Actual source code: aij.c

  1: /*
  2:     Defines the basic matrix operations for the AIJ (compressed row)
  3:   matrix storage format.
  4: */

  6: #include <../src/mat/impls/aij/seq/aij.h>
  7: #include <petscblaslapack.h>
  8: #include <petscbt.h>
  9: #include <petsc/private/kernels/blocktranspose.h>

 11: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 12: #define TYPE AIJ
 13: #define TYPE_BS
 14: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 15: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 16: #undef TYPE
 17: #undef TYPE_BS

 19: MatGetDiagonalMarkers(SeqAIJ, 1)

 21: static PetscErrorCode MatSeqAIJSetTypeFromOptions(Mat A)
 22: {
 23:   PetscBool flg;
 24:   char      type[256];

 26:   PetscFunctionBegin;
 27:   PetscObjectOptionsBegin((PetscObject)A);
 28:   PetscCall(PetscOptionsFList("-mat_seqaij_type", "Matrix SeqAIJ type", "MatSeqAIJSetType", MatSeqAIJList, "seqaij", type, 256, &flg));
 29:   if (flg) PetscCall(MatSeqAIJSetType(A, type));
 30:   PetscOptionsEnd();
 31:   PetscFunctionReturn(PETSC_SUCCESS);
 32: }

 34: static PetscErrorCode MatGetColumnReductions_SeqAIJ(Mat A, PetscInt type, PetscReal *reductions)
 35: {
 36:   PetscInt    i, m, n;
 37:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

 39:   PetscFunctionBegin;
 40:   PetscCall(MatGetSize(A, &m, &n));
 41:   PetscCall(PetscArrayzero(reductions, n));
 42:   if (type == NORM_2) {
 43:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i] * aij->a[i]);
 44:   } else if (type == NORM_1) {
 45:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i]);
 46:   } else if (type == NORM_INFINITY) {
 47:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] = PetscMax(PetscAbsScalar(aij->a[i]), reductions[aij->j[i]]);
 48:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
 49:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscRealPart(aij->a[i]);
 50:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 51:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscImaginaryPart(aij->a[i]);
 52:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");

 54:   if (type == NORM_2) {
 55:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
 56:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 57:     for (i = 0; i < n; i++) reductions[i] /= m;
 58:   }
 59:   PetscFunctionReturn(PETSC_SUCCESS);
 60: }

 62: static PetscErrorCode MatFindOffBlockDiagonalEntries_SeqAIJ(Mat A, IS *is)
 63: {
 64:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
 65:   PetscInt        i, m = A->rmap->n, cnt = 0, bs = A->rmap->bs;
 66:   const PetscInt *jj = a->j, *ii = a->i;
 67:   PetscInt       *rows;

 69:   PetscFunctionBegin;
 70:   for (i = 0; i < m; i++) {
 71:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) cnt++;
 72:   }
 73:   PetscCall(PetscMalloc1(cnt, &rows));
 74:   cnt = 0;
 75:   for (i = 0; i < m; i++) {
 76:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) {
 77:       rows[cnt] = i;
 78:       cnt++;
 79:     }
 80:   }
 81:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, is));
 82:   PetscFunctionReturn(PETSC_SUCCESS);
 83: }

 85: PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat A, PetscInt *nrows, PetscInt **zrows)
 86: {
 87:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
 88:   const MatScalar *aa;
 89:   PetscInt         i, m = A->rmap->n, cnt = 0;
 90:   const PetscInt  *ii = a->i, *jj = a->j, *diag;
 91:   PetscInt        *rows;

 93:   PetscFunctionBegin;
 94:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
 95:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, NULL));
 96:   for (i = 0; i < m; i++) {
 97:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) cnt++;
 98:   }
 99:   PetscCall(PetscMalloc1(cnt, &rows));
100:   cnt = 0;
101:   for (i = 0; i < m; i++) {
102:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) rows[cnt++] = i;
103:   }
104:   *nrows = cnt;
105:   *zrows = rows;
106:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
107:   PetscFunctionReturn(PETSC_SUCCESS);
108: }

110: static PetscErrorCode MatFindZeroDiagonals_SeqAIJ(Mat A, IS *zrows)
111: {
112:   PetscInt nrows, *rows;

114:   PetscFunctionBegin;
115:   *zrows = NULL;
116:   PetscCall(MatFindZeroDiagonals_SeqAIJ_Private(A, &nrows, &rows));
117:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), nrows, rows, PETSC_OWN_POINTER, zrows));
118:   PetscFunctionReturn(PETSC_SUCCESS);
119: }

121: static PetscErrorCode MatFindNonzeroRows_SeqAIJ(Mat A, IS *keptrows)
122: {
123:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
124:   const MatScalar *aa;
125:   PetscInt         m = A->rmap->n, cnt = 0;
126:   const PetscInt  *ii;
127:   PetscInt         n, i, j, *rows;

129:   PetscFunctionBegin;
130:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
131:   *keptrows = NULL;
132:   ii        = a->i;
133:   for (i = 0; i < m; i++) {
134:     n = ii[i + 1] - ii[i];
135:     if (!n) {
136:       cnt++;
137:       goto ok1;
138:     }
139:     for (j = ii[i]; j < ii[i + 1]; j++) {
140:       if (aa[j] != 0.0) goto ok1;
141:     }
142:     cnt++;
143:   ok1:;
144:   }
145:   if (!cnt) {
146:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
147:     PetscFunctionReturn(PETSC_SUCCESS);
148:   }
149:   PetscCall(PetscMalloc1(A->rmap->n - cnt, &rows));
150:   cnt = 0;
151:   for (i = 0; i < m; i++) {
152:     n = ii[i + 1] - ii[i];
153:     if (!n) continue;
154:     for (j = ii[i]; j < ii[i + 1]; j++) {
155:       if (aa[j] != 0.0) {
156:         rows[cnt++] = i;
157:         break;
158:       }
159:     }
160:   }
161:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
162:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, keptrows));
163:   PetscFunctionReturn(PETSC_SUCCESS);
164: }

166: PetscErrorCode MatDiagonalSet_SeqAIJ(Mat Y, Vec D, InsertMode is)
167: {
168:   PetscInt           i, m = Y->rmap->n;
169:   const PetscInt    *diag;
170:   MatScalar         *aa;
171:   const PetscScalar *v;
172:   PetscBool          diagDense;

174:   PetscFunctionBegin;
175:   if (Y->assembled) {
176:     PetscCall(MatGetDiagonalMarkers_SeqAIJ(Y, &diag, &diagDense));
177:     if (diagDense) {
178:       PetscCall(VecGetArrayRead(D, &v));
179:       PetscCall(MatSeqAIJGetArray(Y, &aa));
180:       if (is == INSERT_VALUES) {
181:         for (i = 0; i < m; i++) aa[diag[i]] = v[i];
182:       } else {
183:         for (i = 0; i < m; i++) aa[diag[i]] += v[i];
184:       }
185:       PetscCall(MatSeqAIJRestoreArray(Y, &aa));
186:       PetscCall(VecRestoreArrayRead(D, &v));
187:       PetscFunctionReturn(PETSC_SUCCESS);
188:     }
189:   }
190:   PetscCall(MatDiagonalSet_Default(Y, D, is));
191:   PetscFunctionReturn(PETSC_SUCCESS);
192: }

194: PetscErrorCode MatGetRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
195: {
196:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
197:   PetscInt    i, ishift;

199:   PetscFunctionBegin;
200:   if (m) *m = A->rmap->n;
201:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
202:   ishift = 0;
203:   if (symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) {
204:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, ishift, oshift, (PetscInt **)ia, (PetscInt **)ja));
205:   } else if (oshift == 1) {
206:     PetscInt *tia;
207:     PetscInt  nz = a->i[A->rmap->n];

209:     /* malloc space and  add 1 to i and j indices */
210:     PetscCall(PetscMalloc1(A->rmap->n + 1, &tia));
211:     for (i = 0; i < A->rmap->n + 1; i++) tia[i] = a->i[i] + 1;
212:     *ia = tia;
213:     if (ja) {
214:       PetscInt *tja;

216:       PetscCall(PetscMalloc1(nz + 1, &tja));
217:       for (i = 0; i < nz; i++) tja[i] = a->j[i] + 1;
218:       *ja = tja;
219:     }
220:   } else {
221:     *ia = a->i;
222:     if (ja) *ja = a->j;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
228: {
229:   PetscFunctionBegin;
230:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
231:   if ((symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) || oshift == 1) {
232:     PetscCall(PetscFree(*ia));
233:     if (ja) PetscCall(PetscFree(*ja));
234:   }
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
239: {
240:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
241:   PetscInt    i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
242:   PetscInt    nz = a->i[m], row, *jj, mr, col;

244:   PetscFunctionBegin;
245:   *nn = n;
246:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
247:   if (symmetric) {
248:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, 0, oshift, (PetscInt **)ia, (PetscInt **)ja));
249:   } else {
250:     PetscCall(PetscCalloc1(n, &collengths));
251:     PetscCall(PetscMalloc1(n + 1, &cia));
252:     PetscCall(PetscMalloc1(nz, &cja));
253:     jj = a->j;
254:     for (i = 0; i < nz; i++) collengths[jj[i]]++;
255:     cia[0] = oshift;
256:     for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
257:     PetscCall(PetscArrayzero(collengths, n));
258:     jj = a->j;
259:     for (row = 0; row < m; row++) {
260:       mr = a->i[row + 1] - a->i[row];
261:       for (i = 0; i < mr; i++) {
262:         col = *jj++;

264:         cja[cia[col] + collengths[col]++ - oshift] = row + oshift;
265:       }
266:     }
267:     PetscCall(PetscFree(collengths));
268:     *ia = cia;
269:     *ja = cja;
270:   }
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
275: {
276:   PetscFunctionBegin;
277:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

279:   PetscCall(PetscFree(*ia));
280:   PetscCall(PetscFree(*ja));
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: /*
285:  MatGetColumnIJ_SeqAIJ_Color() and MatRestoreColumnIJ_SeqAIJ_Color() are customized from
286:  MatGetColumnIJ_SeqAIJ() and MatRestoreColumnIJ_SeqAIJ() by adding an output
287:  spidx[], index of a->a, to be used in MatTransposeColoringCreate_SeqAIJ() and MatFDColoringCreate_SeqXAIJ()
288: */
289: PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
290: {
291:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
292:   PetscInt        i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
293:   PetscInt        nz = a->i[m], row, mr, col, tmp;
294:   PetscInt       *cspidx;
295:   const PetscInt *jj;

297:   PetscFunctionBegin;
298:   *nn = n;
299:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

301:   PetscCall(PetscCalloc1(n, &collengths));
302:   PetscCall(PetscMalloc1(n + 1, &cia));
303:   PetscCall(PetscMalloc1(nz, &cja));
304:   PetscCall(PetscMalloc1(nz, &cspidx));
305:   jj = a->j;
306:   for (i = 0; i < nz; i++) collengths[jj[i]]++;
307:   cia[0] = oshift;
308:   for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
309:   PetscCall(PetscArrayzero(collengths, n));
310:   jj = a->j;
311:   for (row = 0; row < m; row++) {
312:     mr = a->i[row + 1] - a->i[row];
313:     for (i = 0; i < mr; i++) {
314:       col         = *jj++;
315:       tmp         = cia[col] + collengths[col]++ - oshift;
316:       cspidx[tmp] = a->i[row] + i; /* index of a->j */
317:       cja[tmp]    = row + oshift;
318:     }
319:   }
320:   PetscCall(PetscFree(collengths));
321:   *ia    = cia;
322:   *ja    = cja;
323:   *spidx = cspidx;
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
328: {
329:   PetscFunctionBegin;
330:   PetscCall(MatRestoreColumnIJ_SeqAIJ(A, oshift, symmetric, inodecompressed, n, ia, ja, done));
331:   PetscCall(PetscFree(*spidx));
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }

335: static PetscErrorCode MatSetValuesRow_SeqAIJ(Mat A, PetscInt row, const PetscScalar v[])
336: {
337:   Mat_SeqAIJ  *a  = (Mat_SeqAIJ *)A->data;
338:   PetscInt    *ai = a->i;
339:   PetscScalar *aa;

341:   PetscFunctionBegin;
342:   PetscCall(MatSeqAIJGetArray(A, &aa));
343:   PetscCall(PetscArraycpy(aa + ai[row], v, ai[row + 1] - ai[row]));
344:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /*
349:     MatSeqAIJSetValuesLocalFast - An optimized version of MatSetValuesLocal() for SeqAIJ matrices with several assumptions

351:       -   a single row of values is set with each call
352:       -   no row or column indices are negative or (in error) larger than the number of rows or columns
353:       -   the values are always added to the matrix, not set
354:       -   no new locations are introduced in the nonzero structure of the matrix

356:      This does NOT assume the global column indices are sorted

358: */

360: #include <petsc/private/isimpl.h>
361: PetscErrorCode MatSeqAIJSetValuesLocalFast(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
362: {
363:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
364:   PetscInt        low, high, t, row, nrow, i, col, l;
365:   const PetscInt *rp, *ai = a->i, *ailen = a->ilen, *aj = a->j;
366:   PetscInt        lastcol = -1;
367:   MatScalar      *ap, value, *aa;
368:   const PetscInt *ridx = A->rmap->mapping->indices, *cidx = A->cmap->mapping->indices;

370:   PetscFunctionBegin;
371:   PetscCall(MatSeqAIJGetArray(A, &aa));
372:   row  = ridx[im[0]];
373:   rp   = aj + ai[row];
374:   ap   = aa + ai[row];
375:   nrow = ailen[row];
376:   low  = 0;
377:   high = nrow;
378:   for (l = 0; l < n; l++) { /* loop over added columns */
379:     col   = cidx[in[l]];
380:     value = v[l];

382:     if (col <= lastcol) low = 0;
383:     else high = nrow;
384:     lastcol = col;
385:     while (high - low > 5) {
386:       t = (low + high) / 2;
387:       if (rp[t] > col) high = t;
388:       else low = t;
389:     }
390:     for (i = low; i < high; i++) {
391:       if (rp[i] == col) {
392:         ap[i] += value;
393:         low = i + 1;
394:         break;
395:       }
396:     }
397:   }
398:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
399:   return PETSC_SUCCESS;
400: }

402: PetscErrorCode MatSetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
403: {
404:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
405:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
406:   PetscInt   *imax = a->imax, *ai = a->i, *ailen = a->ilen;
407:   PetscInt   *aj = a->j, nonew = a->nonew, lastcol = -1;
408:   MatScalar  *ap = NULL, value = 0.0, *aa;
409:   PetscBool   ignorezeroentries = a->ignorezeroentries;
410:   PetscBool   roworiented       = a->roworiented;

412:   PetscFunctionBegin;
413:   PetscCall(MatSeqAIJGetArray(A, &aa));
414:   for (k = 0; k < m; k++) { /* loop over added rows */
415:     row = im[k];
416:     if (row < 0) continue;
417:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
418:     rp = PetscSafePointerPlusOffset(aj, ai[row]);
419:     if (!A->structure_only) ap = PetscSafePointerPlusOffset(aa, ai[row]);
420:     rmax = imax[row];
421:     nrow = ailen[row];
422:     low  = 0;
423:     high = nrow;
424:     for (l = 0; l < n; l++) { /* loop over added columns */
425:       if (in[l] < 0) continue;
426:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
427:       col = in[l];
428:       if (v && !A->structure_only) value = roworiented ? v[l + k * n] : v[k + l * m];
429:       if (!A->structure_only && value == 0.0 && ignorezeroentries && is == ADD_VALUES && row != col) continue;

431:       if (col <= lastcol) low = 0;
432:       else high = nrow;
433:       lastcol = col;
434:       while (high - low > 5) {
435:         t = (low + high) / 2;
436:         if (rp[t] > col) high = t;
437:         else low = t;
438:       }
439:       for (i = low; i < high; i++) {
440:         if (rp[i] > col) break;
441:         if (rp[i] == col) {
442:           if (!A->structure_only) {
443:             if (is == ADD_VALUES) {
444:               ap[i] += value;
445:               (void)PetscLogFlops(1.0);
446:             } else ap[i] = value;
447:           }
448:           low = i + 1;
449:           goto noinsert;
450:         }
451:       }
452:       if (value == 0.0 && ignorezeroentries && row != col) goto noinsert;
453:       if (nonew == 1) goto noinsert;
454:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at (%" PetscInt_FMT ",%" PetscInt_FMT ") in the matrix", row, col);
455:       if (A->structure_only) {
456:         MatSeqXAIJReallocateAIJ_structure_only(A, A->rmap->n, 1, nrow, row, col, rmax, ai, aj, rp, imax, nonew, MatScalar);
457:       } else {
458:         MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459:       }
460:       N = nrow++ - 1;
461:       a->nz++;
462:       high++;
463:       /* shift up all the later entries in this row */
464:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
465:       rp[i] = col;
466:       if (!A->structure_only) {
467:         PetscCall(PetscArraymove(ap + i + 1, ap + i, N - i + 1));
468:         ap[i] = value;
469:       }
470:       low = i + 1;
471:     noinsert:;
472:     }
473:     ailen[row] = nrow;
474:   }
475:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
476:   PetscFunctionReturn(PETSC_SUCCESS);
477: }

479: static PetscErrorCode MatSetValues_SeqAIJ_SortedFullNoPreallocation(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
480: {
481:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
482:   PetscInt   *rp, k, row;
483:   PetscInt   *ai = a->i;
484:   PetscInt   *aj = a->j;
485:   MatScalar  *aa, *ap;

487:   PetscFunctionBegin;
488:   PetscCheck(!A->was_assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call on assembled matrix.");
489:   PetscCheck(m * n + a->nz <= a->maxnz, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of entries in matrix will be larger than maximum nonzeros allocated for %" PetscInt_FMT " in MatSeqAIJSetTotalPreallocation()", a->maxnz);

491:   PetscCall(MatSeqAIJGetArray(A, &aa));
492:   for (k = 0; k < m; k++) { /* loop over added rows */
493:     row = im[k];
494:     rp  = aj + ai[row];
495:     ap  = PetscSafePointerPlusOffset(aa, ai[row]);

497:     PetscCall(PetscArraycpy(rp, in, n));
498:     if (!A->structure_only) {
499:       if (v) {
500:         PetscCall(PetscArraycpy(ap, v, n));
501:         v += n;
502:       } else {
503:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
504:       }
505:     }
506:     a->ilen[row]  = n;
507:     a->imax[row]  = n;
508:     a->i[row + 1] = a->i[row] + n;
509:     a->nz += n;
510:   }
511:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@
516:   MatSeqAIJSetTotalPreallocation - Sets an upper bound on the total number of expected nonzeros in the matrix.

518:   Input Parameters:
519: + A       - the `MATSEQAIJ` matrix
520: - nztotal - bound on the number of nonzeros

522:   Level: advanced

524:   Notes:
525:   This can be called if you will be provided the matrix row by row (from row zero) with sorted column indices for each row.
526:   Simply call `MatSetValues()` after this call to provide the matrix entries in the usual manner. This matrix may be used
527:   as always with multiple matrix assemblies.

529: .seealso: [](ch_matrices), `Mat`, `MatSetOption()`, `MAT_SORTED_FULL`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`
530: @*/
531: PetscErrorCode MatSeqAIJSetTotalPreallocation(Mat A, PetscInt nztotal)
532: {
533:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

535:   PetscFunctionBegin;
536:   PetscCall(PetscLayoutSetUp(A->rmap));
537:   PetscCall(PetscLayoutSetUp(A->cmap));
538:   a->maxnz = nztotal;
539:   if (!a->imax) PetscCall(PetscMalloc1(A->rmap->n, &a->imax));
540:   if (!a->ilen) {
541:     PetscCall(PetscMalloc1(A->rmap->n, &a->ilen));
542:   } else {
543:     PetscCall(PetscMemzero(a->ilen, A->rmap->n * sizeof(PetscInt)));
544:   }

546:   /* allocate the matrix space */
547:   PetscCall(PetscShmgetAllocateArray(A->rmap->n + 1, sizeof(PetscInt), (void **)&a->i));
548:   PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscInt), (void **)&a->j));
549:   a->free_ij = PETSC_TRUE;
550:   if (A->structure_only) {
551:     a->free_a = PETSC_FALSE;
552:   } else {
553:     PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscScalar), (void **)&a->a));
554:     a->free_a = PETSC_TRUE;
555:   }
556:   a->i[0]           = 0;
557:   A->ops->setvalues = MatSetValues_SeqAIJ_SortedFullNoPreallocation;
558:   A->preallocated   = PETSC_TRUE;
559:   PetscFunctionReturn(PETSC_SUCCESS);
560: }

562: static PetscErrorCode MatSetValues_SeqAIJ_SortedFull(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
563: {
564:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
565:   PetscInt   *rp, k, row;
566:   PetscInt   *ai = a->i, *ailen = a->ilen;
567:   PetscInt   *aj = a->j;
568:   MatScalar  *aa, *ap;

570:   PetscFunctionBegin;
571:   PetscCall(MatSeqAIJGetArray(A, &aa));
572:   for (k = 0; k < m; k++) { /* loop over added rows */
573:     row = im[k];
574:     PetscCheck(n <= a->imax[row], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Preallocation for row %" PetscInt_FMT " does not match number of columns provided", n);
575:     rp = aj + ai[row];
576:     ap = aa + ai[row];
577:     if (!A->was_assembled) PetscCall(PetscArraycpy(rp, in, n));
578:     if (!A->structure_only) {
579:       if (v) {
580:         PetscCall(PetscArraycpy(ap, v, n));
581:         v += n;
582:       } else {
583:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
584:       }
585:     }
586:     ailen[row] = n;
587:     a->nz += n;
588:   }
589:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatGetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
594: {
595:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
596:   PetscInt        *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
597:   PetscInt        *ai = a->i, *ailen = a->ilen;
598:   const MatScalar *ap, *aa;

600:   PetscFunctionBegin;
601:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
602:   for (k = 0; k < m; k++) { /* loop over rows */
603:     row = im[k];
604:     if (row < 0) {
605:       v += n;
606:       continue;
607:     } /* negative row */
608:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
609:     rp   = PetscSafePointerPlusOffset(aj, ai[row]);
610:     ap   = PetscSafePointerPlusOffset(aa, ai[row]);
611:     nrow = ailen[row];
612:     for (l = 0; l < n; l++) { /* loop over columns */
613:       if (in[l] < 0) {
614:         v++;
615:         continue;
616:       } /* negative column */
617:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
618:       col  = in[l];
619:       high = nrow;
620:       low  = 0; /* assume unsorted */
621:       while (high - low > 5) {
622:         t = (low + high) / 2;
623:         if (rp[t] > col) high = t;
624:         else low = t;
625:       }
626:       for (i = low; i < high; i++) {
627:         if (rp[i] > col) break;
628:         if (rp[i] == col) {
629:           *v++ = ap[i];
630:           goto finished;
631:         }
632:       }
633:       *v++ = 0.0;
634:     finished:;
635:     }
636:   }
637:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatView_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
642: {
643:   Mat_SeqAIJ        *A = (Mat_SeqAIJ *)mat->data;
644:   const PetscScalar *av;
645:   PetscInt           header[4], M, N, m, nz, i;
646:   PetscInt          *rowlens;

648:   PetscFunctionBegin;
649:   PetscCall(PetscViewerSetUp(viewer));

651:   M  = mat->rmap->N;
652:   N  = mat->cmap->N;
653:   m  = mat->rmap->n;
654:   nz = A->nz;

656:   /* write matrix header */
657:   header[0] = MAT_FILE_CLASSID;
658:   header[1] = M;
659:   header[2] = N;
660:   header[3] = nz;
661:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

663:   /* fill in and store row lengths */
664:   PetscCall(PetscMalloc1(m, &rowlens));
665:   for (i = 0; i < m; i++) rowlens[i] = A->i[i + 1] - A->i[i];
666:   if (PetscDefined(USE_DEBUG)) {
667:     PetscInt mnz = 0;

669:     for (i = 0; i < m; i++) mnz += rowlens[i];
670:     PetscCheck(nz == mnz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row lens %" PetscInt_FMT " do not sum to nz %" PetscInt_FMT, mnz, nz);
671:   }
672:   PetscCall(PetscViewerBinaryWrite(viewer, rowlens, m, PETSC_INT));
673:   PetscCall(PetscFree(rowlens));
674:   /* store column indices */
675:   PetscCall(PetscViewerBinaryWrite(viewer, A->j, nz, PETSC_INT));
676:   /* store nonzero values */
677:   PetscCall(MatSeqAIJGetArrayRead(mat, &av));
678:   PetscCall(PetscViewerBinaryWrite(viewer, av, nz, PETSC_SCALAR));
679:   PetscCall(MatSeqAIJRestoreArrayRead(mat, &av));

681:   /* write block size option to the viewer's .info file */
682:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
683:   PetscFunctionReturn(PETSC_SUCCESS);
684: }

686: static PetscErrorCode MatView_SeqAIJ_ASCII_structonly(Mat A, PetscViewer viewer)
687: {
688:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
689:   PetscInt    i, k, m = A->rmap->N;

691:   PetscFunctionBegin;
692:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
693:   for (i = 0; i < m; i++) {
694:     PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
695:     for (k = a->i[i]; k < a->i[i + 1]; k++) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ") ", a->j[k]));
696:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
697:   }
698:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
699:   PetscFunctionReturn(PETSC_SUCCESS);
700: }

702: static PetscErrorCode MatView_SeqAIJ_ASCII(Mat A, PetscViewer viewer)
703: {
704:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
705:   const PetscScalar *av;
706:   PetscInt           i, j, m = A->rmap->n;
707:   const char        *name;
708:   PetscViewerFormat  format;

710:   PetscFunctionBegin;
711:   if (A->structure_only) {
712:     PetscCall(MatView_SeqAIJ_ASCII_structonly(A, viewer));
713:     PetscFunctionReturn(PETSC_SUCCESS);
714:   }

716:   PetscCall(PetscViewerGetFormat(viewer, &format));
717:   // By petsc's rule, even PETSC_VIEWER_ASCII_INFO_DETAIL doesn't print matrix entries
718:   if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);

720:   /* trigger copy to CPU if needed */
721:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
722:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
723:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
724:     PetscInt nofinalvalue = 0;
725:     if (m && ((a->i[m] == a->i[m - 1]) || (a->j[a->nz - 1] != A->cmap->n - 1))) {
726:       /* Need a dummy value to ensure the dimension of the matrix. */
727:       nofinalvalue = 1;
728:     }
729:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
730:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
731:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
732: #if defined(PETSC_USE_COMPLEX)
733:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
734: #else
735:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
736: #endif
737:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

739:     for (i = 0; i < m; i++) {
740:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
741: #if defined(PETSC_USE_COMPLEX)
742:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->j[j] + 1, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
743: #else
744:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->j[j] + 1, (double)a->a[j]));
745: #endif
746:       }
747:     }
748:     if (nofinalvalue) {
749: #if defined(PETSC_USE_COMPLEX)
750:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", m, A->cmap->n, 0., 0.));
751: #else
752:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", m, A->cmap->n, 0.0));
753: #endif
754:     }
755:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
756:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
757:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
758:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
759:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
760:     for (i = 0; i < m; i++) {
761:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
762:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
763: #if defined(PETSC_USE_COMPLEX)
764:         if (PetscImaginaryPart(a->a[j]) > 0.0 && PetscRealPart(a->a[j]) != 0.0) {
765:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
766:         } else if (PetscImaginaryPart(a->a[j]) < 0.0 && PetscRealPart(a->a[j]) != 0.0) {
767:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
768:         } else if (PetscRealPart(a->a[j]) != 0.0) {
769:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
770:         }
771: #else
772:         if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
773: #endif
774:       }
775:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
776:     }
777:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
778:   } else if (format == PETSC_VIEWER_ASCII_SYMMODU) {
779:     PetscInt nzd = 0, fshift = 1, *sptr;
780:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
781:     PetscCall(PetscMalloc1(m + 1, &sptr));
782:     for (i = 0; i < m; i++) {
783:       sptr[i] = nzd + 1;
784:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
785:         if (a->j[j] >= i) {
786: #if defined(PETSC_USE_COMPLEX)
787:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) nzd++;
788: #else
789:           if (a->a[j] != 0.0) nzd++;
790: #endif
791:         }
792:       }
793:     }
794:     sptr[m] = nzd + 1;
795:     PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n\n", m, nzd));
796:     for (i = 0; i < m + 1; i += 6) {
797:       if (i + 4 < m) {
798:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4], sptr[i + 5]));
799:       } else if (i + 3 < m) {
800:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4]));
801:       } else if (i + 2 < m) {
802:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3]));
803:       } else if (i + 1 < m) {
804:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2]));
805:       } else if (i < m) {
806:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1]));
807:       } else {
808:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "\n", sptr[i]));
809:       }
810:     }
811:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
812:     PetscCall(PetscFree(sptr));
813:     for (i = 0; i < m; i++) {
814:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
815:         if (a->j[j] >= i) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " ", a->j[j] + fshift));
816:       }
817:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
818:     }
819:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
820:     for (i = 0; i < m; i++) {
821:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
822:         if (a->j[j] >= i) {
823: #if defined(PETSC_USE_COMPLEX)
824:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e %18.16e ", (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
825: #else
826:           if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e ", (double)a->a[j]));
827: #endif
828:         }
829:       }
830:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
831:     }
832:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
833:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
834:     PetscInt    cnt = 0, jcnt;
835:     PetscScalar value;
836: #if defined(PETSC_USE_COMPLEX)
837:     PetscBool realonly = PETSC_TRUE;

839:     for (i = 0; i < a->i[m]; i++) {
840:       if (PetscImaginaryPart(a->a[i]) != 0.0) {
841:         realonly = PETSC_FALSE;
842:         break;
843:       }
844:     }
845: #endif

847:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
848:     for (i = 0; i < m; i++) {
849:       jcnt = 0;
850:       for (j = 0; j < A->cmap->n; j++) {
851:         if (jcnt < a->i[i + 1] - a->i[i] && j == a->j[cnt]) {
852:           value = a->a[cnt++];
853:           jcnt++;
854:         } else {
855:           value = 0.0;
856:         }
857: #if defined(PETSC_USE_COMPLEX)
858:         if (realonly) {
859:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
860:         } else {
861:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
862:         }
863: #else
864:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
865: #endif
866:       }
867:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
868:     }
869:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
870:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
871:     PetscInt fshift = 1;
872:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
873: #if defined(PETSC_USE_COMPLEX)
874:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
875: #else
876:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
877: #endif
878:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
879:     for (i = 0; i < m; i++) {
880:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
881: #if defined(PETSC_USE_COMPLEX)
882:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->j[j] + fshift, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
883: #else
884:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->j[j] + fshift, (double)a->a[j]));
885: #endif
886:       }
887:     }
888:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
889:   } else {
890:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
891:     if (A->factortype) {
892:       const PetscInt *adiag;

894:       PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &adiag, NULL));
895:       for (i = 0; i < m; i++) {
896:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
897:         /* L part */
898:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
899: #if defined(PETSC_USE_COMPLEX)
900:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
901:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
902:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
903:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
904:           } else {
905:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
906:           }
907: #else
908:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
909: #endif
910:         }
911:         /* diagonal */
912:         j = adiag[i];
913: #if defined(PETSC_USE_COMPLEX)
914:         if (PetscImaginaryPart(a->a[j]) > 0.0) {
915:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(1 / a->a[j]), (double)PetscImaginaryPart(1 / a->a[j])));
916:         } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
917:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(1 / a->a[j]), (double)(-PetscImaginaryPart(1 / a->a[j]))));
918:         } else {
919:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(1 / a->a[j])));
920:         }
921: #else
922:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)(1 / a->a[j])));
923: #endif

925:         /* U part */
926:         for (j = adiag[i + 1] + 1; j < adiag[i]; j++) {
927: #if defined(PETSC_USE_COMPLEX)
928:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
929:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
930:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
931:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
932:           } else {
933:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
934:           }
935: #else
936:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
937: #endif
938:         }
939:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
940:       }
941:     } else {
942:       for (i = 0; i < m; i++) {
943:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
944:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
945: #if defined(PETSC_USE_COMPLEX)
946:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
947:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
948:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
949:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
950:           } else {
951:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
952:           }
953: #else
954:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
955: #endif
956:         }
957:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
958:       }
959:     }
960:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
961:   }
962:   PetscCall(PetscViewerFlush(viewer));
963:   PetscFunctionReturn(PETSC_SUCCESS);
964: }

966: #include <petscdraw.h>
967: static PetscErrorCode MatView_SeqAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
968: {
969:   Mat                A = (Mat)Aa;
970:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
971:   PetscInt           i, j, m = A->rmap->n;
972:   int                color;
973:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
974:   PetscViewer        viewer;
975:   PetscViewerFormat  format;
976:   const PetscScalar *aa;

978:   PetscFunctionBegin;
979:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
980:   PetscCall(PetscViewerGetFormat(viewer, &format));
981:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

983:   /* loop over matrix elements drawing boxes */
984:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
985:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
986:     PetscDrawCollectiveBegin(draw);
987:     /* Blue for negative, Cyan for zero and  Red for positive */
988:     color = PETSC_DRAW_BLUE;
989:     for (i = 0; i < m; i++) {
990:       y_l = m - i - 1.0;
991:       y_r = y_l + 1.0;
992:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
993:         x_l = a->j[j];
994:         x_r = x_l + 1.0;
995:         if (PetscRealPart(aa[j]) >= 0.) continue;
996:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
997:       }
998:     }
999:     color = PETSC_DRAW_CYAN;
1000:     for (i = 0; i < m; i++) {
1001:       y_l = m - i - 1.0;
1002:       y_r = y_l + 1.0;
1003:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1004:         x_l = a->j[j];
1005:         x_r = x_l + 1.0;
1006:         if (aa[j] != 0.) continue;
1007:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1008:       }
1009:     }
1010:     color = PETSC_DRAW_RED;
1011:     for (i = 0; i < m; i++) {
1012:       y_l = m - i - 1.0;
1013:       y_r = y_l + 1.0;
1014:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1015:         x_l = a->j[j];
1016:         x_r = x_l + 1.0;
1017:         if (PetscRealPart(aa[j]) <= 0.) continue;
1018:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1019:       }
1020:     }
1021:     PetscDrawCollectiveEnd(draw);
1022:   } else {
1023:     /* use contour shading to indicate magnitude of values */
1024:     /* first determine max of all nonzero values */
1025:     PetscReal minv = 0.0, maxv = 0.0;
1026:     PetscInt  nz = a->nz, count = 0;
1027:     PetscDraw popup;

1029:     for (i = 0; i < nz; i++) {
1030:       if (PetscAbsScalar(aa[i]) > maxv) maxv = PetscAbsScalar(aa[i]);
1031:     }
1032:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1033:     PetscCall(PetscDrawGetPopup(draw, &popup));
1034:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1036:     PetscDrawCollectiveBegin(draw);
1037:     for (i = 0; i < m; i++) {
1038:       y_l = m - i - 1.0;
1039:       y_r = y_l + 1.0;
1040:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1041:         x_l   = a->j[j];
1042:         x_r   = x_l + 1.0;
1043:         color = PetscDrawRealToColor(PetscAbsScalar(aa[count]), minv, maxv);
1044:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1045:         count++;
1046:       }
1047:     }
1048:     PetscDrawCollectiveEnd(draw);
1049:   }
1050:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1051:   PetscFunctionReturn(PETSC_SUCCESS);
1052: }

1054: #include <petscdraw.h>
1055: static PetscErrorCode MatView_SeqAIJ_Draw(Mat A, PetscViewer viewer)
1056: {
1057:   PetscDraw draw;
1058:   PetscReal xr, yr, xl, yl, h, w;
1059:   PetscBool isnull;

1061:   PetscFunctionBegin;
1062:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1063:   PetscCall(PetscDrawIsNull(draw, &isnull));
1064:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1066:   xr = A->cmap->n;
1067:   yr = A->rmap->n;
1068:   h  = yr / 10.0;
1069:   w  = xr / 10.0;
1070:   xr += w;
1071:   yr += h;
1072:   xl = -w;
1073:   yl = -h;
1074:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1075:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1076:   PetscCall(PetscDrawZoom(draw, MatView_SeqAIJ_Draw_Zoom, A));
1077:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1078:   PetscCall(PetscDrawSave(draw));
1079:   PetscFunctionReturn(PETSC_SUCCESS);
1080: }

1082: PetscErrorCode MatView_SeqAIJ(Mat A, PetscViewer viewer)
1083: {
1084:   PetscBool isascii, isbinary, isdraw;

1086:   PetscFunctionBegin;
1087:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1088:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1089:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1090:   if (isascii) PetscCall(MatView_SeqAIJ_ASCII(A, viewer));
1091:   else if (isbinary) PetscCall(MatView_SeqAIJ_Binary(A, viewer));
1092:   else if (isdraw) PetscCall(MatView_SeqAIJ_Draw(A, viewer));
1093:   PetscCall(MatView_SeqAIJ_Inode(A, viewer));
1094:   PetscFunctionReturn(PETSC_SUCCESS);
1095: }

1097: PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat A, MatAssemblyType mode)
1098: {
1099:   Mat_SeqAIJ *a      = (Mat_SeqAIJ *)A->data;
1100:   PetscInt    fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
1101:   PetscInt    m = A->rmap->n, *ip, N, *ailen = a->ilen, rmax = 0;
1102:   MatScalar  *aa    = a->a, *ap;
1103:   PetscReal   ratio = 0.6;

1105:   PetscFunctionBegin;
1106:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1107:   if (A->was_assembled && A->ass_nonzerostate == A->nonzerostate) {
1108:     /* we need to respect users asking to use or not the inodes routine in between matrix assemblies, e.g., via MatSetOption(A, MAT_USE_INODES, val) */
1109:     PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode)); /* read the sparsity pattern */
1110:     PetscFunctionReturn(PETSC_SUCCESS);
1111:   }

1113:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
1114:   for (i = 1; i < m; i++) {
1115:     /* move each row back by the amount of empty slots (fshift) before it*/
1116:     fshift += imax[i - 1] - ailen[i - 1];
1117:     rmax = PetscMax(rmax, ailen[i]);
1118:     if (fshift) {
1119:       ip = aj + ai[i];
1120:       ap = aa + ai[i];
1121:       N  = ailen[i];
1122:       PetscCall(PetscArraymove(ip - fshift, ip, N));
1123:       if (!A->structure_only) PetscCall(PetscArraymove(ap - fshift, ap, N));
1124:     }
1125:     ai[i] = ai[i - 1] + ailen[i - 1];
1126:   }
1127:   if (m) {
1128:     fshift += imax[m - 1] - ailen[m - 1];
1129:     ai[m] = ai[m - 1] + ailen[m - 1];
1130:   }
1131:   /* reset ilen and imax for each row */
1132:   a->nonzerorowcnt = 0;
1133:   if (A->structure_only) {
1134:     PetscCall(PetscFree(a->imax));
1135:     PetscCall(PetscFree(a->ilen));
1136:   } else { /* !A->structure_only */
1137:     for (i = 0; i < m; i++) {
1138:       ailen[i] = imax[i] = ai[i + 1] - ai[i];
1139:       a->nonzerorowcnt += ((ai[i + 1] - ai[i]) > 0);
1140:     }
1141:   }
1142:   a->nz = ai[m];
1143:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, fshift);
1144:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded, %" PetscInt_FMT " used\n", m, A->cmap->n, fshift, a->nz));
1145:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1146:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", rmax));

1148:   A->info.mallocs += a->reallocs;
1149:   a->reallocs         = 0;
1150:   A->info.nz_unneeded = (PetscReal)fshift;
1151:   a->rmax             = rmax;

1153:   if (!A->structure_only) PetscCall(MatCheckCompressedRow(A, a->nonzerorowcnt, &a->compressedrow, a->i, m, ratio));
1154:   PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1155:   PetscFunctionReturn(PETSC_SUCCESS);
1156: }

1158: static PetscErrorCode MatRealPart_SeqAIJ(Mat A)
1159: {
1160:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1161:   PetscInt    i, nz = a->nz;
1162:   MatScalar  *aa;

1164:   PetscFunctionBegin;
1165:   PetscCall(MatSeqAIJGetArray(A, &aa));
1166:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1167:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1168:   PetscFunctionReturn(PETSC_SUCCESS);
1169: }

1171: static PetscErrorCode MatImaginaryPart_SeqAIJ(Mat A)
1172: {
1173:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1174:   PetscInt    i, nz = a->nz;
1175:   MatScalar  *aa;

1177:   PetscFunctionBegin;
1178:   PetscCall(MatSeqAIJGetArray(A, &aa));
1179:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1180:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1181:   PetscFunctionReturn(PETSC_SUCCESS);
1182: }

1184: PetscErrorCode MatZeroEntries_SeqAIJ(Mat A)
1185: {
1186:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1187:   MatScalar  *aa;

1189:   PetscFunctionBegin;
1190:   PetscCall(MatSeqAIJGetArrayWrite(A, &aa));
1191:   PetscCall(PetscArrayzero(aa, a->i[A->rmap->n]));
1192:   PetscCall(MatSeqAIJRestoreArrayWrite(A, &aa));
1193:   PetscFunctionReturn(PETSC_SUCCESS);
1194: }

1196: static PetscErrorCode MatReset_SeqAIJ(Mat A)
1197: {
1198:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1200:   PetscFunctionBegin;
1201:   if (A->hash_active) {
1202:     A->ops[0] = a->cops;
1203:     PetscCall(PetscHMapIJVDestroy(&a->ht));
1204:     PetscCall(PetscFree(a->dnz));
1205:     A->hash_active = PETSC_FALSE;
1206:   }

1208:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
1209:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
1210:   PetscCall(ISDestroy(&a->row));
1211:   PetscCall(ISDestroy(&a->col));
1212:   PetscCall(PetscFree(a->diag));
1213:   PetscCall(PetscFree(a->ibdiag));
1214:   PetscCall(PetscFree(a->imax));
1215:   PetscCall(PetscFree(a->ilen));
1216:   PetscCall(PetscFree(a->ipre));
1217:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
1218:   PetscCall(PetscFree(a->solve_work));
1219:   PetscCall(ISDestroy(&a->icol));
1220:   PetscCall(PetscFree(a->saved_values));
1221:   a->compressedrow.use = PETSC_FALSE;
1222:   PetscCall(PetscFree2(a->compressedrow.i, a->compressedrow.rindex));
1223:   PetscCall(MatDestroy_SeqAIJ_Inode(A));
1224:   PetscFunctionReturn(PETSC_SUCCESS);
1225: }

1227: static PetscErrorCode MatResetHash_SeqAIJ(Mat A)
1228: {
1229:   PetscFunctionBegin;
1230:   PetscCall(MatReset_SeqAIJ(A));
1231:   PetscCall(MatCreate_SeqAIJ_Inode(A));
1232:   PetscCall(MatSetUp_Seq_Hash(A));
1233:   A->nonzerostate++;
1234:   PetscFunctionReturn(PETSC_SUCCESS);
1235: }

1237: PetscErrorCode MatDestroy_SeqAIJ(Mat A)
1238: {
1239:   PetscFunctionBegin;
1240:   PetscCall(MatReset_SeqAIJ(A));
1241:   PetscCall(PetscFree(A->data));

1243:   /* MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted may allocate this.
1244:      That function is so heavily used (sometimes in an hidden way through multnumeric function pointers)
1245:      that is hard to properly add this data to the MatProduct data. We free it here to avoid
1246:      users reusing the matrix object with different data to incur in obscure segmentation faults
1247:      due to different matrix sizes */
1248:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc__ab_dense", NULL));

1250:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
1251:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEnginePut_C", NULL));
1252:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEngineGet_C", NULL));
1253:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetColumnIndices_C", NULL));
1254:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
1255:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
1256:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsbaij_C", NULL));
1257:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqbaij_C", NULL));
1258:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijperm_C", NULL));
1259:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijsell_C", NULL));
1260: #if defined(PETSC_HAVE_MKL_SPARSE)
1261:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijmkl_C", NULL));
1262: #endif
1263: #if defined(PETSC_HAVE_CUDA)
1264:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcusparse_C", NULL));
1265:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", NULL));
1266:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", NULL));
1267: #endif
1268: #if defined(PETSC_HAVE_HIP)
1269:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijhipsparse_C", NULL));
1270:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", NULL));
1271:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", NULL));
1272: #endif
1273: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
1274:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijkokkos_C", NULL));
1275: #endif
1276:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcrl_C", NULL));
1277: #if defined(PETSC_HAVE_ELEMENTAL)
1278:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_elemental_C", NULL));
1279: #endif
1280: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
1281:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_scalapack_C", NULL));
1282: #endif
1283: #if defined(PETSC_HAVE_HYPRE)
1284:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_hypre_C", NULL));
1285:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", NULL));
1286: #endif
1287:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqdense_C", NULL));
1288:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsell_C", NULL));
1289:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_is_C", NULL));
1290:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsTranspose_C", NULL));
1291:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsHermitianTranspose_C", NULL));
1292:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", NULL));
1293:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetPreallocation_C", NULL));
1294:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetHash_C", NULL));
1295:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocationCSR_C", NULL));
1296:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatReorderForNonzeroDiagonal_C", NULL));
1297:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_is_seqaij_C", NULL));
1298:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqdense_seqaij_C", NULL));
1299:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaij_C", NULL));
1300:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJKron_C", NULL));
1301:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
1302:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
1303:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
1304:   /* these calls do not belong here: the subclasses Duplicate/Destroy are wrong */
1305:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijsell_seqaij_C", NULL));
1306:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijperm_seqaij_C", NULL));
1307:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijviennacl_C", NULL));
1308:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqdense_C", NULL));
1309:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqaij_C", NULL));
1310:   PetscFunctionReturn(PETSC_SUCCESS);
1311: }

1313: PetscErrorCode MatSetOption_SeqAIJ(Mat A, MatOption op, PetscBool flg)
1314: {
1315:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1317:   PetscFunctionBegin;
1318:   switch (op) {
1319:   case MAT_ROW_ORIENTED:
1320:     a->roworiented = flg;
1321:     break;
1322:   case MAT_KEEP_NONZERO_PATTERN:
1323:     a->keepnonzeropattern = flg;
1324:     break;
1325:   case MAT_NEW_NONZERO_LOCATIONS:
1326:     a->nonew = (flg ? 0 : 1);
1327:     break;
1328:   case MAT_NEW_NONZERO_LOCATION_ERR:
1329:     a->nonew = (flg ? -1 : 0);
1330:     break;
1331:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1332:     a->nonew = (flg ? -2 : 0);
1333:     break;
1334:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1335:     a->nounused = (flg ? -1 : 0);
1336:     break;
1337:   case MAT_IGNORE_ZERO_ENTRIES:
1338:     a->ignorezeroentries = flg;
1339:     break;
1340:   case MAT_USE_INODES:
1341:     PetscCall(MatSetOption_SeqAIJ_Inode(A, MAT_USE_INODES, flg));
1342:     break;
1343:   case MAT_SUBMAT_SINGLEIS:
1344:     A->submat_singleis = flg;
1345:     break;
1346:   case MAT_SORTED_FULL:
1347:     if (flg) A->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;
1348:     else A->ops->setvalues = MatSetValues_SeqAIJ;
1349:     break;
1350:   case MAT_FORM_EXPLICIT_TRANSPOSE:
1351:     A->form_explicit_transpose = flg;
1352:     break;
1353:   default:
1354:     break;
1355:   }
1356:   PetscFunctionReturn(PETSC_SUCCESS);
1357: }

1359: PETSC_INTERN PetscErrorCode MatGetDiagonal_SeqAIJ(Mat A, Vec v)
1360: {
1361:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1362:   PetscInt           n, *ai = a->i;
1363:   PetscScalar       *x;
1364:   const PetscScalar *aa;
1365:   const PetscInt    *diag;
1366:   PetscBool          diagDense;

1368:   PetscFunctionBegin;
1369:   PetscCall(VecGetLocalSize(v, &n));
1370:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1371:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1372:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
1373:     PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, NULL));
1374:     PetscCall(VecGetArrayWrite(v, &x));
1375:     for (PetscInt i = 0; i < n; i++) x[i] = 1.0 / aa[diag[i]];
1376:     PetscCall(VecRestoreArrayWrite(v, &x));
1377:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1378:     PetscFunctionReturn(PETSC_SUCCESS);
1379:   }

1381:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Not for factor matrices that are not ILU or LU");
1382:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, &diagDense));
1383:   PetscCall(VecGetArrayWrite(v, &x));
1384:   if (diagDense) {
1385:     for (PetscInt i = 0; i < n; i++) x[i] = aa[diag[i]];
1386:   } else {
1387:     for (PetscInt i = 0; i < n; i++) x[i] = (diag[i] == ai[i + 1]) ? 0.0 : aa[diag[i]];
1388:   }
1389:   PetscCall(VecRestoreArrayWrite(v, &x));
1390:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1391:   PetscFunctionReturn(PETSC_SUCCESS);
1392: }

1394: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>
1395: PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A, Vec xx, Vec zz, Vec yy)
1396: {
1397:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1398:   const MatScalar   *aa;
1399:   PetscScalar       *y;
1400:   const PetscScalar *x;
1401:   PetscInt           m = A->rmap->n;
1402: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1403:   const MatScalar  *v;
1404:   PetscScalar       alpha;
1405:   PetscInt          n, i, j;
1406:   const PetscInt   *idx, *ii, *ridx = NULL;
1407:   Mat_CompressedRow cprow    = a->compressedrow;
1408:   PetscBool         usecprow = cprow.use;
1409: #endif

1411:   PetscFunctionBegin;
1412:   if (zz != yy) PetscCall(VecCopy(zz, yy));
1413:   PetscCall(VecGetArrayRead(xx, &x));
1414:   PetscCall(VecGetArray(yy, &y));
1415:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));

1417: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1418:   fortranmulttransposeaddaij_(&m, x, a->i, a->j, aa, y);
1419: #else
1420:   if (usecprow) {
1421:     m    = cprow.nrows;
1422:     ii   = cprow.i;
1423:     ridx = cprow.rindex;
1424:   } else {
1425:     ii = a->i;
1426:   }
1427:   for (i = 0; i < m; i++) {
1428:     idx = a->j + ii[i];
1429:     v   = aa + ii[i];
1430:     n   = ii[i + 1] - ii[i];
1431:     if (usecprow) {
1432:       alpha = x[ridx[i]];
1433:     } else {
1434:       alpha = x[i];
1435:     }
1436:     for (j = 0; j < n; j++) y[idx[j]] += alpha * v[j];
1437:   }
1438: #endif
1439:   PetscCall(PetscLogFlops(2.0 * a->nz));
1440:   PetscCall(VecRestoreArrayRead(xx, &x));
1441:   PetscCall(VecRestoreArray(yy, &y));
1442:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1443:   PetscFunctionReturn(PETSC_SUCCESS);
1444: }

1446: PetscErrorCode MatMultTranspose_SeqAIJ(Mat A, Vec xx, Vec yy)
1447: {
1448:   PetscFunctionBegin;
1449:   PetscCall(VecSet(yy, 0.0));
1450:   PetscCall(MatMultTransposeAdd_SeqAIJ(A, xx, yy, yy));
1451:   PetscFunctionReturn(PETSC_SUCCESS);
1452: }

1454: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>

1456: PetscErrorCode MatMult_SeqAIJ(Mat A, Vec xx, Vec yy)
1457: {
1458:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1459:   PetscScalar       *y;
1460:   const PetscScalar *x;
1461:   const MatScalar   *a_a;
1462:   PetscInt           m = A->rmap->n;
1463:   const PetscInt    *ii, *ridx = NULL;
1464:   PetscBool          usecprow = a->compressedrow.use;

1466: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1467:   #pragma disjoint(*x, *y, *aa)
1468: #endif

1470:   PetscFunctionBegin;
1471:   if (a->inode.use && a->inode.checked) {
1472:     PetscCall(MatMult_SeqAIJ_Inode(A, xx, yy));
1473:     PetscFunctionReturn(PETSC_SUCCESS);
1474:   }
1475:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1476:   PetscCall(VecGetArrayRead(xx, &x));
1477:   PetscCall(VecGetArray(yy, &y));
1478:   ii = a->i;
1479:   if (usecprow) { /* use compressed row format */
1480:     PetscCall(PetscArrayzero(y, m));
1481:     m    = a->compressedrow.nrows;
1482:     ii   = a->compressedrow.i;
1483:     ridx = a->compressedrow.rindex;
1484:     PetscPragmaUseOMPKernels(parallel for)
1485:     for (PetscInt i = 0; i < m; i++) {
1486:       PetscInt           n   = ii[i + 1] - ii[i];
1487:       const PetscInt    *aj  = a->j + ii[i];
1488:       const PetscScalar *aa  = a_a + ii[i];
1489:       PetscScalar        sum = 0.0;
1490:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1491:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1492:       y[ridx[i]] = sum;
1493:     }
1494:   } else { /* do not use compressed row format */
1495: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJ)
1496:     fortranmultaij_(&m, x, ii, a->j, a_a, y);
1497: #else
1498:     PetscPragmaUseOMPKernels(parallel for)
1499:     for (PetscInt i = 0; i < m; i++) {
1500:       PetscInt           n   = ii[i + 1] - ii[i];
1501:       const PetscInt    *aj  = a->j + ii[i];
1502:       const PetscScalar *aa  = a_a + ii[i];
1503:       PetscScalar        sum = 0.0;
1504:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1505:       y[i] = sum;
1506:     }
1507: #endif
1508:   }
1509:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt));
1510:   PetscCall(VecRestoreArrayRead(xx, &x));
1511:   PetscCall(VecRestoreArray(yy, &y));
1512:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1513:   PetscFunctionReturn(PETSC_SUCCESS);
1514: }

1516: // HACK!!!!! Used by src/mat/tests/ex170.c
1517: PETSC_EXTERN PetscErrorCode MatMultMax_SeqAIJ(Mat A, Vec xx, Vec yy)
1518: {
1519:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1520:   PetscScalar       *y;
1521:   const PetscScalar *x;
1522:   const MatScalar   *aa, *a_a;
1523:   PetscInt           m = A->rmap->n;
1524:   const PetscInt    *aj, *ii, *ridx   = NULL;
1525:   PetscInt           n, i, nonzerorow = 0;
1526:   PetscScalar        sum;
1527:   PetscBool          usecprow = a->compressedrow.use;

1529: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1530:   #pragma disjoint(*x, *y, *aa)
1531: #endif

1533:   PetscFunctionBegin;
1534:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1535:   PetscCall(VecGetArrayRead(xx, &x));
1536:   PetscCall(VecGetArray(yy, &y));
1537:   if (usecprow) { /* use compressed row format */
1538:     m    = a->compressedrow.nrows;
1539:     ii   = a->compressedrow.i;
1540:     ridx = a->compressedrow.rindex;
1541:     for (i = 0; i < m; i++) {
1542:       n   = ii[i + 1] - ii[i];
1543:       aj  = a->j + ii[i];
1544:       aa  = a_a + ii[i];
1545:       sum = 0.0;
1546:       nonzerorow += (n > 0);
1547:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1548:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1549:       y[*ridx++] = sum;
1550:     }
1551:   } else { /* do not use compressed row format */
1552:     ii = a->i;
1553:     for (i = 0; i < m; i++) {
1554:       n   = ii[i + 1] - ii[i];
1555:       aj  = a->j + ii[i];
1556:       aa  = a_a + ii[i];
1557:       sum = 0.0;
1558:       nonzerorow += (n > 0);
1559:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1560:       y[i] = sum;
1561:     }
1562:   }
1563:   PetscCall(PetscLogFlops(2.0 * a->nz - nonzerorow));
1564:   PetscCall(VecRestoreArrayRead(xx, &x));
1565:   PetscCall(VecRestoreArray(yy, &y));
1566:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1567:   PetscFunctionReturn(PETSC_SUCCESS);
1568: }

1570: // HACK!!!!! Used by src/mat/tests/ex170.c
1571: PETSC_EXTERN PetscErrorCode MatMultAddMax_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1572: {
1573:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1574:   PetscScalar       *y, *z;
1575:   const PetscScalar *x;
1576:   const MatScalar   *aa, *a_a;
1577:   PetscInt           m = A->rmap->n, *aj, *ii;
1578:   PetscInt           n, i, *ridx = NULL;
1579:   PetscScalar        sum;
1580:   PetscBool          usecprow = a->compressedrow.use;

1582:   PetscFunctionBegin;
1583:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1584:   PetscCall(VecGetArrayRead(xx, &x));
1585:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1586:   if (usecprow) { /* use compressed row format */
1587:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1588:     m    = a->compressedrow.nrows;
1589:     ii   = a->compressedrow.i;
1590:     ridx = a->compressedrow.rindex;
1591:     for (i = 0; i < m; i++) {
1592:       n   = ii[i + 1] - ii[i];
1593:       aj  = a->j + ii[i];
1594:       aa  = a_a + ii[i];
1595:       sum = y[*ridx];
1596:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1597:       z[*ridx++] = sum;
1598:     }
1599:   } else { /* do not use compressed row format */
1600:     ii = a->i;
1601:     for (i = 0; i < m; i++) {
1602:       n   = ii[i + 1] - ii[i];
1603:       aj  = a->j + ii[i];
1604:       aa  = a_a + ii[i];
1605:       sum = y[i];
1606:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1607:       z[i] = sum;
1608:     }
1609:   }
1610:   PetscCall(PetscLogFlops(2.0 * a->nz));
1611:   PetscCall(VecRestoreArrayRead(xx, &x));
1612:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1613:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1614:   PetscFunctionReturn(PETSC_SUCCESS);
1615: }

1617: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
1618: PetscErrorCode MatMultAdd_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1619: {
1620:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1621:   PetscScalar       *y, *z;
1622:   const PetscScalar *x;
1623:   const MatScalar   *a_a;
1624:   const PetscInt    *ii, *ridx = NULL;
1625:   PetscInt           m        = A->rmap->n;
1626:   PetscBool          usecprow = a->compressedrow.use;

1628:   PetscFunctionBegin;
1629:   if (a->inode.use && a->inode.checked) {
1630:     PetscCall(MatMultAdd_SeqAIJ_Inode(A, xx, yy, zz));
1631:     PetscFunctionReturn(PETSC_SUCCESS);
1632:   }
1633:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1634:   PetscCall(VecGetArrayRead(xx, &x));
1635:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1636:   if (usecprow) { /* use compressed row format */
1637:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1638:     m    = a->compressedrow.nrows;
1639:     ii   = a->compressedrow.i;
1640:     ridx = a->compressedrow.rindex;
1641:     for (PetscInt i = 0; i < m; i++) {
1642:       PetscInt           n   = ii[i + 1] - ii[i];
1643:       const PetscInt    *aj  = a->j + ii[i];
1644:       const PetscScalar *aa  = a_a + ii[i];
1645:       PetscScalar        sum = y[*ridx];
1646:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1647:       z[*ridx++] = sum;
1648:     }
1649:   } else { /* do not use compressed row format */
1650:     ii = a->i;
1651: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJ)
1652:     fortranmultaddaij_(&m, x, ii, a->j, a_a, y, z);
1653: #else
1654:     PetscPragmaUseOMPKernels(parallel for)
1655:     for (PetscInt i = 0; i < m; i++) {
1656:       PetscInt           n   = ii[i + 1] - ii[i];
1657:       const PetscInt    *aj  = a->j + ii[i];
1658:       const PetscScalar *aa  = a_a + ii[i];
1659:       PetscScalar        sum = y[i];
1660:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1661:       z[i] = sum;
1662:     }
1663: #endif
1664:   }
1665:   PetscCall(PetscLogFlops(2.0 * a->nz));
1666:   PetscCall(VecRestoreArrayRead(xx, &x));
1667:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1668:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1669:   PetscFunctionReturn(PETSC_SUCCESS);
1670: }

1672: static PetscErrorCode MatShift_SeqAIJ(Mat A, PetscScalar v)
1673: {
1674:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
1675:   const PetscInt *diag;
1676:   const PetscInt *ii = (const PetscInt *)a->i;
1677:   PetscBool       diagDense;

1679:   PetscFunctionBegin;
1680:   if (!A->preallocated || !a->nz) {
1681:     PetscCall(MatSeqAIJSetPreallocation(A, 1, NULL));
1682:     PetscCall(MatShift_Basic(A, v));
1683:     PetscFunctionReturn(PETSC_SUCCESS);
1684:   }

1686:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, &diagDense));
1687:   if (diagDense) {
1688:     PetscScalar *Aa;

1690:     PetscCall(MatSeqAIJGetArray(A, &Aa));
1691:     for (PetscInt i = 0; i < A->rmap->n; i++) Aa[diag[i]] += v;
1692:     PetscCall(MatSeqAIJRestoreArray(A, &Aa));
1693:   } else {
1694:     PetscScalar       *olda = a->a; /* preserve pointers to current matrix nonzeros structure and values */
1695:     PetscInt          *oldj = a->j, *oldi = a->i;
1696:     PetscBool          free_a = a->free_a, free_ij = a->free_ij;
1697:     const PetscScalar *Aa;
1698:     PetscInt          *mdiag = NULL;

1700:     PetscCall(PetscCalloc1(A->rmap->n, &mdiag));
1701:     for (PetscInt i = 0; i < A->rmap->n; i++) {
1702:       if (i < A->cmap->n && diag[i] >= ii[i + 1]) { /* 'out of range' rows never have diagonals */
1703:         mdiag[i] = 1;
1704:       }
1705:     }
1706:     PetscCall(MatSeqAIJGetArrayRead(A, &Aa)); // sync the host
1707:     PetscCall(MatSeqAIJRestoreArrayRead(A, &Aa));

1709:     a->a = NULL;
1710:     a->j = NULL;
1711:     a->i = NULL;
1712:     /* increase the values in imax for each row where a diagonal is being inserted then reallocate the matrix data structures */
1713:     for (PetscInt i = 0; i < PetscMin(A->rmap->n, A->cmap->n); i++) a->imax[i] += mdiag[i];
1714:     PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, 0, a->imax));

1716:     /* copy old values into new matrix data structure */
1717:     for (PetscInt i = 0; i < A->rmap->n; i++) {
1718:       PetscCall(MatSetValues(A, 1, &i, a->imax[i] - mdiag[i], &oldj[oldi[i]], &olda[oldi[i]], ADD_VALUES));
1719:       if (i < A->cmap->n) PetscCall(MatSetValue(A, i, i, v, ADD_VALUES));
1720:     }
1721:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1722:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1723:     if (free_a) PetscCall(PetscShmgetDeallocateArray((void **)&olda));
1724:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldj));
1725:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldi));
1726:     PetscCall(PetscFree(mdiag));
1727:   }
1728:   PetscFunctionReturn(PETSC_SUCCESS);
1729: }

1731: #include <petscblaslapack.h>
1732: #include <petsc/private/kernels/blockinvert.h>

1734: /*
1735:     Note that values is allocated externally by the PC and then passed into this routine
1736: */
1737: static PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJ(Mat A, PetscInt nblocks, const PetscInt *bsizes, PetscScalar *diag)
1738: {
1739:   PetscInt        n = A->rmap->n, i, ncnt = 0, *indx, j, bsizemax = 0, *v_pivots;
1740:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
1741:   const PetscReal shift = 0.0;
1742:   PetscInt        ipvt[5];
1743:   PetscCount      flops = 0;
1744:   PetscScalar     work[25], *v_work;

1746:   PetscFunctionBegin;
1747:   allowzeropivot = PetscNot(A->erroriffailure);
1748:   for (i = 0; i < nblocks; i++) ncnt += bsizes[i];
1749:   PetscCheck(ncnt == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Total blocksizes %" PetscInt_FMT " doesn't match number matrix rows %" PetscInt_FMT, ncnt, n);
1750:   for (i = 0; i < nblocks; i++) bsizemax = PetscMax(bsizemax, bsizes[i]);
1751:   PetscCall(PetscMalloc1(bsizemax, &indx));
1752:   if (bsizemax > 7) PetscCall(PetscMalloc2(bsizemax, &v_work, bsizemax, &v_pivots));
1753:   ncnt = 0;
1754:   for (i = 0; i < nblocks; i++) {
1755:     for (j = 0; j < bsizes[i]; j++) indx[j] = ncnt + j;
1756:     PetscCall(MatGetValues(A, bsizes[i], indx, bsizes[i], indx, diag));
1757:     switch (bsizes[i]) {
1758:     case 1:
1759:       *diag = 1.0 / (*diag);
1760:       break;
1761:     case 2:
1762:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
1763:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1764:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
1765:       break;
1766:     case 3:
1767:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
1768:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1769:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
1770:       break;
1771:     case 4:
1772:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
1773:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1774:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
1775:       break;
1776:     case 5:
1777:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
1778:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1779:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
1780:       break;
1781:     case 6:
1782:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
1783:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1784:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
1785:       break;
1786:     case 7:
1787:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
1788:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1789:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
1790:       break;
1791:     default:
1792:       PetscCall(PetscKernel_A_gets_inverse_A(bsizes[i], diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
1793:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1794:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bsizes[i]));
1795:     }
1796:     ncnt += bsizes[i];
1797:     diag += bsizes[i] * bsizes[i];
1798:     flops += 2 * PetscPowInt64(bsizes[i], 3) / 3;
1799:   }
1800:   PetscCall(PetscLogFlops(flops));
1801:   if (bsizemax > 7) PetscCall(PetscFree2(v_work, v_pivots));
1802:   PetscCall(PetscFree(indx));
1803:   PetscFunctionReturn(PETSC_SUCCESS);
1804: }

1806: /*
1807:    Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
1808: */
1809: static PetscErrorCode MatInvertDiagonalForSOR_SeqAIJ(Mat A, PetscScalar omega, PetscScalar fshift)
1810: {
1811:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
1812:   PetscInt         i, m = A->rmap->n;
1813:   const MatScalar *v;
1814:   PetscScalar     *idiag, *mdiag;
1815:   PetscBool        diagDense;
1816:   const PetscInt  *diag;

1818:   PetscFunctionBegin;
1819:   if (a->idiagState == ((PetscObject)A)->state && a->omega == omega && a->fshift == fshift) PetscFunctionReturn(PETSC_SUCCESS);
1820:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, &diagDense));
1821:   PetscCheck(diagDense, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix must have all diagonal locations to invert them");
1822:   if (!a->idiag) PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work));

1824:   mdiag = a->mdiag;
1825:   idiag = a->idiag;
1826:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
1827:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
1828:     for (i = 0; i < m; i++) {
1829:       mdiag[i] = v[diag[i]];
1830:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
1831:         PetscCheck(PetscRealPart(fshift), PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
1832:         PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
1833:         A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1834:         A->factorerror_zeropivot_value = 0.0;
1835:         A->factorerror_zeropivot_row   = i;
1836:       }
1837:       idiag[i] = 1.0 / v[diag[i]];
1838:     }
1839:     PetscCall(PetscLogFlops(m));
1840:   } else {
1841:     for (i = 0; i < m; i++) {
1842:       mdiag[i] = v[diag[i]];
1843:       idiag[i] = omega / (fshift + v[diag[i]]);
1844:     }
1845:     PetscCall(PetscLogFlops(2.0 * m));
1846:   }
1847:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
1848:   a->idiagState = ((PetscObject)A)->state;
1849:   a->omega      = omega;
1850:   a->fshift     = fshift;
1851:   PetscFunctionReturn(PETSC_SUCCESS);
1852: }

1854: PetscErrorCode MatSOR_SeqAIJ(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1855: {
1856:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1857:   PetscScalar       *x, d, sum, *t, scale;
1858:   const MatScalar   *v, *idiag = NULL, *mdiag, *aa;
1859:   const PetscScalar *b, *bs, *xb, *ts;
1860:   PetscInt           n, m = A->rmap->n, i;
1861:   const PetscInt    *idx, *diag;

1863:   PetscFunctionBegin;
1864:   if (a->inode.use && a->inode.checked && omega == 1.0 && fshift == 0.0) {
1865:     PetscCall(MatSOR_SeqAIJ_Inode(A, bb, omega, flag, fshift, its, lits, xx));
1866:     PetscFunctionReturn(PETSC_SUCCESS);
1867:   }
1868:   its = its * lits;
1869:   PetscCall(MatInvertDiagonalForSOR_SeqAIJ(A, omega, fshift));
1870:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, NULL));
1871:   t     = a->ssor_work;
1872:   idiag = a->idiag;
1873:   mdiag = a->mdiag;

1875:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1876:   PetscCall(VecGetArray(xx, &x));
1877:   PetscCall(VecGetArrayRead(bb, &b));
1878:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1879:   if (flag == SOR_APPLY_UPPER) {
1880:     /* apply (U + D/omega) to the vector */
1881:     bs = b;
1882:     for (i = 0; i < m; i++) {
1883:       d   = fshift + mdiag[i];
1884:       n   = a->i[i + 1] - diag[i] - 1;
1885:       idx = a->j + diag[i] + 1;
1886:       v   = aa + diag[i] + 1;
1887:       sum = b[i] * d / omega;
1888:       PetscSparseDensePlusDot(sum, bs, v, idx, n);
1889:       x[i] = sum;
1890:     }
1891:     PetscCall(VecRestoreArray(xx, &x));
1892:     PetscCall(VecRestoreArrayRead(bb, &b));
1893:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1894:     PetscCall(PetscLogFlops(a->nz));
1895:     PetscFunctionReturn(PETSC_SUCCESS);
1896:   }

1898:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1899:   if (flag & SOR_EISENSTAT) {
1900:     /* Let  A = L + U + D; where L is lower triangular,
1901:     U is upper triangular, E = D/omega; This routine applies

1903:             (L + E)^{-1} A (U + E)^{-1}

1905:     to a vector efficiently using Eisenstat's trick.
1906:     */
1907:     scale = (2.0 / omega) - 1.0;

1909:     /*  x = (E + U)^{-1} b */
1910:     for (i = m - 1; i >= 0; i--) {
1911:       n   = a->i[i + 1] - diag[i] - 1;
1912:       idx = a->j + diag[i] + 1;
1913:       v   = aa + diag[i] + 1;
1914:       sum = b[i];
1915:       PetscSparseDenseMinusDot(sum, x, v, idx, n);
1916:       x[i] = sum * idiag[i];
1917:     }

1919:     /*  t = b - (2*E - D)x */
1920:     v = aa;
1921:     for (i = 0; i < m; i++) t[i] = b[i] - scale * (v[*diag++]) * x[i];

1923:     /*  t = (E + L)^{-1}t */
1924:     ts   = t;
1925:     diag = a->diag;
1926:     for (i = 0; i < m; i++) {
1927:       n   = diag[i] - a->i[i];
1928:       idx = a->j + a->i[i];
1929:       v   = aa + a->i[i];
1930:       sum = t[i];
1931:       PetscSparseDenseMinusDot(sum, ts, v, idx, n);
1932:       t[i] = sum * idiag[i];
1933:       /*  x = x + t */
1934:       x[i] += t[i];
1935:     }

1937:     PetscCall(PetscLogFlops(6.0 * m - 1 + 2.0 * a->nz));
1938:     PetscCall(VecRestoreArray(xx, &x));
1939:     PetscCall(VecRestoreArrayRead(bb, &b));
1940:     PetscFunctionReturn(PETSC_SUCCESS);
1941:   }
1942:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1943:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1944:       for (i = 0; i < m; i++) {
1945:         n   = diag[i] - a->i[i];
1946:         idx = a->j + a->i[i];
1947:         v   = aa + a->i[i];
1948:         sum = b[i];
1949:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
1950:         t[i] = sum;
1951:         x[i] = sum * idiag[i];
1952:       }
1953:       xb = t;
1954:       PetscCall(PetscLogFlops(a->nz));
1955:     } else xb = b;
1956:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1957:       for (i = m - 1; i >= 0; i--) {
1958:         n   = a->i[i + 1] - diag[i] - 1;
1959:         idx = a->j + diag[i] + 1;
1960:         v   = aa + diag[i] + 1;
1961:         sum = xb[i];
1962:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
1963:         if (xb == b) {
1964:           x[i] = sum * idiag[i];
1965:         } else {
1966:           x[i] = (1 - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1967:         }
1968:       }
1969:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
1970:     }
1971:     its--;
1972:   }
1973:   while (its--) {
1974:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1975:       for (i = 0; i < m; i++) {
1976:         /* lower */
1977:         n   = diag[i] - a->i[i];
1978:         idx = a->j + a->i[i];
1979:         v   = aa + a->i[i];
1980:         sum = b[i];
1981:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
1982:         t[i] = sum; /* save application of the lower-triangular part */
1983:         /* upper */
1984:         n   = a->i[i + 1] - diag[i] - 1;
1985:         idx = a->j + diag[i] + 1;
1986:         v   = aa + diag[i] + 1;
1987:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
1988:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1989:       }
1990:       xb = t;
1991:       PetscCall(PetscLogFlops(2.0 * a->nz));
1992:     } else xb = b;
1993:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1994:       for (i = m - 1; i >= 0; i--) {
1995:         sum = xb[i];
1996:         if (xb == b) {
1997:           /* whole matrix (no checkpointing available) */
1998:           n   = a->i[i + 1] - a->i[i];
1999:           idx = a->j + a->i[i];
2000:           v   = aa + a->i[i];
2001:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2002:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
2003:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
2004:           n   = a->i[i + 1] - diag[i] - 1;
2005:           idx = a->j + diag[i] + 1;
2006:           v   = aa + diag[i] + 1;
2007:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2008:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2009:         }
2010:       }
2011:       if (xb == b) {
2012:         PetscCall(PetscLogFlops(2.0 * a->nz));
2013:       } else {
2014:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2015:       }
2016:     }
2017:   }
2018:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2019:   PetscCall(VecRestoreArray(xx, &x));
2020:   PetscCall(VecRestoreArrayRead(bb, &b));
2021:   PetscFunctionReturn(PETSC_SUCCESS);
2022: }

2024: static PetscErrorCode MatGetInfo_SeqAIJ(Mat A, MatInfoType flag, MatInfo *info)
2025: {
2026:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2028:   PetscFunctionBegin;
2029:   info->block_size   = 1.0;
2030:   info->nz_allocated = a->maxnz;
2031:   info->nz_used      = a->nz;
2032:   info->nz_unneeded  = (a->maxnz - a->nz);
2033:   info->assemblies   = A->num_ass;
2034:   info->mallocs      = A->info.mallocs;
2035:   info->memory       = 0; /* REVIEW ME */
2036:   if (A->factortype) {
2037:     info->fill_ratio_given  = A->info.fill_ratio_given;
2038:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2039:     info->factor_mallocs    = A->info.factor_mallocs;
2040:   } else {
2041:     info->fill_ratio_given  = 0;
2042:     info->fill_ratio_needed = 0;
2043:     info->factor_mallocs    = 0;
2044:   }
2045:   PetscFunctionReturn(PETSC_SUCCESS);
2046: }

2048: static PetscErrorCode MatZeroRows_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diagv, Vec x, Vec b)
2049: {
2050:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2051:   PetscInt           i, m = A->rmap->n - 1;
2052:   const PetscScalar *xx;
2053:   PetscScalar       *bb, *aa;
2054:   PetscInt           d = 0;
2055:   const PetscInt    *diag;

2057:   PetscFunctionBegin;
2058:   if (x && b) {
2059:     PetscCall(VecGetArrayRead(x, &xx));
2060:     PetscCall(VecGetArray(b, &bb));
2061:     for (i = 0; i < N; i++) {
2062:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2063:       if (rows[i] >= A->cmap->n) continue;
2064:       bb[rows[i]] = diagv * xx[rows[i]];
2065:     }
2066:     PetscCall(VecRestoreArrayRead(x, &xx));
2067:     PetscCall(VecRestoreArray(b, &bb));
2068:   }

2070:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, NULL));
2071:   PetscCall(MatSeqAIJGetArray(A, &aa));
2072:   if (a->keepnonzeropattern) {
2073:     for (i = 0; i < N; i++) {
2074:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2075:       PetscCall(PetscArrayzero(&aa[a->i[rows[i]]], a->ilen[rows[i]]));
2076:     }
2077:     if (diagv != 0.0) {
2078:       for (i = 0; i < N; i++) {
2079:         d = rows[i];
2080:         if (d >= A->cmap->n) continue;
2081:         PetscCheck(diag[d] < a->i[d + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in the zeroed row %" PetscInt_FMT, d);
2082:         aa[diag[d]] = diagv;
2083:       }
2084:     }
2085:   } else {
2086:     if (diagv != 0.0) {
2087:       for (i = 0; i < N; i++) {
2088:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2089:         if (a->ilen[rows[i]] > 0) {
2090:           if (rows[i] >= A->cmap->n) {
2091:             a->ilen[rows[i]] = 0;
2092:           } else {
2093:             a->ilen[rows[i]]    = 1;
2094:             aa[a->i[rows[i]]]   = diagv;
2095:             a->j[a->i[rows[i]]] = rows[i];
2096:           }
2097:         } else if (rows[i] < A->cmap->n) { /* in case row was completely empty */
2098:           PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diagv, INSERT_VALUES));
2099:         }
2100:       }
2101:     } else {
2102:       for (i = 0; i < N; i++) {
2103:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2104:         a->ilen[rows[i]] = 0;
2105:       }
2106:     }
2107:     A->nonzerostate++;
2108:   }
2109:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2110:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2111:   PetscFunctionReturn(PETSC_SUCCESS);
2112: }

2114: static PetscErrorCode MatZeroRowsColumns_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diagv, Vec x, Vec b)
2115: {
2116:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2117:   PetscInt           i, j, m = A->rmap->n - 1, d = 0;
2118:   PetscBool         *zeroed, vecs = PETSC_FALSE;
2119:   const PetscScalar *xx;
2120:   PetscScalar       *bb, *aa;
2121:   const PetscInt    *diag;
2122:   PetscBool          diagDense;

2124:   PetscFunctionBegin;
2125:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);
2126:   PetscCall(MatGetDiagonalMarkers_SeqAIJ(A, &diag, &diagDense));
2127:   PetscCall(MatSeqAIJGetArray(A, &aa));
2128:   if (x && b) {
2129:     PetscCall(VecGetArrayRead(x, &xx));
2130:     PetscCall(VecGetArray(b, &bb));
2131:     vecs = PETSC_TRUE;
2132:   }
2133:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
2134:   for (i = 0; i < N; i++) {
2135:     PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2136:     PetscCall(PetscArrayzero(PetscSafePointerPlusOffset(aa, a->i[rows[i]]), a->ilen[rows[i]]));

2138:     zeroed[rows[i]] = PETSC_TRUE;
2139:   }
2140:   for (i = 0; i < A->rmap->n; i++) {
2141:     if (!zeroed[i]) {
2142:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
2143:         if (a->j[j] < A->rmap->n && zeroed[a->j[j]]) {
2144:           if (vecs) bb[i] -= aa[j] * xx[a->j[j]];
2145:           aa[j] = 0.0;
2146:         }
2147:       }
2148:     } else if (vecs && i < A->cmap->N) bb[i] = diagv * xx[i];
2149:   }
2150:   if (x && b) {
2151:     PetscCall(VecRestoreArrayRead(x, &xx));
2152:     PetscCall(VecRestoreArray(b, &bb));
2153:   }
2154:   PetscCall(PetscFree(zeroed));
2155:   if (diagv != 0.0) {
2156:     if (!diagDense) {
2157:       for (i = 0; i < N; i++) {
2158:         if (rows[i] >= A->cmap->N) continue;
2159:         PetscCheck(!a->nonew || rows[i] < d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in row %" PetscInt_FMT " (%" PetscInt_FMT ")", d, rows[i]);
2160:         PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diagv, INSERT_VALUES));
2161:       }
2162:     } else {
2163:       for (i = 0; i < N; i++) aa[diag[rows[i]]] = diagv;
2164:     }
2165:   }
2166:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2167:   if (!diagDense) PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2168:   PetscFunctionReturn(PETSC_SUCCESS);
2169: }

2171: PetscErrorCode MatGetRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2172: {
2173:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2174:   const PetscScalar *aa;

2176:   PetscFunctionBegin;
2177:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2178:   *nz = a->i[row + 1] - a->i[row];
2179:   if (v) *v = PetscSafePointerPlusOffset((PetscScalar *)aa, a->i[row]);
2180:   if (idx) {
2181:     if (*nz && a->j) *idx = a->j + a->i[row];
2182:     else *idx = NULL;
2183:   }
2184:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2185:   PetscFunctionReturn(PETSC_SUCCESS);
2186: }

2188: PetscErrorCode MatRestoreRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2189: {
2190:   PetscFunctionBegin;
2191:   PetscFunctionReturn(PETSC_SUCCESS);
2192: }

2194: static PetscErrorCode MatNorm_SeqAIJ(Mat A, NormType type, PetscReal *nrm)
2195: {
2196:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
2197:   const MatScalar *v;
2198:   PetscReal        sum = 0.0;
2199:   PetscInt         i, j;

2201:   PetscFunctionBegin;
2202:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
2203:   if (type == NORM_FROBENIUS) {
2204: #if defined(PETSC_USE_REAL___FP16)
2205:     PetscBLASInt one = 1, nz = a->nz;
2206:     PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&nz, v, &one));
2207: #else
2208:     for (i = 0; i < a->nz; i++) {
2209:       sum += PetscRealPart(PetscConj(*v) * (*v));
2210:       v++;
2211:     }
2212:     *nrm = PetscSqrtReal(sum);
2213: #endif
2214:     PetscCall(PetscLogFlops(2.0 * a->nz));
2215:   } else if (type == NORM_1) {
2216:     PetscReal *tmp;
2217:     PetscInt  *jj = a->j;
2218:     PetscCall(PetscCalloc1(A->cmap->n + 1, &tmp));
2219:     *nrm = 0.0;
2220:     for (j = 0; j < a->nz; j++) {
2221:       tmp[*jj++] += PetscAbsScalar(*v);
2222:       v++;
2223:     }
2224:     for (j = 0; j < A->cmap->n; j++) {
2225:       if (tmp[j] > *nrm) *nrm = tmp[j];
2226:     }
2227:     PetscCall(PetscFree(tmp));
2228:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2229:   } else if (type == NORM_INFINITY) {
2230:     *nrm = 0.0;
2231:     for (j = 0; j < A->rmap->n; j++) {
2232:       const PetscScalar *v2 = PetscSafePointerPlusOffset(v, a->i[j]);
2233:       sum                   = 0.0;
2234:       for (i = 0; i < a->i[j + 1] - a->i[j]; i++) {
2235:         sum += PetscAbsScalar(*v2);
2236:         v2++;
2237:       }
2238:       if (sum > *nrm) *nrm = sum;
2239:     }
2240:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2241:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for two norm");
2242:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
2243:   PetscFunctionReturn(PETSC_SUCCESS);
2244: }

2246: static PetscErrorCode MatIsTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2247: {
2248:   Mat_SeqAIJ      *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2249:   PetscInt        *adx, *bdx, *aii, *bii, *aptr, *bptr;
2250:   const MatScalar *va, *vb;
2251:   PetscInt         ma, na, mb, nb, i;

2253:   PetscFunctionBegin;
2254:   PetscCall(MatGetSize(A, &ma, &na));
2255:   PetscCall(MatGetSize(B, &mb, &nb));
2256:   if (ma != nb || na != mb) {
2257:     *f = PETSC_FALSE;
2258:     PetscFunctionReturn(PETSC_SUCCESS);
2259:   }
2260:   PetscCall(MatSeqAIJGetArrayRead(A, &va));
2261:   PetscCall(MatSeqAIJGetArrayRead(B, &vb));
2262:   aii = aij->i;
2263:   bii = bij->i;
2264:   adx = aij->j;
2265:   bdx = bij->j;
2266:   PetscCall(PetscMalloc1(ma, &aptr));
2267:   PetscCall(PetscMalloc1(mb, &bptr));
2268:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2269:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2271:   *f = PETSC_TRUE;
2272:   for (i = 0; i < ma; i++) {
2273:     while (aptr[i] < aii[i + 1]) {
2274:       PetscInt    idc, idr;
2275:       PetscScalar vc, vr;
2276:       /* column/row index/value */
2277:       idc = adx[aptr[i]];
2278:       idr = bdx[bptr[idc]];
2279:       vc  = va[aptr[i]];
2280:       vr  = vb[bptr[idc]];
2281:       if (i != idr || PetscAbsScalar(vc - vr) > tol) {
2282:         *f = PETSC_FALSE;
2283:         goto done;
2284:       } else {
2285:         aptr[i]++;
2286:         if (B || i != idc) bptr[idc]++;
2287:       }
2288:     }
2289:   }
2290: done:
2291:   PetscCall(PetscFree(aptr));
2292:   PetscCall(PetscFree(bptr));
2293:   PetscCall(MatSeqAIJRestoreArrayRead(A, &va));
2294:   PetscCall(MatSeqAIJRestoreArrayRead(B, &vb));
2295:   PetscFunctionReturn(PETSC_SUCCESS);
2296: }

2298: static PetscErrorCode MatIsHermitianTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2299: {
2300:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2301:   PetscInt   *adx, *bdx, *aii, *bii, *aptr, *bptr;
2302:   MatScalar  *va, *vb;
2303:   PetscInt    ma, na, mb, nb, i;

2305:   PetscFunctionBegin;
2306:   PetscCall(MatGetSize(A, &ma, &na));
2307:   PetscCall(MatGetSize(B, &mb, &nb));
2308:   if (ma != nb || na != mb) {
2309:     *f = PETSC_FALSE;
2310:     PetscFunctionReturn(PETSC_SUCCESS);
2311:   }
2312:   aii = aij->i;
2313:   bii = bij->i;
2314:   adx = aij->j;
2315:   bdx = bij->j;
2316:   va  = aij->a;
2317:   vb  = bij->a;
2318:   PetscCall(PetscMalloc1(ma, &aptr));
2319:   PetscCall(PetscMalloc1(mb, &bptr));
2320:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2321:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2323:   *f = PETSC_TRUE;
2324:   for (i = 0; i < ma; i++) {
2325:     while (aptr[i] < aii[i + 1]) {
2326:       PetscInt    idc, idr;
2327:       PetscScalar vc, vr;
2328:       /* column/row index/value */
2329:       idc = adx[aptr[i]];
2330:       idr = bdx[bptr[idc]];
2331:       vc  = va[aptr[i]];
2332:       vr  = vb[bptr[idc]];
2333:       if (i != idr || PetscAbsScalar(vc - PetscConj(vr)) > tol) {
2334:         *f = PETSC_FALSE;
2335:         goto done;
2336:       } else {
2337:         aptr[i]++;
2338:         if (B || i != idc) bptr[idc]++;
2339:       }
2340:     }
2341:   }
2342: done:
2343:   PetscCall(PetscFree(aptr));
2344:   PetscCall(PetscFree(bptr));
2345:   PetscFunctionReturn(PETSC_SUCCESS);
2346: }

2348: PetscErrorCode MatDiagonalScale_SeqAIJ(Mat A, Vec ll, Vec rr)
2349: {
2350:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2351:   const PetscScalar *l, *r;
2352:   PetscScalar        x;
2353:   MatScalar         *v;
2354:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, M, nz = a->nz;
2355:   const PetscInt    *jj;

2357:   PetscFunctionBegin;
2358:   if (ll) {
2359:     /* The local size is used so that VecMPI can be passed to this routine
2360:        by MatDiagonalScale_MPIAIJ */
2361:     PetscCall(VecGetLocalSize(ll, &m));
2362:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
2363:     PetscCall(VecGetArrayRead(ll, &l));
2364:     PetscCall(MatSeqAIJGetArray(A, &v));
2365:     for (i = 0; i < m; i++) {
2366:       x = l[i];
2367:       M = a->i[i + 1] - a->i[i];
2368:       for (j = 0; j < M; j++) (*v++) *= x;
2369:     }
2370:     PetscCall(VecRestoreArrayRead(ll, &l));
2371:     PetscCall(PetscLogFlops(nz));
2372:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2373:   }
2374:   if (rr) {
2375:     PetscCall(VecGetLocalSize(rr, &n));
2376:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
2377:     PetscCall(VecGetArrayRead(rr, &r));
2378:     PetscCall(MatSeqAIJGetArray(A, &v));
2379:     jj = a->j;
2380:     for (i = 0; i < nz; i++) (*v++) *= r[*jj++];
2381:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2382:     PetscCall(VecRestoreArrayRead(rr, &r));
2383:     PetscCall(PetscLogFlops(nz));
2384:   }
2385:   PetscFunctionReturn(PETSC_SUCCESS);
2386: }

2388: PetscErrorCode MatCreateSubMatrix_SeqAIJ(Mat A, IS isrow, IS iscol, PetscInt csize, MatReuse scall, Mat *B)
2389: {
2390:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *c;
2391:   PetscInt          *smap, i, k, kstart, kend, oldcols = A->cmap->n, *lens;
2392:   PetscInt           row, mat_i, *mat_j, tcol, first, step, *mat_ilen, sum, lensi;
2393:   const PetscInt    *irow, *icol;
2394:   const PetscScalar *aa;
2395:   PetscInt           nrows, ncols;
2396:   PetscInt          *starts, *j_new, *i_new, *aj = a->j, *ai = a->i, ii, *ailen = a->ilen;
2397:   MatScalar         *a_new, *mat_a, *c_a;
2398:   Mat                C;
2399:   PetscBool          stride;

2401:   PetscFunctionBegin;
2402:   PetscCall(ISGetIndices(isrow, &irow));
2403:   PetscCall(ISGetLocalSize(isrow, &nrows));
2404:   PetscCall(ISGetLocalSize(iscol, &ncols));

2406:   PetscCall(PetscObjectTypeCompare((PetscObject)iscol, ISSTRIDE, &stride));
2407:   if (stride) {
2408:     PetscCall(ISStrideGetInfo(iscol, &first, &step));
2409:   } else {
2410:     first = 0;
2411:     step  = 0;
2412:   }
2413:   if (stride && step == 1) {
2414:     /* special case of contiguous rows */
2415:     PetscCall(PetscMalloc2(nrows, &lens, nrows, &starts));
2416:     /* loop over new rows determining lens and starting points */
2417:     for (i = 0; i < nrows; i++) {
2418:       kstart    = ai[irow[i]];
2419:       kend      = kstart + ailen[irow[i]];
2420:       starts[i] = kstart;
2421:       for (k = kstart; k < kend; k++) {
2422:         if (aj[k] >= first) {
2423:           starts[i] = k;
2424:           break;
2425:         }
2426:       }
2427:       sum = 0;
2428:       while (k < kend) {
2429:         if (aj[k++] >= first + ncols) break;
2430:         sum++;
2431:       }
2432:       lens[i] = sum;
2433:     }
2434:     /* create submatrix */
2435:     if (scall == MAT_REUSE_MATRIX) {
2436:       PetscInt n_cols, n_rows;
2437:       PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2438:       PetscCheck(n_rows == nrows && n_cols == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reused submatrix wrong size");
2439:       PetscCall(MatZeroEntries(*B));
2440:       C = *B;
2441:     } else {
2442:       PetscInt rbs, cbs;
2443:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2444:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2445:       PetscCall(ISGetBlockSize(isrow, &rbs));
2446:       PetscCall(ISGetBlockSize(iscol, &cbs));
2447:       PetscCall(MatSetBlockSizes(C, rbs, cbs));
2448:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2449:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2450:     }
2451:     c = (Mat_SeqAIJ *)C->data;

2453:     /* loop over rows inserting into submatrix */
2454:     PetscCall(MatSeqAIJGetArrayWrite(C, &a_new)); // Not 'a_new = c->a-new', since that raw usage ignores offload state of C
2455:     j_new = c->j;
2456:     i_new = c->i;
2457:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2458:     for (i = 0; i < nrows; i++) {
2459:       ii    = starts[i];
2460:       lensi = lens[i];
2461:       if (lensi) {
2462:         for (k = 0; k < lensi; k++) *j_new++ = aj[ii + k] - first;
2463:         PetscCall(PetscArraycpy(a_new, aa + starts[i], lensi));
2464:         a_new += lensi;
2465:       }
2466:       i_new[i + 1] = i_new[i] + lensi;
2467:       c->ilen[i]   = lensi;
2468:     }
2469:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &a_new)); // Set C's offload state properly
2470:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2471:     PetscCall(PetscFree2(lens, starts));
2472:   } else {
2473:     PetscCall(ISGetIndices(iscol, &icol));
2474:     PetscCall(PetscCalloc1(oldcols, &smap));
2475:     PetscCall(PetscMalloc1(1 + nrows, &lens));
2476:     for (i = 0; i < ncols; i++) {
2477:       PetscCheck(icol[i] < oldcols, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Requesting column beyond largest column icol[%" PetscInt_FMT "] %" PetscInt_FMT " >= A->cmap->n %" PetscInt_FMT, i, icol[i], oldcols);
2478:       smap[icol[i]] = i + 1;
2479:     }

2481:     /* determine lens of each row */
2482:     for (i = 0; i < nrows; i++) {
2483:       kstart  = ai[irow[i]];
2484:       kend    = kstart + a->ilen[irow[i]];
2485:       lens[i] = 0;
2486:       for (k = kstart; k < kend; k++) {
2487:         if (smap[aj[k]]) lens[i]++;
2488:       }
2489:     }
2490:     /* Create and fill new matrix */
2491:     if (scall == MAT_REUSE_MATRIX) {
2492:       PetscBool equal;

2494:       c = (Mat_SeqAIJ *)((*B)->data);
2495:       PetscCheck((*B)->rmap->n == nrows && (*B)->cmap->n == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong size");
2496:       PetscCall(PetscArraycmp(c->ilen, lens, (*B)->rmap->n, &equal));
2497:       PetscCheck(equal, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong number of nonzeros");
2498:       PetscCall(PetscArrayzero(c->ilen, (*B)->rmap->n));
2499:       C = *B;
2500:     } else {
2501:       PetscInt rbs, cbs;
2502:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2503:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2504:       PetscCall(ISGetBlockSize(isrow, &rbs));
2505:       PetscCall(ISGetBlockSize(iscol, &cbs));
2506:       if (rbs > 1 || cbs > 1) PetscCall(MatSetBlockSizes(C, rbs, cbs));
2507:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2508:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2509:     }
2510:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));

2512:     c = (Mat_SeqAIJ *)C->data;
2513:     PetscCall(MatSeqAIJGetArrayWrite(C, &c_a)); // Not 'c->a', since that raw usage ignores offload state of C
2514:     for (i = 0; i < nrows; i++) {
2515:       row      = irow[i];
2516:       kstart   = ai[row];
2517:       kend     = kstart + a->ilen[row];
2518:       mat_i    = c->i[i];
2519:       mat_j    = PetscSafePointerPlusOffset(c->j, mat_i);
2520:       mat_a    = PetscSafePointerPlusOffset(c_a, mat_i);
2521:       mat_ilen = c->ilen + i;
2522:       for (k = kstart; k < kend; k++) {
2523:         if ((tcol = smap[a->j[k]])) {
2524:           *mat_j++ = tcol - 1;
2525:           *mat_a++ = aa[k];
2526:           (*mat_ilen)++;
2527:         }
2528:       }
2529:     }
2530:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2531:     /* Free work space */
2532:     PetscCall(ISRestoreIndices(iscol, &icol));
2533:     PetscCall(PetscFree(smap));
2534:     PetscCall(PetscFree(lens));
2535:     /* sort */
2536:     for (i = 0; i < nrows; i++) {
2537:       PetscInt ilen;

2539:       mat_i = c->i[i];
2540:       mat_j = PetscSafePointerPlusOffset(c->j, mat_i);
2541:       mat_a = PetscSafePointerPlusOffset(c_a, mat_i);
2542:       ilen  = c->ilen[i];
2543:       PetscCall(PetscSortIntWithScalarArray(ilen, mat_j, mat_a));
2544:     }
2545:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &c_a));
2546:   }
2547: #if defined(PETSC_HAVE_DEVICE)
2548:   PetscCall(MatBindToCPU(C, A->boundtocpu));
2549: #endif
2550:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
2551:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));

2553:   PetscCall(ISRestoreIndices(isrow, &irow));
2554:   *B = C;
2555:   PetscFunctionReturn(PETSC_SUCCESS);
2556: }

2558: static PetscErrorCode MatGetMultiProcBlock_SeqAIJ(Mat mat, MPI_Comm subComm, MatReuse scall, Mat *subMat)
2559: {
2560:   Mat B;

2562:   PetscFunctionBegin;
2563:   if (scall == MAT_INITIAL_MATRIX) {
2564:     PetscCall(MatCreate(subComm, &B));
2565:     PetscCall(MatSetSizes(B, mat->rmap->n, mat->cmap->n, mat->rmap->n, mat->cmap->n));
2566:     PetscCall(MatSetBlockSizesFromMats(B, mat, mat));
2567:     PetscCall(MatSetType(B, MATSEQAIJ));
2568:     PetscCall(MatDuplicateNoCreate_SeqAIJ(B, mat, MAT_COPY_VALUES, PETSC_TRUE));
2569:     *subMat = B;
2570:   } else {
2571:     PetscCall(MatCopy_SeqAIJ(mat, *subMat, SAME_NONZERO_PATTERN));
2572:   }
2573:   PetscFunctionReturn(PETSC_SUCCESS);
2574: }

2576: static PetscErrorCode MatILUFactor_SeqAIJ(Mat inA, IS row, IS col, const MatFactorInfo *info)
2577: {
2578:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)inA->data;
2579:   Mat         outA;
2580:   PetscBool   row_identity, col_identity;

2582:   PetscFunctionBegin;
2583:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 supported for in-place ilu");

2585:   PetscCall(ISIdentity(row, &row_identity));
2586:   PetscCall(ISIdentity(col, &col_identity));

2588:   outA = inA;
2589:   PetscCall(PetscFree(inA->solvertype));
2590:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

2592:   PetscCall(PetscObjectReference((PetscObject)row));
2593:   PetscCall(ISDestroy(&a->row));

2595:   a->row = row;

2597:   PetscCall(PetscObjectReference((PetscObject)col));
2598:   PetscCall(ISDestroy(&a->col));

2600:   a->col = col;

2602:   /* Create the inverse permutation so that it can be used in MatLUFactorNumeric() */
2603:   PetscCall(ISDestroy(&a->icol));
2604:   PetscCall(ISInvertPermutation(col, PETSC_DECIDE, &a->icol));

2606:   if (!a->solve_work) { /* this matrix may have been factored before */
2607:     PetscCall(PetscMalloc1(inA->rmap->n, &a->solve_work));
2608:   }

2610:   if (row_identity && col_identity) {
2611:     PetscCall(MatLUFactorNumeric_SeqAIJ_inplace(outA, inA, info));
2612:   } else {
2613:     PetscCall(MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(outA, inA, info));
2614:   }
2615:   outA->factortype = MAT_FACTOR_LU;
2616:   PetscFunctionReturn(PETSC_SUCCESS);
2617: }

2619: PetscErrorCode MatScale_SeqAIJ(Mat inA, PetscScalar alpha)
2620: {
2621:   Mat_SeqAIJ  *a = (Mat_SeqAIJ *)inA->data;
2622:   PetscScalar *v;
2623:   PetscBLASInt one = 1, bnz;

2625:   PetscFunctionBegin;
2626:   PetscCall(MatSeqAIJGetArray(inA, &v));
2627:   PetscCall(PetscBLASIntCast(a->nz, &bnz));
2628:   PetscCallBLAS("BLASscal", BLASscal_(&bnz, &alpha, v, &one));
2629:   PetscCall(PetscLogFlops(a->nz));
2630:   PetscCall(MatSeqAIJRestoreArray(inA, &v));
2631:   PetscFunctionReturn(PETSC_SUCCESS);
2632: }

2634: PetscErrorCode MatDestroySubMatrix_Private(Mat_SubSppt *submatj)
2635: {
2636:   PetscInt i;

2638:   PetscFunctionBegin;
2639:   if (!submatj->id) { /* delete data that are linked only to submats[id=0] */
2640:     PetscCall(PetscFree4(submatj->sbuf1, submatj->ptr, submatj->tmp, submatj->ctr));

2642:     for (i = 0; i < submatj->nrqr; ++i) PetscCall(PetscFree(submatj->sbuf2[i]));
2643:     PetscCall(PetscFree3(submatj->sbuf2, submatj->req_size, submatj->req_source1));

2645:     if (submatj->rbuf1) {
2646:       PetscCall(PetscFree(submatj->rbuf1[0]));
2647:       PetscCall(PetscFree(submatj->rbuf1));
2648:     }

2650:     for (i = 0; i < submatj->nrqs; ++i) PetscCall(PetscFree(submatj->rbuf3[i]));
2651:     PetscCall(PetscFree3(submatj->req_source2, submatj->rbuf2, submatj->rbuf3));
2652:     PetscCall(PetscFree(submatj->pa));
2653:   }

2655: #if defined(PETSC_USE_CTABLE)
2656:   PetscCall(PetscHMapIDestroy(&submatj->rmap));
2657:   if (submatj->cmap_loc) PetscCall(PetscFree(submatj->cmap_loc));
2658:   PetscCall(PetscFree(submatj->rmap_loc));
2659: #else
2660:   PetscCall(PetscFree(submatj->rmap));
2661: #endif

2663:   if (!submatj->allcolumns) {
2664: #if defined(PETSC_USE_CTABLE)
2665:     PetscCall(PetscHMapIDestroy(&submatj->cmap));
2666: #else
2667:     PetscCall(PetscFree(submatj->cmap));
2668: #endif
2669:   }
2670:   PetscCall(PetscFree(submatj->row2proc));

2672:   PetscCall(PetscFree(submatj));
2673:   PetscFunctionReturn(PETSC_SUCCESS);
2674: }

2676: PetscErrorCode MatDestroySubMatrix_SeqAIJ(Mat C)
2677: {
2678:   Mat_SeqAIJ  *c       = (Mat_SeqAIJ *)C->data;
2679:   Mat_SubSppt *submatj = c->submatis1;

2681:   PetscFunctionBegin;
2682:   PetscCall((*submatj->destroy)(C));
2683:   PetscCall(MatDestroySubMatrix_Private(submatj));
2684:   PetscFunctionReturn(PETSC_SUCCESS);
2685: }

2687: /* Note this has code duplication with MatDestroySubMatrices_SeqBAIJ() */
2688: static PetscErrorCode MatDestroySubMatrices_SeqAIJ(PetscInt n, Mat *mat[])
2689: {
2690:   PetscInt     i;
2691:   Mat          C;
2692:   Mat_SeqAIJ  *c;
2693:   Mat_SubSppt *submatj;

2695:   PetscFunctionBegin;
2696:   for (i = 0; i < n; i++) {
2697:     C       = (*mat)[i];
2698:     c       = (Mat_SeqAIJ *)C->data;
2699:     submatj = c->submatis1;
2700:     if (submatj) {
2701:       if (--((PetscObject)C)->refct <= 0) {
2702:         PetscCall(PetscFree(C->factorprefix));
2703:         PetscCall((*submatj->destroy)(C));
2704:         PetscCall(MatDestroySubMatrix_Private(submatj));
2705:         PetscCall(PetscFree(C->defaultvectype));
2706:         PetscCall(PetscFree(C->defaultrandtype));
2707:         PetscCall(PetscLayoutDestroy(&C->rmap));
2708:         PetscCall(PetscLayoutDestroy(&C->cmap));
2709:         PetscCall(PetscHeaderDestroy(&C));
2710:       }
2711:     } else {
2712:       PetscCall(MatDestroy(&C));
2713:     }
2714:   }

2716:   /* Destroy Dummy submatrices created for reuse */
2717:   PetscCall(MatDestroySubMatrices_Dummy(n, mat));

2719:   PetscCall(PetscFree(*mat));
2720:   PetscFunctionReturn(PETSC_SUCCESS);
2721: }

2723: static PetscErrorCode MatCreateSubMatrices_SeqAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2724: {
2725:   PetscInt i;

2727:   PetscFunctionBegin;
2728:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n + 1, B));

2730:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqAIJ(A, irow[i], icol[i], PETSC_DECIDE, scall, &(*B)[i]));
2731:   PetscFunctionReturn(PETSC_SUCCESS);
2732: }

2734: static PetscErrorCode MatIncreaseOverlap_SeqAIJ(Mat A, PetscInt is_max, IS is[], PetscInt ov)
2735: {
2736:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2737:   PetscInt        row, i, j, k, l, ll, m, n, *nidx, isz, val;
2738:   const PetscInt *idx;
2739:   PetscInt        start, end, *ai, *aj, bs = A->rmap->bs == A->cmap->bs ? A->rmap->bs : 1;
2740:   PetscBT         table;

2742:   PetscFunctionBegin;
2743:   m  = A->rmap->n / bs;
2744:   ai = a->i;
2745:   aj = a->j;

2747:   PetscCheck(ov >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "illegal negative overlap value used");

2749:   PetscCall(PetscMalloc1(m + 1, &nidx));
2750:   PetscCall(PetscBTCreate(m, &table));

2752:   for (i = 0; i < is_max; i++) {
2753:     /* Initialize the two local arrays */
2754:     isz = 0;
2755:     PetscCall(PetscBTMemzero(m, table));

2757:     /* Extract the indices, assume there can be duplicate entries */
2758:     PetscCall(ISGetIndices(is[i], &idx));
2759:     PetscCall(ISGetLocalSize(is[i], &n));

2761:     if (bs > 1) {
2762:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2763:       for (j = 0; j < n; ++j) {
2764:         if (!PetscBTLookupSet(table, idx[j] / bs)) nidx[isz++] = idx[j] / bs;
2765:       }
2766:       PetscCall(ISRestoreIndices(is[i], &idx));
2767:       PetscCall(ISDestroy(&is[i]));

2769:       k = 0;
2770:       for (j = 0; j < ov; j++) { /* for each overlap */
2771:         n = isz;
2772:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2773:           for (ll = 0; ll < bs; ll++) {
2774:             row   = bs * nidx[k] + ll;
2775:             start = ai[row];
2776:             end   = ai[row + 1];
2777:             for (l = start; l < end; l++) {
2778:               val = aj[l] / bs;
2779:               if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2780:             }
2781:           }
2782:         }
2783:       }
2784:       PetscCall(ISCreateBlock(PETSC_COMM_SELF, bs, isz, nidx, PETSC_COPY_VALUES, is + i));
2785:     } else {
2786:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2787:       for (j = 0; j < n; ++j) {
2788:         if (!PetscBTLookupSet(table, idx[j])) nidx[isz++] = idx[j];
2789:       }
2790:       PetscCall(ISRestoreIndices(is[i], &idx));
2791:       PetscCall(ISDestroy(&is[i]));

2793:       k = 0;
2794:       for (j = 0; j < ov; j++) { /* for each overlap */
2795:         n = isz;
2796:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2797:           row   = nidx[k];
2798:           start = ai[row];
2799:           end   = ai[row + 1];
2800:           for (l = start; l < end; l++) {
2801:             val = aj[l];
2802:             if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2803:           }
2804:         }
2805:       }
2806:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, isz, nidx, PETSC_COPY_VALUES, is + i));
2807:     }
2808:   }
2809:   PetscCall(PetscBTDestroy(&table));
2810:   PetscCall(PetscFree(nidx));
2811:   PetscFunctionReturn(PETSC_SUCCESS);
2812: }

2814: static PetscErrorCode MatPermute_SeqAIJ(Mat A, IS rowp, IS colp, Mat *B)
2815: {
2816:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2817:   PetscInt        i, nz = 0, m = A->rmap->n, n = A->cmap->n;
2818:   const PetscInt *row, *col;
2819:   PetscInt       *cnew, j, *lens;
2820:   IS              icolp, irowp;
2821:   PetscInt       *cwork = NULL;
2822:   PetscScalar    *vwork = NULL;

2824:   PetscFunctionBegin;
2825:   PetscCall(ISInvertPermutation(rowp, PETSC_DECIDE, &irowp));
2826:   PetscCall(ISGetIndices(irowp, &row));
2827:   PetscCall(ISInvertPermutation(colp, PETSC_DECIDE, &icolp));
2828:   PetscCall(ISGetIndices(icolp, &col));

2830:   /* determine lengths of permuted rows */
2831:   PetscCall(PetscMalloc1(m + 1, &lens));
2832:   for (i = 0; i < m; i++) lens[row[i]] = a->i[i + 1] - a->i[i];
2833:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2834:   PetscCall(MatSetSizes(*B, m, n, m, n));
2835:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2836:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2837:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*B, 0, lens));
2838:   PetscCall(PetscFree(lens));

2840:   PetscCall(PetscMalloc1(n, &cnew));
2841:   for (i = 0; i < m; i++) {
2842:     PetscCall(MatGetRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2843:     for (j = 0; j < nz; j++) cnew[j] = col[cwork[j]];
2844:     PetscCall(MatSetValues_SeqAIJ(*B, 1, &row[i], nz, cnew, vwork, INSERT_VALUES));
2845:     PetscCall(MatRestoreRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2846:   }
2847:   PetscCall(PetscFree(cnew));

2849:   (*B)->assembled = PETSC_FALSE;

2851: #if defined(PETSC_HAVE_DEVICE)
2852:   PetscCall(MatBindToCPU(*B, A->boundtocpu));
2853: #endif
2854:   PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
2855:   PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
2856:   PetscCall(ISRestoreIndices(irowp, &row));
2857:   PetscCall(ISRestoreIndices(icolp, &col));
2858:   PetscCall(ISDestroy(&irowp));
2859:   PetscCall(ISDestroy(&icolp));
2860:   if (rowp == colp) PetscCall(MatPropagateSymmetryOptions(A, *B));
2861:   PetscFunctionReturn(PETSC_SUCCESS);
2862: }

2864: PetscErrorCode MatCopy_SeqAIJ(Mat A, Mat B, MatStructure str)
2865: {
2866:   PetscFunctionBegin;
2867:   /* If the two matrices have the same copy implementation, use fast copy. */
2868:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
2869:     Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2870:     Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
2871:     const PetscScalar *aa;
2872:     PetscScalar       *bb;

2874:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2875:     PetscCall(MatSeqAIJGetArrayWrite(B, &bb));

2877:     PetscCheck(a->i[A->rmap->n] == b->i[B->rmap->n], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different %" PetscInt_FMT " != %" PetscInt_FMT, a->i[A->rmap->n], b->i[B->rmap->n]);
2878:     PetscCall(PetscArraycpy(bb, aa, a->i[A->rmap->n]));
2879:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
2880:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2881:     PetscCall(MatSeqAIJRestoreArrayWrite(B, &bb));
2882:   } else {
2883:     PetscCall(MatCopy_Basic(A, B, str));
2884:   }
2885:   PetscFunctionReturn(PETSC_SUCCESS);
2886: }

2888: PETSC_INTERN PetscErrorCode MatSeqAIJGetArray_SeqAIJ(Mat A, PetscScalar *array[])
2889: {
2890:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2892:   PetscFunctionBegin;
2893:   *array = a->a;
2894:   PetscFunctionReturn(PETSC_SUCCESS);
2895: }

2897: PETSC_INTERN PetscErrorCode MatSeqAIJRestoreArray_SeqAIJ(Mat A, PetscScalar *array[])
2898: {
2899:   PetscFunctionBegin;
2900:   *array = NULL;
2901:   PetscFunctionReturn(PETSC_SUCCESS);
2902: }

2904: /*
2905:    Computes the number of nonzeros per row needed for preallocation when X and Y
2906:    have different nonzero structure.
2907: */
2908: PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt m, const PetscInt *xi, const PetscInt *xj, const PetscInt *yi, const PetscInt *yj, PetscInt *nnz)
2909: {
2910:   PetscInt i, j, k, nzx, nzy;

2912:   PetscFunctionBegin;
2913:   /* Set the number of nonzeros in the new matrix */
2914:   for (i = 0; i < m; i++) {
2915:     const PetscInt *xjj = PetscSafePointerPlusOffset(xj, xi[i]), *yjj = PetscSafePointerPlusOffset(yj, yi[i]);
2916:     nzx    = xi[i + 1] - xi[i];
2917:     nzy    = yi[i + 1] - yi[i];
2918:     nnz[i] = 0;
2919:     for (j = 0, k = 0; j < nzx; j++) {                  /* Point in X */
2920:       for (; k < nzy && yjj[k] < xjj[j]; k++) nnz[i]++; /* Catch up to X */
2921:       if (k < nzy && yjj[k] == xjj[j]) k++;             /* Skip duplicate */
2922:       nnz[i]++;
2923:     }
2924:     for (; k < nzy; k++) nnz[i]++;
2925:   }
2926:   PetscFunctionReturn(PETSC_SUCCESS);
2927: }

2929: PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat Y, Mat X, PetscInt *nnz)
2930: {
2931:   PetscInt    m = Y->rmap->N;
2932:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data;
2933:   Mat_SeqAIJ *y = (Mat_SeqAIJ *)Y->data;

2935:   PetscFunctionBegin;
2936:   /* Set the number of nonzeros in the new matrix */
2937:   PetscCall(MatAXPYGetPreallocation_SeqX_private(m, x->i, x->j, y->i, y->j, nnz));
2938:   PetscFunctionReturn(PETSC_SUCCESS);
2939: }

2941: PetscErrorCode MatAXPY_SeqAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
2942: {
2943:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;

2945:   PetscFunctionBegin;
2946:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
2947:     PetscBool e = x->nz == y->nz ? PETSC_TRUE : PETSC_FALSE;
2948:     if (e) {
2949:       PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
2950:       if (e) {
2951:         PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
2952:         if (e) str = SAME_NONZERO_PATTERN;
2953:       }
2954:     }
2955:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
2956:   }
2957:   if (str == SAME_NONZERO_PATTERN) {
2958:     const PetscScalar *xa;
2959:     PetscScalar       *ya, alpha = a;
2960:     PetscBLASInt       one = 1, bnz;

2962:     PetscCall(PetscBLASIntCast(x->nz, &bnz));
2963:     PetscCall(MatSeqAIJGetArray(Y, &ya));
2964:     PetscCall(MatSeqAIJGetArrayRead(X, &xa));
2965:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa, &one, ya, &one));
2966:     PetscCall(MatSeqAIJRestoreArrayRead(X, &xa));
2967:     PetscCall(MatSeqAIJRestoreArray(Y, &ya));
2968:     PetscCall(PetscLogFlops(2.0 * bnz));
2969:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
2970:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
2971:     PetscCall(MatAXPY_Basic(Y, a, X, str));
2972:   } else {
2973:     Mat       B;
2974:     PetscInt *nnz;
2975:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
2976:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
2977:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
2978:     PetscCall(MatSetLayouts(B, Y->rmap, Y->cmap));
2979:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
2980:     PetscCall(MatAXPYGetPreallocation_SeqAIJ(Y, X, nnz));
2981:     PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
2982:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
2983:     PetscCall(MatHeaderMerge(Y, &B));
2984:     PetscCall(MatSeqAIJCheckInode(Y));
2985:     PetscCall(PetscFree(nnz));
2986:   }
2987:   PetscFunctionReturn(PETSC_SUCCESS);
2988: }

2990: PETSC_INTERN PetscErrorCode MatConjugate_SeqAIJ(Mat mat)
2991: {
2992: #if defined(PETSC_USE_COMPLEX)
2993:   Mat_SeqAIJ  *aij = (Mat_SeqAIJ *)mat->data;
2994:   PetscInt     i, nz;
2995:   PetscScalar *a;

2997:   PetscFunctionBegin;
2998:   nz = aij->nz;
2999:   PetscCall(MatSeqAIJGetArray(mat, &a));
3000:   for (i = 0; i < nz; i++) a[i] = PetscConj(a[i]);
3001:   PetscCall(MatSeqAIJRestoreArray(mat, &a));
3002: #else
3003:   PetscFunctionBegin;
3004: #endif
3005:   PetscFunctionReturn(PETSC_SUCCESS);
3006: }

3008: static PetscErrorCode MatGetRowMaxAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3009: {
3010:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3011:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3012:   PetscReal        atmp;
3013:   PetscScalar     *x;
3014:   const MatScalar *aa, *av;

3016:   PetscFunctionBegin;
3017:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3018:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3019:   aa = av;
3020:   ai = a->i;
3021:   aj = a->j;

3023:   PetscCall(VecGetArrayWrite(v, &x));
3024:   PetscCall(VecGetLocalSize(v, &n));
3025:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3026:   for (i = 0; i < m; i++) {
3027:     ncols = ai[1] - ai[0];
3028:     ai++;
3029:     x[i] = 0;
3030:     for (j = 0; j < ncols; j++) {
3031:       atmp = PetscAbsScalar(*aa);
3032:       if (PetscAbsScalar(x[i]) < atmp) {
3033:         x[i] = atmp;
3034:         if (idx) idx[i] = *aj;
3035:       }
3036:       aa++;
3037:       aj++;
3038:     }
3039:   }
3040:   PetscCall(VecRestoreArrayWrite(v, &x));
3041:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3042:   PetscFunctionReturn(PETSC_SUCCESS);
3043: }

3045: static PetscErrorCode MatGetRowSumAbs_SeqAIJ(Mat A, Vec v)
3046: {
3047:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3048:   PetscInt         i, j, m = A->rmap->n, *ai, ncols, n;
3049:   PetscScalar     *x;
3050:   const MatScalar *aa, *av;

3052:   PetscFunctionBegin;
3053:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3054:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3055:   aa = av;
3056:   ai = a->i;

3058:   PetscCall(VecGetArrayWrite(v, &x));
3059:   PetscCall(VecGetLocalSize(v, &n));
3060:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3061:   for (i = 0; i < m; i++) {
3062:     ncols = ai[1] - ai[0];
3063:     ai++;
3064:     x[i] = 0;
3065:     for (j = 0; j < ncols; j++) {
3066:       x[i] += PetscAbsScalar(*aa);
3067:       aa++;
3068:     }
3069:   }
3070:   PetscCall(VecRestoreArrayWrite(v, &x));
3071:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3072:   PetscFunctionReturn(PETSC_SUCCESS);
3073: }

3075: static PetscErrorCode MatGetRowMax_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3076: {
3077:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3078:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3079:   PetscScalar     *x;
3080:   const MatScalar *aa, *av;

3082:   PetscFunctionBegin;
3083:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3084:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3085:   aa = av;
3086:   ai = a->i;
3087:   aj = a->j;

3089:   PetscCall(VecGetArrayWrite(v, &x));
3090:   PetscCall(VecGetLocalSize(v, &n));
3091:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3092:   for (i = 0; i < m; i++) {
3093:     ncols = ai[1] - ai[0];
3094:     ai++;
3095:     if (ncols == A->cmap->n) { /* row is dense */
3096:       x[i] = *aa;
3097:       if (idx) idx[i] = 0;
3098:     } else { /* row is sparse so already KNOW maximum is 0.0 or higher */
3099:       x[i] = 0.0;
3100:       if (idx) {
3101:         for (j = 0; j < ncols; j++) { /* find first implicit 0.0 in the row */
3102:           if (aj[j] > j) {
3103:             idx[i] = j;
3104:             break;
3105:           }
3106:         }
3107:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3108:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3109:       }
3110:     }
3111:     for (j = 0; j < ncols; j++) {
3112:       if (PetscRealPart(x[i]) < PetscRealPart(*aa)) {
3113:         x[i] = *aa;
3114:         if (idx) idx[i] = *aj;
3115:       }
3116:       aa++;
3117:       aj++;
3118:     }
3119:   }
3120:   PetscCall(VecRestoreArrayWrite(v, &x));
3121:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3122:   PetscFunctionReturn(PETSC_SUCCESS);
3123: }

3125: static PetscErrorCode MatGetRowMinAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3126: {
3127:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3128:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3129:   PetscScalar     *x;
3130:   const MatScalar *aa, *av;

3132:   PetscFunctionBegin;
3133:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3134:   aa = av;
3135:   ai = a->i;
3136:   aj = a->j;

3138:   PetscCall(VecGetArrayWrite(v, &x));
3139:   PetscCall(VecGetLocalSize(v, &n));
3140:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector, %" PetscInt_FMT " vs. %" PetscInt_FMT " rows", m, n);
3141:   for (i = 0; i < m; i++) {
3142:     ncols = ai[1] - ai[0];
3143:     ai++;
3144:     if (ncols == A->cmap->n) { /* row is dense */
3145:       x[i] = *aa;
3146:       if (idx) idx[i] = 0;
3147:     } else { /* row is sparse so already KNOW minimum is 0.0 or higher */
3148:       x[i] = 0.0;
3149:       if (idx) { /* find first implicit 0.0 in the row */
3150:         for (j = 0; j < ncols; j++) {
3151:           if (aj[j] > j) {
3152:             idx[i] = j;
3153:             break;
3154:           }
3155:         }
3156:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3157:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3158:       }
3159:     }
3160:     for (j = 0; j < ncols; j++) {
3161:       if (PetscAbsScalar(x[i]) > PetscAbsScalar(*aa)) {
3162:         x[i] = *aa;
3163:         if (idx) idx[i] = *aj;
3164:       }
3165:       aa++;
3166:       aj++;
3167:     }
3168:   }
3169:   PetscCall(VecRestoreArrayWrite(v, &x));
3170:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3171:   PetscFunctionReturn(PETSC_SUCCESS);
3172: }

3174: static PetscErrorCode MatGetRowMin_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3175: {
3176:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3177:   PetscInt         i, j, m = A->rmap->n, ncols, n;
3178:   const PetscInt  *ai, *aj;
3179:   PetscScalar     *x;
3180:   const MatScalar *aa, *av;

3182:   PetscFunctionBegin;
3183:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3184:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3185:   aa = av;
3186:   ai = a->i;
3187:   aj = a->j;

3189:   PetscCall(VecGetArrayWrite(v, &x));
3190:   PetscCall(VecGetLocalSize(v, &n));
3191:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3192:   for (i = 0; i < m; i++) {
3193:     ncols = ai[1] - ai[0];
3194:     ai++;
3195:     if (ncols == A->cmap->n) { /* row is dense */
3196:       x[i] = *aa;
3197:       if (idx) idx[i] = 0;
3198:     } else { /* row is sparse so already KNOW minimum is 0.0 or lower */
3199:       x[i] = 0.0;
3200:       if (idx) { /* find first implicit 0.0 in the row */
3201:         for (j = 0; j < ncols; j++) {
3202:           if (aj[j] > j) {
3203:             idx[i] = j;
3204:             break;
3205:           }
3206:         }
3207:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3208:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3209:       }
3210:     }
3211:     for (j = 0; j < ncols; j++) {
3212:       if (PetscRealPart(x[i]) > PetscRealPart(*aa)) {
3213:         x[i] = *aa;
3214:         if (idx) idx[i] = *aj;
3215:       }
3216:       aa++;
3217:       aj++;
3218:     }
3219:   }
3220:   PetscCall(VecRestoreArrayWrite(v, &x));
3221:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3222:   PetscFunctionReturn(PETSC_SUCCESS);
3223: }

3225: static PetscErrorCode MatInvertBlockDiagonal_SeqAIJ(Mat A, const PetscScalar **values)
3226: {
3227:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
3228:   PetscInt        i, bs = A->rmap->bs, mbs = A->rmap->n / bs, ipvt[5], bs2 = bs * bs, *v_pivots, ij[7], *IJ, j;
3229:   MatScalar      *diag, work[25], *v_work;
3230:   const PetscReal shift = 0.0;
3231:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;

3233:   PetscFunctionBegin;
3234:   allowzeropivot = PetscNot(A->erroriffailure);
3235:   if (a->ibdiagvalid) {
3236:     if (values) *values = a->ibdiag;
3237:     PetscFunctionReturn(PETSC_SUCCESS);
3238:   }
3239:   if (!a->ibdiag) PetscCall(PetscMalloc1(bs2 * mbs, &a->ibdiag));
3240:   diag = a->ibdiag;
3241:   if (values) *values = a->ibdiag;
3242:   /* factor and invert each block */
3243:   switch (bs) {
3244:   case 1:
3245:     for (i = 0; i < mbs; i++) {
3246:       PetscCall(MatGetValues(A, 1, &i, 1, &i, diag + i));
3247:       if (PetscAbsScalar(diag[i] + shift) < PETSC_MACHINE_EPSILON) {
3248:         PetscCheck(allowzeropivot, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON);
3249:         A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3250:         A->factorerror_zeropivot_value = PetscAbsScalar(diag[i]);
3251:         A->factorerror_zeropivot_row   = i;
3252:         PetscCall(PetscInfo(A, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g\n", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON));
3253:       }
3254:       diag[i] = (PetscScalar)1.0 / (diag[i] + shift);
3255:     }
3256:     break;
3257:   case 2:
3258:     for (i = 0; i < mbs; i++) {
3259:       ij[0] = 2 * i;
3260:       ij[1] = 2 * i + 1;
3261:       PetscCall(MatGetValues(A, 2, ij, 2, ij, diag));
3262:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
3263:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3264:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
3265:       diag += 4;
3266:     }
3267:     break;
3268:   case 3:
3269:     for (i = 0; i < mbs; i++) {
3270:       ij[0] = 3 * i;
3271:       ij[1] = 3 * i + 1;
3272:       ij[2] = 3 * i + 2;
3273:       PetscCall(MatGetValues(A, 3, ij, 3, ij, diag));
3274:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
3275:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3276:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
3277:       diag += 9;
3278:     }
3279:     break;
3280:   case 4:
3281:     for (i = 0; i < mbs; i++) {
3282:       ij[0] = 4 * i;
3283:       ij[1] = 4 * i + 1;
3284:       ij[2] = 4 * i + 2;
3285:       ij[3] = 4 * i + 3;
3286:       PetscCall(MatGetValues(A, 4, ij, 4, ij, diag));
3287:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
3288:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3289:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
3290:       diag += 16;
3291:     }
3292:     break;
3293:   case 5:
3294:     for (i = 0; i < mbs; i++) {
3295:       ij[0] = 5 * i;
3296:       ij[1] = 5 * i + 1;
3297:       ij[2] = 5 * i + 2;
3298:       ij[3] = 5 * i + 3;
3299:       ij[4] = 5 * i + 4;
3300:       PetscCall(MatGetValues(A, 5, ij, 5, ij, diag));
3301:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3302:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3303:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
3304:       diag += 25;
3305:     }
3306:     break;
3307:   case 6:
3308:     for (i = 0; i < mbs; i++) {
3309:       ij[0] = 6 * i;
3310:       ij[1] = 6 * i + 1;
3311:       ij[2] = 6 * i + 2;
3312:       ij[3] = 6 * i + 3;
3313:       ij[4] = 6 * i + 4;
3314:       ij[5] = 6 * i + 5;
3315:       PetscCall(MatGetValues(A, 6, ij, 6, ij, diag));
3316:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
3317:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3318:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
3319:       diag += 36;
3320:     }
3321:     break;
3322:   case 7:
3323:     for (i = 0; i < mbs; i++) {
3324:       ij[0] = 7 * i;
3325:       ij[1] = 7 * i + 1;
3326:       ij[2] = 7 * i + 2;
3327:       ij[3] = 7 * i + 3;
3328:       ij[4] = 7 * i + 4;
3329:       ij[5] = 7 * i + 5;
3330:       ij[6] = 7 * i + 6;
3331:       PetscCall(MatGetValues(A, 7, ij, 7, ij, diag));
3332:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
3333:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3334:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
3335:       diag += 49;
3336:     }
3337:     break;
3338:   default:
3339:     PetscCall(PetscMalloc3(bs, &v_work, bs, &v_pivots, bs, &IJ));
3340:     for (i = 0; i < mbs; i++) {
3341:       for (j = 0; j < bs; j++) IJ[j] = bs * i + j;
3342:       PetscCall(MatGetValues(A, bs, IJ, bs, IJ, diag));
3343:       PetscCall(PetscKernel_A_gets_inverse_A(bs, diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3344:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3345:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bs));
3346:       diag += bs2;
3347:     }
3348:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3349:   }
3350:   a->ibdiagvalid = PETSC_TRUE;
3351:   PetscFunctionReturn(PETSC_SUCCESS);
3352: }

3354: static PetscErrorCode MatSetRandom_SeqAIJ(Mat x, PetscRandom rctx)
3355: {
3356:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3357:   PetscScalar a, *aa;
3358:   PetscInt    m, n, i, j, col;

3360:   PetscFunctionBegin;
3361:   if (!x->assembled) {
3362:     PetscCall(MatGetSize(x, &m, &n));
3363:     for (i = 0; i < m; i++) {
3364:       for (j = 0; j < aij->imax[i]; j++) {
3365:         PetscCall(PetscRandomGetValue(rctx, &a));
3366:         col = (PetscInt)(n * PetscRealPart(a));
3367:         PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3368:       }
3369:     }
3370:   } else {
3371:     PetscCall(MatSeqAIJGetArrayWrite(x, &aa));
3372:     for (i = 0; i < aij->nz; i++) PetscCall(PetscRandomGetValue(rctx, aa + i));
3373:     PetscCall(MatSeqAIJRestoreArrayWrite(x, &aa));
3374:   }
3375:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3376:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3377:   PetscFunctionReturn(PETSC_SUCCESS);
3378: }

3380: /* Like MatSetRandom_SeqAIJ, but do not set values on columns in range of [low, high) */
3381: PetscErrorCode MatSetRandomSkipColumnRange_SeqAIJ_Private(Mat x, PetscInt low, PetscInt high, PetscRandom rctx)
3382: {
3383:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3384:   PetscScalar a;
3385:   PetscInt    m, n, i, j, col, nskip;

3387:   PetscFunctionBegin;
3388:   nskip = high - low;
3389:   PetscCall(MatGetSize(x, &m, &n));
3390:   n -= nskip; /* shrink number of columns where nonzeros can be set */
3391:   for (i = 0; i < m; i++) {
3392:     for (j = 0; j < aij->imax[i]; j++) {
3393:       PetscCall(PetscRandomGetValue(rctx, &a));
3394:       col = (PetscInt)(n * PetscRealPart(a));
3395:       if (col >= low) col += nskip; /* shift col rightward to skip the hole */
3396:       PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3397:     }
3398:   }
3399:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3400:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3401:   PetscFunctionReturn(PETSC_SUCCESS);
3402: }

3404: static struct _MatOps MatOps_Values = {MatSetValues_SeqAIJ,
3405:                                        MatGetRow_SeqAIJ,
3406:                                        MatRestoreRow_SeqAIJ,
3407:                                        MatMult_SeqAIJ,
3408:                                        /*  4*/ MatMultAdd_SeqAIJ,
3409:                                        MatMultTranspose_SeqAIJ,
3410:                                        MatMultTransposeAdd_SeqAIJ,
3411:                                        NULL,
3412:                                        NULL,
3413:                                        NULL,
3414:                                        /* 10*/ NULL,
3415:                                        MatLUFactor_SeqAIJ,
3416:                                        NULL,
3417:                                        MatSOR_SeqAIJ,
3418:                                        MatTranspose_SeqAIJ,
3419:                                        /* 15*/ MatGetInfo_SeqAIJ,
3420:                                        MatEqual_SeqAIJ,
3421:                                        MatGetDiagonal_SeqAIJ,
3422:                                        MatDiagonalScale_SeqAIJ,
3423:                                        MatNorm_SeqAIJ,
3424:                                        /* 20*/ NULL,
3425:                                        MatAssemblyEnd_SeqAIJ,
3426:                                        MatSetOption_SeqAIJ,
3427:                                        MatZeroEntries_SeqAIJ,
3428:                                        /* 24*/ MatZeroRows_SeqAIJ,
3429:                                        NULL,
3430:                                        NULL,
3431:                                        NULL,
3432:                                        NULL,
3433:                                        /* 29*/ MatSetUp_Seq_Hash,
3434:                                        NULL,
3435:                                        NULL,
3436:                                        NULL,
3437:                                        NULL,
3438:                                        /* 34*/ MatDuplicate_SeqAIJ,
3439:                                        NULL,
3440:                                        NULL,
3441:                                        MatILUFactor_SeqAIJ,
3442:                                        NULL,
3443:                                        /* 39*/ MatAXPY_SeqAIJ,
3444:                                        MatCreateSubMatrices_SeqAIJ,
3445:                                        MatIncreaseOverlap_SeqAIJ,
3446:                                        MatGetValues_SeqAIJ,
3447:                                        MatCopy_SeqAIJ,
3448:                                        /* 44*/ MatGetRowMax_SeqAIJ,
3449:                                        MatScale_SeqAIJ,
3450:                                        MatShift_SeqAIJ,
3451:                                        MatDiagonalSet_SeqAIJ,
3452:                                        MatZeroRowsColumns_SeqAIJ,
3453:                                        /* 49*/ MatSetRandom_SeqAIJ,
3454:                                        MatGetRowIJ_SeqAIJ,
3455:                                        MatRestoreRowIJ_SeqAIJ,
3456:                                        MatGetColumnIJ_SeqAIJ,
3457:                                        MatRestoreColumnIJ_SeqAIJ,
3458:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
3459:                                        NULL,
3460:                                        NULL,
3461:                                        MatPermute_SeqAIJ,
3462:                                        NULL,
3463:                                        /* 59*/ NULL,
3464:                                        MatDestroy_SeqAIJ,
3465:                                        MatView_SeqAIJ,
3466:                                        NULL,
3467:                                        NULL,
3468:                                        /* 64*/ MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ,
3469:                                        NULL,
3470:                                        NULL,
3471:                                        NULL,
3472:                                        MatGetRowMaxAbs_SeqAIJ,
3473:                                        /* 69*/ MatGetRowMinAbs_SeqAIJ,
3474:                                        NULL,
3475:                                        NULL,
3476:                                        MatFDColoringApply_AIJ,
3477:                                        NULL,
3478:                                        /* 74*/ MatFindZeroDiagonals_SeqAIJ,
3479:                                        NULL,
3480:                                        NULL,
3481:                                        NULL,
3482:                                        MatLoad_SeqAIJ,
3483:                                        /* 79*/ NULL,
3484:                                        NULL,
3485:                                        NULL,
3486:                                        NULL,
3487:                                        NULL,
3488:                                        /* 84*/ NULL,
3489:                                        MatMatMultNumeric_SeqAIJ_SeqAIJ,
3490:                                        MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy,
3491:                                        NULL,
3492:                                        MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ,
3493:                                        /* 90*/ NULL,
3494:                                        MatProductSetFromOptions_SeqAIJ,
3495:                                        NULL,
3496:                                        NULL,
3497:                                        MatConjugate_SeqAIJ,
3498:                                        /* 94*/ NULL,
3499:                                        MatSetValuesRow_SeqAIJ,
3500:                                        MatRealPart_SeqAIJ,
3501:                                        MatImaginaryPart_SeqAIJ,
3502:                                        NULL,
3503:                                        /* 99*/ NULL,
3504:                                        MatMatSolve_SeqAIJ,
3505:                                        NULL,
3506:                                        MatGetRowMin_SeqAIJ,
3507:                                        NULL,
3508:                                        /*104*/ NULL,
3509:                                        NULL,
3510:                                        NULL,
3511:                                        NULL,
3512:                                        NULL,
3513:                                        /*109*/ NULL,
3514:                                        NULL,
3515:                                        NULL,
3516:                                        NULL,
3517:                                        MatGetMultiProcBlock_SeqAIJ,
3518:                                        /*114*/ MatFindNonzeroRows_SeqAIJ,
3519:                                        MatGetColumnReductions_SeqAIJ,
3520:                                        MatInvertBlockDiagonal_SeqAIJ,
3521:                                        MatInvertVariableBlockDiagonal_SeqAIJ,
3522:                                        NULL,
3523:                                        /*119*/ NULL,
3524:                                        NULL,
3525:                                        MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ,
3526:                                        MatTransposeColoringCreate_SeqAIJ,
3527:                                        MatTransColoringApplySpToDen_SeqAIJ,
3528:                                        /*124*/ MatTransColoringApplyDenToSp_SeqAIJ,
3529:                                        MatRARtNumeric_SeqAIJ_SeqAIJ,
3530:                                        NULL,
3531:                                        NULL,
3532:                                        MatFDColoringSetUp_SeqXAIJ,
3533:                                        /*129*/ MatFindOffBlockDiagonalEntries_SeqAIJ,
3534:                                        MatCreateMPIMatConcatenateSeqMat_SeqAIJ,
3535:                                        MatDestroySubMatrices_SeqAIJ,
3536:                                        NULL,
3537:                                        NULL,
3538:                                        /*134*/ MatCreateGraph_Simple_AIJ,
3539:                                        MatTransposeSymbolic_SeqAIJ,
3540:                                        MatEliminateZeros_SeqAIJ,
3541:                                        MatGetRowSumAbs_SeqAIJ,
3542:                                        NULL,
3543:                                        /*139*/ NULL,
3544:                                        NULL,
3545:                                        MatCopyHashToXAIJ_Seq_Hash,
3546:                                        NULL,
3547:                                        NULL};

3549: static PetscErrorCode MatSeqAIJSetColumnIndices_SeqAIJ(Mat mat, PetscInt *indices)
3550: {
3551:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3552:   PetscInt    i, nz, n;

3554:   PetscFunctionBegin;
3555:   nz = aij->maxnz;
3556:   n  = mat->rmap->n;
3557:   for (i = 0; i < nz; i++) aij->j[i] = indices[i];
3558:   aij->nz = nz;
3559:   for (i = 0; i < n; i++) aij->ilen[i] = aij->imax[i];
3560:   PetscFunctionReturn(PETSC_SUCCESS);
3561: }

3563: /*
3564:  * Given a sparse matrix with global column indices, compact it by using a local column space.
3565:  * The result matrix helps saving memory in other algorithms, such as MatPtAPSymbolic_MPIAIJ_MPIAIJ_scalable()
3566:  */
3567: PetscErrorCode MatSeqAIJCompactOutExtraColumns_SeqAIJ(Mat mat, ISLocalToGlobalMapping *mapping)
3568: {
3569:   Mat_SeqAIJ   *aij = (Mat_SeqAIJ *)mat->data;
3570:   PetscHMapI    gid1_lid1;
3571:   PetscHashIter tpos;
3572:   PetscInt      gid, lid, i, ec, nz = aij->nz;
3573:   PetscInt     *garray, *jj = aij->j;

3575:   PetscFunctionBegin;
3577:   PetscAssertPointer(mapping, 2);
3578:   /* use a table */
3579:   PetscCall(PetscHMapICreateWithSize(mat->rmap->n, &gid1_lid1));
3580:   ec = 0;
3581:   for (i = 0; i < nz; i++) {
3582:     PetscInt data, gid1 = jj[i] + 1;
3583:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &data));
3584:     if (!data) {
3585:       /* one based table */
3586:       PetscCall(PetscHMapISet(gid1_lid1, gid1, ++ec));
3587:     }
3588:   }
3589:   /* form array of columns we need */
3590:   PetscCall(PetscMalloc1(ec, &garray));
3591:   PetscHashIterBegin(gid1_lid1, tpos);
3592:   while (!PetscHashIterAtEnd(gid1_lid1, tpos)) {
3593:     PetscHashIterGetKey(gid1_lid1, tpos, gid);
3594:     PetscHashIterGetVal(gid1_lid1, tpos, lid);
3595:     PetscHashIterNext(gid1_lid1, tpos);
3596:     gid--;
3597:     lid--;
3598:     garray[lid] = gid;
3599:   }
3600:   PetscCall(PetscSortInt(ec, garray)); /* sort, and rebuild */
3601:   PetscCall(PetscHMapIClear(gid1_lid1));
3602:   for (i = 0; i < ec; i++) PetscCall(PetscHMapISet(gid1_lid1, garray[i] + 1, i + 1));
3603:   /* compact out the extra columns in B */
3604:   for (i = 0; i < nz; i++) {
3605:     PetscInt gid1 = jj[i] + 1;
3606:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &lid));
3607:     lid--;
3608:     jj[i] = lid;
3609:   }
3610:   PetscCall(PetscLayoutDestroy(&mat->cmap));
3611:   PetscCall(PetscHMapIDestroy(&gid1_lid1));
3612:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)mat), ec, ec, 1, &mat->cmap));
3613:   PetscCall(ISLocalToGlobalMappingCreate(PETSC_COMM_SELF, mat->cmap->bs, mat->cmap->n, garray, PETSC_OWN_POINTER, mapping));
3614:   PetscCall(ISLocalToGlobalMappingSetType(*mapping, ISLOCALTOGLOBALMAPPINGHASH));
3615:   PetscFunctionReturn(PETSC_SUCCESS);
3616: }

3618: /*@
3619:   MatSeqAIJSetColumnIndices - Set the column indices for all the rows
3620:   in the matrix.

3622:   Input Parameters:
3623: + mat     - the `MATSEQAIJ` matrix
3624: - indices - the column indices

3626:   Level: advanced

3628:   Notes:
3629:   This can be called if you have precomputed the nonzero structure of the
3630:   matrix and want to provide it to the matrix object to improve the performance
3631:   of the `MatSetValues()` operation.

3633:   You MUST have set the correct numbers of nonzeros per row in the call to
3634:   `MatCreateSeqAIJ()`, and the columns indices MUST be sorted.

3636:   MUST be called before any calls to `MatSetValues()`

3638:   The indices should start with zero, not one.

3640: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`
3641: @*/
3642: PetscErrorCode MatSeqAIJSetColumnIndices(Mat mat, PetscInt *indices)
3643: {
3644:   PetscFunctionBegin;
3646:   PetscAssertPointer(indices, 2);
3647:   PetscUseMethod(mat, "MatSeqAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
3648:   PetscFunctionReturn(PETSC_SUCCESS);
3649: }

3651: static PetscErrorCode MatStoreValues_SeqAIJ(Mat mat)
3652: {
3653:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3654:   size_t      nz  = aij->i[mat->rmap->n];

3656:   PetscFunctionBegin;
3657:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

3659:   /* allocate space for values if not already there */
3660:   if (!aij->saved_values) PetscCall(PetscMalloc1(nz + 1, &aij->saved_values));

3662:   /* copy values over */
3663:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
3664:   PetscFunctionReturn(PETSC_SUCCESS);
3665: }

3667: /*@
3668:   MatStoreValues - Stashes a copy of the matrix values; this allows reusing of the linear part of a Jacobian, while recomputing only the
3669:   nonlinear portion.

3671:   Logically Collect

3673:   Input Parameter:
3674: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3676:   Level: advanced

3678:   Example Usage:
3679: .vb
3680:     Using SNES
3681:     Create Jacobian matrix
3682:     Set linear terms into matrix
3683:     Apply boundary conditions to matrix, at this time matrix must have
3684:       final nonzero structure (i.e. setting the nonlinear terms and applying
3685:       boundary conditions again will not change the nonzero structure
3686:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3687:     MatStoreValues(mat);
3688:     Call SNESSetJacobian() with matrix
3689:     In your Jacobian routine
3690:       MatRetrieveValues(mat);
3691:       Set nonlinear terms in matrix

3693:     Without `SNESSolve()`, i.e. when you handle nonlinear solve yourself:
3694:     // build linear portion of Jacobian
3695:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3696:     MatStoreValues(mat);
3697:     loop over nonlinear iterations
3698:        MatRetrieveValues(mat);
3699:        // call MatSetValues(mat,...) to set nonliner portion of Jacobian
3700:        // call MatAssemblyBegin/End() on matrix
3701:        Solve linear system with Jacobian
3702:     endloop
3703: .ve

3705:   Notes:
3706:   Matrix must already be assembled before calling this routine
3707:   Must set the matrix option `MatSetOption`(mat,`MAT_NEW_NONZERO_LOCATIONS`,`PETSC_FALSE`); before
3708:   calling this routine.

3710:   When this is called multiple times it overwrites the previous set of stored values
3711:   and does not allocated additional space.

3713: .seealso: [](ch_matrices), `Mat`, `MatRetrieveValues()`
3714: @*/
3715: PetscErrorCode MatStoreValues(Mat mat)
3716: {
3717:   PetscFunctionBegin;
3719:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3720:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3721:   PetscUseMethod(mat, "MatStoreValues_C", (Mat), (mat));
3722:   PetscFunctionReturn(PETSC_SUCCESS);
3723: }

3725: static PetscErrorCode MatRetrieveValues_SeqAIJ(Mat mat)
3726: {
3727:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3728:   PetscInt    nz  = aij->i[mat->rmap->n];

3730:   PetscFunctionBegin;
3731:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
3732:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
3733:   /* copy values over */
3734:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
3735:   PetscFunctionReturn(PETSC_SUCCESS);
3736: }

3738: /*@
3739:   MatRetrieveValues - Retrieves the copy of the matrix values that was stored with `MatStoreValues()`

3741:   Logically Collect

3743:   Input Parameter:
3744: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3746:   Level: advanced

3748: .seealso: [](ch_matrices), `Mat`, `MatStoreValues()`
3749: @*/
3750: PetscErrorCode MatRetrieveValues(Mat mat)
3751: {
3752:   PetscFunctionBegin;
3754:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3755:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3756:   PetscUseMethod(mat, "MatRetrieveValues_C", (Mat), (mat));
3757:   PetscFunctionReturn(PETSC_SUCCESS);
3758: }

3760: /*@
3761:   MatCreateSeqAIJ - Creates a sparse matrix in `MATSEQAIJ` (compressed row) format
3762:   (the default parallel PETSc format).  For good matrix assembly performance
3763:   the user should preallocate the matrix storage by setting the parameter `nz`
3764:   (or the array `nnz`).

3766:   Collective

3768:   Input Parameters:
3769: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3770: . m    - number of rows
3771: . n    - number of columns
3772: . nz   - number of nonzeros per row (same for all rows)
3773: - nnz  - array containing the number of nonzeros in the various rows
3774:          (possibly different for each row) or NULL

3776:   Output Parameter:
3777: . A - the matrix

3779:   Options Database Keys:
3780: + -mat_no_inode            - Do not use inodes
3781: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3783:   Level: intermediate

3785:   Notes:
3786:   It is recommend to use `MatCreateFromOptions()` instead of this routine

3788:   If `nnz` is given then `nz` is ignored

3790:   The `MATSEQAIJ` format, also called
3791:   compressed row storage, is fully compatible with standard Fortran
3792:   storage.  That is, the stored row and column indices can begin at
3793:   either one (as in Fortran) or zero.

3795:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3796:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3797:   allocation.

3799:   By default, this format uses inodes (identical nodes) when possible, to
3800:   improve numerical efficiency of matrix-vector products and solves. We
3801:   search for consecutive rows with the same nonzero structure, thereby
3802:   reusing matrix information to achieve increased efficiency.

3804: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
3805: @*/
3806: PetscErrorCode MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
3807: {
3808:   PetscFunctionBegin;
3809:   PetscCall(MatCreate(comm, A));
3810:   PetscCall(MatSetSizes(*A, m, n, m, n));
3811:   PetscCall(MatSetType(*A, MATSEQAIJ));
3812:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, nnz));
3813:   PetscFunctionReturn(PETSC_SUCCESS);
3814: }

3816: /*@
3817:   MatSeqAIJSetPreallocation - For good matrix assembly performance
3818:   the user should preallocate the matrix storage by setting the parameter nz
3819:   (or the array nnz).  By setting these parameters accurately, performance
3820:   during matrix assembly can be increased by more than a factor of 50.

3822:   Collective

3824:   Input Parameters:
3825: + B   - The matrix
3826: . nz  - number of nonzeros per row (same for all rows)
3827: - nnz - array containing the number of nonzeros in the various rows
3828:          (possibly different for each row) or NULL

3830:   Options Database Keys:
3831: + -mat_no_inode            - Do not use inodes
3832: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3834:   Level: intermediate

3836:   Notes:
3837:   If `nnz` is given then `nz` is ignored

3839:   The `MATSEQAIJ` format also called
3840:   compressed row storage, is fully compatible with standard Fortran
3841:   storage.  That is, the stored row and column indices can begin at
3842:   either one (as in Fortran) or zero.  See the users' manual for details.

3844:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3845:   Set nz = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3846:   allocation.

3848:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3849:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3850:   You can also run with the option -info and look for messages with the string
3851:   malloc in them to see if additional memory allocation was needed.

3853:   Developer Notes:
3854:   Use nz of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
3855:   entries or columns indices

3857:   By default, this format uses inodes (identical nodes) when possible, to
3858:   improve numerical efficiency of matrix-vector products and solves. We
3859:   search for consecutive rows with the same nonzero structure, thereby
3860:   reusing matrix information to achieve increased efficiency.

3862: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`, `MatGetInfo()`,
3863:           `MatSeqAIJSetTotalPreallocation()`
3864: @*/
3865: PetscErrorCode MatSeqAIJSetPreallocation(Mat B, PetscInt nz, const PetscInt nnz[])
3866: {
3867:   PetscFunctionBegin;
3870:   PetscTryMethod(B, "MatSeqAIJSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, nz, nnz));
3871:   PetscFunctionReturn(PETSC_SUCCESS);
3872: }

3874: PetscErrorCode MatSeqAIJSetPreallocation_SeqAIJ(Mat B, PetscInt nz, const PetscInt *nnz)
3875: {
3876:   Mat_SeqAIJ *b              = (Mat_SeqAIJ *)B->data;
3877:   PetscBool   skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;
3878:   PetscInt    i;

3880:   PetscFunctionBegin;
3881:   if (B->hash_active) {
3882:     B->ops[0] = b->cops;
3883:     PetscCall(PetscHMapIJVDestroy(&b->ht));
3884:     PetscCall(PetscFree(b->dnz));
3885:     B->hash_active = PETSC_FALSE;
3886:   }
3887:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;
3888:   if (nz == MAT_SKIP_ALLOCATION) {
3889:     skipallocation = PETSC_TRUE;
3890:     nz             = 0;
3891:   }
3892:   PetscCall(PetscLayoutSetUp(B->rmap));
3893:   PetscCall(PetscLayoutSetUp(B->cmap));

3895:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
3896:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
3897:   if (nnz) {
3898:     for (i = 0; i < B->rmap->n; i++) {
3899:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
3900:       PetscCheck(nnz[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, nnz[i], B->cmap->n);
3901:     }
3902:   }

3904:   B->preallocated = PETSC_TRUE;
3905:   if (!skipallocation) {
3906:     if (!b->imax) PetscCall(PetscMalloc1(B->rmap->n, &b->imax));
3907:     if (!b->ilen) {
3908:       /* b->ilen will count nonzeros in each row so far. */
3909:       PetscCall(PetscCalloc1(B->rmap->n, &b->ilen));
3910:     } else {
3911:       PetscCall(PetscMemzero(b->ilen, B->rmap->n * sizeof(PetscInt)));
3912:     }
3913:     if (!b->ipre) PetscCall(PetscMalloc1(B->rmap->n, &b->ipre));
3914:     if (!nnz) {
3915:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 10;
3916:       else if (nz < 0) nz = 1;
3917:       nz = PetscMin(nz, B->cmap->n);
3918:       for (i = 0; i < B->rmap->n; i++) b->imax[i] = nz;
3919:       PetscCall(PetscIntMultError(nz, B->rmap->n, &nz));
3920:     } else {
3921:       PetscInt64 nz64 = 0;
3922:       for (i = 0; i < B->rmap->n; i++) {
3923:         b->imax[i] = nnz[i];
3924:         nz64 += nnz[i];
3925:       }
3926:       PetscCall(PetscIntCast(nz64, &nz));
3927:     }

3929:     /* allocate the matrix space */
3930:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
3931:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&b->j));
3932:     PetscCall(PetscShmgetAllocateArray(B->rmap->n + 1, sizeof(PetscInt), (void **)&b->i));
3933:     b->free_ij = PETSC_TRUE;
3934:     if (B->structure_only) {
3935:       b->free_a = PETSC_FALSE;
3936:     } else {
3937:       PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscScalar), (void **)&b->a));
3938:       b->free_a = PETSC_TRUE;
3939:     }
3940:     b->i[0] = 0;
3941:     for (i = 1; i < B->rmap->n + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];
3942:   } else {
3943:     b->free_a  = PETSC_FALSE;
3944:     b->free_ij = PETSC_FALSE;
3945:   }

3947:   if (b->ipre && nnz != b->ipre && b->imax) {
3948:     /* reserve user-requested sparsity */
3949:     PetscCall(PetscArraycpy(b->ipre, b->imax, B->rmap->n));
3950:   }

3952:   b->nz               = 0;
3953:   b->maxnz            = nz;
3954:   B->info.nz_unneeded = (double)b->maxnz;
3955:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
3956:   B->was_assembled = PETSC_FALSE;
3957:   B->assembled     = PETSC_FALSE;
3958:   /* We simply deem preallocation has changed nonzero state. Updating the state
3959:      will give clients (like AIJKokkos) a chance to know something has happened.
3960:   */
3961:   B->nonzerostate++;
3962:   PetscFunctionReturn(PETSC_SUCCESS);
3963: }

3965: PetscErrorCode MatResetPreallocation_SeqAIJ_Private(Mat A, PetscBool *memoryreset)
3966: {
3967:   Mat_SeqAIJ *a;
3968:   PetscInt    i;
3969:   PetscBool   skipreset;

3971:   PetscFunctionBegin;

3974:   PetscCheck(A->insertmode == NOT_SET_VALUES, PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot reset preallocation after setting some values but not yet calling MatAssemblyBegin()/MatAssemblyEnd()");
3975:   if (A->num_ass == 0) PetscFunctionReturn(PETSC_SUCCESS);

3977:   /* Check local size. If zero, then return */
3978:   if (!A->rmap->n) PetscFunctionReturn(PETSC_SUCCESS);

3980:   a = (Mat_SeqAIJ *)A->data;
3981:   /* if no saved info, we error out */
3982:   PetscCheck(a->ipre, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "No saved preallocation info ");

3984:   PetscCheck(a->i && a->imax && a->ilen, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "Memory info is incomplete, and cannot reset preallocation ");

3986:   PetscCall(PetscArraycmp(a->ipre, a->ilen, A->rmap->n, &skipreset));
3987:   if (skipreset) PetscCall(MatZeroEntries(A));
3988:   else {
3989:     PetscCall(PetscArraycpy(a->imax, a->ipre, A->rmap->n));
3990:     PetscCall(PetscArrayzero(a->ilen, A->rmap->n));
3991:     a->i[0] = 0;
3992:     for (i = 1; i < A->rmap->n + 1; i++) a->i[i] = a->i[i - 1] + a->imax[i - 1];
3993:     A->preallocated     = PETSC_TRUE;
3994:     a->nz               = 0;
3995:     a->maxnz            = a->i[A->rmap->n];
3996:     A->info.nz_unneeded = (double)a->maxnz;
3997:     A->was_assembled    = PETSC_FALSE;
3998:     A->assembled        = PETSC_FALSE;
3999:     A->nonzerostate++;
4000:     /* Log that the state of this object has changed; this will help guarantee that preconditioners get re-setup */
4001:     PetscCall(PetscObjectStateIncrease((PetscObject)A));
4002:   }
4003:   if (memoryreset) *memoryreset = (PetscBool)!skipreset;
4004:   PetscFunctionReturn(PETSC_SUCCESS);
4005: }

4007: static PetscErrorCode MatResetPreallocation_SeqAIJ(Mat A)
4008: {
4009:   PetscFunctionBegin;
4010:   PetscCall(MatResetPreallocation_SeqAIJ_Private(A, NULL));
4011:   PetscFunctionReturn(PETSC_SUCCESS);
4012: }

4014: /*@
4015:   MatSeqAIJSetPreallocationCSR - Allocates memory for a sparse sequential matrix in `MATSEQAIJ` format.

4017:   Input Parameters:
4018: + B - the matrix
4019: . i - the indices into `j` for the start of each row (indices start with zero)
4020: . j - the column indices for each row (indices start with zero) these must be sorted for each row
4021: - v - optional values in the matrix, use `NULL` if not provided

4023:   Level: developer

4025:   Notes:
4026:   The `i`,`j`,`v` values are COPIED with this routine; to avoid the copy use `MatCreateSeqAIJWithArrays()`

4028:   This routine may be called multiple times with different nonzero patterns (or the same nonzero pattern). The nonzero
4029:   structure will be the union of all the previous nonzero structures.

4031:   Developer Notes:
4032:   An optimization could be added to the implementation where it checks if the `i`, and `j` are identical to the current `i` and `j` and
4033:   then just copies the `v` values directly with `PetscMemcpy()`.

4035:   This routine could also take a `PetscCopyMode` argument to allow sharing the values instead of always copying them.

4037: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`, `MATSEQAIJ`, `MatResetPreallocation()`
4038: @*/
4039: PetscErrorCode MatSeqAIJSetPreallocationCSR(Mat B, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
4040: {
4041:   PetscFunctionBegin;
4044:   PetscTryMethod(B, "MatSeqAIJSetPreallocationCSR_C", (Mat, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, i, j, v));
4045:   PetscFunctionReturn(PETSC_SUCCESS);
4046: }

4048: static PetscErrorCode MatSeqAIJSetPreallocationCSR_SeqAIJ(Mat B, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
4049: {
4050:   PetscInt  i;
4051:   PetscInt  m, n;
4052:   PetscInt  nz;
4053:   PetscInt *nnz;

4055:   PetscFunctionBegin;
4056:   PetscCheck(Ii[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Ii[0] must be 0 it is %" PetscInt_FMT, Ii[0]);

4058:   PetscCall(PetscLayoutSetUp(B->rmap));
4059:   PetscCall(PetscLayoutSetUp(B->cmap));

4061:   PetscCall(MatGetSize(B, &m, &n));
4062:   PetscCall(PetscMalloc1(m + 1, &nnz));
4063:   for (i = 0; i < m; i++) {
4064:     nz = Ii[i + 1] - Ii[i];
4065:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
4066:     nnz[i] = nz;
4067:   }
4068:   PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
4069:   PetscCall(PetscFree(nnz));

4071:   for (i = 0; i < m; i++) PetscCall(MatSetValues_SeqAIJ(B, 1, &i, Ii[i + 1] - Ii[i], J + Ii[i], PetscSafePointerPlusOffset(v, Ii[i]), INSERT_VALUES));

4073:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
4074:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

4076:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
4077:   PetscFunctionReturn(PETSC_SUCCESS);
4078: }

4080: /*@
4081:   MatSeqAIJKron - Computes `C`, the Kronecker product of `A` and `B`.

4083:   Input Parameters:
4084: + A     - left-hand side matrix
4085: . B     - right-hand side matrix
4086: - reuse - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

4088:   Output Parameter:
4089: . C - Kronecker product of `A` and `B`

4091:   Level: intermediate

4093:   Note:
4094:   `MAT_REUSE_MATRIX` can only be used when the nonzero structure of the product matrix has not changed from that last call to `MatSeqAIJKron()`.

4096: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATKAIJ`, `MatReuse`
4097: @*/
4098: PetscErrorCode MatSeqAIJKron(Mat A, Mat B, MatReuse reuse, Mat *C)
4099: {
4100:   PetscFunctionBegin;
4105:   PetscAssertPointer(C, 4);
4106:   if (reuse == MAT_REUSE_MATRIX) {
4109:   }
4110:   PetscTryMethod(A, "MatSeqAIJKron_C", (Mat, Mat, MatReuse, Mat *), (A, B, reuse, C));
4111:   PetscFunctionReturn(PETSC_SUCCESS);
4112: }

4114: static PetscErrorCode MatSeqAIJKron_SeqAIJ(Mat A, Mat B, MatReuse reuse, Mat *C)
4115: {
4116:   Mat                newmat;
4117:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
4118:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
4119:   PetscScalar       *v;
4120:   const PetscScalar *aa, *ba;
4121:   PetscInt          *i, *j, m, n, p, q, nnz = 0, am = A->rmap->n, bm = B->rmap->n, an = A->cmap->n, bn = B->cmap->n;
4122:   PetscBool          flg;

4124:   PetscFunctionBegin;
4125:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4126:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4127:   PetscCheck(!B->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4128:   PetscCheck(B->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4129:   PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &flg));
4130:   PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatType %s", ((PetscObject)B)->type_name);
4131:   PetscCheck(reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatReuse %d", (int)reuse);
4132:   if (reuse == MAT_INITIAL_MATRIX) {
4133:     PetscCall(PetscMalloc2(am * bm + 1, &i, a->i[am] * b->i[bm], &j));
4134:     PetscCall(MatCreate(PETSC_COMM_SELF, &newmat));
4135:     PetscCall(MatSetSizes(newmat, am * bm, an * bn, am * bm, an * bn));
4136:     PetscCall(MatSetType(newmat, MATAIJ));
4137:     i[0] = 0;
4138:     for (m = 0; m < am; ++m) {
4139:       for (p = 0; p < bm; ++p) {
4140:         i[m * bm + p + 1] = i[m * bm + p] + (a->i[m + 1] - a->i[m]) * (b->i[p + 1] - b->i[p]);
4141:         for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4142:           for (q = b->i[p]; q < b->i[p + 1]; ++q) j[nnz++] = a->j[n] * bn + b->j[q];
4143:         }
4144:       }
4145:     }
4146:     PetscCall(MatSeqAIJSetPreallocationCSR(newmat, i, j, NULL));
4147:     *C = newmat;
4148:     PetscCall(PetscFree2(i, j));
4149:     nnz = 0;
4150:   }
4151:   PetscCall(MatSeqAIJGetArray(*C, &v));
4152:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4153:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
4154:   for (m = 0; m < am; ++m) {
4155:     for (p = 0; p < bm; ++p) {
4156:       for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4157:         for (q = b->i[p]; q < b->i[p + 1]; ++q) v[nnz++] = aa[n] * ba[q];
4158:       }
4159:     }
4160:   }
4161:   PetscCall(MatSeqAIJRestoreArray(*C, &v));
4162:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
4163:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
4164:   PetscFunctionReturn(PETSC_SUCCESS);
4165: }

4167: #include <../src/mat/impls/dense/seq/dense.h>
4168: #include <petsc/private/kernels/petscaxpy.h>

4170: /*
4171:     Computes (B'*A')' since computing B*A directly is untenable

4173:                n                       p                          p
4174:         [             ]       [             ]         [                 ]
4175:       m [      A      ]  *  n [       B     ]   =   m [         C       ]
4176:         [             ]       [             ]         [                 ]

4178: */
4179: PetscErrorCode MatMatMultNumeric_SeqDense_SeqAIJ(Mat A, Mat B, Mat C)
4180: {
4181:   Mat_SeqDense      *sub_a = (Mat_SeqDense *)A->data;
4182:   Mat_SeqAIJ        *sub_b = (Mat_SeqAIJ *)B->data;
4183:   Mat_SeqDense      *sub_c = (Mat_SeqDense *)C->data;
4184:   PetscInt           i, j, n, m, q, p;
4185:   const PetscInt    *ii, *idx;
4186:   const PetscScalar *b, *a, *a_q;
4187:   PetscScalar       *c, *c_q;
4188:   PetscInt           clda = sub_c->lda;
4189:   PetscInt           alda = sub_a->lda;

4191:   PetscFunctionBegin;
4192:   m = A->rmap->n;
4193:   n = A->cmap->n;
4194:   p = B->cmap->n;
4195:   a = sub_a->v;
4196:   b = sub_b->a;
4197:   c = sub_c->v;
4198:   if (clda == m) {
4199:     PetscCall(PetscArrayzero(c, m * p));
4200:   } else {
4201:     for (j = 0; j < p; j++)
4202:       for (i = 0; i < m; i++) c[j * clda + i] = 0.0;
4203:   }
4204:   ii  = sub_b->i;
4205:   idx = sub_b->j;
4206:   for (i = 0; i < n; i++) {
4207:     q = ii[i + 1] - ii[i];
4208:     while (q-- > 0) {
4209:       c_q = c + clda * (*idx);
4210:       a_q = a + alda * i;
4211:       PetscKernelAXPY(c_q, *b, a_q, m);
4212:       idx++;
4213:       b++;
4214:     }
4215:   }
4216:   PetscFunctionReturn(PETSC_SUCCESS);
4217: }

4219: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqAIJ(Mat A, Mat B, PetscReal fill, Mat C)
4220: {
4221:   PetscInt  m = A->rmap->n, n = B->cmap->n;
4222:   PetscBool cisdense;

4224:   PetscFunctionBegin;
4225:   PetscCheck(A->cmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "A->cmap->n %" PetscInt_FMT " != B->rmap->n %" PetscInt_FMT, A->cmap->n, B->rmap->n);
4226:   PetscCall(MatSetSizes(C, m, n, m, n));
4227:   PetscCall(MatSetBlockSizesFromMats(C, A, B));
4228:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, MATSEQDENSEHIP, ""));
4229:   if (!cisdense) PetscCall(MatSetType(C, MATDENSE));
4230:   PetscCall(MatSetUp(C));

4232:   C->ops->matmultnumeric = MatMatMultNumeric_SeqDense_SeqAIJ;
4233:   PetscFunctionReturn(PETSC_SUCCESS);
4234: }

4236: /*MC
4237:    MATSEQAIJ - MATSEQAIJ = "seqaij" - A matrix type to be used for sequential sparse matrices,
4238:    based on compressed sparse row format.

4240:    Options Database Key:
4241: . -mat_type seqaij - sets the matrix type to "seqaij" during a call to MatSetFromOptions()

4243:    Level: beginner

4245:    Notes:
4246:     `MatSetValues()` may be called for this matrix type with a `NULL` argument for the numerical values,
4247:     in this case the values associated with the rows and columns one passes in are set to zero
4248:     in the matrix

4250:     `MatSetOptions`(,`MAT_STRUCTURE_ONLY`,`PETSC_TRUE`) may be called for this matrix type. In this no
4251:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

4253:   Developer Note:
4254:     It would be nice if all matrix formats supported passing `NULL` in for the numerical values

4256: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatSetFromOptions()`, `MatSetType()`, `MatCreate()`, `MatType`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4257: M*/

4259: /*MC
4260:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

4262:    This matrix type is identical to `MATSEQAIJ` when constructed with a single process communicator,
4263:    and `MATMPIAIJ` otherwise.  As a result, for single process communicators,
4264:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4265:    for communicators controlling multiple processes.  It is recommended that you call both of
4266:    the above preallocation routines for simplicity.

4268:    Options Database Key:
4269: . -mat_type aij - sets the matrix type to "aij" during a call to `MatSetFromOptions()`

4271:   Level: beginner

4273:    Note:
4274:    Subclasses include `MATAIJCUSPARSE`, `MATAIJPERM`, `MATAIJSELL`, `MATAIJMKL`, `MATAIJCRL`, and also automatically switches over to use inodes when
4275:    enough exist.

4277: .seealso: [](ch_matrices), `Mat`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATMPIAIJ`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4278: M*/

4280: /*MC
4281:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

4283:    Options Database Key:
4284: . -mat_type aijcrl - sets the matrix type to "aijcrl" during a call to `MatSetFromOptions()`

4286:   Level: beginner

4288:    Note:
4289:    This matrix type is identical to `MATSEQAIJCRL` when constructed with a single process communicator,
4290:    and `MATMPIAIJCRL` otherwise.  As a result, for single process communicators,
4291:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4292:    for communicators controlling multiple processes.  It is recommended that you call both of
4293:    the above preallocation routines for simplicity.

4295: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`
4296: M*/

4298: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCRL(Mat, MatType, MatReuse, Mat *);
4299: #if defined(PETSC_HAVE_ELEMENTAL)
4300: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
4301: #endif
4302: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
4303: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
4304: #endif
4305: #if defined(PETSC_HAVE_HYPRE)
4306: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat A, MatType, MatReuse, Mat *);
4307: #endif

4309: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat, MatType, MatReuse, Mat *);
4310: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);
4311: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

4313: /*@C
4314:   MatSeqAIJGetArray - gives read/write access to the array where the data for a `MATSEQAIJ` matrix is stored

4316:   Not Collective

4318:   Input Parameter:
4319: . A - a `MATSEQAIJ` matrix

4321:   Output Parameter:
4322: . array - pointer to the data

4324:   Level: intermediate

4326: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`
4327: @*/
4328: PetscErrorCode MatSeqAIJGetArray(Mat A, PetscScalar *array[])
4329: {
4330:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4332:   PetscFunctionBegin;
4333:   if (aij->ops->getarray) {
4334:     PetscCall((*aij->ops->getarray)(A, array));
4335:   } else {
4336:     *array = aij->a;
4337:   }
4338:   PetscFunctionReturn(PETSC_SUCCESS);
4339: }

4341: /*@C
4342:   MatSeqAIJRestoreArray - returns access to the array where the data for a `MATSEQAIJ` matrix is stored obtained by `MatSeqAIJGetArray()`

4344:   Not Collective

4346:   Input Parameters:
4347: + A     - a `MATSEQAIJ` matrix
4348: - array - pointer to the data

4350:   Level: intermediate

4352: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`
4353: @*/
4354: PetscErrorCode MatSeqAIJRestoreArray(Mat A, PetscScalar *array[])
4355: {
4356:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4358:   PetscFunctionBegin;
4359:   if (aij->ops->restorearray) {
4360:     PetscCall((*aij->ops->restorearray)(A, array));
4361:   } else {
4362:     *array = NULL;
4363:   }
4364:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4365:   PetscFunctionReturn(PETSC_SUCCESS);
4366: }

4368: /*@C
4369:   MatSeqAIJGetArrayRead - gives read-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4371:   Not Collective; No Fortran Support

4373:   Input Parameter:
4374: . A - a `MATSEQAIJ` matrix

4376:   Output Parameter:
4377: . array - pointer to the data

4379:   Level: intermediate

4381: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4382: @*/
4383: PetscErrorCode MatSeqAIJGetArrayRead(Mat A, const PetscScalar *array[])
4384: {
4385:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4387:   PetscFunctionBegin;
4388:   if (aij->ops->getarrayread) {
4389:     PetscCall((*aij->ops->getarrayread)(A, array));
4390:   } else {
4391:     *array = aij->a;
4392:   }
4393:   PetscFunctionReturn(PETSC_SUCCESS);
4394: }

4396: /*@C
4397:   MatSeqAIJRestoreArrayRead - restore the read-only access array obtained from `MatSeqAIJGetArrayRead()`

4399:   Not Collective; No Fortran Support

4401:   Input Parameter:
4402: . A - a `MATSEQAIJ` matrix

4404:   Output Parameter:
4405: . array - pointer to the data

4407:   Level: intermediate

4409: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4410: @*/
4411: PetscErrorCode MatSeqAIJRestoreArrayRead(Mat A, const PetscScalar *array[])
4412: {
4413:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4415:   PetscFunctionBegin;
4416:   if (aij->ops->restorearrayread) {
4417:     PetscCall((*aij->ops->restorearrayread)(A, array));
4418:   } else {
4419:     *array = NULL;
4420:   }
4421:   PetscFunctionReturn(PETSC_SUCCESS);
4422: }

4424: /*@C
4425:   MatSeqAIJGetArrayWrite - gives write-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4427:   Not Collective; No Fortran Support

4429:   Input Parameter:
4430: . A - a `MATSEQAIJ` matrix

4432:   Output Parameter:
4433: . array - pointer to the data

4435:   Level: intermediate

4437: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4438: @*/
4439: PetscErrorCode MatSeqAIJGetArrayWrite(Mat A, PetscScalar *array[])
4440: {
4441:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4443:   PetscFunctionBegin;
4444:   if (aij->ops->getarraywrite) {
4445:     PetscCall((*aij->ops->getarraywrite)(A, array));
4446:   } else {
4447:     *array = aij->a;
4448:   }
4449:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4450:   PetscFunctionReturn(PETSC_SUCCESS);
4451: }

4453: /*@C
4454:   MatSeqAIJRestoreArrayWrite - restore the read-only access array obtained from MatSeqAIJGetArrayRead

4456:   Not Collective; No Fortran Support

4458:   Input Parameter:
4459: . A - a MATSEQAIJ matrix

4461:   Output Parameter:
4462: . array - pointer to the data

4464:   Level: intermediate

4466: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4467: @*/
4468: PetscErrorCode MatSeqAIJRestoreArrayWrite(Mat A, PetscScalar *array[])
4469: {
4470:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4472:   PetscFunctionBegin;
4473:   if (aij->ops->restorearraywrite) {
4474:     PetscCall((*aij->ops->restorearraywrite)(A, array));
4475:   } else {
4476:     *array = NULL;
4477:   }
4478:   PetscFunctionReturn(PETSC_SUCCESS);
4479: }

4481: /*@C
4482:   MatSeqAIJGetCSRAndMemType - Get the CSR arrays and the memory type of the `MATSEQAIJ` matrix

4484:   Not Collective; No Fortran Support

4486:   Input Parameter:
4487: . mat - a matrix of type `MATSEQAIJ` or its subclasses

4489:   Output Parameters:
4490: + i     - row map array of the matrix
4491: . j     - column index array of the matrix
4492: . a     - data array of the matrix
4493: - mtype - memory type of the arrays

4495:   Level: developer

4497:   Notes:
4498:   Any of the output parameters can be `NULL`, in which case the corresponding value is not returned.
4499:   If mat is a device matrix, the arrays are on the device. Otherwise, they are on the host.

4501:   One can call this routine on a preallocated but not assembled matrix to just get the memory of the CSR underneath the matrix.
4502:   If the matrix is assembled, the data array `a` is guaranteed to have the latest values of the matrix.

4504: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4505: @*/
4506: PetscErrorCode MatSeqAIJGetCSRAndMemType(Mat mat, const PetscInt *i[], const PetscInt *j[], PetscScalar *a[], PetscMemType *mtype)
4507: {
4508:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;

4510:   PetscFunctionBegin;
4511:   PetscCheck(mat->preallocated, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "matrix is not preallocated");
4512:   if (aij->ops->getcsrandmemtype) {
4513:     PetscCall((*aij->ops->getcsrandmemtype)(mat, i, j, a, mtype));
4514:   } else {
4515:     if (i) *i = aij->i;
4516:     if (j) *j = aij->j;
4517:     if (a) *a = aij->a;
4518:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
4519:   }
4520:   PetscFunctionReturn(PETSC_SUCCESS);
4521: }

4523: /*@
4524:   MatSeqAIJGetMaxRowNonzeros - returns the maximum number of nonzeros in any row

4526:   Not Collective

4528:   Input Parameter:
4529: . A - a `MATSEQAIJ` matrix

4531:   Output Parameter:
4532: . nz - the maximum number of nonzeros in any row

4534:   Level: intermediate

4536: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`
4537: @*/
4538: PetscErrorCode MatSeqAIJGetMaxRowNonzeros(Mat A, PetscInt *nz)
4539: {
4540:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4542:   PetscFunctionBegin;
4543:   *nz = aij->rmax;
4544:   PetscFunctionReturn(PETSC_SUCCESS);
4545: }

4547: static PetscErrorCode MatCOOStructDestroy_SeqAIJ(void **data)
4548: {
4549:   MatCOOStruct_SeqAIJ *coo = (MatCOOStruct_SeqAIJ *)*data;

4551:   PetscFunctionBegin;
4552:   PetscCall(PetscFree(coo->perm));
4553:   PetscCall(PetscFree(coo->jmap));
4554:   PetscCall(PetscFree(coo));
4555:   PetscFunctionReturn(PETSC_SUCCESS);
4556: }

4558: PetscErrorCode MatSetPreallocationCOO_SeqAIJ(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
4559: {
4560:   MPI_Comm             comm;
4561:   PetscInt            *i, *j;
4562:   PetscInt             M, N, row, iprev;
4563:   PetscCount           k, p, q, nneg, nnz, start, end; /* Index the coo array, so use PetscCount as their type */
4564:   PetscInt            *Ai;                             /* Change to PetscCount once we use it for row pointers */
4565:   PetscInt            *Aj;
4566:   PetscScalar         *Aa;
4567:   Mat_SeqAIJ          *seqaij = (Mat_SeqAIJ *)mat->data;
4568:   MatType              rtype;
4569:   PetscCount          *perm, *jmap;
4570:   MatCOOStruct_SeqAIJ *coo;
4571:   PetscBool            isorted;
4572:   PetscBool            hypre;

4574:   PetscFunctionBegin;
4575:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
4576:   PetscCall(MatGetSize(mat, &M, &N));
4577:   i = coo_i;
4578:   j = coo_j;
4579:   PetscCall(PetscMalloc1(coo_n, &perm));

4581:   /* Ignore entries with negative row or col indices; at the same time, check if i[] is already sorted (e.g., MatConvert_AlJ_HYPRE results in this case) */
4582:   isorted = PETSC_TRUE;
4583:   iprev   = PETSC_INT_MIN;
4584:   for (k = 0; k < coo_n; k++) {
4585:     if (j[k] < 0) i[k] = -1;
4586:     if (isorted) {
4587:       if (i[k] < iprev) isorted = PETSC_FALSE;
4588:       else iprev = i[k];
4589:     }
4590:     perm[k] = k;
4591:   }

4593:   /* Sort by row if not already */
4594:   if (!isorted) PetscCall(PetscSortIntWithIntCountArrayPair(coo_n, i, j, perm));
4595:   PetscCheck(coo_n == 0 || i[coo_n - 1] < M, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "COO row index %" PetscInt_FMT " is >= the matrix row size %" PetscInt_FMT, i[coo_n - 1], M);

4597:   /* Advance k to the first row with a non-negative index */
4598:   for (k = 0; k < coo_n; k++)
4599:     if (i[k] >= 0) break;
4600:   nneg = k;
4601:   PetscCall(PetscMalloc1(coo_n - nneg + 1, &jmap)); /* +1 to make a CSR-like data structure. jmap[i] originally is the number of repeats for i-th nonzero */
4602:   nnz = 0;                                          /* Total number of unique nonzeros to be counted */
4603:   jmap++;                                           /* Inc jmap by 1 for convenience */

4605:   PetscCall(PetscShmgetAllocateArray(M + 1, sizeof(PetscInt), (void **)&Ai)); /* CSR of A */
4606:   PetscCall(PetscArrayzero(Ai, M + 1));
4607:   PetscCall(PetscShmgetAllocateArray(coo_n - nneg, sizeof(PetscInt), (void **)&Aj)); /* We have at most coo_n-nneg unique nonzeros */

4609:   PetscCall(PetscStrcmp("_internal_COO_mat_for_hypre", ((PetscObject)mat)->name, &hypre));

4611:   /* In each row, sort by column, then unique column indices to get row length */
4612:   Ai++;  /* Inc by 1 for convenience */
4613:   q = 0; /* q-th unique nonzero, with q starting from 0 */
4614:   while (k < coo_n) {
4615:     PetscBool strictly_sorted; // this row is strictly sorted?
4616:     PetscInt  jprev;

4618:     /* get [start,end) indices for this row; also check if cols in this row are strictly sorted */
4619:     row             = i[k];
4620:     start           = k;
4621:     jprev           = PETSC_INT_MIN;
4622:     strictly_sorted = PETSC_TRUE;
4623:     while (k < coo_n && i[k] == row) {
4624:       if (strictly_sorted) {
4625:         if (j[k] <= jprev) strictly_sorted = PETSC_FALSE;
4626:         else jprev = j[k];
4627:       }
4628:       k++;
4629:     }
4630:     end = k;

4632:     /* hack for HYPRE: swap min column to diag so that diagonal values will go first */
4633:     if (hypre) {
4634:       PetscInt  minj    = PETSC_INT_MAX;
4635:       PetscBool hasdiag = PETSC_FALSE;

4637:       if (strictly_sorted) { // fast path to swap the first and the diag
4638:         PetscCount tmp;
4639:         for (p = start; p < end; p++) {
4640:           if (j[p] == row && p != start) {
4641:             j[p]        = j[start]; // swap j[], so that the diagonal value will go first (manipulated by perm[])
4642:             j[start]    = row;
4643:             tmp         = perm[start];
4644:             perm[start] = perm[p]; // also swap perm[] so we can save the call to PetscSortIntWithCountArray() below
4645:             perm[p]     = tmp;
4646:             break;
4647:           }
4648:         }
4649:       } else {
4650:         for (p = start; p < end; p++) {
4651:           hasdiag = (PetscBool)(hasdiag || (j[p] == row));
4652:           minj    = PetscMin(minj, j[p]);
4653:         }

4655:         if (hasdiag) {
4656:           for (p = start; p < end; p++) {
4657:             if (j[p] == minj) j[p] = row;
4658:             else if (j[p] == row) j[p] = minj;
4659:           }
4660:         }
4661:       }
4662:     }
4663:     // sort by columns in a row. perm[] indicates their original order
4664:     if (!strictly_sorted) PetscCall(PetscSortIntWithCountArray(end - start, j + start, perm + start));
4665:     PetscCheck(end == start || j[end - 1] < N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "COO column index %" PetscInt_FMT " is >= the matrix column size %" PetscInt_FMT, j[end - 1], N);

4667:     if (strictly_sorted) { // fast path to set Aj[], jmap[], Ai[], nnz, q
4668:       for (p = start; p < end; p++, q++) {
4669:         Aj[q]   = j[p];
4670:         jmap[q] = 1;
4671:       }
4672:       PetscCall(PetscIntCast(end - start, Ai + row));
4673:       nnz += Ai[row]; // q is already advanced
4674:     } else {
4675:       /* Find number of unique col entries in this row */
4676:       Aj[q]   = j[start]; /* Log the first nonzero in this row */
4677:       jmap[q] = 1;        /* Number of repeats of this nonzero entry */
4678:       Ai[row] = 1;
4679:       nnz++;

4681:       for (p = start + 1; p < end; p++) { /* Scan remaining nonzero in this row */
4682:         if (j[p] != j[p - 1]) {           /* Meet a new nonzero */
4683:           q++;
4684:           jmap[q] = 1;
4685:           Aj[q]   = j[p];
4686:           Ai[row]++;
4687:           nnz++;
4688:         } else {
4689:           jmap[q]++;
4690:         }
4691:       }
4692:       q++; /* Move to next row and thus next unique nonzero */
4693:     }
4694:   }

4696:   Ai--; /* Back to the beginning of Ai[] */
4697:   for (k = 0; k < M; k++) Ai[k + 1] += Ai[k];
4698:   jmap--; // Back to the beginning of jmap[]
4699:   jmap[0] = 0;
4700:   for (k = 0; k < nnz; k++) jmap[k + 1] += jmap[k];

4702:   if (nnz < coo_n - nneg) { /* Reallocate with actual number of unique nonzeros */
4703:     PetscCount *jmap_new;
4704:     PetscInt   *Aj_new;

4706:     PetscCall(PetscMalloc1(nnz + 1, &jmap_new));
4707:     PetscCall(PetscArraycpy(jmap_new, jmap, nnz + 1));
4708:     PetscCall(PetscFree(jmap));
4709:     jmap = jmap_new;

4711:     PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscInt), (void **)&Aj_new));
4712:     PetscCall(PetscArraycpy(Aj_new, Aj, nnz));
4713:     PetscCall(PetscShmgetDeallocateArray((void **)&Aj));
4714:     Aj = Aj_new;
4715:   }

4717:   if (nneg) { /* Discard heading entries with negative indices in perm[], as we'll access it from index 0 in MatSetValuesCOO */
4718:     PetscCount *perm_new;

4720:     PetscCall(PetscMalloc1(coo_n - nneg, &perm_new));
4721:     PetscCall(PetscArraycpy(perm_new, perm + nneg, coo_n - nneg));
4722:     PetscCall(PetscFree(perm));
4723:     perm = perm_new;
4724:   }

4726:   PetscCall(MatGetRootType_Private(mat, &rtype));
4727:   PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscScalar), (void **)&Aa));
4728:   PetscCall(PetscArrayzero(Aa, nnz));
4729:   PetscCall(MatSetSeqAIJWithArrays_private(PETSC_COMM_SELF, M, N, Ai, Aj, Aa, rtype, mat));

4731:   seqaij->free_a = seqaij->free_ij = PETSC_TRUE; /* Let newmat own Ai, Aj and Aa */

4733:   // Put the COO struct in a container and then attach that to the matrix
4734:   PetscCall(PetscMalloc1(1, &coo));
4735:   PetscCall(PetscIntCast(nnz, &coo->nz));
4736:   coo->n    = coo_n;
4737:   coo->Atot = coo_n - nneg; // Annz is seqaij->nz, so no need to record that again
4738:   coo->jmap = jmap;         // of length nnz+1
4739:   coo->perm = perm;
4740:   PetscCall(PetscObjectContainerCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Host", coo, MatCOOStructDestroy_SeqAIJ));
4741:   PetscFunctionReturn(PETSC_SUCCESS);
4742: }

4744: static PetscErrorCode MatSetValuesCOO_SeqAIJ(Mat A, const PetscScalar v[], InsertMode imode)
4745: {
4746:   Mat_SeqAIJ          *aseq = (Mat_SeqAIJ *)A->data;
4747:   PetscCount           i, j, Annz = aseq->nz;
4748:   PetscCount          *perm, *jmap;
4749:   PetscScalar         *Aa;
4750:   PetscContainer       container;
4751:   MatCOOStruct_SeqAIJ *coo;

4753:   PetscFunctionBegin;
4754:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container));
4755:   PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not found MatCOOStruct on this matrix");
4756:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));
4757:   perm = coo->perm;
4758:   jmap = coo->jmap;
4759:   PetscCall(MatSeqAIJGetArray(A, &Aa));
4760:   for (i = 0; i < Annz; i++) {
4761:     PetscScalar sum = 0.0;
4762:     for (j = jmap[i]; j < jmap[i + 1]; j++) sum += v[perm[j]];
4763:     Aa[i] = (imode == INSERT_VALUES ? 0.0 : Aa[i]) + sum;
4764:   }
4765:   PetscCall(MatSeqAIJRestoreArray(A, &Aa));
4766:   PetscFunctionReturn(PETSC_SUCCESS);
4767: }

4769: #if defined(PETSC_HAVE_CUDA)
4770: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCUSPARSE(Mat, MatType, MatReuse, Mat *);
4771: #endif
4772: #if defined(PETSC_HAVE_HIP)
4773: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJHIPSPARSE(Mat, MatType, MatReuse, Mat *);
4774: #endif
4775: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4776: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat, MatType, MatReuse, Mat *);
4777: #endif

4779: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat B)
4780: {
4781:   Mat_SeqAIJ *b;
4782:   PetscMPIInt size;

4784:   PetscFunctionBegin;
4785:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
4786:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

4788:   PetscCall(PetscNew(&b));

4790:   B->data   = (void *)b;
4791:   B->ops[0] = MatOps_Values;
4792:   if (B->sortedfull) B->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;

4794:   b->row                = NULL;
4795:   b->col                = NULL;
4796:   b->icol               = NULL;
4797:   b->reallocs           = 0;
4798:   b->ignorezeroentries  = PETSC_FALSE;
4799:   b->roworiented        = PETSC_TRUE;
4800:   b->nonew              = 0;
4801:   b->diag               = NULL;
4802:   b->solve_work         = NULL;
4803:   B->spptr              = NULL;
4804:   b->saved_values       = NULL;
4805:   b->idiag              = NULL;
4806:   b->mdiag              = NULL;
4807:   b->ssor_work          = NULL;
4808:   b->omega              = 1.0;
4809:   b->fshift             = 0.0;
4810:   b->ibdiagvalid        = PETSC_FALSE;
4811:   b->keepnonzeropattern = PETSC_FALSE;

4813:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4814: #if defined(PETSC_HAVE_MATLAB)
4815:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEnginePut_C", MatlabEnginePut_SeqAIJ));
4816:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEngineGet_C", MatlabEngineGet_SeqAIJ));
4817: #endif
4818:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetColumnIndices_C", MatSeqAIJSetColumnIndices_SeqAIJ));
4819:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqAIJ));
4820:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqAIJ));
4821:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsbaij_C", MatConvert_SeqAIJ_SeqSBAIJ));
4822:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqbaij_C", MatConvert_SeqAIJ_SeqBAIJ));
4823:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijperm_C", MatConvert_SeqAIJ_SeqAIJPERM));
4824:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijsell_C", MatConvert_SeqAIJ_SeqAIJSELL));
4825: #if defined(PETSC_HAVE_MKL_SPARSE)
4826:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijmkl_C", MatConvert_SeqAIJ_SeqAIJMKL));
4827: #endif
4828: #if defined(PETSC_HAVE_CUDA)
4829:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcusparse_C", MatConvert_SeqAIJ_SeqAIJCUSPARSE));
4830:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4831:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", MatProductSetFromOptions_SeqAIJ));
4832: #endif
4833: #if defined(PETSC_HAVE_HIP)
4834:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijhipsparse_C", MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
4835:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4836:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", MatProductSetFromOptions_SeqAIJ));
4837: #endif
4838: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4839:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijkokkos_C", MatConvert_SeqAIJ_SeqAIJKokkos));
4840: #endif
4841:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcrl_C", MatConvert_SeqAIJ_SeqAIJCRL));
4842: #if defined(PETSC_HAVE_ELEMENTAL)
4843:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_elemental_C", MatConvert_SeqAIJ_Elemental));
4844: #endif
4845: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
4846:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_scalapack_C", MatConvert_AIJ_ScaLAPACK));
4847: #endif
4848: #if defined(PETSC_HAVE_HYPRE)
4849:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_hypre_C", MatConvert_AIJ_HYPRE));
4850:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", MatProductSetFromOptions_Transpose_AIJ_AIJ));
4851: #endif
4852:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqdense_C", MatConvert_SeqAIJ_SeqDense));
4853:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsell_C", MatConvert_SeqAIJ_SeqSELL));
4854:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_is_C", MatConvert_XAIJ_IS));
4855:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsTranspose_C", MatIsTranspose_SeqAIJ));
4856:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsHermitianTranspose_C", MatIsHermitianTranspose_SeqAIJ));
4857:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocation_C", MatSeqAIJSetPreallocation_SeqAIJ));
4858:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetPreallocation_C", MatResetPreallocation_SeqAIJ));
4859:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetHash_C", MatResetHash_SeqAIJ));
4860:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocationCSR_C", MatSeqAIJSetPreallocationCSR_SeqAIJ));
4861:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatReorderForNonzeroDiagonal_C", MatReorderForNonzeroDiagonal_SeqAIJ));
4862:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_is_seqaij_C", MatProductSetFromOptions_IS_XAIJ));
4863:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqaij_C", MatProductSetFromOptions_SeqDense_SeqAIJ));
4864:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4865:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJKron_C", MatSeqAIJKron_SeqAIJ));
4866:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJ));
4867:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJ));
4868:   PetscCall(MatCreate_SeqAIJ_Inode(B));
4869:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4870:   PetscCall(MatSeqAIJSetTypeFromOptions(B)); /* this allows changing the matrix subtype to say MATSEQAIJPERM */
4871:   PetscFunctionReturn(PETSC_SUCCESS);
4872: }

4874: /*
4875:     Given a matrix generated with MatGetFactor() duplicates all the information in A into C
4876: */
4877: PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
4878: {
4879:   Mat_SeqAIJ *c = (Mat_SeqAIJ *)C->data, *a = (Mat_SeqAIJ *)A->data;
4880:   PetscInt    m = A->rmap->n, i;

4882:   PetscFunctionBegin;
4883:   PetscCheck(A->assembled || cpvalues == MAT_DO_NOT_COPY_VALUES, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");

4885:   C->factortype = A->factortype;
4886:   c->row        = NULL;
4887:   c->col        = NULL;
4888:   c->icol       = NULL;
4889:   c->reallocs   = 0;
4890:   C->assembled  = A->assembled;

4892:   if (A->preallocated) {
4893:     PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
4894:     PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

4896:     if (!A->hash_active) {
4897:       PetscCall(PetscMalloc1(m, &c->imax));
4898:       PetscCall(PetscArraycpy(c->imax, a->imax, m));
4899:       PetscCall(PetscMalloc1(m, &c->ilen));
4900:       PetscCall(PetscArraycpy(c->ilen, a->ilen, m));

4902:       /* allocate the matrix space */
4903:       if (mallocmatspace) {
4904:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscScalar), (void **)&c->a));
4905:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscInt), (void **)&c->j));
4906:         PetscCall(PetscShmgetAllocateArray(m + 1, sizeof(PetscInt), (void **)&c->i));
4907:         PetscCall(PetscArraycpy(c->i, a->i, m + 1));
4908:         c->free_a  = PETSC_TRUE;
4909:         c->free_ij = PETSC_TRUE;
4910:         if (m > 0) {
4911:           PetscCall(PetscArraycpy(c->j, a->j, a->i[m]));
4912:           if (cpvalues == MAT_COPY_VALUES) {
4913:             const PetscScalar *aa;

4915:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4916:             PetscCall(PetscArraycpy(c->a, aa, a->i[m]));
4917:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4918:           } else {
4919:             PetscCall(PetscArrayzero(c->a, a->i[m]));
4920:           }
4921:         }
4922:       }
4923:       C->preallocated = PETSC_TRUE;
4924:     } else {
4925:       PetscCheck(mallocmatspace, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot malloc matrix memory from a non-preallocated matrix");
4926:       PetscCall(MatSetUp(C));
4927:     }

4929:     c->ignorezeroentries  = a->ignorezeroentries;
4930:     c->roworiented        = a->roworiented;
4931:     c->nonew              = a->nonew;
4932:     c->solve_work         = NULL;
4933:     c->saved_values       = NULL;
4934:     c->idiag              = NULL;
4935:     c->ssor_work          = NULL;
4936:     c->keepnonzeropattern = a->keepnonzeropattern;

4938:     c->rmax  = a->rmax;
4939:     c->nz    = a->nz;
4940:     c->maxnz = a->nz; /* Since we allocate exactly the right amount */

4942:     c->compressedrow.use   = a->compressedrow.use;
4943:     c->compressedrow.nrows = a->compressedrow.nrows;
4944:     if (a->compressedrow.use) {
4945:       i = a->compressedrow.nrows;
4946:       PetscCall(PetscMalloc2(i + 1, &c->compressedrow.i, i, &c->compressedrow.rindex));
4947:       PetscCall(PetscArraycpy(c->compressedrow.i, a->compressedrow.i, i + 1));
4948:       PetscCall(PetscArraycpy(c->compressedrow.rindex, a->compressedrow.rindex, i));
4949:     } else {
4950:       c->compressedrow.use    = PETSC_FALSE;
4951:       c->compressedrow.i      = NULL;
4952:       c->compressedrow.rindex = NULL;
4953:     }
4954:     c->nonzerorowcnt = a->nonzerorowcnt;
4955:     C->nonzerostate  = A->nonzerostate;

4957:     PetscCall(MatDuplicate_SeqAIJ_Inode(A, cpvalues, &C));
4958:   }
4959:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
4960:   PetscFunctionReturn(PETSC_SUCCESS);
4961: }

4963: PetscErrorCode MatDuplicate_SeqAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
4964: {
4965:   PetscFunctionBegin;
4966:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
4967:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
4968:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
4969:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
4970:   PetscCall(MatDuplicateNoCreate_SeqAIJ(*B, A, cpvalues, PETSC_TRUE));
4971:   PetscFunctionReturn(PETSC_SUCCESS);
4972: }

4974: PetscErrorCode MatLoad_SeqAIJ(Mat newMat, PetscViewer viewer)
4975: {
4976:   PetscBool isbinary, ishdf5;

4978:   PetscFunctionBegin;
4981:   /* force binary viewer to load .info file if it has not yet done so */
4982:   PetscCall(PetscViewerSetUp(viewer));
4983:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
4984:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
4985:   if (isbinary) {
4986:     PetscCall(MatLoad_SeqAIJ_Binary(newMat, viewer));
4987:   } else if (ishdf5) {
4988: #if defined(PETSC_HAVE_HDF5)
4989:     PetscCall(MatLoad_AIJ_HDF5(newMat, viewer));
4990: #else
4991:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
4992: #endif
4993:   } else {
4994:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
4995:   }
4996:   PetscFunctionReturn(PETSC_SUCCESS);
4997: }

4999: PetscErrorCode MatLoad_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
5000: {
5001:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)mat->data;
5002:   PetscInt    header[4], *rowlens, M, N, nz, sum, rows, cols, i;

5004:   PetscFunctionBegin;
5005:   PetscCall(PetscViewerSetUp(viewer));

5007:   /* read in matrix header */
5008:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
5009:   PetscCheck(header[0] == MAT_FILE_CLASSID, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
5010:   M  = header[1];
5011:   N  = header[2];
5012:   nz = header[3];
5013:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
5014:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
5015:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as SeqAIJ");

5017:   /* set block sizes from the viewer's .info file */
5018:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
5019:   /* set local and global sizes if not set already */
5020:   if (mat->rmap->n < 0) mat->rmap->n = M;
5021:   if (mat->cmap->n < 0) mat->cmap->n = N;
5022:   if (mat->rmap->N < 0) mat->rmap->N = M;
5023:   if (mat->cmap->N < 0) mat->cmap->N = N;
5024:   PetscCall(PetscLayoutSetUp(mat->rmap));
5025:   PetscCall(PetscLayoutSetUp(mat->cmap));

5027:   /* check if the matrix sizes are correct */
5028:   PetscCall(MatGetSize(mat, &rows, &cols));
5029:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

5031:   /* read in row lengths */
5032:   PetscCall(PetscMalloc1(M, &rowlens));
5033:   PetscCall(PetscViewerBinaryRead(viewer, rowlens, M, NULL, PETSC_INT));
5034:   /* check if sum(rowlens) is same as nz */
5035:   sum = 0;
5036:   for (i = 0; i < M; i++) sum += rowlens[i];
5037:   PetscCheck(sum == nz, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);
5038:   /* preallocate and check sizes */
5039:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(mat, 0, rowlens));
5040:   PetscCall(MatGetSize(mat, &rows, &cols));
5041:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
5042:   /* store row lengths */
5043:   PetscCall(PetscArraycpy(a->ilen, rowlens, M));
5044:   PetscCall(PetscFree(rowlens));

5046:   /* fill in "i" row pointers */
5047:   a->i[0] = 0;
5048:   for (i = 0; i < M; i++) a->i[i + 1] = a->i[i] + a->ilen[i];
5049:   /* read in "j" column indices */
5050:   PetscCall(PetscViewerBinaryRead(viewer, a->j, nz, NULL, PETSC_INT));
5051:   /* read in "a" nonzero values */
5052:   PetscCall(PetscViewerBinaryRead(viewer, a->a, nz, NULL, PETSC_SCALAR));

5054:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
5055:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
5056:   PetscFunctionReturn(PETSC_SUCCESS);
5057: }

5059: PetscErrorCode MatEqual_SeqAIJ(Mat A, Mat B, PetscBool *flg)
5060: {
5061:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *b = (Mat_SeqAIJ *)B->data;
5062:   const PetscScalar *aa, *ba;

5064:   PetscFunctionBegin;
5065:   /* If the  matrix dimensions are not equal,or no of nonzeros */
5066:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz)) {
5067:     *flg = PETSC_FALSE;
5068:     PetscFunctionReturn(PETSC_SUCCESS);
5069:   }

5071:   /* if the a->i are the same */
5072:   PetscCall(PetscArraycmp(a->i, b->i, A->rmap->n + 1, flg));
5073:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5075:   /* if a->j are the same */
5076:   PetscCall(PetscArraycmp(a->j, b->j, a->nz, flg));
5077:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5079:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5080:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
5081:   /* if a->a are the same */
5082:   PetscCall(PetscArraycmp(aa, ba, a->nz, flg));
5083:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
5084:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
5085:   PetscFunctionReturn(PETSC_SUCCESS);
5086: }

5088: /*@
5089:   MatCreateSeqAIJWithArrays - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in CSR format)
5090:   provided by the user.

5092:   Collective

5094:   Input Parameters:
5095: + comm - must be an MPI communicator of size 1
5096: . m    - number of rows
5097: . n    - number of columns
5098: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
5099: . j    - column indices
5100: - a    - matrix values

5102:   Output Parameter:
5103: . mat - the matrix

5105:   Level: intermediate

5107:   Notes:
5108:   The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
5109:   once the matrix is destroyed and not before

5111:   You cannot set new nonzero locations into this matrix, that will generate an error.

5113:   The `i` and `j` indices are 0 based

5115:   The format which is used for the sparse matrix input, is equivalent to a
5116:   row-major ordering.. i.e for the following matrix, the input data expected is
5117:   as shown
5118: .vb
5119:         1 0 0
5120:         2 0 3
5121:         4 5 6

5123:         i =  {0,1,3,6}  [size = nrow+1  = 3+1]
5124:         j =  {0,0,2,0,1,2}  [size = 6]; values must be sorted for each row
5125:         v =  {1,2,3,4,5,6}  [size = 6]
5126: .ve

5128: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateMPIAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`
5129: @*/
5130: PetscErrorCode MatCreateSeqAIJWithArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
5131: {
5132:   PetscInt    ii;
5133:   Mat_SeqAIJ *aij;
5134:   PetscInt    jj;

5136:   PetscFunctionBegin;
5137:   PetscCheck(m <= 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
5138:   PetscCall(MatCreate(comm, mat));
5139:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5140:   /* PetscCall(MatSetBlockSizes(*mat,,)); */
5141:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5142:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, MAT_SKIP_ALLOCATION, NULL));
5143:   aij = (Mat_SeqAIJ *)(*mat)->data;
5144:   PetscCall(PetscMalloc1(m, &aij->imax));
5145:   PetscCall(PetscMalloc1(m, &aij->ilen));

5147:   aij->i       = i;
5148:   aij->j       = j;
5149:   aij->a       = a;
5150:   aij->nonew   = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
5151:   aij->free_a  = PETSC_FALSE;
5152:   aij->free_ij = PETSC_FALSE;

5154:   for (ii = 0, aij->nonzerorowcnt = 0, aij->rmax = 0; ii < m; ii++) {
5155:     aij->ilen[ii] = aij->imax[ii] = i[ii + 1] - i[ii];
5156:     if (PetscDefined(USE_DEBUG)) {
5157:       PetscCheck(i[ii + 1] - i[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
5158:       for (jj = i[ii] + 1; jj < i[ii + 1]; jj++) {
5159:         PetscCheck(j[jj] >= j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is not sorted", jj - i[ii], j[jj], ii);
5160:         PetscCheck(j[jj] != j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is identical to previous entry", jj - i[ii], j[jj], ii);
5161:       }
5162:     }
5163:   }
5164:   if (PetscDefined(USE_DEBUG)) {
5165:     for (ii = 0; ii < aij->i[m]; ii++) {
5166:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
5167:       PetscCheck(j[ii] <= n - 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index to large at location = %" PetscInt_FMT " index = %" PetscInt_FMT " last column = %" PetscInt_FMT, ii, j[ii], n - 1);
5168:     }
5169:   }

5171:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5172:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5173:   PetscFunctionReturn(PETSC_SUCCESS);
5174: }

5176: /*@
5177:   MatCreateSeqAIJFromTriple - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in COO format)
5178:   provided by the user.

5180:   Collective

5182:   Input Parameters:
5183: + comm - must be an MPI communicator of size 1
5184: . m    - number of rows
5185: . n    - number of columns
5186: . i    - row indices
5187: . j    - column indices
5188: . a    - matrix values
5189: . nz   - number of nonzeros
5190: - idx  - if the `i` and `j` indices start with 1 use `PETSC_TRUE` otherwise use `PETSC_FALSE`

5192:   Output Parameter:
5193: . mat - the matrix

5195:   Level: intermediate

5197:   Example:
5198:   For the following matrix, the input data expected is as shown (using 0 based indexing)
5199: .vb
5200:         1 0 0
5201:         2 0 3
5202:         4 5 6

5204:         i =  {0,1,1,2,2,2}
5205:         j =  {0,0,2,0,1,2}
5206:         v =  {1,2,3,4,5,6}
5207: .ve

5209:   Note:
5210:   Instead of using this function, users should also consider `MatSetPreallocationCOO()` and `MatSetValuesCOO()`, which allow repeated or remote entries,
5211:   and are particularly useful in iterative applications.

5213: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateSeqAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`, `MatSetValuesCOO()`, `MatSetPreallocationCOO()`
5214: @*/
5215: PetscErrorCode MatCreateSeqAIJFromTriple(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat, PetscCount nz, PetscBool idx)
5216: {
5217:   PetscInt ii, *nnz, one = 1, row, col;

5219:   PetscFunctionBegin;
5220:   PetscCall(PetscCalloc1(m, &nnz));
5221:   for (ii = 0; ii < nz; ii++) nnz[i[ii] - !!idx] += 1;
5222:   PetscCall(MatCreate(comm, mat));
5223:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5224:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5225:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, 0, nnz));
5226:   for (ii = 0; ii < nz; ii++) {
5227:     if (idx) {
5228:       row = i[ii] - 1;
5229:       col = j[ii] - 1;
5230:     } else {
5231:       row = i[ii];
5232:       col = j[ii];
5233:     }
5234:     PetscCall(MatSetValues(*mat, one, &row, one, &col, &a[ii], ADD_VALUES));
5235:   }
5236:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5237:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5238:   PetscCall(PetscFree(nnz));
5239:   PetscFunctionReturn(PETSC_SUCCESS);
5240: }

5242: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
5243: {
5244:   PetscFunctionBegin;
5245:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIAIJ(comm, inmat, n, scall, outmat));
5246:   PetscFunctionReturn(PETSC_SUCCESS);
5247: }

5249: /*
5250:  Permute A into C's *local* index space using rowemb,colemb.
5251:  The embedding are supposed to be injections and the above implies that the range of rowemb is a subset
5252:  of [0,m), colemb is in [0,n).
5253:  If pattern == DIFFERENT_NONZERO_PATTERN, C is preallocated according to A.
5254:  */
5255: PetscErrorCode MatSetSeqMat_SeqAIJ(Mat C, IS rowemb, IS colemb, MatStructure pattern, Mat B)
5256: {
5257:   /* If making this function public, change the error returned in this function away from _PLIB. */
5258:   Mat_SeqAIJ     *Baij;
5259:   PetscBool       seqaij;
5260:   PetscInt        m, n, *nz, i, j, count;
5261:   PetscScalar     v;
5262:   const PetscInt *rowindices, *colindices;

5264:   PetscFunctionBegin;
5265:   if (!B) PetscFunctionReturn(PETSC_SUCCESS);
5266:   /* Check to make sure the target matrix (and embeddings) are compatible with C and each other. */
5267:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQAIJ, &seqaij));
5268:   PetscCheck(seqaij, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is of wrong type");
5269:   if (rowemb) {
5270:     PetscCall(ISGetLocalSize(rowemb, &m));
5271:     PetscCheck(m == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row IS of size %" PetscInt_FMT " is incompatible with matrix row size %" PetscInt_FMT, m, B->rmap->n);
5272:   } else {
5273:     PetscCheck(C->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is row-incompatible with the target matrix");
5274:   }
5275:   if (colemb) {
5276:     PetscCall(ISGetLocalSize(colemb, &n));
5277:     PetscCheck(n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Diag col IS of size %" PetscInt_FMT " is incompatible with input matrix col size %" PetscInt_FMT, n, B->cmap->n);
5278:   } else {
5279:     PetscCheck(C->cmap->n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is col-incompatible with the target matrix");
5280:   }

5282:   Baij = (Mat_SeqAIJ *)B->data;
5283:   if (pattern == DIFFERENT_NONZERO_PATTERN) {
5284:     PetscCall(PetscMalloc1(B->rmap->n, &nz));
5285:     for (i = 0; i < B->rmap->n; i++) nz[i] = Baij->i[i + 1] - Baij->i[i];
5286:     PetscCall(MatSeqAIJSetPreallocation(C, 0, nz));
5287:     PetscCall(PetscFree(nz));
5288:   }
5289:   if (pattern == SUBSET_NONZERO_PATTERN) PetscCall(MatZeroEntries(C));
5290:   count      = 0;
5291:   rowindices = NULL;
5292:   colindices = NULL;
5293:   if (rowemb) PetscCall(ISGetIndices(rowemb, &rowindices));
5294:   if (colemb) PetscCall(ISGetIndices(colemb, &colindices));
5295:   for (i = 0; i < B->rmap->n; i++) {
5296:     PetscInt row;
5297:     row = i;
5298:     if (rowindices) row = rowindices[i];
5299:     for (j = Baij->i[i]; j < Baij->i[i + 1]; j++) {
5300:       PetscInt col;
5301:       col = Baij->j[count];
5302:       if (colindices) col = colindices[col];
5303:       v = Baij->a[count];
5304:       PetscCall(MatSetValues(C, 1, &row, 1, &col, &v, INSERT_VALUES));
5305:       ++count;
5306:     }
5307:   }
5308:   /* FIXME: set C's nonzerostate correctly. */
5309:   /* Assembly for C is necessary. */
5310:   C->preallocated  = PETSC_TRUE;
5311:   C->assembled     = PETSC_TRUE;
5312:   C->was_assembled = PETSC_FALSE;
5313:   PetscFunctionReturn(PETSC_SUCCESS);
5314: }

5316: PetscErrorCode MatEliminateZeros_SeqAIJ(Mat A, PetscBool keep)
5317: {
5318:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5319:   MatScalar  *aa = a->a;
5320:   PetscInt    m = A->rmap->n, fshift = 0, fshift_prev = 0, i, k;
5321:   PetscInt   *ailen = a->ilen, *imax = a->imax, *ai = a->i, *aj = a->j, rmax = 0;

5323:   PetscFunctionBegin;
5324:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot eliminate zeros for unassembled matrix");
5325:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
5326:   for (i = 1; i <= m; i++) {
5327:     /* move each nonzero entry back by the amount of zero slots (fshift) before it*/
5328:     for (k = ai[i - 1]; k < ai[i]; k++) {
5329:       if (aa[k] == 0 && (aj[k] != i - 1 || !keep)) fshift++;
5330:       else {
5331:         if (aa[k] == 0 && aj[k] == i - 1) PetscCall(PetscInfo(A, "Keep the diagonal zero at row %" PetscInt_FMT "\n", i - 1));
5332:         aa[k - fshift] = aa[k];
5333:         aj[k - fshift] = aj[k];
5334:       }
5335:     }
5336:     ai[i - 1] -= fshift_prev; // safe to update ai[i-1] now since it will not be used in the next iteration
5337:     fshift_prev = fshift;
5338:     /* reset ilen and imax for each row */
5339:     ailen[i - 1] = imax[i - 1] = ai[i] - fshift - ai[i - 1];
5340:     a->nonzerorowcnt += ((ai[i] - fshift - ai[i - 1]) > 0);
5341:     rmax = PetscMax(rmax, ailen[i - 1]);
5342:   }
5343:   if (fshift) {
5344:     if (m) {
5345:       ai[m] -= fshift;
5346:       a->nz = ai[m];
5347:     }
5348:     PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; zeros eliminated: %" PetscInt_FMT "; nonzeros left: %" PetscInt_FMT "\n", m, A->cmap->n, fshift, a->nz));
5349:     A->nonzerostate++;
5350:     A->info.nz_unneeded += (PetscReal)fshift;
5351:     a->rmax = rmax;
5352:     if (a->inode.use && a->inode.checked) PetscCall(MatSeqAIJCheckInode(A));
5353:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
5354:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
5355:   }
5356:   PetscFunctionReturn(PETSC_SUCCESS);
5357: }

5359: PetscFunctionList MatSeqAIJList = NULL;

5361: /*@
5362:   MatSeqAIJSetType - Converts a `MATSEQAIJ` matrix to a subtype

5364:   Collective

5366:   Input Parameters:
5367: + mat    - the matrix object
5368: - matype - matrix type

5370:   Options Database Key:
5371: . -mat_seqaij_type  <method> - for example seqaijcrl

5373:   Level: intermediate

5375: .seealso: [](ch_matrices), `Mat`, `PCSetType()`, `VecSetType()`, `MatCreate()`, `MatType`
5376: @*/
5377: PetscErrorCode MatSeqAIJSetType(Mat mat, MatType matype)
5378: {
5379:   PetscBool sametype;
5380:   PetscErrorCode (*r)(Mat, MatType, MatReuse, Mat *);

5382:   PetscFunctionBegin;
5384:   PetscCall(PetscObjectTypeCompare((PetscObject)mat, matype, &sametype));
5385:   if (sametype) PetscFunctionReturn(PETSC_SUCCESS);

5387:   PetscCall(PetscFunctionListFind(MatSeqAIJList, matype, &r));
5388:   PetscCheck(r, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown Mat type given: %s", matype);
5389:   PetscCall((*r)(mat, matype, MAT_INPLACE_MATRIX, &mat));
5390:   PetscFunctionReturn(PETSC_SUCCESS);
5391: }

5393: /*@C
5394:   MatSeqAIJRegister -  - Adds a new sub-matrix type for sequential `MATSEQAIJ` matrices

5396:   Not Collective, No Fortran Support

5398:   Input Parameters:
5399: + sname    - name of a new user-defined matrix type, for example `MATSEQAIJCRL`
5400: - function - routine to convert to subtype

5402:   Level: advanced

5404:   Notes:
5405:   `MatSeqAIJRegister()` may be called multiple times to add several user-defined solvers.

5407:   Then, your matrix can be chosen with the procedural interface at runtime via the option
5408: .vb
5409:   -mat_seqaij_type my_mat
5410: .ve

5412: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRegisterAll()`
5413: @*/
5414: PetscErrorCode MatSeqAIJRegister(const char sname[], PetscErrorCode (*function)(Mat, MatType, MatReuse, Mat *))
5415: {
5416:   PetscFunctionBegin;
5417:   PetscCall(MatInitializePackage());
5418:   PetscCall(PetscFunctionListAdd(&MatSeqAIJList, sname, function));
5419:   PetscFunctionReturn(PETSC_SUCCESS);
5420: }

5422: PetscBool MatSeqAIJRegisterAllCalled = PETSC_FALSE;

5424: /*@C
5425:   MatSeqAIJRegisterAll - Registers all of the matrix subtypes of `MATSSEQAIJ`

5427:   Not Collective

5429:   Level: advanced

5431:   Note:
5432:   This registers the versions of `MATSEQAIJ` for GPUs

5434: .seealso: [](ch_matrices), `Mat`, `MatRegisterAll()`, `MatSeqAIJRegister()`
5435: @*/
5436: PetscErrorCode MatSeqAIJRegisterAll(void)
5437: {
5438:   PetscFunctionBegin;
5439:   if (MatSeqAIJRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
5440:   MatSeqAIJRegisterAllCalled = PETSC_TRUE;

5442:   PetscCall(MatSeqAIJRegister(MATSEQAIJCRL, MatConvert_SeqAIJ_SeqAIJCRL));
5443:   PetscCall(MatSeqAIJRegister(MATSEQAIJPERM, MatConvert_SeqAIJ_SeqAIJPERM));
5444:   PetscCall(MatSeqAIJRegister(MATSEQAIJSELL, MatConvert_SeqAIJ_SeqAIJSELL));
5445: #if defined(PETSC_HAVE_MKL_SPARSE)
5446:   PetscCall(MatSeqAIJRegister(MATSEQAIJMKL, MatConvert_SeqAIJ_SeqAIJMKL));
5447: #endif
5448: #if defined(PETSC_HAVE_CUDA)
5449:   PetscCall(MatSeqAIJRegister(MATSEQAIJCUSPARSE, MatConvert_SeqAIJ_SeqAIJCUSPARSE));
5450: #endif
5451: #if defined(PETSC_HAVE_HIP)
5452:   PetscCall(MatSeqAIJRegister(MATSEQAIJHIPSPARSE, MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
5453: #endif
5454: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
5455:   PetscCall(MatSeqAIJRegister(MATSEQAIJKOKKOS, MatConvert_SeqAIJ_SeqAIJKokkos));
5456: #endif
5457: #if defined(PETSC_HAVE_VIENNACL) && defined(PETSC_HAVE_VIENNACL_NO_CUDA)
5458:   PetscCall(MatSeqAIJRegister(MATMPIAIJVIENNACL, MatConvert_SeqAIJ_SeqAIJViennaCL));
5459: #endif
5460:   PetscFunctionReturn(PETSC_SUCCESS);
5461: }

5463: /*
5464:     Special version for direct calls from Fortran
5465: */
5466: #if defined(PETSC_HAVE_FORTRAN_CAPS)
5467:   #define matsetvaluesseqaij_ MATSETVALUESSEQAIJ
5468: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
5469:   #define matsetvaluesseqaij_ matsetvaluesseqaij
5470: #endif

5472: /* Change these macros so can be used in void function */

5474: /* Change these macros so can be used in void function */
5475: /* Identical to PetscCallVoid, except it assigns to *_ierr */
5476: #undef PetscCall
5477: #define PetscCall(...) \
5478:   do { \
5479:     PetscErrorCode ierr_msv_mpiaij = __VA_ARGS__; \
5480:     if (PetscUnlikely(ierr_msv_mpiaij)) { \
5481:       *_ierr = PetscError(PETSC_COMM_SELF, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr_msv_mpiaij, PETSC_ERROR_REPEAT, " "); \
5482:       return; \
5483:     } \
5484:   } while (0)

5486: #undef SETERRQ
5487: #define SETERRQ(comm, ierr, ...) \
5488:   do { \
5489:     *_ierr = PetscError(comm, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr, PETSC_ERROR_INITIAL, __VA_ARGS__); \
5490:     return; \
5491:   } while (0)

5493: PETSC_EXTERN void matsetvaluesseqaij_(Mat *AA, PetscInt *mm, const PetscInt im[], PetscInt *nn, const PetscInt in[], const PetscScalar v[], InsertMode *isis, PetscErrorCode *_ierr)
5494: {
5495:   Mat         A = *AA;
5496:   PetscInt    m = *mm, n = *nn;
5497:   InsertMode  is = *isis;
5498:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5499:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
5500:   PetscInt   *imax, *ai, *ailen;
5501:   PetscInt   *aj, nonew = a->nonew, lastcol = -1;
5502:   MatScalar  *ap, value, *aa;
5503:   PetscBool   ignorezeroentries = a->ignorezeroentries;
5504:   PetscBool   roworiented       = a->roworiented;

5506:   PetscFunctionBegin;
5507:   MatCheckPreallocated(A, 1);
5508:   imax  = a->imax;
5509:   ai    = a->i;
5510:   ailen = a->ilen;
5511:   aj    = a->j;
5512:   aa    = a->a;

5514:   for (k = 0; k < m; k++) { /* loop over added rows */
5515:     row = im[k];
5516:     if (row < 0) continue;
5517:     PetscCheck(row < A->rmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large");
5518:     rp   = aj + ai[row];
5519:     ap   = aa + ai[row];
5520:     rmax = imax[row];
5521:     nrow = ailen[row];
5522:     low  = 0;
5523:     high = nrow;
5524:     for (l = 0; l < n; l++) { /* loop over added columns */
5525:       if (in[l] < 0) continue;
5526:       PetscCheck(in[l] < A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Column too large");
5527:       col = in[l];
5528:       if (roworiented) value = v[l + k * n];
5529:       else value = v[k + l * m];

5531:       if (value == 0.0 && ignorezeroentries && (is == ADD_VALUES)) continue;

5533:       if (col <= lastcol) low = 0;
5534:       else high = nrow;
5535:       lastcol = col;
5536:       while (high - low > 5) {
5537:         t = (low + high) / 2;
5538:         if (rp[t] > col) high = t;
5539:         else low = t;
5540:       }
5541:       for (i = low; i < high; i++) {
5542:         if (rp[i] > col) break;
5543:         if (rp[i] == col) {
5544:           if (is == ADD_VALUES) ap[i] += value;
5545:           else ap[i] = value;
5546:           goto noinsert;
5547:         }
5548:       }
5549:       if (value == 0.0 && ignorezeroentries) goto noinsert;
5550:       if (nonew == 1) goto noinsert;
5551:       PetscCheck(nonew != -1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero in the matrix");
5552:       MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
5553:       N = nrow++ - 1;
5554:       a->nz++;
5555:       high++;
5556:       /* shift up all the later entries in this row */
5557:       for (ii = N; ii >= i; ii--) {
5558:         rp[ii + 1] = rp[ii];
5559:         ap[ii + 1] = ap[ii];
5560:       }
5561:       rp[i] = col;
5562:       ap[i] = value;
5563:     noinsert:;
5564:       low = i + 1;
5565:     }
5566:     ailen[row] = nrow;
5567:   }
5568:   PetscFunctionReturnVoid();
5569: }
5570: /* Undefining these here since they were redefined from their original definition above! No
5571:  * other PETSc functions should be defined past this point, as it is impossible to recover the
5572:  * original definitions */
5573: #undef PetscCall
5574: #undef SETERRQ