Actual source code: fieldsplit.c

  1: #include <petsc/private/pcimpl.h>
  2: #include <petsc/private/kspimpl.h>
  3: #include <petscdm.h>

  5: const char *const PCFieldSplitSchurPreTypes[]  = {"SELF", "SELFP", "A11", "USER", "FULL", "PCFieldSplitSchurPreType", "PC_FIELDSPLIT_SCHUR_PRE_", NULL};
  6: const char *const PCFieldSplitSchurFactTypes[] = {"DIAG", "LOWER", "UPPER", "FULL", "PCFieldSplitSchurFactType", "PC_FIELDSPLIT_SCHUR_FACT_", NULL};

  8: PetscLogEvent KSP_Solve_FS_0, KSP_Solve_FS_1, KSP_Solve_FS_S, KSP_Solve_FS_U, KSP_Solve_FS_L, KSP_Solve_FS_2, KSP_Solve_FS_3, KSP_Solve_FS_4;

 10: typedef struct _PC_FieldSplitLink *PC_FieldSplitLink;
 11: struct _PC_FieldSplitLink {
 12:   KSP               ksp;
 13:   Vec               x, y, z;
 14:   char             *splitname;
 15:   PetscInt          nfields;
 16:   PetscInt         *fields, *fields_col;
 17:   VecScatter        sctx;
 18:   IS                is, is_col;
 19:   PC_FieldSplitLink next, previous;
 20:   PetscLogEvent     event;

 22:   /* Used only when setting coordinates with PCSetCoordinates */
 23:   PetscInt   dim;
 24:   PetscInt   ndofs;
 25:   PetscReal *coords;
 26: };

 28: typedef struct {
 29:   PCCompositeType type;
 30:   PetscBool       defaultsplit; /* Flag for a system with a set of 'k' scalar fields with the same layout (and bs = k) */
 31:   PetscBool       splitdefined; /* Flag is set after the splits have been defined, to prevent more splits from being added */
 32:   PetscInt        bs;           /* Block size for IS and Mat structures */
 33:   PetscInt        nsplits;      /* Number of field divisions defined */
 34:   Vec            *x, *y, w1, w2;
 35:   Mat            *mat;    /* The diagonal block for each split */
 36:   Mat            *pmat;   /* The preconditioning diagonal block for each split */
 37:   Mat            *Afield; /* The rows of the matrix associated with each split */
 38:   PetscBool       issetup;

 40:   /* Only used when Schur complement preconditioning is used */
 41:   Mat                       B;          /* The (0,1) block */
 42:   Mat                       C;          /* The (1,0) block */
 43:   Mat                       schur;      /* The Schur complement S = A11 - A10 A00^{-1} A01, the KSP here, kspinner, is H_1 in [El08] */
 44:   Mat                       schurp;     /* Assembled approximation to S built by MatSchurComplement to be used as a preconditioning matrix when solving with S */
 45:   Mat                       schur_user; /* User-provided preconditioning matrix for the Schur complement */
 46:   PCFieldSplitSchurPreType  schurpre;   /* Determines which preconditioning matrix is used for the Schur complement */
 47:   PCFieldSplitSchurFactType schurfactorization;
 48:   KSP                       kspschur;   /* The solver for S */
 49:   KSP                       kspupper;   /* The solver for A in the upper diagonal part of the factorization (H_2 in [El08]) */
 50:   PetscScalar               schurscale; /* Scaling factor for the Schur complement solution with DIAG factorization */

 52:   /* Only used when Golub-Kahan bidiagonalization preconditioning is used */
 53:   Mat          H;           /* The modified matrix H = A00 + nu*A01*A01'              */
 54:   PetscReal    gkbtol;      /* Stopping tolerance for lower bound estimate            */
 55:   PetscInt     gkbdelay;    /* The delay window for the stopping criterion            */
 56:   PetscReal    gkbnu;       /* Parameter for augmented Lagrangian H = A + nu*A01*A01' */
 57:   PetscInt     gkbmaxit;    /* Maximum number of iterations for outer loop            */
 58:   PetscBool    gkbmonitor;  /* Monitor for gkb iterations and the lower bound error   */
 59:   PetscViewer  gkbviewer;   /* Viewer context for gkbmonitor                          */
 60:   Vec          u, v, d, Hu; /* Work vectors for the GKB algorithm                     */
 61:   PetscScalar *vecz;        /* Contains intermediate values, eg for lower bound       */

 63:   PC_FieldSplitLink head;
 64:   PetscBool         isrestrict;       /* indicates PCFieldSplitRestrictIS() has been last called on this object, hack */
 65:   PetscBool         suboptionsset;    /* Indicates that the KSPSetFromOptions() has been called on the sub-KSPs */
 66:   PetscBool         dm_splits;        /* Whether to use DMCreateFieldDecomposition() whenever possible */
 67:   PetscBool         diag_use_amat;    /* Whether to extract diagonal matrix blocks from Amat, rather than Pmat (weaker than -pc_use_amat) */
 68:   PetscBool         offdiag_use_amat; /* Whether to extract off-diagonal matrix blocks from Amat, rather than Pmat (weaker than -pc_use_amat) */
 69:   PetscBool         detect;           /* Whether to form 2-way split by finding zero diagonal entries */
 70:   PetscBool         coordinates_set;  /* Whether PCSetCoordinates has been called */
 71: } PC_FieldSplit;

 73: /*
 74:     Note:
 75:     there is no particular reason that pmat, x, and y are stored as arrays in PC_FieldSplit instead of
 76:    inside PC_FieldSplitLink, just historical. If you want to be able to add new fields after already using the
 77:    PC you could change this.
 78: */

 80: /* This helper is so that setting a user-provided preconditioning matrix is orthogonal to choosing to use it.  This way the
 81: * application-provided FormJacobian can provide this matrix without interfering with the user's (command-line) choices. */
 82: static Mat FieldSplitSchurPre(PC_FieldSplit *jac)
 83: {
 84:   switch (jac->schurpre) {
 85:   case PC_FIELDSPLIT_SCHUR_PRE_SELF:
 86:     return jac->schur;
 87:   case PC_FIELDSPLIT_SCHUR_PRE_SELFP:
 88:     return jac->schurp;
 89:   case PC_FIELDSPLIT_SCHUR_PRE_A11:
 90:     return jac->pmat[1];
 91:   case PC_FIELDSPLIT_SCHUR_PRE_FULL: /* We calculate this and store it in schur_user */
 92:   case PC_FIELDSPLIT_SCHUR_PRE_USER: /* Use a user-provided matrix if it is given, otherwise diagonal block */
 93:   default:
 94:     return jac->schur_user ? jac->schur_user : jac->pmat[1];
 95:   }
 96: }

 98: #include <petscdraw.h>
 99: static PetscErrorCode PCView_FieldSplit(PC pc, PetscViewer viewer)
100: {
101:   PC_FieldSplit    *jac = (PC_FieldSplit *)pc->data;
102:   PetscBool         iascii, isdraw;
103:   PetscInt          i, j;
104:   PC_FieldSplitLink ilink = jac->head;

106:   PetscFunctionBegin;
107:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
108:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
109:   if (iascii) {
110:     if (jac->bs > 0) {
111:       PetscCall(PetscViewerASCIIPrintf(viewer, "  FieldSplit with %s composition: total splits = %" PetscInt_FMT ", blocksize = %" PetscInt_FMT "\n", PCCompositeTypes[jac->type], jac->nsplits, jac->bs));
112:     } else {
113:       PetscCall(PetscViewerASCIIPrintf(viewer, "  FieldSplit with %s composition: total splits = %" PetscInt_FMT "\n", PCCompositeTypes[jac->type], jac->nsplits));
114:     }
115:     if (pc->useAmat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for blocks\n"));
116:     if (jac->diag_use_amat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for diagonal blocks\n"));
117:     if (jac->offdiag_use_amat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for off-diagonal blocks\n"));
118:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Solver info for each split is in the following KSP objects:\n"));
119:     for (i = 0; i < jac->nsplits; i++) {
120:       if (ilink->fields) {
121:         PetscCall(PetscViewerASCIIPrintf(viewer, "Split number %" PetscInt_FMT " Fields ", i));
122:         PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
123:         for (j = 0; j < ilink->nfields; j++) {
124:           if (j > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ","));
125:           PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT, ilink->fields[j]));
126:         }
127:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
128:         PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
129:       } else {
130:         PetscCall(PetscViewerASCIIPrintf(viewer, "Split number %" PetscInt_FMT " Defined by IS\n", i));
131:       }
132:       PetscCall(KSPView(ilink->ksp, viewer));
133:       ilink = ilink->next;
134:     }
135:   }

137:   if (isdraw) {
138:     PetscDraw draw;
139:     PetscReal x, y, w, wd;

141:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
142:     PetscCall(PetscDrawGetCurrentPoint(draw, &x, &y));
143:     w  = 2 * PetscMin(1.0 - x, x);
144:     wd = w / (jac->nsplits + 1);
145:     x  = x - wd * (jac->nsplits - 1) / 2.0;
146:     for (i = 0; i < jac->nsplits; i++) {
147:       PetscCall(PetscDrawPushCurrentPoint(draw, x, y));
148:       PetscCall(KSPView(ilink->ksp, viewer));
149:       PetscCall(PetscDrawPopCurrentPoint(draw));
150:       x += wd;
151:       ilink = ilink->next;
152:     }
153:   }
154:   PetscFunctionReturn(PETSC_SUCCESS);
155: }

157: static PetscErrorCode PCView_FieldSplit_Schur(PC pc, PetscViewer viewer)
158: {
159:   PC_FieldSplit             *jac = (PC_FieldSplit *)pc->data;
160:   PetscBool                  iascii, isdraw;
161:   PetscInt                   i, j;
162:   PC_FieldSplitLink          ilink = jac->head;
163:   MatSchurComplementAinvType atype;

165:   PetscFunctionBegin;
166:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
167:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
168:   if (iascii) {
169:     if (jac->bs > 0) {
170:       PetscCall(PetscViewerASCIIPrintf(viewer, "  FieldSplit with Schur preconditioner, blocksize = %" PetscInt_FMT ", factorization %s\n", jac->bs, PCFieldSplitSchurFactTypes[jac->schurfactorization]));
171:     } else {
172:       PetscCall(PetscViewerASCIIPrintf(viewer, "  FieldSplit with Schur preconditioner, factorization %s\n", PCFieldSplitSchurFactTypes[jac->schurfactorization]));
173:     }
174:     if (pc->useAmat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for blocks\n"));
175:     switch (jac->schurpre) {
176:     case PC_FIELDSPLIT_SCHUR_PRE_SELF:
177:       PetscCall(PetscViewerASCIIPrintf(viewer, "  Preconditioner for the Schur complement formed from S itself\n"));
178:       break;
179:     case PC_FIELDSPLIT_SCHUR_PRE_SELFP:
180:       if (jac->schur) {
181:         PetscCall(MatSchurComplementGetAinvType(jac->schur, &atype));
182:         PetscCall(PetscViewerASCIIPrintf(viewer, "  Preconditioner for the Schur complement formed from Sp, an assembled approximation to S, which uses A00's %sinverse\n", atype == MAT_SCHUR_COMPLEMENT_AINV_DIAG ? "diagonal's " : (atype == MAT_SCHUR_COMPLEMENT_AINV_BLOCK_DIAG ? "block diagonal's " : (atype == MAT_SCHUR_COMPLEMENT_AINV_FULL ? "full " : "lumped diagonal's "))));
183:       }
184:       break;
185:     case PC_FIELDSPLIT_SCHUR_PRE_A11:
186:       PetscCall(PetscViewerASCIIPrintf(viewer, "  Preconditioner for the Schur complement formed from A11\n"));
187:       break;
188:     case PC_FIELDSPLIT_SCHUR_PRE_FULL:
189:       PetscCall(PetscViewerASCIIPrintf(viewer, "  Preconditioner for the Schur complement formed from the exact Schur complement\n"));
190:       break;
191:     case PC_FIELDSPLIT_SCHUR_PRE_USER:
192:       if (jac->schur_user) {
193:         PetscCall(PetscViewerASCIIPrintf(viewer, "  Preconditioner for the Schur complement formed from user provided matrix\n"));
194:       } else {
195:         PetscCall(PetscViewerASCIIPrintf(viewer, "  Preconditioner for the Schur complement formed from A11\n"));
196:       }
197:       break;
198:     default:
199:       SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Invalid Schur preconditioning type: %d", jac->schurpre);
200:     }
201:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Split info:\n"));
202:     PetscCall(PetscViewerASCIIPushTab(viewer));
203:     for (i = 0; i < jac->nsplits; i++) {
204:       if (ilink->fields) {
205:         PetscCall(PetscViewerASCIIPrintf(viewer, "Split number %" PetscInt_FMT " Fields ", i));
206:         PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
207:         for (j = 0; j < ilink->nfields; j++) {
208:           if (j > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ","));
209:           PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT, ilink->fields[j]));
210:         }
211:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
212:         PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
213:       } else {
214:         PetscCall(PetscViewerASCIIPrintf(viewer, "Split number %" PetscInt_FMT " Defined by IS\n", i));
215:       }
216:       ilink = ilink->next;
217:     }
218:     PetscCall(PetscViewerASCIIPrintf(viewer, "KSP solver for A00 block\n"));
219:     PetscCall(PetscViewerASCIIPushTab(viewer));
220:     if (jac->head) {
221:       PetscCall(KSPView(jac->head->ksp, viewer));
222:     } else PetscCall(PetscViewerASCIIPrintf(viewer, "  not yet available\n"));
223:     PetscCall(PetscViewerASCIIPopTab(viewer));
224:     if (jac->head && jac->kspupper != jac->head->ksp) {
225:       PetscCall(PetscViewerASCIIPrintf(viewer, "KSP solver for upper A00 in upper triangular factor\n"));
226:       PetscCall(PetscViewerASCIIPushTab(viewer));
227:       if (jac->kspupper) PetscCall(KSPView(jac->kspupper, viewer));
228:       else PetscCall(PetscViewerASCIIPrintf(viewer, "  not yet available\n"));
229:       PetscCall(PetscViewerASCIIPopTab(viewer));
230:     }
231:     PetscCall(PetscViewerASCIIPrintf(viewer, "KSP solver for S = A11 - A10 inv(A00) A01\n"));
232:     PetscCall(PetscViewerASCIIPushTab(viewer));
233:     if (jac->kspschur) {
234:       PetscCall(KSPView(jac->kspschur, viewer));
235:     } else {
236:       PetscCall(PetscViewerASCIIPrintf(viewer, "  not yet available\n"));
237:     }
238:     PetscCall(PetscViewerASCIIPopTab(viewer));
239:     PetscCall(PetscViewerASCIIPopTab(viewer));
240:   } else if (isdraw && jac->head) {
241:     PetscDraw draw;
242:     PetscReal x, y, w, wd, h;
243:     PetscInt  cnt = 2;
244:     char      str[32];

246:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
247:     PetscCall(PetscDrawGetCurrentPoint(draw, &x, &y));
248:     if (jac->kspupper != jac->head->ksp) cnt++;
249:     w  = 2 * PetscMin(1.0 - x, x);
250:     wd = w / (cnt + 1);

252:     PetscCall(PetscSNPrintf(str, 32, "Schur fact. %s", PCFieldSplitSchurFactTypes[jac->schurfactorization]));
253:     PetscCall(PetscDrawStringBoxed(draw, x, y, PETSC_DRAW_RED, PETSC_DRAW_BLACK, str, NULL, &h));
254:     y -= h;
255:     if (jac->schurpre == PC_FIELDSPLIT_SCHUR_PRE_USER && !jac->schur_user) {
256:       PetscCall(PetscSNPrintf(str, 32, "Prec. for Schur from %s", PCFieldSplitSchurPreTypes[PC_FIELDSPLIT_SCHUR_PRE_A11]));
257:     } else {
258:       PetscCall(PetscSNPrintf(str, 32, "Prec. for Schur from %s", PCFieldSplitSchurPreTypes[jac->schurpre]));
259:     }
260:     PetscCall(PetscDrawStringBoxed(draw, x + wd * (cnt - 1) / 2.0, y, PETSC_DRAW_RED, PETSC_DRAW_BLACK, str, NULL, &h));
261:     y -= h;
262:     x = x - wd * (cnt - 1) / 2.0;

264:     PetscCall(PetscDrawPushCurrentPoint(draw, x, y));
265:     PetscCall(KSPView(jac->head->ksp, viewer));
266:     PetscCall(PetscDrawPopCurrentPoint(draw));
267:     if (jac->kspupper != jac->head->ksp) {
268:       x += wd;
269:       PetscCall(PetscDrawPushCurrentPoint(draw, x, y));
270:       PetscCall(KSPView(jac->kspupper, viewer));
271:       PetscCall(PetscDrawPopCurrentPoint(draw));
272:     }
273:     x += wd;
274:     PetscCall(PetscDrawPushCurrentPoint(draw, x, y));
275:     PetscCall(KSPView(jac->kspschur, viewer));
276:     PetscCall(PetscDrawPopCurrentPoint(draw));
277:   }
278:   PetscFunctionReturn(PETSC_SUCCESS);
279: }

281: static PetscErrorCode PCView_FieldSplit_GKB(PC pc, PetscViewer viewer)
282: {
283:   PC_FieldSplit    *jac = (PC_FieldSplit *)pc->data;
284:   PetscBool         iascii, isdraw;
285:   PetscInt          i, j;
286:   PC_FieldSplitLink ilink = jac->head;

288:   PetscFunctionBegin;
289:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
290:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
291:   if (iascii) {
292:     if (jac->bs > 0) {
293:       PetscCall(PetscViewerASCIIPrintf(viewer, "  FieldSplit with %s composition: total splits = %" PetscInt_FMT ", blocksize = %" PetscInt_FMT "\n", PCCompositeTypes[jac->type], jac->nsplits, jac->bs));
294:     } else {
295:       PetscCall(PetscViewerASCIIPrintf(viewer, "  FieldSplit with %s composition: total splits = %" PetscInt_FMT "\n", PCCompositeTypes[jac->type], jac->nsplits));
296:     }
297:     if (pc->useAmat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for blocks\n"));
298:     if (jac->diag_use_amat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for diagonal blocks\n"));
299:     if (jac->offdiag_use_amat) PetscCall(PetscViewerASCIIPrintf(viewer, "  using Amat (not Pmat) as operator for off-diagonal blocks\n"));

301:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Stopping tolerance=%.1e, delay in error estimate=%" PetscInt_FMT ", maximum iterations=%" PetscInt_FMT "\n", (double)jac->gkbtol, jac->gkbdelay, jac->gkbmaxit));
302:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Solver info for H = A00 + nu*A01*A01' matrix:\n"));
303:     PetscCall(PetscViewerASCIIPushTab(viewer));

305:     if (ilink->fields) {
306:       PetscCall(PetscViewerASCIIPrintf(viewer, "Split number 0 Fields "));
307:       PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
308:       for (j = 0; j < ilink->nfields; j++) {
309:         if (j > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ","));
310:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT, ilink->fields[j]));
311:       }
312:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
313:       PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
314:     } else {
315:       PetscCall(PetscViewerASCIIPrintf(viewer, "Split number 0 Defined by IS\n"));
316:     }
317:     PetscCall(KSPView(ilink->ksp, viewer));

319:     PetscCall(PetscViewerASCIIPopTab(viewer));
320:   }

322:   if (isdraw) {
323:     PetscDraw draw;
324:     PetscReal x, y, w, wd;

326:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
327:     PetscCall(PetscDrawGetCurrentPoint(draw, &x, &y));
328:     w  = 2 * PetscMin(1.0 - x, x);
329:     wd = w / (jac->nsplits + 1);
330:     x  = x - wd * (jac->nsplits - 1) / 2.0;
331:     for (i = 0; i < jac->nsplits; i++) {
332:       PetscCall(PetscDrawPushCurrentPoint(draw, x, y));
333:       PetscCall(KSPView(ilink->ksp, viewer));
334:       PetscCall(PetscDrawPopCurrentPoint(draw));
335:       x += wd;
336:       ilink = ilink->next;
337:     }
338:   }
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: /* Precondition: jac->bs is set to a meaningful value or MATNEST */
343: static PetscErrorCode PCFieldSplitSetRuntimeSplits_Private(PC pc)
344: {
345:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
346:   PetscInt       bs, i, nfields, *ifields, nfields_col, *ifields_col;
347:   PetscBool      flg, flg_col, mnest;
348:   char           optionname[128], splitname[8], optionname_col[128];

350:   PetscFunctionBegin;
351:   PetscCall(PetscObjectTypeCompare((PetscObject)pc->mat, MATNEST, &mnest));
352:   if (mnest) {
353:     PetscCall(MatNestGetSize(pc->pmat, &bs, NULL));
354:   } else {
355:     bs = jac->bs;
356:   }
357:   PetscCall(PetscMalloc2(bs, &ifields, bs, &ifields_col));
358:   for (i = 0, flg = PETSC_TRUE;; i++) {
359:     PetscCall(PetscSNPrintf(splitname, sizeof(splitname), "%" PetscInt_FMT, i));
360:     PetscCall(PetscSNPrintf(optionname, sizeof(optionname), "-pc_fieldsplit_%" PetscInt_FMT "_fields", i));
361:     PetscCall(PetscSNPrintf(optionname_col, sizeof(optionname_col), "-pc_fieldsplit_%" PetscInt_FMT "_fields_col", i));
362:     nfields     = bs;
363:     nfields_col = bs;
364:     PetscCall(PetscOptionsGetIntArray(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, optionname, ifields, &nfields, &flg));
365:     PetscCall(PetscOptionsGetIntArray(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, optionname_col, ifields_col, &nfields_col, &flg_col));
366:     if (!flg) break;
367:     else if (flg && !flg_col) {
368:       PetscCheck(nfields, PETSC_COMM_SELF, PETSC_ERR_USER, "Cannot list zero fields");
369:       PetscCall(PCFieldSplitSetFields(pc, splitname, nfields, ifields, ifields));
370:     } else {
371:       PetscCheck(nfields && nfields_col, PETSC_COMM_SELF, PETSC_ERR_USER, "Cannot list zero fields");
372:       PetscCheck(nfields == nfields_col, PETSC_COMM_SELF, PETSC_ERR_USER, "Number of row and column fields must match");
373:       PetscCall(PCFieldSplitSetFields(pc, splitname, nfields, ifields, ifields_col));
374:     }
375:   }
376:   if (i > 0) {
377:     /* Makes command-line setting of splits take precedence over setting them in code.
378:        Otherwise subsequent calls to PCFieldSplitSetIS() or PCFieldSplitSetFields() would
379:        create new splits, which would probably not be what the user wanted. */
380:     jac->splitdefined = PETSC_TRUE;
381:   }
382:   PetscCall(PetscFree2(ifields, ifields_col));
383:   PetscFunctionReturn(PETSC_SUCCESS);
384: }

386: static PetscErrorCode PCFieldSplitSetDefaults(PC pc)
387: {
388:   PC_FieldSplit    *jac                = (PC_FieldSplit *)pc->data;
389:   PC_FieldSplitLink ilink              = jac->head;
390:   PetscBool         fieldsplit_default = PETSC_FALSE, coupling = PETSC_FALSE;
391:   PetscInt          i;

393:   PetscFunctionBegin;
394:   /*
395:    Kinda messy, but at least this now uses DMCreateFieldDecomposition().
396:    Should probably be rewritten.
397:    */
398:   if (!ilink) {
399:     PetscCall(PetscOptionsGetBool(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, "-pc_fieldsplit_detect_coupling", &coupling, NULL));
400:     if (pc->dm && jac->dm_splits && !jac->detect && !coupling) {
401:       PetscInt  numFields, f, i, j;
402:       char    **fieldNames;
403:       IS       *fields;
404:       DM       *dms;
405:       DM        subdm[128];
406:       PetscBool flg;

408:       PetscCall(DMCreateFieldDecomposition(pc->dm, &numFields, &fieldNames, &fields, &dms));
409:       /* Allow the user to prescribe the splits */
410:       for (i = 0, flg = PETSC_TRUE;; i++) {
411:         PetscInt ifields[128];
412:         IS       compField;
413:         char     optionname[128], splitname[8];
414:         PetscInt nfields = numFields;

416:         PetscCall(PetscSNPrintf(optionname, sizeof(optionname), "-pc_fieldsplit_%" PetscInt_FMT "_fields", i));
417:         PetscCall(PetscOptionsGetIntArray(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, optionname, ifields, &nfields, &flg));
418:         if (!flg) break;
419:         PetscCheck(numFields <= 128, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot currently support %" PetscInt_FMT " > 128 fields", numFields);
420:         PetscCall(DMCreateSubDM(pc->dm, nfields, ifields, &compField, &subdm[i]));
421:         if (nfields == 1) {
422:           PetscCall(PCFieldSplitSetIS(pc, fieldNames[ifields[0]], compField));
423:         } else {
424:           PetscCall(PetscSNPrintf(splitname, sizeof(splitname), "%" PetscInt_FMT, i));
425:           PetscCall(PCFieldSplitSetIS(pc, splitname, compField));
426:         }
427:         PetscCall(ISDestroy(&compField));
428:         for (j = 0; j < nfields; ++j) {
429:           f = ifields[j];
430:           PetscCall(PetscFree(fieldNames[f]));
431:           PetscCall(ISDestroy(&fields[f]));
432:         }
433:       }
434:       if (i == 0) {
435:         for (f = 0; f < numFields; ++f) {
436:           PetscCall(PCFieldSplitSetIS(pc, fieldNames[f], fields[f]));
437:           PetscCall(PetscFree(fieldNames[f]));
438:           PetscCall(ISDestroy(&fields[f]));
439:         }
440:       } else {
441:         for (j = 0; j < numFields; j++) PetscCall(DMDestroy(dms + j));
442:         PetscCall(PetscFree(dms));
443:         PetscCall(PetscMalloc1(i, &dms));
444:         for (j = 0; j < i; ++j) dms[j] = subdm[j];
445:       }
446:       PetscCall(PetscFree(fieldNames));
447:       PetscCall(PetscFree(fields));
448:       if (dms) {
449:         PetscCall(PetscInfo(pc, "Setting up physics based fieldsplit preconditioner using the embedded DM\n"));
450:         for (ilink = jac->head, i = 0; ilink; ilink = ilink->next, ++i) {
451:           const char *prefix;
452:           PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ilink->ksp, &prefix));
453:           PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dms[i], prefix));
454:           PetscCall(KSPSetDM(ilink->ksp, dms[i]));
455:           PetscCall(KSPSetDMActive(ilink->ksp, PETSC_FALSE));
456:           PetscCall(PetscObjectIncrementTabLevel((PetscObject)dms[i], (PetscObject)ilink->ksp, 0));
457:           PetscCall(DMDestroy(&dms[i]));
458:         }
459:         PetscCall(PetscFree(dms));
460:       }
461:     } else {
462:       if (jac->bs <= 0) {
463:         if (pc->pmat) {
464:           PetscCall(MatGetBlockSize(pc->pmat, &jac->bs));
465:         } else jac->bs = 1;
466:       }

468:       if (jac->detect) {
469:         IS       zerodiags, rest;
470:         PetscInt nmin, nmax;

472:         PetscCall(MatGetOwnershipRange(pc->mat, &nmin, &nmax));
473:         if (jac->diag_use_amat) {
474:           PetscCall(MatFindZeroDiagonals(pc->mat, &zerodiags));
475:         } else {
476:           PetscCall(MatFindZeroDiagonals(pc->pmat, &zerodiags));
477:         }
478:         PetscCall(ISComplement(zerodiags, nmin, nmax, &rest));
479:         PetscCall(PCFieldSplitSetIS(pc, "0", rest));
480:         PetscCall(PCFieldSplitSetIS(pc, "1", zerodiags));
481:         PetscCall(ISDestroy(&zerodiags));
482:         PetscCall(ISDestroy(&rest));
483:       } else if (coupling) {
484:         IS       coupling, rest;
485:         PetscInt nmin, nmax;

487:         PetscCall(MatGetOwnershipRange(pc->mat, &nmin, &nmax));
488:         if (jac->offdiag_use_amat) {
489:           PetscCall(MatFindOffBlockDiagonalEntries(pc->mat, &coupling));
490:         } else {
491:           PetscCall(MatFindOffBlockDiagonalEntries(pc->pmat, &coupling));
492:         }
493:         PetscCall(ISCreateStride(PetscObjectComm((PetscObject)pc->mat), nmax - nmin, nmin, 1, &rest));
494:         PetscCall(ISSetIdentity(rest));
495:         PetscCall(PCFieldSplitSetIS(pc, "0", rest));
496:         PetscCall(PCFieldSplitSetIS(pc, "1", coupling));
497:         PetscCall(ISDestroy(&coupling));
498:         PetscCall(ISDestroy(&rest));
499:       } else {
500:         PetscCall(PetscOptionsGetBool(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, "-pc_fieldsplit_default", &fieldsplit_default, NULL));
501:         if (!fieldsplit_default) {
502:           /* Allow user to set fields from command line,  if bs was known at the time of PCSetFromOptions_FieldSplit()
503:            then it is set there. This is not ideal because we should only have options set in XXSetFromOptions(). */
504:           PetscCall(PCFieldSplitSetRuntimeSplits_Private(pc));
505:           if (jac->splitdefined) PetscCall(PetscInfo(pc, "Splits defined using the options database\n"));
506:         }
507:         if ((fieldsplit_default || !jac->splitdefined) && !jac->isrestrict) {
508:           Mat       M = pc->pmat;
509:           PetscBool isnest;
510:           PetscInt  nf;

512:           PetscCall(PetscInfo(pc, "Using default splitting of fields\n"));
513:           PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATNEST, &isnest));
514:           if (!isnest) {
515:             M = pc->mat;
516:             PetscCall(PetscObjectTypeCompare((PetscObject)pc->mat, MATNEST, &isnest));
517:           }
518:           if (!isnest) nf = jac->bs;
519:           else PetscCall(MatNestGetSize(M, &nf, NULL));
520:           for (i = 0; i < nf; i++) {
521:             char splitname[8];

523:             PetscCall(PetscSNPrintf(splitname, sizeof(splitname), "%" PetscInt_FMT, i));
524:             PetscCall(PCFieldSplitSetFields(pc, splitname, 1, &i, &i));
525:           }
526:           jac->defaultsplit = PETSC_TRUE;
527:         }
528:       }
529:     }
530:   } else if (jac->nsplits == 1) {
531:     IS       is2;
532:     PetscInt nmin, nmax;

534:     PetscCheck(ilink->is, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Must provide at least two sets of fields to PCFieldSplit()");
535:     PetscCall(MatGetOwnershipRange(pc->mat, &nmin, &nmax));
536:     PetscCall(ISComplement(ilink->is, nmin, nmax, &is2));
537:     PetscCall(PCFieldSplitSetIS(pc, "1", is2));
538:     PetscCall(ISDestroy(&is2));
539:   }

541:   PetscCheck(jac->nsplits >= 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_PLIB, "Unhandled case, must have at least two fields, not %" PetscInt_FMT, jac->nsplits);
542:   PetscFunctionReturn(PETSC_SUCCESS);
543: }

545: static PetscErrorCode MatGolubKahanComputeExplicitOperator(Mat A, Mat B, Mat C, Mat *H, PetscReal gkbnu)
546: {
547:   Mat       BT, T;
548:   PetscReal nrmT, nrmB;

550:   PetscFunctionBegin;
551:   PetscCall(MatHermitianTranspose(C, MAT_INITIAL_MATRIX, &T)); /* Test if augmented matrix is symmetric */
552:   PetscCall(MatAXPY(T, -1.0, B, DIFFERENT_NONZERO_PATTERN));
553:   PetscCall(MatNorm(T, NORM_1, &nrmT));
554:   PetscCall(MatNorm(B, NORM_1, &nrmB));
555:   PetscCheck(nrmB <= 0 || nrmT / nrmB < PETSC_SMALL, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Matrix is not symmetric/hermitian, GKB is not applicable.");

557:   /* Compute augmented Lagrangian matrix H = A00 + nu*A01*A01'. This corresponds to */
558:   /* setting N := 1/nu*I in [Ar13].                                                 */
559:   PetscCall(MatHermitianTranspose(B, MAT_INITIAL_MATRIX, &BT));
560:   PetscCall(MatMatMult(B, BT, MAT_INITIAL_MATRIX, PETSC_DEFAULT, H)); /* H = A01*A01'          */
561:   PetscCall(MatAYPX(*H, gkbnu, A, DIFFERENT_NONZERO_PATTERN));        /* H = A00 + nu*A01*A01' */

563:   PetscCall(MatDestroy(&BT));
564:   PetscCall(MatDestroy(&T));
565:   PetscFunctionReturn(PETSC_SUCCESS);
566: }

568: PETSC_EXTERN PetscErrorCode PetscOptionsFindPairPrefix_Private(PetscOptions, const char pre[], const char name[], const char *option[], const char *value[], PetscBool *flg);

570: static PetscErrorCode PCSetUp_FieldSplit(PC pc)
571: {
572:   PC_FieldSplit    *jac = (PC_FieldSplit *)pc->data;
573:   PC_FieldSplitLink ilink;
574:   PetscInt          i, nsplit;
575:   PetscBool         sorted, sorted_col, matnest = PETSC_FALSE;

577:   PetscFunctionBegin;
578:   pc->failedreason = PC_NOERROR;
579:   PetscCall(PCFieldSplitSetDefaults(pc));
580:   nsplit = jac->nsplits;
581:   ilink  = jac->head;
582:   if (pc->pmat) PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATNEST, &matnest));

584:   /* get the matrices for each split */
585:   if (!jac->issetup) {
586:     PetscInt rstart, rend, nslots, bs;

588:     jac->issetup = PETSC_TRUE;

590:     /* This is done here instead of in PCFieldSplitSetFields() because may not have matrix at that point */
591:     if (jac->defaultsplit || !ilink->is) {
592:       if (jac->bs <= 0) jac->bs = nsplit;
593:     }

595:     /*  MatCreateSubMatrix() for [S]BAIJ matrices can only work if the indices include entire blocks of the matrix */
596:     PetscCall(MatGetBlockSize(pc->pmat, &bs));
597:     if (bs > 1 && (jac->bs <= bs || jac->bs % bs)) {
598:       PetscBool blk;

600:       PetscCall(PetscObjectTypeCompareAny((PetscObject)pc->pmat, &blk, MATBAIJ, MATSBAIJ, MATSEQBAIJ, MATSEQSBAIJ, MATMPIBAIJ, MATMPISBAIJ, NULL));
601:       PetscCheck(!blk, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Cannot use MATBAIJ with PCFIELDSPLIT and currently set matrix and PC blocksizes");
602:     }

604:     if (!matnest) { /* use the matrix blocksize and stride IS to determine the index sets that define the submatrices */
605:       bs = jac->bs;
606:       PetscCall(MatGetOwnershipRange(pc->pmat, &rstart, &rend));
607:       nslots = (rend - rstart) / bs;
608:       for (i = 0; i < nsplit; i++) {
609:         if (jac->defaultsplit) {
610:           PetscCall(ISCreateStride(PetscObjectComm((PetscObject)pc), nslots, rstart + i, nsplit, &ilink->is));
611:           PetscCall(ISDuplicate(ilink->is, &ilink->is_col));
612:         } else if (!ilink->is) {
613:           if (ilink->nfields > 1) {
614:             PetscInt *ii, *jj, j, k, nfields = ilink->nfields, *fields = ilink->fields, *fields_col = ilink->fields_col;

616:             PetscCall(PetscMalloc1(ilink->nfields * nslots, &ii));
617:             PetscCall(PetscMalloc1(ilink->nfields * nslots, &jj));
618:             for (j = 0; j < nslots; j++) {
619:               for (k = 0; k < nfields; k++) {
620:                 ii[nfields * j + k] = rstart + bs * j + fields[k];
621:                 jj[nfields * j + k] = rstart + bs * j + fields_col[k];
622:               }
623:             }
624:             PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)pc), nslots * nfields, ii, PETSC_OWN_POINTER, &ilink->is));
625:             PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)pc), nslots * nfields, jj, PETSC_OWN_POINTER, &ilink->is_col));
626:             PetscCall(ISSetBlockSize(ilink->is, nfields));
627:             PetscCall(ISSetBlockSize(ilink->is_col, nfields));
628:           } else {
629:             PetscCall(ISCreateStride(PetscObjectComm((PetscObject)pc), nslots, rstart + ilink->fields[0], bs, &ilink->is));
630:             PetscCall(ISCreateStride(PetscObjectComm((PetscObject)pc), nslots, rstart + ilink->fields_col[0], bs, &ilink->is_col));
631:           }
632:         }
633:         PetscCall(ISSorted(ilink->is, &sorted));
634:         if (ilink->is_col) PetscCall(ISSorted(ilink->is_col, &sorted_col));
635:         PetscCheck(sorted && sorted_col, PETSC_COMM_SELF, PETSC_ERR_USER, "Fields must be sorted when creating split");
636:         ilink = ilink->next;
637:       }
638:     } else { /* use the IS that define the MATNEST to determine the index sets that define the submatrices */
639:       IS      *rowis, *colis, *ises = NULL;
640:       PetscInt mis, nis;

642:       PetscCall(MatNestGetSize(pc->pmat, &mis, &nis));
643:       PetscCall(PetscMalloc2(mis, &rowis, nis, &colis));
644:       PetscCall(MatNestGetISs(pc->pmat, rowis, colis));
645:       if (!jac->defaultsplit) PetscCall(PetscMalloc1(mis, &ises));

647:       for (i = 0; i < nsplit; i++) {
648:         if (jac->defaultsplit) {
649:           PetscCall(ISDuplicate(rowis[i], &ilink->is));
650:           PetscCall(ISDuplicate(ilink->is, &ilink->is_col));
651:         } else if (!ilink->is) {
652:           if (ilink->nfields > 1) {
653:             for (PetscInt j = 0; j < ilink->nfields; j++) ises[j] = rowis[ilink->fields[j]];
654:             PetscCall(ISConcatenate(PetscObjectComm((PetscObject)pc), ilink->nfields, ises, &ilink->is));
655:           } else {
656:             PetscCall(ISDuplicate(rowis[ilink->fields[0]], &ilink->is));
657:           }
658:           PetscCall(ISDuplicate(ilink->is, &ilink->is_col));
659:         }
660:         ilink = ilink->next;
661:       }
662:       PetscCall(PetscFree2(rowis, colis));
663:       PetscCall(PetscFree(ises));
664:     }
665:   }

667:   ilink = jac->head;
668:   if (!jac->pmat) {
669:     Vec xtmp;

671:     PetscCall(MatCreateVecs(pc->pmat, &xtmp, NULL));
672:     PetscCall(PetscMalloc1(nsplit, &jac->pmat));
673:     PetscCall(PetscMalloc2(nsplit, &jac->x, nsplit, &jac->y));
674:     for (i = 0; i < nsplit; i++) {
675:       MatNullSpace sp;

677:       /* Check for preconditioning matrix attached to IS */
678:       PetscCall(PetscObjectQuery((PetscObject)ilink->is, "pmat", (PetscObject *)&jac->pmat[i]));
679:       if (jac->pmat[i]) {
680:         PetscCall(PetscObjectReference((PetscObject)jac->pmat[i]));
681:         if (jac->type == PC_COMPOSITE_SCHUR) {
682:           jac->schur_user = jac->pmat[i];

684:           PetscCall(PetscObjectReference((PetscObject)jac->schur_user));
685:         }
686:       } else {
687:         const char *prefix;
688:         PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ilink->is_col, MAT_INITIAL_MATRIX, &jac->pmat[i]));
689:         PetscCall(MatGetOptionsPrefix(jac->pmat[i], &prefix));
690:         if (!prefix) {
691:           PetscCall(KSPGetOptionsPrefix(ilink->ksp, &prefix));
692:           PetscCall(MatSetOptionsPrefix(jac->pmat[i], prefix));
693:         }
694:         PetscCall(MatSetFromOptions(jac->pmat[i]));
695:         PetscCall(MatViewFromOptions(jac->pmat[i], NULL, "-mat_view"));
696:       }
697:       /* create work vectors for each split */
698:       PetscCall(MatCreateVecs(jac->pmat[i], &jac->x[i], &jac->y[i]));
699:       ilink->x = jac->x[i];
700:       ilink->y = jac->y[i];
701:       ilink->z = NULL;
702:       /* compute scatter contexts needed by multiplicative versions and non-default splits */
703:       PetscCall(VecScatterCreate(xtmp, ilink->is, jac->x[i], NULL, &ilink->sctx));
704:       PetscCall(PetscObjectQuery((PetscObject)ilink->is, "nearnullspace", (PetscObject *)&sp));
705:       if (sp) PetscCall(MatSetNearNullSpace(jac->pmat[i], sp));
706:       ilink = ilink->next;
707:     }
708:     PetscCall(VecDestroy(&xtmp));
709:   } else {
710:     MatReuse      scall;
711:     MatNullSpace *nullsp = NULL;

713:     if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
714:       PetscCall(MatGetNullSpaces(nsplit, jac->pmat, &nullsp));
715:       for (i = 0; i < nsplit; i++) PetscCall(MatDestroy(&jac->pmat[i]));
716:       scall = MAT_INITIAL_MATRIX;
717:     } else scall = MAT_REUSE_MATRIX;

719:     for (i = 0; i < nsplit; i++) {
720:       Mat pmat;

722:       /* Check for preconditioning matrix attached to IS */
723:       PetscCall(PetscObjectQuery((PetscObject)ilink->is, "pmat", (PetscObject *)&pmat));
724:       if (!pmat) PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ilink->is_col, scall, &jac->pmat[i]));
725:       ilink = ilink->next;
726:     }
727:     if (nullsp) PetscCall(MatRestoreNullSpaces(nsplit, jac->pmat, &nullsp));
728:   }
729:   if (jac->diag_use_amat) {
730:     ilink = jac->head;
731:     if (!jac->mat) {
732:       PetscCall(PetscMalloc1(nsplit, &jac->mat));
733:       for (i = 0; i < nsplit; i++) {
734:         PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ilink->is_col, MAT_INITIAL_MATRIX, &jac->mat[i]));
735:         ilink = ilink->next;
736:       }
737:     } else {
738:       MatReuse      scall;
739:       MatNullSpace *nullsp = NULL;

741:       if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
742:         PetscCall(MatGetNullSpaces(nsplit, jac->mat, &nullsp));
743:         for (i = 0; i < nsplit; i++) PetscCall(MatDestroy(&jac->mat[i]));
744:         scall = MAT_INITIAL_MATRIX;
745:       } else scall = MAT_REUSE_MATRIX;

747:       for (i = 0; i < nsplit; i++) {
748:         PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ilink->is_col, scall, &jac->mat[i]));
749:         ilink = ilink->next;
750:       }
751:       if (nullsp) PetscCall(MatRestoreNullSpaces(nsplit, jac->mat, &nullsp));
752:     }
753:   } else {
754:     jac->mat = jac->pmat;
755:   }

757:   /* Check for null space attached to IS */
758:   ilink = jac->head;
759:   for (i = 0; i < nsplit; i++) {
760:     MatNullSpace sp;

762:     PetscCall(PetscObjectQuery((PetscObject)ilink->is, "nullspace", (PetscObject *)&sp));
763:     if (sp) PetscCall(MatSetNullSpace(jac->mat[i], sp));
764:     ilink = ilink->next;
765:   }

767:   if (jac->type != PC_COMPOSITE_ADDITIVE && jac->type != PC_COMPOSITE_SCHUR && jac->type != PC_COMPOSITE_GKB) {
768:     /* extract the rows of the matrix associated with each field: used for efficient computation of residual inside algorithm */
769:     /* FIXME: Can/should we reuse jac->mat whenever (jac->diag_use_amat) is true? */
770:     ilink = jac->head;
771:     if (nsplit == 2 && jac->type == PC_COMPOSITE_MULTIPLICATIVE) {
772:       /* special case need where Afield[0] is not needed and only certain columns of Afield[1] are needed since update is only on those rows of the solution */
773:       if (!jac->Afield) {
774:         PetscCall(PetscCalloc1(nsplit, &jac->Afield));
775:         if (jac->offdiag_use_amat) {
776:           PetscCall(MatCreateSubMatrix(pc->mat, ilink->next->is, ilink->is, MAT_INITIAL_MATRIX, &jac->Afield[1]));
777:         } else {
778:           PetscCall(MatCreateSubMatrix(pc->pmat, ilink->next->is, ilink->is, MAT_INITIAL_MATRIX, &jac->Afield[1]));
779:         }
780:       } else {
781:         MatReuse scall;

783:         if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
784:           PetscCall(MatDestroy(&jac->Afield[1]));
785:           scall = MAT_INITIAL_MATRIX;
786:         } else scall = MAT_REUSE_MATRIX;

788:         if (jac->offdiag_use_amat) {
789:           PetscCall(MatCreateSubMatrix(pc->mat, ilink->next->is, ilink->is, scall, &jac->Afield[1]));
790:         } else {
791:           PetscCall(MatCreateSubMatrix(pc->pmat, ilink->next->is, ilink->is, scall, &jac->Afield[1]));
792:         }
793:       }
794:     } else {
795:       if (!jac->Afield) {
796:         PetscCall(PetscMalloc1(nsplit, &jac->Afield));
797:         for (i = 0; i < nsplit; i++) {
798:           if (jac->offdiag_use_amat) {
799:             PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, NULL, MAT_INITIAL_MATRIX, &jac->Afield[i]));
800:           } else {
801:             PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, NULL, MAT_INITIAL_MATRIX, &jac->Afield[i]));
802:           }
803:           ilink = ilink->next;
804:         }
805:       } else {
806:         MatReuse scall;
807:         if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
808:           for (i = 0; i < nsplit; i++) PetscCall(MatDestroy(&jac->Afield[i]));
809:           scall = MAT_INITIAL_MATRIX;
810:         } else scall = MAT_REUSE_MATRIX;

812:         for (i = 0; i < nsplit; i++) {
813:           if (jac->offdiag_use_amat) {
814:             PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, NULL, scall, &jac->Afield[i]));
815:           } else {
816:             PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, NULL, scall, &jac->Afield[i]));
817:           }
818:           ilink = ilink->next;
819:         }
820:       }
821:     }
822:   }

824:   if (jac->type == PC_COMPOSITE_SCHUR) {
825:     IS          ccis;
826:     PetscBool   isset, isspd;
827:     PetscInt    rstart, rend;
828:     char        lscname[256];
829:     PetscObject LSC_L;
830:     PetscBool   set, flg;

832:     PetscCheck(nsplit == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "To use Schur complement preconditioner you must have exactly 2 fields");

834:     /* If pc->mat is SPD, don't scale by -1 the Schur complement */
835:     if (jac->schurscale == (PetscScalar)-1.0) {
836:       PetscCall(MatIsSPDKnown(pc->pmat, &isset, &isspd));
837:       jac->schurscale = (isset && isspd) ? 1.0 : -1.0;
838:     }

840:     /* When extracting off-diagonal submatrices, we take complements from this range */
841:     PetscCall(MatGetOwnershipRangeColumn(pc->mat, &rstart, &rend));
842:     PetscCall(PetscObjectTypeCompareAny(jac->offdiag_use_amat ? (PetscObject)pc->mat : (PetscObject)pc->pmat, &flg, MATSEQSBAIJ, MATMPISBAIJ, ""));

844:     if (jac->schur) {
845:       KSP      kspA = jac->head->ksp, kspInner = NULL, kspUpper = jac->kspupper;
846:       MatReuse scall;

848:       if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
849:         scall = MAT_INITIAL_MATRIX;
850:         PetscCall(MatDestroy(&jac->B));
851:         PetscCall(MatDestroy(&jac->C));
852:       } else scall = MAT_REUSE_MATRIX;

854:       PetscCall(MatSchurComplementGetKSP(jac->schur, &kspInner));
855:       ilink = jac->head;
856:       PetscCall(ISComplement(ilink->is_col, rstart, rend, &ccis));
857:       if (jac->offdiag_use_amat) {
858:         PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ccis, scall, &jac->B));
859:       } else {
860:         PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ccis, scall, &jac->B));
861:       }
862:       PetscCall(ISDestroy(&ccis));
863:       if (!flg) {
864:         ilink = ilink->next;
865:         PetscCall(ISComplement(ilink->is_col, rstart, rend, &ccis));
866:         if (jac->offdiag_use_amat) {
867:           PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ccis, scall, &jac->C));
868:         } else {
869:           PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ccis, scall, &jac->C));
870:         }
871:         PetscCall(ISDestroy(&ccis));
872:       } else {
873:         PetscCall(MatIsHermitianKnown(jac->offdiag_use_amat ? pc->mat : pc->pmat, &set, &flg));
874:         if (set && flg) PetscCall(MatCreateHermitianTranspose(jac->B, &jac->C));
875:         else PetscCall(MatCreateTranspose(jac->B, &jac->C));
876:       }
877:       PetscCall(MatSchurComplementUpdateSubMatrices(jac->schur, jac->mat[0], jac->pmat[0], jac->B, jac->C, jac->mat[1]));
878:       if (jac->schurpre == PC_FIELDSPLIT_SCHUR_PRE_SELFP) {
879:         PetscCall(MatDestroy(&jac->schurp));
880:         PetscCall(MatSchurComplementGetPmat(jac->schur, MAT_INITIAL_MATRIX, &jac->schurp));
881:       } else if (jac->schurpre == PC_FIELDSPLIT_SCHUR_PRE_FULL) {
882:         PetscCall(MatDestroy(&jac->schur_user));
883:         if (jac->kspupper == jac->head->ksp) {
884:           Mat AinvB;

886:           PetscCall(PetscObjectQuery((PetscObject)jac->schur, "AinvB", (PetscObject *)&AinvB));
887:           PetscCall(MatDestroy(&AinvB));
888:           PetscCall(MatCreate(PetscObjectComm((PetscObject)jac->schur), &AinvB));
889:           PetscCall(PetscObjectCompose((PetscObject)jac->schur, "AinvB", (PetscObject)AinvB));
890:         }
891:         PetscCall(MatSchurComplementComputeExplicitOperator(jac->schur, &jac->schur_user));
892:       }
893:       if (kspA != kspInner) PetscCall(KSPSetOperators(kspA, jac->mat[0], jac->pmat[0]));
894:       if (kspUpper != kspA) PetscCall(KSPSetOperators(kspUpper, jac->mat[0], jac->pmat[0]));
895:       PetscCall(KSPSetOperators(jac->kspschur, jac->schur, FieldSplitSchurPre(jac)));
896:     } else {
897:       const char  *Dprefix;
898:       char         schurprefix[256], schurmatprefix[256];
899:       char         schurtestoption[256];
900:       MatNullSpace sp;
901:       KSP          kspt;

903:       /* extract the A01 and A10 matrices */
904:       ilink = jac->head;
905:       PetscCall(ISComplement(ilink->is_col, rstart, rend, &ccis));
906:       if (jac->offdiag_use_amat) {
907:         PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->B));
908:       } else {
909:         PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->B));
910:       }
911:       PetscCall(ISDestroy(&ccis));
912:       ilink = ilink->next;
913:       if (!flg) {
914:         PetscCall(ISComplement(ilink->is_col, rstart, rend, &ccis));
915:         if (jac->offdiag_use_amat) {
916:           PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->C));
917:         } else {
918:           PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->C));
919:         }
920:         PetscCall(ISDestroy(&ccis));
921:       } else {
922:         PetscCall(MatIsHermitianKnown(jac->offdiag_use_amat ? pc->mat : pc->pmat, &set, &flg));
923:         if (set && flg) PetscCall(MatCreateHermitianTranspose(jac->B, &jac->C));
924:         else PetscCall(MatCreateTranspose(jac->B, &jac->C));
925:       }
926:       /* Use mat[0] (diagonal block of Amat) preconditioned by pmat[0] to define Schur complement */
927:       PetscCall(MatCreate(((PetscObject)jac->mat[0])->comm, &jac->schur));
928:       PetscCall(MatSetType(jac->schur, MATSCHURCOMPLEMENT));
929:       PetscCall(MatSchurComplementSetSubMatrices(jac->schur, jac->mat[0], jac->pmat[0], jac->B, jac->C, jac->mat[1]));
930:       PetscCall(PetscSNPrintf(schurmatprefix, sizeof(schurmatprefix), "%sfieldsplit_%s_", ((PetscObject)pc)->prefix ? ((PetscObject)pc)->prefix : "", ilink->splitname));
931:       PetscCall(MatSetOptionsPrefix(jac->schur, schurmatprefix));
932:       PetscCall(MatSchurComplementGetKSP(jac->schur, &kspt));
933:       PetscCall(KSPSetOptionsPrefix(kspt, schurmatprefix));

935:       /* Note: this is not true in general */
936:       PetscCall(MatGetNullSpace(jac->mat[1], &sp));
937:       if (sp) PetscCall(MatSetNullSpace(jac->schur, sp));

939:       PetscCall(PetscSNPrintf(schurtestoption, sizeof(schurtestoption), "-fieldsplit_%s_inner_", ilink->splitname));
940:       PetscCall(PetscOptionsFindPairPrefix_Private(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, schurtestoption, NULL, NULL, &flg));
941:       if (flg) {
942:         DM  dmInner;
943:         KSP kspInner;
944:         PC  pcInner;

946:         PetscCall(MatSchurComplementGetKSP(jac->schur, &kspInner));
947:         PetscCall(KSPReset(kspInner));
948:         PetscCall(KSPSetOperators(kspInner, jac->mat[0], jac->pmat[0]));
949:         PetscCall(PetscSNPrintf(schurprefix, sizeof(schurprefix), "%sfieldsplit_%s_inner_", ((PetscObject)pc)->prefix ? ((PetscObject)pc)->prefix : "", ilink->splitname));
950:         /* Indent this deeper to emphasize the "inner" nature of this solver. */
951:         PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspInner, (PetscObject)pc, 2));
952:         PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspInner->pc, (PetscObject)pc, 2));
953:         PetscCall(KSPSetOptionsPrefix(kspInner, schurprefix));

955:         /* Set DM for new solver */
956:         PetscCall(KSPGetDM(jac->head->ksp, &dmInner));
957:         PetscCall(KSPSetDM(kspInner, dmInner));
958:         PetscCall(KSPSetDMActive(kspInner, PETSC_FALSE));

960:         /* Defaults to PCKSP as preconditioner */
961:         PetscCall(KSPGetPC(kspInner, &pcInner));
962:         PetscCall(PCSetType(pcInner, PCKSP));
963:         PetscCall(PCKSPSetKSP(pcInner, jac->head->ksp));
964:       } else {
965:         /* Use the outer solver for the inner solve, but revert the KSPPREONLY from PCFieldSplitSetFields_FieldSplit or
966:           * PCFieldSplitSetIS_FieldSplit. We don't want KSPPREONLY because it makes the Schur complement inexact,
967:           * preventing Schur complement reduction to be an accurate solve. Usually when an iterative solver is used for
968:           * S = D - C A_inner^{-1} B, we expect S to be defined using an accurate definition of A_inner^{-1}, so we make
969:           * GMRES the default. Note that it is also common to use PREONLY for S, in which case S may not be used
970:           * directly, and the user is responsible for setting an inexact method for fieldsplit's A^{-1}. */
971:         PetscCall(KSPSetType(jac->head->ksp, KSPGMRES));
972:         PetscCall(MatSchurComplementSetKSP(jac->schur, jac->head->ksp));
973:       }
974:       PetscCall(KSPSetOperators(jac->head->ksp, jac->mat[0], jac->pmat[0]));
975:       PetscCall(KSPSetFromOptions(jac->head->ksp));
976:       PetscCall(MatSetFromOptions(jac->schur));

978:       PetscCall(PetscObjectTypeCompare((PetscObject)jac->schur, MATSCHURCOMPLEMENT, &flg));
979:       if (flg) { /* Need to do this otherwise PCSetUp_KSP will overwrite the amat of jac->head->ksp */
980:         KSP kspInner;
981:         PC  pcInner;

983:         PetscCall(MatSchurComplementGetKSP(jac->schur, &kspInner));
984:         PetscCall(KSPGetPC(kspInner, &pcInner));
985:         PetscCall(PetscObjectTypeCompare((PetscObject)pcInner, PCKSP, &flg));
986:         if (flg) {
987:           KSP ksp;

989:           PetscCall(PCKSPGetKSP(pcInner, &ksp));
990:           if (ksp == jac->head->ksp) PetscCall(PCSetUseAmat(pcInner, PETSC_TRUE));
991:         }
992:       }
993:       PetscCall(PetscSNPrintf(schurtestoption, sizeof(schurtestoption), "-fieldsplit_%s_upper_", ilink->splitname));
994:       PetscCall(PetscOptionsFindPairPrefix_Private(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, schurtestoption, NULL, NULL, &flg));
995:       if (flg) {
996:         DM dmInner;

998:         PetscCall(PetscSNPrintf(schurprefix, sizeof(schurprefix), "%sfieldsplit_%s_upper_", ((PetscObject)pc)->prefix ? ((PetscObject)pc)->prefix : "", ilink->splitname));
999:         PetscCall(KSPCreate(PetscObjectComm((PetscObject)pc), &jac->kspupper));
1000:         PetscCall(KSPSetNestLevel(jac->kspupper, pc->kspnestlevel));
1001:         PetscCall(KSPSetErrorIfNotConverged(jac->kspupper, pc->erroriffailure));
1002:         PetscCall(KSPSetOptionsPrefix(jac->kspupper, schurprefix));
1003:         PetscCall(PetscObjectIncrementTabLevel((PetscObject)jac->kspupper, (PetscObject)pc, 1));
1004:         PetscCall(PetscObjectIncrementTabLevel((PetscObject)jac->kspupper->pc, (PetscObject)pc, 1));
1005:         PetscCall(KSPGetDM(jac->head->ksp, &dmInner));
1006:         PetscCall(KSPSetDM(jac->kspupper, dmInner));
1007:         PetscCall(KSPSetDMActive(jac->kspupper, PETSC_FALSE));
1008:         PetscCall(KSPSetFromOptions(jac->kspupper));
1009:         PetscCall(KSPSetOperators(jac->kspupper, jac->mat[0], jac->pmat[0]));
1010:         PetscCall(VecDuplicate(jac->head->x, &jac->head->z));
1011:       } else {
1012:         jac->kspupper = jac->head->ksp;
1013:         PetscCall(PetscObjectReference((PetscObject)jac->head->ksp));
1014:       }

1016:       if (jac->schurpre == PC_FIELDSPLIT_SCHUR_PRE_SELFP) PetscCall(MatSchurComplementGetPmat(jac->schur, MAT_INITIAL_MATRIX, &jac->schurp));
1017:       PetscCall(KSPCreate(PetscObjectComm((PetscObject)pc), &jac->kspschur));
1018:       PetscCall(KSPSetNestLevel(jac->kspschur, pc->kspnestlevel));
1019:       PetscCall(KSPSetErrorIfNotConverged(jac->kspschur, pc->erroriffailure));
1020:       PetscCall(PetscObjectIncrementTabLevel((PetscObject)jac->kspschur, (PetscObject)pc, 1));
1021:       if (jac->schurpre == PC_FIELDSPLIT_SCHUR_PRE_SELF) {
1022:         PC pcschur;
1023:         PetscCall(KSPGetPC(jac->kspschur, &pcschur));
1024:         PetscCall(PCSetType(pcschur, PCNONE));
1025:         /* Note: This is bad if there exist preconditioners for MATSCHURCOMPLEMENT */
1026:       } else if (jac->schurpre == PC_FIELDSPLIT_SCHUR_PRE_FULL) {
1027:         if (jac->schurfactorization == PC_FIELDSPLIT_SCHUR_FACT_FULL && jac->kspupper == jac->head->ksp) {
1028:           Mat AinvB;

1030:           PetscCall(MatCreate(PetscObjectComm((PetscObject)jac->schur), &AinvB));
1031:           PetscCall(PetscObjectCompose((PetscObject)jac->schur, "AinvB", (PetscObject)AinvB));
1032:         }
1033:         PetscCall(MatSchurComplementComputeExplicitOperator(jac->schur, &jac->schur_user));
1034:       }
1035:       PetscCall(KSPSetOperators(jac->kspschur, jac->schur, FieldSplitSchurPre(jac)));
1036:       PetscCall(KSPGetOptionsPrefix(jac->head->next->ksp, &Dprefix));
1037:       PetscCall(KSPSetOptionsPrefix(jac->kspschur, Dprefix));
1038:       /* propagate DM */
1039:       {
1040:         DM sdm;
1041:         PetscCall(KSPGetDM(jac->head->next->ksp, &sdm));
1042:         if (sdm) {
1043:           PetscCall(KSPSetDM(jac->kspschur, sdm));
1044:           PetscCall(KSPSetDMActive(jac->kspschur, PETSC_FALSE));
1045:         }
1046:       }
1047:       /* really want setfromoptions called in PCSetFromOptions_FieldSplit(), but it is not ready yet */
1048:       /* need to call this every time, since the jac->kspschur is freshly created, otherwise its options never get set */
1049:       PetscCall(KSPSetFromOptions(jac->kspschur));
1050:     }
1051:     PetscCall(MatAssemblyBegin(jac->schur, MAT_FINAL_ASSEMBLY));
1052:     PetscCall(MatAssemblyEnd(jac->schur, MAT_FINAL_ASSEMBLY));

1054:     /* HACK: special support to forward L and Lp matrices that might be used by PCLSC */
1055:     PetscCall(PetscSNPrintf(lscname, sizeof(lscname), "%s_LSC_L", ilink->splitname));
1056:     PetscCall(PetscObjectQuery((PetscObject)pc->mat, lscname, (PetscObject *)&LSC_L));
1057:     if (!LSC_L) PetscCall(PetscObjectQuery((PetscObject)pc->pmat, lscname, (PetscObject *)&LSC_L));
1058:     if (LSC_L) PetscCall(PetscObjectCompose((PetscObject)jac->schur, "LSC_L", (PetscObject)LSC_L));
1059:     PetscCall(PetscSNPrintf(lscname, sizeof(lscname), "%s_LSC_Lp", ilink->splitname));
1060:     PetscCall(PetscObjectQuery((PetscObject)pc->pmat, lscname, (PetscObject *)&LSC_L));
1061:     if (!LSC_L) PetscCall(PetscObjectQuery((PetscObject)pc->mat, lscname, (PetscObject *)&LSC_L));
1062:     if (LSC_L) PetscCall(PetscObjectCompose((PetscObject)jac->schur, "LSC_Lp", (PetscObject)LSC_L));
1063:   } else if (jac->type == PC_COMPOSITE_GKB) {
1064:     IS       ccis;
1065:     PetscInt rstart, rend;

1067:     PetscCheck(nsplit == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_INCOMP, "To use GKB preconditioner you must have exactly 2 fields");

1069:     ilink = jac->head;

1071:     /* When extracting off-diagonal submatrices, we take complements from this range */
1072:     PetscCall(MatGetOwnershipRangeColumn(pc->mat, &rstart, &rend));

1074:     PetscCall(ISComplement(ilink->is_col, rstart, rend, &ccis));
1075:     if (jac->offdiag_use_amat) {
1076:       PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->B));
1077:     } else {
1078:       PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->B));
1079:     }
1080:     PetscCall(ISDestroy(&ccis));
1081:     /* Create work vectors for GKB algorithm */
1082:     PetscCall(VecDuplicate(ilink->x, &jac->u));
1083:     PetscCall(VecDuplicate(ilink->x, &jac->Hu));
1084:     PetscCall(VecDuplicate(ilink->x, &jac->w2));
1085:     ilink = ilink->next;
1086:     PetscCall(ISComplement(ilink->is_col, rstart, rend, &ccis));
1087:     if (jac->offdiag_use_amat) {
1088:       PetscCall(MatCreateSubMatrix(pc->mat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->C));
1089:     } else {
1090:       PetscCall(MatCreateSubMatrix(pc->pmat, ilink->is, ccis, MAT_INITIAL_MATRIX, &jac->C));
1091:     }
1092:     PetscCall(ISDestroy(&ccis));
1093:     /* Create work vectors for GKB algorithm */
1094:     PetscCall(VecDuplicate(ilink->x, &jac->v));
1095:     PetscCall(VecDuplicate(ilink->x, &jac->d));
1096:     PetscCall(VecDuplicate(ilink->x, &jac->w1));
1097:     PetscCall(MatGolubKahanComputeExplicitOperator(jac->mat[0], jac->B, jac->C, &jac->H, jac->gkbnu));
1098:     PetscCall(PetscCalloc1(jac->gkbdelay, &jac->vecz));

1100:     ilink = jac->head;
1101:     PetscCall(KSPSetOperators(ilink->ksp, jac->H, jac->H));
1102:     if (!jac->suboptionsset) PetscCall(KSPSetFromOptions(ilink->ksp));
1103:     /* Create gkb_monitor context */
1104:     if (jac->gkbmonitor) {
1105:       PetscInt tablevel;
1106:       PetscCall(PetscViewerCreate(PETSC_COMM_WORLD, &jac->gkbviewer));
1107:       PetscCall(PetscViewerSetType(jac->gkbviewer, PETSCVIEWERASCII));
1108:       PetscCall(PetscObjectGetTabLevel((PetscObject)ilink->ksp, &tablevel));
1109:       PetscCall(PetscViewerASCIISetTab(jac->gkbviewer, tablevel));
1110:       PetscCall(PetscObjectIncrementTabLevel((PetscObject)ilink->ksp, (PetscObject)ilink->ksp, 1));
1111:     }
1112:   } else {
1113:     /* set up the individual splits' PCs */
1114:     i     = 0;
1115:     ilink = jac->head;
1116:     while (ilink) {
1117:       PetscCall(KSPSetOperators(ilink->ksp, jac->mat[i], jac->pmat[i]));
1118:       /* really want setfromoptions called in PCSetFromOptions_FieldSplit(), but it is not ready yet */
1119:       if (!jac->suboptionsset) PetscCall(KSPSetFromOptions(ilink->ksp));
1120:       i++;
1121:       ilink = ilink->next;
1122:     }
1123:   }

1125:   /* Set coordinates to the sub PC objects whenever these are set */
1126:   if (jac->coordinates_set) {
1127:     PC pc_coords;
1128:     if (jac->type == PC_COMPOSITE_SCHUR) {
1129:       // Head is first block.
1130:       PetscCall(KSPGetPC(jac->head->ksp, &pc_coords));
1131:       PetscCall(PCSetCoordinates(pc_coords, jac->head->dim, jac->head->ndofs, jac->head->coords));
1132:       // Second one is Schur block, but its KSP object is in kspschur.
1133:       PetscCall(KSPGetPC(jac->kspschur, &pc_coords));
1134:       PetscCall(PCSetCoordinates(pc_coords, jac->head->next->dim, jac->head->next->ndofs, jac->head->next->coords));
1135:     } else if (jac->type == PC_COMPOSITE_GKB) {
1136:       PetscCall(PetscInfo(pc, "Warning: Setting coordinates does nothing for the GKB Fieldpslit preconditioner\n"));
1137:     } else {
1138:       ilink = jac->head;
1139:       while (ilink) {
1140:         PetscCall(KSPGetPC(ilink->ksp, &pc_coords));
1141:         PetscCall(PCSetCoordinates(pc_coords, ilink->dim, ilink->ndofs, ilink->coords));
1142:         ilink = ilink->next;
1143:       }
1144:     }
1145:   }

1147:   jac->suboptionsset = PETSC_TRUE;
1148:   PetscFunctionReturn(PETSC_SUCCESS);
1149: }

1151: #define FieldSplitSplitSolveAdd(ilink, xx, yy) \
1152:   ((PetscErrorCode)(VecScatterBegin(ilink->sctx, xx, ilink->x, INSERT_VALUES, SCATTER_FORWARD) || VecScatterEnd(ilink->sctx, xx, ilink->x, INSERT_VALUES, SCATTER_FORWARD) || PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL) || \
1153:                     KSPSolve(ilink->ksp, ilink->x, ilink->y) || KSPCheckSolve(ilink->ksp, pc, ilink->y) || PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL) || VecScatterBegin(ilink->sctx, ilink->y, yy, ADD_VALUES, SCATTER_REVERSE) || \
1154:                     VecScatterEnd(ilink->sctx, ilink->y, yy, ADD_VALUES, SCATTER_REVERSE)))

1156: static PetscErrorCode PCApply_FieldSplit_Schur(PC pc, Vec x, Vec y)
1157: {
1158:   PC_FieldSplit    *jac    = (PC_FieldSplit *)pc->data;
1159:   PC_FieldSplitLink ilinkA = jac->head, ilinkD = ilinkA->next;
1160:   KSP               kspA = ilinkA->ksp, kspLower = kspA, kspUpper = jac->kspupper;
1161:   Mat               AinvB = NULL;
1162:   PetscInt          N     = -1;

1164:   PetscFunctionBegin;
1165:   switch (jac->schurfactorization) {
1166:   case PC_FIELDSPLIT_SCHUR_FACT_DIAG:
1167:     /* [A00 0; 0 -S], positive definite, suitable for MINRES */
1168:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1169:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1170:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1171:     PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1172:     PetscCall(KSPSolve(kspA, ilinkA->x, ilinkA->y));
1173:     PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1174:     PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1175:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1176:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1177:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1178:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1179:     PetscCall(KSPSolve(jac->kspschur, ilinkD->x, ilinkD->y));
1180:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1181:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1182:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1183:     PetscCall(VecScale(ilinkD->y, jac->schurscale));
1184:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1185:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1186:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1187:     break;
1188:   case PC_FIELDSPLIT_SCHUR_FACT_LOWER:
1189:     /* [A00 0; A10 S], suitable for left preconditioning */
1190:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1191:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1192:     PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1193:     PetscCall(KSPSolve(kspA, ilinkA->x, ilinkA->y));
1194:     PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1195:     PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1196:     PetscCall(MatMult(jac->C, ilinkA->y, ilinkD->x));
1197:     PetscCall(VecScale(ilinkD->x, -1.));
1198:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));
1199:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1200:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));
1201:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1202:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1203:     PetscCall(KSPSolve(jac->kspschur, ilinkD->x, ilinkD->y));
1204:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1205:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1206:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1207:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1208:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1209:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1210:     break;
1211:   case PC_FIELDSPLIT_SCHUR_FACT_UPPER:
1212:     /* [A00 A01; 0 S], suitable for right preconditioning */
1213:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1214:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1215:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1216:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1217:     PetscCall(KSPSolve(jac->kspschur, ilinkD->x, ilinkD->y));
1218:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1219:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1220:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1221:     PetscCall(MatMult(jac->B, ilinkD->y, ilinkA->x));
1222:     PetscCall(VecScale(ilinkA->x, -1.));
1223:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, ADD_VALUES, SCATTER_FORWARD));
1224:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1225:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, ADD_VALUES, SCATTER_FORWARD));
1226:     PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1227:     PetscCall(KSPSolve(kspA, ilinkA->x, ilinkA->y));
1228:     PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1229:     PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1230:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1231:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1232:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1233:     break;
1234:   case PC_FIELDSPLIT_SCHUR_FACT_FULL:
1235:     /* [1 0; A10 A00^{-1} 1] [A00 0; 0 S] [1 A00^{-1}A01; 0 1] */
1236:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1237:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1238:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_L, kspLower, ilinkA->x, ilinkA->y, NULL));
1239:     if (kspUpper == kspA) {
1240:       PetscCall(PetscObjectQuery((PetscObject)jac->schur, "AinvB", (PetscObject *)&AinvB));
1241:       if (AinvB) {
1242:         PetscCall(MatGetSize(AinvB, NULL, &N));
1243:         if (N == -1) { // first time PCApply_FieldSplit_Schur() is called
1244:           Mat                A;
1245:           PetscInt           m, M, N;
1246:           PetscScalar       *v, *write;
1247:           const PetscScalar *read;

1249:           PetscCall(MatGetSize(jac->B, &M, &N));
1250:           PetscCall(MatGetLocalSize(jac->B, &m, NULL));
1251:           PetscCall(VecGetArrayRead(ilinkA->x, &read));
1252:           PetscCall(PetscMalloc1(m * (N + 1), &v));
1253:           PetscCall(PetscArraycpy(v + m * N, read, m)); // copy the input Vec in the last column of the composed Mat
1254:           PetscCall(VecRestoreArrayRead(ilinkA->x, &read));
1255:           PetscCall(MatCreateDense(PetscObjectComm((PetscObject)jac->schur), m, PETSC_DECIDE, M, N + 1, v, &A)); // number of columns of the Schur complement plus one
1256:           PetscCall(MatHeaderReplace(AinvB, &A));
1257:           PetscCall(MatSchurComplementComputeExplicitOperator(jac->schur, &jac->schur_user));
1258:           PetscCall(KSPSetOperators(jac->kspschur, jac->schur, jac->schur_user));
1259:           PetscCall(VecGetArrayWrite(ilinkA->y, &write));
1260:           PetscCall(PetscArraycpy(write, v + m * N, m)); // retrieve the solution as the last column of the composed Mat
1261:           PetscCall(VecRestoreArrayWrite(ilinkA->y, &write));
1262:         }
1263:       }
1264:     }
1265:     if (!AinvB || N != -1) PetscCall(KSPSolve(kspLower, ilinkA->x, ilinkA->y));
1266:     PetscCall(KSPCheckSolve(kspLower, pc, ilinkA->y));
1267:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_L, kspLower, ilinkA->x, ilinkA->y, NULL));
1268:     PetscCall(MatMult(jac->C, ilinkA->y, ilinkD->x));
1269:     PetscCall(VecScale(ilinkD->x, -1.0));
1270:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));
1271:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));

1273:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1274:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1275:     PetscCall(KSPSolve(jac->kspschur, ilinkD->x, ilinkD->y));
1276:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1277:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1278:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1279:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));

1281:     if (kspUpper == kspA) {
1282:       if (!AinvB) {
1283:         PetscCall(MatMult(jac->B, ilinkD->y, ilinkA->y));
1284:         PetscCall(VecAXPY(ilinkA->x, -1.0, ilinkA->y));
1285:         PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1286:         PetscCall(KSPSolve(kspA, ilinkA->x, ilinkA->y));
1287:         PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1288:         PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1289:       } else PetscCall(MatMultAdd(AinvB, ilinkD->y, ilinkA->y, ilinkA->y));
1290:     } else {
1291:       PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1292:       PetscCall(KSPSolve(kspA, ilinkA->x, ilinkA->y));
1293:       PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1294:       PetscCall(MatMult(jac->B, ilinkD->y, ilinkA->x));
1295:       PetscCall(PetscLogEventBegin(KSP_Solve_FS_U, kspUpper, ilinkA->x, ilinkA->z, NULL));
1296:       PetscCall(KSPSolve(kspUpper, ilinkA->x, ilinkA->z));
1297:       PetscCall(KSPCheckSolve(kspUpper, pc, ilinkA->z));
1298:       PetscCall(PetscLogEventEnd(KSP_Solve_FS_U, kspUpper, ilinkA->x, ilinkA->z, NULL));
1299:       PetscCall(VecAXPY(ilinkA->y, -1.0, ilinkA->z));
1300:     }
1301:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1302:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1303:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1304:   }
1305:   PetscFunctionReturn(PETSC_SUCCESS);
1306: }

1308: static PetscErrorCode PCApplyTranspose_FieldSplit_Schur(PC pc, Vec x, Vec y)
1309: {
1310:   PC_FieldSplit    *jac    = (PC_FieldSplit *)pc->data;
1311:   PC_FieldSplitLink ilinkA = jac->head, ilinkD = ilinkA->next;
1312:   KSP               kspA = ilinkA->ksp, kspLower = kspA, kspUpper = jac->kspupper;

1314:   PetscFunctionBegin;
1315:   switch (jac->schurfactorization) {
1316:   case PC_FIELDSPLIT_SCHUR_FACT_DIAG:
1317:     /* [A00 0; 0 -S], positive definite, suitable for MINRES */
1318:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1319:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1320:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1321:     PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1322:     PetscCall(KSPSolveTranspose(kspA, ilinkA->x, ilinkA->y));
1323:     PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1324:     PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1325:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1326:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1327:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1328:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1329:     PetscCall(KSPSolveTranspose(jac->kspschur, ilinkD->x, ilinkD->y));
1330:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1331:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1332:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1333:     PetscCall(VecScale(ilinkD->y, jac->schurscale));
1334:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1335:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1336:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1337:     break;
1338:   case PC_FIELDSPLIT_SCHUR_FACT_UPPER:
1339:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1340:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1341:     PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1342:     PetscCall(KSPSolveTranspose(kspA, ilinkA->x, ilinkA->y));
1343:     PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1344:     PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1345:     PetscCall(MatMultTranspose(jac->B, ilinkA->y, ilinkD->x));
1346:     PetscCall(VecScale(ilinkD->x, -1.));
1347:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));
1348:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1349:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));
1350:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1351:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1352:     PetscCall(KSPSolveTranspose(jac->kspschur, ilinkD->x, ilinkD->y));
1353:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1354:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1355:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1356:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1357:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1358:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1359:     break;
1360:   case PC_FIELDSPLIT_SCHUR_FACT_LOWER:
1361:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1362:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1363:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1364:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1365:     PetscCall(KSPSolveTranspose(jac->kspschur, ilinkD->x, ilinkD->y));
1366:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1367:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1368:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1369:     PetscCall(MatMultTranspose(jac->C, ilinkD->y, ilinkA->x));
1370:     PetscCall(VecScale(ilinkA->x, -1.));
1371:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, ADD_VALUES, SCATTER_FORWARD));
1372:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1373:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, ADD_VALUES, SCATTER_FORWARD));
1374:     PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1375:     PetscCall(KSPSolveTranspose(kspA, ilinkA->x, ilinkA->y));
1376:     PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1377:     PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1378:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1379:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1380:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1381:     break;
1382:   case PC_FIELDSPLIT_SCHUR_FACT_FULL:
1383:     PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1384:     PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1385:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_U, kspUpper, ilinkA->x, ilinkA->y, NULL));
1386:     PetscCall(KSPSolveTranspose(kspUpper, ilinkA->x, ilinkA->y));
1387:     PetscCall(KSPCheckSolve(kspUpper, pc, ilinkA->y));
1388:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_U, kspUpper, ilinkA->x, ilinkA->y, NULL));
1389:     PetscCall(MatMultTranspose(jac->B, ilinkA->y, ilinkD->x));
1390:     PetscCall(VecScale(ilinkD->x, -1.0));
1391:     PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));
1392:     PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, ADD_VALUES, SCATTER_FORWARD));

1394:     PetscCall(PetscLogEventBegin(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1395:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, 1));
1396:     PetscCall(KSPSolveTranspose(jac->kspschur, ilinkD->x, ilinkD->y));
1397:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)kspA, (PetscObject)kspA, -1));
1398:     PetscCall(KSPCheckSolve(jac->kspschur, pc, ilinkD->y));
1399:     PetscCall(PetscLogEventEnd(KSP_Solve_FS_S, jac->kspschur, ilinkD->x, ilinkD->y, NULL));
1400:     PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));

1402:     if (kspLower == kspA) {
1403:       PetscCall(MatMultTranspose(jac->C, ilinkD->y, ilinkA->y));
1404:       PetscCall(VecAXPY(ilinkA->x, -1.0, ilinkA->y));
1405:       PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1406:       PetscCall(KSPSolveTranspose(kspA, ilinkA->x, ilinkA->y));
1407:       PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1408:       PetscCall(PetscLogEventEnd(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1409:     } else {
1410:       PetscCall(PetscLogEventBegin(ilinkA->event, kspA, ilinkA->x, ilinkA->y, NULL));
1411:       PetscCall(KSPSolveTranspose(kspA, ilinkA->x, ilinkA->y));
1412:       PetscCall(KSPCheckSolve(kspA, pc, ilinkA->y));
1413:       PetscCall(MatMultTranspose(jac->C, ilinkD->y, ilinkA->x));
1414:       PetscCall(PetscLogEventBegin(KSP_Solve_FS_L, kspLower, ilinkA->x, ilinkA->z, NULL));
1415:       PetscCall(KSPSolveTranspose(kspLower, ilinkA->x, ilinkA->z));
1416:       PetscCall(KSPCheckSolve(kspLower, pc, ilinkA->z));
1417:       PetscCall(PetscLogEventEnd(KSP_Solve_FS_L, kspLower, ilinkA->x, ilinkA->z, NULL));
1418:       PetscCall(VecAXPY(ilinkA->y, -1.0, ilinkA->z));
1419:     }
1420:     PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1421:     PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1422:     PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1423:   }
1424:   PetscFunctionReturn(PETSC_SUCCESS);
1425: }

1427: static PetscErrorCode PCApply_FieldSplit(PC pc, Vec x, Vec y)
1428: {
1429:   PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
1430:   PC_FieldSplitLink ilink = jac->head;
1431:   PetscInt          cnt, bs;

1433:   PetscFunctionBegin;
1434:   if (jac->type == PC_COMPOSITE_ADDITIVE) {
1435:     PetscBool matnest;

1437:     PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATNEST, &matnest));
1438:     if (jac->defaultsplit && !matnest) {
1439:       PetscCall(VecGetBlockSize(x, &bs));
1440:       PetscCheck(jac->bs <= 0 || bs == jac->bs, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Blocksize of x vector %" PetscInt_FMT " does not match fieldsplit blocksize %" PetscInt_FMT, bs, jac->bs);
1441:       PetscCall(VecGetBlockSize(y, &bs));
1442:       PetscCheck(jac->bs <= 0 || bs == jac->bs, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Blocksize of y vector %" PetscInt_FMT " does not match fieldsplit blocksize %" PetscInt_FMT, bs, jac->bs);
1443:       PetscCall(VecStrideGatherAll(x, jac->x, INSERT_VALUES));
1444:       while (ilink) {
1445:         PetscCall(PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1446:         PetscCall(KSPSolve(ilink->ksp, ilink->x, ilink->y));
1447:         PetscCall(KSPCheckSolve(ilink->ksp, pc, ilink->y));
1448:         PetscCall(PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1449:         ilink = ilink->next;
1450:       }
1451:       PetscCall(VecStrideScatterAll(jac->y, y, INSERT_VALUES));
1452:     } else {
1453:       PetscCall(VecSet(y, 0.0));
1454:       while (ilink) {
1455:         PetscCall(FieldSplitSplitSolveAdd(ilink, x, y));
1456:         ilink = ilink->next;
1457:       }
1458:     }
1459:   } else if (jac->type == PC_COMPOSITE_MULTIPLICATIVE && jac->nsplits == 2) {
1460:     PetscCall(VecSet(y, 0.0));
1461:     /* solve on first block for first block variables */
1462:     PetscCall(VecScatterBegin(ilink->sctx, x, ilink->x, INSERT_VALUES, SCATTER_FORWARD));
1463:     PetscCall(VecScatterEnd(ilink->sctx, x, ilink->x, INSERT_VALUES, SCATTER_FORWARD));
1464:     PetscCall(PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1465:     PetscCall(KSPSolve(ilink->ksp, ilink->x, ilink->y));
1466:     PetscCall(KSPCheckSolve(ilink->ksp, pc, ilink->y));
1467:     PetscCall(PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1468:     PetscCall(VecScatterBegin(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1469:     PetscCall(VecScatterEnd(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));

1471:     /* compute the residual only onto second block variables using first block variables */
1472:     PetscCall(MatMult(jac->Afield[1], ilink->y, ilink->next->x));
1473:     ilink = ilink->next;
1474:     PetscCall(VecScale(ilink->x, -1.0));
1475:     PetscCall(VecScatterBegin(ilink->sctx, x, ilink->x, ADD_VALUES, SCATTER_FORWARD));
1476:     PetscCall(VecScatterEnd(ilink->sctx, x, ilink->x, ADD_VALUES, SCATTER_FORWARD));

1478:     /* solve on second block variables */
1479:     PetscCall(PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1480:     PetscCall(KSPSolve(ilink->ksp, ilink->x, ilink->y));
1481:     PetscCall(KSPCheckSolve(ilink->ksp, pc, ilink->y));
1482:     PetscCall(PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1483:     PetscCall(VecScatterBegin(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1484:     PetscCall(VecScatterEnd(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1485:   } else if (jac->type == PC_COMPOSITE_MULTIPLICATIVE || jac->type == PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE) {
1486:     if (!jac->w1) {
1487:       PetscCall(VecDuplicate(x, &jac->w1));
1488:       PetscCall(VecDuplicate(x, &jac->w2));
1489:     }
1490:     PetscCall(VecSet(y, 0.0));
1491:     PetscCall(FieldSplitSplitSolveAdd(ilink, x, y));
1492:     cnt = 1;
1493:     while (ilink->next) {
1494:       ilink = ilink->next;
1495:       /* compute the residual only over the part of the vector needed */
1496:       PetscCall(MatMult(jac->Afield[cnt++], y, ilink->x));
1497:       PetscCall(VecScale(ilink->x, -1.0));
1498:       PetscCall(VecScatterBegin(ilink->sctx, x, ilink->x, ADD_VALUES, SCATTER_FORWARD));
1499:       PetscCall(VecScatterEnd(ilink->sctx, x, ilink->x, ADD_VALUES, SCATTER_FORWARD));
1500:       PetscCall(PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1501:       PetscCall(KSPSolve(ilink->ksp, ilink->x, ilink->y));
1502:       PetscCall(KSPCheckSolve(ilink->ksp, pc, ilink->y));
1503:       PetscCall(PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1504:       PetscCall(VecScatterBegin(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1505:       PetscCall(VecScatterEnd(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1506:     }
1507:     if (jac->type == PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE) {
1508:       cnt -= 2;
1509:       while (ilink->previous) {
1510:         ilink = ilink->previous;
1511:         /* compute the residual only over the part of the vector needed */
1512:         PetscCall(MatMult(jac->Afield[cnt--], y, ilink->x));
1513:         PetscCall(VecScale(ilink->x, -1.0));
1514:         PetscCall(VecScatterBegin(ilink->sctx, x, ilink->x, ADD_VALUES, SCATTER_FORWARD));
1515:         PetscCall(VecScatterEnd(ilink->sctx, x, ilink->x, ADD_VALUES, SCATTER_FORWARD));
1516:         PetscCall(PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1517:         PetscCall(KSPSolve(ilink->ksp, ilink->x, ilink->y));
1518:         PetscCall(KSPCheckSolve(ilink->ksp, pc, ilink->y));
1519:         PetscCall(PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1520:         PetscCall(VecScatterBegin(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1521:         PetscCall(VecScatterEnd(ilink->sctx, ilink->y, y, ADD_VALUES, SCATTER_REVERSE));
1522:       }
1523:     }
1524:   } else SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Unsupported or unknown composition %d", (int)jac->type);
1525:   PetscFunctionReturn(PETSC_SUCCESS);
1526: }

1528: static PetscErrorCode PCApply_FieldSplit_GKB(PC pc, Vec x, Vec y)
1529: {
1530:   PC_FieldSplit    *jac    = (PC_FieldSplit *)pc->data;
1531:   PC_FieldSplitLink ilinkA = jac->head, ilinkD = ilinkA->next;
1532:   KSP               ksp = ilinkA->ksp;
1533:   Vec               u, v, Hu, d, work1, work2;
1534:   PetscScalar       alpha, z, nrmz2, *vecz;
1535:   PetscReal         lowbnd, nu, beta;
1536:   PetscInt          j, iterGKB;

1538:   PetscFunctionBegin;
1539:   PetscCall(VecScatterBegin(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1540:   PetscCall(VecScatterBegin(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));
1541:   PetscCall(VecScatterEnd(ilinkA->sctx, x, ilinkA->x, INSERT_VALUES, SCATTER_FORWARD));
1542:   PetscCall(VecScatterEnd(ilinkD->sctx, x, ilinkD->x, INSERT_VALUES, SCATTER_FORWARD));

1544:   u     = jac->u;
1545:   v     = jac->v;
1546:   Hu    = jac->Hu;
1547:   d     = jac->d;
1548:   work1 = jac->w1;
1549:   work2 = jac->w2;
1550:   vecz  = jac->vecz;

1552:   /* Change RHS to comply with matrix regularization H = A + nu*B*B' */
1553:   /* Add q = q + nu*B*b */
1554:   if (jac->gkbnu) {
1555:     nu = jac->gkbnu;
1556:     PetscCall(VecScale(ilinkD->x, jac->gkbnu));
1557:     PetscCall(MatMultAdd(jac->B, ilinkD->x, ilinkA->x, ilinkA->x)); /* q = q + nu*B*b */
1558:   } else {
1559:     /* Situation when no augmented Lagrangian is used. Then we set inner  */
1560:     /* matrix N = I in [Ar13], and thus nu = 1.                           */
1561:     nu = 1;
1562:   }

1564:   /* Transform rhs from [q,tilde{b}] to [0,b] */
1565:   PetscCall(PetscLogEventBegin(ilinkA->event, ksp, ilinkA->x, ilinkA->y, NULL));
1566:   PetscCall(KSPSolve(ksp, ilinkA->x, ilinkA->y));
1567:   PetscCall(KSPCheckSolve(ksp, pc, ilinkA->y));
1568:   PetscCall(PetscLogEventEnd(ilinkA->event, ksp, ilinkA->x, ilinkA->y, NULL));
1569:   PetscCall(MatMultHermitianTranspose(jac->B, ilinkA->y, work1));
1570:   PetscCall(VecAXPBY(work1, 1.0 / nu, -1.0, ilinkD->x)); /* c = b - B'*x        */

1572:   /* First step of algorithm */
1573:   PetscCall(VecNorm(work1, NORM_2, &beta)); /* beta = sqrt(nu*c'*c)*/
1574:   KSPCheckDot(ksp, beta);
1575:   beta = PetscSqrtReal(nu) * beta;
1576:   PetscCall(VecAXPBY(v, nu / beta, 0.0, work1)); /* v = nu/beta *c      */
1577:   PetscCall(MatMult(jac->B, v, work2));          /* u = H^{-1}*B*v      */
1578:   PetscCall(PetscLogEventBegin(ilinkA->event, ksp, work2, u, NULL));
1579:   PetscCall(KSPSolve(ksp, work2, u));
1580:   PetscCall(KSPCheckSolve(ksp, pc, u));
1581:   PetscCall(PetscLogEventEnd(ilinkA->event, ksp, work2, u, NULL));
1582:   PetscCall(MatMult(jac->H, u, Hu)); /* alpha = u'*H*u      */
1583:   PetscCall(VecDot(Hu, u, &alpha));
1584:   KSPCheckDot(ksp, alpha);
1585:   PetscCheck(PetscRealPart(alpha) > 0.0, PETSC_COMM_SELF, PETSC_ERR_NOT_CONVERGED, "GKB preconditioner diverged, H is not positive definite");
1586:   alpha = PetscSqrtReal(PetscAbsScalar(alpha));
1587:   PetscCall(VecScale(u, 1.0 / alpha));
1588:   PetscCall(VecAXPBY(d, 1.0 / alpha, 0.0, v)); /* v = nu/beta *c      */

1590:   z       = beta / alpha;
1591:   vecz[1] = z;

1593:   /* Computation of first iterate x(1) and p(1) */
1594:   PetscCall(VecAXPY(ilinkA->y, z, u));
1595:   PetscCall(VecCopy(d, ilinkD->y));
1596:   PetscCall(VecScale(ilinkD->y, -z));

1598:   iterGKB = 1;
1599:   lowbnd  = 2 * jac->gkbtol;
1600:   if (jac->gkbmonitor) PetscCall(PetscViewerASCIIPrintf(jac->gkbviewer, "%3" PetscInt_FMT " GKB Lower bound estimate %14.12e\n", iterGKB, (double)lowbnd));

1602:   while (iterGKB < jac->gkbmaxit && lowbnd > jac->gkbtol) {
1603:     iterGKB += 1;
1604:     PetscCall(MatMultHermitianTranspose(jac->B, u, work1)); /* v <- nu*(B'*u-alpha/nu*v) */
1605:     PetscCall(VecAXPBY(v, nu, -alpha, work1));
1606:     PetscCall(VecNorm(v, NORM_2, &beta)); /* beta = sqrt(nu)*v'*v      */
1607:     beta = beta / PetscSqrtReal(nu);
1608:     PetscCall(VecScale(v, 1.0 / beta));
1609:     PetscCall(MatMult(jac->B, v, work2)); /* u <- H^{-1}*(B*v-beta*H*u) */
1610:     PetscCall(MatMult(jac->H, u, Hu));
1611:     PetscCall(VecAXPY(work2, -beta, Hu));
1612:     PetscCall(PetscLogEventBegin(ilinkA->event, ksp, work2, u, NULL));
1613:     PetscCall(KSPSolve(ksp, work2, u));
1614:     PetscCall(KSPCheckSolve(ksp, pc, u));
1615:     PetscCall(PetscLogEventEnd(ilinkA->event, ksp, work2, u, NULL));
1616:     PetscCall(MatMult(jac->H, u, Hu)); /* alpha = u'*H*u            */
1617:     PetscCall(VecDot(Hu, u, &alpha));
1618:     KSPCheckDot(ksp, alpha);
1619:     PetscCheck(PetscRealPart(alpha) > 0.0, PETSC_COMM_SELF, PETSC_ERR_NOT_CONVERGED, "GKB preconditioner diverged, H is not positive definite");
1620:     alpha = PetscSqrtReal(PetscAbsScalar(alpha));
1621:     PetscCall(VecScale(u, 1.0 / alpha));

1623:     z       = -beta / alpha * z; /* z <- beta/alpha*z     */
1624:     vecz[0] = z;

1626:     /* Computation of new iterate x(i+1) and p(i+1) */
1627:     PetscCall(VecAXPBY(d, 1.0 / alpha, -beta / alpha, v)); /* d = (v-beta*d)/alpha */
1628:     PetscCall(VecAXPY(ilinkA->y, z, u));                   /* r = r + z*u          */
1629:     PetscCall(VecAXPY(ilinkD->y, -z, d));                  /* p = p - z*d          */
1630:     PetscCall(MatMult(jac->H, ilinkA->y, Hu));             /* ||u||_H = u'*H*u     */
1631:     PetscCall(VecDot(Hu, ilinkA->y, &nrmz2));

1633:     /* Compute Lower Bound estimate */
1634:     if (iterGKB > jac->gkbdelay) {
1635:       lowbnd = 0.0;
1636:       for (j = 0; j < jac->gkbdelay; j++) lowbnd += PetscAbsScalar(vecz[j] * vecz[j]);
1637:       lowbnd = PetscSqrtReal(lowbnd / PetscAbsScalar(nrmz2));
1638:     }

1640:     for (j = 0; j < jac->gkbdelay - 1; j++) vecz[jac->gkbdelay - j - 1] = vecz[jac->gkbdelay - j - 2];
1641:     if (jac->gkbmonitor) PetscCall(PetscViewerASCIIPrintf(jac->gkbviewer, "%3" PetscInt_FMT " GKB Lower bound estimate %14.12e\n", iterGKB, (double)lowbnd));
1642:   }

1644:   PetscCall(VecScatterBegin(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1645:   PetscCall(VecScatterEnd(ilinkA->sctx, ilinkA->y, y, INSERT_VALUES, SCATTER_REVERSE));
1646:   PetscCall(VecScatterBegin(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1647:   PetscCall(VecScatterEnd(ilinkD->sctx, ilinkD->y, y, INSERT_VALUES, SCATTER_REVERSE));
1648:   PetscFunctionReturn(PETSC_SUCCESS);
1649: }

1651: #define FieldSplitSplitSolveAddTranspose(ilink, xx, yy) \
1652:   ((PetscErrorCode)(VecScatterBegin(ilink->sctx, xx, ilink->y, INSERT_VALUES, SCATTER_FORWARD) || VecScatterEnd(ilink->sctx, xx, ilink->y, INSERT_VALUES, SCATTER_FORWARD) || PetscLogEventBegin(ilink->event, ilink->ksp, ilink->y, ilink->x, NULL) || \
1653:                     KSPSolveTranspose(ilink->ksp, ilink->y, ilink->x) || KSPCheckSolve(ilink->ksp, pc, ilink->x) || PetscLogEventEnd(ilink->event, ilink->ksp, ilink->y, ilink->x, NULL) || VecScatterBegin(ilink->sctx, ilink->x, yy, ADD_VALUES, SCATTER_REVERSE) || \
1654:                     VecScatterEnd(ilink->sctx, ilink->x, yy, ADD_VALUES, SCATTER_REVERSE)))

1656: static PetscErrorCode PCApplyTranspose_FieldSplit(PC pc, Vec x, Vec y)
1657: {
1658:   PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
1659:   PC_FieldSplitLink ilink = jac->head;
1660:   PetscInt          bs;

1662:   PetscFunctionBegin;
1663:   if (jac->type == PC_COMPOSITE_ADDITIVE) {
1664:     PetscBool matnest;

1666:     PetscCall(PetscObjectTypeCompare((PetscObject)pc->pmat, MATNEST, &matnest));
1667:     if (jac->defaultsplit && !matnest) {
1668:       PetscCall(VecGetBlockSize(x, &bs));
1669:       PetscCheck(jac->bs <= 0 || bs == jac->bs, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Blocksize of x vector %" PetscInt_FMT " does not match fieldsplit blocksize %" PetscInt_FMT, bs, jac->bs);
1670:       PetscCall(VecGetBlockSize(y, &bs));
1671:       PetscCheck(jac->bs <= 0 || bs == jac->bs, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Blocksize of y vector %" PetscInt_FMT " does not match fieldsplit blocksize %" PetscInt_FMT, bs, jac->bs);
1672:       PetscCall(VecStrideGatherAll(x, jac->x, INSERT_VALUES));
1673:       while (ilink) {
1674:         PetscCall(PetscLogEventBegin(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1675:         PetscCall(KSPSolveTranspose(ilink->ksp, ilink->x, ilink->y));
1676:         PetscCall(KSPCheckSolve(ilink->ksp, pc, ilink->y));
1677:         PetscCall(PetscLogEventEnd(ilink->event, ilink->ksp, ilink->x, ilink->y, NULL));
1678:         ilink = ilink->next;
1679:       }
1680:       PetscCall(VecStrideScatterAll(jac->y, y, INSERT_VALUES));
1681:     } else {
1682:       PetscCall(VecSet(y, 0.0));
1683:       while (ilink) {
1684:         PetscCall(FieldSplitSplitSolveAddTranspose(ilink, x, y));
1685:         ilink = ilink->next;
1686:       }
1687:     }
1688:   } else {
1689:     if (!jac->w1) {
1690:       PetscCall(VecDuplicate(x, &jac->w1));
1691:       PetscCall(VecDuplicate(x, &jac->w2));
1692:     }
1693:     PetscCall(VecSet(y, 0.0));
1694:     if (jac->type == PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE) {
1695:       PetscCall(FieldSplitSplitSolveAddTranspose(ilink, x, y));
1696:       while (ilink->next) {
1697:         ilink = ilink->next;
1698:         PetscCall(MatMultTranspose(pc->mat, y, jac->w1));
1699:         PetscCall(VecWAXPY(jac->w2, -1.0, jac->w1, x));
1700:         PetscCall(FieldSplitSplitSolveAddTranspose(ilink, jac->w2, y));
1701:       }
1702:       while (ilink->previous) {
1703:         ilink = ilink->previous;
1704:         PetscCall(MatMultTranspose(pc->mat, y, jac->w1));
1705:         PetscCall(VecWAXPY(jac->w2, -1.0, jac->w1, x));
1706:         PetscCall(FieldSplitSplitSolveAddTranspose(ilink, jac->w2, y));
1707:       }
1708:     } else {
1709:       while (ilink->next) { /* get to last entry in linked list */
1710:         ilink = ilink->next;
1711:       }
1712:       PetscCall(FieldSplitSplitSolveAddTranspose(ilink, x, y));
1713:       while (ilink->previous) {
1714:         ilink = ilink->previous;
1715:         PetscCall(MatMultTranspose(pc->mat, y, jac->w1));
1716:         PetscCall(VecWAXPY(jac->w2, -1.0, jac->w1, x));
1717:         PetscCall(FieldSplitSplitSolveAddTranspose(ilink, jac->w2, y));
1718:       }
1719:     }
1720:   }
1721:   PetscFunctionReturn(PETSC_SUCCESS);
1722: }

1724: static PetscErrorCode PCReset_FieldSplit(PC pc)
1725: {
1726:   PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
1727:   PC_FieldSplitLink ilink = jac->head, next;
1728:   Mat               AinvB;

1730:   PetscFunctionBegin;
1731:   while (ilink) {
1732:     PetscCall(KSPDestroy(&ilink->ksp));
1733:     PetscCall(VecDestroy(&ilink->x));
1734:     PetscCall(VecDestroy(&ilink->y));
1735:     PetscCall(VecDestroy(&ilink->z));
1736:     PetscCall(VecScatterDestroy(&ilink->sctx));
1737:     PetscCall(ISDestroy(&ilink->is));
1738:     PetscCall(ISDestroy(&ilink->is_col));
1739:     PetscCall(PetscFree(ilink->splitname));
1740:     PetscCall(PetscFree(ilink->fields));
1741:     PetscCall(PetscFree(ilink->fields_col));
1742:     next = ilink->next;
1743:     PetscCall(PetscFree(ilink));
1744:     ilink = next;
1745:   }
1746:   jac->head = NULL;
1747:   PetscCall(PetscFree2(jac->x, jac->y));
1748:   if (jac->mat && jac->mat != jac->pmat) {
1749:     PetscCall(MatDestroyMatrices(jac->nsplits, &jac->mat));
1750:   } else if (jac->mat) {
1751:     jac->mat = NULL;
1752:   }
1753:   if (jac->pmat) PetscCall(MatDestroyMatrices(jac->nsplits, &jac->pmat));
1754:   if (jac->Afield) PetscCall(MatDestroyMatrices(jac->nsplits, &jac->Afield));
1755:   jac->nsplits = 0;
1756:   PetscCall(VecDestroy(&jac->w1));
1757:   PetscCall(VecDestroy(&jac->w2));
1758:   if (jac->schur) {
1759:     PetscCall(PetscObjectQuery((PetscObject)jac->schur, "AinvB", (PetscObject *)&AinvB));
1760:     PetscCall(MatDestroy(&AinvB));
1761:     PetscCall(PetscObjectCompose((PetscObject)jac->schur, "AinvB", NULL));
1762:   }
1763:   PetscCall(MatDestroy(&jac->schur));
1764:   PetscCall(MatDestroy(&jac->schurp));
1765:   PetscCall(MatDestroy(&jac->schur_user));
1766:   PetscCall(KSPDestroy(&jac->kspschur));
1767:   PetscCall(KSPDestroy(&jac->kspupper));
1768:   PetscCall(MatDestroy(&jac->B));
1769:   PetscCall(MatDestroy(&jac->C));
1770:   PetscCall(MatDestroy(&jac->H));
1771:   PetscCall(VecDestroy(&jac->u));
1772:   PetscCall(VecDestroy(&jac->v));
1773:   PetscCall(VecDestroy(&jac->Hu));
1774:   PetscCall(VecDestroy(&jac->d));
1775:   PetscCall(PetscFree(jac->vecz));
1776:   PetscCall(PetscViewerDestroy(&jac->gkbviewer));
1777:   jac->isrestrict = PETSC_FALSE;
1778:   PetscFunctionReturn(PETSC_SUCCESS);
1779: }

1781: static PetscErrorCode PCDestroy_FieldSplit(PC pc)
1782: {
1783:   PetscFunctionBegin;
1784:   PetscCall(PCReset_FieldSplit(pc));
1785:   PetscCall(PetscFree(pc->data));
1786:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCSetCoordinates_C", NULL));
1787:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetFields_C", NULL));
1788:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetIS_C", NULL));
1789:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetType_C", NULL));
1790:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetBlockSize_C", NULL));
1791:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitRestrictIS_C", NULL));
1792:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSchurGetSubKSP_C", NULL));
1793:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", NULL));

1795:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBTol_C", NULL));
1796:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBMaxit_C", NULL));
1797:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBNu_C", NULL));
1798:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBDelay_C", NULL));
1799:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", NULL));
1800:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurPre_C", NULL));
1801:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSchurPre_C", NULL));
1802:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurFactType_C", NULL));
1803:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurScale_C", NULL));
1804:   PetscFunctionReturn(PETSC_SUCCESS);
1805: }

1807: static PetscErrorCode PCSetFromOptions_FieldSplit(PC pc, PetscOptionItems *PetscOptionsObject)
1808: {
1809:   PetscInt        bs;
1810:   PetscBool       flg;
1811:   PC_FieldSplit  *jac = (PC_FieldSplit *)pc->data;
1812:   PCCompositeType ctype;

1814:   PetscFunctionBegin;
1815:   PetscOptionsHeadBegin(PetscOptionsObject, "FieldSplit options");
1816:   PetscCall(PetscOptionsBool("-pc_fieldsplit_dm_splits", "Whether to use DMCreateFieldDecomposition() for splits", "PCFieldSplitSetDMSplits", jac->dm_splits, &jac->dm_splits, NULL));
1817:   PetscCall(PetscOptionsInt("-pc_fieldsplit_block_size", "Blocksize that defines number of fields", "PCFieldSplitSetBlockSize", jac->bs, &bs, &flg));
1818:   if (flg) PetscCall(PCFieldSplitSetBlockSize(pc, bs));
1819:   jac->diag_use_amat = pc->useAmat;
1820:   PetscCall(PetscOptionsBool("-pc_fieldsplit_diag_use_amat", "Use Amat (not Pmat) to extract diagonal fieldsplit blocks", "PCFieldSplitSetDiagUseAmat", jac->diag_use_amat, &jac->diag_use_amat, NULL));
1821:   jac->offdiag_use_amat = pc->useAmat;
1822:   PetscCall(PetscOptionsBool("-pc_fieldsplit_off_diag_use_amat", "Use Amat (not Pmat) to extract off-diagonal fieldsplit blocks", "PCFieldSplitSetOffDiagUseAmat", jac->offdiag_use_amat, &jac->offdiag_use_amat, NULL));
1823:   PetscCall(PetscOptionsBool("-pc_fieldsplit_detect_saddle_point", "Form 2-way split by detecting zero diagonal entries", "PCFieldSplitSetDetectSaddlePoint", jac->detect, &jac->detect, NULL));
1824:   PetscCall(PCFieldSplitSetDetectSaddlePoint(pc, jac->detect)); /* Sets split type and Schur PC type */
1825:   PetscCall(PetscOptionsEnum("-pc_fieldsplit_type", "Type of composition", "PCFieldSplitSetType", PCCompositeTypes, (PetscEnum)jac->type, (PetscEnum *)&ctype, &flg));
1826:   if (flg) PetscCall(PCFieldSplitSetType(pc, ctype));
1827:   /* Only setup fields once */
1828:   if ((jac->bs > 0) && (jac->nsplits == 0)) {
1829:     /* only allow user to set fields from command line.
1830:        otherwise user can set them in PCFieldSplitSetDefaults() */
1831:     PetscCall(PCFieldSplitSetRuntimeSplits_Private(pc));
1832:     if (jac->splitdefined) PetscCall(PetscInfo(pc, "Splits defined using the options database\n"));
1833:   }
1834:   if (jac->type == PC_COMPOSITE_SCHUR) {
1835:     PetscCall(PetscOptionsGetEnum(((PetscObject)pc)->options, ((PetscObject)pc)->prefix, "-pc_fieldsplit_schur_factorization_type", PCFieldSplitSchurFactTypes, (PetscEnum *)&jac->schurfactorization, &flg));
1836:     if (flg) PetscCall(PetscInfo(pc, "Deprecated use of -pc_fieldsplit_schur_factorization_type\n"));
1837:     PetscCall(PetscOptionsEnum("-pc_fieldsplit_schur_fact_type", "Which off-diagonal parts of the block factorization to use", "PCFieldSplitSetSchurFactType", PCFieldSplitSchurFactTypes, (PetscEnum)jac->schurfactorization, (PetscEnum *)&jac->schurfactorization, NULL));
1838:     PetscCall(PetscOptionsEnum("-pc_fieldsplit_schur_precondition", "How to build preconditioner for Schur complement", "PCFieldSplitSetSchurPre", PCFieldSplitSchurPreTypes, (PetscEnum)jac->schurpre, (PetscEnum *)&jac->schurpre, NULL));
1839:     PetscCall(PetscOptionsScalar("-pc_fieldsplit_schur_scale", "Scale Schur complement", "PCFieldSplitSetSchurScale", jac->schurscale, &jac->schurscale, NULL));
1840:   } else if (jac->type == PC_COMPOSITE_GKB) {
1841:     PetscCall(PetscOptionsReal("-pc_fieldsplit_gkb_tol", "The tolerance for the lower bound stopping criterion", "PCFieldSplitSetGKBTol", jac->gkbtol, &jac->gkbtol, NULL));
1842:     PetscCall(PetscOptionsInt("-pc_fieldsplit_gkb_delay", "The delay value for lower bound criterion", "PCFieldSplitSetGKBDelay", jac->gkbdelay, &jac->gkbdelay, NULL));
1843:     PetscCall(PetscOptionsBoundedReal("-pc_fieldsplit_gkb_nu", "Parameter in augmented Lagrangian approach", "PCFieldSplitSetGKBNu", jac->gkbnu, &jac->gkbnu, NULL, 0.0));
1844:     PetscCall(PetscOptionsInt("-pc_fieldsplit_gkb_maxit", "Maximum allowed number of iterations", "PCFieldSplitSetGKBMaxit", jac->gkbmaxit, &jac->gkbmaxit, NULL));
1845:     PetscCall(PetscOptionsBool("-pc_fieldsplit_gkb_monitor", "Prints number of GKB iterations and error", "PCFieldSplitGKB", jac->gkbmonitor, &jac->gkbmonitor, NULL));
1846:   }
1847:   /*
1848:     In the initial call to this routine the sub-solver data structures do not exist so we cannot call KSPSetFromOptions() on them yet.
1849:     But after the initial setup of ALL the layers of sub-solvers is completed we do want to call KSPSetFromOptions() on the sub-solvers every time it
1850:     is called on the outer solver in case changes were made in the options database

1852:     But even after PCSetUp_FieldSplit() is called all the options inside the inner levels of sub-solvers may still not have been set thus we only call the KSPSetFromOptions()
1853:     if we know that the entire stack of sub-solvers below this have been complete instantiated, we check this by seeing if any solver iterations are complete.
1854:     Without this extra check test p2p1fetidp_olof_full and others fail with incorrect matrix types.

1856:     There could be a negative side effect of calling the KSPSetFromOptions() below.

1858:     If one captured the PetscObjectState of the options database one could skip these calls if the database has not changed from the previous call
1859:   */
1860:   if (jac->issetup) {
1861:     PC_FieldSplitLink ilink = jac->head;
1862:     if (jac->type == PC_COMPOSITE_SCHUR) {
1863:       if (jac->kspupper && jac->kspupper->totalits > 0) PetscCall(KSPSetFromOptions(jac->kspupper));
1864:       if (jac->kspschur && jac->kspschur->totalits > 0) PetscCall(KSPSetFromOptions(jac->kspschur));
1865:     }
1866:     while (ilink) {
1867:       if (ilink->ksp->totalits > 0) PetscCall(KSPSetFromOptions(ilink->ksp));
1868:       ilink = ilink->next;
1869:     }
1870:   }
1871:   PetscOptionsHeadEnd();
1872:   PetscFunctionReturn(PETSC_SUCCESS);
1873: }

1875: static PetscErrorCode PCFieldSplitSetFields_FieldSplit(PC pc, const char splitname[], PetscInt n, const PetscInt *fields, const PetscInt *fields_col)
1876: {
1877:   PC_FieldSplit    *jac = (PC_FieldSplit *)pc->data;
1878:   PC_FieldSplitLink ilink, next = jac->head;
1879:   char              prefix[128];
1880:   PetscInt          i;

1882:   PetscFunctionBegin;
1883:   if (jac->splitdefined) {
1884:     PetscCall(PetscInfo(pc, "Ignoring new split \"%s\" because the splits have already been defined\n", splitname));
1885:     PetscFunctionReturn(PETSC_SUCCESS);
1886:   }
1887:   for (i = 0; i < n; i++) { PetscCheck(fields[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative field %" PetscInt_FMT " requested", fields[i]); }
1888:   PetscCall(PetscNew(&ilink));
1889:   if (splitname) {
1890:     PetscCall(PetscStrallocpy(splitname, &ilink->splitname));
1891:   } else {
1892:     PetscCall(PetscMalloc1(3, &ilink->splitname));
1893:     PetscCall(PetscSNPrintf(ilink->splitname, 2, "%" PetscInt_FMT, jac->nsplits));
1894:   }
1895:   ilink->event = jac->nsplits < 5 ? KSP_Solve_FS_0 + jac->nsplits : KSP_Solve_FS_0 + 4; /* Any split great than 4 gets logged in the 4th split */
1896:   PetscCall(PetscMalloc1(n, &ilink->fields));
1897:   PetscCall(PetscArraycpy(ilink->fields, fields, n));
1898:   PetscCall(PetscMalloc1(n, &ilink->fields_col));
1899:   PetscCall(PetscArraycpy(ilink->fields_col, fields_col, n));

1901:   ilink->nfields = n;
1902:   ilink->next    = NULL;
1903:   PetscCall(KSPCreate(PetscObjectComm((PetscObject)pc), &ilink->ksp));
1904:   PetscCall(KSPSetNestLevel(ilink->ksp, pc->kspnestlevel));
1905:   PetscCall(KSPSetErrorIfNotConverged(ilink->ksp, pc->erroriffailure));
1906:   PetscCall(PetscObjectIncrementTabLevel((PetscObject)ilink->ksp, (PetscObject)pc, 1));
1907:   PetscCall(KSPSetType(ilink->ksp, KSPPREONLY));

1909:   PetscCall(PetscSNPrintf(prefix, sizeof(prefix), "%sfieldsplit_%s_", ((PetscObject)pc)->prefix ? ((PetscObject)pc)->prefix : "", ilink->splitname));
1910:   PetscCall(KSPSetOptionsPrefix(ilink->ksp, prefix));

1912:   if (!next) {
1913:     jac->head       = ilink;
1914:     ilink->previous = NULL;
1915:   } else {
1916:     while (next->next) next = next->next;
1917:     next->next      = ilink;
1918:     ilink->previous = next;
1919:   }
1920:   jac->nsplits++;
1921:   PetscFunctionReturn(PETSC_SUCCESS);
1922: }

1924: static PetscErrorCode PCFieldSplitSchurGetSubKSP_FieldSplit(PC pc, PetscInt *n, KSP **subksp)
1925: {
1926:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

1928:   PetscFunctionBegin;
1929:   *subksp = NULL;
1930:   if (n) *n = 0;
1931:   if (jac->type == PC_COMPOSITE_SCHUR) {
1932:     PetscInt nn;

1934:     PetscCheck(jac->schur, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must call KSPSetUp() or PCSetUp() before calling PCFieldSplitSchurGetSubKSP()");
1935:     PetscCheck(jac->nsplits == 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_PLIB, "Unexpected number of splits %" PetscInt_FMT " != 2", jac->nsplits);
1936:     nn = jac->nsplits + (jac->kspupper != jac->head->ksp ? 1 : 0);
1937:     PetscCall(PetscMalloc1(nn, subksp));
1938:     (*subksp)[0] = jac->head->ksp;
1939:     (*subksp)[1] = jac->kspschur;
1940:     if (jac->kspupper != jac->head->ksp) (*subksp)[2] = jac->kspupper;
1941:     if (n) *n = nn;
1942:   }
1943:   PetscFunctionReturn(PETSC_SUCCESS);
1944: }

1946: static PetscErrorCode PCFieldSplitGetSubKSP_FieldSplit_Schur(PC pc, PetscInt *n, KSP **subksp)
1947: {
1948:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

1950:   PetscFunctionBegin;
1951:   PetscCheck(jac->schur, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must call KSPSetUp() or PCSetUp() before calling PCFieldSplitGetSubKSP()");
1952:   PetscCall(PetscMalloc1(jac->nsplits, subksp));
1953:   PetscCall(MatSchurComplementGetKSP(jac->schur, *subksp));

1955:   (*subksp)[1] = jac->kspschur;
1956:   if (n) *n = jac->nsplits;
1957:   PetscFunctionReturn(PETSC_SUCCESS);
1958: }

1960: static PetscErrorCode PCFieldSplitGetSubKSP_FieldSplit(PC pc, PetscInt *n, KSP **subksp)
1961: {
1962:   PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
1963:   PetscInt          cnt   = 0;
1964:   PC_FieldSplitLink ilink = jac->head;

1966:   PetscFunctionBegin;
1967:   PetscCall(PetscMalloc1(jac->nsplits, subksp));
1968:   while (ilink) {
1969:     (*subksp)[cnt++] = ilink->ksp;
1970:     ilink            = ilink->next;
1971:   }
1972:   PetscCheck(cnt == jac->nsplits, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Corrupt PCFIELDSPLIT object: number of splits in linked list %" PetscInt_FMT " does not match number in object %" PetscInt_FMT, cnt, jac->nsplits);
1973:   if (n) *n = jac->nsplits;
1974:   PetscFunctionReturn(PETSC_SUCCESS);
1975: }

1977: /*@
1978:   PCFieldSplitRestrictIS - Restricts the fieldsplit `IS`s to be within a given `IS`.

1980:   Input Parameters:
1981: + pc  - the preconditioner context
1982: - isy - the index set that defines the indices to which the fieldsplit is to be restricted

1984:   Level: advanced

1986:   Developer Notes:
1987:   It seems the resulting `IS`s will not cover the entire space, so
1988:   how can they define a convergent preconditioner? Needs explaining.

1990: .seealso: [](sec_block_matrices), `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSetIS()`
1991: @*/
1992: PetscErrorCode PCFieldSplitRestrictIS(PC pc, IS isy)
1993: {
1994:   PetscFunctionBegin;
1997:   PetscTryMethod(pc, "PCFieldSplitRestrictIS_C", (PC, IS), (pc, isy));
1998:   PetscFunctionReturn(PETSC_SUCCESS);
1999: }

2001: static PetscErrorCode PCFieldSplitRestrictIS_FieldSplit(PC pc, IS isy)
2002: {
2003:   PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
2004:   PC_FieldSplitLink ilink = jac->head, next;
2005:   PetscInt          localsize, size, sizez, i;
2006:   const PetscInt   *ind, *indz;
2007:   PetscInt         *indc, *indcz;
2008:   PetscBool         flg;

2010:   PetscFunctionBegin;
2011:   PetscCall(ISGetLocalSize(isy, &localsize));
2012:   PetscCallMPI(MPI_Scan(&localsize, &size, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)isy)));
2013:   size -= localsize;
2014:   while (ilink) {
2015:     IS isrl, isr;
2016:     PC subpc;
2017:     PetscCall(ISEmbed(ilink->is, isy, PETSC_TRUE, &isrl));
2018:     PetscCall(ISGetLocalSize(isrl, &localsize));
2019:     PetscCall(PetscMalloc1(localsize, &indc));
2020:     PetscCall(ISGetIndices(isrl, &ind));
2021:     PetscCall(PetscArraycpy(indc, ind, localsize));
2022:     PetscCall(ISRestoreIndices(isrl, &ind));
2023:     PetscCall(ISDestroy(&isrl));
2024:     for (i = 0; i < localsize; i++) *(indc + i) += size;
2025:     PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)isy), localsize, indc, PETSC_OWN_POINTER, &isr));
2026:     PetscCall(PetscObjectReference((PetscObject)isr));
2027:     PetscCall(ISDestroy(&ilink->is));
2028:     ilink->is = isr;
2029:     PetscCall(PetscObjectReference((PetscObject)isr));
2030:     PetscCall(ISDestroy(&ilink->is_col));
2031:     ilink->is_col = isr;
2032:     PetscCall(ISDestroy(&isr));
2033:     PetscCall(KSPGetPC(ilink->ksp, &subpc));
2034:     PetscCall(PetscObjectTypeCompare((PetscObject)subpc, PCFIELDSPLIT, &flg));
2035:     if (flg) {
2036:       IS       iszl, isz;
2037:       MPI_Comm comm;
2038:       PetscCall(ISGetLocalSize(ilink->is, &localsize));
2039:       comm = PetscObjectComm((PetscObject)ilink->is);
2040:       PetscCall(ISEmbed(isy, ilink->is, PETSC_TRUE, &iszl));
2041:       PetscCallMPI(MPI_Scan(&localsize, &sizez, 1, MPIU_INT, MPI_SUM, comm));
2042:       sizez -= localsize;
2043:       PetscCall(ISGetLocalSize(iszl, &localsize));
2044:       PetscCall(PetscMalloc1(localsize, &indcz));
2045:       PetscCall(ISGetIndices(iszl, &indz));
2046:       PetscCall(PetscArraycpy(indcz, indz, localsize));
2047:       PetscCall(ISRestoreIndices(iszl, &indz));
2048:       PetscCall(ISDestroy(&iszl));
2049:       for (i = 0; i < localsize; i++) *(indcz + i) += sizez;
2050:       PetscCall(ISCreateGeneral(comm, localsize, indcz, PETSC_OWN_POINTER, &isz));
2051:       PetscCall(PCFieldSplitRestrictIS(subpc, isz));
2052:       PetscCall(ISDestroy(&isz));
2053:     }
2054:     next  = ilink->next;
2055:     ilink = next;
2056:   }
2057:   jac->isrestrict = PETSC_TRUE;
2058:   PetscFunctionReturn(PETSC_SUCCESS);
2059: }

2061: static PetscErrorCode PCFieldSplitSetIS_FieldSplit(PC pc, const char splitname[], IS is)
2062: {
2063:   PC_FieldSplit    *jac = (PC_FieldSplit *)pc->data;
2064:   PC_FieldSplitLink ilink, next = jac->head;
2065:   char              prefix[128];

2067:   PetscFunctionBegin;
2068:   if (jac->splitdefined) {
2069:     PetscCall(PetscInfo(pc, "Ignoring new split \"%s\" because the splits have already been defined\n", splitname));
2070:     PetscFunctionReturn(PETSC_SUCCESS);
2071:   }
2072:   PetscCall(PetscNew(&ilink));
2073:   if (splitname) {
2074:     PetscCall(PetscStrallocpy(splitname, &ilink->splitname));
2075:   } else {
2076:     PetscCall(PetscMalloc1(8, &ilink->splitname));
2077:     PetscCall(PetscSNPrintf(ilink->splitname, 7, "%" PetscInt_FMT, jac->nsplits));
2078:   }
2079:   ilink->event = jac->nsplits < 5 ? KSP_Solve_FS_0 + jac->nsplits : KSP_Solve_FS_0 + 4; /* Any split great than 4 gets logged in the 4th split */
2080:   PetscCall(PetscObjectReference((PetscObject)is));
2081:   PetscCall(ISDestroy(&ilink->is));
2082:   ilink->is = is;
2083:   PetscCall(PetscObjectReference((PetscObject)is));
2084:   PetscCall(ISDestroy(&ilink->is_col));
2085:   ilink->is_col = is;
2086:   ilink->next   = NULL;
2087:   PetscCall(KSPCreate(PetscObjectComm((PetscObject)pc), &ilink->ksp));
2088:   PetscCall(KSPSetNestLevel(ilink->ksp, pc->kspnestlevel));
2089:   PetscCall(KSPSetErrorIfNotConverged(ilink->ksp, pc->erroriffailure));
2090:   PetscCall(PetscObjectIncrementTabLevel((PetscObject)ilink->ksp, (PetscObject)pc, 1));
2091:   PetscCall(KSPSetType(ilink->ksp, KSPPREONLY));

2093:   PetscCall(PetscSNPrintf(prefix, sizeof(prefix), "%sfieldsplit_%s_", ((PetscObject)pc)->prefix ? ((PetscObject)pc)->prefix : "", ilink->splitname));
2094:   PetscCall(KSPSetOptionsPrefix(ilink->ksp, prefix));

2096:   if (!next) {
2097:     jac->head       = ilink;
2098:     ilink->previous = NULL;
2099:   } else {
2100:     while (next->next) next = next->next;
2101:     next->next      = ilink;
2102:     ilink->previous = next;
2103:   }
2104:   jac->nsplits++;
2105:   PetscFunctionReturn(PETSC_SUCCESS);
2106: }

2108: /*@
2109:   PCFieldSplitSetFields - Sets the fields that define one particular split in `PCFIELDSPLIT`

2111:   Logically Collective

2113:   Input Parameters:
2114: + pc         - the preconditioner context
2115: . splitname  - name of this split, if `NULL` the number of the split is used
2116: . n          - the number of fields in this split
2117: . fields     - the fields in this split
2118: - fields_col - generally the same as `fields`, if it does not match `fields` then the submatrix that is solved for this set of fields comes from an off-diagonal block
2119:                of the matrix and `fields_col` provides the column indices for that block

2121:   Options Database Key:
2122: . -pc_fieldsplit_%d_fields <a,b,..> - indicates the fields to be used in the `%d`'th split

2124:   Level: intermediate

2126:   Notes:
2127:   Use `PCFieldSplitSetIS()` to set a  general set of indices as a split.

2129:   If the matrix used to construct the preconditioner is `MATNEST` then field i refers to the `is_row[i]` `IS` passed to `MatCreateNest()`.

2131:   If the matrix used to construct the preconditioner is not `MATNEST` then
2132:   `PCFieldSplitSetFields()` is for defining fields as strided blocks (based on the block size provided to the matrix with `MatSetBlocksize()` or
2133:   to the `PC` with `PCFieldSplitSetBlockSize()`). For example, if the block
2134:   size is three then one can define a split as 0, or 1 or 2 or 0,1 or 0,2 or 1,2 which mean
2135:   0xx3xx6xx9xx12 ... x1xx4xx7xx ... xx2xx5xx8xx.. 01x34x67x... 0x1x3x5x7.. x12x45x78x....
2136:   where the numbered entries indicate what is in the split.

2138:   This function is called once per split (it creates a new split each time).  Solve options
2139:   for this split will be available under the prefix `-fieldsplit_SPLITNAME_`.

2141:   `PCFieldSplitSetIS()` does not support having a `fields_col` different from `fields`

2143:   Developer Notes:
2144:   This routine does not actually create the `IS` representing the split, that is delayed
2145:   until `PCSetUp_FieldSplit()`, because information about the vector/matrix layouts may not be
2146:   available when this routine is called.

2148: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetBlockSize()`, `PCFieldSplitSetIS()`, `PCFieldSplitRestrictIS()`,
2149:           `MatSetBlocksize()`, `MatCreateNest()`
2150: @*/
2151: PetscErrorCode PCFieldSplitSetFields(PC pc, const char splitname[], PetscInt n, const PetscInt fields[], const PetscInt fields_col[])
2152: {
2153:   PetscFunctionBegin;
2155:   PetscAssertPointer(splitname, 2);
2156:   PetscCheck(n >= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Provided number of fields %" PetscInt_FMT " in split \"%s\" not positive", n, splitname);
2157:   PetscAssertPointer(fields, 4);
2158:   PetscTryMethod(pc, "PCFieldSplitSetFields_C", (PC, const char[], PetscInt, const PetscInt *, const PetscInt *), (pc, splitname, n, fields, fields_col));
2159:   PetscFunctionReturn(PETSC_SUCCESS);
2160: }

2162: /*@
2163:   PCFieldSplitSetDiagUseAmat - set flag indicating whether to extract diagonal blocks from Amat (rather than Pmat) to build
2164:   the sub-matrices associated with each split. Where `KSPSetOperators`(ksp,Amat,Pmat) was used to supply the operators.

2166:   Logically Collective

2168:   Input Parameters:
2169: + pc  - the preconditioner object
2170: - flg - boolean flag indicating whether or not to use Amat to extract the diagonal blocks from

2172:   Options Database Key:
2173: . -pc_fieldsplit_diag_use_amat - use the Amat to provide the diagonal blocks

2175:   Level: intermediate

2177: .seealso: [](sec_block_matrices), `PC`, `PCSetOperators()`, `KSPSetOperators()`, `PCFieldSplitGetDiagUseAmat()`, `PCFieldSplitSetOffDiagUseAmat()`, `PCFIELDSPLIT`
2178: @*/
2179: PetscErrorCode PCFieldSplitSetDiagUseAmat(PC pc, PetscBool flg)
2180: {
2181:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
2182:   PetscBool      isfs;

2184:   PetscFunctionBegin;
2186:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &isfs));
2187:   PetscCheck(isfs, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "PC not of type %s", PCFIELDSPLIT);
2188:   jac->diag_use_amat = flg;
2189:   PetscFunctionReturn(PETSC_SUCCESS);
2190: }

2192: /*@
2193:   PCFieldSplitGetDiagUseAmat - get the flag indicating whether to extract diagonal blocks from Amat (rather than Pmat) to build
2194:   the sub-matrices associated with each split.  Where `KSPSetOperators`(ksp,Amat,Pmat) was used to supply the operators.

2196:   Logically Collective

2198:   Input Parameter:
2199: . pc - the preconditioner object

2201:   Output Parameter:
2202: . flg - boolean flag indicating whether or not to use Amat to extract the diagonal blocks from

2204:   Level: intermediate

2206: .seealso: [](sec_block_matrices), `PC`, `PCSetOperators()`, `KSPSetOperators()`, `PCFieldSplitSetDiagUseAmat()`, `PCFieldSplitGetOffDiagUseAmat()`, `PCFIELDSPLIT`
2207: @*/
2208: PetscErrorCode PCFieldSplitGetDiagUseAmat(PC pc, PetscBool *flg)
2209: {
2210:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
2211:   PetscBool      isfs;

2213:   PetscFunctionBegin;
2215:   PetscAssertPointer(flg, 2);
2216:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &isfs));
2217:   PetscCheck(isfs, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "PC not of type %s", PCFIELDSPLIT);
2218:   *flg = jac->diag_use_amat;
2219:   PetscFunctionReturn(PETSC_SUCCESS);
2220: }

2222: /*@
2223:   PCFieldSplitSetOffDiagUseAmat - set flag indicating whether to extract off-diagonal blocks from Amat (rather than Pmat) to build
2224:   the sub-matrices associated with each split.  Where `KSPSetOperators`(ksp,Amat,Pmat) was used to supply the operators.

2226:   Logically Collective

2228:   Input Parameters:
2229: + pc  - the preconditioner object
2230: - flg - boolean flag indicating whether or not to use Amat to extract the off-diagonal blocks from

2232:   Options Database Key:
2233: . -pc_fieldsplit_off_diag_use_amat <bool> - use the Amat to extract the off-diagonal blocks

2235:   Level: intermediate

2237: .seealso: [](sec_block_matrices), `PC`, `PCSetOperators()`, `KSPSetOperators()`, `PCFieldSplitGetOffDiagUseAmat()`, `PCFieldSplitSetDiagUseAmat()`, `PCFIELDSPLIT`
2238: @*/
2239: PetscErrorCode PCFieldSplitSetOffDiagUseAmat(PC pc, PetscBool flg)
2240: {
2241:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
2242:   PetscBool      isfs;

2244:   PetscFunctionBegin;
2246:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &isfs));
2247:   PetscCheck(isfs, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "PC not of type %s", PCFIELDSPLIT);
2248:   jac->offdiag_use_amat = flg;
2249:   PetscFunctionReturn(PETSC_SUCCESS);
2250: }

2252: /*@
2253:   PCFieldSplitGetOffDiagUseAmat - get the flag indicating whether to extract off-diagonal blocks from Amat (rather than Pmat) to build
2254:   the sub-matrices associated with each split.  Where `KSPSetOperators`(ksp,Amat,Pmat) was used to supply the operators.

2256:   Logically Collective

2258:   Input Parameter:
2259: . pc - the preconditioner object

2261:   Output Parameter:
2262: . flg - boolean flag indicating whether or not to use Amat to extract the off-diagonal blocks from

2264:   Level: intermediate

2266: .seealso: [](sec_block_matrices), `PC`, `PCSetOperators()`, `KSPSetOperators()`, `PCFieldSplitSetOffDiagUseAmat()`, `PCFieldSplitGetDiagUseAmat()`, `PCFIELDSPLIT`
2267: @*/
2268: PetscErrorCode PCFieldSplitGetOffDiagUseAmat(PC pc, PetscBool *flg)
2269: {
2270:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
2271:   PetscBool      isfs;

2273:   PetscFunctionBegin;
2275:   PetscAssertPointer(flg, 2);
2276:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &isfs));
2277:   PetscCheck(isfs, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "PC not of type %s", PCFIELDSPLIT);
2278:   *flg = jac->offdiag_use_amat;
2279:   PetscFunctionReturn(PETSC_SUCCESS);
2280: }

2282: /*@
2283:   PCFieldSplitSetIS - Sets the exact elements for a split in a `PCFIELDSPLIT`

2285:   Logically Collective

2287:   Input Parameters:
2288: + pc        - the preconditioner context
2289: . splitname - name of this split, if `NULL` the number of the split is used
2290: - is        - the index set that defines the elements in this split

2292:   Level: intermediate

2294:   Notes:
2295:   Use `PCFieldSplitSetFields()`, for splits defined by strided `IS` based on the matrix block size or the `is_rows[]` passed into `MATNEST`

2297:   This function is called once per split (it creates a new split each time).  Solve options
2298:   for this split will be available under the prefix -fieldsplit_SPLITNAME_.

2300: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetBlockSize()`, `PCFieldSplitSetFields()`
2301: @*/
2302: PetscErrorCode PCFieldSplitSetIS(PC pc, const char splitname[], IS is)
2303: {
2304:   PetscFunctionBegin;
2306:   if (splitname) PetscAssertPointer(splitname, 2);
2308:   PetscTryMethod(pc, "PCFieldSplitSetIS_C", (PC, const char[], IS), (pc, splitname, is));
2309:   PetscFunctionReturn(PETSC_SUCCESS);
2310: }

2312: /*@
2313:   PCFieldSplitGetIS - Retrieves the elements for a split as an `IS`

2315:   Logically Collective

2317:   Input Parameters:
2318: + pc        - the preconditioner context
2319: - splitname - name of this split

2321:   Output Parameter:
2322: . is - the index set that defines the elements in this split, or `NULL` if the split is not found

2324:   Level: intermediate

2326: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetIS()`, `PCFieldSplitGetISByIndex()`
2327: @*/
2328: PetscErrorCode PCFieldSplitGetIS(PC pc, const char splitname[], IS *is)
2329: {
2330:   PetscFunctionBegin;
2332:   PetscAssertPointer(splitname, 2);
2333:   PetscAssertPointer(is, 3);
2334:   {
2335:     PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
2336:     PC_FieldSplitLink ilink = jac->head;
2337:     PetscBool         found;

2339:     *is = NULL;
2340:     while (ilink) {
2341:       PetscCall(PetscStrcmp(ilink->splitname, splitname, &found));
2342:       if (found) {
2343:         *is = ilink->is;
2344:         break;
2345:       }
2346:       ilink = ilink->next;
2347:     }
2348:   }
2349:   PetscFunctionReturn(PETSC_SUCCESS);
2350: }

2352: /*@
2353:   PCFieldSplitGetISByIndex - Retrieves the elements for a given split as an `IS`

2355:   Logically Collective

2357:   Input Parameters:
2358: + pc    - the preconditioner context
2359: - index - index of this split

2361:   Output Parameter:
2362: . is - the index set that defines the elements in this split

2364:   Level: intermediate

2366: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitGetIS()`, `PCFieldSplitSetIS()`,

2368: @*/
2369: PetscErrorCode PCFieldSplitGetISByIndex(PC pc, PetscInt index, IS *is)
2370: {
2371:   PetscFunctionBegin;
2372:   PetscCheck(index >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative field %" PetscInt_FMT " requested", index);
2374:   PetscAssertPointer(is, 3);
2375:   {
2376:     PC_FieldSplit    *jac   = (PC_FieldSplit *)pc->data;
2377:     PC_FieldSplitLink ilink = jac->head;
2378:     PetscInt          i     = 0;
2379:     PetscCheck(index < jac->nsplits, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " requested but only %" PetscInt_FMT " exist", index, jac->nsplits);

2381:     while (i < index) {
2382:       ilink = ilink->next;
2383:       ++i;
2384:     }
2385:     PetscCall(PCFieldSplitGetIS(pc, ilink->splitname, is));
2386:   }
2387:   PetscFunctionReturn(PETSC_SUCCESS);
2388: }

2390: /*@
2391:   PCFieldSplitSetBlockSize - Sets the block size for defining where fields start in the
2392:   fieldsplit preconditioner when calling `PCFieldSplitSetFields()`. If not set the matrix block size is used.

2394:   Logically Collective

2396:   Input Parameters:
2397: + pc - the preconditioner context
2398: - bs - the block size

2400:   Level: intermediate

2402:   Note:
2403:   If the matrix is a `MATNEST` then the `is_rows[]` passed to `MatCreateNest()` determines the fields.

2405: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSetIS()`
2406: @*/
2407: PetscErrorCode PCFieldSplitSetBlockSize(PC pc, PetscInt bs)
2408: {
2409:   PetscFunctionBegin;
2412:   PetscTryMethod(pc, "PCFieldSplitSetBlockSize_C", (PC, PetscInt), (pc, bs));
2413:   PetscFunctionReturn(PETSC_SUCCESS);
2414: }

2416: /*@C
2417:   PCFieldSplitGetSubKSP - Gets the `KSP` contexts for all splits

2419:   Collective

2421:   Input Parameter:
2422: . pc - the preconditioner context

2424:   Output Parameters:
2425: + n      - the number of splits
2426: - subksp - the array of `KSP` contexts

2428:   Level: advanced

2430:   Notes:
2431:   After `PCFieldSplitGetSubKSP()` the array of `KSP`s is to be freed by the user with `PetscFree()`
2432:   (not the `KSP`, just the array that contains them).

2434:   You must call `PCSetUp()` before calling `PCFieldSplitGetSubKSP()`.

2436:   If the fieldsplit is of type `PC_COMPOSITE_SCHUR`, it returns the `KSP` object used inside the
2437:   Schur complement and the `KSP` object used to iterate over the Schur complement.
2438:   To access all the `KSP` objects used in `PC_COMPOSITE_SCHUR`, use `PCFieldSplitSchurGetSubKSP()`.

2440:   If the fieldsplit is of type `PC_COMPOSITE_GKB`, it returns the `KSP` object used to solve the
2441:   inner linear system defined by the matrix H in each loop.

2443:   Fortran Notes:
2444:   You must pass in a `KSP` array that is large enough to contain all the `KSP`s.
2445:   You can call `PCFieldSplitGetSubKSP`(pc,n,`PETSC_NULL_KSP`,ierr) to determine how large the
2446:   `KSP` array must be.

2448:   Developer Notes:
2449:   There should be a `PCFieldSplitRestoreSubKSP()` instead of requiring the user to call `PetscFree()`

2451:   The Fortran interface could be modernized to return directly the array of values.

2453: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSetIS()`, `PCFieldSplitSchurGetSubKSP()`
2454: @*/
2455: PetscErrorCode PCFieldSplitGetSubKSP(PC pc, PetscInt *n, KSP *subksp[])
2456: {
2457:   PetscFunctionBegin;
2459:   if (n) PetscAssertPointer(n, 2);
2460:   PetscUseMethod(pc, "PCFieldSplitGetSubKSP_C", (PC, PetscInt *, KSP **), (pc, n, subksp));
2461:   PetscFunctionReturn(PETSC_SUCCESS);
2462: }

2464: /*@C
2465:   PCFieldSplitSchurGetSubKSP - Gets the `KSP` contexts used inside the Schur complement based `PCFIELDSPLIT`

2467:   Collective

2469:   Input Parameter:
2470: . pc - the preconditioner context

2472:   Output Parameters:
2473: + n      - the number of splits
2474: - subksp - the array of `KSP` contexts

2476:   Level: advanced

2478:   Notes:
2479:   After `PCFieldSplitSchurGetSubKSP()` the array of `KSP`s is to be freed by the user with `PetscFree()`
2480:   (not the `KSP` just the array that contains them).

2482:   You must call `PCSetUp()` before calling `PCFieldSplitSchurGetSubKSP()`.

2484:   If the fieldsplit type is of type `PC_COMPOSITE_SCHUR`, it returns (in order)
2485: +  1  - the `KSP` used for the (1,1) block
2486: .  2  - the `KSP` used for the Schur complement (not the one used for the interior Schur solver)
2487: -  3  - the `KSP` used for the (1,1) block in the upper triangular factor (if different from that of the (1,1) block).

2489:   It returns a null array if the fieldsplit is not of type `PC_COMPOSITE_SCHUR`; in this case, you should use `PCFieldSplitGetSubKSP()`.

2491:   Fortran Notes:
2492:   You must pass in a `KSP` array that is large enough to contain all the local `KSP`s.
2493:   You can call `PCFieldSplitSchurGetSubKSP`(pc,n,`PETSC_NULL_KSP`,ierr) to determine how large the
2494:   `KSP` array must be.

2496:   Developer Notes:
2497:   There should be a `PCFieldSplitRestoreSubKSP()` instead of requiring the user to call `PetscFree()`

2499:   Should the functionality of `PCFieldSplitSchurGetSubKSP()` and `PCFieldSplitGetSubKSP()` be merged?

2501:   The Fortran interface should be modernized to return directly the array of values.

2503: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSetIS()`, `PCFieldSplitGetSubKSP()`
2504: @*/
2505: PetscErrorCode PCFieldSplitSchurGetSubKSP(PC pc, PetscInt *n, KSP *subksp[])
2506: {
2507:   PetscFunctionBegin;
2509:   if (n) PetscAssertPointer(n, 2);
2510:   PetscUseMethod(pc, "PCFieldSplitSchurGetSubKSP_C", (PC, PetscInt *, KSP **), (pc, n, subksp));
2511:   PetscFunctionReturn(PETSC_SUCCESS);
2512: }

2514: /*@
2515:   PCFieldSplitSetSchurPre -  Indicates from what operator the preconditioner is constructed for the Schur complement.
2516:   The default is the A11 matrix.

2518:   Collective

2520:   Input Parameters:
2521: + pc    - the preconditioner context
2522: . ptype - which matrix to use for preconditioning the Schur complement: `PC_FIELDSPLIT_SCHUR_PRE_A11` (default),
2523:               `PC_FIELDSPLIT_SCHUR_PRE_SELF`, `PC_FIELDSPLIT_SCHUR_PRE_USER`,
2524:               `PC_FIELDSPLIT_SCHUR_PRE_SELFP`, and `PC_FIELDSPLIT_SCHUR_PRE_FULL`
2525: - pre   - matrix to use for preconditioning, or `NULL`

2527:   Options Database Keys:
2528: + -pc_fieldsplit_schur_precondition <self,selfp,user,a11,full> - default is `a11`. See notes for meaning of various arguments
2529: - -fieldsplit_1_pc_type <pctype>                               - the preconditioner algorithm that is used to construct the preconditioner from the operator

2531:   Level: intermediate

2533:   Notes:
2534:   If ptype is
2535: +     a11 - the preconditioner for the Schur complement is generated from the block diagonal part of the preconditioner
2536:   matrix associated with the Schur complement (i.e. A11), not the Schur complement matrix
2537: .     self - the preconditioner for the Schur complement is generated from the symbolic representation of the Schur complement matrix:
2538:   The only preconditioners that currently work with this symbolic representation matrix object are `PCLSC` and `PCHPDDM`
2539: .     user - the preconditioner for the Schur complement is generated from the user provided matrix (pre argument
2540:   to this function).
2541: .     selfp - the preconditioning for the Schur complement is generated from an explicitly-assembled approximation $ Sp = A11 - A10 inv(diag(A00)) A01 $
2542:   This is only a good preconditioner when diag(A00) is a good preconditioner for A00. Optionally, A00 can be
2543:   lumped before extracting the diagonal using the additional option `-fieldsplit_1_mat_schur_complement_ainv_type lump`
2544: -     full - the preconditioner for the Schur complement is generated from the exact Schur complement matrix representation
2545:   computed internally by `PCFIELDSPLIT` (this is expensive)
2546:   useful mostly as a test that the Schur complement approach can work for your problem

2548:   When solving a saddle point problem, where the A11 block is identically zero, using `a11` as the ptype only makes sense
2549:   with the additional option `-fieldsplit_1_pc_type none`. Usually for saddle point problems one would use a `ptype` of `self` and
2550:   `-fieldsplit_1_pc_type lsc` which uses the least squares commutator to compute a preconditioner for the Schur complement.

2552:   Developer Note:
2553:   The name of this function and the option `-pc_fieldsplit_schur_precondition` are inconsistent; precondition should be used everywhere.

2555: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSchurPre()`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSchurPreType`,
2556:           `MatSchurComplementSetAinvType()`, `PCLSC`, `PCFieldSplitSetSchurFactType()`
2557: @*/
2558: PetscErrorCode PCFieldSplitSetSchurPre(PC pc, PCFieldSplitSchurPreType ptype, Mat pre)
2559: {
2560:   PetscFunctionBegin;
2562:   PetscTryMethod(pc, "PCFieldSplitSetSchurPre_C", (PC, PCFieldSplitSchurPreType, Mat), (pc, ptype, pre));
2563:   PetscFunctionReturn(PETSC_SUCCESS);
2564: }

2566: PetscErrorCode PCFieldSplitSchurPrecondition(PC pc, PCFieldSplitSchurPreType ptype, Mat pre)
2567: {
2568:   return PCFieldSplitSetSchurPre(pc, ptype, pre);
2569: } /* Deprecated name */

2571: /*@
2572:   PCFieldSplitGetSchurPre - For Schur complement fieldsplit, determine how the Schur complement will be
2573:   preconditioned.  See `PCFieldSplitSetSchurPre()` for details.

2575:   Logically Collective

2577:   Input Parameter:
2578: . pc - the preconditioner context

2580:   Output Parameters:
2581: + ptype - which matrix to use for preconditioning the Schur complement: `PC_FIELDSPLIT_SCHUR_PRE_A11`, `PC_FIELDSPLIT_SCHUR_PRE_SELF`, `PC_FIELDSPLIT_SCHUR_PRE_USER`
2582: - pre   - matrix to use for preconditioning (with `PC_FIELDSPLIT_SCHUR_PRE_USER`), or `NULL`

2584:   Level: intermediate

2586: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitSetSchurPre()`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSchurPreType`, `PCLSC`
2587: @*/
2588: PetscErrorCode PCFieldSplitGetSchurPre(PC pc, PCFieldSplitSchurPreType *ptype, Mat *pre)
2589: {
2590:   PetscFunctionBegin;
2592:   PetscUseMethod(pc, "PCFieldSplitGetSchurPre_C", (PC, PCFieldSplitSchurPreType *, Mat *), (pc, ptype, pre));
2593:   PetscFunctionReturn(PETSC_SUCCESS);
2594: }

2596: /*@
2597:   PCFieldSplitSchurGetS -  extract the `MATSCHURCOMPLEMENT` object used by this `PCFIELDSPLIT` in case it needs to be configured separately

2599:   Not Collective

2601:   Input Parameter:
2602: . pc - the preconditioner context

2604:   Output Parameter:
2605: . S - the Schur complement matrix

2607:   Level: advanced

2609:   Note:
2610:   This matrix should not be destroyed using `MatDestroy()`; rather, use `PCFieldSplitSchurRestoreS()`.

2612: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSchurPreType`, `PCFieldSplitSetSchurPre()`, `MATSCHURCOMPLEMENT`, `PCFieldSplitSchurRestoreS()`,
2613:           `MatCreateSchurComplement()`, `MatSchurComplementGetKSP()`, `MatSchurComplementComputeExplicitOperator()`, `MatGetSchurComplement()`
2614: @*/
2615: PetscErrorCode PCFieldSplitSchurGetS(PC pc, Mat *S)
2616: {
2617:   const char    *t;
2618:   PetscBool      isfs;
2619:   PC_FieldSplit *jac;

2621:   PetscFunctionBegin;
2623:   PetscCall(PetscObjectGetType((PetscObject)pc, &t));
2624:   PetscCall(PetscStrcmp(t, PCFIELDSPLIT, &isfs));
2625:   PetscCheck(isfs, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Expected PC of type PCFIELDSPLIT, got %s instead", t);
2626:   jac = (PC_FieldSplit *)pc->data;
2627:   PetscCheck(jac->type == PC_COMPOSITE_SCHUR, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Expected PCFIELDSPLIT of type SCHUR, got %d instead", jac->type);
2628:   if (S) *S = jac->schur;
2629:   PetscFunctionReturn(PETSC_SUCCESS);
2630: }

2632: /*@
2633:   PCFieldSplitSchurRestoreS -  returns the `MATSCHURCOMPLEMENT` matrix used by this `PC`

2635:   Not Collective

2637:   Input Parameters:
2638: + pc - the preconditioner context
2639: - S  - the Schur complement matrix

2641:   Level: advanced

2643: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSchurPreType`, `PCFieldSplitSetSchurPre()`, `MatSchurComplement`, `PCFieldSplitSchurGetS()`
2644: @*/
2645: PetscErrorCode PCFieldSplitSchurRestoreS(PC pc, Mat *S)
2646: {
2647:   const char    *t;
2648:   PetscBool      isfs;
2649:   PC_FieldSplit *jac;

2651:   PetscFunctionBegin;
2653:   PetscCall(PetscObjectGetType((PetscObject)pc, &t));
2654:   PetscCall(PetscStrcmp(t, PCFIELDSPLIT, &isfs));
2655:   PetscCheck(isfs, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Expected PC of type PCFIELDSPLIT, got %s instead", t);
2656:   jac = (PC_FieldSplit *)pc->data;
2657:   PetscCheck(jac->type == PC_COMPOSITE_SCHUR, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Expected PCFIELDSPLIT of type SCHUR, got %d instead", jac->type);
2658:   PetscCheck(S && (*S == jac->schur), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatSchurComplement restored is not the same as gotten");
2659:   PetscFunctionReturn(PETSC_SUCCESS);
2660: }

2662: static PetscErrorCode PCFieldSplitSetSchurPre_FieldSplit(PC pc, PCFieldSplitSchurPreType ptype, Mat pre)
2663: {
2664:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2666:   PetscFunctionBegin;
2667:   jac->schurpre = ptype;
2668:   if (ptype == PC_FIELDSPLIT_SCHUR_PRE_USER && pre) {
2669:     PetscCall(MatDestroy(&jac->schur_user));
2670:     jac->schur_user = pre;
2671:     PetscCall(PetscObjectReference((PetscObject)jac->schur_user));
2672:   }
2673:   PetscFunctionReturn(PETSC_SUCCESS);
2674: }

2676: static PetscErrorCode PCFieldSplitGetSchurPre_FieldSplit(PC pc, PCFieldSplitSchurPreType *ptype, Mat *pre)
2677: {
2678:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2680:   PetscFunctionBegin;
2681:   if (ptype) *ptype = jac->schurpre;
2682:   if (pre) *pre = jac->schur_user;
2683:   PetscFunctionReturn(PETSC_SUCCESS);
2684: }

2686: /*@
2687:   PCFieldSplitSetSchurFactType -  sets which blocks of the approximate block factorization to retain in the preconditioner {cite}`murphy2000note` and {cite}`ipsen2001note`

2689:   Collective

2691:   Input Parameters:
2692: + pc    - the preconditioner context
2693: - ftype - which blocks of factorization to retain, `PC_FIELDSPLIT_SCHUR_FACT_FULL` is default

2695:   Options Database Key:
2696: . -pc_fieldsplit_schur_fact_type <diag,lower,upper,full> - default is `full`

2698:   Level: intermediate

2700:   Notes:
2701:   The FULL factorization is

2703:   ```{math}
2704:   \left(\begin{array}{cc} A & B \\
2705:   C & E \\
2706:   \end{array}\right) =
2707:   \left(\begin{array}{cc} 1 & 0 \\
2708:   C*A^{-1} & I \\
2709:   \end{array}\right)
2710:   \left(\begin{array}{cc} A & 0 \\
2711:   0 & S \\
2712:   \end{array}\right)
2713:   \left(\begin{array}{cc} I & A^{-1}B \\
2714:   0 & I \\
2715:   \end{array}\right) = L D U.
2716:   ```

2718:   where $ S = E - C*A^{-1}*B $. In practice, the full factorization is applied via block triangular solves with the grouping $L*(D*U)$. UPPER uses $D*U$, LOWER uses $L*D$,
2719:   and DIAG is the diagonal part with the sign of $ S $ flipped (because this makes the preconditioner positive definite for many formulations,
2720:   thus allowing the use of `KSPMINRES)`. Sign flipping of $ S $ can be turned off with `PCFieldSplitSetSchurScale()`.

2722:   If $A$ and $S$ are solved exactly
2723: +  1 - FULL factorization is a direct solver.
2724: .  2 - The preconditioned operator with LOWER or UPPER has all eigenvalues equal to 1 and minimal polynomial of degree 2, so `KSPGMRES` converges in 2 iterations.
2725: -  3 -  With DIAG, the preconditioned operator has three distinct nonzero eigenvalues and minimal polynomial of degree at most 4, so `KSPGMRES` converges in at most 4 iterations.

2727:   If the iteration count is very low, consider using `KSPFGMRES` or `KSPGCR` which can use one less preconditioner
2728:   application in this case. Note that the preconditioned operator may be highly non-normal, so such fast convergence may not be observed in practice.

2730:   For symmetric problems in which $A$ is positive definite and $S$ is negative definite, DIAG can be used with `KSPMINRES`.

2732:   A flexible method like `KSPFGMRES` or `KSPGCR`, [](sec_flexibleksp), must be used if the fieldsplit preconditioner is nonlinear (e.g. a few iterations of a Krylov method is used to solve with A or S).

2734: .seealso: [](sec_block_matrices), `PC`, `PCFieldSplitGetSubKSP()`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSchurPreType`, `PCFieldSplitSetSchurScale()`,
2735:           [](sec_flexibleksp), `PCFieldSplitSetSchurPre()`
2736: @*/
2737: PetscErrorCode PCFieldSplitSetSchurFactType(PC pc, PCFieldSplitSchurFactType ftype)
2738: {
2739:   PetscFunctionBegin;
2741:   PetscTryMethod(pc, "PCFieldSplitSetSchurFactType_C", (PC, PCFieldSplitSchurFactType), (pc, ftype));
2742:   PetscFunctionReturn(PETSC_SUCCESS);
2743: }

2745: static PetscErrorCode PCFieldSplitSetSchurFactType_FieldSplit(PC pc, PCFieldSplitSchurFactType ftype)
2746: {
2747:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2749:   PetscFunctionBegin;
2750:   jac->schurfactorization = ftype;
2751:   PetscFunctionReturn(PETSC_SUCCESS);
2752: }

2754: /*@
2755:   PCFieldSplitSetSchurScale -  Controls the sign flip of S for `PC_FIELDSPLIT_SCHUR_FACT_DIAG`.

2757:   Collective

2759:   Input Parameters:
2760: + pc    - the preconditioner context
2761: - scale - scaling factor for the Schur complement

2763:   Options Database Key:
2764: . -pc_fieldsplit_schur_scale <scale> - default is -1.0

2766:   Level: intermediate

2768: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetFields()`, `PCFieldSplitSchurFactType`, `PCFieldSplitSetSchurFactType()`
2769: @*/
2770: PetscErrorCode PCFieldSplitSetSchurScale(PC pc, PetscScalar scale)
2771: {
2772:   PetscFunctionBegin;
2775:   PetscTryMethod(pc, "PCFieldSplitSetSchurScale_C", (PC, PetscScalar), (pc, scale));
2776:   PetscFunctionReturn(PETSC_SUCCESS);
2777: }

2779: static PetscErrorCode PCFieldSplitSetSchurScale_FieldSplit(PC pc, PetscScalar scale)
2780: {
2781:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2783:   PetscFunctionBegin;
2784:   jac->schurscale = scale;
2785:   PetscFunctionReturn(PETSC_SUCCESS);
2786: }

2788: /*@C
2789:   PCFieldSplitGetSchurBlocks - Gets all matrix blocks for the Schur complement

2791:   Collective

2793:   Input Parameter:
2794: . pc - the preconditioner context

2796:   Output Parameters:
2797: + A00 - the (0,0) block
2798: . A01 - the (0,1) block
2799: . A10 - the (1,0) block
2800: - A11 - the (1,1) block

2802:   Level: advanced

2804:   Note:
2805:   Use `NULL` for any unneeded output arguments

2807: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `MatSchurComplementGetSubMatrices()`, `MatSchurComplementSetSubMatrices()`
2808: @*/
2809: PetscErrorCode PCFieldSplitGetSchurBlocks(PC pc, Mat *A00, Mat *A01, Mat *A10, Mat *A11)
2810: {
2811:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2813:   PetscFunctionBegin;
2815:   PetscCheck(jac->type == PC_COMPOSITE_SCHUR, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "FieldSplit is not using a Schur complement approach.");
2816:   if (A00) *A00 = jac->pmat[0];
2817:   if (A01) *A01 = jac->B;
2818:   if (A10) *A10 = jac->C;
2819:   if (A11) *A11 = jac->pmat[1];
2820:   PetscFunctionReturn(PETSC_SUCCESS);
2821: }

2823: /*@
2824:   PCFieldSplitSetGKBTol -  Sets the solver tolerance for the generalized Golub-Kahan bidiagonalization preconditioner {cite}`arioli2013` in `PCFIELDSPLIT`

2826:   Collective

2828:   Input Parameters:
2829: + pc        - the preconditioner context
2830: - tolerance - the solver tolerance

2832:   Options Database Key:
2833: . -pc_fieldsplit_gkb_tol <tolerance> - default is 1e-5

2835:   Level: intermediate

2837:   Note:
2838:   The generalized GKB algorithm {cite}`arioli2013` uses a lower bound estimate of the error in energy norm as stopping criterion.
2839:   It stops once the lower bound estimate undershoots the required solver tolerance. Although the actual error might be bigger than
2840:   this estimate, the stopping criterion is satisfactory in practical cases.

2842: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetGKBDelay()`, `PCFieldSplitSetGKBNu()`, `PCFieldSplitSetGKBMaxit()`
2843: @*/
2844: PetscErrorCode PCFieldSplitSetGKBTol(PC pc, PetscReal tolerance)
2845: {
2846:   PetscFunctionBegin;
2849:   PetscTryMethod(pc, "PCFieldSplitSetGKBTol_C", (PC, PetscReal), (pc, tolerance));
2850:   PetscFunctionReturn(PETSC_SUCCESS);
2851: }

2853: static PetscErrorCode PCFieldSplitSetGKBTol_FieldSplit(PC pc, PetscReal tolerance)
2854: {
2855:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2857:   PetscFunctionBegin;
2858:   jac->gkbtol = tolerance;
2859:   PetscFunctionReturn(PETSC_SUCCESS);
2860: }

2862: /*@
2863:   PCFieldSplitSetGKBMaxit -  Sets the maximum number of iterations for the generalized Golub-Kahan bidiagonalization preconditioner {cite}`arioli2013` in `PCFIELDSPLIT`

2865:   Collective

2867:   Input Parameters:
2868: + pc    - the preconditioner context
2869: - maxit - the maximum number of iterations

2871:   Options Database Key:
2872: . -pc_fieldsplit_gkb_maxit <maxit> - default is 100

2874:   Level: intermediate

2876: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetGKBDelay()`, `PCFieldSplitSetGKBTol()`, `PCFieldSplitSetGKBNu()`
2877: @*/
2878: PetscErrorCode PCFieldSplitSetGKBMaxit(PC pc, PetscInt maxit)
2879: {
2880:   PetscFunctionBegin;
2883:   PetscTryMethod(pc, "PCFieldSplitSetGKBMaxit_C", (PC, PetscInt), (pc, maxit));
2884:   PetscFunctionReturn(PETSC_SUCCESS);
2885: }

2887: static PetscErrorCode PCFieldSplitSetGKBMaxit_FieldSplit(PC pc, PetscInt maxit)
2888: {
2889:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2891:   PetscFunctionBegin;
2892:   jac->gkbmaxit = maxit;
2893:   PetscFunctionReturn(PETSC_SUCCESS);
2894: }

2896: /*@
2897:   PCFieldSplitSetGKBDelay -  Sets the delay in the lower bound error estimate in the generalized Golub-Kahan bidiagonalization {cite}`arioli2013` in `PCFIELDSPLIT`
2898:   preconditioner.

2900:   Collective

2902:   Input Parameters:
2903: + pc    - the preconditioner context
2904: - delay - the delay window in the lower bound estimate

2906:   Options Database Key:
2907: . -pc_fieldsplit_gkb_delay <delay> - default is 5

2909:   Level: intermediate

2911:   Notes:
2912:   The algorithm uses a lower bound estimate of the error in energy norm as stopping criterion. The lower bound of the error $ ||u-u^k||_H $
2913:   is expressed as a truncated sum. The error at iteration k can only be measured at iteration (k + `delay`), and thus the algorithm needs
2914:   at least (`delay` + 1) iterations to stop.

2916:   For more details on the generalized Golub-Kahan bidiagonalization method and its lower bound stopping criterion, please refer to {cite}`arioli2013`

2918: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetGKBNu()`, `PCFieldSplitSetGKBTol()`, `PCFieldSplitSetGKBMaxit()`
2919: @*/
2920: PetscErrorCode PCFieldSplitSetGKBDelay(PC pc, PetscInt delay)
2921: {
2922:   PetscFunctionBegin;
2925:   PetscTryMethod(pc, "PCFieldSplitSetGKBDelay_C", (PC, PetscInt), (pc, delay));
2926:   PetscFunctionReturn(PETSC_SUCCESS);
2927: }

2929: static PetscErrorCode PCFieldSplitSetGKBDelay_FieldSplit(PC pc, PetscInt delay)
2930: {
2931:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2933:   PetscFunctionBegin;
2934:   jac->gkbdelay = delay;
2935:   PetscFunctionReturn(PETSC_SUCCESS);
2936: }

2938: /*@
2939:   PCFieldSplitSetGKBNu -  Sets the scalar value nu >= 0 in the transformation H = A00 + nu*A01*A01' of the (1,1) block in the
2940:   Golub-Kahan bidiagonalization preconditioner {cite}`arioli2013` in `PCFIELDSPLIT`

2942:   Collective

2944:   Input Parameters:
2945: + pc - the preconditioner context
2946: - nu - the shift parameter

2948:   Options Database Key:
2949: . -pc_fieldsplit_gkb_nu <nu> - default is 1

2951:   Level: intermediate

2953:   Notes:
2954:   This shift is in general done to obtain better convergence properties for the outer loop of the algorithm. This is often achieved by choosing `nu` sufficiently large. However,
2955:   if `nu` is chosen too large, the matrix H might be badly conditioned and the solution of the linear system $Hx = b$ in the inner loop becomes difficult. It is therefore
2956:   necessary to find a good balance in between the convergence of the inner and outer loop.

2958:   For `nu` = 0, no shift is done. In this case A00 has to be positive definite. The matrix N in {cite}`arioli2013` is then chosen as identity.

2960: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetGKBDelay()`, `PCFieldSplitSetGKBTol()`, `PCFieldSplitSetGKBMaxit()`
2961: @*/
2962: PetscErrorCode PCFieldSplitSetGKBNu(PC pc, PetscReal nu)
2963: {
2964:   PetscFunctionBegin;
2967:   PetscTryMethod(pc, "PCFieldSplitSetGKBNu_C", (PC, PetscReal), (pc, nu));
2968:   PetscFunctionReturn(PETSC_SUCCESS);
2969: }

2971: static PetscErrorCode PCFieldSplitSetGKBNu_FieldSplit(PC pc, PetscReal nu)
2972: {
2973:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2975:   PetscFunctionBegin;
2976:   jac->gkbnu = nu;
2977:   PetscFunctionReturn(PETSC_SUCCESS);
2978: }

2980: static PetscErrorCode PCFieldSplitSetType_FieldSplit(PC pc, PCCompositeType type)
2981: {
2982:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

2984:   PetscFunctionBegin;
2985:   jac->type = type;
2986:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", NULL));
2987:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurPre_C", NULL));
2988:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSchurPre_C", NULL));
2989:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurFactType_C", NULL));
2990:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurScale_C", NULL));
2991:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBTol_C", NULL));
2992:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBMaxit_C", NULL));
2993:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBNu_C", NULL));
2994:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBDelay_C", NULL));

2996:   if (type == PC_COMPOSITE_SCHUR) {
2997:     pc->ops->apply          = PCApply_FieldSplit_Schur;
2998:     pc->ops->applytranspose = PCApplyTranspose_FieldSplit_Schur;
2999:     pc->ops->view           = PCView_FieldSplit_Schur;

3001:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", PCFieldSplitGetSubKSP_FieldSplit_Schur));
3002:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurPre_C", PCFieldSplitSetSchurPre_FieldSplit));
3003:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSchurPre_C", PCFieldSplitGetSchurPre_FieldSplit));
3004:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurFactType_C", PCFieldSplitSetSchurFactType_FieldSplit));
3005:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetSchurScale_C", PCFieldSplitSetSchurScale_FieldSplit));
3006:   } else if (type == PC_COMPOSITE_GKB) {
3007:     pc->ops->apply = PCApply_FieldSplit_GKB;
3008:     pc->ops->view  = PCView_FieldSplit_GKB;

3010:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", PCFieldSplitGetSubKSP_FieldSplit));
3011:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBTol_C", PCFieldSplitSetGKBTol_FieldSplit));
3012:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBMaxit_C", PCFieldSplitSetGKBMaxit_FieldSplit));
3013:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBNu_C", PCFieldSplitSetGKBNu_FieldSplit));
3014:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetGKBDelay_C", PCFieldSplitSetGKBDelay_FieldSplit));
3015:   } else {
3016:     pc->ops->apply = PCApply_FieldSplit;
3017:     pc->ops->view  = PCView_FieldSplit;

3019:     PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", PCFieldSplitGetSubKSP_FieldSplit));
3020:   }
3021:   PetscFunctionReturn(PETSC_SUCCESS);
3022: }

3024: static PetscErrorCode PCFieldSplitSetBlockSize_FieldSplit(PC pc, PetscInt bs)
3025: {
3026:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

3028:   PetscFunctionBegin;
3029:   PetscCheck(bs >= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Blocksize must be positive, you gave %" PetscInt_FMT, bs);
3030:   PetscCheck(jac->bs <= 0 || jac->bs == bs, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Cannot change fieldsplit blocksize from %" PetscInt_FMT " to %" PetscInt_FMT " after it has been set", jac->bs, bs);
3031:   jac->bs = bs;
3032:   PetscFunctionReturn(PETSC_SUCCESS);
3033: }

3035: static PetscErrorCode PCSetCoordinates_FieldSplit(PC pc, PetscInt dim, PetscInt nloc, PetscReal coords[])
3036: {
3037:   PC_FieldSplit    *jac           = (PC_FieldSplit *)pc->data;
3038:   PC_FieldSplitLink ilink_current = jac->head;
3039:   IS                is_owned;

3041:   PetscFunctionBegin;
3042:   jac->coordinates_set = PETSC_TRUE; // Internal flag
3043:   PetscCall(MatGetOwnershipIS(pc->mat, &is_owned, NULL));

3045:   while (ilink_current) {
3046:     // For each IS, embed it to get local coords indces
3047:     IS              is_coords;
3048:     PetscInt        ndofs_block;
3049:     const PetscInt *block_dofs_enumeration; // Numbering of the dofs relevant to the current block

3051:     // Setting drop to true for safety. It should make no difference.
3052:     PetscCall(ISEmbed(ilink_current->is, is_owned, PETSC_TRUE, &is_coords));
3053:     PetscCall(ISGetLocalSize(is_coords, &ndofs_block));
3054:     PetscCall(ISGetIndices(is_coords, &block_dofs_enumeration));

3056:     // Allocate coordinates vector and set it directly
3057:     PetscCall(PetscMalloc1(ndofs_block * dim, &ilink_current->coords));
3058:     for (PetscInt dof = 0; dof < ndofs_block; ++dof) {
3059:       for (PetscInt d = 0; d < dim; ++d) (ilink_current->coords)[dim * dof + d] = coords[dim * block_dofs_enumeration[dof] + d];
3060:     }
3061:     ilink_current->dim   = dim;
3062:     ilink_current->ndofs = ndofs_block;
3063:     PetscCall(ISRestoreIndices(is_coords, &block_dofs_enumeration));
3064:     PetscCall(ISDestroy(&is_coords));
3065:     ilink_current = ilink_current->next;
3066:   }
3067:   PetscCall(ISDestroy(&is_owned));
3068:   PetscFunctionReturn(PETSC_SUCCESS);
3069: }

3071: /*@
3072:   PCFieldSplitSetType - Sets the type, `PCCompositeType`, of a `PCFIELDSPLIT`

3074:   Collective

3076:   Input Parameters:
3077: + pc   - the preconditioner context
3078: - type - `PC_COMPOSITE_ADDITIVE`, `PC_COMPOSITE_MULTIPLICATIVE` (default), `PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE`, `PC_COMPOSITE_SPECIAL`, `PC_COMPOSITE_SCHUR`,
3079:          `PC_COMPOSITE_GKB`

3081:   Options Database Key:
3082: . -pc_fieldsplit_type <one of multiplicative, additive, symmetric_multiplicative, special, schur> - Sets fieldsplit preconditioner type

3084:   Level: intermediate

3086: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCCompositeType`, `PCCompositeGetType()`, `PC_COMPOSITE_ADDITIVE`, `PC_COMPOSITE_MULTIPLICATIVE`,
3087:           `PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE`, `PC_COMPOSITE_SPECIAL`, `PC_COMPOSITE_SCHUR`, `PCFieldSplitSetSchurFactType()`
3088: @*/
3089: PetscErrorCode PCFieldSplitSetType(PC pc, PCCompositeType type)
3090: {
3091:   PetscFunctionBegin;
3093:   PetscTryMethod(pc, "PCFieldSplitSetType_C", (PC, PCCompositeType), (pc, type));
3094:   PetscFunctionReturn(PETSC_SUCCESS);
3095: }

3097: /*@
3098:   PCFieldSplitGetType - Gets the type, `PCCompositeType`, of a `PCFIELDSPLIT`

3100:   Not collective

3102:   Input Parameter:
3103: . pc - the preconditioner context

3105:   Output Parameter:
3106: . type - `PC_COMPOSITE_ADDITIVE`, `PC_COMPOSITE_MULTIPLICATIVE` (default), `PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE`, `PC_COMPOSITE_SPECIAL`, `PC_COMPOSITE_SCHUR`

3108:   Level: intermediate

3110: .seealso: [](sec_block_matrices), `PC`, `PCCompositeSetType()`, `PCFIELDSPLIT`, `PCCompositeType`, `PC_COMPOSITE_ADDITIVE`, `PC_COMPOSITE_MULTIPLICATIVE`,
3111:           `PC_COMPOSITE_SYMMETRIC_MULTIPLICATIVE`, `PC_COMPOSITE_SPECIAL`, `PC_COMPOSITE_SCHUR`
3112: @*/
3113: PetscErrorCode PCFieldSplitGetType(PC pc, PCCompositeType *type)
3114: {
3115:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

3117:   PetscFunctionBegin;
3119:   PetscAssertPointer(type, 2);
3120:   *type = jac->type;
3121:   PetscFunctionReturn(PETSC_SUCCESS);
3122: }

3124: /*@
3125:   PCFieldSplitSetDMSplits - Flags whether `DMCreateFieldDecomposition()` should be used to define the splits in a `PCFIELDSPLIT`, whenever possible.

3127:   Logically Collective

3129:   Input Parameters:
3130: + pc  - the preconditioner context
3131: - flg - boolean indicating whether to use field splits defined by the `DM`

3133:   Options Database Key:
3134: . -pc_fieldsplit_dm_splits <bool> - use the field splits defined by the `DM`

3136:   Level: intermediate

3138:   Developer Note:
3139:   The name should be `PCFieldSplitSetUseDMSplits()`, similar change to options database

3141: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitGetDMSplits()`, `DMCreateFieldDecomposition()`, `PCFieldSplitSetFields()`, `PCFieldsplitSetIS()`
3142: @*/
3143: PetscErrorCode PCFieldSplitSetDMSplits(PC pc, PetscBool flg)
3144: {
3145:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
3146:   PetscBool      isfs;

3148:   PetscFunctionBegin;
3151:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &isfs));
3152:   if (isfs) jac->dm_splits = flg;
3153:   PetscFunctionReturn(PETSC_SUCCESS);
3154: }

3156: /*@
3157:   PCFieldSplitGetDMSplits - Returns flag indicating whether `DMCreateFieldDecomposition()` should be used to define the splits in a `PCFIELDSPLIT`, whenever possible.

3159:   Logically Collective

3161:   Input Parameter:
3162: . pc - the preconditioner context

3164:   Output Parameter:
3165: . flg - boolean indicating whether to use field splits defined by the `DM`

3167:   Level: intermediate

3169:   Developer Note:
3170:   The name should be `PCFieldSplitGetUseDMSplits()`

3172: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetDMSplits()`, `DMCreateFieldDecomposition()`, `PCFieldSplitSetFields()`, `PCFieldsplitSetIS()`
3173: @*/
3174: PetscErrorCode PCFieldSplitGetDMSplits(PC pc, PetscBool *flg)
3175: {
3176:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;
3177:   PetscBool      isfs;

3179:   PetscFunctionBegin;
3181:   PetscAssertPointer(flg, 2);
3182:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCFIELDSPLIT, &isfs));
3183:   if (isfs) {
3184:     if (flg) *flg = jac->dm_splits;
3185:   }
3186:   PetscFunctionReturn(PETSC_SUCCESS);
3187: }

3189: /*@
3190:   PCFieldSplitGetDetectSaddlePoint - Returns flag indicating whether `PCFIELDSPLIT` will attempt to automatically determine fields based on zero diagonal entries.

3192:   Logically Collective

3194:   Input Parameter:
3195: . pc - the preconditioner context

3197:   Output Parameter:
3198: . flg - boolean indicating whether to detect fields or not

3200:   Level: intermediate

3202: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitSetDetectSaddlePoint()`
3203: @*/
3204: PetscErrorCode PCFieldSplitGetDetectSaddlePoint(PC pc, PetscBool *flg)
3205: {
3206:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

3208:   PetscFunctionBegin;
3209:   *flg = jac->detect;
3210:   PetscFunctionReturn(PETSC_SUCCESS);
3211: }

3213: /*@
3214:   PCFieldSplitSetDetectSaddlePoint - Sets flag indicating whether `PCFIELDSPLIT` will attempt to automatically determine fields based on zero diagonal entries.

3216:   Logically Collective

3218:   Input Parameter:
3219: . pc - the preconditioner context

3221:   Output Parameter:
3222: . flg - boolean indicating whether to detect fields or not

3224:   Options Database Key:
3225: . -pc_fieldsplit_detect_saddle_point <bool> - detect and use the saddle point

3227:   Level: intermediate

3229:   Note:
3230:   Also sets the split type to `PC_COMPOSITE_SCHUR` (see `PCFieldSplitSetType()`) and the Schur preconditioner type to `PC_FIELDSPLIT_SCHUR_PRE_SELF` (see `PCFieldSplitSetSchurPre()`).

3232: .seealso: [](sec_block_matrices), `PC`, `PCFIELDSPLIT`, `PCFieldSplitGetDetectSaddlePoint()`, `PCFieldSplitSetType()`, `PCFieldSplitSetSchurPre()`, `PC_FIELDSPLIT_SCHUR_PRE_SELF`
3233: @*/
3234: PetscErrorCode PCFieldSplitSetDetectSaddlePoint(PC pc, PetscBool flg)
3235: {
3236:   PC_FieldSplit *jac = (PC_FieldSplit *)pc->data;

3238:   PetscFunctionBegin;
3239:   jac->detect = flg;
3240:   if (jac->detect) {
3241:     PetscCall(PCFieldSplitSetType(pc, PC_COMPOSITE_SCHUR));
3242:     PetscCall(PCFieldSplitSetSchurPre(pc, PC_FIELDSPLIT_SCHUR_PRE_SELF, NULL));
3243:   }
3244:   PetscFunctionReturn(PETSC_SUCCESS);
3245: }

3247: /*MC
3248:   PCFIELDSPLIT - Preconditioner created by combining separate preconditioners for individual
3249:   collections of variables (that may overlap) called splits. See [the users manual section on "Solving Block Matrices"](sec_block_matrices) for more details.

3251:   Options Database Keys:
3252: +   -pc_fieldsplit_%d_fields <a,b,..>                                                - indicates the fields to be used in the `%d`'th split
3253: .   -pc_fieldsplit_default                                                           - automatically add any fields to additional splits that have not
3254:                                                                                        been supplied explicitly by `-pc_fieldsplit_%d_fields`
3255: .   -pc_fieldsplit_block_size <bs>                                                   - size of block that defines fields (i.e. there are bs fields)
3256:                                                                                        when the matrix is not of `MatType` `MATNEST`
3257: .   -pc_fieldsplit_type <additive,multiplicative,symmetric_multiplicative,schur,gkb> - type of relaxation or factorization splitting
3258: .   -pc_fieldsplit_schur_precondition <self,selfp,user,a11,full>                     - default is `a11`; see `PCFieldSplitSetSchurPre()`
3259: .   -pc_fieldsplit_schur_fact_type <diag,lower,upper,full>                           - set factorization type when using `-pc_fieldsplit_type schur`;
3260:                                                                                        see `PCFieldSplitSetSchurFactType()`
3261: .   -pc_fieldsplit_dm_splits <true,false> (default is true)                          - Whether to use `DMCreateFieldDecomposition()` for splits
3262: -   -pc_fieldsplit_detect_saddle_point                                               - automatically finds rows with zero diagonal and uses Schur complement with no preconditioner as the solver

3264:   Options prefixes for inner solvers when using the Schur complement preconditioner are `-fieldsplit_0_` and `-fieldsplit_1_` .
3265:   The options prefix for the inner solver when using the Golub-Kahan biadiagonalization preconditioner is `-fieldsplit_0_`
3266:   For all other solvers they are `-fieldsplit_%d_` for the `%d`'th field; use `-fieldsplit_` for all fields.

3268:   To set options on the solvers for each block append `-fieldsplit_` to all the `PC`
3269:   options database keys. For example, `-fieldsplit_pc_type ilu` `-fieldsplit_pc_factor_levels 1`

3271:   To set the options on the solvers separate for each block call `PCFieldSplitGetSubKSP()`
3272:   and set the options directly on the resulting `KSP` object

3274:   Level: intermediate

3276:   Notes:
3277:   Use `PCFieldSplitSetFields()` to set splits defined by "strided" entries or with a `MATNEST` and `PCFieldSplitSetIS()`
3278:   to define a split by an arbitrary collection of entries.

3280:   If no splits are set, the default is used. If a `DM` is associated with the `PC` and it supports
3281:   `DMCreateFieldDecomposition()`, then that is used for the default. Otherwise if the matrix is not `MATNEST`, the splits are defined by entries strided by bs,
3282:   beginning at 0 then 1, etc to bs-1. The block size can be set with `PCFieldSplitSetBlockSize()`,
3283:   if this is not called the block size defaults to the blocksize of the second matrix passed
3284:   to `KSPSetOperators()`/`PCSetOperators()`.

3286:   For the Schur complement preconditioner if
3287:   ```{math}
3288:     J = \left[\begin{array}{cc} A_{00} & A_{01} \\ A_{10} & A_{11} \end{array}\right]
3289:   ```

3291:   the preconditioner using `full` factorization is logically
3292:   ```{math}
3293:     \left[\begin{array}{cc} I & -\text{ksp}(A_{00}) A_{01} \\ 0 & I \end{array}\right] \left[\begin{array}{cc} \text{inv}(A_{00}) & 0 \\ 0 & \text{ksp}(S) \end{array}\right] \left[\begin{array}{cc} I & 0 \\ -A_{10} \text{ksp}(A_{00}) & I \end{array}\right]
3294:       ```
3295:   where the action of $\text{inv}(A_{00})$ is applied using the KSP solver with prefix `-fieldsplit_0_`.  $S$ is the Schur complement
3296:   ```{math}
3297:      S = A_{11} - A_{10} \text{ksp}(A_{00}) A_{01}
3298:   ```
3299:   which is usually dense and not stored explicitly.  The action of $\text{ksp}(S)$ is computed using the KSP solver with prefix `-fieldsplit_splitname_` (where `splitname` was given
3300:   in providing the SECOND split or 1 if not given). For `PCFieldSplitGetSubKSP()` when field number is 0,
3301:   it returns the `KSP` associated with `-fieldsplit_0_` while field number 1 gives `-fieldsplit_1_` KSP. By default
3302:   $A_{11}$ is used to construct a preconditioner for $S$, use `PCFieldSplitSetSchurPre()` for all the possible ways to construct the preconditioner for $S$.

3304:   The factorization type is set using `-pc_fieldsplit_schur_fact_type <diag, lower, upper, full>`. `full` is shown above,
3305:   `diag` gives
3306:   ```{math}
3307:     \left[\begin{array}{cc} \text{inv}(A_{00}) & 0 \\  0 & -\text{ksp}(S) \end{array}\right]
3308:   ```
3309:   Note that, slightly counter intuitively, there is a negative in front of the $\text{ksp}(S)$  so that the preconditioner is positive definite. For SPD matrices $J$, the sign flip
3310:   can be turned off with `PCFieldSplitSetSchurScale()` or by command line `-pc_fieldsplit_schur_scale 1.0`. The `lower` factorization is the inverse of
3311:   ```{math}
3312:     \left[\begin{array}{cc} A_{00} & 0 \\  A_{10} & S \end{array}\right]
3313:   ```
3314:   where the inverses of A_{00} and S are applied using KSPs. The upper factorization is the inverse of
3315:   ```{math}
3316:     \left[\begin{array}{cc} A_{00} & A_{01} \\  0 & S \end{array}\right]
3317:   ```
3318:   where again the inverses of $A_{00}$ and $S$ are applied using `KSP`s.

3320:   If only one set of indices (one `IS`) is provided with `PCFieldSplitSetIS()` then the complement of that `IS`
3321:   is used automatically for a second submatrix.

3323:   The fieldsplit preconditioner cannot currently be used with the `MATBAIJ` or `MATSBAIJ` data formats if the blocksize is larger than 1.
3324:   Generally it should be used with the `MATAIJ` or `MATNEST` `MatType`

3326:   The forms of these preconditioners are closely related, if not identical, to forms derived as "Distributive Iterations", see,
3327:   for example, page 294 in "Principles of Computational Fluid Dynamics" by Pieter Wesseling {cite}`wesseling2009`.
3328:   One can also use `PCFIELDSPLIT` inside a smoother resulting in "Distributive Smoothers".

3330:   See "A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations" {cite}`elman2008tcp`.

3332:   The Constrained Pressure Preconditioner (CPR) can be implemented using `PCCOMPOSITE` with `PCGALERKIN`. CPR first solves an $R A P$ subsystem, updates the
3333:   residual on all variables (`PCCompositeSetType(pc,PC_COMPOSITE_MULTIPLICATIVE)`), and then applies a simple ILU like preconditioner on all the variables.

3335:   The generalized Golub-Kahan bidiagonalization preconditioner (GKB) can be applied to symmetric $2 \times 2$ block matrices of the shape
3336:   ```{math}
3337:     \left[\begin{array}{cc} A_{00} & A_{01} \\ A_{01}' & 0 \end{array}\right]
3338:   ```
3339:   with $A_{00}$ positive semi-definite. The implementation follows {cite}`arioli2013`. Therein, we choose $N := 1/\nu * I$ and the $(1,1)$-block of the matrix is modified to $H = _{A00} + \nu*A_{01}*A_{01}'$.
3340:   A linear system $Hx = b$ has to be solved in each iteration of the GKB algorithm. This solver is chosen with the option prefix `-fieldsplit_0_`.

3342:   Developer Note:
3343:   The Schur complement functionality of `PCFIELDSPLIT` should likely be factored into its own `PC` thus simplifying the implementation of the preconditioners and their
3344:   user API.

3346: .seealso: [](sec_block_matrices), `PC`, `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCLSC`,
3347:           `PCFieldSplitGetSubKSP()`, `PCFieldSplitSchurGetSubKSP()`, `PCFieldSplitSetFields()`,
3348:           `PCFieldSplitSetType()`, `PCFieldSplitSetIS()`, `PCFieldSplitSetSchurPre()`, `PCFieldSplitSetSchurFactType()`,
3349:           `MatSchurComplementSetAinvType()`, `PCFieldSplitSetSchurScale()`, `PCFieldSplitSetDetectSaddlePoint()`
3350: M*/

3352: PETSC_EXTERN PetscErrorCode PCCreate_FieldSplit(PC pc)
3353: {
3354:   PC_FieldSplit *jac;

3356:   PetscFunctionBegin;
3357:   PetscCall(PetscNew(&jac));

3359:   jac->bs                 = -1;
3360:   jac->nsplits            = 0;
3361:   jac->type               = PC_COMPOSITE_MULTIPLICATIVE;
3362:   jac->schurpre           = PC_FIELDSPLIT_SCHUR_PRE_USER; /* Try user preconditioner first, fall back on diagonal */
3363:   jac->schurfactorization = PC_FIELDSPLIT_SCHUR_FACT_FULL;
3364:   jac->schurscale         = -1.0;
3365:   jac->dm_splits          = PETSC_TRUE;
3366:   jac->detect             = PETSC_FALSE;
3367:   jac->gkbtol             = 1e-5;
3368:   jac->gkbdelay           = 5;
3369:   jac->gkbnu              = 1;
3370:   jac->gkbmaxit           = 100;
3371:   jac->gkbmonitor         = PETSC_FALSE;
3372:   jac->coordinates_set    = PETSC_FALSE;

3374:   pc->data = (void *)jac;

3376:   pc->ops->apply           = PCApply_FieldSplit;
3377:   pc->ops->applytranspose  = PCApplyTranspose_FieldSplit;
3378:   pc->ops->setup           = PCSetUp_FieldSplit;
3379:   pc->ops->reset           = PCReset_FieldSplit;
3380:   pc->ops->destroy         = PCDestroy_FieldSplit;
3381:   pc->ops->setfromoptions  = PCSetFromOptions_FieldSplit;
3382:   pc->ops->view            = PCView_FieldSplit;
3383:   pc->ops->applyrichardson = NULL;

3385:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSchurGetSubKSP_C", PCFieldSplitSchurGetSubKSP_FieldSplit));
3386:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitGetSubKSP_C", PCFieldSplitGetSubKSP_FieldSplit));
3387:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetFields_C", PCFieldSplitSetFields_FieldSplit));
3388:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetIS_C", PCFieldSplitSetIS_FieldSplit));
3389:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetType_C", PCFieldSplitSetType_FieldSplit));
3390:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitSetBlockSize_C", PCFieldSplitSetBlockSize_FieldSplit));
3391:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCFieldSplitRestrictIS_C", PCFieldSplitRestrictIS_FieldSplit));
3392:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCSetCoordinates_C", PCSetCoordinates_FieldSplit));
3393:   PetscFunctionReturn(PETSC_SUCCESS);
3394: }