CLASSID) {
1180: {
1181: PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *) = (PetscErrorCode (*)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *))bvfunc;
1183: if (!faceGeomFVM) continue;
1184: PetscCall(DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids, func, ctx, locX));
1185: }
1186: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1187: }
1188: PetscFunctionReturn(PETSC_SUCCESS);
1189: }
1191: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1192: {
1193: PetscObject isZero;
1194: PetscDS prob;
1195: PetscInt numBd, b;
1197: PetscFunctionBegin;
1198: if (!locX) PetscFunctionReturn(PETSC_SUCCESS);
1199: PetscCall(DMGetDS(dm, &prob));
1200: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1201: PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1202: for (b = 0; b < numBd; ++b) {
1203: PetscWeakForm wf;
1204: DMBoundaryConditionType type;
1205: const char *name;
1206: DMLabel label;
1207: PetscInt field, Nc;
1208: const PetscInt *comps;
1209: PetscObject obj;
1210: PetscClassId id;
1211: PetscInt numids;
1212: const PetscInt *ids;
1213: void (*bvfunc)(void);
1214: void *ctx;
1216: PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, NULL, &bvfunc, &ctx));
1217: if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1218: PetscCall(DMGetField(dm, field, NULL, &obj));
1219: PetscCall(PetscObjectGetClassId(obj, &id));
1220: if (id == PETSCFE_CLASSID) {
1221: switch (type) {
1222: /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1223: case DM_BC_ESSENTIAL: {
1224: PetscSimplePointFn *func_t = (PetscSimplePointFn *)bvfunc;
1226: if (isZero) func_t = zero;
1227: PetscCall(DMPlexLabelAddCells(dm, label));
1228: PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1229: PetscCall(DMPlexLabelClearCells(dm, label));
1230: } break;
1231: case DM_BC_ESSENTIAL_FIELD: {
1232: PetscPointFunc func_t = (PetscPointFunc)bvfunc;
1234: PetscCall(DMPlexLabelAddCells(dm, label));
1235: PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1236: PetscCall(DMPlexLabelClearCells(dm, label));
1237: } break;
1238: default:
1239: break;
1240: }
1241: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1242: }
1243: PetscFunctionReturn(PETSC_SUCCESS);
1244: }
1246: PetscErrorCode DMPlexInsertBounds_Plex(DM dm, PetscBool lower, PetscReal time, Vec locB)
1247: {
1248: PetscDS ds;
1249: PetscInt numBd;
1251: PetscFunctionBegin;
1252: PetscCall(DMGetDS(dm, &ds));
1253: PetscCall(PetscDSGetNumBoundary(ds, &numBd));
1254: PetscCall(PetscDSUpdateBoundaryLabels(ds, dm));
1255: for (PetscInt b = 0; b < numBd; ++b) {
1256: PetscWeakForm wf;
1257: DMBoundaryConditionType type;
1258: const char *name;
1259: DMLabel label;
1260: PetscInt numids;
1261: const PetscInt *ids;
1262: PetscInt field, Nc;
1263: const PetscInt *comps;
1264: void (*bvfunc)(void);
1265: void *ctx;
1267: PetscCall(PetscDSGetBoundary(ds, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, &bvfunc, NULL, &ctx));
1268: if (lower && type != DM_BC_LOWER_BOUND) continue;
1269: if (!lower && type != DM_BC_UPPER_BOUND) continue;
1270: PetscCall(DMPlexLabelAddCells(dm, label));
1271: {
1272: PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
1273: void **ctxs;
1274: PetscInt Nf;
1276: PetscCall(DMGetNumFields(dm, &Nf));
1277: PetscCall(PetscCalloc2(Nf, &funcs, Nf, &ctxs));
1278: funcs[field] = (PetscSimplePointFn *)bvfunc;
1279: ctxs[field] = ctx;
1280: PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_ALL_VALUES, locB));
1281: PetscCall(PetscFree2(funcs, ctxs));
1282: }
1283: PetscCall(DMPlexLabelClearCells(dm, label));
1284: }
1285: PetscFunctionReturn(PETSC_SUCCESS);
1286: }
1288: /*@
1289: DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector
1291: Not Collective
1293: Input Parameters:
1294: + dm - The `DM`
1295: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1296: . time - The time
1297: . faceGeomFVM - Face geometry data for FV discretizations
1298: . cellGeomFVM - Cell geometry data for FV discretizations
1299: - gradFVM - Gradient reconstruction data for FV discretizations
1301: Output Parameter:
1302: . locX - Solution updated with boundary values
1304: Level: intermediate
1306: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`, `DMAddBoundary()`
1307: @*/
1308: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1309: {
1310: PetscFunctionBegin;
1316: PetscTryMethod(dm, "DMPlexInsertBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX, time, faceGeomFVM, cellGeomFVM, gradFVM));
1317: PetscFunctionReturn(PETSC_SUCCESS);
1318: }
1320: /*@
1321: DMPlexInsertTimeDerivativeBoundaryValues - Puts coefficients which represent boundary values of the time derivative into the local solution vector
1323: Input Parameters:
1324: + dm - The `DM`
1325: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1326: . time - The time
1327: . faceGeomFVM - Face geometry data for FV discretizations
1328: . cellGeomFVM - Cell geometry data for FV discretizations
1329: - gradFVM - Gradient reconstruction data for FV discretizations
1331: Output Parameter:
1332: . locX_t - Solution updated with boundary values
1334: Level: developer
1336: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`
1337: @*/
1338: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues(DM dm, PetscBool insertEssential, Vec locX_t, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1339: {
1340: PetscFunctionBegin;
1346: PetscTryMethod(dm, "DMPlexInsertTimeDerivativeBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX_t, time, faceGeomFVM, cellGeomFVM, gradFVM));
1347: PetscFunctionReturn(PETSC_SUCCESS);
1348: }
1350: /*@
1351: DMPlexInsertBounds - Puts coefficients which represent solution bounds into the local bounds vector
1353: Not Collective
1355: Input Parameters:
1356: + dm - The `DM`
1357: . lower - If `PETSC_TRUE` use `DM_BC_LOWER_BOUND` conditions, otherwise use `DM_BC_UPPER_BOUND`
1358: - time - The time
1360: Output Parameter:
1361: . locB - Bounds vector updated with new bounds
1363: Level: intermediate
1365: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`, `PetscDSAddBoundary()`
1366: @*/
1367: PetscErrorCode DMPlexInsertBounds(DM dm, PetscBool lower, PetscReal time, Vec locB)
1368: {
1369: PetscFunctionBegin;
1372: PetscTryMethod(dm, "DMPlexInsertBounds_C", (DM, PetscBool, PetscReal, Vec), (dm, lower, time, locB));
1373: PetscFunctionReturn(PETSC_SUCCESS);
1374: }
1376: // Handle non-essential (e.g. outflow) boundary values
1377: PetscErrorCode DMPlexInsertBoundaryValuesFVM(DM dm, PetscFV fv, Vec locX, PetscReal time, Vec *locGradient)
1378: {
1379: DM dmGrad;
1380: Vec cellGeometryFVM, faceGeometryFVM, locGrad = NULL;
1382: PetscFunctionBegin;
1386: if (locGradient) {
1387: PetscAssertPointer(locGradient, 5);
1388: *locGradient = NULL;
1389: }
1390: PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
1391: /* Reconstruct and limit cell gradients */
1392: PetscCall(DMPlexGetGradientDM(dm, fv, &dmGrad));
1393: if (dmGrad) {
1394: Vec grad;
1395: PetscInt fStart, fEnd;
1397: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1398: PetscCall(DMGetGlobalVector(dmGrad, &grad));
1399: PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
1400: /* Communicate gradient values */
1401: PetscCall(DMGetLocalVector(dmGrad, &locGrad));
1402: PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
1403: PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
1404: PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
1405: }
1406: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, time, faceGeometryFVM, cellGeometryFVM, locGrad));
1407: if (locGradient) *locGradient = locGrad;
1408: else if (locGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
1409: PetscFunctionReturn(PETSC_SUCCESS);
1410: }
1412: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1413: {
1414: Vec localX;
1416: PetscFunctionBegin;
1417: PetscCall(DMGetLocalVector(dm, &localX));
1418: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL));
1419: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1420: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1421: PetscCall(DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff));
1422: PetscCall(DMRestoreLocalVector(dm, &localX));
1423: PetscFunctionReturn(PETSC_SUCCESS);
1424: }
1426: /*@C
1427: DMPlexComputeL2DiffLocal - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.
1429: Collective
1431: Input Parameters:
1432: + dm - The `DM`
1433: . time - The time
1434: . funcs - The functions to evaluate for each field component
1435: . ctxs - Optional array of contexts to pass to each function, or `NULL`.
1436: - localX - The coefficient vector u_h, a local vector
1438: Output Parameter:
1439: . diff - The diff ||u - u_h||_2
1441: Level: developer
1443: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1444: @*/
1445: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
1446: {
1447: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1448: DM tdm;
1449: Vec tv;
1450: PetscSection section;
1451: PetscQuadrature quad;
1452: PetscFEGeom fegeom;
1453: PetscScalar *funcVal, *interpolant;
1454: PetscReal *coords, *gcoords;
1455: PetscReal localDiff = 0.0;
1456: const PetscReal *quadWeights;
1457: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, c, field, fieldOffset;
1458: PetscBool transform;
1460: PetscFunctionBegin;
1461: PetscCall(DMGetDimension(dm, &dim));
1462: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1463: fegeom.dimEmbed = coordDim;
1464: PetscCall(DMGetLocalSection(dm, §ion));
1465: PetscCall(PetscSectionGetNumFields(section, &numFields));
1466: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1467: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1468: PetscCall(DMHasBasisTransform(dm, &transform));
1469: PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
1470: for (field = 0; field < numFields; ++field) {
1471: PetscObject obj;
1472: PetscClassId id;
1473: PetscInt Nc;
1475: PetscCall(DMGetField(dm, field, NULL, &obj));
1476: PetscCall(PetscObjectGetClassId(obj, &id));
1477: if (id == PETSCFE_CLASSID) {
1478: PetscFE fe = (PetscFE)obj;
1480: PetscCall(PetscFEGetQuadrature(fe, &quad));
1481: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1482: } else if (id == PETSCFV_CLASSID) {
1483: PetscFV fv = (PetscFV)obj;
1485: PetscCall(PetscFVGetQuadrature(fv, &quad));
1486: PetscCall(PetscFVGetNumComponents(fv, &Nc));
1487: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1488: numComponents += Nc;
1489: }
1490: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1491: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1492: PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * (Nq + 1), &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1493: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
1494: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
1495: for (c = cStart; c < cEnd; ++c) {
1496: PetscScalar *x = NULL;
1497: PetscReal elemDiff = 0.0;
1498: PetscInt qc = 0;
1500: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1501: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1503: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1504: PetscObject obj;
1505: PetscClassId id;
1506: void *const ctx = ctxs ? ctxs[field] : NULL;
1507: PetscInt Nb, Nc, q, fc;
1509: PetscCall(DMGetField(dm, field, NULL, &obj));
1510: PetscCall(PetscObjectGetClassId(obj, &id));
1511: if (id == PETSCFE_CLASSID) {
1512: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1513: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1514: } else if (id == PETSCFV_CLASSID) {
1515: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1516: Nb = 1;
1517: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1518: if (debug) {
1519: char title[1024];
1520: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1521: PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1522: }
1523: for (q = 0; q < Nq; ++q) {
1524: PetscFEGeom qgeom;
1525: PetscErrorCode ierr;
1527: qgeom.dimEmbed = fegeom.dimEmbed;
1528: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1529: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1530: qgeom.detJ = &fegeom.detJ[q];
1531: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", point %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1532: if (transform) {
1533: gcoords = &coords[coordDim * Nq];
1534: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1535: } else {
1536: gcoords = &coords[coordDim * q];
1537: }
1538: PetscCall(PetscArrayzero(funcVal, Nc));
1539: ierr = (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1540: if (ierr) {
1541: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1542: PetscCall(DMRestoreLocalVector(dm, &localX));
1543: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1544: }
1545: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1546: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1547: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1548: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1549: for (fc = 0; fc < Nc; ++fc) {
1550: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1551: if (debug)
1552: PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g (%g, %g)\n", c, field, fc, (double)(coordDim > 0 ? coords[coordDim * q] : 0), (double)(coordDim > 1 ? coords[coordDim * q + 1] : 0), (double)(coordDim > 2 ? coords[coordDim * q + 2] : 0),
1553: (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q]), (double)PetscRealPart(interpolant[fc]), (double)PetscRealPart(funcVal[fc])));
1554: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1555: }
1556: }
1557: fieldOffset += Nb;
1558: qc += Nc;
1559: }
1560: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1561: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1562: localDiff += elemDiff;
1563: }
1564: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1565: PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1566: *diff = PetscSqrtReal(*diff);
1567: PetscFunctionReturn(PETSC_SUCCESS);
1568: }
1570: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
1571: {
1572: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1573: DM tdm;
1574: PetscSection section;
1575: PetscQuadrature quad;
1576: Vec localX, tv;
1577: PetscScalar *funcVal, *interpolant;
1578: const PetscReal *quadWeights;
1579: PetscFEGeom fegeom;
1580: PetscReal *coords, *gcoords;
1581: PetscReal localDiff = 0.0;
1582: PetscInt dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, c, field, fieldOffset;
1583: PetscBool transform;
1585: PetscFunctionBegin;
1586: PetscCall(DMGetDimension(dm, &dim));
1587: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1588: fegeom.dimEmbed = coordDim;
1589: PetscCall(DMGetLocalSection(dm, §ion));
1590: PetscCall(PetscSectionGetNumFields(section, &numFields));
1591: PetscCall(DMGetLocalVector(dm, &localX));
1592: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1593: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1594: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1595: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1596: PetscCall(DMHasBasisTransform(dm, &transform));
1597: for (field = 0; field < numFields; ++field) {
1598: PetscFE fe;
1599: PetscInt Nc;
1601: PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1602: PetscCall(PetscFEGetQuadrature(fe, &quad));
1603: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1604: numComponents += Nc;
1605: }
1606: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1607: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1608: /* PetscCall(DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX)); */
1609: PetscCall(PetscMalloc6(numComponents, &funcVal, coordDim * (Nq + 1), &coords, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ, numComponents * coordDim, &interpolant, Nq, &fegeom.detJ));
1610: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1611: for (c = cStart; c < cEnd; ++c) {
1612: PetscScalar *x = NULL;
1613: PetscReal elemDiff = 0.0;
1614: PetscInt qc = 0;
1616: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1617: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1619: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1620: PetscFE fe;
1621: void *const ctx = ctxs ? ctxs[field] : NULL;
1622: PetscInt Nb, Nc, q, fc;
1624: PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1625: PetscCall(PetscFEGetDimension(fe, &Nb));
1626: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1627: if (debug) {
1628: char title[1024];
1629: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1630: PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1631: }
1632: for (q = 0; q < Nq; ++q) {
1633: PetscFEGeom qgeom;
1634: PetscErrorCode ierr;
1636: qgeom.dimEmbed = fegeom.dimEmbed;
1637: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1638: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1639: qgeom.detJ = &fegeom.detJ[q];
1640: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1641: if (transform) {
1642: gcoords = &coords[coordDim * Nq];
1643: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1644: } else {
1645: gcoords = &coords[coordDim * q];
1646: }
1647: PetscCall(PetscArrayzero(funcVal, Nc));
1648: ierr = (*funcs[field])(coordDim, time, gcoords, n, Nc, funcVal, ctx);
1649: if (ierr) {
1650: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1651: PetscCall(DMRestoreLocalVector(dm, &localX));
1652: PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1653: }
1654: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1655: PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[fieldOffset], &qgeom, q, interpolant));
1656: /* Overwrite with the dot product if the normal is given */
1657: if (n) {
1658: for (fc = 0; fc < Nc; ++fc) {
1659: PetscScalar sum = 0.0;
1660: PetscInt d;
1661: for (d = 0; d < dim; ++d) sum += interpolant[fc * dim + d] * n[d];
1662: interpolant[fc] = sum;
1663: }
1664: }
1665: for (fc = 0; fc < Nc; ++fc) {
1666: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1667: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " fieldDer %" PetscInt_FMT ",%" PetscInt_FMT " diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1668: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1669: }
1670: }
1671: fieldOffset += Nb;
1672: qc += Nc;
1673: }
1674: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1675: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1676: localDiff += elemDiff;
1677: }
1678: PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1679: PetscCall(DMRestoreLocalVector(dm, &localX));
1680: PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1681: *diff = PetscSqrtReal(*diff);
1682: PetscFunctionReturn(PETSC_SUCCESS);
1683: }
1685: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1686: {
1687: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1688: DM tdm;
1689: DMLabel depthLabel;
1690: PetscSection section;
1691: Vec localX, tv;
1692: PetscReal *localDiff;
1693: PetscInt dim, depth, dE, Nf, f, Nds, s;
1694: PetscBool transform;
1696: PetscFunctionBegin;
1697: PetscCall(DMGetDimension(dm, &dim));
1698: PetscCall(DMGetCoordinateDim(dm, &dE));
1699: PetscCall(DMGetLocalSection(dm, §ion));
1700: PetscCall(DMGetLocalVector(dm, &localX));
1701: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1702: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1703: PetscCall(DMHasBasisTransform(dm, &transform));
1704: PetscCall(DMGetNumFields(dm, &Nf));
1705: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
1706: PetscCall(DMLabelGetNumValues(depthLabel, &depth));
1708: PetscCall(VecSet(localX, 0.0));
1709: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1710: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1711: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1712: PetscCall(DMGetNumDS(dm, &Nds));
1713: PetscCall(PetscCalloc1(Nf, &localDiff));
1714: for (s = 0; s < Nds; ++s) {
1715: PetscDS ds;
1716: DMLabel label;
1717: IS fieldIS, pointIS;
1718: const PetscInt *fields, *points = NULL;
1719: PetscQuadrature quad;
1720: const PetscReal *quadPoints, *quadWeights;
1721: PetscFEGeom fegeom;
1722: PetscReal *coords, *gcoords;
1723: PetscScalar *funcVal, *interpolant;
1724: PetscBool isCohesive;
1725: PetscInt qNc, Nq, totNc, cStart = 0, cEnd, c, dsNf;
1727: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
1728: PetscCall(ISGetIndices(fieldIS, &fields));
1729: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
1730: PetscCall(PetscDSGetNumFields(ds, &dsNf));
1731: PetscCall(PetscDSGetTotalComponents(ds, &totNc));
1732: PetscCall(PetscDSGetQuadrature(ds, &quad));
1733: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1734: PetscCheck(!(qNc != 1) || !(qNc != totNc), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, totNc);
1735: PetscCall(PetscCalloc6(totNc, &funcVal, totNc, &interpolant, dE * (Nq + 1), &coords, Nq, &fegeom.detJ, dE * dE * Nq, &fegeom.J, dE * dE * Nq, &fegeom.invJ));
1736: if (!label) {
1737: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1738: } else {
1739: PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
1740: PetscCall(ISGetLocalSize(pointIS, &cEnd));
1741: PetscCall(ISGetIndices(pointIS, &points));
1742: }
1743: for (c = cStart; c < cEnd; ++c) {
1744: const PetscInt cell = points ? points[c] : c;
1745: PetscScalar *x = NULL;
1746: const PetscInt *cone;
1747: PetscInt qc = 0, fOff = 0, dep;
1749: PetscCall(DMLabelGetValue(depthLabel, cell, &dep));
1750: if (dep != depth - 1) continue;
1751: if (isCohesive) {
1752: PetscCall(DMPlexGetCone(dm, cell, &cone));
1753: PetscCall(DMPlexComputeCellGeometryFEM(dm, cone[0], quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1754: } else {
1755: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1756: }
1757: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, cell, 0, NULL, &x));
1758: for (f = 0; f < dsNf; ++f) {
1759: PetscObject obj;
1760: PetscClassId id;
1761: void *const ctx = ctxs ? ctxs[fields[f]] : NULL;
1762: PetscInt Nb, Nc, q, fc;
1763: PetscReal elemDiff = 0.0;
1764: PetscBool cohesive;
1766: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
1767: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
1768: PetscCall(PetscObjectGetClassId(obj, &id));
1769: if (id == PETSCFE_CLASSID) {
1770: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1771: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1772: } else if (id == PETSCFV_CLASSID) {
1773: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1774: Nb = 1;
1775: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1776: if (isCohesive && !cohesive) {
1777: fOff += Nb * 2;
1778: qc += Nc;
1779: continue;
1780: }
1781: if (debug) {
1782: char title[1024];
1783: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, fields[f]));
1784: PetscCall(DMPrintCellVector(cell, title, Nb, &x[fOff]));
1785: }
1786: for (q = 0; q < Nq; ++q) {
1787: PetscFEGeom qgeom;
1788: PetscErrorCode ierr;
1790: qgeom.dimEmbed = fegeom.dimEmbed;
1791: qgeom.J = &fegeom.J[q * dE * dE];
1792: qgeom.invJ = &fegeom.invJ[q * dE * dE];
1793: qgeom.detJ = &fegeom.detJ[q];
1794: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for cell %" PetscInt_FMT ", quadrature point %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
1795: if (transform) {
1796: gcoords = &coords[dE * Nq];
1797: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[dE * q], PETSC_TRUE, dE, &coords[dE * q], gcoords, dm->transformCtx));
1798: } else {
1799: gcoords = &coords[dE * q];
1800: }
1801: for (fc = 0; fc < Nc; ++fc) funcVal[fc] = 0.;
1802: ierr = (*funcs[fields[f]])(dE, time, gcoords, Nc, funcVal, ctx);
1803: if (ierr) {
1804: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1805: PetscCall(DMRestoreLocalVector(dm, &localX));
1806: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1807: }
1808: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[dE * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1809: /* Call once for each face, except for lagrange field */
1810: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fOff], &qgeom, q, interpolant));
1811: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fOff], q, interpolant));
1812: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1813: for (fc = 0; fc < Nc; ++fc) {
1814: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1815: if (debug)
1816: PetscCall(PetscPrintf(PETSC_COMM_SELF, " cell %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g\n", cell, fields[f], fc, (double)(dE > 0 ? coords[dE * q] : 0), (double)(dE > 1 ? coords[dE * q + 1] : 0), (double)(dE > 2 ? coords[dE * q + 2] : 0),
1817: (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1818: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1819: }
1820: }
1821: fOff += Nb;
1822: qc += Nc;
1823: localDiff[fields[f]] += elemDiff;
1824: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " cell %" PetscInt_FMT " field %" PetscInt_FMT " cum diff %g\n", cell, fields[f], (double)localDiff[fields[f]]));
1825: }
1826: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1827: }
1828: if (label) {
1829: PetscCall(ISRestoreIndices(pointIS, &points));
1830: PetscCall(ISDestroy(&pointIS));
1831: }
1832: PetscCall(ISRestoreIndices(fieldIS, &fields));
1833: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1834: }
1835: PetscCall(DMRestoreLocalVector(dm, &localX));
1836: PetscCallMPI(MPIU_Allreduce(localDiff, diff, Nf, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1837: PetscCall(PetscFree(localDiff));
1838: for (f = 0; f < Nf; ++f) diff[f] = PetscSqrtReal(diff[f]);
1839: PetscFunctionReturn(PETSC_SUCCESS);
1840: }
1842: /*@C
1843: DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.
1845: Collective
1847: Input Parameters:
1848: + dm - The `DM`
1849: . time - The time
1850: . funcs - The functions to evaluate for each field component: `NULL` means that component does not contribute to error calculation
1851: . ctxs - Optional array of contexts to pass to each function, or `NULL`.
1852: - X - The coefficient vector u_h
1854: Output Parameter:
1855: . D - A `Vec` which holds the difference ||u - u_h||_2 for each cell
1857: Level: developer
1859: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1860: @*/
1861: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
1862: {
1863: PetscSection section;
1864: PetscQuadrature quad;
1865: Vec localX;
1866: PetscFEGeom fegeom;
1867: PetscScalar *funcVal, *interpolant;
1868: PetscReal *coords;
1869: const PetscReal *quadPoints, *quadWeights;
1870: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, c, field, fieldOffset;
1872: PetscFunctionBegin;
1873: PetscCall(VecSet(D, 0.0));
1874: PetscCall(DMGetDimension(dm, &dim));
1875: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1876: PetscCall(DMGetLocalSection(dm, §ion));
1877: PetscCall(PetscSectionGetNumFields(section, &numFields));
1878: PetscCall(DMGetLocalVector(dm, &localX));
1879: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1880: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1881: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1882: for (field = 0; field < numFields; ++field) {
1883: PetscObject obj;
1884: PetscClassId id;
1885: PetscInt Nc;
1887: PetscCall(DMGetField(dm, field, NULL, &obj));
1888: PetscCall(PetscObjectGetClassId(obj, &id));
1889: if (id == PETSCFE_CLASSID) {
1890: PetscFE fe = (PetscFE)obj;
1892: PetscCall(PetscFEGetQuadrature(fe, &quad));
1893: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1894: } else if (id == PETSCFV_CLASSID) {
1895: PetscFV fv = (PetscFV)obj;
1897: PetscCall(PetscFVGetQuadrature(fv, &quad));
1898: PetscCall(PetscFVGetNumComponents(fv, &Nc));
1899: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1900: numComponents += Nc;
1901: }
1902: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1903: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1904: PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1905: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1906: for (c = cStart; c < cEnd; ++c) {
1907: PetscScalar *x = NULL;
1908: PetscScalar elemDiff = 0.0;
1909: PetscInt qc = 0;
1911: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1912: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1914: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1915: PetscObject obj;
1916: PetscClassId id;
1917: void *const ctx = ctxs ? ctxs[field] : NULL;
1918: PetscInt Nb, Nc, q, fc;
1920: PetscCall(DMGetField(dm, field, NULL, &obj));
1921: PetscCall(PetscObjectGetClassId(obj, &id));
1922: if (id == PETSCFE_CLASSID) {
1923: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1924: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1925: } else if (id == PETSCFV_CLASSID) {
1926: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1927: Nb = 1;
1928: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1929: if (funcs[field]) {
1930: for (q = 0; q < Nq; ++q) {
1931: PetscFEGeom qgeom;
1933: qgeom.dimEmbed = fegeom.dimEmbed;
1934: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1935: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1936: qgeom.detJ = &fegeom.detJ[q];
1937: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1938: PetscCall((*funcs[field])(coordDim, time, &coords[q * coordDim], Nc, funcVal, ctx));
1939: #if defined(needs_fix_with_return_code_argument)
1940: if (ierr) {
1941: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1942: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1943: PetscCall(DMRestoreLocalVector(dm, &localX));
1944: }
1945: #endif
1946: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1947: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1948: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1949: for (fc = 0; fc < Nc; ++fc) {
1950: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1951: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1952: }
1953: }
1954: }
1955: fieldOffset += Nb;
1956: qc += Nc;
1957: }
1958: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1959: PetscCall(VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES));
1960: }
1961: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1962: PetscCall(DMRestoreLocalVector(dm, &localX));
1963: PetscCall(VecSqrtAbs(D));
1964: PetscFunctionReturn(PETSC_SUCCESS);
1965: }
1967: /*@
1968: DMPlexComputeL2FluxDiffVecLocal - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`
1970: Collective
1972: Input Parameters:
1973: + lu - The local `Vec` containing the primal solution
1974: . f - The field number for the potential
1975: . lmu - The local `Vec` containing the mixed solution
1976: - mf - The field number for the flux
1978: Output Parameter:
1979: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$
1981: Level: advanced
1983: Notes:
1984: We assume that the `DM` for each solution has the same topology, geometry, and quadrature.
1986: This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.
1988: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVec()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1989: @*/
1990: PetscErrorCode DMPlexComputeL2FluxDiffVecLocal(Vec lu, PetscInt f, Vec lmu, PetscInt mf, Vec eFlux)
1991: {
1992: DM dm, mdm, edm;
1993: PetscFE fe, mfe;
1994: PetscFEGeom fegeom;
1995: PetscQuadrature quad;
1996: const PetscReal *quadWeights;
1997: PetscReal *coords;
1998: PetscScalar *interpolant, *minterpolant, *earray;
1999: PetscInt cdim, mcdim, cStart, cEnd, Nc, mNc, qNc, Nq;
2000: MPI_Comm comm;
2002: PetscFunctionBegin;
2003: PetscCall(VecGetDM(lu, &dm));
2004: PetscCall(VecGetDM(lmu, &mdm));
2005: PetscCall(VecGetDM(eFlux, &edm));
2006: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
2007: PetscCall(VecSet(eFlux, 0.0));
2009: // Check if the both problems are on the same mesh
2010: PetscCall(DMGetCoordinateDim(dm, &cdim));
2011: PetscCall(DMGetCoordinateDim(mdm, &mcdim));
2012: PetscCheck(cdim == mcdim, comm, PETSC_ERR_ARG_SIZ, "primal coordinate Dim %" PetscInt_FMT " != %" PetscInt_FMT " mixed coordinate Dim", cdim, mcdim);
2013: fegeom.dimEmbed = cdim;
2015: PetscCall(DMGetField(dm, f, NULL, (PetscObject *)&fe));
2016: PetscCall(DMGetField(mdm, mf, NULL, (PetscObject *)&mfe));
2017: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2018: PetscCall(PetscFEGetNumComponents(mfe, &mNc));
2019: PetscCall(PetscFEGetQuadrature(fe, &quad));
2020: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
2021: PetscCheck(qNc == 1 || qNc == mNc, comm, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, mNc);
2023: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2024: PetscCall(VecGetArrayWrite(eFlux, &earray));
2025: PetscCall(PetscMalloc6(Nc * cdim, &interpolant, mNc * cdim, &minterpolant, cdim * (Nq + 1), &coords, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ, Nq, &fegeom.detJ));
2026: for (PetscInt c = cStart; c < cEnd; ++c) {
2027: PetscScalar *x = NULL;
2028: PetscScalar *mx = NULL;
2029: PetscScalar *eval = NULL;
2030: PetscReal fluxElemDiff = 0.0;
2032: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2033: PetscCall(DMPlexVecGetClosure(dm, NULL, lu, c, NULL, &x));
2034: PetscCall(DMPlexVecGetClosure(mdm, NULL, lmu, c, NULL, &mx));
2036: for (PetscInt q = 0; q < Nq; ++q) {
2037: PetscFEGeom qgeom;
2039: qgeom.dimEmbed = fegeom.dimEmbed;
2040: qgeom.J = &fegeom.J[q * cdim * cdim];
2041: qgeom.invJ = &fegeom.invJ[q * cdim * cdim];
2042: qgeom.detJ = &fegeom.detJ[q];
2044: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
2046: PetscCall(PetscFEInterpolate_Static(mfe, &mx[0], &qgeom, q, minterpolant));
2047: PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[0], &qgeom, q, interpolant));
2049: /* Now take the elementwise difference and store that in a vector. */
2050: for (PetscInt fc = 0; fc < mNc; ++fc) {
2051: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : fc)];
2052: fluxElemDiff += PetscSqr(PetscRealPart(interpolant[fc] - minterpolant[fc])) * wt * fegeom.detJ[q];
2053: }
2054: }
2055: PetscCall(DMPlexVecRestoreClosure(dm, NULL, lu, c, NULL, &x));
2056: PetscCall(DMPlexVecRestoreClosure(mdm, NULL, lmu, c, NULL, &mx));
2057: PetscCall(DMPlexPointGlobalRef(edm, c, earray, (void *)&eval));
2058: if (eval) eval[0] = fluxElemDiff;
2059: }
2060: PetscCall(PetscFree6(interpolant, minterpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2061: PetscCall(VecRestoreArrayWrite(eFlux, &earray));
2063: PetscCall(VecAssemblyBegin(eFlux));
2064: PetscCall(VecAssemblyEnd(eFlux));
2065: PetscCall(VecSqrtAbs(eFlux));
2066: PetscFunctionReturn(PETSC_SUCCESS);
2067: }
2069: /*@
2070: DMPlexComputeL2FluxDiffVec - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`
2072: Collective
2074: Input Parameters:
2075: + u - The global `Vec` containing the primal solution
2076: . f - The field number for the potential
2077: . mu - The global `Vec` containing the mixed solution
2078: - mf - The field number for the flux
2080: Output Parameter:
2081: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$
2083: Level: advanced
2085: Notes:
2086: We assume that the `DM` for each solution has the same topology, geometry, and quadrature.
2088: This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.
2090: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVecLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2091: @*/
2092: PetscErrorCode DMPlexComputeL2FluxDiffVec(Vec u, PetscInt f, Vec mu, PetscInt mf, Vec eFlux)
2093: {
2094: DM dm, mdm;
2095: Vec lu, lmu;
2097: PetscFunctionBegin;
2098: PetscCall(VecGetDM(u, &dm));
2099: PetscCall(DMGetLocalVector(dm, &lu));
2100: PetscCall(DMGlobalToLocal(dm, u, INSERT_VALUES, lu));
2101: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, lu, 0.0, NULL, NULL, NULL));
2103: PetscCall(VecGetDM(mu, &mdm));
2104: PetscCall(DMGetLocalVector(mdm, &lmu));
2105: PetscCall(DMGlobalToLocal(mdm, mu, INSERT_VALUES, lmu));
2106: PetscCall(DMPlexInsertBoundaryValues(mdm, PETSC_TRUE, lmu, 0.0, NULL, NULL, NULL));
2108: PetscCall(DMPlexComputeL2FluxDiffVecLocal(lu, f, lmu, mf, eFlux));
2110: PetscCall(DMRestoreLocalVector(dm, &lu));
2111: PetscCall(DMRestoreLocalVector(mdm, &lmu));
2112: PetscFunctionReturn(PETSC_SUCCESS);
2113: }
2115: /*@
2116: DMPlexComputeClementInterpolant - This function computes the L2 projection of the cellwise values of a function u onto P1
2118: Collective
2120: Input Parameters:
2121: + dm - The `DM`
2122: - locX - The coefficient vector u_h
2124: Output Parameter:
2125: . locC - A `Vec` which holds the Clement interpolant of the function
2127: Level: developer
2129: Note:
2130: $ u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume
2132: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2133: @*/
2134: PetscErrorCode DMPlexComputeClementInterpolant(DM dm, Vec locX, Vec locC)
2135: {
2136: PetscInt debug = ((DM_Plex *)dm->data)->printFEM;
2137: DM dmc;
2138: PetscQuadrature quad;
2139: PetscScalar *interpolant, *valsum;
2140: PetscFEGeom fegeom;
2141: PetscReal *coords;
2142: const PetscReal *quadPoints, *quadWeights;
2143: PetscInt dim, cdim, Nf, f, Nc = 0, Nq, qNc, cStart, cEnd, vStart, vEnd, v;
2145: PetscFunctionBegin;
2146: PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2147: PetscCall(VecGetDM(locC, &dmc));
2148: PetscCall(VecSet(locC, 0.0));
2149: PetscCall(DMGetDimension(dm, &dim));
2150: PetscCall(DMGetCoordinateDim(dm, &cdim));
2151: fegeom.dimEmbed = cdim;
2152: PetscCall(DMGetNumFields(dm, &Nf));
2153: PetscCheck(Nf > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2154: for (f = 0; f < Nf; ++f) {
2155: PetscObject obj;
2156: PetscClassId id;
2157: PetscInt fNc;
2159: PetscCall(DMGetField(dm, f, NULL, &obj));
2160: PetscCall(PetscObjectGetClassId(obj, &id));
2161: if (id == PETSCFE_CLASSID) {
2162: PetscFE fe = (PetscFE)obj;
2164: PetscCall(PetscFEGetQuadrature(fe, &quad));
2165: PetscCall(PetscFEGetNumComponents(fe, &fNc));
2166: } else if (id == PETSCFV_CLASSID) {
2167: PetscFV fv = (PetscFV)obj;
2169: PetscCall(PetscFVGetQuadrature(fv, &quad));
2170: PetscCall(PetscFVGetNumComponents(fv, &fNc));
2171: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2172: Nc += fNc;
2173: }
2174: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2175: PetscCheck(qNc == 1, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " > 1", qNc);
2176: PetscCall(PetscMalloc6(Nc * 2, &valsum, Nc, &interpolant, cdim * Nq, &coords, Nq, &fegeom.detJ, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ));
2177: PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2178: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2179: for (v = vStart; v < vEnd; ++v) {
2180: PetscScalar volsum = 0.0;
2181: PetscInt *star = NULL;
2182: PetscInt starSize, st, fc;
2184: PetscCall(PetscArrayzero(valsum, Nc));
2185: PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2186: for (st = 0; st < starSize * 2; st += 2) {
2187: const PetscInt cell = star[st];
2188: PetscScalar *val = &valsum[Nc];
2189: PetscScalar *x = NULL;
2190: PetscReal vol = 0.0;
2191: PetscInt foff = 0;
2193: if ((cell < cStart) || (cell >= cEnd)) continue;
2194: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2195: PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2196: for (f = 0; f < Nf; ++f) {
2197: PetscObject obj;
2198: PetscClassId id;
2199: PetscInt Nb, fNc, q;
2201: PetscCall(PetscArrayzero(val, Nc));
2202: PetscCall(DMGetField(dm, f, NULL, &obj));
2203: PetscCall(PetscObjectGetClassId(obj, &id));
2204: if (id == PETSCFE_CLASSID) {
2205: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &fNc));
2206: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2207: } else if (id == PETSCFV_CLASSID) {
2208: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &fNc));
2209: Nb = 1;
2210: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2211: for (q = 0; q < Nq; ++q) {
2212: const PetscReal wt = quadWeights[q] * fegeom.detJ[q];
2213: PetscFEGeom qgeom;
2215: qgeom.dimEmbed = fegeom.dimEmbed;
2216: qgeom.J = &fegeom.J[q * cdim * cdim];
2217: qgeom.invJ = &fegeom.invJ[q * cdim * cdim];
2218: qgeom.detJ = &fegeom.detJ[q];
2219: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2220: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[foff], &qgeom, q, interpolant));
2221: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2222: for (fc = 0; fc < fNc; ++fc) val[foff + fc] += interpolant[fc] * wt;
2223: vol += wt;
2224: }
2225: foff += Nb;
2226: }
2227: PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2228: for (fc = 0; fc < Nc; ++fc) valsum[fc] += val[fc];
2229: volsum += vol;
2230: if (debug) {
2231: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " value: [", v, cell));
2232: for (fc = 0; fc < Nc; ++fc) {
2233: if (fc) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2234: PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(val[fc])));
2235: }
2236: PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2237: }
2238: }
2239: for (fc = 0; fc < Nc; ++fc) valsum[fc] /= volsum;
2240: PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2241: PetscCall(DMPlexVecSetClosure(dmc, NULL, locC, v, valsum, INSERT_VALUES));
2242: }
2243: PetscCall(PetscFree6(valsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2244: PetscFunctionReturn(PETSC_SUCCESS);
2245: }
2247: /*@
2248: DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1
2250: Collective
2252: Input Parameters:
2253: + dm - The `DM`
2254: - locX - The coefficient vector u_h
2256: Output Parameter:
2257: . locC - A `Vec` which holds the Clement interpolant of the gradient
2259: Level: developer
2261: Note:
2262: $\nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume
2264: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2265: @*/
2266: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
2267: {
2268: DM_Plex *mesh = (DM_Plex *)dm->data;
2269: PetscInt debug = mesh->printFEM;
2270: DM dmC;
2271: PetscQuadrature quad;
2272: PetscScalar *interpolant, *gradsum;
2273: PetscFEGeom fegeom;
2274: PetscReal *coords;
2275: const PetscReal *quadPoints, *quadWeights;
2276: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, vStart, vEnd, v, field, fieldOffset;
2278: PetscFunctionBegin;
2279: PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2280: PetscCall(VecGetDM(locC, &dmC));
2281: PetscCall(VecSet(locC, 0.0));
2282: PetscCall(DMGetDimension(dm, &dim));
2283: PetscCall(DMGetCoordinateDim(dm, &coordDim));
2284: fegeom.dimEmbed = coordDim;
2285: PetscCall(DMGetNumFields(dm, &numFields));
2286: PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2287: for (field = 0; field < numFields; ++field) {
2288: PetscObject obj;
2289: PetscClassId id;
2290: PetscInt Nc;
2292: PetscCall(DMGetField(dm, field, NULL, &obj));
2293: PetscCall(PetscObjectGetClassId(obj, &id));
2294: if (id == PETSCFE_CLASSID) {
2295: PetscFE fe = (PetscFE)obj;
2297: PetscCall(PetscFEGetQuadrature(fe, &quad));
2298: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2299: } else if (id == PETSCFV_CLASSID) {
2300: PetscFV fv = (PetscFV)obj;
2302: PetscCall(PetscFVGetQuadrature(fv, &quad));
2303: PetscCall(PetscFVGetNumComponents(fv, &Nc));
2304: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2305: numComponents += Nc;
2306: }
2307: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2308: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
2309: PetscCall(PetscMalloc6(coordDim * numComponents * 2, &gradsum, coordDim * numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
2310: PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2311: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2312: for (v = vStart; v < vEnd; ++v) {
2313: PetscScalar volsum = 0.0;
2314: PetscInt *star = NULL;
2315: PetscInt starSize, st, d, fc;
2317: PetscCall(PetscArrayzero(gradsum, coordDim * numComponents));
2318: PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2319: for (st = 0; st < starSize * 2; st += 2) {
2320: const PetscInt cell = star[st];
2321: PetscScalar *grad = &gradsum[coordDim * numComponents];
2322: PetscScalar *x = NULL;
2323: PetscReal vol = 0.0;
2325: if ((cell < cStart) || (cell >= cEnd)) continue;
2326: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2327: PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2328: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
2329: PetscObject obj;
2330: PetscClassId id;
2331: PetscInt Nb, Nc, q, qc = 0;
2333: PetscCall(PetscArrayzero(grad, coordDim * numComponents));
2334: PetscCall(DMGetField(dm, field, NULL, &obj));
2335: PetscCall(PetscObjectGetClassId(obj, &id));
2336: if (id == PETSCFE_CLASSID) {
2337: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
2338: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2339: } else if (id == PETSCFV_CLASSID) {
2340: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
2341: Nb = 1;
2342: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2343: for (q = 0; q < Nq; ++q) {
2344: PetscFEGeom qgeom;
2346: qgeom.dimEmbed = fegeom.dimEmbed;
2347: qgeom.J = &fegeom.J[q * coordDim * coordDim];
2348: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
2349: qgeom.detJ = &fegeom.detJ[q];
2350: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2351: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolateGradient_Static((PetscFE)obj, 1, &x[fieldOffset], &qgeom, q, interpolant));
2352: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2353: for (fc = 0; fc < Nc; ++fc) {
2354: const PetscReal wt = quadWeights[q * qNc + qc];
2356: for (d = 0; d < coordDim; ++d) grad[fc * coordDim + d] += interpolant[fc * dim + d] * wt * fegeom.detJ[q];
2357: }
2358: vol += quadWeights[q * qNc] * fegeom.detJ[q];
2359: }
2360: fieldOffset += Nb;
2361: qc += Nc;
2362: }
2363: PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2364: for (fc = 0; fc < numComponents; ++fc) {
2365: for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] += grad[fc * coordDim + d];
2366: }
2367: volsum += vol;
2368: if (debug) {
2369: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " gradient: [", v, cell));
2370: for (fc = 0; fc < numComponents; ++fc) {
2371: for (d = 0; d < coordDim; ++d) {
2372: if (fc || d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2373: PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc * coordDim + d])));
2374: }
2375: }
2376: PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2377: }
2378: }
2379: for (fc = 0; fc < numComponents; ++fc) {
2380: for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] /= volsum;
2381: }
2382: PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2383: PetscCall(DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES));
2384: }
2385: PetscCall(PetscFree6(gradsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2386: PetscFunctionReturn(PETSC_SUCCESS);
2387: }
2389: PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec locX, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
2390: {
2391: DM dmAux = NULL, plexA = NULL;
2392: PetscDS prob, probAux = NULL;
2393: PetscSection section, sectionAux;
2394: Vec locA;
2395: PetscInt dim, numCells = cEnd - cStart, c, f;
2396: PetscBool useFVM = PETSC_FALSE;
2397: /* DS */
2398: PetscInt Nf, totDim, *uOff, *uOff_x, numConstants;
2399: PetscInt NfAux, totDimAux, *aOff;
2400: PetscScalar *u, *a = NULL;
2401: const PetscScalar *constants;
2402: /* Geometry */
2403: PetscFEGeom *cgeomFEM;
2404: DM dmGrad;
2405: PetscQuadrature affineQuad = NULL;
2406: Vec cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
2407: PetscFVCellGeom *cgeomFVM;
2408: const PetscScalar *lgrad;
2409: PetscInt maxDegree;
2410: DMField coordField;
2411: IS cellIS;
2413: PetscFunctionBegin;
2414: PetscCall(DMGetDS(dm, &prob));
2415: PetscCall(DMGetDimension(dm, &dim));
2416: PetscCall(DMGetLocalSection(dm, §ion));
2417: PetscCall(DMGetNumFields(dm, &Nf));
2418: /* Determine which discretizations we have */
2419: for (f = 0; f < Nf; ++f) {
2420: PetscObject obj;
2421: PetscClassId id;
2423: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2424: PetscCall(PetscObjectGetClassId(obj, &id));
2425: if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
2426: }
2427: /* Read DS information */
2428: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2429: PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2430: PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2431: PetscCall(ISCreateStride(PETSC_COMM_SELF, numCells, cStart, 1, &cellIS));
2432: PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2433: /* Read Auxiliary DS information */
2434: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2435: if (locA) {
2436: PetscCall(VecGetDM(locA, &dmAux));
2437: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2438: PetscCall(DMGetDS(dmAux, &probAux));
2439: PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2440: PetscCall(DMGetLocalSection(dmAux, §ionAux));
2441: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2442: PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2443: }
2444: /* Allocate data arrays */
2445: PetscCall(PetscCalloc1(numCells * totDim, &u));
2446: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
2447: /* Read out geometry */
2448: PetscCall(DMGetCoordinateField(dm, &coordField));
2449: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
2450: if (maxDegree <= 1) {
2451: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
2452: if (affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, affineQuad, PETSC_FEGEOM_BASIC, &cgeomFEM));
2453: }
2454: if (useFVM) {
2455: PetscFV fv = NULL;
2456: Vec grad;
2457: PetscInt fStart, fEnd;
2458: PetscBool compGrad;
2460: for (f = 0; f < Nf; ++f) {
2461: PetscObject obj;
2462: PetscClassId id;
2464: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2465: PetscCall(PetscObjectGetClassId(obj, &id));
2466: if (id == PETSCFV_CLASSID) {
2467: fv = (PetscFV)obj;
2468: break;
2469: }
2470: }
2471: PetscCall(PetscFVGetComputeGradients(fv, &compGrad));
2472: PetscCall(PetscFVSetComputeGradients(fv, PETSC_TRUE));
2473: PetscCall(DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM));
2474: PetscCall(DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad));
2475: PetscCall(PetscFVSetComputeGradients(fv, compGrad));
2476: PetscCall(VecGetArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2477: /* Reconstruct and limit cell gradients */
2478: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
2479: PetscCall(DMGetGlobalVector(dmGrad, &grad));
2480: PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
2481: /* Communicate gradient values */
2482: PetscCall(DMGetLocalVector(dmGrad, &locGrad));
2483: PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
2484: PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
2485: PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
2486: /* Handle non-essential (e.g. outflow) boundary values */
2487: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad));
2488: PetscCall(VecGetArrayRead(locGrad, &lgrad));
2489: }
2490: /* Read out data from inputs */
2491: for (c = cStart; c < cEnd; ++c) {
2492: PetscScalar *x = NULL;
2493: PetscInt i;
2495: PetscCall(DMPlexVecGetClosure(dm, section, locX, c, NULL, &x));
2496: for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
2497: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x));
2498: if (dmAux) {
2499: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, c, NULL, &x));
2500: for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
2501: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, c, NULL, &x));
2502: }
2503: }
2504: /* Do integration for each field */
2505: for (f = 0; f < Nf; ++f) {
2506: PetscObject obj;
2507: PetscClassId id;
2508: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
2510: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2511: PetscCall(PetscObjectGetClassId(obj, &id));
2512: if (id == PETSCFE_CLASSID) {
2513: PetscFE fe = (PetscFE)obj;
2514: PetscQuadrature q;
2515: PetscFEGeom *chunkGeom = NULL;
2516: PetscInt Nq, Nb;
2518: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2519: PetscCall(PetscFEGetQuadrature(fe, &q));
2520: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2521: PetscCall(PetscFEGetDimension(fe, &Nb));
2522: blockSize = Nb * Nq;
2523: batchSize = numBlocks * blockSize;
2524: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2525: numChunks = numCells / (numBatches * batchSize);
2526: Ne = numChunks * numBatches * batchSize;
2527: Nr = numCells % (numBatches * batchSize);
2528: offset = numCells - Nr;
2529: if (!affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, q, PETSC_FEGEOM_BASIC, &cgeomFEM));
2530: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
2531: PetscCall(PetscFEIntegrate(prob, f, Ne, chunkGeom, u, probAux, a, cintegral));
2532: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &chunkGeom));
2533: PetscCall(PetscFEIntegrate(prob, f, Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &cintegral[offset * Nf]));
2534: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &chunkGeom));
2535: if (!affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2536: } else if (id == PETSCFV_CLASSID) {
2537: PetscInt foff;
2538: PetscPointFunc obj_func;
2540: PetscCall(PetscDSGetObjective(prob, f, &obj_func));
2541: PetscCall(PetscDSGetFieldOffset(prob, f, &foff));
2542: if (obj_func) {
2543: for (c = 0; c < numCells; ++c) {
2544: PetscScalar *u_x;
2545: PetscScalar lint = 0.;
2547: PetscCall(DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x));
2548: obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim * c + foff], NULL, u_x, aOff, NULL, PetscSafePointerPlusOffset(a, totDimAux * c), NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
2549: cintegral[c * Nf + f] += PetscRealPart(lint) * cgeomFVM[c].volume;
2550: }
2551: }
2552: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2553: }
2554: /* Cleanup data arrays */
2555: if (useFVM) {
2556: PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
2557: PetscCall(VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2558: PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
2559: PetscCall(VecDestroy(&faceGeometryFVM));
2560: PetscCall(VecDestroy(&cellGeometryFVM));
2561: PetscCall(DMDestroy(&dmGrad));
2562: }
2563: if (dmAux) PetscCall(PetscFree(a));
2564: PetscCall(DMDestroy(&plexA));
2565: PetscCall(PetscFree(u));
2566: /* Cleanup */
2567: if (affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2568: PetscCall(PetscQuadratureDestroy(&affineQuad));
2569: PetscCall(ISDestroy(&cellIS));
2570: PetscFunctionReturn(PETSC_SUCCESS);
2571: }
2573: /*@
2574: DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user
2576: Input Parameters:
2577: + dm - The mesh
2578: . X - Global input vector
2579: - user - The user context
2581: Output Parameter:
2582: . integral - Integral for each field
2584: Level: developer
2586: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2587: @*/
2588: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
2589: {
2590: PetscInt printFEM;
2591: PetscScalar *cintegral, *lintegral;
2592: PetscInt Nf, f, cellHeight, cStart, cEnd, cell;
2593: Vec locX;
2595: PetscFunctionBegin;
2598: PetscAssertPointer(integral, 3);
2599: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2600: PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2601: PetscCall(DMGetNumFields(dm, &Nf));
2602: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2603: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2604: /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2605: PetscCall(PetscCalloc2(Nf, &lintegral, (cEnd - cStart) * Nf, &cintegral));
2606: /* Get local solution with boundary values */
2607: PetscCall(DMGetLocalVector(dm, &locX));
2608: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2609: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2610: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2611: PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2612: PetscCall(DMRestoreLocalVector(dm, &locX));
2613: printFEM = ((DM_Plex *)dm->data)->printFEM;
2614: /* Sum up values */
2615: for (cell = cStart; cell < cEnd; ++cell) {
2616: const PetscInt c = cell - cStart;
2618: if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2619: for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c * Nf + f];
2620: }
2621: PetscCallMPI(MPIU_Allreduce(lintegral, integral, Nf, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
2622: if (printFEM) {
2623: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "Integral:"));
2624: for (f = 0; f < Nf; ++f) PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), " %g", (double)PetscRealPart(integral[f])));
2625: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "\n"));
2626: }
2627: PetscCall(PetscFree2(lintegral, cintegral));
2628: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2629: PetscCall(DMDestroy(&dm));
2630: PetscFunctionReturn(PETSC_SUCCESS);
2631: }
2633: /*@
2634: DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user
2636: Input Parameters:
2637: + dm - The mesh
2638: . X - Global input vector
2639: - user - The user context
2641: Output Parameter:
2642: . F - Cellwise integrals for each field
2644: Level: developer
2646: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2647: @*/
2648: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
2649: {
2650: PetscInt printFEM;
2651: DM dmF;
2652: PetscSection sectionF = NULL;
2653: PetscScalar *cintegral, *af;
2654: PetscInt Nf, f, cellHeight, cStart, cEnd, cell, n;
2655: Vec locX;
2657: PetscFunctionBegin;
2661: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2662: PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2663: PetscCall(DMGetNumFields(dm, &Nf));
2664: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2665: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2666: /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2667: PetscCall(PetscCalloc1((cEnd - cStart) * Nf, &cintegral));
2668: /* Get local solution with boundary values */
2669: PetscCall(DMGetLocalVector(dm, &locX));
2670: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2671: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2672: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2673: PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2674: PetscCall(DMRestoreLocalVector(dm, &locX));
2675: /* Put values in F */
2676: PetscCall(VecGetArray(F, &af));
2677: PetscCall(VecGetDM(F, &dmF));
2678: if (dmF) PetscCall(DMGetLocalSection(dmF, §ionF));
2679: PetscCall(VecGetLocalSize(F, &n));
2680: PetscCheck(n >= (cEnd - cStart) * Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Vector size %" PetscInt_FMT " < %" PetscInt_FMT, n, (cEnd - cStart) * Nf);
2681: printFEM = ((DM_Plex *)dm->data)->printFEM;
2682: for (cell = cStart; cell < cEnd; ++cell) {
2683: const PetscInt c = cell - cStart;
2684: PetscInt dof = Nf, off = c * Nf;
2686: if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2687: if (sectionF) {
2688: PetscCall(PetscSectionGetDof(sectionF, cell, &dof));
2689: PetscCall(PetscSectionGetOffset(sectionF, cell, &off));
2690: }
2691: PetscCheck(dof == Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %" PetscInt_FMT " != %" PetscInt_FMT, dof, Nf);
2692: for (f = 0; f < Nf; ++f) af[off + f] = cintegral[c * Nf + f];
2693: }
2694: PetscCall(VecRestoreArray(F, &af));
2695: PetscCall(PetscFree(cintegral));
2696: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2697: PetscCall(DMDestroy(&dm));
2698: PetscFunctionReturn(PETSC_SUCCESS);
2699: }
2701: static PetscErrorCode DMPlexComputeBdIntegral_Internal(DM dm, Vec locX, IS pointIS, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *fintegral, void *user)
2702: {
2703: DM plex = NULL, plexA = NULL;
2704: DMEnclosureType encAux;
2705: PetscDS prob, probAux = NULL;
2706: PetscSection section, sectionAux = NULL;
2707: Vec locA = NULL;
2708: DMField coordField;
2709: PetscInt Nf, totDim, *uOff, *uOff_x;
2710: PetscInt NfAux = 0, totDimAux = 0, *aOff = NULL;
2711: PetscScalar *u, *a = NULL;
2712: const PetscScalar *constants;
2713: PetscInt numConstants, f;
2715: PetscFunctionBegin;
2716: PetscCall(DMGetCoordinateField(dm, &coordField));
2717: PetscCall(DMConvert(dm, DMPLEX, &plex));
2718: PetscCall(DMGetDS(dm, &prob));
2719: PetscCall(DMGetLocalSection(dm, §ion));
2720: PetscCall(PetscSectionGetNumFields(section, &Nf));
2721: /* Determine which discretizations we have */
2722: for (f = 0; f < Nf; ++f) {
2723: PetscObject obj;
2724: PetscClassId id;
2726: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2727: PetscCall(PetscObjectGetClassId(obj, &id));
2728: PetscCheck(id != PETSCFV_CLASSID, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Not supported for FVM (field %" PetscInt_FMT ")", f);
2729: }
2730: /* Read DS information */
2731: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2732: PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2733: PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2734: PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2735: /* Read Auxiliary DS information */
2736: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2737: if (locA) {
2738: DM dmAux;
2740: PetscCall(VecGetDM(locA, &dmAux));
2741: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
2742: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2743: PetscCall(DMGetDS(dmAux, &probAux));
2744: PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2745: PetscCall(DMGetLocalSection(dmAux, §ionAux));
2746: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2747: PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2748: }
2749: /* Integrate over points */
2750: {
2751: PetscFEGeom *fgeom, *chunkGeom = NULL;
2752: PetscInt maxDegree;
2753: PetscQuadrature qGeom = NULL;
2754: const PetscInt *points;
2755: PetscInt numFaces, face, Nq, field;
2756: PetscInt numChunks, chunkSize, chunk, Nr, offset;
2758: PetscCall(ISGetLocalSize(pointIS, &numFaces));
2759: PetscCall(ISGetIndices(pointIS, &points));
2760: PetscCall(PetscCalloc2(numFaces * totDim, &u, (locA ? (size_t)numFaces * totDimAux : 0), &a));
2761: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
2762: for (face = 0; face < numFaces; ++face) {
2763: const PetscInt point = points[face], *support;
2764: PetscScalar *x = NULL;
2766: PetscCall(DMPlexGetSupport(dm, point, &support));
2767: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
2768: for (PetscInt i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
2769: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
2770: if (locA) {
2771: PetscInt subp;
2772: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
2773: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
2774: for (PetscInt i = 0; i < totDimAux; ++i) a[f * totDimAux + i] = x[i];
2775: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
2776: }
2777: }
2778: for (field = 0; field < Nf; ++field) {
2779: PetscFE fe;
2781: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2782: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
2783: if (!qGeom) {
2784: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
2785: PetscCall(PetscObjectReference((PetscObject)qGeom));
2786: }
2787: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
2788: PetscCall(DMPlexGetFEGeom(coordField, pointIS, qGeom, PETSC_FEGEOM_BOUNDARY, &fgeom));
2789: /* Get blocking */
2790: {
2791: PetscQuadrature q;
2792: PetscInt numBatches, batchSize, numBlocks, blockSize;
2793: PetscInt Nq, Nb;
2795: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2796: PetscCall(PetscFEGetQuadrature(fe, &q));
2797: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2798: PetscCall(PetscFEGetDimension(fe, &Nb));
2799: blockSize = Nb * Nq;
2800: batchSize = numBlocks * blockSize;
2801: chunkSize = numBatches * batchSize;
2802: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2803: numChunks = numFaces / chunkSize;
2804: Nr = numFaces % chunkSize;
2805: offset = numFaces - Nr;
2806: }
2807: /* Do integration for each field */
2808: for (chunk = 0; chunk < numChunks; ++chunk) {
2809: PetscCall(PetscFEGeomGetChunk(fgeom, chunk * chunkSize, (chunk + 1) * chunkSize, &chunkGeom));
2810: PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], chunkSize, chunkGeom, &u[chunk * chunkSize * totDim], probAux, PetscSafePointerPlusOffset(a, chunk * chunkSize * totDimAux), &fintegral[chunk * chunkSize * Nf]));
2811: PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
2812: }
2813: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
2814: PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &fintegral[offset * Nf]));
2815: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
2816: /* Cleanup data arrays */
2817: PetscCall(DMPlexRestoreFEGeom(coordField, pointIS, qGeom, PETSC_FEGEOM_BOUNDARY, &fgeom));
2818: PetscCall(PetscQuadratureDestroy(&qGeom));
2819: }
2820: PetscCall(PetscFree2(u, a));
2821: PetscCall(ISRestoreIndices(pointIS, &points));
2822: }
2823: if (plex) PetscCall(DMDestroy(&plex));
2824: if (plexA) PetscCall(DMDestroy(&plexA));
2825: PetscFunctionReturn(PETSC_SUCCESS);
2826: }
2828: /*@C
2829: DMPlexComputeBdIntegral - Form the integral over the specified boundary from the global input X using pointwise functions specified by the user
2831: Input Parameters:
2832: + dm - The mesh
2833: . X - Global input vector
2834: . label - The boundary `DMLabel`
2835: . numVals - The number of label values to use, or `PETSC_DETERMINE` for all values
2836: . vals - The label values to use, or NULL for all values
2837: . funcs - The functions to integrate along the boundary for each field
2838: - user - The user context
2840: Output Parameter:
2841: . integral - Integral for each field
2843: Level: developer
2845: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeIntegralFEM()`, `DMPlexComputeBdResidualFEM()`
2846: @*/
2847: PetscErrorCode DMPlexComputeBdIntegral(DM dm, Vec X, DMLabel label, PetscInt numVals, const PetscInt vals[], void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *integral, void *user)
2848: {
2849: Vec locX;
2850: PetscSection section;
2851: DMLabel depthLabel;
2852: IS facetIS;
2853: PetscInt dim, Nf, f, v;
2855: PetscFunctionBegin;
2859: if (vals) PetscAssertPointer(vals, 5);
2860: PetscAssertPointer(integral, 7);
2861: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2862: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
2863: PetscCall(DMGetDimension(dm, &dim));
2864: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
2865: PetscCall(DMGetLocalSection(dm, §ion));
2866: PetscCall(PetscSectionGetNumFields(section, &Nf));
2867: /* Get local solution with boundary values */
2868: PetscCall(DMGetLocalVector(dm, &locX));
2869: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2870: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2871: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2872: /* Loop over label values */
2873: PetscCall(PetscArrayzero(integral, Nf));
2874: for (v = 0; v < numVals; ++v) {
2875: IS pointIS;
2876: PetscInt numFaces, face;
2877: PetscScalar *fintegral;
2879: PetscCall(DMLabelGetStratumIS(label, vals[v], &pointIS));
2880: if (!pointIS) continue; /* No points with that id on this process */
2881: {
2882: IS isectIS;
2884: /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
2885: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
2886: PetscCall(ISDestroy(&pointIS));
2887: pointIS = isectIS;
2888: }
2889: PetscCall(ISGetLocalSize(pointIS, &numFaces));
2890: PetscCall(PetscCalloc1(numFaces * Nf, &fintegral));
2891: PetscCall(DMPlexComputeBdIntegral_Internal(dm, locX, pointIS, funcs, fintegral, user));
2892: /* Sum point contributions into integral */
2893: for (f = 0; f < Nf; ++f)
2894: for (face = 0; face < numFaces; ++face) integral[f] += fintegral[face * Nf + f];
2895: PetscCall(PetscFree(fintegral));
2896: PetscCall(ISDestroy(&pointIS));
2897: }
2898: PetscCall(DMRestoreLocalVector(dm, &locX));
2899: PetscCall(ISDestroy(&facetIS));
2900: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2901: PetscFunctionReturn(PETSC_SUCCESS);
2902: }
2904: /*@
2905: DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix from the coarse `DM` to a uniformly refined `DM`.
2907: Input Parameters:
2908: + dmc - The coarse mesh
2909: . dmf - The fine mesh
2910: . isRefined - Flag indicating regular refinement, rather than the same topology
2911: - user - The user context
2913: Output Parameter:
2914: . In - The interpolation matrix
2916: Level: developer
2918: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorGeneral()`
2919: @*/
2920: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, PetscBool isRefined, Mat In, void *user)
2921: {
2922: DM_Plex *mesh = (DM_Plex *)dmc->data;
2923: const char *name = "Interpolator";
2924: PetscFE *feRef;
2925: PetscFV *fvRef;
2926: PetscSection fsection, fglobalSection;
2927: PetscSection csection, cglobalSection;
2928: PetscScalar *elemMat;
2929: PetscInt dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, c;
2930: PetscInt cTotDim = 0, rTotDim = 0;
2932: PetscFunctionBegin;
2933: PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2934: PetscCall(DMGetDimension(dmf, &dim));
2935: PetscCall(DMGetLocalSection(dmf, &fsection));
2936: PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
2937: PetscCall(DMGetLocalSection(dmc, &csection));
2938: PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
2939: PetscCall(PetscSectionGetNumFields(fsection, &Nf));
2940: PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
2941: PetscCall(PetscCalloc2(Nf, &feRef, Nf, &fvRef));
2942: for (f = 0; f < Nf; ++f) {
2943: PetscObject obj, objc;
2944: PetscClassId id, idc;
2945: PetscInt rNb = 0, Nc = 0, cNb = 0;
2947: PetscCall(DMGetField(dmf, f, NULL, &obj));
2948: PetscCall(PetscObjectGetClassId(obj, &id));
2949: if (id == PETSCFE_CLASSID) {
2950: PetscFE fe = (PetscFE)obj;
2952: if (isRefined) {
2953: PetscCall(PetscFERefine(fe, &feRef[f]));
2954: } else {
2955: PetscCall(PetscObjectReference((PetscObject)fe));
2956: feRef[f] = fe;
2957: }
2958: PetscCall(PetscFEGetDimension(feRef[f], &rNb));
2959: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2960: } else if (id == PETSCFV_CLASSID) {
2961: PetscFV fv = (PetscFV)obj;
2962: PetscDualSpace Q;
2964: if (isRefined) {
2965: PetscCall(PetscFVRefine(fv, &fvRef[f]));
2966: } else {
2967: PetscCall(PetscObjectReference((PetscObject)fv));
2968: fvRef[f] = fv;
2969: }
2970: PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
2971: PetscCall(PetscDualSpaceGetDimension(Q, &rNb));
2972: PetscCall(PetscFVGetDualSpace(fv, &Q));
2973: PetscCall(PetscFVGetNumComponents(fv, &Nc));
2974: }
2975: PetscCall(DMGetField(dmc, f, NULL, &objc));
2976: PetscCall(PetscObjectGetClassId(objc, &idc));
2977: if (idc == PETSCFE_CLASSID) {
2978: PetscFE fe = (PetscFE)objc;
2980: PetscCall(PetscFEGetDimension(fe, &cNb));
2981: } else if (id == PETSCFV_CLASSID) {
2982: PetscFV fv = (PetscFV)obj;
2983: PetscDualSpace Q;
2985: PetscCall(PetscFVGetDualSpace(fv, &Q));
2986: PetscCall(PetscDualSpaceGetDimension(Q, &cNb));
2987: }
2988: rTotDim += rNb;
2989: cTotDim += cNb;
2990: }
2991: PetscCall(PetscMalloc1(rTotDim * cTotDim, &elemMat));
2992: PetscCall(PetscArrayzero(elemMat, rTotDim * cTotDim));
2993: for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
2994: PetscDualSpace Qref;
2995: PetscQuadrature f;
2996: const PetscReal *qpoints, *qweights;
2997: PetscReal *points;
2998: PetscInt npoints = 0, Nc, Np, fpdim, i, k, p, d;
3000: /* Compose points from all dual basis functionals */
3001: if (feRef[fieldI]) {
3002: PetscCall(PetscFEGetDualSpace(feRef[fieldI], &Qref));
3003: PetscCall(PetscFEGetNumComponents(feRef[fieldI], &Nc));
3004: } else {
3005: PetscCall(PetscFVGetDualSpace(fvRef[fieldI], &Qref));
3006: PetscCall(PetscFVGetNumComponents(fvRef[fieldI], &Nc));
3007: }
3008: PetscCall(PetscDualSpaceGetDimension(Qref, &fpdim));
3009: for (i = 0; i < fpdim; ++i) {
3010: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3011: PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL));
3012: npoints += Np;
3013: }
3014: PetscCall(PetscMalloc1(npoints * dim, &points));
3015: for (i = 0, k = 0; i < fpdim; ++i) {
3016: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3017: PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL));
3018: for (p = 0; p < Np; ++p, ++k)
3019: for (d = 0; d < dim; ++d) points[k * dim + d] = qpoints[p * dim + d];
3020: }
3022: for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
3023: PetscObject obj;
3024: PetscClassId id;
3025: PetscInt NcJ = 0, cpdim = 0, j, qNc;
3027: PetscCall(DMGetField(dmc, fieldJ, NULL, &obj));
3028: PetscCall(PetscObjectGetClassId(obj, &id));
3029: if (id == PETSCFE_CLASSID) {
3030: PetscFE fe = (PetscFE)obj;
3031: PetscTabulation T = NULL;
3033: /* Evaluate basis at points */
3034: PetscCall(PetscFEGetNumComponents(fe, &NcJ));
3035: PetscCall(PetscFEGetDimension(fe, &cpdim));
3036: /* For now, fields only interpolate themselves */
3037: if (fieldI == fieldJ) {
3038: PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
3039: PetscCall(PetscFECreateTabulation(fe, 1, npoints, points, 0, &T));
3040: for (i = 0, k = 0; i < fpdim; ++i) {
3041: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3042: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
3043: PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
3044: for (p = 0; p < Np; ++p, ++k) {
3045: for (j = 0; j < cpdim; ++j) {
3046: /*
3047: cTotDim: Total columns in element interpolation matrix, sum of number of dual basis functionals in each field
3048: offsetI, offsetJ: Offsets into the larger element interpolation matrix for different fields
3049: fpdim, i, cpdim, j: Dofs for fine and coarse grids, correspond to dual space basis functionals
3050: qNC, Nc, Ncj, c: Number of components in this field
3051: Np, p: Number of quad points in the fine grid functional i
3052: k: i*Np + p, overall point number for the interpolation
3053: */
3054: for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += T->T[0][k * cpdim * NcJ + j * Nc + c] * qweights[p * qNc + c];
3055: }
3056: }
3057: }
3058: PetscCall(PetscTabulationDestroy(&T));
3059: }
3060: } else if (id == PETSCFV_CLASSID) {
3061: PetscFV fv = (PetscFV)obj;
3063: /* Evaluate constant function at points */
3064: PetscCall(PetscFVGetNumComponents(fv, &NcJ));
3065: cpdim = 1;
3066: /* For now, fields only interpolate themselves */
3067: if (fieldI == fieldJ) {
3068: PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
3069: for (i = 0, k = 0; i < fpdim; ++i) {
3070: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3071: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
3072: PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
3073: for (p = 0; p < Np; ++p, ++k) {
3074: for (j = 0; j < cpdim; ++j) {
3075: for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += 1.0 * qweights[p * qNc + c];
3076: }
3077: }
3078: }
3079: }
3080: }
3081: offsetJ += cpdim;
3082: }
3083: offsetI += fpdim;
3084: PetscCall(PetscFree(points));
3085: }
3086: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat));
3087: /* Preallocate matrix */
3088: {
3089: Mat preallocator;
3090: PetscScalar *vals;
3091: PetscInt *cellCIndices, *cellFIndices;
3092: PetscInt locRows, locCols, cell;
3094: PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3095: PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &preallocator));
3096: PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
3097: PetscCall(MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3098: PetscCall(MatSetUp(preallocator));
3099: PetscCall(PetscCalloc3(rTotDim * cTotDim, &vals, cTotDim, &cellCIndices, rTotDim, &cellFIndices));
3100: for (cell = cStart; cell < cEnd; ++cell) {
3101: if (isRefined) {
3102: PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices));
3103: PetscCall(MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES));
3104: } else {
3105: PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, preallocator, cell, vals, INSERT_VALUES));
3106: }
3107: }
3108: PetscCall(PetscFree3(vals, cellCIndices, cellFIndices));
3109: PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
3110: PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
3111: PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In));
3112: PetscCall(MatDestroy(&preallocator));
3113: }
3114: /* Fill matrix */
3115: PetscCall(MatZeroEntries(In));
3116: for (c = cStart; c < cEnd; ++c) {
3117: if (isRefined) {
3118: PetscCall(DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES));
3119: } else {
3120: PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, In, c, elemMat, INSERT_VALUES));
3121: }
3122: }
3123: for (f = 0; f < Nf; ++f) PetscCall(PetscFEDestroy(&feRef[f]));
3124: PetscCall(PetscFree2(feRef, fvRef));
3125: PetscCall(PetscFree(elemMat));
3126: PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3127: PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3128: if (mesh->printFEM > 1) {
3129: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)In), "%s:\n", name));
3130: PetscCall(MatFilter(In, 1.0e-10, PETSC_FALSE, PETSC_FALSE));
3131: PetscCall(MatView(In, NULL));
3132: }
3133: PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3134: PetscFunctionReturn(PETSC_SUCCESS);
3135: }
3137: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
3138: {
3139: SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_SUP, "Laziness");
3140: }
3142: /*@
3143: DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix from the coarse `DM` to a non-nested fine `DM`.
3145: Input Parameters:
3146: + dmf - The fine mesh
3147: . dmc - The coarse mesh
3148: - user - The user context
3150: Output Parameter:
3151: . In - The interpolation matrix
3153: Level: developer
3155: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3156: @*/
3157: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
3158: {
3159: DM_Plex *mesh = (DM_Plex *)dmf->data;
3160: const char *name = "Interpolator";
3161: PetscDS prob;
3162: Mat interp;
3163: PetscSection fsection, globalFSection;
3164: PetscSection csection, globalCSection;
3165: PetscInt locRows, locCols;
3166: PetscReal *x, *v0, *J, *invJ, detJ;
3167: PetscReal *v0c, *Jc, *invJc, detJc;
3168: PetscScalar *elemMat;
3169: PetscInt dim, Nf, field, totDim, cStart, cEnd, cell, ccell, s;
3171: PetscFunctionBegin;
3172: PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3173: PetscCall(DMGetCoordinateDim(dmc, &dim));
3174: PetscCall(DMGetDS(dmc, &prob));
3175: PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3176: PetscCall(PetscDSGetNumFields(prob, &Nf));
3177: PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3178: PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3179: PetscCall(DMGetLocalSection(dmf, &fsection));
3180: PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3181: PetscCall(DMGetLocalSection(dmc, &csection));
3182: PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3183: PetscCall(DMPlexGetSimplexOrBoxCells(dmf, 0, &cStart, &cEnd));
3184: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3185: PetscCall(PetscMalloc1(totDim, &elemMat));
3187: PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3188: PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &interp));
3189: PetscCall(MatSetType(interp, MATPREALLOCATOR));
3190: PetscCall(MatSetSizes(interp, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3191: PetscCall(MatSetUp(interp));
3192: for (s = 0; s < 2; ++s) {
3193: for (field = 0; field < Nf; ++field) {
3194: PetscObject obj;
3195: PetscClassId id;
3196: PetscDualSpace Q = NULL;
3197: PetscTabulation T = NULL;
3198: PetscQuadrature f;
3199: const PetscReal *qpoints, *qweights;
3200: PetscInt Nc, qNc, Np, fpdim, off, i, d;
3202: PetscCall(PetscDSGetFieldOffset(prob, field, &off));
3203: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3204: PetscCall(PetscObjectGetClassId(obj, &id));
3205: if (id == PETSCFE_CLASSID) {
3206: PetscFE fe = (PetscFE)obj;
3208: PetscCall(PetscFEGetDualSpace(fe, &Q));
3209: PetscCall(PetscFEGetNumComponents(fe, &Nc));
3210: if (s) PetscCall(PetscFECreateTabulation(fe, 1, 1, x, 0, &T));
3211: } else if (id == PETSCFV_CLASSID) {
3212: PetscFV fv = (PetscFV)obj;
3214: PetscCall(PetscFVGetDualSpace(fv, &Q));
3215: Nc = 1;
3216: } else SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
3217: PetscCall(PetscDualSpaceGetDimension(Q, &fpdim));
3218: /* For each fine grid cell */
3219: for (cell = cStart; cell < cEnd; ++cell) {
3220: PetscInt *findices, *cindices;
3221: PetscInt numFIndices, numCIndices;
3223: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3224: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3225: PetscCheck(numFIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %" PetscInt_FMT " != %" PetscInt_FMT " dual basis vecs", numFIndices, totDim);
3226: for (i = 0; i < fpdim; ++i) {
3227: Vec pointVec;
3228: PetscScalar *pV;
3229: PetscSF coarseCellSF = NULL;
3230: const PetscSFNode *coarseCells;
3231: PetscInt numCoarseCells, cpdim, row = findices[i + off], q, c, j;
3233: /* Get points from the dual basis functional quadrature */
3234: PetscCall(PetscDualSpaceGetFunctional(Q, i, &f));
3235: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights));
3236: PetscCheck(qNc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, Nc);
3237: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Np * dim, &pointVec));
3238: PetscCall(VecSetBlockSize(pointVec, dim));
3239: PetscCall(VecGetArray(pointVec, &pV));
3240: for (q = 0; q < Np; ++q) {
3241: const PetscReal xi0[3] = {-1., -1., -1.};
3243: /* Transform point to real space */
3244: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3245: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3246: }
3247: PetscCall(VecRestoreArray(pointVec, &pV));
3248: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3249: /* OPT: Read this out from preallocation information */
3250: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3251: /* Update preallocation info */
3252: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3253: PetscCheck(numCoarseCells == Np, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3254: PetscCall(VecGetArray(pointVec, &pV));
3255: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3256: PetscReal pVReal[3];
3257: const PetscReal xi0[3] = {-1., -1., -1.};
3259: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3260: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetDimension((PetscFE)obj, &cpdim));
3261: else cpdim = 1;
3263: if (s) {
3264: /* Transform points from real space to coarse reference space */
3265: PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3266: for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3267: CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);
3269: if (id == PETSCFE_CLASSID) {
3270: /* Evaluate coarse basis on contained point */
3271: PetscCall(PetscFEComputeTabulation((PetscFE)obj, 1, x, 0, T));
3272: PetscCall(PetscArrayzero(elemMat, cpdim));
3273: /* Get elemMat entries by multiplying by weight */
3274: for (j = 0; j < cpdim; ++j) {
3275: for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * qweights[ccell * qNc + c];
3276: }
3277: } else {
3278: for (j = 0; j < cpdim; ++j) {
3279: for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * qweights[ccell * qNc + c];
3280: }
3281: }
3282: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3283: }
3284: /* Update interpolator */
3285: PetscCheck(numCIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, totDim);
3286: PetscCall(MatSetValues(interp, 1, &row, cpdim, &cindices[off], elemMat, INSERT_VALUES));
3287: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3288: }
3289: PetscCall(VecRestoreArray(pointVec, &pV));
3290: PetscCall(PetscSFDestroy(&coarseCellSF));
3291: PetscCall(VecDestroy(&pointVec));
3292: }
3293: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3294: }
3295: if (s && id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3296: }
3297: if (!s) {
3298: PetscCall(MatAssemblyBegin(interp, MAT_FINAL_ASSEMBLY));
3299: PetscCall(MatAssemblyEnd(interp, MAT_FINAL_ASSEMBLY));
3300: PetscCall(MatPreallocatorPreallocate(interp, PETSC_TRUE, In));
3301: PetscCall(MatDestroy(&interp));
3302: interp = In;
3303: }
3304: }
3305: PetscCall(PetscFree3(v0, J, invJ));
3306: PetscCall(PetscFree3(v0c, Jc, invJc));
3307: PetscCall(PetscFree(elemMat));
3308: PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3309: PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3310: PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3311: PetscFunctionReturn(PETSC_SUCCESS);
3312: }
3314: /*@
3315: DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix from the coarse `DM` to a non-nested fine `DM`.
3317: Input Parameters:
3318: + dmf - The fine mesh
3319: . dmc - The coarse mesh
3320: - user - The user context
3322: Output Parameter:
3323: . mass - The mass matrix
3325: Level: developer
3327: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeMassMatrixNested()`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeInterpolatorGeneral()`
3328: @*/
3329: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
3330: {
3331: DM_Plex *mesh = (DM_Plex *)dmf->data;
3332: const char *name = "Mass Matrix";
3333: PetscDS prob;
3334: PetscSection fsection, csection, globalFSection, globalCSection;
3335: PetscHSetIJ ht;
3336: PetscLayout rLayout;
3337: PetscInt *dnz, *onz;
3338: PetscInt locRows, rStart, rEnd;
3339: PetscReal *x, *v0, *J, *invJ, detJ;
3340: PetscReal *v0c, *Jc, *invJc, detJc;
3341: PetscScalar *elemMat;
3342: PetscInt dim, Nf, field, totDim, cStart, cEnd, cell, ccell;
3344: PetscFunctionBegin;
3345: PetscCall(DMGetCoordinateDim(dmc, &dim));
3346: PetscCall(DMGetDS(dmc, &prob));
3347: PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3348: PetscCall(PetscDSGetNumFields(prob, &Nf));
3349: PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3350: PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3351: PetscCall(DMGetLocalSection(dmf, &fsection));
3352: PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3353: PetscCall(DMGetLocalSection(dmc, &csection));
3354: PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3355: PetscCall(DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd));
3356: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3357: PetscCall(PetscMalloc1(totDim, &elemMat));
3359: PetscCall(MatGetLocalSize(mass, &locRows, NULL));
3360: PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)mass), &rLayout));
3361: PetscCall(PetscLayoutSetLocalSize(rLayout, locRows));
3362: PetscCall(PetscLayoutSetBlockSize(rLayout, 1));
3363: PetscCall(PetscLayoutSetUp(rLayout));
3364: PetscCall(PetscLayoutGetRange(rLayout, &rStart, &rEnd));
3365: PetscCall(PetscLayoutDestroy(&rLayout));
3366: PetscCall(PetscCalloc2(locRows, &dnz, locRows, &onz));
3367: PetscCall(PetscHSetIJCreate(&ht));
3368: for (field = 0; field < Nf; ++field) {
3369: PetscObject obj;
3370: PetscClassId id;
3371: PetscQuadrature quad;
3372: const PetscReal *qpoints;
3373: PetscInt Nq, Nc, i, d;
3375: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3376: PetscCall(PetscObjectGetClassId(obj, &id));
3377: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3378: else PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3379: PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL));
3380: /* For each fine grid cell */
3381: for (cell = cStart; cell < cEnd; ++cell) {
3382: Vec pointVec;
3383: PetscScalar *pV;
3384: PetscSF coarseCellSF = NULL;
3385: const PetscSFNode *coarseCells;
3386: PetscInt numCoarseCells, q, c;
3387: PetscInt *findices, *cindices;
3388: PetscInt numFIndices, numCIndices;
3390: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3391: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3392: /* Get points from the quadrature */
3393: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3394: PetscCall(VecSetBlockSize(pointVec, dim));
3395: PetscCall(VecGetArray(pointVec, &pV));
3396: for (q = 0; q < Nq; ++q) {
3397: const PetscReal xi0[3] = {-1., -1., -1.};
3399: /* Transform point to real space */
3400: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3401: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3402: }
3403: PetscCall(VecRestoreArray(pointVec, &pV));
3404: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3405: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3406: PetscCall(PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view"));
3407: /* Update preallocation info */
3408: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3409: PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3410: {
3411: PetscHashIJKey key;
3412: PetscBool missing;
3414: for (i = 0; i < numFIndices; ++i) {
3415: key.i = findices[i];
3416: if (key.i >= 0) {
3417: /* Get indices for coarse elements */
3418: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3419: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3420: for (c = 0; c < numCIndices; ++c) {
3421: key.j = cindices[c];
3422: if (key.j < 0) continue;
3423: PetscCall(PetscHSetIJQueryAdd(ht, key, &missing));
3424: if (missing) {
3425: if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i - rStart];
3426: else ++onz[key.i - rStart];
3427: }
3428: }
3429: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3430: }
3431: }
3432: }
3433: }
3434: PetscCall(PetscSFDestroy(&coarseCellSF));
3435: PetscCall(VecDestroy(&pointVec));
3436: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3437: }
3438: }
3439: PetscCall(PetscHSetIJDestroy(&ht));
3440: PetscCall(MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL));
3441: PetscCall(MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
3442: PetscCall(PetscFree2(dnz, onz));
3443: for (field = 0; field < Nf; ++field) {
3444: PetscObject obj;
3445: PetscClassId id;
3446: PetscTabulation T, Tfine;
3447: PetscQuadrature quad;
3448: const PetscReal *qpoints, *qweights;
3449: PetscInt Nq, Nc, i, d;
3451: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3452: PetscCall(PetscObjectGetClassId(obj, &id));
3453: if (id == PETSCFE_CLASSID) {
3454: PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3455: PetscCall(PetscFEGetCellTabulation((PetscFE)obj, 1, &Tfine));
3456: PetscCall(PetscFECreateTabulation((PetscFE)obj, 1, 1, x, 0, &T));
3457: } else {
3458: PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3459: }
3460: PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights));
3461: /* For each fine grid cell */
3462: for (cell = cStart; cell < cEnd; ++cell) {
3463: Vec pointVec;
3464: PetscScalar *pV;
3465: PetscSF coarseCellSF = NULL;
3466: const PetscSFNode *coarseCells;
3467: PetscInt numCoarseCells, cpdim, q, c, j;
3468: PetscInt *findices, *cindices;
3469: PetscInt numFIndices, numCIndices;
3471: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3472: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3473: /* Get points from the quadrature */
3474: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3475: PetscCall(VecSetBlockSize(pointVec, dim));
3476: PetscCall(VecGetArray(pointVec, &pV));
3477: for (q = 0; q < Nq; ++q) {
3478: const PetscReal xi0[3] = {-1., -1., -1.};
3480: /* Transform point to real space */
3481: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3482: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3483: }
3484: PetscCall(VecRestoreArray(pointVec, &pV));
3485: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3486: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3487: /* Update matrix */
3488: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3489: PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3490: PetscCall(VecGetArray(pointVec, &pV));
3491: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3492: PetscReal pVReal[3];
3493: const PetscReal xi0[3] = {-1., -1., -1.};
3495: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3496: /* Transform points from real space to coarse reference space */
3497: PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3498: for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3499: CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);
3501: if (id == PETSCFE_CLASSID) {
3502: PetscFE fe = (PetscFE)obj;
3504: /* Evaluate coarse basis on contained point */
3505: PetscCall(PetscFEGetDimension(fe, &cpdim));
3506: PetscCall(PetscFEComputeTabulation(fe, 1, x, 0, T));
3507: /* Get elemMat entries by multiplying by weight */
3508: for (i = 0; i < numFIndices; ++i) {
3509: PetscCall(PetscArrayzero(elemMat, cpdim));
3510: for (j = 0; j < cpdim; ++j) {
3511: for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * Tfine->T[0][(ccell * numFIndices + i) * Nc + c] * qweights[ccell * Nc + c] * detJ;
3512: }
3513: /* Update interpolator */
3514: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3515: PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3516: PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3517: }
3518: } else {
3519: cpdim = 1;
3520: for (i = 0; i < numFIndices; ++i) {
3521: PetscCall(PetscArrayzero(elemMat, cpdim));
3522: for (j = 0; j < cpdim; ++j) {
3523: for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * 1.0 * qweights[ccell * Nc + c] * detJ;
3524: }
3525: /* Update interpolator */
3526: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3527: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Nq: %" PetscInt_FMT " %" PetscInt_FMT " Nf: %" PetscInt_FMT " %" PetscInt_FMT " Nc: %" PetscInt_FMT " %" PetscInt_FMT "\n", ccell, Nq, i, numFIndices, j, numCIndices));
3528: PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3529: PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3530: }
3531: }
3532: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3533: }
3534: PetscCall(VecRestoreArray(pointVec, &pV));
3535: PetscCall(PetscSFDestroy(&coarseCellSF));
3536: PetscCall(VecDestroy(&pointVec));
3537: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3538: }
3539: if (id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3540: }
3541: PetscCall(PetscFree3(v0, J, invJ));
3542: PetscCall(PetscFree3(v0c, Jc, invJc));
3543: PetscCall(PetscFree(elemMat));
3544: PetscCall(MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY));
3545: PetscCall(MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY));
3546: PetscFunctionReturn(PETSC_SUCCESS);
3547: }
3549: /*@
3550: DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns
3552: Input Parameters:
3553: + dmc - The coarse mesh
3554: . dmf - The fine mesh
3555: - user - The user context
3557: Output Parameter:
3558: . sc - The mapping
3560: Level: developer
3562: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3563: @*/
3564: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
3565: {
3566: PetscDS prob;
3567: PetscFE *feRef;
3568: PetscFV *fvRef;
3569: Vec fv, cv;
3570: IS fis, cis;
3571: PetscSection fsection, fglobalSection, csection, cglobalSection;
3572: PetscInt *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
3573: PetscInt cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, c, dim, d, startC, endC, offsetC, offsetF, m;
3574: PetscBool *needAvg;
3576: PetscFunctionBegin;
3577: PetscCall(PetscLogEventBegin(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3578: PetscCall(DMGetDimension(dmf, &dim));
3579: PetscCall(DMGetLocalSection(dmf, &fsection));
3580: PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
3581: PetscCall(DMGetLocalSection(dmc, &csection));
3582: PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
3583: PetscCall(PetscSectionGetNumFields(fsection, &Nf));
3584: PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
3585: PetscCall(DMGetDS(dmc, &prob));
3586: PetscCall(PetscCalloc3(Nf, &feRef, Nf, &fvRef, Nf, &needAvg));
3587: for (f = 0; f < Nf; ++f) {
3588: PetscObject obj;
3589: PetscClassId id;
3590: PetscInt fNb = 0, Nc = 0;
3592: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
3593: PetscCall(PetscObjectGetClassId(obj, &id));
3594: if (id == PETSCFE_CLASSID) {
3595: PetscFE fe = (PetscFE)obj;
3596: PetscSpace sp;
3597: PetscInt maxDegree;
3599: PetscCall(PetscFERefine(fe, &feRef[f]));
3600: PetscCall(PetscFEGetDimension(feRef[f], &fNb));
3601: PetscCall(PetscFEGetNumComponents(fe, &Nc));
3602: PetscCall(PetscFEGetBasisSpace(fe, &sp));
3603: PetscCall(PetscSpaceGetDegree(sp, NULL, &maxDegree));
3604: if (!maxDegree) needAvg[f] = PETSC_TRUE;
3605: } else if (id == PETSCFV_CLASSID) {
3606: PetscFV fv = (PetscFV)obj;
3607: PetscDualSpace Q;
3609: PetscCall(PetscFVRefine(fv, &fvRef[f]));
3610: PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
3611: PetscCall(PetscDualSpaceGetDimension(Q, &fNb));
3612: PetscCall(PetscFVGetNumComponents(fv, &Nc));
3613: needAvg[f] = PETSC_TRUE;
3614: }
3615: fTotDim += fNb;
3616: }
3617: PetscCall(PetscDSGetTotalDimension(prob, &cTotDim));
3618: PetscCall(PetscMalloc1(cTotDim, &cmap));
3619: for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
3620: PetscFE feC;
3621: PetscFV fvC;
3622: PetscDualSpace QF, QC;
3623: PetscInt order = -1, NcF, NcC, fpdim, cpdim;
3625: if (feRef[field]) {
3626: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&feC));
3627: PetscCall(PetscFEGetNumComponents(feC, &NcC));
3628: PetscCall(PetscFEGetNumComponents(feRef[field], &NcF));
3629: PetscCall(PetscFEGetDualSpace(feRef[field], &QF));
3630: PetscCall(PetscDualSpaceGetOrder(QF, &order));
3631: PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3632: PetscCall(PetscFEGetDualSpace(feC, &QC));
3633: PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3634: } else {
3635: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fvC));
3636: PetscCall(PetscFVGetNumComponents(fvC, &NcC));
3637: PetscCall(PetscFVGetNumComponents(fvRef[field], &NcF));
3638: PetscCall(PetscFVGetDualSpace(fvRef[field], &QF));
3639: PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3640: PetscCall(PetscFVGetDualSpace(fvC, &QC));
3641: PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3642: }
3643: PetscCheck(NcF == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, NcF, NcC);
3644: for (c = 0; c < cpdim; ++c) {
3645: PetscQuadrature cfunc;
3646: const PetscReal *cqpoints, *cqweights;
3647: PetscInt NqcC, NpC;
3648: PetscBool found = PETSC_FALSE;
3650: PetscCall(PetscDualSpaceGetFunctional(QC, c, &cfunc));
3651: PetscCall(PetscQuadratureGetData(cfunc, NULL, &NqcC, &NpC, &cqpoints, &cqweights));
3652: PetscCheck(NqcC == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcC, NcC);
3653: PetscCheck(NpC == 1 || !feRef[field], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
3654: for (f = 0; f < fpdim; ++f) {
3655: PetscQuadrature ffunc;
3656: const PetscReal *fqpoints, *fqweights;
3657: PetscReal sum = 0.0;
3658: PetscInt NqcF, NpF;
3660: PetscCall(PetscDualSpaceGetFunctional(QF, f, &ffunc));
3661: PetscCall(PetscQuadratureGetData(ffunc, NULL, &NqcF, &NpF, &fqpoints, &fqweights));
3662: PetscCheck(NqcF == NcF, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcF, NcF);
3663: if (NpC != NpF) continue;
3664: for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
3665: if (sum > 1.0e-9) continue;
3666: for (d = 0; d < NcC; ++d) sum += PetscAbsReal(cqweights[d] * fqweights[d]);
3667: if (sum < 1.0e-9) continue;
3668: cmap[offsetC + c] = offsetF + f;
3669: found = PETSC_TRUE;
3670: break;
3671: }
3672: if (!found) {
3673: /* TODO We really want the average here, but some asshole put VecScatter in the interface */
3674: if (fvRef[field] || (feRef[field] && order == 0)) {
3675: cmap[offsetC + c] = offsetF + 0;
3676: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
3677: }
3678: }
3679: offsetC += cpdim;
3680: offsetF += fpdim;
3681: }
3682: for (f = 0; f < Nf; ++f) {
3683: PetscCall(PetscFEDestroy(&feRef[f]));
3684: PetscCall(PetscFVDestroy(&fvRef[f]));
3685: }
3686: PetscCall(PetscFree3(feRef, fvRef, needAvg));
3688: PetscCall(DMGetGlobalVector(dmf, &fv));
3689: PetscCall(DMGetGlobalVector(dmc, &cv));
3690: PetscCall(VecGetOwnershipRange(cv, &startC, &endC));
3691: PetscCall(PetscSectionGetConstrainedStorageSize(cglobalSection, &m));
3692: PetscCall(PetscMalloc2(cTotDim, &cellCIndices, fTotDim, &cellFIndices));
3693: PetscCall(PetscMalloc1(m, &cindices));
3694: PetscCall(PetscMalloc1(m, &findices));
3695: for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
3696: for (c = cStart; c < cEnd; ++c) {
3697: PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices));
3698: for (d = 0; d < cTotDim; ++d) {
3699: if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
3700: PetscCheck(!(findices[cellCIndices[d] - startC] >= 0) || !(findices[cellCIndices[d] - startC] != cellFIndices[cmap[d]]), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cell %" PetscInt_FMT " Coarse dof %" PetscInt_FMT " maps to both %" PetscInt_FMT " and %" PetscInt_FMT, c, cindices[cellCIndices[d] - startC], findices[cellCIndices[d] - startC], cellFIndices[cmap[d]]);
3701: cindices[cellCIndices[d] - startC] = cellCIndices[d];
3702: findices[cellCIndices[d] - startC] = cellFIndices[cmap[d]];
3703: }
3704: }
3705: PetscCall(PetscFree(cmap));
3706: PetscCall(PetscFree2(cellCIndices, cellFIndices));
3708: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis));
3709: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis));
3710: PetscCall(VecScatterCreate(cv, cis, fv, fis, sc));
3711: PetscCall(ISDestroy(&cis));
3712: PetscCall(ISDestroy(&fis));
3713: PetscCall(DMRestoreGlobalVector(dmf, &fv));
3714: PetscCall(DMRestoreGlobalVector(dmc, &cv));
3715: PetscCall(PetscLogEventEnd(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3716: PetscFunctionReturn(PETSC_SUCCESS);
3717: }
3719: /*@C
3720: DMPlexGetCellFields - Retrieve the field values values for a chunk of cells
3722: Input Parameters:
3723: + dm - The `DM`
3724: . cellIS - The cells to include
3725: . locX - A local vector with the solution fields
3726: . locX_t - A local vector with solution field time derivatives, or `NULL`
3727: - locA - A local vector with auxiliary fields, or `NULL`
3729: Output Parameters:
3730: + u - The field coefficients
3731: . u_t - The fields derivative coefficients
3732: - a - The auxiliary field coefficients
3734: Level: developer
3736: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3737: @*/
3738: PetscErrorCode DMPlexGetCellFields(DM dm, IS cellIS, Vec locX, PeOp Vec locX_t, PeOp Vec locA, PetscScalar *u[], PetscScalar *u_t[], PetscScalar *a[])
3739: {
3740: DM plex, plexA = NULL;
3741: DMEnclosureType encAux;
3742: PetscSection section, sectionAux;
3743: PetscDS prob;
3744: const PetscInt *cells;
3745: PetscInt cStart, cEnd, numCells, totDim, totDimAux, c;
3747: PetscFunctionBegin;
3752: PetscAssertPointer(u, 6);
3753: PetscAssertPointer(u_t, 7);
3754: PetscAssertPointer(a, 8);
3755: PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3756: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3757: PetscCall(DMGetLocalSection(dm, §ion));
3758: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
3759: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3760: if (locA) {
3761: DM dmAux;
3762: PetscDS probAux;
3764: PetscCall(VecGetDM(locA, &dmAux));
3765: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3766: PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3767: PetscCall(DMGetLocalSection(dmAux, §ionAux));
3768: PetscCall(DMGetDS(dmAux, &probAux));
3769: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3770: }
3771: numCells = cEnd - cStart;
3772: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3773: if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3774: else *u_t = NULL;
3775: if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3776: else *a = NULL;
3777: for (c = cStart; c < cEnd; ++c) {
3778: const PetscInt cell = cells ? cells[c] : c;
3779: const PetscInt cind = c - cStart;
3780: PetscScalar *x = NULL, *x_t = NULL, *ul = *u, *ul_t = *u_t, *al = *a;
3781: PetscInt i;
3783: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x));
3784: for (i = 0; i < totDim; ++i) ul[cind * totDim + i] = x[i];
3785: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x));
3786: if (locX_t) {
3787: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t));
3788: for (i = 0; i < totDim; ++i) ul_t[cind * totDim + i] = x_t[i];
3789: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t));
3790: }
3791: if (locA) {
3792: PetscInt subcell;
3793: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3794: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3795: for (i = 0; i < totDimAux; ++i) al[cind * totDimAux + i] = x[i];
3796: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3797: }
3798: }
3799: PetscCall(DMDestroy(&plex));
3800: if (locA) PetscCall(DMDestroy(&plexA));
3801: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3802: PetscFunctionReturn(PETSC_SUCCESS);
3803: }
3805: /*@C
3806: DMPlexRestoreCellFields - Restore the field values values for a chunk of cells
3808: Input Parameters:
3809: + dm - The `DM`
3810: . cellIS - The cells to include
3811: . locX - A local vector with the solution fields
3812: . locX_t - A local vector with solution field time derivatives, or `NULL`
3813: - locA - A local vector with auxiliary fields, or `NULL`
3815: Output Parameters:
3816: + u - The field coefficients
3817: . u_t - The fields derivative coefficients
3818: - a - The auxiliary field coefficients
3820: Level: developer
3822: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3823: @*/
3824: PetscErrorCode DMPlexRestoreCellFields(DM dm, IS cellIS, Vec locX, PeOp Vec locX_t, PeOp Vec locA, PetscScalar *u[], PetscScalar *u_t[], PetscScalar *a[])
3825: {
3826: PetscFunctionBegin;
3827: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u));
3828: if (locX_t) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u_t));
3829: if (locA) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, a));
3830: PetscFunctionReturn(PETSC_SUCCESS);
3831: }
3833: static PetscErrorCode DMPlexGetHybridCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3834: {
3835: DM plex, plexA = NULL;
3836: DMEnclosureType encAux;
3837: PetscSection section, sectionAux;
3838: PetscDS ds, dsIn;
3839: const PetscInt *cells;
3840: PetscInt cStart, cEnd, numCells, c, totDim, totDimAux, Nf, f;
3842: PetscFunctionBegin;
3848: PetscAssertPointer(u, 6);
3849: PetscAssertPointer(u_t, 7);
3850: PetscAssertPointer(a, 8);
3851: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3852: numCells = cEnd - cStart;
3853: PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3854: PetscCall(DMGetLocalSection(dm, §ion));
3855: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
3856: PetscCall(PetscDSGetNumFields(dsIn, &Nf));
3857: PetscCall(PetscDSGetTotalDimension(dsIn, &totDim));
3858: if (locA) {
3859: DM dmAux;
3860: PetscDS probAux;
3862: PetscCall(VecGetDM(locA, &dmAux));
3863: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3864: PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3865: PetscCall(DMGetLocalSection(dmAux, §ionAux));
3866: PetscCall(DMGetDS(dmAux, &probAux));
3867: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3868: }
3869: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3870: if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3871: else {
3872: *u_t = NULL;
3873: }
3874: if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3875: else {
3876: *a = NULL;
3877: }
3878: // Loop over cohesive cells
3879: for (c = cStart; c < cEnd; ++c) {
3880: const PetscInt cell = cells ? cells[c] : c;
3881: const PetscInt cind = c - cStart;
3882: PetscScalar *xf = NULL, *xc = NULL, *x = NULL, *xf_t = NULL, *xc_t = NULL;
3883: PetscScalar *ul = &(*u)[cind * totDim], *ul_t = PetscSafePointerPlusOffset(*u_t, cind * totDim);
3884: const PetscInt *cone, *ornt;
3885: PetscInt Nx = 0, Nxf, s;
3887: PetscCall(DMPlexGetCone(dm, cell, &cone));
3888: PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3889: // Put in cohesive unknowns
3890: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, &Nxf, &xf));
3891: if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &xf_t));
3892: for (f = 0; f < Nf; ++f) {
3893: PetscInt fdofIn, foff, foffIn;
3894: PetscBool cohesive;
3896: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3897: if (!cohesive) continue;
3898: PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3899: PetscCall(PetscDSGetFieldOffsetCohesive(ds, f, &foff));
3900: PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3901: for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + i] = xf[foff + i];
3902: if (locX_t)
3903: for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + i] = xf_t[foff + i];
3904: Nx += fdofIn;
3905: }
3906: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, &Nxf, &xf));
3907: if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &xf_t));
3908: // Loop over sides of surface
3909: for (s = 0; s < 2; ++s) {
3910: const PetscInt *support;
3911: const PetscInt face = cone[s];
3912: PetscDS dsC;
3913: PetscInt ssize, ncell, Nxc;
3915: // I don't think I need the face to have 0 orientation in the hybrid cell
3916: //PetscCheck(!ornt[s], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", face, cell, ornt[s]);
3917: PetscCall(DMPlexGetSupport(dm, face, &support));
3918: PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3919: if (support[0] == cell) ncell = support[1];
3920: else if (support[1] == cell) ncell = support[0];
3921: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3922: // Get closure of both face and cell, stick in cell for normal fields and face for cohesive fields
3923: PetscCall(DMGetCellDS(dm, ncell, &dsC, NULL));
3924: PetscCall(DMPlexVecGetClosure(plex, section, locX, ncell, &Nxc, &xc));
3925: if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3926: for (f = 0; f < Nf; ++f) {
3927: PetscInt fdofIn, foffIn, foff;
3928: PetscBool cohesive;
3930: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3931: if (cohesive) continue;
3932: PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3933: PetscCall(PetscDSGetFieldOffset(dsC, f, &foff));
3934: PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3935: for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + s * fdofIn + i] = xc[foff + i];
3936: if (locX_t)
3937: for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + s * fdofIn + i] = xc_t[foff + i];
3938: Nx += fdofIn;
3939: }
3940: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, ncell, &Nxc, &xc));
3941: if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3942: }
3943: PetscCheck(Nx == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for cell %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, cell, totDim);
3945: if (locA) {
3946: PetscScalar *al = &(*a)[cind * totDimAux];
3947: PetscInt subcell;
3949: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3950: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3951: PetscCheck(Nx == totDimAux, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subcell %" PetscInt_FMT "does not match DS size %" PetscInt_FMT, Nx, subcell, totDimAux);
3952: for (PetscInt i = 0; i < totDimAux; ++i) al[i] = x[i];
3953: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3954: }
3955: }
3956: PetscCall(DMDestroy(&plex));
3957: PetscCall(DMDestroy(&plexA));
3958: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3959: PetscFunctionReturn(PETSC_SUCCESS);
3960: }
3962: /*
3963: DMPlexGetHybridFields - Get the field values for the negative side (s = 0) and positive side (s = 1) of the interface
3965: Input Parameters:
3966: + dm - The full domain DM
3967: . dmX - An array of DM for the field, say an auxiliary DM, indexed by s
3968: . dsX - An array of PetscDS for the field, indexed by s
3969: . cellIS - The interface cells for which we want values
3970: . locX - An array of local vectors with the field values, indexed by s
3971: - useCell - Flag to have values come from neighboring cell rather than endcap face
3973: Output Parameter:
3974: . x - An array of field values, indexed by s
3976: Note:
3977: The arrays in `x` will be allocated using `DMGetWorkArray()`, and must be returned using `DMPlexRestoreHybridFields()`.
3979: Level: advanced
3981: .seealso: `DMPlexRestoreHybridFields()`, `DMGetWorkArray()`
3982: */
3983: static PetscErrorCode DMPlexGetHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3984: {
3985: DM plexX[2];
3986: DMEnclosureType encX[2];
3987: PetscSection sectionX[2];
3988: const PetscInt *cells;
3989: PetscInt cStart, cEnd, numCells, c, s, totDimX[2];
3991: PetscFunctionBegin;
3992: PetscAssertPointer(locX, 5);
3993: if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3994: PetscAssertPointer(dmX, 2);
3995: PetscAssertPointer(dsX, 3);
3997: PetscAssertPointer(x, 7);
3998: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3999: numCells = cEnd - cStart;
4000: for (s = 0; s < 2; ++s) {
4004: PetscCall(DMPlexConvertPlex(dmX[s], &plexX[s], PETSC_FALSE));
4005: PetscCall(DMGetEnclosureRelation(dmX[s], dm, &encX[s]));
4006: PetscCall(DMGetLocalSection(dmX[s], §ionX[s]));
4007: PetscCall(PetscDSGetTotalDimension(dsX[s], &totDimX[s]));
4008: PetscCall(DMGetWorkArray(dmX[s], numCells * totDimX[s], MPIU_SCALAR, &x[s]));
4009: }
4010: for (c = cStart; c < cEnd; ++c) {
4011: const PetscInt cell = cells ? cells[c] : c;
4012: const PetscInt cind = c - cStart;
4013: const PetscInt *cone, *ornt;
4015: PetscCall(DMPlexGetCone(dm, cell, &cone));
4016: PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
4017: //PetscCheck(!ornt[0], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", cone[0], cell, ornt[0]);
4018: for (s = 0; s < 2; ++s) {
4019: const PetscInt tdX = totDimX[s];
4020: PetscScalar *closure = NULL, *xl = &x[s][cind * tdX];
4021: PetscInt face = cone[s], point = face, subpoint, Nx, i;
4023: if (useCell) {
4024: const PetscInt *support;
4025: PetscInt ssize;
4027: PetscCall(DMPlexGetSupport(dm, face, &support));
4028: PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
4029: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", face, cell, ssize);
4030: if (support[0] == cell) point = support[1];
4031: else if (support[1] == cell) point = support[0];
4032: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
4033: }
4034: PetscCall(DMGetEnclosurePoint(plexX[s], dm, encX[s], point, &subpoint));
4035: PetscCall(DMPlexVecGetOrientedClosure_Internal(plexX[s], sectionX[s], PETSC_FALSE, locX[s], subpoint, ornt[s], &Nx, &closure));
4036: PetscCheck(Nx == tdX, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subpoint %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, subpoint, tdX);
4037: for (i = 0; i < Nx; ++i) xl[i] = closure[i];
4038: PetscCall(DMPlexVecRestoreClosure(plexX[s], sectionX[s], locX[s], subpoint, &Nx, &closure));
4039: }
4040: }
4041: for (s = 0; s < 2; ++s) PetscCall(DMDestroy(&plexX[s]));
4042: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
4043: PetscFunctionReturn(PETSC_SUCCESS);
4044: }
4046: static PetscErrorCode DMPlexRestoreHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
4047: {
4048: PetscFunctionBegin;
4049: if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
4050: PetscCall(DMRestoreWorkArray(dmX[0], 0, MPIU_SCALAR, &x[0]));
4051: PetscCall(DMRestoreWorkArray(dmX[1], 0, MPIU_SCALAR, &x[1]));
4052: PetscFunctionReturn(PETSC_SUCCESS);
4053: }
4055: /*@C
4056: DMPlexGetFaceFields - Retrieve the field values values for a chunk of faces
4058: Input Parameters:
4059: + dm - The `DM`
4060: . fStart - The first face to include
4061: . fEnd - The first face to exclude
4062: . locX - A local vector with the solution fields
4063: . locX_t - A local vector with solution field time derivatives, or `NULL`
4064: . faceGeometry - A local vector with face geometry
4065: . cellGeometry - A local vector with cell geometry
4066: - locGrad - A local vector with field gradients, or `NULL`
4068: Output Parameters:
4069: + Nface - The number of faces with field values
4070: . uL - The field values at the left side of the face
4071: - uR - The field values at the right side of the face
4073: Level: developer
4075: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4076: @*/
4077: PetscErrorCode DMPlexGetFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, PeOp Vec locX_t, Vec faceGeometry, Vec cellGeometry, PeOp Vec locGrad, PetscInt *Nface, PetscScalar *uL[], PetscScalar *uR[])
4078: {
4079: DM dmFace, dmCell, dmGrad = NULL;
4080: PetscSection section;
4081: PetscDS prob;
4082: DMLabel ghostLabel;
4083: const PetscScalar *facegeom, *cellgeom, *x, *lgrad;
4084: PetscBool *isFE;
4085: PetscInt dim, Nf, f, Nc, numFaces = fEnd - fStart, iface, face;
4087: PetscFunctionBegin;
4094: PetscAssertPointer(uL, 10);
4095: PetscAssertPointer(uR, 11);
4096: PetscCall(DMGetDimension(dm, &dim));
4097: PetscCall(DMGetDS(dm, &prob));
4098: PetscCall(DMGetLocalSection(dm, §ion));
4099: PetscCall(PetscDSGetNumFields(prob, &Nf));
4100: PetscCall(PetscDSGetTotalComponents(prob, &Nc));
4101: PetscCall(PetscMalloc1(Nf, &isFE));
4102: for (f = 0; f < Nf; ++f) {
4103: PetscObject obj;
4104: PetscClassId id;
4106: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4107: PetscCall(PetscObjectGetClassId(obj, &id));
4108: if (id == PETSCFE_CLASSID) {
4109: isFE[f] = PETSC_TRUE;
4110: } else if (id == PETSCFV_CLASSID) {
4111: isFE[f] = PETSC_FALSE;
4112: } else {
4113: isFE[f] = PETSC_FALSE;
4114: }
4115: }
4116: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4117: PetscCall(VecGetArrayRead(locX, &x));
4118: PetscCall(VecGetDM(faceGeometry, &dmFace));
4119: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4120: PetscCall(VecGetDM(cellGeometry, &dmCell));
4121: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4122: if (locGrad) {
4123: PetscCall(VecGetDM(locGrad, &dmGrad));
4124: PetscCall(VecGetArrayRead(locGrad, &lgrad));
4125: }
4126: PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uL));
4127: PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uR));
4128: /* Right now just eat the extra work for FE (could make a cell loop) */
4129: for (face = fStart, iface = 0; face < fEnd; ++face) {
4130: const PetscInt *cells;
4131: PetscFVFaceGeom *fg;
4132: PetscFVCellGeom *cgL, *cgR;
4133: PetscScalar *xL, *xR, *gL, *gR;
4134: PetscScalar *uLl = *uL, *uRl = *uR;
4135: PetscInt ghost, nsupp, nchild;
4137: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4138: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4139: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4140: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4141: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4142: PetscCall(DMPlexGetSupport(dm, face, &cells));
4143: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4144: PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4145: for (f = 0; f < Nf; ++f) {
4146: PetscInt off;
4148: PetscCall(PetscDSGetComponentOffset(prob, f, &off));
4149: if (isFE[f]) {
4150: const PetscInt *cone;
4151: PetscInt comp, coneSizeL, coneSizeR, faceLocL, faceLocR, ldof, rdof, d;
4153: xL = xR = NULL;
4154: PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4155: PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[0], &ldof, &xL));
4156: PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[1], &rdof, &xR));
4157: PetscCall(DMPlexGetCone(dm, cells[0], &cone));
4158: PetscCall(DMPlexGetConeSize(dm, cells[0], &coneSizeL));
4159: for (faceLocL = 0; faceLocL < coneSizeL; ++faceLocL)
4160: if (cone[faceLocL] == face) break;
4161: PetscCall(DMPlexGetCone(dm, cells[1], &cone));
4162: PetscCall(DMPlexGetConeSize(dm, cells[1], &coneSizeR));
4163: for (faceLocR = 0; faceLocR < coneSizeR; ++faceLocR)
4164: if (cone[faceLocR] == face) break;
4165: PetscCheck(faceLocL != coneSizeL || faceLocR != coneSizeR, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %" PetscInt_FMT " in cone of cell %" PetscInt_FMT " or cell %" PetscInt_FMT, face, cells[0], cells[1]);
4166: /* Check that FEM field has values in the right cell (sometimes its an FV ghost cell) */
4167: /* TODO: this is a hack that might not be right for nonconforming */
4168: if (faceLocL < coneSizeL) {
4169: PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocL, xL, &uLl[iface * Nc + off]));
4170: if (rdof == ldof && faceLocR < coneSizeR) PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4171: else {
4172: for (d = 0; d < comp; ++d) uRl[iface * Nc + off + d] = uLl[iface * Nc + off + d];
4173: }
4174: } else {
4175: PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4176: PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4177: for (d = 0; d < comp; ++d) uLl[iface * Nc + off + d] = uRl[iface * Nc + off + d];
4178: }
4179: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[0], &ldof, &xL));
4180: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[1], &rdof, &xR));
4181: } else {
4182: PetscFV fv;
4183: PetscInt numComp, c;
4185: PetscCall(PetscDSGetDiscretization(prob, f, (PetscObject *)&fv));
4186: PetscCall(PetscFVGetNumComponents(fv, &numComp));
4187: PetscCall(DMPlexPointLocalFieldRead(dm, cells[0], f, x, &xL));
4188: PetscCall(DMPlexPointLocalFieldRead(dm, cells[1], f, x, &xR));
4189: if (dmGrad) {
4190: PetscReal dxL[3], dxR[3];
4192: PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], lgrad, &gL));
4193: PetscCall(DMPlexPointLocalRead(dmGrad, cells[1], lgrad, &gR));
4194: DMPlex_WaxpyD_Internal(dim, -1, cgL->centroid, fg->centroid, dxL);
4195: DMPlex_WaxpyD_Internal(dim, -1, cgR->centroid, fg->centroid, dxR);
4196: for (c = 0; c < numComp; ++c) {
4197: uLl[iface * Nc + off + c] = xL[c] + DMPlex_DotD_Internal(dim, &gL[c * dim], dxL);
4198: uRl[iface * Nc + off + c] = xR[c] + DMPlex_DotD_Internal(dim, &gR[c * dim], dxR);
4199: }
4200: } else {
4201: for (c = 0; c < numComp; ++c) {
4202: uLl[iface * Nc + off + c] = xL[c];
4203: uRl[iface * Nc + off + c] = xR[c];
4204: }
4205: }
4206: }
4207: }
4208: ++iface;
4209: }
4210: *Nface = iface;
4211: PetscCall(VecRestoreArrayRead(locX, &x));
4212: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4213: PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4214: if (locGrad) PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
4215: PetscCall(PetscFree(isFE));
4216: PetscFunctionReturn(PETSC_SUCCESS);
4217: }
4219: /*@C
4220: DMPlexRestoreFaceFields - Restore the field values values for a chunk of faces
4222: Input Parameters:
4223: + dm - The `DM`
4224: . fStart - The first face to include
4225: . fEnd - The first face to exclude
4226: . locX - A local vector with the solution fields
4227: . locX_t - A local vector with solution field time derivatives, or `NULL`
4228: . faceGeometry - A local vector with face geometry
4229: . cellGeometry - A local vector with cell geometry
4230: - locGrad - A local vector with field gradients, or `NULL`
4232: Output Parameters:
4233: + Nface - The number of faces with field values
4234: . uL - The field values at the left side of the face
4235: - uR - The field values at the right side of the face
4237: Level: developer
4239: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4240: @*/
4241: PetscErrorCode DMPlexRestoreFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, PeOp Vec locX_t, Vec faceGeometry, Vec cellGeometry, PeOp Vec locGrad, PetscInt *Nface, PetscScalar *uL[], PetscScalar *uR[])
4242: {
4243: PetscFunctionBegin;
4244: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uL));
4245: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uR));
4246: PetscFunctionReturn(PETSC_SUCCESS);
4247: }
4249: /*@C
4250: DMPlexGetFaceGeometry - Retrieve the geometric values for a chunk of faces
4252: Input Parameters:
4253: + dm - The `DM`
4254: . fStart - The first face to include
4255: . fEnd - The first face to exclude
4256: . faceGeometry - A local vector with face geometry
4257: - cellGeometry - A local vector with cell geometry
4259: Output Parameters:
4260: + Nface - The number of faces with field values
4261: . fgeom - The face centroid and normals
4262: - vol - The cell volumes
4264: Level: developer
4266: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4267: @*/
4268: PetscErrorCode DMPlexGetFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom *fgeom[], PetscReal *vol[])
4269: {
4270: DM dmFace, dmCell;
4271: DMLabel ghostLabel;
4272: const PetscScalar *facegeom, *cellgeom;
4273: PetscInt dim, numFaces = fEnd - fStart, iface, face;
4275: PetscFunctionBegin;
4279: PetscAssertPointer(fgeom, 7);
4280: PetscAssertPointer(vol, 8);
4281: PetscCall(DMGetDimension(dm, &dim));
4282: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4283: PetscCall(VecGetDM(faceGeometry, &dmFace));
4284: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4285: PetscCall(VecGetDM(cellGeometry, &dmCell));
4286: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4287: PetscCall(PetscMalloc1(numFaces, fgeom));
4288: PetscCall(DMGetWorkArray(dm, numFaces * 2, MPIU_SCALAR, vol));
4289: for (face = fStart, iface = 0; face < fEnd; ++face) {
4290: const PetscInt *cells;
4291: PetscFVFaceGeom *fg;
4292: PetscFVCellGeom *cgL, *cgR;
4293: PetscFVFaceGeom *fgeoml = *fgeom;
4294: PetscReal *voll = *vol;
4295: PetscInt ghost, d, nchild, nsupp;
4297: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4298: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4299: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4300: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4301: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4302: PetscCall(DMPlexGetSupport(dm, face, &cells));
4303: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4304: PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4305: for (d = 0; d < dim; ++d) {
4306: fgeoml[iface].centroid[d] = fg->centroid[d];
4307: fgeoml[iface].normal[d] = fg->normal[d];
4308: }
4309: voll[iface * 2 + 0] = cgL->volume;
4310: voll[iface * 2 + 1] = cgR->volume;
4311: ++iface;
4312: }
4313: *Nface = iface;
4314: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4315: PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4316: PetscFunctionReturn(PETSC_SUCCESS);
4317: }
4319: /*@C
4320: DMPlexRestoreFaceGeometry - Restore the field values values for a chunk of faces
4322: Input Parameters:
4323: + dm - The `DM`
4324: . fStart - The first face to include
4325: . fEnd - The first face to exclude
4326: . faceGeometry - A local vector with face geometry
4327: - cellGeometry - A local vector with cell geometry
4329: Output Parameters:
4330: + Nface - The number of faces with field values
4331: . fgeom - The face centroid and normals
4332: - vol - The cell volumes
4334: Level: developer
4336: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4337: @*/
4338: PetscErrorCode DMPlexRestoreFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom *fgeom[], PetscReal *vol[])
4339: {
4340: PetscFunctionBegin;
4341: PetscCall(PetscFree(*fgeom));
4342: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_REAL, vol));
4343: PetscFunctionReturn(PETSC_SUCCESS);
4344: }
4346: PetscErrorCode DMSNESGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscFEGeomMode mode, PetscFEGeom **geom)
4347: {
4348: char composeStr[33] = {0};
4349: PetscObjectId id;
4350: PetscContainer container;
4352: PetscFunctionBegin;
4353: PetscCall(PetscObjectGetId((PetscObject)quad, &id));
4354: PetscCall(PetscSNPrintf(composeStr, 32, "DMSNESGetFEGeom_%" PetscInt64_FMT "\n", id));
4355: PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
4356: if (container) {
4357: PetscCall(PetscContainerGetPointer(container, (void **)geom));
4358: } else {
4359: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, mode, geom));
4360: PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
4361: PetscCall(PetscContainerSetPointer(container, (void *)*geom));
4362: PetscCall(PetscContainerSetCtxDestroy(container, PetscContainerCtxDestroy_PetscFEGeom));
4363: PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
4364: PetscCall(PetscContainerDestroy(&container));
4365: }
4366: PetscFunctionReturn(PETSC_SUCCESS);
4367: }
4369: PetscErrorCode DMSNESRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4370: {
4371: PetscFunctionBegin;
4372: *geom = NULL;
4373: PetscFunctionReturn(PETSC_SUCCESS);
4374: }
4376: PetscErrorCode DMPlexComputeResidual_Patch_Internal(DM dm, PetscSection section, IS cellIS, PetscReal t, Vec locX, Vec locX_t, Vec locF, void *user)
4377: {
4378: DM_Plex *mesh = (DM_Plex *)dm->data;
4379: const char *name = "Residual";
4380: DM dmAux = NULL;
4381: DMLabel ghostLabel = NULL;
4382: PetscDS prob = NULL;
4383: PetscDS probAux = NULL;
4384: PetscBool useFEM = PETSC_FALSE;
4385: PetscBool isImplicit = (locX_t || t == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
4386: DMField coordField = NULL;
4387: Vec locA;
4388: PetscScalar *u = NULL, *u_t, *a, *uL = NULL, *uR = NULL;
4389: IS chunkIS;
4390: const PetscInt *cells;
4391: PetscInt cStart, cEnd, numCells;
4392: PetscInt Nf, f, totDim, totDimAux, numChunks, cellChunkSize, chunk, fStart, fEnd;
4393: PetscInt maxDegree = PETSC_INT_MAX;
4394: PetscFormKey key;
4395: PetscQuadrature affineQuad = NULL, *quads = NULL;
4396: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
4398: PetscFunctionBegin;
4399: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4400: /* FEM+FVM */
4401: /* 1: Get sizes from dm and dmAux */
4402: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4403: PetscCall(DMGetDS(dm, &prob));
4404: PetscCall(PetscDSGetNumFields(prob, &Nf));
4405: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4406: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
4407: if (locA) {
4408: PetscCall(VecGetDM(locA, &dmAux));
4409: PetscCall(DMGetDS(dmAux, &probAux));
4410: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4411: }
4412: /* 2: Get geometric data */
4413: for (f = 0; f < Nf; ++f) {
4414: PetscObject obj;
4415: PetscClassId id;
4416: PetscBool fimp;
4418: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4419: if (isImplicit != fimp) continue;
4420: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4421: PetscCall(PetscObjectGetClassId(obj, &id));
4422: if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
4423: PetscCheck(id != PETSCFV_CLASSID, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Use of FVM with PCPATCH not yet implemented");
4424: }
4425: if (useFEM) {
4426: PetscCall(DMGetCoordinateField(dm, &coordField));
4427: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4428: if (maxDegree <= 1) {
4429: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
4430: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FEGEOM_BASIC, &affineGeom));
4431: } else {
4432: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
4433: for (f = 0; f < Nf; ++f) {
4434: PetscObject obj;
4435: PetscClassId id;
4436: PetscBool fimp;
4438: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4439: if (isImplicit != fimp) continue;
4440: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4441: PetscCall(PetscObjectGetClassId(obj, &id));
4442: if (id == PETSCFE_CLASSID) {
4443: PetscFE fe = (PetscFE)obj;
4445: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
4446: PetscCall(PetscObjectReference((PetscObject)quads[f]));
4447: PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FEGEOM_BASIC, &geoms[f]));
4448: }
4449: }
4450: }
4451: }
4452: /* Loop over chunks */
4453: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4454: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
4455: if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
4456: numCells = cEnd - cStart;
4457: numChunks = 1;
4458: cellChunkSize = numCells / numChunks;
4459: numChunks = PetscMin(1, numCells);
4460: key.label = NULL;
4461: key.value = 0;
4462: key.part = 0;
4463: for (chunk = 0; chunk < numChunks; ++chunk) {
4464: PetscScalar *elemVec, *fluxL = NULL, *fluxR = NULL;
4465: PetscReal *vol = NULL;
4466: PetscFVFaceGeom *fgeom = NULL;
4467: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
4468: PetscInt numFaces = 0;
4470: /* Extract field coefficients */
4471: if (useFEM) {
4472: PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
4473: PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4474: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4475: PetscCall(PetscArrayzero(elemVec, numCells * totDim));
4476: }
4477: /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
4478: /* Loop over fields */
4479: for (f = 0; f < Nf; ++f) {
4480: PetscObject obj;
4481: PetscClassId id;
4482: PetscBool fimp;
4483: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
4485: key.field = f;
4486: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4487: if (isImplicit != fimp) continue;
4488: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4489: PetscCall(PetscObjectGetClassId(obj, &id));
4490: if (id == PETSCFE_CLASSID) {
4491: PetscFE fe = (PetscFE)obj;
4492: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
4493: PetscFEGeom *chunkGeom = NULL;
4494: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
4495: PetscInt Nq, Nb;
4497: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4498: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4499: PetscCall(PetscFEGetDimension(fe, &Nb));
4500: blockSize = Nb;
4501: batchSize = numBlocks * blockSize;
4502: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4503: numChunks = numCells / (numBatches * batchSize);
4504: Ne = numChunks * numBatches * batchSize;
4505: Nr = numCells % (numBatches * batchSize);
4506: offset = numCells - Nr;
4507: /* Integrate FE residual to get elemVec (need fields at quadrature points) */
4508: /* For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
4509: PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
4510: PetscCall(PetscFEIntegrateResidual(prob, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4511: PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
4512: PetscCall(PetscFEIntegrateResidual(prob, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, &elemVec[offset * totDim]));
4513: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
4514: } else if (id == PETSCFV_CLASSID) {
4515: PetscFV fv = (PetscFV)obj;
4517: Ne = numFaces;
4518: /* Riemann solve over faces (need fields at face centroids) */
4519: /* We need to evaluate FE fields at those coordinates */
4520: PetscCall(PetscFVIntegrateRHSFunction(fv, prob, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
4521: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
4522: }
4523: /* Loop over domain */
4524: if (useFEM) {
4525: /* Add elemVec to locX */
4526: for (c = cS; c < cE; ++c) {
4527: const PetscInt cell = cells ? cells[c] : c;
4528: const PetscInt cind = c - cStart;
4530: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
4531: if (ghostLabel) {
4532: PetscInt ghostVal;
4534: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4535: if (ghostVal > 0) continue;
4536: }
4537: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
4538: }
4539: }
4540: /* Handle time derivative */
4541: if (locX_t) {
4542: PetscScalar *x_t, *fa;
4544: PetscCall(VecGetArray(locF, &fa));
4545: PetscCall(VecGetArray(locX_t, &x_t));
4546: for (f = 0; f < Nf; ++f) {
4547: PetscFV fv;
4548: PetscObject obj;
4549: PetscClassId id;
4550: PetscInt pdim, d;
4552: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4553: PetscCall(PetscObjectGetClassId(obj, &id));
4554: if (id != PETSCFV_CLASSID) continue;
4555: fv = (PetscFV)obj;
4556: PetscCall(PetscFVGetNumComponents(fv, &pdim));
4557: for (c = cS; c < cE; ++c) {
4558: const PetscInt cell = cells ? cells[c] : c;
4559: PetscScalar *u_t, *r;
4561: if (ghostLabel) {
4562: PetscInt ghostVal;
4564: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4565: if (ghostVal > 0) continue;
4566: }
4567: PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
4568: PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
4569: for (d = 0; d < pdim; ++d) r[d] += u_t[d];
4570: }
4571: }
4572: PetscCall(VecRestoreArray(locX_t, &x_t));
4573: PetscCall(VecRestoreArray(locF, &fa));
4574: }
4575: if (useFEM) {
4576: PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4577: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4578: }
4579: }
4580: if (useFEM) PetscCall(ISDestroy(&chunkIS));
4581: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
4582: /* TODO Could include boundary residual here (see DMPlexComputeResidualByKey) */
4583: if (useFEM) {
4584: if (maxDegree <= 1) {
4585: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4586: PetscCall(PetscQuadratureDestroy(&affineQuad));
4587: } else {
4588: for (f = 0; f < Nf; ++f) {
4589: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4590: PetscCall(PetscQuadratureDestroy(&quads[f]));
4591: }
4592: PetscCall(PetscFree2(quads, geoms));
4593: }
4594: }
4595: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4596: PetscFunctionReturn(PETSC_SUCCESS);
4597: }
4599: /*
4600: We always assemble JacP, and if the matrix is different from Jac and two different sets of point functions are provided, we also assemble Jac
4602: X - The local solution vector
4603: X_t - The local solution time derivative vector, or NULL
4604: */
4605: PetscErrorCode DMPlexComputeJacobian_Patch_Internal(DM dm, PetscSection section, PetscSection globalSection, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *ctx)
4606: {
4607: DM_Plex *mesh = (DM_Plex *)dm->data;
4608: const char *name = "Jacobian", *nameP = "JacobianPre";
4609: DM dmAux = NULL;
4610: PetscDS prob, probAux = NULL;
4611: PetscSection sectionAux = NULL;
4612: Vec A;
4613: DMField coordField;
4614: PetscFEGeom *cgeomFEM;
4615: PetscQuadrature qGeom = NULL;
4616: Mat J = Jac, JP = JacP;
4617: PetscScalar *work, *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL, *elemMatD = NULL;
4618: PetscBool hasJac, hasPrec, hasDyn, assembleJac, *isFE, hasFV = PETSC_FALSE;
4619: const PetscInt *cells;
4620: PetscFormKey key;
4621: PetscInt Nf, fieldI, fieldJ, maxDegree, numCells, cStart, cEnd, numChunks, chunkSize, chunk, totDim, totDimAux = 0, sz, wsz, off = 0, offCell = 0;
4623: PetscFunctionBegin;
4624: PetscCall(ISGetLocalSize(cellIS, &numCells));
4625: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4626: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4627: PetscCall(DMGetDS(dm, &prob));
4628: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &A));
4629: if (A) {
4630: PetscCall(VecGetDM(A, &dmAux));
4631: PetscCall(DMGetLocalSection(dmAux, §ionAux));
4632: PetscCall(DMGetDS(dmAux, &probAux));
4633: }
4634: /* Get flags */
4635: PetscCall(PetscDSGetNumFields(prob, &Nf));
4636: PetscCall(DMGetWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4637: for (fieldI = 0; fieldI < Nf; ++fieldI) {
4638: PetscObject disc;
4639: PetscClassId id;
4640: PetscCall(PetscDSGetDiscretization(prob, fieldI, &disc));
4641: PetscCall(PetscObjectGetClassId(disc, &id));
4642: if (id == PETSCFE_CLASSID) {
4643: isFE[fieldI] = PETSC_TRUE;
4644: } else if (id == PETSCFV_CLASSID) {
4645: hasFV = PETSC_TRUE;
4646: isFE[fieldI] = PETSC_FALSE;
4647: }
4648: }
4649: PetscCall(PetscDSHasJacobian(prob, &hasJac));
4650: PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
4651: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
4652: assembleJac = hasJac && hasPrec && (Jac != JacP) ? PETSC_TRUE : PETSC_FALSE;
4653: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
4654: if (hasFV) PetscCall(MatSetOption(JP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE)); /* No allocated space for FV stuff, so ignore the zero entries */
4655: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4656: if (probAux) PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4657: /* Compute batch sizes */
4658: if (isFE[0]) {
4659: PetscFE fe;
4660: PetscQuadrature q;
4661: PetscInt numQuadPoints, numBatches, batchSize, numBlocks, blockSize, Nb;
4663: PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4664: PetscCall(PetscFEGetQuadrature(fe, &q));
4665: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &numQuadPoints, NULL, NULL));
4666: PetscCall(PetscFEGetDimension(fe, &Nb));
4667: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4668: blockSize = Nb * numQuadPoints;
4669: batchSize = numBlocks * blockSize;
4670: chunkSize = numBatches * batchSize;
4671: numChunks = numCells / chunkSize + numCells % chunkSize;
4672: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4673: } else {
4674: chunkSize = numCells;
4675: numChunks = 1;
4676: }
4677: /* Get work space */
4678: wsz = (((X ? 1 : 0) + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize;
4679: PetscCall(DMGetWorkArray(dm, wsz, MPIU_SCALAR, &work));
4680: PetscCall(PetscArrayzero(work, wsz));
4681: off = 0;
4682: u = X ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4683: u_t = X_t ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4684: a = dmAux ? (sz = chunkSize * totDimAux, off += sz, work + off - sz) : NULL;
4685: elemMat = hasJac ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4686: elemMatP = hasPrec ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4687: elemMatD = hasDyn ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4688: PetscCheck(off == wsz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Error is workspace size %" PetscInt_FMT " should be %" PetscInt_FMT, off, wsz);
4689: /* Setup geometry */
4690: PetscCall(DMGetCoordinateField(dm, &coordField));
4691: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4692: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
4693: if (!qGeom) {
4694: PetscFE fe;
4696: PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4697: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
4698: PetscCall(PetscObjectReference((PetscObject)qGeom));
4699: }
4700: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FEGEOM_BASIC, &cgeomFEM));
4701: /* Compute volume integrals */
4702: if (assembleJac) PetscCall(MatZeroEntries(J));
4703: PetscCall(MatZeroEntries(JP));
4704: key.label = NULL;
4705: key.value = 0;
4706: key.part = 0;
4707: for (chunk = 0; chunk < numChunks; ++chunk, offCell += chunkSize) {
4708: const PetscInt Ncell = PetscMin(chunkSize, numCells - offCell);
4709: PetscInt c;
4711: /* Extract values */
4712: for (c = 0; c < Ncell; ++c) {
4713: const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4714: PetscScalar *x = NULL, *x_t = NULL;
4715: PetscInt i;
4717: if (X) {
4718: PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
4719: for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
4720: PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
4721: }
4722: if (X_t) {
4723: PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
4724: for (i = 0; i < totDim; ++i) u_t[c * totDim + i] = x_t[i];
4725: PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
4726: }
4727: if (dmAux) {
4728: PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, A, cell, NULL, &x));
4729: for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
4730: PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, A, cell, NULL, &x));
4731: }
4732: }
4733: for (fieldI = 0; fieldI < Nf; ++fieldI) {
4734: PetscFE fe;
4735: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
4736: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
4737: key.field = fieldI * Nf + fieldJ;
4738: if (hasJac) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMat));
4739: if (hasPrec) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatP));
4740: if (hasDyn) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatD));
4741: }
4742: /* For finite volume, add the identity */
4743: if (!isFE[fieldI]) {
4744: PetscFV fv;
4745: PetscInt eOffset = 0, Nc, fc, foff;
4747: PetscCall(PetscDSGetFieldOffset(prob, fieldI, &foff));
4748: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
4749: PetscCall(PetscFVGetNumComponents(fv, &Nc));
4750: for (c = 0; c < chunkSize; ++c, eOffset += totDim * totDim) {
4751: for (fc = 0; fc < Nc; ++fc) {
4752: const PetscInt i = foff + fc;
4753: if (hasJac) elemMat[eOffset + i * totDim + i] = 1.0;
4754: if (hasPrec) elemMatP[eOffset + i * totDim + i] = 1.0;
4755: }
4756: }
4757: }
4758: }
4759: /* Add contribution from X_t */
4760: if (hasDyn) {
4761: for (c = 0; c < chunkSize * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
4762: }
4763: /* Insert values into matrix */
4764: for (c = 0; c < Ncell; ++c) {
4765: const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4766: if (mesh->printFEM > 1) {
4767: if (hasJac) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[(c - cStart) * totDim * totDim]));
4768: if (hasPrec) PetscCall(DMPrintCellMatrix(cell, nameP, totDim, totDim, &elemMatP[(c - cStart) * totDim * totDim]));
4769: }
4770: if (assembleJac) PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4771: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JP, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4772: }
4773: }
4774: /* Cleanup */
4775: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4776: PetscCall(PetscQuadratureDestroy(&qGeom));
4777: if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
4778: PetscCall(DMRestoreWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4779: PetscCall(DMRestoreWorkArray(dm, ((1 + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize, MPIU_SCALAR, &work));
4780: /* Compute boundary integrals */
4781: /* PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, ctx)); */
4782: /* Assemble matrix */
4783: if (assembleJac) {
4784: PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
4785: PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
4786: }
4787: PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
4788: PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
4789: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4790: PetscFunctionReturn(PETSC_SUCCESS);
4791: }
4793: /* FEM Assembly Function */
4795: static PetscErrorCode DMConvertPlex_Internal(DM dm, DM *plex, PetscBool copy)
4796: {
4797: PetscBool isPlex;
4799: PetscFunctionBegin;
4800: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
4801: if (isPlex) {
4802: *plex = dm;
4803: PetscCall(PetscObjectReference((PetscObject)dm));
4804: } else {
4805: PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
4806: if (!*plex) {
4807: PetscCall(DMConvert(dm, DMPLEX, plex));
4808: PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
4809: } else {
4810: PetscCall(PetscObjectReference((PetscObject)*plex));
4811: }
4812: if (copy) PetscCall(DMCopyAuxiliaryVec(dm, *plex));
4813: }
4814: PetscFunctionReturn(PETSC_SUCCESS);
4815: }
4817: /*@
4818: DMPlexGetGeometryFVM - Return precomputed geometric data
4820: Collective
4822: Input Parameter:
4823: . dm - The `DM`
4825: Output Parameters:
4826: + facegeom - The values precomputed from face geometry
4827: . cellgeom - The values precomputed from cell geometry
4828: - minRadius - The minimum radius over the mesh of an inscribed sphere in a cell, or `NULL` if not needed
4830: Level: developer
4832: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMTSSetRHSFunctionLocal()`
4833: @*/
4834: PetscErrorCode DMPlexGetGeometryFVM(DM dm, Vec *facegeom, Vec *cellgeom, PeOp PetscReal *minRadius)
4835: {
4836: DM plex;
4838: PetscFunctionBegin;
4840: PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4841: PetscCall(DMPlexGetDataFVM(plex, NULL, cellgeom, facegeom, NULL));
4842: if (minRadius) PetscCall(DMPlexGetMinRadius(plex, minRadius));
4843: PetscCall(DMDestroy(&plex));
4844: PetscFunctionReturn(PETSC_SUCCESS);
4845: }
4847: /*@
4848: DMPlexGetGradientDM - Return gradient data layout
4850: Collective
4852: Input Parameters:
4853: + dm - The `DM`
4854: - fv - The `PetscFV`
4856: Output Parameter:
4857: . dmGrad - The layout for gradient values
4859: Level: developer
4861: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetGeometryFVM()`
4862: @*/
4863: PetscErrorCode DMPlexGetGradientDM(DM dm, PetscFV fv, DM *dmGrad)
4864: {
4865: DM plex;
4866: PetscBool computeGradients;
4868: PetscFunctionBegin;
4871: PetscAssertPointer(dmGrad, 3);
4872: PetscCall(PetscFVGetComputeGradients(fv, &computeGradients));
4873: if (!computeGradients) {
4874: *dmGrad = NULL;
4875: PetscFunctionReturn(PETSC_SUCCESS);
4876: }
4877: PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4878: PetscCall(DMPlexGetDataFVM(plex, fv, NULL, NULL, dmGrad));
4879: PetscCall(DMDestroy(&plex));
4880: PetscFunctionReturn(PETSC_SUCCESS);
4881: }
4883: static PetscErrorCode DMPlexComputeBdResidual_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF, DMField coordField, IS facetIS)
4884: {
4885: DM_Plex *mesh = (DM_Plex *)dm->data;
4886: DM plex = NULL, plexA = NULL;
4887: const char *name = "BdResidual";
4888: DMEnclosureType encAux;
4889: PetscDS prob, probAux = NULL;
4890: PetscSection section, sectionAux = NULL;
4891: Vec locA = NULL;
4892: PetscScalar *u = NULL, *u_t = NULL, *a = NULL, *elemVec = NULL;
4893: PetscInt totDim, totDimAux = 0;
4895: PetscFunctionBegin;
4896: PetscCall(DMConvert(dm, DMPLEX, &plex));
4897: PetscCall(DMGetLocalSection(dm, §ion));
4898: PetscCall(DMGetDS(dm, &prob));
4899: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4900: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
4901: if (locA) {
4902: DM dmAux;
4904: PetscCall(VecGetDM(locA, &dmAux));
4905: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
4906: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
4907: PetscCall(DMGetDS(plexA, &probAux));
4908: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4909: PetscCall(DMGetLocalSection(plexA, §ionAux));
4910: }
4911: {
4912: PetscFEGeom *fgeom;
4913: PetscInt maxDegree;
4914: PetscQuadrature qGeom = NULL;
4915: IS pointIS;
4916: const PetscInt *points;
4917: PetscInt numFaces, face, Nq;
4919: PetscCall(DMLabelGetStratumIS(key.label, key.value, &pointIS));
4920: if (!pointIS) goto end; /* No points with that id on this process */
4921: {
4922: IS isectIS;
4924: /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
4925: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
4926: PetscCall(ISDestroy(&pointIS));
4927: pointIS = isectIS;
4928: }
4929: PetscCall(ISGetLocalSize(pointIS, &numFaces));
4930: PetscCall(ISGetIndices(pointIS, &points));
4931: PetscCall(PetscMalloc4(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, numFaces * totDim, &elemVec, (locA ? (size_t)numFaces * totDimAux : 0), &a));
4932: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
4933: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
4934: if (!qGeom) {
4935: PetscFE fe;
4937: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4938: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
4939: PetscCall(PetscObjectReference((PetscObject)qGeom));
4940: }
4941: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
4942: PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_FEGEOM_BOUNDARY, &fgeom));
4943: for (face = 0; face < numFaces; ++face) {
4944: const PetscInt point = points[face], *support;
4945: PetscScalar *x = NULL;
4946: PetscInt i;
4948: PetscCall(DMPlexGetSupport(dm, point, &support));
4949: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
4950: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
4951: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
4952: if (locX_t) {
4953: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
4954: for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
4955: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
4956: }
4957: if (locA) {
4958: PetscInt subp;
4960: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
4961: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
4962: for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
4963: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
4964: }
4965: }
4966: PetscCall(PetscArrayzero(elemVec, numFaces * totDim));
4967: {
4968: PetscFE fe;
4969: PetscInt Nb;
4970: PetscFEGeom *chunkGeom = NULL;
4971: /* Conforming batches */
4972: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
4973: /* Remainder */
4974: PetscInt Nr, offset;
4976: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4977: PetscCall(PetscFEGetDimension(fe, &Nb));
4978: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4979: /* TODO: documentation is unclear about what is going on with these numbers: how should Nb / Nq factor in ? */
4980: blockSize = Nb;
4981: batchSize = numBlocks * blockSize;
4982: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4983: numChunks = numFaces / (numBatches * batchSize);
4984: Ne = numChunks * numBatches * batchSize;
4985: Nr = numFaces % (numBatches * batchSize);
4986: offset = numFaces - Nr;
4987: PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
4988: PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4989: PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
4990: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
4991: PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
4992: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
4993: }
4994: for (face = 0; face < numFaces; ++face) {
4995: const PetscInt point = points[face], *support;
4997: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(point, name, totDim, &elemVec[face * totDim]));
4998: PetscCall(DMPlexGetSupport(plex, point, &support));
4999: PetscCall(DMPlexVecSetClosure(plex, NULL, locF, support[0], &elemVec[face * totDim], ADD_ALL_VALUES));
5000: }
5001: PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5002: PetscCall(PetscQuadratureDestroy(&qGeom));
5003: PetscCall(ISRestoreIndices(pointIS, &points));
5004: PetscCall(ISDestroy(&pointIS));
5005: PetscCall(PetscFree4(u, u_t, elemVec, a));
5006: }
5007: end:
5008: if (mesh->printFEM) {
5009: PetscSection s;
5010: Vec locFbc;
5011: PetscInt pStart, pEnd, maxDof;
5012: PetscScalar *zeroes;
5014: PetscCall(DMGetLocalSection(dm, &s));
5015: PetscCall(VecDuplicate(locF, &locFbc));
5016: PetscCall(VecCopy(locF, locFbc));
5017: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
5018: PetscCall(PetscSectionGetMaxDof(s, &maxDof));
5019: PetscCall(PetscCalloc1(maxDof, &zeroes));
5020: for (PetscInt p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, s, p, zeroes, INSERT_BC_VALUES));
5021: PetscCall(PetscFree(zeroes));
5022: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5023: PetscCall(VecDestroy(&locFbc));
5024: }
5025: PetscCall(DMDestroy(&plex));
5026: PetscCall(DMDestroy(&plexA));
5027: PetscFunctionReturn(PETSC_SUCCESS);
5028: }
5030: PetscErrorCode DMPlexComputeBdResidualSingle(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF)
5031: {
5032: DMField coordField;
5033: DMLabel depthLabel;
5034: IS facetIS;
5035: PetscInt dim;
5037: PetscFunctionBegin;
5038: PetscCall(DMGetDimension(dm, &dim));
5039: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5040: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5041: PetscCall(DMGetCoordinateField(dm, &coordField));
5042: PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
5043: PetscCall(ISDestroy(&facetIS));
5044: PetscFunctionReturn(PETSC_SUCCESS);
5045: }
5047: static PetscErrorCode DMPlexComputeBdResidual_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5048: {
5049: PetscDS prob;
5050: PetscInt numBd, bd;
5051: DMField coordField = NULL;
5052: IS facetIS = NULL;
5053: DMLabel depthLabel;
5054: PetscInt dim;
5056: PetscFunctionBegin;
5057: PetscCall(DMGetDS(dm, &prob));
5058: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5059: PetscCall(DMGetDimension(dm, &dim));
5060: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5061: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
5062: for (bd = 0; bd < numBd; ++bd) {
5063: PetscWeakForm wf;
5064: DMBoundaryConditionType type;
5065: DMLabel label;
5066: const PetscInt *values;
5067: PetscInt field, numValues, v;
5068: PetscObject obj;
5069: PetscClassId id;
5070: PetscFormKey key;
5072: PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &field, NULL, NULL, NULL, NULL, NULL));
5073: if (type & DM_BC_ESSENTIAL) continue;
5074: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
5075: PetscCall(PetscObjectGetClassId(obj, &id));
5076: if (id != PETSCFE_CLASSID) continue;
5077: if (!facetIS) {
5078: DMLabel depthLabel;
5079: PetscInt dim;
5081: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5082: PetscCall(DMGetDimension(dm, &dim));
5083: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5084: }
5085: PetscCall(DMGetCoordinateField(dm, &coordField));
5086: for (v = 0; v < numValues; ++v) {
5087: key.label = label;
5088: key.value = values[v];
5089: key.field = field;
5090: key.part = 0;
5091: PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
5092: }
5093: }
5094: PetscCall(ISDestroy(&facetIS));
5095: PetscFunctionReturn(PETSC_SUCCESS);
5096: }
5098: /*@
5099: DMPlexComputeResidualByKey - Compute the local residual for terms matching the input key
5101: Collective
5103: Input Parameters:
5104: + dm - The output `DM`
5105: . key - The `PetscFormKey` indicating what should be integrated
5106: . cellIS - The `IS` giving a set of cells to integrate over
5107: . time - The time, or `PETSC_MIN_REAL` to include implicit terms in a time-independent problems
5108: . locX - The local solution
5109: . locX_t - The time derivative of the local solution, or `NULL` for time-independent problems
5110: . t - The time
5111: - user - An optional user context, passed to the pointwise functions
5113: Output Parameter:
5114: . locF - The local residual
5116: Level: developer
5118: .seealso: `DMPlexComputeJacobianByKey()`, `DMPlexComputeResidualHybridByKey()`, `DMPlexComputeJacobianHybridByKey()`, `PetscFormKey`
5119: @*/
5120: PetscErrorCode DMPlexComputeResidualByKey(DM dm, PetscFormKey key, IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5121: {
5122: DM_Plex *mesh = (DM_Plex *)dm->data;
5123: const char *name = "Residual";
5124: DM dmAux = NULL;
5125: DM dmGrad = NULL;
5126: DMLabel ghostLabel = NULL;
5127: PetscDS ds = NULL;
5128: PetscDS dsAux = NULL;
5129: PetscSection section = NULL;
5130: PetscBool useFEM = PETSC_FALSE;
5131: PetscBool useFVM = PETSC_FALSE;
5132: PetscBool isImplicit = (locX_t || time == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
5133: PetscFV fvm = NULL;
5134: DMField coordField = NULL;
5135: Vec locA, cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
5136: PetscScalar *u = NULL, *u_t, *a, *uL, *uR;
5137: IS chunkIS;
5138: const PetscInt *cells;
5139: PetscInt cStart, cEnd, numCells;
5140: PetscInt Nf, f, totDim, totDimAux, numChunks, cellChunkSize, faceChunkSize, chunk, fStart, fEnd;
5141: PetscInt maxDegree = PETSC_INT_MAX;
5142: PetscQuadrature affineQuad = NULL, *quads = NULL;
5143: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
5145: PetscFunctionBegin;
5146: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5147: if (!cellIS) goto end;
5148: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5149: if (cStart >= cEnd) goto end;
5150: /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5151: /* TODO The FVM geometry is over-manipulated. Make the precalc functions return exactly what we need */
5152: /* FEM+FVM */
5153: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
5154: /* 1: Get sizes from dm and dmAux */
5155: PetscCall(DMGetLocalSection(dm, §ion));
5156: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5157: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, NULL));
5158: PetscCall(PetscDSGetNumFields(ds, &Nf));
5159: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5160: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
5161: if (locA) {
5162: PetscInt subcell;
5163: PetscCall(VecGetDM(locA, &dmAux));
5164: PetscCall(DMGetEnclosurePoint(dmAux, dm, DM_ENC_UNKNOWN, cells ? cells[cStart] : cStart, &subcell));
5165: PetscCall(DMGetCellDS(dmAux, subcell, &dsAux, NULL));
5166: PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5167: }
5168: /* 2: Get geometric data */
5169: for (f = 0; f < Nf; ++f) {
5170: PetscObject obj;
5171: PetscClassId id;
5172: PetscBool fimp;
5174: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5175: if (isImplicit != fimp) continue;
5176: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5177: PetscCall(PetscObjectGetClassId(obj, &id));
5178: if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
5179: if (id == PETSCFV_CLASSID) {
5180: useFVM = PETSC_TRUE;
5181: fvm = (PetscFV)obj;
5182: }
5183: }
5184: if (useFEM) {
5185: PetscCall(DMGetCoordinateField(dm, &coordField));
5186: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5187: if (maxDegree <= 1) {
5188: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
5189: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FEGEOM_BASIC, &affineGeom));
5190: } else {
5191: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5192: for (f = 0; f < Nf; ++f) {
5193: PetscObject obj;
5194: PetscClassId id;
5195: PetscBool fimp;
5197: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5198: if (isImplicit != fimp) continue;
5199: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5200: PetscCall(PetscObjectGetClassId(obj, &id));
5201: if (id == PETSCFE_CLASSID) {
5202: PetscFE fe = (PetscFE)obj;
5204: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5205: PetscCall(PetscObjectReference((PetscObject)quads[f]));
5206: PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FEGEOM_BASIC, &geoms[f]));
5207: }
5208: }
5209: }
5210: }
5211: // Handle non-essential (e.g. outflow) boundary values
5212: if (useFVM) {
5213: PetscCall(DMPlexInsertBoundaryValuesFVM(dm, fvm, locX, time, &locGrad));
5214: PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
5215: PetscCall(DMPlexGetGradientDM(dm, fvm, &dmGrad));
5216: }
5217: /* Loop over chunks */
5218: if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
5219: numCells = cEnd - cStart;
5220: numChunks = 1;
5221: cellChunkSize = numCells / numChunks;
5222: faceChunkSize = (fEnd - fStart) / numChunks;
5223: numChunks = PetscMin(1, numCells);
5224: for (chunk = 0; chunk < numChunks; ++chunk) {
5225: PetscScalar *elemVec, *fluxL, *fluxR;
5226: PetscReal *vol;
5227: PetscFVFaceGeom *fgeom;
5228: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5229: PetscInt fS = fStart + chunk * faceChunkSize, fE = PetscMin(fS + faceChunkSize, fEnd), numFaces = 0, face;
5231: /* Extract field coefficients */
5232: if (useFEM) {
5233: PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
5234: PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5235: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5236: PetscCall(PetscArrayzero(elemVec, numCells * totDim));
5237: }
5238: if (useFVM) {
5239: PetscCall(DMPlexGetFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5240: PetscCall(DMPlexGetFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5241: PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5242: PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5243: PetscCall(PetscArrayzero(fluxL, numFaces * totDim));
5244: PetscCall(PetscArrayzero(fluxR, numFaces * totDim));
5245: }
5246: /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
5247: /* Loop over fields */
5248: for (f = 0; f < Nf; ++f) {
5249: PetscObject obj;
5250: PetscClassId id;
5251: PetscBool fimp;
5252: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
5254: key.field = f;
5255: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5256: if (isImplicit != fimp) continue;
5257: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5258: PetscCall(PetscObjectGetClassId(obj, &id));
5259: if (id == PETSCFE_CLASSID) {
5260: PetscFE fe = (PetscFE)obj;
5261: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
5262: PetscFEGeom *chunkGeom = NULL;
5263: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5264: PetscInt Nq, Nb;
5266: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5267: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5268: PetscCall(PetscFEGetDimension(fe, &Nb));
5269: blockSize = Nb;
5270: batchSize = numBlocks * blockSize;
5271: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5272: numChunks = numCells / (numBatches * batchSize);
5273: Ne = numChunks * numBatches * batchSize;
5274: Nr = numCells % (numBatches * batchSize);
5275: offset = numCells - Nr;
5276: /* Integrate FE residual to get elemVec (need fields at quadrature points) */
5277: /* For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
5278: PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
5279: PetscCall(PetscFEIntegrateResidual(ds, key, Ne, chunkGeom, u, u_t, dsAux, a, t, elemVec));
5280: PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
5281: PetscCall(PetscFEIntegrateResidual(ds, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
5282: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
5283: } else if (id == PETSCFV_CLASSID) {
5284: PetscFV fv = (PetscFV)obj;
5286: Ne = numFaces;
5287: /* Riemann solve over faces (need fields at face centroids) */
5288: /* We need to evaluate FE fields at those coordinates */
5289: PetscCall(PetscFVIntegrateRHSFunction(fv, ds, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
5290: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
5291: }
5292: /* Loop over domain */
5293: if (useFEM) {
5294: /* Add elemVec to locX */
5295: for (c = cS; c < cE; ++c) {
5296: const PetscInt cell = cells ? cells[c] : c;
5297: const PetscInt cind = c - cStart;
5299: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
5300: if (ghostLabel) {
5301: PetscInt ghostVal;
5303: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5304: if (ghostVal > 0) continue;
5305: }
5306: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
5307: }
5308: }
5309: if (useFVM) {
5310: PetscScalar *fa;
5311: PetscInt iface;
5313: PetscCall(VecGetArray(locF, &fa));
5314: for (f = 0; f < Nf; ++f) {
5315: PetscFV fv;
5316: PetscObject obj;
5317: PetscClassId id;
5318: PetscInt cdim, foff, pdim;
5320: PetscCall(DMGetCoordinateDim(dm, &cdim));
5321: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5322: PetscCall(PetscDSGetFieldOffset(ds, f, &foff));
5323: PetscCall(PetscObjectGetClassId(obj, &id));
5324: if (id != PETSCFV_CLASSID) continue;
5325: fv = (PetscFV)obj;
5326: PetscCall(PetscFVGetNumComponents(fv, &pdim));
5327: /* Accumulate fluxes to cells */
5328: for (face = fS, iface = 0; face < fE; ++face) {
5329: const PetscInt *scells;
5330: PetscScalar *fL = NULL, *fR = NULL;
5331: PetscInt ghost, d, nsupp, nchild;
5333: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
5334: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
5335: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
5336: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
5337: PetscCall(DMPlexGetSupport(dm, face, &scells));
5338: PetscCall(DMLabelGetValue(ghostLabel, scells[0], &ghost));
5339: if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[0], f, fa, &fL));
5340: PetscCall(DMLabelGetValue(ghostLabel, scells[1], &ghost));
5341: if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[1], f, fa, &fR));
5342: if (mesh->printFVM > 1) {
5343: PetscCall(DMPrintCellVectorReal(face, "Residual: normal", cdim, fgeom[iface].normal));
5344: PetscCall(DMPrintCellVector(face, "Residual: left state", pdim, &uL[iface * totDim + foff]));
5345: PetscCall(DMPrintCellVector(face, "Residual: right state", pdim, &uR[iface * totDim + foff]));
5346: PetscCall(DMPrintCellVector(face, "Residual: left flux", pdim, &fluxL[iface * totDim + foff]));
5347: PetscCall(DMPrintCellVector(face, "Residual: right flux", pdim, &fluxR[iface * totDim + foff]));
5348: }
5349: for (d = 0; d < pdim; ++d) {
5350: if (fL) fL[d] -= fluxL[iface * totDim + foff + d];
5351: if (fR) fR[d] += fluxR[iface * totDim + foff + d];
5352: }
5353: ++iface;
5354: }
5355: }
5356: PetscCall(VecRestoreArray(locF, &fa));
5357: }
5358: /* Handle time derivative */
5359: if (locX_t) {
5360: PetscScalar *x_t, *fa;
5362: PetscCall(VecGetArray(locF, &fa));
5363: PetscCall(VecGetArray(locX_t, &x_t));
5364: for (f = 0; f < Nf; ++f) {
5365: PetscFV fv;
5366: PetscObject obj;
5367: PetscClassId id;
5368: PetscInt pdim, d;
5370: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5371: PetscCall(PetscObjectGetClassId(obj, &id));
5372: if (id != PETSCFV_CLASSID) continue;
5373: fv = (PetscFV)obj;
5374: PetscCall(PetscFVGetNumComponents(fv, &pdim));
5375: for (c = cS; c < cE; ++c) {
5376: const PetscInt cell = cells ? cells[c] : c;
5377: PetscScalar *u_t, *r;
5379: if (ghostLabel) {
5380: PetscInt ghostVal;
5382: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5383: if (ghostVal > 0) continue;
5384: }
5385: PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
5386: PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
5387: for (d = 0; d < pdim; ++d) r[d] += u_t[d];
5388: }
5389: }
5390: PetscCall(VecRestoreArray(locX_t, &x_t));
5391: PetscCall(VecRestoreArray(locF, &fa));
5392: }
5393: if (useFEM) {
5394: PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5395: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5396: }
5397: if (useFVM) {
5398: PetscCall(DMPlexRestoreFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5399: PetscCall(DMPlexRestoreFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5400: PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5401: PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5402: if (dmGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
5403: }
5404: }
5405: if (useFEM) PetscCall(ISDestroy(&chunkIS));
5406: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5408: if (useFEM) {
5409: PetscCall(DMPlexComputeBdResidual_Internal(dm, locX, locX_t, t, locF, user));
5411: if (maxDegree <= 1) {
5412: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5413: PetscCall(PetscQuadratureDestroy(&affineQuad));
5414: } else {
5415: for (f = 0; f < Nf; ++f) {
5416: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5417: PetscCall(PetscQuadratureDestroy(&quads[f]));
5418: }
5419: PetscCall(PetscFree2(quads, geoms));
5420: }
5421: }
5423: /* FEM */
5424: /* 1: Get sizes from dm and dmAux */
5425: /* 2: Get geometric data */
5426: /* 3: Handle boundary values */
5427: /* 4: Loop over domain */
5428: /* Extract coefficients */
5429: /* Loop over fields */
5430: /* Set tiling for FE*/
5431: /* Integrate FE residual to get elemVec */
5432: /* Loop over subdomain */
5433: /* Loop over quad points */
5434: /* Transform coords to real space */
5435: /* Evaluate field and aux fields at point */
5436: /* Evaluate residual at point */
5437: /* Transform residual to real space */
5438: /* Add residual to elemVec */
5439: /* Loop over domain */
5440: /* Add elemVec to locX */
5442: /* FVM */
5443: /* Get geometric data */
5444: /* If using gradients */
5445: /* Compute gradient data */
5446: /* Loop over domain faces */
5447: /* Count computational faces */
5448: /* Reconstruct cell gradient */
5449: /* Loop over domain cells */
5450: /* Limit cell gradients */
5451: /* Handle boundary values */
5452: /* Loop over domain faces */
5453: /* Read out field, centroid, normal, volume for each side of face */
5454: /* Riemann solve over faces */
5455: /* Loop over domain faces */
5456: /* Accumulate fluxes to cells */
5457: /* TODO Change printFEM to printDisc here */
5458: if (mesh->printFEM) {
5459: Vec locFbc;
5460: PetscInt pStart, pEnd, p, maxDof;
5461: PetscScalar *zeroes;
5463: PetscCall(VecDuplicate(locF, &locFbc));
5464: PetscCall(VecCopy(locF, locFbc));
5465: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5466: PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5467: PetscCall(PetscCalloc1(maxDof, &zeroes));
5468: for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5469: PetscCall(PetscFree(zeroes));
5470: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5471: PetscCall(VecDestroy(&locFbc));
5472: }
5473: end:
5474: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5475: PetscFunctionReturn(PETSC_SUCCESS);
5476: }
5478: /*@
5479: DMPlexComputeResidualHybridByKey - Compute the local residual over hybrid cells for terms matching the input key
5481: Collective
5483: Input Parameters:
5484: + dm - The output `DM`
5485: . key - The `PetscFormKey` array (left cell, right cell, cohesive cell) indicating what should be integrated
5486: . cellIS - The `IS` give a set of cells to integrate over
5487: . time - The time, or `PETSC_MIN_REAL` to include implicit terms in a time-independent problems
5488: . locX - The local solution
5489: . locX_t - The time derivative of the local solution, or `NULL` for time-independent problems
5490: . t - The time
5491: - user - An optional user context, passed to the pointwise functions
5493: Output Parameter:
5494: . locF - The local residual
5496: Level: developer
5498: .seealso: `DMPlexComputeResidualByKey()`, `DMPlexComputeJacobianByKey()`, `DMPlexComputeJacobianHybridByKey()`, `PetscFormKey`
5499: @*/
5500: PetscErrorCode DMPlexComputeResidualHybridByKey(DM dm, PetscFormKey key[], IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5501: {
5502: DM_Plex *mesh = (DM_Plex *)dm->data;
5503: const char *name = "Hybrid Residual";
5504: DM dmAux[3] = {NULL, NULL, NULL};
5505: DMLabel ghostLabel = NULL;
5506: PetscDS ds = NULL;
5507: PetscDS dsIn = NULL;
5508: PetscDS dsAux[3] = {NULL, NULL, NULL};
5509: Vec locA[3] = {NULL, NULL, NULL};
5510: DM dmScale[3] = {NULL, NULL, NULL};
5511: PetscDS dsScale[3] = {NULL, NULL, NULL};
5512: Vec locS[3] = {NULL, NULL, NULL};
5513: PetscSection section = NULL;
5514: DMField coordField = NULL;
5515: PetscScalar *a[3] = {NULL, NULL, NULL};
5516: PetscScalar *s[3] = {NULL, NULL, NULL};
5517: PetscScalar *u = NULL, *u_t;
5518: PetscScalar *elemVecNeg, *elemVecPos, *elemVecCoh;
5519: IS chunkISF, chunkISN;
5520: const PetscInt *cells;
5521: PetscInt *faces, *neighbors;
5522: PetscInt cStart, cEnd, numCells;
5523: PetscInt Nf, f, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
5524: PetscInt maxDegree = PETSC_INT_MAX;
5525: PetscQuadrature affineQuadF = NULL, *quadsF = NULL;
5526: PetscFEGeom *affineGeomF = NULL, **geomsF = NULL;
5527: PetscQuadrature affineQuadN = NULL, *quadsN = NULL;
5528: PetscFEGeom *affineGeomN = NULL, **geomsN = NULL;
5530: PetscFunctionBegin;
5531: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5532: if (!cellIS) goto end;
5533: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5534: PetscCall(ISGetLocalSize(cellIS, &numCells));
5535: if (cStart >= cEnd) goto end;
5536: if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
5537: const char *name;
5538: PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
5539: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
5540: }
5541: /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5542: /* FEM */
5543: /* 1: Get sizes from dm and dmAux */
5544: PetscCall(DMGetLocalSection(dm, §ion));
5545: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5546: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
5547: PetscCall(PetscDSGetNumFields(ds, &Nf));
5548: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5549: PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
5550: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
5551: if (locA[2]) {
5552: const PetscInt cellStart = cells ? cells[cStart] : cStart;
5554: PetscCall(VecGetDM(locA[2], &dmAux[2]));
5555: PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
5556: PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
5557: {
5558: const PetscInt *cone;
5559: PetscInt c;
5561: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5562: for (c = 0; c < 2; ++c) {
5563: const PetscInt *support;
5564: PetscInt ssize, s;
5566: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5567: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5568: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5569: if (support[0] == cellStart) s = 1;
5570: else if (support[1] == cellStart) s = 0;
5571: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5572: PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
5573: PetscCheck(locA[c], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must have auxiliary vector for (%p, %" PetscInt_FMT ", %" PetscInt_FMT ")", (void *)key[c].label, key[c].value, key[c].part);
5574: if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
5575: else dmAux[c] = dmAux[2];
5576: PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
5577: PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
5578: }
5579: }
5580: }
5581: /* Handle mass matrix scaling
5582: The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
5583: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
5584: if (locS[2]) {
5585: const PetscInt cellStart = cells ? cells[cStart] : cStart;
5586: PetscInt Nb, Nbs;
5588: PetscCall(VecGetDM(locS[2], &dmScale[2]));
5589: PetscCall(DMGetCellDS(dmScale[2], cellStart, &dsScale[2], NULL));
5590: PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
5591: // BRAD: This is not set correctly
5592: key[2].field = 2;
5593: PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
5594: PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
5595: PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
5596: {
5597: const PetscInt *cone;
5598: PetscInt c;
5600: locS[1] = locS[0] = locS[2];
5601: dmScale[1] = dmScale[0] = dmScale[2];
5602: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5603: for (c = 0; c < 2; ++c) {
5604: const PetscInt *support;
5605: PetscInt ssize, s;
5607: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5608: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5609: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5610: if (support[0] == cellStart) s = 1;
5611: else if (support[1] == cellStart) s = 0;
5612: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5613: PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
5614: PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
5615: }
5616: }
5617: }
5618: /* 2: Setup geometric data */
5619: PetscCall(DMGetCoordinateField(dm, &coordField));
5620: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5621: if (maxDegree > 1) {
5622: PetscCall(PetscCalloc4(Nf, &quadsF, Nf, &geomsF, Nf, &quadsN, Nf, &geomsN));
5623: for (f = 0; f < Nf; ++f) {
5624: PetscFE fe;
5625: PetscBool isCohesiveField;
5627: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5628: if (fe) {
5629: PetscCall(PetscFEGetQuadrature(fe, &quadsF[f]));
5630: PetscCall(PetscObjectReference((PetscObject)quadsF[f]));
5631: }
5632: PetscCall(PetscDSGetDiscretization(dsIn, f, (PetscObject *)&fe));
5633: PetscCall(PetscDSGetCohesive(dsIn, f, &isCohesiveField));
5634: if (fe) {
5635: if (isCohesiveField) {
5636: for (PetscInt g = 0; g < Nf; ++g) {
5637: PetscCall(PetscDSGetDiscretization(dsIn, g, (PetscObject *)&fe));
5638: PetscCall(PetscDSGetCohesive(dsIn, g, &isCohesiveField));
5639: if (!isCohesiveField) break;
5640: }
5641: }
5642: PetscCall(PetscFEGetQuadrature(fe, &quadsN[f]));
5643: PetscCall(PetscObjectReference((PetscObject)quadsN[f]));
5644: }
5645: }
5646: }
5647: /* Loop over chunks */
5648: cellChunkSize = numCells;
5649: numChunks = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
5650: PetscCall(PetscCalloc2(2 * cellChunkSize, &faces, 2 * cellChunkSize, &neighbors));
5651: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkISF));
5652: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, neighbors, PETSC_USE_POINTER, &chunkISN));
5653: /* Extract field coefficients */
5654: /* NOTE This needs the end cap faces to have identical orientations */
5655: PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5656: PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5657: PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5658: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecNeg));
5659: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecPos));
5660: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecCoh));
5661: for (chunk = 0; chunk < numChunks; ++chunk) {
5662: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5664: PetscCall(PetscArrayzero(elemVecNeg, cellChunkSize * totDim));
5665: PetscCall(PetscArrayzero(elemVecPos, cellChunkSize * totDim));
5666: PetscCall(PetscArrayzero(elemVecCoh, cellChunkSize * totDim));
5667: /* Get faces and neighbors */
5668: for (c = cS; c < cE; ++c) {
5669: const PetscInt cell = cells ? cells[c] : c;
5670: const PetscInt *cone, *support;
5671: PetscCall(DMPlexGetCone(dm, cell, &cone));
5672: faces[(c - cS) * 2 + 0] = cone[0];
5673: faces[(c - cS) * 2 + 1] = cone[1];
5674: PetscCall(DMPlexGetSupport(dm, cone[0], &support));
5675: neighbors[(c - cS) * 2 + 0] = support[0] == cell ? support[1] : support[0];
5676: PetscCall(DMPlexGetSupport(dm, cone[1], &support));
5677: neighbors[(c - cS) * 2 + 1] = support[0] == cell ? support[1] : support[0];
5678: }
5679: PetscCall(ISGeneralSetIndices(chunkISF, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
5680: PetscCall(ISGeneralSetIndices(chunkISN, 2 * cellChunkSize, neighbors, PETSC_USE_POINTER));
5681: /* Get geometric data */
5682: if (maxDegree <= 1) {
5683: if (!affineQuadF) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkISF, &affineQuadF));
5684: if (affineQuadF) PetscCall(DMSNESGetFEGeom(coordField, chunkISF, affineQuadF, PETSC_FEGEOM_COHESIVE, &affineGeomF));
5685: if (!affineQuadN) {
5686: PetscInt dim;
5687: PetscCall(PetscQuadratureGetData(affineQuadF, &dim, NULL, NULL, NULL, NULL));
5688: PetscCall(DMFieldCreateDefaultFaceQuadrature(coordField, chunkISN, &affineQuadN));
5689: PetscCall(PetscQuadratureSetData(affineQuadN, dim + 1, PETSC_DECIDE, PETSC_DECIDE, NULL, NULL));
5690: }
5691: if (affineQuadN) PetscCall(DMSNESGetFEGeom(coordField, chunkISN, affineQuadN, PETSC_FEGEOM_BASIC, &affineGeomN));
5692: } else {
5693: for (f = 0; f < Nf; ++f) {
5694: if (quadsF[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkISF, quadsF[f], PETSC_FEGEOM_COHESIVE, &geomsF[f]));
5695: if (quadsN[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkISN, quadsN[f], PETSC_FEGEOM_BASIC, &geomsN[f]));
5696: }
5697: }
5698: /* Loop over fields */
5699: for (f = 0; f < Nf; ++f) {
5700: PetscFE fe;
5701: PetscFEGeom *geomF = affineGeomF ? affineGeomF : geomsF[f];
5702: PetscFEGeom *chunkGeomF = NULL, *remGeomF = NULL;
5703: PetscFEGeom *geomN = affineGeomN ? affineGeomN : geomsN[f];
5704: PetscFEGeom *chunkGeomN = NULL, *remGeomN = NULL;
5705: PetscQuadrature quadF = affineQuadF ? affineQuadF : quadsF[f];
5706: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
5707: PetscBool isCohesiveField;
5709: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5710: if (!fe) continue;
5711: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5712: PetscCall(PetscQuadratureGetData(quadF, NULL, NULL, &Nq, NULL, NULL));
5713: PetscCall(PetscFEGetDimension(fe, &Nb));
5714: blockSize = Nb;
5715: batchSize = numBlocks * blockSize;
5716: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5717: numChunks = numCells / (numBatches * batchSize);
5718: Ne = numChunks * numBatches * batchSize;
5719: Nr = numCells % (numBatches * batchSize);
5720: offset = numCells - Nr;
5721: PetscCall(PetscFEGeomGetChunk(geomF, 0, offset * 2, &chunkGeomF));
5722: PetscCall(PetscFEGeomGetChunk(geomF, offset * 2, numCells * 2, &remGeomF));
5723: PetscCall(PetscFEGeomGetChunk(geomN, 0, offset * 2, &chunkGeomN));
5724: PetscCall(PetscFEGeomGetChunk(geomN, offset * 2, numCells * 2, &remGeomN));
5725: PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
5726: // TODO Do I need to set isCohesive on the chunks?
5727: key[0].field = f;
5728: key[1].field = f;
5729: key[2].field = f;
5730: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[0], a[0], t, elemVecNeg));
5731: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, &elemVecNeg[offset * totDim]));
5732: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[1], a[1], t, elemVecPos));
5733: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, &elemVecPos[offset * totDim]));
5734: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[2], a[2], t, elemVecCoh));
5735: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, &elemVecCoh[offset * totDim]));
5736: PetscCall(PetscFEGeomRestoreChunk(geomF, offset, numCells, &remGeomF));
5737: PetscCall(PetscFEGeomRestoreChunk(geomF, 0, offset, &chunkGeomF));
5738: PetscCall(PetscFEGeomRestoreChunk(geomN, offset, numCells, &remGeomN));
5739: PetscCall(PetscFEGeomRestoreChunk(geomN, 0, offset, &chunkGeomN));
5740: }
5741: /* Add elemVec to locX */
5742: for (c = cS; c < cE; ++c) {
5743: const PetscInt cell = cells ? cells[c] : c;
5744: const PetscInt cind = c - cStart;
5745: PetscInt i;
5747: /* Scale element values */
5748: if (locS[0]) {
5749: PetscInt Nb, off = cind * totDim, soff = cind * totDimScale[0];
5750: PetscBool cohesive;
5752: for (f = 0; f < Nf; ++f) {
5753: PetscCall(PetscDSGetFieldSize(ds, f, &Nb));
5754: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
5755: if (f == key[2].field) {
5756: PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
5757: // No cohesive scaling field is currently input
5758: for (i = 0; i < Nb; ++i) elemVecCoh[off + i] += s[0][soff + i] * elemVecNeg[off + i] + s[1][soff + i] * elemVecPos[off + i];
5759: off += Nb;
5760: } else {
5761: const PetscInt N = cohesive ? Nb : Nb * 2;
5763: for (i = 0; i < N; ++i) elemVecCoh[off + i] += elemVecNeg[off + i] + elemVecPos[off + i];
5764: off += N;
5765: }
5766: }
5767: } else {
5768: for (i = cind * totDim; i < (cind + 1) * totDim; ++i) elemVecCoh[i] += elemVecNeg[i] + elemVecPos[i];
5769: }
5770: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVecCoh[cind * totDim]));
5771: if (ghostLabel) {
5772: PetscInt ghostVal;
5774: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5775: if (ghostVal > 0) continue;
5776: }
5777: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVecCoh[cind * totDim], ADD_ALL_VALUES));
5778: }
5779: }
5780: PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5781: PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5782: PetscCall(DMPlexRestoreHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5783: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecNeg));
5784: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecPos));
5785: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecCoh));
5786: PetscCall(PetscFree2(faces, neighbors));
5787: PetscCall(ISDestroy(&chunkISF));
5788: PetscCall(ISDestroy(&chunkISN));
5789: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5790: if (maxDegree <= 1) {
5791: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuadF, PETSC_FALSE, &affineGeomF));
5792: PetscCall(PetscQuadratureDestroy(&affineQuadF));
5793: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuadN, PETSC_FALSE, &affineGeomN));
5794: PetscCall(PetscQuadratureDestroy(&affineQuadN));
5795: } else {
5796: for (f = 0; f < Nf; ++f) {
5797: if (geomsF) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quadsF[f], PETSC_FALSE, &geomsF[f]));
5798: if (quadsF) PetscCall(PetscQuadratureDestroy(&quadsF[f]));
5799: if (geomsN) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quadsN[f], PETSC_FALSE, &geomsN[f]));
5800: if (quadsN) PetscCall(PetscQuadratureDestroy(&quadsN[f]));
5801: }
5802: PetscCall(PetscFree4(quadsF, geomsF, quadsN, geomsN));
5803: }
5804: if (mesh->printFEM) {
5805: Vec locFbc;
5806: PetscInt pStart, pEnd, p, maxDof;
5807: PetscScalar *zeroes;
5809: PetscCall(VecDuplicate(locF, &locFbc));
5810: PetscCall(VecCopy(locF, locFbc));
5811: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5812: PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5813: PetscCall(PetscCalloc1(maxDof, &zeroes));
5814: for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5815: PetscCall(PetscFree(zeroes));
5816: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5817: PetscCall(VecDestroy(&locFbc));
5818: }
5819: end:
5820: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5821: PetscFunctionReturn(PETSC_SUCCESS);
5822: }
5824: static PetscErrorCode DMPlexComputeBdJacobian_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt fieldI, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP, DMField coordField, IS facetIS)
5825: {
5826: DM_Plex *mesh = (DM_Plex *)dm->data;
5827: DM plex = NULL, plexA = NULL, tdm;
5828: DMEnclosureType encAux;
5829: PetscDS ds, dsAux = NULL;
5830: PetscSection section, sectionAux = NULL;
5831: PetscSection globalSection;
5832: Vec locA = NULL, tv;
5833: PetscScalar *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL;
5834: PetscInt v;
5835: PetscInt Nf, totDim, totDimAux = 0;
5836: PetscBool hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, transform;
5838: PetscFunctionBegin;
5839: PetscCall(DMHasBasisTransform(dm, &transform));
5840: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5841: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5842: PetscCall(DMGetLocalSection(dm, §ion));
5843: PetscCall(DMGetDS(dm, &ds));
5844: PetscCall(PetscDSGetNumFields(ds, &Nf));
5845: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5846: PetscCall(PetscWeakFormHasBdJacobian(wf, &hasJac));
5847: PetscCall(PetscWeakFormHasBdJacobianPreconditioner(wf, &hasPrec));
5848: if (!hasJac && !hasPrec) PetscFunctionReturn(PETSC_SUCCESS);
5849: PetscCall(DMConvert(dm, DMPLEX, &plex));
5850: PetscCall(DMGetAuxiliaryVec(dm, label, values[0], 0, &locA));
5851: if (locA) {
5852: DM dmAux;
5854: PetscCall(VecGetDM(locA, &dmAux));
5855: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5856: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
5857: PetscCall(DMGetDS(plexA, &dsAux));
5858: PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5859: PetscCall(DMGetLocalSection(plexA, §ionAux));
5860: }
5862: PetscCall(DMGetGlobalSection(dm, &globalSection));
5863: for (v = 0; v < numValues; ++v) {
5864: PetscFEGeom *fgeom;
5865: PetscInt maxDegree;
5866: PetscQuadrature qGeom = NULL;
5867: IS pointIS;
5868: const PetscInt *points;
5869: PetscFormKey key;
5870: PetscInt numFaces, face, Nq;
5872: key.label = label;
5873: key.value = values[v];
5874: key.part = 0;
5875: PetscCall(DMLabelGetStratumIS(label, values[v], &pointIS));
5876: if (!pointIS) continue; /* No points with that id on this process */
5877: {
5878: IS isectIS;
5880: /* TODO: Special cases of ISIntersect where it is quick to check a prior if one is a superset of the other */
5881: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
5882: PetscCall(ISDestroy(&pointIS));
5883: pointIS = isectIS;
5884: }
5885: PetscCall(ISGetLocalSize(pointIS, &numFaces));
5886: PetscCall(ISGetIndices(pointIS, &points));
5887: PetscCall(PetscMalloc5(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, (hasJac ? (size_t)numFaces * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numFaces * totDim * totDim : 0), &elemMatP, (locA ? (size_t)numFaces * totDimAux : 0), &a));
5888: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
5889: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
5890: if (!qGeom) {
5891: PetscFE fe;
5893: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5894: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
5895: PetscCall(PetscObjectReference((PetscObject)qGeom));
5896: }
5897: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5898: PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_FEGEOM_BOUNDARY, &fgeom));
5899: for (face = 0; face < numFaces; ++face) {
5900: const PetscInt point = points[face], *support;
5901: PetscScalar *x = NULL;
5902: PetscInt i;
5904: PetscCall(DMPlexGetSupport(dm, point, &support));
5905: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
5906: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
5907: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
5908: if (locX_t) {
5909: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
5910: for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
5911: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
5912: }
5913: if (locA) {
5914: PetscInt subp;
5915: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
5916: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
5917: for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
5918: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
5919: }
5920: }
5921: if (elemMat) PetscCall(PetscArrayzero(elemMat, numFaces * totDim * totDim));
5922: if (elemMatP) PetscCall(PetscArrayzero(elemMatP, numFaces * totDim * totDim));
5923: {
5924: PetscFE fe;
5925: PetscInt Nb;
5926: /* Conforming batches */
5927: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5928: /* Remainder */
5929: PetscFEGeom *chunkGeom = NULL;
5930: PetscInt fieldJ, Nr, offset;
5932: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5933: PetscCall(PetscFEGetDimension(fe, &Nb));
5934: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5935: blockSize = Nb;
5936: batchSize = numBlocks * blockSize;
5937: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5938: numChunks = numFaces / (numBatches * batchSize);
5939: Ne = numChunks * numBatches * batchSize;
5940: Nr = numFaces % (numBatches * batchSize);
5941: offset = numFaces - Nr;
5942: PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
5943: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5944: key.field = fieldI * Nf + fieldJ;
5945: if (hasJac) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMat));
5946: if (hasPrec) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMatP));
5947: }
5948: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
5949: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5950: key.field = fieldI * Nf + fieldJ;
5951: if (hasJac)
5952: PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
5953: if (hasPrec)
5954: PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
5955: }
5956: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
5957: }
5958: for (face = 0; face < numFaces; ++face) {
5959: const PetscInt point = points[face], *support;
5961: /* Transform to global basis before insertion in Jacobian */
5962: PetscCall(DMPlexGetSupport(plex, point, &support));
5963: if (hasJac && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMat[face * totDim * totDim]));
5964: if (hasPrec && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMatP[face * totDim * totDim]));
5965: if (hasPrec) {
5966: if (hasJac) {
5967: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5968: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5969: }
5970: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMatP[face * totDim * totDim]));
5971: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, support[0], &elemMatP[face * totDim * totDim], ADD_VALUES));
5972: } else {
5973: if (hasJac) {
5974: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5975: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5976: }
5977: }
5978: }
5979: PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5980: PetscCall(PetscQuadratureDestroy(&qGeom));
5981: PetscCall(ISRestoreIndices(pointIS, &points));
5982: PetscCall(ISDestroy(&pointIS));
5983: PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, a));
5984: }
5985: if (plex) PetscCall(DMDestroy(&plex));
5986: if (plexA) PetscCall(DMDestroy(&plexA));
5987: PetscFunctionReturn(PETSC_SUCCESS);
5988: }
5990: PetscErrorCode DMPlexComputeBdJacobianSingle(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt field, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP)
5991: {
5992: DMField coordField;
5993: DMLabel depthLabel;
5994: IS facetIS;
5995: PetscInt dim;
5997: PetscFunctionBegin;
5998: PetscCall(DMGetDimension(dm, &dim));
5999: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
6000: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
6001: PetscCall(DMGetCoordinateField(dm, &coordField));
6002: PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, field, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
6003: PetscCall(ISDestroy(&facetIS));
6004: PetscFunctionReturn(PETSC_SUCCESS);
6005: }
6007: static PetscErrorCode DMPlexComputeBdJacobian_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, PetscReal X_tShift, Mat Jac, Mat JacP, void *user)
6008: {
6009: PetscDS prob;
6010: PetscInt dim, numBd, bd;
6011: DMLabel depthLabel;
6012: DMField coordField = NULL;
6013: IS facetIS;
6015: PetscFunctionBegin;
6016: PetscCall(DMGetDS(dm, &prob));
6017: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
6018: PetscCall(DMGetDimension(dm, &dim));
6019: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
6020: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
6021: PetscCall(DMGetCoordinateField(dm, &coordField));
6022: for (bd = 0; bd < numBd; ++bd) {
6023: PetscWeakForm wf;
6024: DMBoundaryConditionType type;
6025: DMLabel label;
6026: const PetscInt *values;
6027: PetscInt fieldI, numValues;
6028: PetscObject obj;
6029: PetscClassId id;
6031: PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &fieldI, NULL, NULL, NULL, NULL, NULL));
6032: if (type & DM_BC_ESSENTIAL) continue;
6033: PetscCall(PetscDSGetDiscretization(prob, fieldI, &obj));
6034: PetscCall(PetscObjectGetClassId(obj, &id));
6035: if (id != PETSCFE_CLASSID) continue;
6036: PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, fieldI, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
6037: }
6038: PetscCall(ISDestroy(&facetIS));
6039: PetscFunctionReturn(PETSC_SUCCESS);
6040: }
6042: /*@
6043: DMPlexComputeJacobianByKey - Compute the local Jacobian for terms matching the input key
6045: Collective
6047: Input Parameters:
6048: + dm - The output `DM`
6049: . key - The `PetscFormKey` indicating what should be integrated
6050: . cellIS - The `IS` give a set of cells to integrate over
6051: . t - The time
6052: . X_tShift - The multiplier for the Jacobian with respect to $X_t$
6053: . locX - The local solution
6054: . locX_t - The time derivative of the local solution, or `NULL` for time-independent problems
6055: - user - An optional user context, passed to the pointwise functions
6057: Output Parameters:
6058: + Jac - The local Jacobian
6059: - JacP - The local Jacobian preconditioner
6061: Level: developer
6063: .seealso: `DMPlexComputeResidualByKey()`, `DMPlexComputeResidualHybridByKey()`, `DMPlexComputeJacobianHybridByKey()`, `PetscFormKey`
6064: @*/
6065: PetscErrorCode DMPlexComputeJacobianByKey(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Mat Jac, Mat JacP, void *user)
6066: {
6067: DM_Plex *mesh = (DM_Plex *)dm->data;
6068: const char *name = "Jacobian";
6069: DM dmAux = NULL, plex, tdm;
6070: DMEnclosureType encAux;
6071: Vec A, tv;
6072: DMField coordField;
6073: PetscDS prob, probAux = NULL;
6074: PetscSection section, globalSection, sectionAux;
6075: PetscScalar *elemMat, *elemMatP, *elemMatD, *u, *u_t, *a = NULL;
6076: const PetscInt *cells;
6077: PetscInt Nf, fieldI, fieldJ;
6078: PetscInt totDim, totDimAux = 0, cStart, cEnd, numCells, c;
6079: PetscBool hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, hasDyn, hasFV = PETSC_FALSE, transform;
6081: PetscFunctionBegin;
6082: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6083: PetscCall(DMGetLocalSection(dm, §ion));
6084: PetscCall(DMGetGlobalSection(dm, &globalSection));
6085: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
6086: if (A) {
6087: PetscCall(VecGetDM(A, &dmAux));
6088: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
6089: PetscCall(DMConvert(dmAux, DMPLEX, &plex));
6090: PetscCall(DMGetLocalSection(plex, §ionAux));
6091: PetscCall(DMGetDS(dmAux, &probAux));
6092: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
6093: }
6094: PetscCall(DMGetCoordinateField(dm, &coordField));
6095: if (!cellIS) goto end;
6096: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6097: PetscCall(ISGetLocalSize(cellIS, &numCells));
6098: if (cStart >= cEnd) goto end;
6099: PetscCall(DMHasBasisTransform(dm, &transform));
6100: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
6101: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
6102: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
6103: PetscCall(PetscDSGetNumFields(prob, &Nf));
6104: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
6105: PetscCall(PetscDSHasJacobian(prob, &hasJac));
6106: PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
6107: /* user passed in the same matrix, avoid double contributions and
6108: only assemble the Jacobian */
6109: if (hasJac && Jac == JacP) hasPrec = PETSC_FALSE;
6110: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
6111: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
6112: PetscCall(PetscMalloc5(numCells * totDim, &u, (locX_t ? (size_t)numCells * totDim : 0), &u_t, (hasJac ? (size_t)numCells * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numCells * totDim * totDim : 0), &elemMatP, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD));
6113: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
6114: for (c = cStart; c < cEnd; ++c) {
6115: const PetscInt cell = cells ? cells[c] : c;
6116: const PetscInt cind = c - cStart;
6117: PetscScalar *x = NULL, *x_t = NULL;
6118: PetscInt i;
6120: PetscCall(DMPlexVecGetClosure(dm, section, locX, cell, NULL, &x));
6121: for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
6122: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cell, NULL, &x));
6123: if (locX_t) {
6124: PetscCall(DMPlexVecGetClosure(dm, section, locX_t, cell, NULL, &x_t));
6125: for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
6126: PetscCall(DMPlexVecRestoreClosure(dm, section, locX_t, cell, NULL, &x_t));
6127: }
6128: if (dmAux) {
6129: PetscInt subcell;
6130: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
6131: PetscCall(DMPlexVecGetClosure(plex, sectionAux, A, subcell, NULL, &x));
6132: for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
6133: PetscCall(DMPlexVecRestoreClosure(plex, sectionAux, A, subcell, NULL, &x));
6134: }
6135: }
6136: if (hasJac) PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
6137: if (hasPrec) PetscCall(PetscArrayzero(elemMatP, numCells * totDim * totDim));
6138: if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
6139: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6140: PetscClassId id;
6141: PetscFE fe;
6142: PetscQuadrature qGeom = NULL;
6143: PetscInt Nb;
6144: /* Conforming batches */
6145: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
6146: /* Remainder */
6147: PetscInt Nr, offset, Nq;
6148: PetscInt maxDegree;
6149: PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;
6151: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
6152: PetscCall(PetscObjectGetClassId((PetscObject)fe, &id));
6153: if (id == PETSCFV_CLASSID) {
6154: hasFV = PETSC_TRUE;
6155: continue;
6156: }
6157: PetscCall(PetscFEGetDimension(fe, &Nb));
6158: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
6159: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6160: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
6161: if (!qGeom) {
6162: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
6163: PetscCall(PetscObjectReference((PetscObject)qGeom));
6164: }
6165: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6166: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FEGEOM_BASIC, &cgeomFEM));
6167: blockSize = Nb;
6168: batchSize = numBlocks * blockSize;
6169: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6170: numChunks = numCells / (numBatches * batchSize);
6171: Ne = numChunks * numBatches * batchSize;
6172: Nr = numCells % (numBatches * batchSize);
6173: offset = numCells - Nr;
6174: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6175: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6176: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6177: key.field = fieldI * Nf + fieldJ;
6178: if (hasJac) {
6179: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6180: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6181: }
6182: if (hasPrec) {
6183: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatP));
6184: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
6185: }
6186: if (hasDyn) {
6187: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6188: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatD[offset * totDim * totDim]));
6189: }
6190: }
6191: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6192: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6193: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6194: PetscCall(PetscQuadratureDestroy(&qGeom));
6195: }
6196: /* Add contribution from X_t */
6197: if (hasDyn) {
6198: for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6199: }
6200: if (hasFV) {
6201: PetscClassId id;
6202: PetscFV fv;
6203: PetscInt offsetI, NcI, NbI = 1, fc, f;
6205: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6206: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
6207: PetscCall(PetscDSGetFieldOffset(prob, fieldI, &offsetI));
6208: PetscCall(PetscObjectGetClassId((PetscObject)fv, &id));
6209: if (id != PETSCFV_CLASSID) continue;
6210: /* Put in the weighted identity */
6211: PetscCall(PetscFVGetNumComponents(fv, &NcI));
6212: for (c = cStart; c < cEnd; ++c) {
6213: const PetscInt cind = c - cStart;
6214: const PetscInt eOffset = cind * totDim * totDim;
6215: PetscReal vol;
6217: PetscCall(DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL));
6218: for (fc = 0; fc < NcI; ++fc) {
6219: for (f = 0; f < NbI; ++f) {
6220: const PetscInt i = offsetI + f * NcI + fc;
6221: if (hasPrec) {
6222: if (hasJac) elemMat[eOffset + i * totDim + i] = vol;
6223: elemMatP[eOffset + i * totDim + i] = vol;
6224: } else {
6225: elemMat[eOffset + i * totDim + i] = vol;
6226: }
6227: }
6228: }
6229: }
6230: }
6231: /* No allocated space for FV stuff, so ignore the zero entries */
6232: PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
6233: }
6234: /* Insert values into matrix */
6235: for (c = cStart; c < cEnd; ++c) {
6236: const PetscInt cell = cells ? cells[c] : c;
6237: const PetscInt cind = c - cStart;
6239: /* Transform to global basis before insertion in Jacobian */
6240: if (transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, cell, PETSC_TRUE, totDim, &elemMat[cind * totDim * totDim]));
6241: if (hasPrec) {
6242: if (hasJac) {
6243: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6244: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6245: }
6246: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatP[cind * totDim * totDim]));
6247: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatP[cind * totDim * totDim], ADD_VALUES));
6248: } else {
6249: if (hasJac) {
6250: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6251: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6252: }
6253: }
6254: }
6255: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6256: if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
6257: PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, elemMatD));
6258: if (dmAux) PetscCall(PetscFree(a));
6259: /* Compute boundary integrals */
6260: PetscCall(DMPlexComputeBdJacobian_Internal(dm, locX, locX_t, t, X_tShift, Jac, JacP, user));
6261: /* Assemble matrix */
6262: end: {
6263: PetscBool assOp = hasJac && hasPrec ? PETSC_TRUE : PETSC_FALSE, gassOp;
6265: if (dmAux) PetscCall(DMDestroy(&plex));
6266: PetscCallMPI(MPIU_Allreduce(&assOp, &gassOp, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
6267: if (hasJac && hasPrec) {
6268: PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
6269: PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
6270: }
6271: }
6272: PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
6273: PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
6274: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6275: PetscFunctionReturn(PETSC_SUCCESS);
6276: }
6278: /*@
6279: DMPlexComputeJacobianHybridByKey - Compute the local Jacobian over hybrid cells for terms matching the input key
6281: Collective
6283: Input Parameters:
6284: + dm - The output `DM`
6285: . key - The `PetscFormKey` array (left cell, right cell, cohesive cell) indicating what should be integrated
6286: . cellIS - The `IS` give a set of cells to integrate over
6287: . t - The time
6288: . X_tShift - The multiplier for the Jacobian with respect to $X_t$
6289: . locX - The local solution
6290: . locX_t - The time derivative of the local solution, or `NULL` for time-independent problems
6291: - user - An optional user context, passed to the pointwise functions
6293: Output Parameters:
6294: + Jac - The local Jacobian
6295: - JacP - The local Jacobian preconditioner
6297: Level: developer
6299: .seealso: `DMPlexComputeResidualByKey()`, `DMPlexComputeJacobianByKey()`, `DMPlexComputeResidualHybridByKey()`, `PetscFormKey`
6300: @*/
6301: PetscErrorCode DMPlexComputeJacobianHybridByKey(DM dm, PetscFormKey key[], IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Mat Jac, Mat JacP, void *user)
6302: {
6303: DM_Plex *mesh = (DM_Plex *)dm->data;
6304: const char *name = "Hybrid Jacobian";
6305: DM dmAux[3] = {NULL, NULL, NULL};
6306: DMLabel ghostLabel = NULL;
6307: DM plex = NULL;
6308: DM plexA = NULL;
6309: PetscDS ds = NULL;
6310: PetscDS dsIn = NULL;
6311: PetscDS dsAux[3] = {NULL, NULL, NULL};
6312: Vec locA[3] = {NULL, NULL, NULL};
6313: DM dmScale[3] = {NULL, NULL, NULL};
6314: PetscDS dsScale[3] = {NULL, NULL, NULL};
6315: Vec locS[3] = {NULL, NULL, NULL};
6316: PetscSection section = NULL;
6317: PetscSection sectionAux[3] = {NULL, NULL, NULL};
6318: DMField coordField = NULL;
6319: PetscScalar *a[3] = {NULL, NULL, NULL};
6320: PetscScalar *s[3] = {NULL, NULL, NULL};
6321: PetscScalar *u = NULL, *u_t;
6322: PetscScalar *elemMatNeg, *elemMatPos, *elemMatCoh;
6323: PetscScalar *elemMatNegP, *elemMatPosP, *elemMatCohP;
6324: PetscSection globalSection;
6325: IS chunkISF, chunkISN;
6326: const PetscInt *cells;
6327: PetscInt *faces, *neighbors;
6328: PetscInt cStart, cEnd, numCells;
6329: PetscInt Nf, fieldI, fieldJ, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
6330: PetscInt maxDegree = PETSC_INT_MAX;
6331: PetscQuadrature affineQuadF = NULL, *quadsF = NULL;
6332: PetscFEGeom *affineGeomF = NULL, **geomsF = NULL;
6333: PetscQuadrature affineQuadN = NULL;
6334: PetscFEGeom *affineGeomN = NULL;
6335: PetscBool hasBdJac, hasBdPrec;
6337: PetscFunctionBegin;
6338: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6339: if (!cellIS) goto end;
6340: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6341: PetscCall(ISGetLocalSize(cellIS, &numCells));
6342: if (cStart >= cEnd) goto end;
6343: if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
6344: const char *name;
6345: PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
6346: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
6347: }
6348: PetscCall(DMConvert(dm, DMPLEX, &plex));
6349: PetscCall(DMGetLocalSection(dm, §ion));
6350: PetscCall(DMGetGlobalSection(dm, &globalSection));
6351: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
6352: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
6353: PetscCall(PetscDSGetNumFields(ds, &Nf));
6354: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
6355: PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
6356: PetscCall(PetscDSHasBdJacobian(ds, &hasBdJac));
6357: PetscCall(PetscDSHasBdJacobianPreconditioner(ds, &hasBdPrec));
6358: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
6359: if (locA[2]) {
6360: const PetscInt cellStart = cells ? cells[cStart] : cStart;
6362: PetscCall(VecGetDM(locA[2], &dmAux[2]));
6363: PetscCall(DMConvert(dmAux[2], DMPLEX, &plexA));
6364: PetscCall(DMGetLocalSection(dmAux[2], §ionAux[2]));
6365: PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
6366: PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
6367: {
6368: const PetscInt *cone;
6369: PetscInt c;
6371: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6372: for (c = 0; c < 2; ++c) {
6373: const PetscInt *support;
6374: PetscInt ssize, s;
6376: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6377: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6378: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6379: if (support[0] == cellStart) s = 1;
6380: else if (support[1] == cellStart) s = 0;
6381: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6382: PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
6383: if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
6384: else dmAux[c] = dmAux[2];
6385: PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
6386: PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
6387: }
6388: }
6389: }
6390: /* Handle mass matrix scaling
6391: The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
6392: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
6393: if (locS[2]) {
6394: const PetscInt cellStart = cells ? cells[cStart] : cStart;
6395: PetscInt Nb, Nbs;
6397: PetscCall(VecGetDM(locS[2], &dmScale[2]));
6398: PetscCall(DMGetCellDS(dmScale[2], cells ? cells[cStart] : cStart, &dsScale[2], NULL));
6399: PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
6400: // BRAD: This is not set correctly
6401: key[2].field = 2;
6402: PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
6403: PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
6404: PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
6405: {
6406: const PetscInt *cone;
6407: PetscInt c;
6409: locS[1] = locS[0] = locS[2];
6410: dmScale[1] = dmScale[0] = dmScale[2];
6411: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6412: for (c = 0; c < 2; ++c) {
6413: const PetscInt *support;
6414: PetscInt ssize, s;
6416: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6417: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6418: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6419: if (support[0] == cellStart) s = 1;
6420: else if (support[1] == cellStart) s = 0;
6421: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6422: PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
6423: PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
6424: }
6425: }
6426: }
6427: /* 2: Setup geometric data */
6428: PetscCall(DMGetCoordinateField(dm, &coordField));
6429: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6430: if (maxDegree > 1) {
6431: PetscInt f;
6432: PetscCall(PetscCalloc2(Nf, &quadsF, Nf, &geomsF));
6433: for (f = 0; f < Nf; ++f) {
6434: PetscFE fe;
6436: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
6437: if (fe) {
6438: PetscCall(PetscFEGetQuadrature(fe, &quadsF[f]));
6439: PetscCall(PetscObjectReference((PetscObject)quadsF[f]));
6440: }
6441: }
6442: }
6443: /* Loop over chunks */
6444: cellChunkSize = numCells;
6445: numChunks = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
6446: PetscCall(PetscCalloc2(2 * cellChunkSize, &faces, 2 * cellChunkSize, &neighbors));
6447: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkISF));
6448: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, neighbors, PETSC_USE_POINTER, &chunkISN));
6449: /* Extract field coefficients */
6450: /* NOTE This needs the end cap faces to have identical orientations */
6451: PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6452: PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6453: PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
6454: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6455: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6456: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6457: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6458: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6459: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6460: for (chunk = 0; chunk < numChunks; ++chunk) {
6461: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
6463: if (hasBdJac) {
6464: PetscCall(PetscArrayzero(elemMatNeg, cellChunkSize * totDim * totDim));
6465: PetscCall(PetscArrayzero(elemMatPos, cellChunkSize * totDim * totDim));
6466: PetscCall(PetscArrayzero(elemMatCoh, cellChunkSize * totDim * totDim));
6467: }
6468: if (hasBdPrec) {
6469: PetscCall(PetscArrayzero(elemMatNegP, cellChunkSize * totDim * totDim));
6470: PetscCall(PetscArrayzero(elemMatPosP, cellChunkSize * totDim * totDim));
6471: PetscCall(PetscArrayzero(elemMatCohP, cellChunkSize * totDim * totDim));
6472: }
6473: /* Get faces */
6474: for (c = cS; c < cE; ++c) {
6475: const PetscInt cell = cells ? cells[c] : c;
6476: const PetscInt *cone, *support;
6477: PetscCall(DMPlexGetCone(plex, cell, &cone));
6478: faces[(c - cS) * 2 + 0] = cone[0];
6479: faces[(c - cS) * 2 + 1] = cone[1];
6480: PetscCall(DMPlexGetSupport(dm, cone[0], &support));
6481: neighbors[(c - cS) * 2 + 0] = support[0] == cell ? support[1] : support[0];
6482: PetscCall(DMPlexGetSupport(dm, cone[1], &support));
6483: neighbors[(c - cS) * 2 + 1] = support[0] == cell ? support[1] : support[0];
6484: }
6485: PetscCall(ISGeneralSetIndices(chunkISF, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
6486: PetscCall(ISGeneralSetIndices(chunkISN, 2 * cellChunkSize, neighbors, PETSC_USE_POINTER));
6487: if (maxDegree <= 1) {
6488: if (!affineQuadF) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkISF, &affineQuadF));
6489: if (affineQuadF) PetscCall(DMSNESGetFEGeom(coordField, chunkISF, affineQuadF, PETSC_FEGEOM_COHESIVE, &affineGeomF));
6490: if (!affineQuadN) {
6491: PetscInt dim;
6492: PetscCall(PetscQuadratureGetData(affineQuadF, &dim, NULL, NULL, NULL, NULL));
6493: PetscCall(DMFieldCreateDefaultFaceQuadrature(coordField, chunkISN, &affineQuadN));
6494: PetscCall(PetscQuadratureSetData(affineQuadN, dim + 1, PETSC_DECIDE, PETSC_DECIDE, NULL, NULL));
6495: }
6496: if (affineQuadN) PetscCall(DMSNESGetFEGeom(coordField, chunkISN, affineQuadN, PETSC_FEGEOM_BASIC, &affineGeomN));
6497: } else {
6498: PetscInt f;
6499: for (f = 0; f < Nf; ++f) {
6500: if (quadsF[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkISF, quadsF[f], PETSC_FEGEOM_COHESIVE, &geomsF[f]));
6501: }
6502: }
6504: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6505: PetscFE feI;
6506: PetscFEGeom *geomF = affineGeomF ? affineGeomF : geomsF[fieldI];
6507: PetscFEGeom *chunkGeomF = NULL, *remGeomF = NULL;
6508: PetscFEGeom *geomN = affineGeomN ? affineGeomN : geomsF[fieldI];
6509: PetscFEGeom *chunkGeomN = NULL, *remGeomN = NULL;
6510: PetscQuadrature quadF = affineQuadF ? affineQuadF : quadsF[fieldI];
6511: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
6512: PetscBool isCohesiveField;
6514: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
6515: if (!feI) continue;
6516: PetscCall(PetscFEGetTileSizes(feI, NULL, &numBlocks, NULL, &numBatches));
6517: PetscCall(PetscQuadratureGetData(quadF, NULL, NULL, &Nq, NULL, NULL));
6518: PetscCall(PetscFEGetDimension(feI, &Nb));
6519: blockSize = Nb;
6520: batchSize = numBlocks * blockSize;
6521: PetscCall(PetscFESetTileSizes(feI, blockSize, numBlocks, batchSize, numBatches));
6522: numChunks = numCells / (numBatches * batchSize);
6523: Ne = numChunks * numBatches * batchSize;
6524: Nr = numCells % (numBatches * batchSize);
6525: offset = numCells - Nr;
6526: PetscCall(PetscFEGeomGetChunk(geomF, 0, offset * 2, &chunkGeomF));
6527: PetscCall(PetscFEGeomGetChunk(geomF, offset * 2, numCells * 2, &remGeomF));
6528: PetscCall(PetscFEGeomGetChunk(geomN, 0, offset * 2, &chunkGeomN));
6529: PetscCall(PetscFEGeomGetChunk(geomN, offset * 2, numCells * 2, &remGeomN));
6530: PetscCall(PetscDSGetCohesive(ds, fieldI, &isCohesiveField));
6531: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6532: PetscFE feJ;
6534: PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
6535: if (!feJ) continue;
6536: key[0].field = fieldI * Nf + fieldJ;
6537: key[1].field = fieldI * Nf + fieldJ;
6538: key[2].field = fieldI * Nf + fieldJ;
6539: if (hasBdJac) {
6540: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNeg));
6541: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, X_tShift, &elemMatNeg[offset * totDim * totDim]));
6542: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPos));
6543: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, X_tShift, &elemMatPos[offset * totDim * totDim]));
6544: }
6545: if (hasBdPrec) {
6546: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNegP));
6547: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], &a[0][offset * totDimAux[0]], t, X_tShift, &elemMatNegP[offset * totDim * totDim]));
6548: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPosP));
6549: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], &a[1][offset * totDimAux[1]], t, X_tShift, &elemMatPosP[offset * totDim * totDim]));
6550: }
6551: if (hasBdJac) {
6552: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCoh));
6553: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, X_tShift, &elemMatCoh[offset * totDim * totDim]));
6554: }
6555: if (hasBdPrec) {
6556: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Ne, chunkGeomF, chunkGeomN, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCohP));
6557: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Nr, remGeomF, remGeomN, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], &a[2][offset * totDimAux[2]], t, X_tShift, &elemMatCohP[offset * totDim * totDim]));
6558: }
6559: }
6560: PetscCall(PetscFEGeomRestoreChunk(geomF, offset, numCells, &remGeomF));
6561: PetscCall(PetscFEGeomRestoreChunk(geomF, 0, offset, &chunkGeomF));
6562: PetscCall(PetscFEGeomRestoreChunk(geomN, offset, numCells, &remGeomN));
6563: PetscCall(PetscFEGeomRestoreChunk(geomN, 0, offset, &chunkGeomN));
6564: }
6565: /* Insert values into matrix */
6566: for (c = cS; c < cE; ++c) {
6567: const PetscInt cell = cells ? cells[c] : c;
6568: const PetscInt cind = c - cS, coff = cind * totDim * totDim;
6569: PetscInt i, j;
6571: /* Scale element values */
6572: if (locS[0]) {
6573: PetscInt Nb, soff = cind * totDimScale[0], off = 0;
6574: PetscBool cohesive;
6576: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6577: PetscCall(PetscDSGetFieldSize(ds, fieldI, &Nb));
6578: PetscCall(PetscDSGetCohesive(ds, fieldI, &cohesive));
6580: if (fieldI == key[2].field) {
6581: PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
6582: for (i = 0; i < Nb; ++i) {
6583: for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNeg[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPos[coff + (off + i) * totDim + j];
6584: if (hasBdPrec)
6585: for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNegP[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPosP[coff + (off + i) * totDim + j];
6586: }
6587: off += Nb;
6588: } else {
6589: const PetscInt N = cohesive ? Nb : Nb * 2;
6591: for (i = 0; i < N; ++i) {
6592: for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += elemMatNeg[coff + (off + i) * totDim + j] + elemMatPos[coff + (off + i) * totDim + j];
6593: if (hasBdPrec)
6594: for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += elemMatNegP[coff + (off + i) * totDim + j] + elemMatPosP[coff + (off + i) * totDim + j];
6595: }
6596: off += N;
6597: }
6598: }
6599: } else {
6600: for (i = 0; i < totDim * totDim; ++i) elemMatCoh[coff + i] += elemMatNeg[coff + i] + elemMatPos[coff + i];
6601: if (hasBdPrec)
6602: for (i = 0; i < totDim * totDim; ++i) elemMatCohP[coff + i] += elemMatNegP[coff + i] + elemMatPosP[coff + i];
6603: }
6604: if (hasBdPrec) {
6605: if (hasBdJac) {
6606: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6607: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6608: }
6609: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCohP[cind * totDim * totDim]));
6610: PetscCall(DMPlexMatSetClosure(plex, section, globalSection, JacP, cell, &elemMatCohP[cind * totDim * totDim], ADD_VALUES));
6611: } else if (hasBdJac) {
6612: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6613: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6614: }
6615: }
6616: }
6617: PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6618: PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6619: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6620: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6621: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6622: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6623: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6624: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6625: PetscCall(PetscFree2(faces, neighbors));
6626: PetscCall(ISDestroy(&chunkISF));
6627: PetscCall(ISDestroy(&chunkISN));
6628: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6629: if (maxDegree <= 1) {
6630: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuadF, PETSC_FALSE, &affineGeomF));
6631: PetscCall(PetscQuadratureDestroy(&affineQuadF));
6632: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuadN, PETSC_FALSE, &affineGeomN));
6633: PetscCall(PetscQuadratureDestroy(&affineQuadN));
6634: } else {
6635: PetscInt f;
6636: for (f = 0; f < Nf; ++f) {
6637: if (geomsF) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quadsF[f], PETSC_FALSE, &geomsF[f]));
6638: if (quadsF) PetscCall(PetscQuadratureDestroy(&quadsF[f]));
6639: }
6640: PetscCall(PetscFree2(quadsF, geomsF));
6641: }
6642: if (dmAux[2]) PetscCall(DMDestroy(&plexA));
6643: PetscCall(DMDestroy(&plex));
6644: end:
6645: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6646: PetscFunctionReturn(PETSC_SUCCESS);
6647: }
6649: /*@
6650: DMPlexComputeJacobianActionByKey - Compute the local Jacobian for terms matching the input key
6652: Collective
6654: Input Parameters:
6655: + dm - The output `DM`
6656: . key - The `PetscFormKey` indicating what should be integrated
6657: . cellIS - The `IS` give a set of cells to integrate over
6658: . t - The time
6659: . X_tShift - The multiplier for the Jacobian with respect to $X_t$
6660: . locX - The local solution
6661: . locX_t - The time derivative of the local solution, or `NULL` for time-independent problems
6662: . locY - The local vector acted on by J
6663: - user - An optional user context, passed to the pointwise functions
6665: Output Parameter:
6666: . locF - The local residual F = J(X) Y
6668: Level: developer
6670: .seealso: `DMPlexComputeResidualByKey()`, `DMPlexComputeJacobianByKey()`, `DMPlexComputeResidualHybridByKey()`, `DMPlexComputeJacobianHybridByKey()`, `PetscFormKey`
6671: @*/
6672: PetscErrorCode DMPlexComputeJacobianActionByKey(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Vec locY, Vec locF, void *user)
6673: {
6674: DM_Plex *mesh = (DM_Plex *)dm->data;
6675: const char *name = "Jacobian";
6676: DM dmAux = NULL, plex, plexAux = NULL;
6677: DMEnclosureType encAux;
6678: Vec A;
6679: DMField coordField;
6680: PetscDS prob, probAux = NULL;
6681: PetscQuadrature quad;
6682: PetscSection section, globalSection, sectionAux;
6683: PetscScalar *elemMat, *elemMatD, *u, *u_t, *a = NULL, *y, *z;
6684: const PetscInt *cells;
6685: PetscInt Nf, fieldI, fieldJ;
6686: PetscInt totDim, totDimAux = 0, cStart, cEnd, numCells, c;
6687: PetscBool hasDyn;
6689: PetscFunctionBegin;
6690: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6691: PetscCall(DMConvert(dm, DMPLEX, &plex));
6692: PetscCall(ISGetLocalSize(cellIS, &numCells));
6693: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6694: PetscCall(DMGetLocalSection(dm, §ion));
6695: PetscCall(DMGetGlobalSection(dm, &globalSection));
6696: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
6697: PetscCall(PetscDSGetNumFields(prob, &Nf));
6698: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
6699: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
6700: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
6701: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
6702: if (A) {
6703: PetscCall(VecGetDM(A, &dmAux));
6704: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
6705: PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
6706: PetscCall(DMGetLocalSection(plexAux, §ionAux));
6707: PetscCall(DMGetDS(dmAux, &probAux));
6708: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
6709: }
6710: PetscCall(VecSet(locF, 0.0));
6711: PetscCall(PetscMalloc6(numCells * totDim, &u, (locX_t ? (size_t)numCells * totDim : 0), &u_t, numCells * totDim * totDim, &elemMat, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD, numCells * totDim, &y, totDim, &z));
6712: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
6713: PetscCall(DMGetCoordinateField(dm, &coordField));
6714: for (c = cStart; c < cEnd; ++c) {
6715: const PetscInt cell = cells ? cells[c] : c;
6716: const PetscInt cind = c - cStart;
6717: PetscScalar *x = NULL, *x_t = NULL;
6718: PetscInt i;
6720: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x));
6721: for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
6722: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x));
6723: if (locX_t) {
6724: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t));
6725: for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
6726: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t));
6727: }
6728: if (dmAux) {
6729: PetscInt subcell;
6730: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
6731: PetscCall(DMPlexVecGetClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6732: for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
6733: PetscCall(DMPlexVecRestoreClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6734: }
6735: PetscCall(DMPlexVecGetClosure(plex, section, locY, cell, NULL, &x));
6736: for (i = 0; i < totDim; ++i) y[cind * totDim + i] = x[i];
6737: PetscCall(DMPlexVecRestoreClosure(plex, section, locY, cell, NULL, &x));
6738: }
6739: PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
6740: if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
6741: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6742: PetscFE fe;
6743: PetscInt Nb;
6744: /* Conforming batches */
6745: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
6746: /* Remainder */
6747: PetscInt Nr, offset, Nq;
6748: PetscQuadrature qGeom = NULL;
6749: PetscInt maxDegree;
6750: PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;
6752: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
6753: PetscCall(PetscFEGetQuadrature(fe, &quad));
6754: PetscCall(PetscFEGetDimension(fe, &Nb));
6755: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
6756: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6757: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
6758: if (!qGeom) {
6759: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
6760: PetscCall(PetscObjectReference((PetscObject)qGeom));
6761: }
6762: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6763: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FEGEOM_BASIC, &cgeomFEM));
6764: blockSize = Nb;
6765: batchSize = numBlocks * blockSize;
6766: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6767: numChunks = numCells / (numBatches * batchSize);
6768: Ne = numChunks * numBatches * batchSize;
6769: Nr = numCells % (numBatches * batchSize);
6770: offset = numCells - Nr;
6771: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6772: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6773: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6774: key.field = fieldI * Nf + fieldJ;
6775: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6776: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6777: if (hasDyn) {
6778: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6779: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, X_tShift, &elemMatD[offset * totDim * totDim]));
6780: }
6781: }
6782: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6783: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6784: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6785: PetscCall(PetscQuadratureDestroy(&qGeom));
6786: }
6787: if (hasDyn) {
6788: for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6789: }
6790: for (c = cStart; c < cEnd; ++c) {
6791: const PetscInt cell = cells ? cells[c] : c;
6792: const PetscInt cind = c - cStart;
6793: const PetscBLASInt one = 1;
6794: PetscBLASInt M;
6795: const PetscScalar a = 1.0, b = 0.0;
6797: PetscCall(PetscBLASIntCast(totDim, &M));
6798: PetscCallBLAS("BLASgemv", BLASgemv_("N", &M, &M, &a, &elemMat[cind * totDim * totDim], &M, &y[cind * totDim], &one, &b, z, &one));
6799: if (mesh->printFEM > 1) {
6800: PetscCall(DMPrintCellMatrix(c, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6801: PetscCall(DMPrintCellVector(c, "Y", totDim, &y[cind * totDim]));
6802: PetscCall(DMPrintCellVector(c, "Z", totDim, z));
6803: }
6804: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, z, ADD_VALUES));
6805: }
6806: PetscCall(PetscFree6(u, u_t, elemMat, elemMatD, y, z));
6807: if (mesh->printFEM) {
6808: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)locF), "Z:\n"));
6809: PetscCall(VecView(locF, NULL));
6810: }
6811: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6812: PetscCall(PetscFree(a));
6813: PetscCall(DMDestroy(&plexAux));
6814: PetscCall(DMDestroy(&plex));
6815: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6816: PetscFunctionReturn(PETSC_SUCCESS);
6817: }
6819: static void f0_1(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
6820: {
6821: f0[0] = u[0];
6822: }
6824: static void f0_x(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
6825: {
6826: f0[0] = x[(int)PetscRealPart(constants[0])] * u[0];
6827: }
6829: static void f0_x2(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
6830: {
6831: PetscInt d;
6833: f0[0] = 0.0;
6834: for (d = 0; d < dim; ++d) f0[0] += PetscSqr(x[d]) * u[0];
6835: }
6837: /*@
6838: DMPlexComputeMoments - Compute the first three moments for a field
6840: Noncollective
6842: Input Parameters:
6843: + dm - the `DMPLEX`
6844: - u - the field
6846: Output Parameter:
6847: . moments - the field moments
6849: Level: intermediate
6851: Note:
6852: The `moments` array should be of length cdim + 2, where cdim is the number of components for the coordinate field.
6854: .seealso: `DM`, `DMPLEX`, `DMSwarmComputeMoments()`
6855: @*/
6856: PetscErrorCode DMPlexComputeMoments(DM dm, Vec u, PetscReal moments[])
6857: {
6858: PetscDS ds;
6859: PetscScalar mom, constants[1];
6860: const PetscScalar *oldConstants;
6861: PetscInt cdim, Nf, field = 0, Ncon;
6862: MPI_Comm comm;
6863: void *user;
6865: PetscFunctionBeginUser;
6866: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
6867: PetscCall(DMGetCoordinateDim(dm, &cdim));
6868: PetscCall(DMGetApplicationContext(dm, &user));
6869: PetscCall(DMGetDS(dm, &ds));
6870: PetscCall(PetscDSGetNumFields(ds, &Nf));
6871: PetscCall(PetscDSGetConstants(ds, &Ncon, &oldConstants));
6872: PetscCheck(Nf == 1, comm, PETSC_ERR_ARG_WRONG, "We currently only support 1 field, not %" PetscInt_FMT, Nf);
6873: PetscCall(PetscDSSetObjective(ds, field, &f0_1));
6874: PetscCall(DMPlexComputeIntegralFEM(dm, u, &mom, user));
6875: moments[0] = PetscRealPart(mom);
6876: for (PetscInt c = 0; c < cdim; ++c) {
6877: constants[0] = c;
6878: PetscCall(PetscDSSetConstants(ds, 1, constants));
6879: PetscCall(PetscDSSetObjective(ds, field, &f0_x));
6880: PetscCall(DMPlexComputeIntegralFEM(dm, u, &mom, user));
6881: moments[c + 1] = PetscRealPart(mom);
6882: }
6883: PetscCall(PetscDSSetObjective(ds, field, &f0_x2));
6884: PetscCall(DMPlexComputeIntegralFEM(dm, u, &mom, user));
6885: moments[cdim + 1] = PetscRealPart(mom);
6886: PetscCall(PetscDSSetConstants(ds, Ncon, (PetscScalar *)oldConstants));
6887: PetscFunctionReturn(PETSC_SUCCESS);
6888: }