Actual source code: aij.c

  1: /*
  2:     Defines the basic matrix operations for the AIJ (compressed row)
  3:   matrix storage format.
  4: */

  6: #include <../src/mat/impls/aij/seq/aij.h>
  7: #include <petscblaslapack.h>
  8: #include <petscbt.h>
  9: #include <petsc/private/kernels/blocktranspose.h>

 11: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 12: #define TYPE AIJ
 13: #define TYPE_BS
 14: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 15: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 16: #undef TYPE
 17: #undef TYPE_BS

 19: static PetscErrorCode MatSeqAIJSetTypeFromOptions(Mat A)
 20: {
 21:   PetscBool flg;
 22:   char      type[256];

 24:   PetscFunctionBegin;
 25:   PetscObjectOptionsBegin((PetscObject)A);
 26:   PetscCall(PetscOptionsFList("-mat_seqaij_type", "Matrix SeqAIJ type", "MatSeqAIJSetType", MatSeqAIJList, "seqaij", type, 256, &flg));
 27:   if (flg) PetscCall(MatSeqAIJSetType(A, type));
 28:   PetscOptionsEnd();
 29:   PetscFunctionReturn(PETSC_SUCCESS);
 30: }

 32: static PetscErrorCode MatGetColumnReductions_SeqAIJ(Mat A, PetscInt type, PetscReal *reductions)
 33: {
 34:   PetscInt    i, m, n;
 35:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

 37:   PetscFunctionBegin;
 38:   PetscCall(MatGetSize(A, &m, &n));
 39:   PetscCall(PetscArrayzero(reductions, n));
 40:   if (type == NORM_2) {
 41:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i] * aij->a[i]);
 42:   } else if (type == NORM_1) {
 43:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i]);
 44:   } else if (type == NORM_INFINITY) {
 45:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] = PetscMax(PetscAbsScalar(aij->a[i]), reductions[aij->j[i]]);
 46:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
 47:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscRealPart(aij->a[i]);
 48:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 49:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscImaginaryPart(aij->a[i]);
 50:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");

 52:   if (type == NORM_2) {
 53:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
 54:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 55:     for (i = 0; i < n; i++) reductions[i] /= m;
 56:   }
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: static PetscErrorCode MatFindOffBlockDiagonalEntries_SeqAIJ(Mat A, IS *is)
 61: {
 62:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
 63:   PetscInt        i, m = A->rmap->n, cnt = 0, bs = A->rmap->bs;
 64:   const PetscInt *jj = a->j, *ii = a->i;
 65:   PetscInt       *rows;

 67:   PetscFunctionBegin;
 68:   for (i = 0; i < m; i++) {
 69:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) cnt++;
 70:   }
 71:   PetscCall(PetscMalloc1(cnt, &rows));
 72:   cnt = 0;
 73:   for (i = 0; i < m; i++) {
 74:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) {
 75:       rows[cnt] = i;
 76:       cnt++;
 77:     }
 78:   }
 79:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, is));
 80:   PetscFunctionReturn(PETSC_SUCCESS);
 81: }

 83: PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat A, PetscInt *nrows, PetscInt **zrows)
 84: {
 85:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
 86:   const MatScalar *aa;
 87:   PetscInt         i, m = A->rmap->n, cnt = 0;
 88:   const PetscInt  *ii = a->i, *jj = a->j, *diag;
 89:   PetscInt        *rows;

 91:   PetscFunctionBegin;
 92:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
 93:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
 94:   diag = a->diag;
 95:   for (i = 0; i < m; i++) {
 96:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) cnt++;
 97:   }
 98:   PetscCall(PetscMalloc1(cnt, &rows));
 99:   cnt = 0;
100:   for (i = 0; i < m; i++) {
101:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) rows[cnt++] = i;
102:   }
103:   *nrows = cnt;
104:   *zrows = rows;
105:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
106:   PetscFunctionReturn(PETSC_SUCCESS);
107: }

109: static PetscErrorCode MatFindZeroDiagonals_SeqAIJ(Mat A, IS *zrows)
110: {
111:   PetscInt nrows, *rows;

113:   PetscFunctionBegin;
114:   *zrows = NULL;
115:   PetscCall(MatFindZeroDiagonals_SeqAIJ_Private(A, &nrows, &rows));
116:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), nrows, rows, PETSC_OWN_POINTER, zrows));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: static PetscErrorCode MatFindNonzeroRows_SeqAIJ(Mat A, IS *keptrows)
121: {
122:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
123:   const MatScalar *aa;
124:   PetscInt         m = A->rmap->n, cnt = 0;
125:   const PetscInt  *ii;
126:   PetscInt         n, i, j, *rows;

128:   PetscFunctionBegin;
129:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
130:   *keptrows = NULL;
131:   ii        = a->i;
132:   for (i = 0; i < m; i++) {
133:     n = ii[i + 1] - ii[i];
134:     if (!n) {
135:       cnt++;
136:       goto ok1;
137:     }
138:     for (j = ii[i]; j < ii[i + 1]; j++) {
139:       if (aa[j] != 0.0) goto ok1;
140:     }
141:     cnt++;
142:   ok1:;
143:   }
144:   if (!cnt) {
145:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
146:     PetscFunctionReturn(PETSC_SUCCESS);
147:   }
148:   PetscCall(PetscMalloc1(A->rmap->n - cnt, &rows));
149:   cnt = 0;
150:   for (i = 0; i < m; i++) {
151:     n = ii[i + 1] - ii[i];
152:     if (!n) continue;
153:     for (j = ii[i]; j < ii[i + 1]; j++) {
154:       if (aa[j] != 0.0) {
155:         rows[cnt++] = i;
156:         break;
157:       }
158:     }
159:   }
160:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
161:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, keptrows));
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: PetscErrorCode MatDiagonalSet_SeqAIJ(Mat Y, Vec D, InsertMode is)
166: {
167:   Mat_SeqAIJ        *aij = (Mat_SeqAIJ *)Y->data;
168:   PetscInt           i, m = Y->rmap->n;
169:   const PetscInt    *diag;
170:   MatScalar         *aa;
171:   const PetscScalar *v;
172:   PetscBool          missing;

174:   PetscFunctionBegin;
175:   if (Y->assembled) {
176:     PetscCall(MatMissingDiagonal_SeqAIJ(Y, &missing, NULL));
177:     if (!missing) {
178:       diag = aij->diag;
179:       PetscCall(VecGetArrayRead(D, &v));
180:       PetscCall(MatSeqAIJGetArray(Y, &aa));
181:       if (is == INSERT_VALUES) {
182:         for (i = 0; i < m; i++) aa[diag[i]] = v[i];
183:       } else {
184:         for (i = 0; i < m; i++) aa[diag[i]] += v[i];
185:       }
186:       PetscCall(MatSeqAIJRestoreArray(Y, &aa));
187:       PetscCall(VecRestoreArrayRead(D, &v));
188:       PetscFunctionReturn(PETSC_SUCCESS);
189:     }
190:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
191:   }
192:   PetscCall(MatDiagonalSet_Default(Y, D, is));
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: PetscErrorCode MatGetRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
197: {
198:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
199:   PetscInt    i, ishift;

201:   PetscFunctionBegin;
202:   if (m) *m = A->rmap->n;
203:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
204:   ishift = 0;
205:   if (symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) {
206:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, ishift, oshift, (PetscInt **)ia, (PetscInt **)ja));
207:   } else if (oshift == 1) {
208:     PetscInt *tia;
209:     PetscInt  nz = a->i[A->rmap->n];
210:     /* malloc space and  add 1 to i and j indices */
211:     PetscCall(PetscMalloc1(A->rmap->n + 1, &tia));
212:     for (i = 0; i < A->rmap->n + 1; i++) tia[i] = a->i[i] + 1;
213:     *ia = tia;
214:     if (ja) {
215:       PetscInt *tja;
216:       PetscCall(PetscMalloc1(nz + 1, &tja));
217:       for (i = 0; i < nz; i++) tja[i] = a->j[i] + 1;
218:       *ja = tja;
219:     }
220:   } else {
221:     *ia = a->i;
222:     if (ja) *ja = a->j;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
228: {
229:   PetscFunctionBegin;
230:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
231:   if ((symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) || oshift == 1) {
232:     PetscCall(PetscFree(*ia));
233:     if (ja) PetscCall(PetscFree(*ja));
234:   }
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
239: {
240:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
241:   PetscInt    i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
242:   PetscInt    nz = a->i[m], row, *jj, mr, col;

244:   PetscFunctionBegin;
245:   *nn = n;
246:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
247:   if (symmetric) {
248:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, 0, oshift, (PetscInt **)ia, (PetscInt **)ja));
249:   } else {
250:     PetscCall(PetscCalloc1(n, &collengths));
251:     PetscCall(PetscMalloc1(n + 1, &cia));
252:     PetscCall(PetscMalloc1(nz, &cja));
253:     jj = a->j;
254:     for (i = 0; i < nz; i++) collengths[jj[i]]++;
255:     cia[0] = oshift;
256:     for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
257:     PetscCall(PetscArrayzero(collengths, n));
258:     jj = a->j;
259:     for (row = 0; row < m; row++) {
260:       mr = a->i[row + 1] - a->i[row];
261:       for (i = 0; i < mr; i++) {
262:         col = *jj++;

264:         cja[cia[col] + collengths[col]++ - oshift] = row + oshift;
265:       }
266:     }
267:     PetscCall(PetscFree(collengths));
268:     *ia = cia;
269:     *ja = cja;
270:   }
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
275: {
276:   PetscFunctionBegin;
277:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

279:   PetscCall(PetscFree(*ia));
280:   PetscCall(PetscFree(*ja));
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: /*
285:  MatGetColumnIJ_SeqAIJ_Color() and MatRestoreColumnIJ_SeqAIJ_Color() are customized from
286:  MatGetColumnIJ_SeqAIJ() and MatRestoreColumnIJ_SeqAIJ() by adding an output
287:  spidx[], index of a->a, to be used in MatTransposeColoringCreate_SeqAIJ() and MatFDColoringCreate_SeqXAIJ()
288: */
289: PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
290: {
291:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
292:   PetscInt        i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
293:   PetscInt        nz = a->i[m], row, mr, col, tmp;
294:   PetscInt       *cspidx;
295:   const PetscInt *jj;

297:   PetscFunctionBegin;
298:   *nn = n;
299:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

301:   PetscCall(PetscCalloc1(n, &collengths));
302:   PetscCall(PetscMalloc1(n + 1, &cia));
303:   PetscCall(PetscMalloc1(nz, &cja));
304:   PetscCall(PetscMalloc1(nz, &cspidx));
305:   jj = a->j;
306:   for (i = 0; i < nz; i++) collengths[jj[i]]++;
307:   cia[0] = oshift;
308:   for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
309:   PetscCall(PetscArrayzero(collengths, n));
310:   jj = a->j;
311:   for (row = 0; row < m; row++) {
312:     mr = a->i[row + 1] - a->i[row];
313:     for (i = 0; i < mr; i++) {
314:       col         = *jj++;
315:       tmp         = cia[col] + collengths[col]++ - oshift;
316:       cspidx[tmp] = a->i[row] + i; /* index of a->j */
317:       cja[tmp]    = row + oshift;
318:     }
319:   }
320:   PetscCall(PetscFree(collengths));
321:   *ia    = cia;
322:   *ja    = cja;
323:   *spidx = cspidx;
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
328: {
329:   PetscFunctionBegin;
330:   PetscCall(MatRestoreColumnIJ_SeqAIJ(A, oshift, symmetric, inodecompressed, n, ia, ja, done));
331:   PetscCall(PetscFree(*spidx));
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }

335: static PetscErrorCode MatSetValuesRow_SeqAIJ(Mat A, PetscInt row, const PetscScalar v[])
336: {
337:   Mat_SeqAIJ  *a  = (Mat_SeqAIJ *)A->data;
338:   PetscInt    *ai = a->i;
339:   PetscScalar *aa;

341:   PetscFunctionBegin;
342:   PetscCall(MatSeqAIJGetArray(A, &aa));
343:   PetscCall(PetscArraycpy(aa + ai[row], v, ai[row + 1] - ai[row]));
344:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /*
349:     MatSeqAIJSetValuesLocalFast - An optimized version of MatSetValuesLocal() for SeqAIJ matrices with several assumptions

351:       -   a single row of values is set with each call
352:       -   no row or column indices are negative or (in error) larger than the number of rows or columns
353:       -   the values are always added to the matrix, not set
354:       -   no new locations are introduced in the nonzero structure of the matrix

356:      This does NOT assume the global column indices are sorted

358: */

360: #include <petsc/private/isimpl.h>
361: PetscErrorCode MatSeqAIJSetValuesLocalFast(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
362: {
363:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
364:   PetscInt        low, high, t, row, nrow, i, col, l;
365:   const PetscInt *rp, *ai = a->i, *ailen = a->ilen, *aj = a->j;
366:   PetscInt        lastcol = -1;
367:   MatScalar      *ap, value, *aa;
368:   const PetscInt *ridx = A->rmap->mapping->indices, *cidx = A->cmap->mapping->indices;

370:   PetscFunctionBegin;
371:   PetscCall(MatSeqAIJGetArray(A, &aa));
372:   row  = ridx[im[0]];
373:   rp   = aj + ai[row];
374:   ap   = aa + ai[row];
375:   nrow = ailen[row];
376:   low  = 0;
377:   high = nrow;
378:   for (l = 0; l < n; l++) { /* loop over added columns */
379:     col   = cidx[in[l]];
380:     value = v[l];

382:     if (col <= lastcol) low = 0;
383:     else high = nrow;
384:     lastcol = col;
385:     while (high - low > 5) {
386:       t = (low + high) / 2;
387:       if (rp[t] > col) high = t;
388:       else low = t;
389:     }
390:     for (i = low; i < high; i++) {
391:       if (rp[i] == col) {
392:         ap[i] += value;
393:         low = i + 1;
394:         break;
395:       }
396:     }
397:   }
398:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
399:   return PETSC_SUCCESS;
400: }

402: PetscErrorCode MatSetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
403: {
404:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
405:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
406:   PetscInt   *imax = a->imax, *ai = a->i, *ailen = a->ilen;
407:   PetscInt   *aj = a->j, nonew = a->nonew, lastcol = -1;
408:   MatScalar  *ap = NULL, value = 0.0, *aa;
409:   PetscBool   ignorezeroentries = a->ignorezeroentries;
410:   PetscBool   roworiented       = a->roworiented;

412:   PetscFunctionBegin;
413:   PetscCall(MatSeqAIJGetArray(A, &aa));
414:   for (k = 0; k < m; k++) { /* loop over added rows */
415:     row = im[k];
416:     if (row < 0) continue;
417:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
418:     rp = PetscSafePointerPlusOffset(aj, ai[row]);
419:     if (!A->structure_only) ap = PetscSafePointerPlusOffset(aa, ai[row]);
420:     rmax = imax[row];
421:     nrow = ailen[row];
422:     low  = 0;
423:     high = nrow;
424:     for (l = 0; l < n; l++) { /* loop over added columns */
425:       if (in[l] < 0) continue;
426:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
427:       col = in[l];
428:       if (v && !A->structure_only) value = roworiented ? v[l + k * n] : v[k + l * m];
429:       if (!A->structure_only && value == 0.0 && ignorezeroentries && is == ADD_VALUES && row != col) continue;

431:       if (col <= lastcol) low = 0;
432:       else high = nrow;
433:       lastcol = col;
434:       while (high - low > 5) {
435:         t = (low + high) / 2;
436:         if (rp[t] > col) high = t;
437:         else low = t;
438:       }
439:       for (i = low; i < high; i++) {
440:         if (rp[i] > col) break;
441:         if (rp[i] == col) {
442:           if (!A->structure_only) {
443:             if (is == ADD_VALUES) {
444:               ap[i] += value;
445:               (void)PetscLogFlops(1.0);
446:             } else ap[i] = value;
447:           }
448:           low = i + 1;
449:           goto noinsert;
450:         }
451:       }
452:       if (value == 0.0 && ignorezeroentries && row != col) goto noinsert;
453:       if (nonew == 1) goto noinsert;
454:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at (%" PetscInt_FMT ",%" PetscInt_FMT ") in the matrix", row, col);
455:       if (A->structure_only) {
456:         MatSeqXAIJReallocateAIJ_structure_only(A, A->rmap->n, 1, nrow, row, col, rmax, ai, aj, rp, imax, nonew, MatScalar);
457:       } else {
458:         MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459:       }
460:       N = nrow++ - 1;
461:       a->nz++;
462:       high++;
463:       /* shift up all the later entries in this row */
464:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
465:       rp[i] = col;
466:       if (!A->structure_only) {
467:         PetscCall(PetscArraymove(ap + i + 1, ap + i, N - i + 1));
468:         ap[i] = value;
469:       }
470:       low = i + 1;
471:     noinsert:;
472:     }
473:     ailen[row] = nrow;
474:   }
475:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
476:   PetscFunctionReturn(PETSC_SUCCESS);
477: }

479: static PetscErrorCode MatSetValues_SeqAIJ_SortedFullNoPreallocation(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
480: {
481:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
482:   PetscInt   *rp, k, row;
483:   PetscInt   *ai = a->i;
484:   PetscInt   *aj = a->j;
485:   MatScalar  *aa, *ap;

487:   PetscFunctionBegin;
488:   PetscCheck(!A->was_assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call on assembled matrix.");
489:   PetscCheck(m * n + a->nz <= a->maxnz, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of entries in matrix will be larger than maximum nonzeros allocated for %" PetscInt_FMT " in MatSeqAIJSetTotalPreallocation()", a->maxnz);

491:   PetscCall(MatSeqAIJGetArray(A, &aa));
492:   for (k = 0; k < m; k++) { /* loop over added rows */
493:     row = im[k];
494:     rp  = aj + ai[row];
495:     ap  = PetscSafePointerPlusOffset(aa, ai[row]);

497:     PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
498:     if (!A->structure_only) {
499:       if (v) {
500:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
501:         v += n;
502:       } else {
503:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
504:       }
505:     }
506:     a->ilen[row]  = n;
507:     a->imax[row]  = n;
508:     a->i[row + 1] = a->i[row] + n;
509:     a->nz += n;
510:   }
511:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@
516:   MatSeqAIJSetTotalPreallocation - Sets an upper bound on the total number of expected nonzeros in the matrix.

518:   Input Parameters:
519: + A       - the `MATSEQAIJ` matrix
520: - nztotal - bound on the number of nonzeros

522:   Level: advanced

524:   Notes:
525:   This can be called if you will be provided the matrix row by row (from row zero) with sorted column indices for each row.
526:   Simply call `MatSetValues()` after this call to provide the matrix entries in the usual manner. This matrix may be used
527:   as always with multiple matrix assemblies.

529: .seealso: [](ch_matrices), `Mat`, `MatSetOption()`, `MAT_SORTED_FULL`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`
530: @*/
531: PetscErrorCode MatSeqAIJSetTotalPreallocation(Mat A, PetscInt nztotal)
532: {
533:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

535:   PetscFunctionBegin;
536:   PetscCall(PetscLayoutSetUp(A->rmap));
537:   PetscCall(PetscLayoutSetUp(A->cmap));
538:   a->maxnz = nztotal;
539:   if (!a->imax) { PetscCall(PetscMalloc1(A->rmap->n, &a->imax)); }
540:   if (!a->ilen) {
541:     PetscCall(PetscMalloc1(A->rmap->n, &a->ilen));
542:   } else {
543:     PetscCall(PetscMemzero(a->ilen, A->rmap->n * sizeof(PetscInt)));
544:   }

546:   /* allocate the matrix space */
547:   PetscCall(PetscShmgetAllocateArray(A->rmap->n + 1, sizeof(PetscInt), (void **)&a->i));
548:   PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscInt), (void **)&a->j));
549:   a->free_ij = PETSC_TRUE;
550:   if (A->structure_only) {
551:     a->free_a = PETSC_FALSE;
552:   } else {
553:     PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscScalar), (void **)&a->a));
554:     a->free_a = PETSC_TRUE;
555:   }
556:   a->i[0]           = 0;
557:   A->ops->setvalues = MatSetValues_SeqAIJ_SortedFullNoPreallocation;
558:   A->preallocated   = PETSC_TRUE;
559:   PetscFunctionReturn(PETSC_SUCCESS);
560: }

562: static PetscErrorCode MatSetValues_SeqAIJ_SortedFull(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
563: {
564:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
565:   PetscInt   *rp, k, row;
566:   PetscInt   *ai = a->i, *ailen = a->ilen;
567:   PetscInt   *aj = a->j;
568:   MatScalar  *aa, *ap;

570:   PetscFunctionBegin;
571:   PetscCall(MatSeqAIJGetArray(A, &aa));
572:   for (k = 0; k < m; k++) { /* loop over added rows */
573:     row = im[k];
574:     PetscCheck(n <= a->imax[row], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Preallocation for row %" PetscInt_FMT " does not match number of columns provided", n);
575:     rp = aj + ai[row];
576:     ap = aa + ai[row];
577:     if (!A->was_assembled) PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
578:     if (!A->structure_only) {
579:       if (v) {
580:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
581:         v += n;
582:       } else {
583:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
584:       }
585:     }
586:     ailen[row] = n;
587:     a->nz += n;
588:   }
589:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatGetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
594: {
595:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
596:   PetscInt        *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
597:   PetscInt        *ai = a->i, *ailen = a->ilen;
598:   const MatScalar *ap, *aa;

600:   PetscFunctionBegin;
601:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
602:   for (k = 0; k < m; k++) { /* loop over rows */
603:     row = im[k];
604:     if (row < 0) {
605:       v += n;
606:       continue;
607:     } /* negative row */
608:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
609:     rp   = PetscSafePointerPlusOffset(aj, ai[row]);
610:     ap   = PetscSafePointerPlusOffset(aa, ai[row]);
611:     nrow = ailen[row];
612:     for (l = 0; l < n; l++) { /* loop over columns */
613:       if (in[l] < 0) {
614:         v++;
615:         continue;
616:       } /* negative column */
617:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
618:       col  = in[l];
619:       high = nrow;
620:       low  = 0; /* assume unsorted */
621:       while (high - low > 5) {
622:         t = (low + high) / 2;
623:         if (rp[t] > col) high = t;
624:         else low = t;
625:       }
626:       for (i = low; i < high; i++) {
627:         if (rp[i] > col) break;
628:         if (rp[i] == col) {
629:           *v++ = ap[i];
630:           goto finished;
631:         }
632:       }
633:       *v++ = 0.0;
634:     finished:;
635:     }
636:   }
637:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatView_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
642: {
643:   Mat_SeqAIJ        *A = (Mat_SeqAIJ *)mat->data;
644:   const PetscScalar *av;
645:   PetscInt           header[4], M, N, m, nz, i;
646:   PetscInt          *rowlens;

648:   PetscFunctionBegin;
649:   PetscCall(PetscViewerSetUp(viewer));

651:   M  = mat->rmap->N;
652:   N  = mat->cmap->N;
653:   m  = mat->rmap->n;
654:   nz = A->nz;

656:   /* write matrix header */
657:   header[0] = MAT_FILE_CLASSID;
658:   header[1] = M;
659:   header[2] = N;
660:   header[3] = nz;
661:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

663:   /* fill in and store row lengths */
664:   PetscCall(PetscMalloc1(m, &rowlens));
665:   for (i = 0; i < m; i++) rowlens[i] = A->i[i + 1] - A->i[i];
666:   if (PetscDefined(USE_DEBUG)) {
667:     PetscInt mnz = 0;

669:     for (i = 0; i < m; i++) mnz += rowlens[i];
670:     PetscCheck(nz == mnz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row lens %" PetscInt_FMT " do not sum to nz %" PetscInt_FMT, mnz, nz);
671:   }
672:   PetscCall(PetscViewerBinaryWrite(viewer, rowlens, m, PETSC_INT));
673:   PetscCall(PetscFree(rowlens));
674:   /* store column indices */
675:   PetscCall(PetscViewerBinaryWrite(viewer, A->j, nz, PETSC_INT));
676:   /* store nonzero values */
677:   PetscCall(MatSeqAIJGetArrayRead(mat, &av));
678:   PetscCall(PetscViewerBinaryWrite(viewer, av, nz, PETSC_SCALAR));
679:   PetscCall(MatSeqAIJRestoreArrayRead(mat, &av));

681:   /* write block size option to the viewer's .info file */
682:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
683:   PetscFunctionReturn(PETSC_SUCCESS);
684: }

686: static PetscErrorCode MatView_SeqAIJ_ASCII_structonly(Mat A, PetscViewer viewer)
687: {
688:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
689:   PetscInt    i, k, m = A->rmap->N;

691:   PetscFunctionBegin;
692:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
693:   for (i = 0; i < m; i++) {
694:     PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
695:     for (k = a->i[i]; k < a->i[i + 1]; k++) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ") ", a->j[k]));
696:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
697:   }
698:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
699:   PetscFunctionReturn(PETSC_SUCCESS);
700: }

702: extern PetscErrorCode MatSeqAIJFactorInfo_Matlab(Mat, PetscViewer);

704: static PetscErrorCode MatView_SeqAIJ_ASCII(Mat A, PetscViewer viewer)
705: {
706:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
707:   const PetscScalar *av;
708:   PetscInt           i, j, m = A->rmap->n;
709:   const char        *name;
710:   PetscViewerFormat  format;

712:   PetscFunctionBegin;
713:   if (A->structure_only) {
714:     PetscCall(MatView_SeqAIJ_ASCII_structonly(A, viewer));
715:     PetscFunctionReturn(PETSC_SUCCESS);
716:   }

718:   PetscCall(PetscViewerGetFormat(viewer, &format));
719:   // By petsc's rule, even PETSC_VIEWER_ASCII_INFO_DETAIL doesn't print matrix entries
720:   if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);

722:   /* trigger copy to CPU if needed */
723:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
724:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
725:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
726:     PetscInt nofinalvalue = 0;
727:     if (m && ((a->i[m] == a->i[m - 1]) || (a->j[a->nz - 1] != A->cmap->n - 1))) {
728:       /* Need a dummy value to ensure the dimension of the matrix. */
729:       nofinalvalue = 1;
730:     }
731:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
732:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
733:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
734: #if defined(PETSC_USE_COMPLEX)
735:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
736: #else
737:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
738: #endif
739:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

741:     for (i = 0; i < m; i++) {
742:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
743: #if defined(PETSC_USE_COMPLEX)
744:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->j[j] + 1, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
745: #else
746:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->j[j] + 1, (double)a->a[j]));
747: #endif
748:       }
749:     }
750:     if (nofinalvalue) {
751: #if defined(PETSC_USE_COMPLEX)
752:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", m, A->cmap->n, 0., 0.));
753: #else
754:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", m, A->cmap->n, 0.0));
755: #endif
756:     }
757:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
758:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
759:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
760:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
761:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
762:     for (i = 0; i < m; i++) {
763:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
764:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
765: #if defined(PETSC_USE_COMPLEX)
766:         if (PetscImaginaryPart(a->a[j]) > 0.0 && PetscRealPart(a->a[j]) != 0.0) {
767:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
768:         } else if (PetscImaginaryPart(a->a[j]) < 0.0 && PetscRealPart(a->a[j]) != 0.0) {
769:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
770:         } else if (PetscRealPart(a->a[j]) != 0.0) {
771:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
772:         }
773: #else
774:         if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
775: #endif
776:       }
777:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
778:     }
779:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
780:   } else if (format == PETSC_VIEWER_ASCII_SYMMODU) {
781:     PetscInt nzd = 0, fshift = 1, *sptr;
782:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
783:     PetscCall(PetscMalloc1(m + 1, &sptr));
784:     for (i = 0; i < m; i++) {
785:       sptr[i] = nzd + 1;
786:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
787:         if (a->j[j] >= i) {
788: #if defined(PETSC_USE_COMPLEX)
789:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) nzd++;
790: #else
791:           if (a->a[j] != 0.0) nzd++;
792: #endif
793:         }
794:       }
795:     }
796:     sptr[m] = nzd + 1;
797:     PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n\n", m, nzd));
798:     for (i = 0; i < m + 1; i += 6) {
799:       if (i + 4 < m) {
800:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4], sptr[i + 5]));
801:       } else if (i + 3 < m) {
802:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4]));
803:       } else if (i + 2 < m) {
804:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3]));
805:       } else if (i + 1 < m) {
806:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2]));
807:       } else if (i < m) {
808:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1]));
809:       } else {
810:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "\n", sptr[i]));
811:       }
812:     }
813:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
814:     PetscCall(PetscFree(sptr));
815:     for (i = 0; i < m; i++) {
816:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
817:         if (a->j[j] >= i) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " ", a->j[j] + fshift));
818:       }
819:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
820:     }
821:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
822:     for (i = 0; i < m; i++) {
823:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
824:         if (a->j[j] >= i) {
825: #if defined(PETSC_USE_COMPLEX)
826:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e %18.16e ", (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
827: #else
828:           if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e ", (double)a->a[j]));
829: #endif
830:         }
831:       }
832:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
833:     }
834:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
835:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
836:     PetscInt    cnt = 0, jcnt;
837:     PetscScalar value;
838: #if defined(PETSC_USE_COMPLEX)
839:     PetscBool realonly = PETSC_TRUE;

841:     for (i = 0; i < a->i[m]; i++) {
842:       if (PetscImaginaryPart(a->a[i]) != 0.0) {
843:         realonly = PETSC_FALSE;
844:         break;
845:       }
846:     }
847: #endif

849:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
850:     for (i = 0; i < m; i++) {
851:       jcnt = 0;
852:       for (j = 0; j < A->cmap->n; j++) {
853:         if (jcnt < a->i[i + 1] - a->i[i] && j == a->j[cnt]) {
854:           value = a->a[cnt++];
855:           jcnt++;
856:         } else {
857:           value = 0.0;
858:         }
859: #if defined(PETSC_USE_COMPLEX)
860:         if (realonly) {
861:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
862:         } else {
863:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
864:         }
865: #else
866:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
867: #endif
868:       }
869:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
870:     }
871:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
872:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
873:     PetscInt fshift = 1;
874:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
875: #if defined(PETSC_USE_COMPLEX)
876:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
877: #else
878:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
879: #endif
880:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
881:     for (i = 0; i < m; i++) {
882:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
883: #if defined(PETSC_USE_COMPLEX)
884:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->j[j] + fshift, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
885: #else
886:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->j[j] + fshift, (double)a->a[j]));
887: #endif
888:       }
889:     }
890:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
891:   } else {
892:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
893:     if (A->factortype) {
894:       for (i = 0; i < m; i++) {
895:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
896:         /* L part */
897:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
898: #if defined(PETSC_USE_COMPLEX)
899:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
900:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
901:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
902:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
903:           } else {
904:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
905:           }
906: #else
907:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
908: #endif
909:         }
910:         /* diagonal */
911:         j = a->diag[i];
912: #if defined(PETSC_USE_COMPLEX)
913:         if (PetscImaginaryPart(a->a[j]) > 0.0) {
914:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(1 / a->a[j]), (double)PetscImaginaryPart(1 / a->a[j])));
915:         } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
916:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(1 / a->a[j]), (double)(-PetscImaginaryPart(1 / a->a[j]))));
917:         } else {
918:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(1 / a->a[j])));
919:         }
920: #else
921:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)(1 / a->a[j])));
922: #endif

924:         /* U part */
925:         for (j = a->diag[i + 1] + 1; j < a->diag[i]; j++) {
926: #if defined(PETSC_USE_COMPLEX)
927:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
928:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
929:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
930:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
931:           } else {
932:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
933:           }
934: #else
935:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
936: #endif
937:         }
938:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
939:       }
940:     } else {
941:       for (i = 0; i < m; i++) {
942:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
943:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
944: #if defined(PETSC_USE_COMPLEX)
945:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
946:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
947:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
948:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
949:           } else {
950:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
951:           }
952: #else
953:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
954: #endif
955:         }
956:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
957:       }
958:     }
959:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
960:   }
961:   PetscCall(PetscViewerFlush(viewer));
962:   PetscFunctionReturn(PETSC_SUCCESS);
963: }

965: #include <petscdraw.h>
966: static PetscErrorCode MatView_SeqAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
967: {
968:   Mat                A = (Mat)Aa;
969:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
970:   PetscInt           i, j, m = A->rmap->n;
971:   int                color;
972:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
973:   PetscViewer        viewer;
974:   PetscViewerFormat  format;
975:   const PetscScalar *aa;

977:   PetscFunctionBegin;
978:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
979:   PetscCall(PetscViewerGetFormat(viewer, &format));
980:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

982:   /* loop over matrix elements drawing boxes */
983:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
984:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
985:     PetscDrawCollectiveBegin(draw);
986:     /* Blue for negative, Cyan for zero and  Red for positive */
987:     color = PETSC_DRAW_BLUE;
988:     for (i = 0; i < m; i++) {
989:       y_l = m - i - 1.0;
990:       y_r = y_l + 1.0;
991:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
992:         x_l = a->j[j];
993:         x_r = x_l + 1.0;
994:         if (PetscRealPart(aa[j]) >= 0.) continue;
995:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
996:       }
997:     }
998:     color = PETSC_DRAW_CYAN;
999:     for (i = 0; i < m; i++) {
1000:       y_l = m - i - 1.0;
1001:       y_r = y_l + 1.0;
1002:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1003:         x_l = a->j[j];
1004:         x_r = x_l + 1.0;
1005:         if (aa[j] != 0.) continue;
1006:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1007:       }
1008:     }
1009:     color = PETSC_DRAW_RED;
1010:     for (i = 0; i < m; i++) {
1011:       y_l = m - i - 1.0;
1012:       y_r = y_l + 1.0;
1013:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1014:         x_l = a->j[j];
1015:         x_r = x_l + 1.0;
1016:         if (PetscRealPart(aa[j]) <= 0.) continue;
1017:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1018:       }
1019:     }
1020:     PetscDrawCollectiveEnd(draw);
1021:   } else {
1022:     /* use contour shading to indicate magnitude of values */
1023:     /* first determine max of all nonzero values */
1024:     PetscReal minv = 0.0, maxv = 0.0;
1025:     PetscInt  nz = a->nz, count = 0;
1026:     PetscDraw popup;

1028:     for (i = 0; i < nz; i++) {
1029:       if (PetscAbsScalar(aa[i]) > maxv) maxv = PetscAbsScalar(aa[i]);
1030:     }
1031:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1032:     PetscCall(PetscDrawGetPopup(draw, &popup));
1033:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1035:     PetscDrawCollectiveBegin(draw);
1036:     for (i = 0; i < m; i++) {
1037:       y_l = m - i - 1.0;
1038:       y_r = y_l + 1.0;
1039:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1040:         x_l   = a->j[j];
1041:         x_r   = x_l + 1.0;
1042:         color = PetscDrawRealToColor(PetscAbsScalar(aa[count]), minv, maxv);
1043:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1044:         count++;
1045:       }
1046:     }
1047:     PetscDrawCollectiveEnd(draw);
1048:   }
1049:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1050:   PetscFunctionReturn(PETSC_SUCCESS);
1051: }

1053: #include <petscdraw.h>
1054: static PetscErrorCode MatView_SeqAIJ_Draw(Mat A, PetscViewer viewer)
1055: {
1056:   PetscDraw draw;
1057:   PetscReal xr, yr, xl, yl, h, w;
1058:   PetscBool isnull;

1060:   PetscFunctionBegin;
1061:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1062:   PetscCall(PetscDrawIsNull(draw, &isnull));
1063:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1065:   xr = A->cmap->n;
1066:   yr = A->rmap->n;
1067:   h  = yr / 10.0;
1068:   w  = xr / 10.0;
1069:   xr += w;
1070:   yr += h;
1071:   xl = -w;
1072:   yl = -h;
1073:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1074:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1075:   PetscCall(PetscDrawZoom(draw, MatView_SeqAIJ_Draw_Zoom, A));
1076:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1077:   PetscCall(PetscDrawSave(draw));
1078:   PetscFunctionReturn(PETSC_SUCCESS);
1079: }

1081: PetscErrorCode MatView_SeqAIJ(Mat A, PetscViewer viewer)
1082: {
1083:   PetscBool iascii, isbinary, isdraw;

1085:   PetscFunctionBegin;
1086:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1087:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1088:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1089:   if (iascii) PetscCall(MatView_SeqAIJ_ASCII(A, viewer));
1090:   else if (isbinary) PetscCall(MatView_SeqAIJ_Binary(A, viewer));
1091:   else if (isdraw) PetscCall(MatView_SeqAIJ_Draw(A, viewer));
1092:   PetscCall(MatView_SeqAIJ_Inode(A, viewer));
1093:   PetscFunctionReturn(PETSC_SUCCESS);
1094: }

1096: PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat A, MatAssemblyType mode)
1097: {
1098:   Mat_SeqAIJ *a      = (Mat_SeqAIJ *)A->data;
1099:   PetscInt    fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
1100:   PetscInt    m = A->rmap->n, *ip, N, *ailen = a->ilen, rmax = 0, n;
1101:   MatScalar  *aa    = a->a, *ap;
1102:   PetscReal   ratio = 0.6;

1104:   PetscFunctionBegin;
1105:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1106:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1107:   if (A->was_assembled && A->ass_nonzerostate == A->nonzerostate) {
1108:     /* we need to respect users asking to use or not the inodes routine in between matrix assemblies */
1109:     PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1110:     PetscFunctionReturn(PETSC_SUCCESS);
1111:   }

1113:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
1114:   for (i = 1; i < m; i++) {
1115:     /* move each row back by the amount of empty slots (fshift) before it*/
1116:     fshift += imax[i - 1] - ailen[i - 1];
1117:     rmax = PetscMax(rmax, ailen[i]);
1118:     if (fshift) {
1119:       ip = aj + ai[i];
1120:       ap = aa + ai[i];
1121:       N  = ailen[i];
1122:       PetscCall(PetscArraymove(ip - fshift, ip, N));
1123:       if (!A->structure_only) PetscCall(PetscArraymove(ap - fshift, ap, N));
1124:     }
1125:     ai[i] = ai[i - 1] + ailen[i - 1];
1126:   }
1127:   if (m) {
1128:     fshift += imax[m - 1] - ailen[m - 1];
1129:     ai[m] = ai[m - 1] + ailen[m - 1];
1130:   }
1131:   /* reset ilen and imax for each row */
1132:   a->nonzerorowcnt = 0;
1133:   if (A->structure_only) {
1134:     PetscCall(PetscFree(a->imax));
1135:     PetscCall(PetscFree(a->ilen));
1136:   } else { /* !A->structure_only */
1137:     for (i = 0; i < m; i++) {
1138:       ailen[i] = imax[i] = ai[i + 1] - ai[i];
1139:       a->nonzerorowcnt += ((ai[i + 1] - ai[i]) > 0);
1140:     }
1141:   }
1142:   a->nz = ai[m];
1143:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, fshift);
1144:   PetscCall(MatMarkDiagonal_SeqAIJ(A)); // since diagonal info is used a lot, it is helpful to set them up at the end of assembly
1145:   a->diagonaldense = PETSC_TRUE;
1146:   n                = PetscMin(A->rmap->n, A->cmap->n);
1147:   for (i = 0; i < n; i++) {
1148:     if (a->diag[i] >= ai[i + 1]) {
1149:       a->diagonaldense = PETSC_FALSE;
1150:       break;
1151:     }
1152:   }
1153:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded,%" PetscInt_FMT " used\n", m, A->cmap->n, fshift, a->nz));
1154:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1155:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", rmax));

1157:   A->info.mallocs += a->reallocs;
1158:   a->reallocs         = 0;
1159:   A->info.nz_unneeded = (PetscReal)fshift;
1160:   a->rmax             = rmax;

1162:   if (!A->structure_only) PetscCall(MatCheckCompressedRow(A, a->nonzerorowcnt, &a->compressedrow, a->i, m, ratio));
1163:   PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1164:   PetscFunctionReturn(PETSC_SUCCESS);
1165: }

1167: static PetscErrorCode MatRealPart_SeqAIJ(Mat A)
1168: {
1169:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1170:   PetscInt    i, nz = a->nz;
1171:   MatScalar  *aa;

1173:   PetscFunctionBegin;
1174:   PetscCall(MatSeqAIJGetArray(A, &aa));
1175:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1176:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1177:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1178:   PetscFunctionReturn(PETSC_SUCCESS);
1179: }

1181: static PetscErrorCode MatImaginaryPart_SeqAIJ(Mat A)
1182: {
1183:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1184:   PetscInt    i, nz = a->nz;
1185:   MatScalar  *aa;

1187:   PetscFunctionBegin;
1188:   PetscCall(MatSeqAIJGetArray(A, &aa));
1189:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1190:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1191:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1192:   PetscFunctionReturn(PETSC_SUCCESS);
1193: }

1195: PetscErrorCode MatZeroEntries_SeqAIJ(Mat A)
1196: {
1197:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1198:   MatScalar  *aa;

1200:   PetscFunctionBegin;
1201:   PetscCall(MatSeqAIJGetArrayWrite(A, &aa));
1202:   PetscCall(PetscArrayzero(aa, a->i[A->rmap->n]));
1203:   PetscCall(MatSeqAIJRestoreArrayWrite(A, &aa));
1204:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1205:   PetscFunctionReturn(PETSC_SUCCESS);
1206: }

1208: static PetscErrorCode MatReset_SeqAIJ(Mat A)
1209: {
1210:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1212:   PetscFunctionBegin;
1213:   if (A->hash_active) {
1214:     A->ops[0] = a->cops;
1215:     PetscCall(PetscHMapIJVDestroy(&a->ht));
1216:     PetscCall(PetscFree(a->dnz));
1217:     A->hash_active = PETSC_FALSE;
1218:   }

1220:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
1221:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
1222:   PetscCall(ISDestroy(&a->row));
1223:   PetscCall(ISDestroy(&a->col));
1224:   PetscCall(PetscFree(a->diag));
1225:   PetscCall(PetscFree(a->ibdiag));
1226:   PetscCall(PetscFree(a->imax));
1227:   PetscCall(PetscFree(a->ilen));
1228:   PetscCall(PetscFree(a->ipre));
1229:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
1230:   PetscCall(PetscFree(a->solve_work));
1231:   PetscCall(ISDestroy(&a->icol));
1232:   PetscCall(PetscFree(a->saved_values));
1233:   PetscCall(PetscFree2(a->compressedrow.i, a->compressedrow.rindex));
1234:   PetscCall(MatDestroy_SeqAIJ_Inode(A));
1235:   PetscFunctionReturn(PETSC_SUCCESS);
1236: }

1238: static PetscErrorCode MatResetHash_SeqAIJ(Mat A)
1239: {
1240:   PetscFunctionBegin;
1241:   PetscCall(MatReset_SeqAIJ(A));
1242:   PetscCall(MatCreate_SeqAIJ_Inode(A));
1243:   PetscCall(MatSetUp_Seq_Hash(A));
1244:   A->nonzerostate++;
1245:   PetscFunctionReturn(PETSC_SUCCESS);
1246: }

1248: PetscErrorCode MatDestroy_SeqAIJ(Mat A)
1249: {
1250:   PetscFunctionBegin;
1251:   PetscCall(MatReset_SeqAIJ(A));
1252:   PetscCall(PetscFree(A->data));

1254:   /* MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted may allocate this.
1255:      That function is so heavily used (sometimes in an hidden way through multnumeric function pointers)
1256:      that is hard to properly add this data to the MatProduct data. We free it here to avoid
1257:      users reusing the matrix object with different data to incur in obscure segmentation faults
1258:      due to different matrix sizes */
1259:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc__ab_dense", NULL));

1261:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
1262:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEnginePut_C", NULL));
1263:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEngineGet_C", NULL));
1264:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetColumnIndices_C", NULL));
1265:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
1266:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
1267:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsbaij_C", NULL));
1268:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqbaij_C", NULL));
1269:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijperm_C", NULL));
1270:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijsell_C", NULL));
1271: #if defined(PETSC_HAVE_MKL_SPARSE)
1272:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijmkl_C", NULL));
1273: #endif
1274: #if defined(PETSC_HAVE_CUDA)
1275:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcusparse_C", NULL));
1276:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", NULL));
1277:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", NULL));
1278: #endif
1279: #if defined(PETSC_HAVE_HIP)
1280:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijhipsparse_C", NULL));
1281:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", NULL));
1282:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", NULL));
1283: #endif
1284: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
1285:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijkokkos_C", NULL));
1286: #endif
1287:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcrl_C", NULL));
1288: #if defined(PETSC_HAVE_ELEMENTAL)
1289:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_elemental_C", NULL));
1290: #endif
1291: #if defined(PETSC_HAVE_SCALAPACK)
1292:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_scalapack_C", NULL));
1293: #endif
1294: #if defined(PETSC_HAVE_HYPRE)
1295:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_hypre_C", NULL));
1296:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", NULL));
1297: #endif
1298:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqdense_C", NULL));
1299:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsell_C", NULL));
1300:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_is_C", NULL));
1301:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsTranspose_C", NULL));
1302:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsHermitianTranspose_C", NULL));
1303:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", NULL));
1304:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetPreallocation_C", NULL));
1305:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetHash_C", NULL));
1306:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocationCSR_C", NULL));
1307:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatReorderForNonzeroDiagonal_C", NULL));
1308:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_is_seqaij_C", NULL));
1309:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqdense_seqaij_C", NULL));
1310:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaij_C", NULL));
1311:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJKron_C", NULL));
1312:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
1313:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
1314:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
1315:   /* these calls do not belong here: the subclasses Duplicate/Destroy are wrong */
1316:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijsell_seqaij_C", NULL));
1317:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijperm_seqaij_C", NULL));
1318:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijviennacl_C", NULL));
1319:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqdense_C", NULL));
1320:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqaij_C", NULL));
1321:   PetscFunctionReturn(PETSC_SUCCESS);
1322: }

1324: PetscErrorCode MatSetOption_SeqAIJ(Mat A, MatOption op, PetscBool flg)
1325: {
1326:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1328:   PetscFunctionBegin;
1329:   switch (op) {
1330:   case MAT_ROW_ORIENTED:
1331:     a->roworiented = flg;
1332:     break;
1333:   case MAT_KEEP_NONZERO_PATTERN:
1334:     a->keepnonzeropattern = flg;
1335:     break;
1336:   case MAT_NEW_NONZERO_LOCATIONS:
1337:     a->nonew = (flg ? 0 : 1);
1338:     break;
1339:   case MAT_NEW_NONZERO_LOCATION_ERR:
1340:     a->nonew = (flg ? -1 : 0);
1341:     break;
1342:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1343:     a->nonew = (flg ? -2 : 0);
1344:     break;
1345:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1346:     a->nounused = (flg ? -1 : 0);
1347:     break;
1348:   case MAT_IGNORE_ZERO_ENTRIES:
1349:     a->ignorezeroentries = flg;
1350:     break;
1351:   case MAT_USE_INODES:
1352:     PetscCall(MatSetOption_SeqAIJ_Inode(A, MAT_USE_INODES, flg));
1353:     break;
1354:   case MAT_SUBMAT_SINGLEIS:
1355:     A->submat_singleis = flg;
1356:     break;
1357:   case MAT_SORTED_FULL:
1358:     if (flg) A->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;
1359:     else A->ops->setvalues = MatSetValues_SeqAIJ;
1360:     break;
1361:   case MAT_FORM_EXPLICIT_TRANSPOSE:
1362:     A->form_explicit_transpose = flg;
1363:     break;
1364:   default:
1365:     break;
1366:   }
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: static PetscErrorCode MatGetDiagonal_SeqAIJ(Mat A, Vec v)
1371: {
1372:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1373:   PetscInt           i, j, n, *ai = a->i, *aj = a->j;
1374:   PetscScalar       *x;
1375:   const PetscScalar *aa;

1377:   PetscFunctionBegin;
1378:   PetscCall(VecGetLocalSize(v, &n));
1379:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1380:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1381:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
1382:     PetscInt *diag = a->diag;
1383:     PetscCall(VecGetArrayWrite(v, &x));
1384:     for (i = 0; i < n; i++) x[i] = 1.0 / aa[diag[i]];
1385:     PetscCall(VecRestoreArrayWrite(v, &x));
1386:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1387:     PetscFunctionReturn(PETSC_SUCCESS);
1388:   }

1390:   PetscCall(VecGetArrayWrite(v, &x));
1391:   for (i = 0; i < n; i++) {
1392:     x[i] = 0.0;
1393:     for (j = ai[i]; j < ai[i + 1]; j++) {
1394:       if (aj[j] == i) {
1395:         x[i] = aa[j];
1396:         break;
1397:       }
1398:     }
1399:   }
1400:   PetscCall(VecRestoreArrayWrite(v, &x));
1401:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1402:   PetscFunctionReturn(PETSC_SUCCESS);
1403: }

1405: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>
1406: PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A, Vec xx, Vec zz, Vec yy)
1407: {
1408:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1409:   const MatScalar   *aa;
1410:   PetscScalar       *y;
1411:   const PetscScalar *x;
1412:   PetscInt           m = A->rmap->n;
1413: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1414:   const MatScalar  *v;
1415:   PetscScalar       alpha;
1416:   PetscInt          n, i, j;
1417:   const PetscInt   *idx, *ii, *ridx = NULL;
1418:   Mat_CompressedRow cprow    = a->compressedrow;
1419:   PetscBool         usecprow = cprow.use;
1420: #endif

1422:   PetscFunctionBegin;
1423:   if (zz != yy) PetscCall(VecCopy(zz, yy));
1424:   PetscCall(VecGetArrayRead(xx, &x));
1425:   PetscCall(VecGetArray(yy, &y));
1426:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));

1428: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1429:   fortranmulttransposeaddaij_(&m, x, a->i, a->j, aa, y);
1430: #else
1431:   if (usecprow) {
1432:     m    = cprow.nrows;
1433:     ii   = cprow.i;
1434:     ridx = cprow.rindex;
1435:   } else {
1436:     ii = a->i;
1437:   }
1438:   for (i = 0; i < m; i++) {
1439:     idx = a->j + ii[i];
1440:     v   = aa + ii[i];
1441:     n   = ii[i + 1] - ii[i];
1442:     if (usecprow) {
1443:       alpha = x[ridx[i]];
1444:     } else {
1445:       alpha = x[i];
1446:     }
1447:     for (j = 0; j < n; j++) y[idx[j]] += alpha * v[j];
1448:   }
1449: #endif
1450:   PetscCall(PetscLogFlops(2.0 * a->nz));
1451:   PetscCall(VecRestoreArrayRead(xx, &x));
1452:   PetscCall(VecRestoreArray(yy, &y));
1453:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1454:   PetscFunctionReturn(PETSC_SUCCESS);
1455: }

1457: PetscErrorCode MatMultTranspose_SeqAIJ(Mat A, Vec xx, Vec yy)
1458: {
1459:   PetscFunctionBegin;
1460:   PetscCall(VecSet(yy, 0.0));
1461:   PetscCall(MatMultTransposeAdd_SeqAIJ(A, xx, yy, yy));
1462:   PetscFunctionReturn(PETSC_SUCCESS);
1463: }

1465: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>

1467: PetscErrorCode MatMult_SeqAIJ(Mat A, Vec xx, Vec yy)
1468: {
1469:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1470:   PetscScalar       *y;
1471:   const PetscScalar *x;
1472:   const MatScalar   *a_a;
1473:   PetscInt           m = A->rmap->n;
1474:   const PetscInt    *ii, *ridx = NULL;
1475:   PetscBool          usecprow = a->compressedrow.use;

1477: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1478:   #pragma disjoint(*x, *y, *aa)
1479: #endif

1481:   PetscFunctionBegin;
1482:   if (a->inode.use && a->inode.checked) {
1483:     PetscCall(MatMult_SeqAIJ_Inode(A, xx, yy));
1484:     PetscFunctionReturn(PETSC_SUCCESS);
1485:   }
1486:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1487:   PetscCall(VecGetArrayRead(xx, &x));
1488:   PetscCall(VecGetArray(yy, &y));
1489:   ii = a->i;
1490:   if (usecprow) { /* use compressed row format */
1491:     PetscCall(PetscArrayzero(y, m));
1492:     m    = a->compressedrow.nrows;
1493:     ii   = a->compressedrow.i;
1494:     ridx = a->compressedrow.rindex;
1495:     PetscPragmaUseOMPKernels(parallel for)
1496:     for (PetscInt i = 0; i < m; i++) {
1497:       PetscInt           n   = ii[i + 1] - ii[i];
1498:       const PetscInt    *aj  = a->j + ii[i];
1499:       const PetscScalar *aa  = a_a + ii[i];
1500:       PetscScalar        sum = 0.0;
1501:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1502:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1503:       y[*ridx++] = sum;
1504:     }
1505:   } else { /* do not use compressed row format */
1506: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJ)
1507:     fortranmultaij_(&m, x, ii, a->j, a_a, y);
1508: #else
1509:     PetscPragmaUseOMPKernels(parallel for)
1510:     for (PetscInt i = 0; i < m; i++) {
1511:       PetscInt           n   = ii[i + 1] - ii[i];
1512:       const PetscInt    *aj  = a->j + ii[i];
1513:       const PetscScalar *aa  = a_a + ii[i];
1514:       PetscScalar        sum = 0.0;
1515:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1516:       y[i] = sum;
1517:     }
1518: #endif
1519:   }
1520:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt));
1521:   PetscCall(VecRestoreArrayRead(xx, &x));
1522:   PetscCall(VecRestoreArray(yy, &y));
1523:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1524:   PetscFunctionReturn(PETSC_SUCCESS);
1525: }

1527: // HACK!!!!! Used by src/mat/tests/ex170.c
1528: PETSC_EXTERN PetscErrorCode MatMultMax_SeqAIJ(Mat A, Vec xx, Vec yy)
1529: {
1530:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1531:   PetscScalar       *y;
1532:   const PetscScalar *x;
1533:   const MatScalar   *aa, *a_a;
1534:   PetscInt           m = A->rmap->n;
1535:   const PetscInt    *aj, *ii, *ridx   = NULL;
1536:   PetscInt           n, i, nonzerorow = 0;
1537:   PetscScalar        sum;
1538:   PetscBool          usecprow = a->compressedrow.use;

1540: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1541:   #pragma disjoint(*x, *y, *aa)
1542: #endif

1544:   PetscFunctionBegin;
1545:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1546:   PetscCall(VecGetArrayRead(xx, &x));
1547:   PetscCall(VecGetArray(yy, &y));
1548:   if (usecprow) { /* use compressed row format */
1549:     m    = a->compressedrow.nrows;
1550:     ii   = a->compressedrow.i;
1551:     ridx = a->compressedrow.rindex;
1552:     for (i = 0; i < m; i++) {
1553:       n   = ii[i + 1] - ii[i];
1554:       aj  = a->j + ii[i];
1555:       aa  = a_a + ii[i];
1556:       sum = 0.0;
1557:       nonzerorow += (n > 0);
1558:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1559:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1560:       y[*ridx++] = sum;
1561:     }
1562:   } else { /* do not use compressed row format */
1563:     ii = a->i;
1564:     for (i = 0; i < m; i++) {
1565:       n   = ii[i + 1] - ii[i];
1566:       aj  = a->j + ii[i];
1567:       aa  = a_a + ii[i];
1568:       sum = 0.0;
1569:       nonzerorow += (n > 0);
1570:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1571:       y[i] = sum;
1572:     }
1573:   }
1574:   PetscCall(PetscLogFlops(2.0 * a->nz - nonzerorow));
1575:   PetscCall(VecRestoreArrayRead(xx, &x));
1576:   PetscCall(VecRestoreArray(yy, &y));
1577:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1578:   PetscFunctionReturn(PETSC_SUCCESS);
1579: }

1581: // HACK!!!!! Used by src/mat/tests/ex170.c
1582: PETSC_EXTERN PetscErrorCode MatMultAddMax_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1583: {
1584:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1585:   PetscScalar       *y, *z;
1586:   const PetscScalar *x;
1587:   const MatScalar   *aa, *a_a;
1588:   PetscInt           m = A->rmap->n, *aj, *ii;
1589:   PetscInt           n, i, *ridx = NULL;
1590:   PetscScalar        sum;
1591:   PetscBool          usecprow = a->compressedrow.use;

1593:   PetscFunctionBegin;
1594:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1595:   PetscCall(VecGetArrayRead(xx, &x));
1596:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1597:   if (usecprow) { /* use compressed row format */
1598:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1599:     m    = a->compressedrow.nrows;
1600:     ii   = a->compressedrow.i;
1601:     ridx = a->compressedrow.rindex;
1602:     for (i = 0; i < m; i++) {
1603:       n   = ii[i + 1] - ii[i];
1604:       aj  = a->j + ii[i];
1605:       aa  = a_a + ii[i];
1606:       sum = y[*ridx];
1607:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1608:       z[*ridx++] = sum;
1609:     }
1610:   } else { /* do not use compressed row format */
1611:     ii = a->i;
1612:     for (i = 0; i < m; i++) {
1613:       n   = ii[i + 1] - ii[i];
1614:       aj  = a->j + ii[i];
1615:       aa  = a_a + ii[i];
1616:       sum = y[i];
1617:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1618:       z[i] = sum;
1619:     }
1620:   }
1621:   PetscCall(PetscLogFlops(2.0 * a->nz));
1622:   PetscCall(VecRestoreArrayRead(xx, &x));
1623:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1624:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1625:   PetscFunctionReturn(PETSC_SUCCESS);
1626: }

1628: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
1629: PetscErrorCode MatMultAdd_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1630: {
1631:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1632:   PetscScalar       *y, *z;
1633:   const PetscScalar *x;
1634:   const MatScalar   *a_a;
1635:   const PetscInt    *ii, *ridx = NULL;
1636:   PetscInt           m        = A->rmap->n;
1637:   PetscBool          usecprow = a->compressedrow.use;

1639:   PetscFunctionBegin;
1640:   if (a->inode.use && a->inode.checked) {
1641:     PetscCall(MatMultAdd_SeqAIJ_Inode(A, xx, yy, zz));
1642:     PetscFunctionReturn(PETSC_SUCCESS);
1643:   }
1644:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1645:   PetscCall(VecGetArrayRead(xx, &x));
1646:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1647:   if (usecprow) { /* use compressed row format */
1648:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1649:     m    = a->compressedrow.nrows;
1650:     ii   = a->compressedrow.i;
1651:     ridx = a->compressedrow.rindex;
1652:     for (PetscInt i = 0; i < m; i++) {
1653:       PetscInt           n   = ii[i + 1] - ii[i];
1654:       const PetscInt    *aj  = a->j + ii[i];
1655:       const PetscScalar *aa  = a_a + ii[i];
1656:       PetscScalar        sum = y[*ridx];
1657:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1658:       z[*ridx++] = sum;
1659:     }
1660:   } else { /* do not use compressed row format */
1661:     ii = a->i;
1662: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJ)
1663:     fortranmultaddaij_(&m, x, ii, a->j, a_a, y, z);
1664: #else
1665:     PetscPragmaUseOMPKernels(parallel for)
1666:     for (PetscInt i = 0; i < m; i++) {
1667:       PetscInt           n   = ii[i + 1] - ii[i];
1668:       const PetscInt    *aj  = a->j + ii[i];
1669:       const PetscScalar *aa  = a_a + ii[i];
1670:       PetscScalar        sum = y[i];
1671:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1672:       z[i] = sum;
1673:     }
1674: #endif
1675:   }
1676:   PetscCall(PetscLogFlops(2.0 * a->nz));
1677:   PetscCall(VecRestoreArrayRead(xx, &x));
1678:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1679:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1680:   PetscFunctionReturn(PETSC_SUCCESS);
1681: }

1683: /*
1684:      Adds diagonal pointers to sparse matrix nonzero structure.
1685: */
1686: PetscErrorCode MatMarkDiagonal_SeqAIJ(Mat A)
1687: {
1688:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1689:   PetscInt    i, j, m = A->rmap->n;
1690:   PetscBool   alreadySet = PETSC_TRUE;

1692:   PetscFunctionBegin;
1693:   if (!a->diag) {
1694:     PetscCall(PetscMalloc1(m, &a->diag));
1695:     alreadySet = PETSC_FALSE;
1696:   }
1697:   for (i = 0; i < A->rmap->n; i++) {
1698:     /* If A's diagonal is already correctly set, this fast track enables cheap and repeated MatMarkDiagonal_SeqAIJ() calls */
1699:     if (alreadySet) {
1700:       PetscInt pos = a->diag[i];
1701:       if (pos >= a->i[i] && pos < a->i[i + 1] && a->j[pos] == i) continue;
1702:     }

1704:     a->diag[i] = a->i[i + 1];
1705:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
1706:       if (a->j[j] == i) {
1707:         a->diag[i] = j;
1708:         break;
1709:       }
1710:     }
1711:   }
1712:   PetscFunctionReturn(PETSC_SUCCESS);
1713: }

1715: static PetscErrorCode MatShift_SeqAIJ(Mat A, PetscScalar v)
1716: {
1717:   Mat_SeqAIJ     *a    = (Mat_SeqAIJ *)A->data;
1718:   const PetscInt *diag = (const PetscInt *)a->diag;
1719:   const PetscInt *ii   = (const PetscInt *)a->i;
1720:   PetscInt        i, *mdiag = NULL;
1721:   PetscInt        cnt = 0; /* how many diagonals are missing */

1723:   PetscFunctionBegin;
1724:   if (!A->preallocated || !a->nz) {
1725:     PetscCall(MatSeqAIJSetPreallocation(A, 1, NULL));
1726:     PetscCall(MatShift_Basic(A, v));
1727:     PetscFunctionReturn(PETSC_SUCCESS);
1728:   }

1730:   if (a->diagonaldense) {
1731:     cnt = 0;
1732:   } else {
1733:     PetscCall(PetscCalloc1(A->rmap->n, &mdiag));
1734:     for (i = 0; i < A->rmap->n; i++) {
1735:       if (i < A->cmap->n && diag[i] >= ii[i + 1]) { /* 'out of range' rows never have diagonals */
1736:         cnt++;
1737:         mdiag[i] = 1;
1738:       }
1739:     }
1740:   }
1741:   if (!cnt) {
1742:     PetscCall(MatShift_Basic(A, v));
1743:   } else {
1744:     PetscScalar       *olda = a->a; /* preserve pointers to current matrix nonzeros structure and values */
1745:     PetscInt          *oldj = a->j, *oldi = a->i;
1746:     PetscBool          free_a = a->free_a, free_ij = a->free_ij;
1747:     const PetscScalar *Aa;

1749:     PetscCall(MatSeqAIJGetArrayRead(A, &Aa)); // sync the host
1750:     PetscCall(MatSeqAIJRestoreArrayRead(A, &Aa));

1752:     a->a = NULL;
1753:     a->j = NULL;
1754:     a->i = NULL;
1755:     /* increase the values in imax for each row where a diagonal is being inserted then reallocate the matrix data structures */
1756:     for (i = 0; i < PetscMin(A->rmap->n, A->cmap->n); i++) a->imax[i] += mdiag[i];
1757:     PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, 0, a->imax));

1759:     /* copy old values into new matrix data structure */
1760:     for (i = 0; i < A->rmap->n; i++) {
1761:       PetscCall(MatSetValues(A, 1, &i, a->imax[i] - mdiag[i], &oldj[oldi[i]], &olda[oldi[i]], ADD_VALUES));
1762:       if (i < A->cmap->n) PetscCall(MatSetValue(A, i, i, v, ADD_VALUES));
1763:     }
1764:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1765:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1766:     if (free_a) PetscCall(PetscShmgetDeallocateArray((void **)&olda));
1767:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldj));
1768:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldi));
1769:   }
1770:   PetscCall(PetscFree(mdiag));
1771:   a->diagonaldense = PETSC_TRUE;
1772:   PetscFunctionReturn(PETSC_SUCCESS);
1773: }

1775: /*
1776:      Checks for missing diagonals
1777: */
1778: PetscErrorCode MatMissingDiagonal_SeqAIJ(Mat A, PetscBool *missing, PetscInt *d)
1779: {
1780:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1781:   PetscInt   *diag, *ii = a->i, i;

1783:   PetscFunctionBegin;
1784:   *missing = PETSC_FALSE;
1785:   if (A->rmap->n > 0 && !ii) {
1786:     *missing = PETSC_TRUE;
1787:     if (d) *d = 0;
1788:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
1789:   } else {
1790:     PetscInt n;
1791:     n    = PetscMin(A->rmap->n, A->cmap->n);
1792:     diag = a->diag;
1793:     for (i = 0; i < n; i++) {
1794:       if (diag[i] >= ii[i + 1]) {
1795:         *missing = PETSC_TRUE;
1796:         if (d) *d = i;
1797:         PetscCall(PetscInfo(A, "Matrix is missing diagonal number %" PetscInt_FMT "\n", i));
1798:         break;
1799:       }
1800:     }
1801:   }
1802:   PetscFunctionReturn(PETSC_SUCCESS);
1803: }

1805: #include <petscblaslapack.h>
1806: #include <petsc/private/kernels/blockinvert.h>

1808: /*
1809:     Note that values is allocated externally by the PC and then passed into this routine
1810: */
1811: static PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJ(Mat A, PetscInt nblocks, const PetscInt *bsizes, PetscScalar *diag)
1812: {
1813:   PetscInt        n = A->rmap->n, i, ncnt = 0, *indx, j, bsizemax = 0, *v_pivots;
1814:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
1815:   const PetscReal shift = 0.0;
1816:   PetscInt        ipvt[5];
1817:   PetscCount      flops = 0;
1818:   PetscScalar     work[25], *v_work;

1820:   PetscFunctionBegin;
1821:   allowzeropivot = PetscNot(A->erroriffailure);
1822:   for (i = 0; i < nblocks; i++) ncnt += bsizes[i];
1823:   PetscCheck(ncnt == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Total blocksizes %" PetscInt_FMT " doesn't match number matrix rows %" PetscInt_FMT, ncnt, n);
1824:   for (i = 0; i < nblocks; i++) bsizemax = PetscMax(bsizemax, bsizes[i]);
1825:   PetscCall(PetscMalloc1(bsizemax, &indx));
1826:   if (bsizemax > 7) PetscCall(PetscMalloc2(bsizemax, &v_work, bsizemax, &v_pivots));
1827:   ncnt = 0;
1828:   for (i = 0; i < nblocks; i++) {
1829:     for (j = 0; j < bsizes[i]; j++) indx[j] = ncnt + j;
1830:     PetscCall(MatGetValues(A, bsizes[i], indx, bsizes[i], indx, diag));
1831:     switch (bsizes[i]) {
1832:     case 1:
1833:       *diag = 1.0 / (*diag);
1834:       break;
1835:     case 2:
1836:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
1837:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1838:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
1839:       break;
1840:     case 3:
1841:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
1842:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1843:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
1844:       break;
1845:     case 4:
1846:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
1847:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1848:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
1849:       break;
1850:     case 5:
1851:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
1852:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1853:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
1854:       break;
1855:     case 6:
1856:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
1857:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1858:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
1859:       break;
1860:     case 7:
1861:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
1862:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1863:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
1864:       break;
1865:     default:
1866:       PetscCall(PetscKernel_A_gets_inverse_A(bsizes[i], diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
1867:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1868:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bsizes[i]));
1869:     }
1870:     ncnt += bsizes[i];
1871:     diag += bsizes[i] * bsizes[i];
1872:     flops += 2 * PetscPowInt64(bsizes[i], 3) / 3;
1873:   }
1874:   PetscCall(PetscLogFlops(flops));
1875:   if (bsizemax > 7) PetscCall(PetscFree2(v_work, v_pivots));
1876:   PetscCall(PetscFree(indx));
1877:   PetscFunctionReturn(PETSC_SUCCESS);
1878: }

1880: /*
1881:    Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
1882: */
1883: static PetscErrorCode MatInvertDiagonal_SeqAIJ(Mat A, PetscScalar omega, PetscScalar fshift)
1884: {
1885:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
1886:   PetscInt         i, *diag, m = A->rmap->n;
1887:   const MatScalar *v;
1888:   PetscScalar     *idiag, *mdiag;

1890:   PetscFunctionBegin;
1891:   if (a->idiagvalid) PetscFunctionReturn(PETSC_SUCCESS);
1892:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
1893:   diag = a->diag;
1894:   if (!a->idiag) { PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work)); }

1896:   mdiag = a->mdiag;
1897:   idiag = a->idiag;
1898:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
1899:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
1900:     for (i = 0; i < m; i++) {
1901:       mdiag[i] = v[diag[i]];
1902:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
1903:         if (PetscRealPart(fshift)) {
1904:           PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
1905:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1906:           A->factorerror_zeropivot_value = 0.0;
1907:           A->factorerror_zeropivot_row   = i;
1908:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
1909:       }
1910:       idiag[i] = 1.0 / v[diag[i]];
1911:     }
1912:     PetscCall(PetscLogFlops(m));
1913:   } else {
1914:     for (i = 0; i < m; i++) {
1915:       mdiag[i] = v[diag[i]];
1916:       idiag[i] = omega / (fshift + v[diag[i]]);
1917:     }
1918:     PetscCall(PetscLogFlops(2.0 * m));
1919:   }
1920:   a->idiagvalid = PETSC_TRUE;
1921:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
1922:   PetscFunctionReturn(PETSC_SUCCESS);
1923: }

1925: PetscErrorCode MatSOR_SeqAIJ(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1926: {
1927:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1928:   PetscScalar       *x, d, sum, *t, scale;
1929:   const MatScalar   *v, *idiag = NULL, *mdiag, *aa;
1930:   const PetscScalar *b, *bs, *xb, *ts;
1931:   PetscInt           n, m = A->rmap->n, i;
1932:   const PetscInt    *idx, *diag;

1934:   PetscFunctionBegin;
1935:   if (a->inode.use && a->inode.checked && omega == 1.0 && fshift == 0.0) {
1936:     PetscCall(MatSOR_SeqAIJ_Inode(A, bb, omega, flag, fshift, its, lits, xx));
1937:     PetscFunctionReturn(PETSC_SUCCESS);
1938:   }
1939:   its = its * lits;

1941:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1942:   if (!a->idiagvalid) PetscCall(MatInvertDiagonal_SeqAIJ(A, omega, fshift));
1943:   a->fshift = fshift;
1944:   a->omega  = omega;

1946:   diag  = a->diag;
1947:   t     = a->ssor_work;
1948:   idiag = a->idiag;
1949:   mdiag = a->mdiag;

1951:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1952:   PetscCall(VecGetArray(xx, &x));
1953:   PetscCall(VecGetArrayRead(bb, &b));
1954:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1955:   if (flag == SOR_APPLY_UPPER) {
1956:     /* apply (U + D/omega) to the vector */
1957:     bs = b;
1958:     for (i = 0; i < m; i++) {
1959:       d   = fshift + mdiag[i];
1960:       n   = a->i[i + 1] - diag[i] - 1;
1961:       idx = a->j + diag[i] + 1;
1962:       v   = aa + diag[i] + 1;
1963:       sum = b[i] * d / omega;
1964:       PetscSparseDensePlusDot(sum, bs, v, idx, n);
1965:       x[i] = sum;
1966:     }
1967:     PetscCall(VecRestoreArray(xx, &x));
1968:     PetscCall(VecRestoreArrayRead(bb, &b));
1969:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1970:     PetscCall(PetscLogFlops(a->nz));
1971:     PetscFunctionReturn(PETSC_SUCCESS);
1972:   }

1974:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1975:   if (flag & SOR_EISENSTAT) {
1976:     /* Let  A = L + U + D; where L is lower triangular,
1977:     U is upper triangular, E = D/omega; This routine applies

1979:             (L + E)^{-1} A (U + E)^{-1}

1981:     to a vector efficiently using Eisenstat's trick.
1982:     */
1983:     scale = (2.0 / omega) - 1.0;

1985:     /*  x = (E + U)^{-1} b */
1986:     for (i = m - 1; i >= 0; i--) {
1987:       n   = a->i[i + 1] - diag[i] - 1;
1988:       idx = a->j + diag[i] + 1;
1989:       v   = aa + diag[i] + 1;
1990:       sum = b[i];
1991:       PetscSparseDenseMinusDot(sum, x, v, idx, n);
1992:       x[i] = sum * idiag[i];
1993:     }

1995:     /*  t = b - (2*E - D)x */
1996:     v = aa;
1997:     for (i = 0; i < m; i++) t[i] = b[i] - scale * (v[*diag++]) * x[i];

1999:     /*  t = (E + L)^{-1}t */
2000:     ts   = t;
2001:     diag = a->diag;
2002:     for (i = 0; i < m; i++) {
2003:       n   = diag[i] - a->i[i];
2004:       idx = a->j + a->i[i];
2005:       v   = aa + a->i[i];
2006:       sum = t[i];
2007:       PetscSparseDenseMinusDot(sum, ts, v, idx, n);
2008:       t[i] = sum * idiag[i];
2009:       /*  x = x + t */
2010:       x[i] += t[i];
2011:     }

2013:     PetscCall(PetscLogFlops(6.0 * m - 1 + 2.0 * a->nz));
2014:     PetscCall(VecRestoreArray(xx, &x));
2015:     PetscCall(VecRestoreArrayRead(bb, &b));
2016:     PetscFunctionReturn(PETSC_SUCCESS);
2017:   }
2018:   if (flag & SOR_ZERO_INITIAL_GUESS) {
2019:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2020:       for (i = 0; i < m; i++) {
2021:         n   = diag[i] - a->i[i];
2022:         idx = a->j + a->i[i];
2023:         v   = aa + a->i[i];
2024:         sum = b[i];
2025:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2026:         t[i] = sum;
2027:         x[i] = sum * idiag[i];
2028:       }
2029:       xb = t;
2030:       PetscCall(PetscLogFlops(a->nz));
2031:     } else xb = b;
2032:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2033:       for (i = m - 1; i >= 0; i--) {
2034:         n   = a->i[i + 1] - diag[i] - 1;
2035:         idx = a->j + diag[i] + 1;
2036:         v   = aa + diag[i] + 1;
2037:         sum = xb[i];
2038:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2039:         if (xb == b) {
2040:           x[i] = sum * idiag[i];
2041:         } else {
2042:           x[i] = (1 - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2043:         }
2044:       }
2045:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2046:     }
2047:     its--;
2048:   }
2049:   while (its--) {
2050:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2051:       for (i = 0; i < m; i++) {
2052:         /* lower */
2053:         n   = diag[i] - a->i[i];
2054:         idx = a->j + a->i[i];
2055:         v   = aa + a->i[i];
2056:         sum = b[i];
2057:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2058:         t[i] = sum; /* save application of the lower-triangular part */
2059:         /* upper */
2060:         n   = a->i[i + 1] - diag[i] - 1;
2061:         idx = a->j + diag[i] + 1;
2062:         v   = aa + diag[i] + 1;
2063:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2064:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2065:       }
2066:       xb = t;
2067:       PetscCall(PetscLogFlops(2.0 * a->nz));
2068:     } else xb = b;
2069:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2070:       for (i = m - 1; i >= 0; i--) {
2071:         sum = xb[i];
2072:         if (xb == b) {
2073:           /* whole matrix (no checkpointing available) */
2074:           n   = a->i[i + 1] - a->i[i];
2075:           idx = a->j + a->i[i];
2076:           v   = aa + a->i[i];
2077:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2078:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
2079:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
2080:           n   = a->i[i + 1] - diag[i] - 1;
2081:           idx = a->j + diag[i] + 1;
2082:           v   = aa + diag[i] + 1;
2083:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2084:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2085:         }
2086:       }
2087:       if (xb == b) {
2088:         PetscCall(PetscLogFlops(2.0 * a->nz));
2089:       } else {
2090:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2091:       }
2092:     }
2093:   }
2094:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2095:   PetscCall(VecRestoreArray(xx, &x));
2096:   PetscCall(VecRestoreArrayRead(bb, &b));
2097:   PetscFunctionReturn(PETSC_SUCCESS);
2098: }

2100: static PetscErrorCode MatGetInfo_SeqAIJ(Mat A, MatInfoType flag, MatInfo *info)
2101: {
2102:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2104:   PetscFunctionBegin;
2105:   info->block_size   = 1.0;
2106:   info->nz_allocated = a->maxnz;
2107:   info->nz_used      = a->nz;
2108:   info->nz_unneeded  = (a->maxnz - a->nz);
2109:   info->assemblies   = A->num_ass;
2110:   info->mallocs      = A->info.mallocs;
2111:   info->memory       = 0; /* REVIEW ME */
2112:   if (A->factortype) {
2113:     info->fill_ratio_given  = A->info.fill_ratio_given;
2114:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2115:     info->factor_mallocs    = A->info.factor_mallocs;
2116:   } else {
2117:     info->fill_ratio_given  = 0;
2118:     info->fill_ratio_needed = 0;
2119:     info->factor_mallocs    = 0;
2120:   }
2121:   PetscFunctionReturn(PETSC_SUCCESS);
2122: }

2124: static PetscErrorCode MatZeroRows_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2125: {
2126:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2127:   PetscInt           i, m = A->rmap->n - 1;
2128:   const PetscScalar *xx;
2129:   PetscScalar       *bb, *aa;
2130:   PetscInt           d = 0;

2132:   PetscFunctionBegin;
2133:   if (x && b) {
2134:     PetscCall(VecGetArrayRead(x, &xx));
2135:     PetscCall(VecGetArray(b, &bb));
2136:     for (i = 0; i < N; i++) {
2137:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2138:       if (rows[i] >= A->cmap->n) continue;
2139:       bb[rows[i]] = diag * xx[rows[i]];
2140:     }
2141:     PetscCall(VecRestoreArrayRead(x, &xx));
2142:     PetscCall(VecRestoreArray(b, &bb));
2143:   }

2145:   PetscCall(MatSeqAIJGetArray(A, &aa));
2146:   if (a->keepnonzeropattern) {
2147:     for (i = 0; i < N; i++) {
2148:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2149:       PetscCall(PetscArrayzero(&aa[a->i[rows[i]]], a->ilen[rows[i]]));
2150:     }
2151:     if (diag != 0.0) {
2152:       for (i = 0; i < N; i++) {
2153:         d = rows[i];
2154:         if (rows[i] >= A->cmap->n) continue;
2155:         PetscCheck(a->diag[d] < a->i[d + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in the zeroed row %" PetscInt_FMT, d);
2156:       }
2157:       for (i = 0; i < N; i++) {
2158:         if (rows[i] >= A->cmap->n) continue;
2159:         aa[a->diag[rows[i]]] = diag;
2160:       }
2161:     }
2162:   } else {
2163:     if (diag != 0.0) {
2164:       for (i = 0; i < N; i++) {
2165:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2166:         if (a->ilen[rows[i]] > 0) {
2167:           if (rows[i] >= A->cmap->n) {
2168:             a->ilen[rows[i]] = 0;
2169:           } else {
2170:             a->ilen[rows[i]]    = 1;
2171:             aa[a->i[rows[i]]]   = diag;
2172:             a->j[a->i[rows[i]]] = rows[i];
2173:           }
2174:         } else if (rows[i] < A->cmap->n) { /* in case row was completely empty */
2175:           PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2176:         }
2177:       }
2178:     } else {
2179:       for (i = 0; i < N; i++) {
2180:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2181:         a->ilen[rows[i]] = 0;
2182:       }
2183:     }
2184:     A->nonzerostate++;
2185:   }
2186:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2187:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2188:   PetscFunctionReturn(PETSC_SUCCESS);
2189: }

2191: static PetscErrorCode MatZeroRowsColumns_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2192: {
2193:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2194:   PetscInt           i, j, m = A->rmap->n - 1, d = 0;
2195:   PetscBool          missing, *zeroed, vecs = PETSC_FALSE;
2196:   const PetscScalar *xx;
2197:   PetscScalar       *bb, *aa;

2199:   PetscFunctionBegin;
2200:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);
2201:   PetscCall(MatSeqAIJGetArray(A, &aa));
2202:   if (x && b) {
2203:     PetscCall(VecGetArrayRead(x, &xx));
2204:     PetscCall(VecGetArray(b, &bb));
2205:     vecs = PETSC_TRUE;
2206:   }
2207:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
2208:   for (i = 0; i < N; i++) {
2209:     PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2210:     PetscCall(PetscArrayzero(PetscSafePointerPlusOffset(aa, a->i[rows[i]]), a->ilen[rows[i]]));

2212:     zeroed[rows[i]] = PETSC_TRUE;
2213:   }
2214:   for (i = 0; i < A->rmap->n; i++) {
2215:     if (!zeroed[i]) {
2216:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
2217:         if (a->j[j] < A->rmap->n && zeroed[a->j[j]]) {
2218:           if (vecs) bb[i] -= aa[j] * xx[a->j[j]];
2219:           aa[j] = 0.0;
2220:         }
2221:       }
2222:     } else if (vecs && i < A->cmap->N) bb[i] = diag * xx[i];
2223:   }
2224:   if (x && b) {
2225:     PetscCall(VecRestoreArrayRead(x, &xx));
2226:     PetscCall(VecRestoreArray(b, &bb));
2227:   }
2228:   PetscCall(PetscFree(zeroed));
2229:   if (diag != 0.0) {
2230:     PetscCall(MatMissingDiagonal_SeqAIJ(A, &missing, &d));
2231:     if (missing) {
2232:       for (i = 0; i < N; i++) {
2233:         if (rows[i] >= A->cmap->N) continue;
2234:         PetscCheck(!a->nonew || rows[i] < d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in row %" PetscInt_FMT " (%" PetscInt_FMT ")", d, rows[i]);
2235:         PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2236:       }
2237:     } else {
2238:       for (i = 0; i < N; i++) aa[a->diag[rows[i]]] = diag;
2239:     }
2240:   }
2241:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2242:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2243:   PetscFunctionReturn(PETSC_SUCCESS);
2244: }

2246: PetscErrorCode MatGetRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2247: {
2248:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2249:   const PetscScalar *aa;

2251:   PetscFunctionBegin;
2252:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2253:   *nz = a->i[row + 1] - a->i[row];
2254:   if (v) *v = PetscSafePointerPlusOffset((PetscScalar *)aa, a->i[row]);
2255:   if (idx) {
2256:     if (*nz && a->j) *idx = a->j + a->i[row];
2257:     else *idx = NULL;
2258:   }
2259:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2260:   PetscFunctionReturn(PETSC_SUCCESS);
2261: }

2263: PetscErrorCode MatRestoreRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2264: {
2265:   PetscFunctionBegin;
2266:   PetscFunctionReturn(PETSC_SUCCESS);
2267: }

2269: static PetscErrorCode MatNorm_SeqAIJ(Mat A, NormType type, PetscReal *nrm)
2270: {
2271:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
2272:   const MatScalar *v;
2273:   PetscReal        sum = 0.0;
2274:   PetscInt         i, j;

2276:   PetscFunctionBegin;
2277:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
2278:   if (type == NORM_FROBENIUS) {
2279: #if defined(PETSC_USE_REAL___FP16)
2280:     PetscBLASInt one = 1, nz = a->nz;
2281:     PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&nz, v, &one));
2282: #else
2283:     for (i = 0; i < a->nz; i++) {
2284:       sum += PetscRealPart(PetscConj(*v) * (*v));
2285:       v++;
2286:     }
2287:     *nrm = PetscSqrtReal(sum);
2288: #endif
2289:     PetscCall(PetscLogFlops(2.0 * a->nz));
2290:   } else if (type == NORM_1) {
2291:     PetscReal *tmp;
2292:     PetscInt  *jj = a->j;
2293:     PetscCall(PetscCalloc1(A->cmap->n + 1, &tmp));
2294:     *nrm = 0.0;
2295:     for (j = 0; j < a->nz; j++) {
2296:       tmp[*jj++] += PetscAbsScalar(*v);
2297:       v++;
2298:     }
2299:     for (j = 0; j < A->cmap->n; j++) {
2300:       if (tmp[j] > *nrm) *nrm = tmp[j];
2301:     }
2302:     PetscCall(PetscFree(tmp));
2303:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2304:   } else if (type == NORM_INFINITY) {
2305:     *nrm = 0.0;
2306:     for (j = 0; j < A->rmap->n; j++) {
2307:       const PetscScalar *v2 = PetscSafePointerPlusOffset(v, a->i[j]);
2308:       sum                   = 0.0;
2309:       for (i = 0; i < a->i[j + 1] - a->i[j]; i++) {
2310:         sum += PetscAbsScalar(*v2);
2311:         v2++;
2312:       }
2313:       if (sum > *nrm) *nrm = sum;
2314:     }
2315:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2316:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for two norm");
2317:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
2318:   PetscFunctionReturn(PETSC_SUCCESS);
2319: }

2321: static PetscErrorCode MatIsTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2322: {
2323:   Mat_SeqAIJ      *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2324:   PetscInt        *adx, *bdx, *aii, *bii, *aptr, *bptr;
2325:   const MatScalar *va, *vb;
2326:   PetscInt         ma, na, mb, nb, i;

2328:   PetscFunctionBegin;
2329:   PetscCall(MatGetSize(A, &ma, &na));
2330:   PetscCall(MatGetSize(B, &mb, &nb));
2331:   if (ma != nb || na != mb) {
2332:     *f = PETSC_FALSE;
2333:     PetscFunctionReturn(PETSC_SUCCESS);
2334:   }
2335:   PetscCall(MatSeqAIJGetArrayRead(A, &va));
2336:   PetscCall(MatSeqAIJGetArrayRead(B, &vb));
2337:   aii = aij->i;
2338:   bii = bij->i;
2339:   adx = aij->j;
2340:   bdx = bij->j;
2341:   PetscCall(PetscMalloc1(ma, &aptr));
2342:   PetscCall(PetscMalloc1(mb, &bptr));
2343:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2344:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2346:   *f = PETSC_TRUE;
2347:   for (i = 0; i < ma; i++) {
2348:     while (aptr[i] < aii[i + 1]) {
2349:       PetscInt    idc, idr;
2350:       PetscScalar vc, vr;
2351:       /* column/row index/value */
2352:       idc = adx[aptr[i]];
2353:       idr = bdx[bptr[idc]];
2354:       vc  = va[aptr[i]];
2355:       vr  = vb[bptr[idc]];
2356:       if (i != idr || PetscAbsScalar(vc - vr) > tol) {
2357:         *f = PETSC_FALSE;
2358:         goto done;
2359:       } else {
2360:         aptr[i]++;
2361:         if (B || i != idc) bptr[idc]++;
2362:       }
2363:     }
2364:   }
2365: done:
2366:   PetscCall(PetscFree(aptr));
2367:   PetscCall(PetscFree(bptr));
2368:   PetscCall(MatSeqAIJRestoreArrayRead(A, &va));
2369:   PetscCall(MatSeqAIJRestoreArrayRead(B, &vb));
2370:   PetscFunctionReturn(PETSC_SUCCESS);
2371: }

2373: static PetscErrorCode MatIsHermitianTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2374: {
2375:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2376:   PetscInt   *adx, *bdx, *aii, *bii, *aptr, *bptr;
2377:   MatScalar  *va, *vb;
2378:   PetscInt    ma, na, mb, nb, i;

2380:   PetscFunctionBegin;
2381:   PetscCall(MatGetSize(A, &ma, &na));
2382:   PetscCall(MatGetSize(B, &mb, &nb));
2383:   if (ma != nb || na != mb) {
2384:     *f = PETSC_FALSE;
2385:     PetscFunctionReturn(PETSC_SUCCESS);
2386:   }
2387:   aii = aij->i;
2388:   bii = bij->i;
2389:   adx = aij->j;
2390:   bdx = bij->j;
2391:   va  = aij->a;
2392:   vb  = bij->a;
2393:   PetscCall(PetscMalloc1(ma, &aptr));
2394:   PetscCall(PetscMalloc1(mb, &bptr));
2395:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2396:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2398:   *f = PETSC_TRUE;
2399:   for (i = 0; i < ma; i++) {
2400:     while (aptr[i] < aii[i + 1]) {
2401:       PetscInt    idc, idr;
2402:       PetscScalar vc, vr;
2403:       /* column/row index/value */
2404:       idc = adx[aptr[i]];
2405:       idr = bdx[bptr[idc]];
2406:       vc  = va[aptr[i]];
2407:       vr  = vb[bptr[idc]];
2408:       if (i != idr || PetscAbsScalar(vc - PetscConj(vr)) > tol) {
2409:         *f = PETSC_FALSE;
2410:         goto done;
2411:       } else {
2412:         aptr[i]++;
2413:         if (B || i != idc) bptr[idc]++;
2414:       }
2415:     }
2416:   }
2417: done:
2418:   PetscCall(PetscFree(aptr));
2419:   PetscCall(PetscFree(bptr));
2420:   PetscFunctionReturn(PETSC_SUCCESS);
2421: }

2423: PetscErrorCode MatDiagonalScale_SeqAIJ(Mat A, Vec ll, Vec rr)
2424: {
2425:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2426:   const PetscScalar *l, *r;
2427:   PetscScalar        x;
2428:   MatScalar         *v;
2429:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, M, nz = a->nz;
2430:   const PetscInt    *jj;

2432:   PetscFunctionBegin;
2433:   if (ll) {
2434:     /* The local size is used so that VecMPI can be passed to this routine
2435:        by MatDiagonalScale_MPIAIJ */
2436:     PetscCall(VecGetLocalSize(ll, &m));
2437:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
2438:     PetscCall(VecGetArrayRead(ll, &l));
2439:     PetscCall(MatSeqAIJGetArray(A, &v));
2440:     for (i = 0; i < m; i++) {
2441:       x = l[i];
2442:       M = a->i[i + 1] - a->i[i];
2443:       for (j = 0; j < M; j++) (*v++) *= x;
2444:     }
2445:     PetscCall(VecRestoreArrayRead(ll, &l));
2446:     PetscCall(PetscLogFlops(nz));
2447:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2448:   }
2449:   if (rr) {
2450:     PetscCall(VecGetLocalSize(rr, &n));
2451:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
2452:     PetscCall(VecGetArrayRead(rr, &r));
2453:     PetscCall(MatSeqAIJGetArray(A, &v));
2454:     jj = a->j;
2455:     for (i = 0; i < nz; i++) (*v++) *= r[*jj++];
2456:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2457:     PetscCall(VecRestoreArrayRead(rr, &r));
2458:     PetscCall(PetscLogFlops(nz));
2459:   }
2460:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
2461:   PetscFunctionReturn(PETSC_SUCCESS);
2462: }

2464: PetscErrorCode MatCreateSubMatrix_SeqAIJ(Mat A, IS isrow, IS iscol, PetscInt csize, MatReuse scall, Mat *B)
2465: {
2466:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *c;
2467:   PetscInt          *smap, i, k, kstart, kend, oldcols = A->cmap->n, *lens;
2468:   PetscInt           row, mat_i, *mat_j, tcol, first, step, *mat_ilen, sum, lensi;
2469:   const PetscInt    *irow, *icol;
2470:   const PetscScalar *aa;
2471:   PetscInt           nrows, ncols;
2472:   PetscInt          *starts, *j_new, *i_new, *aj = a->j, *ai = a->i, ii, *ailen = a->ilen;
2473:   MatScalar         *a_new, *mat_a, *c_a;
2474:   Mat                C;
2475:   PetscBool          stride;

2477:   PetscFunctionBegin;
2478:   PetscCall(ISGetIndices(isrow, &irow));
2479:   PetscCall(ISGetLocalSize(isrow, &nrows));
2480:   PetscCall(ISGetLocalSize(iscol, &ncols));

2482:   PetscCall(PetscObjectTypeCompare((PetscObject)iscol, ISSTRIDE, &stride));
2483:   if (stride) {
2484:     PetscCall(ISStrideGetInfo(iscol, &first, &step));
2485:   } else {
2486:     first = 0;
2487:     step  = 0;
2488:   }
2489:   if (stride && step == 1) {
2490:     /* special case of contiguous rows */
2491:     PetscCall(PetscMalloc2(nrows, &lens, nrows, &starts));
2492:     /* loop over new rows determining lens and starting points */
2493:     for (i = 0; i < nrows; i++) {
2494:       kstart    = ai[irow[i]];
2495:       kend      = kstart + ailen[irow[i]];
2496:       starts[i] = kstart;
2497:       for (k = kstart; k < kend; k++) {
2498:         if (aj[k] >= first) {
2499:           starts[i] = k;
2500:           break;
2501:         }
2502:       }
2503:       sum = 0;
2504:       while (k < kend) {
2505:         if (aj[k++] >= first + ncols) break;
2506:         sum++;
2507:       }
2508:       lens[i] = sum;
2509:     }
2510:     /* create submatrix */
2511:     if (scall == MAT_REUSE_MATRIX) {
2512:       PetscInt n_cols, n_rows;
2513:       PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2514:       PetscCheck(n_rows == nrows && n_cols == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reused submatrix wrong size");
2515:       PetscCall(MatZeroEntries(*B));
2516:       C = *B;
2517:     } else {
2518:       PetscInt rbs, cbs;
2519:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2520:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2521:       PetscCall(ISGetBlockSize(isrow, &rbs));
2522:       PetscCall(ISGetBlockSize(iscol, &cbs));
2523:       PetscCall(MatSetBlockSizes(C, rbs, cbs));
2524:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2525:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2526:     }
2527:     c = (Mat_SeqAIJ *)C->data;

2529:     /* loop over rows inserting into submatrix */
2530:     PetscCall(MatSeqAIJGetArrayWrite(C, &a_new)); // Not 'a_new = c->a-new', since that raw usage ignores offload state of C
2531:     j_new = c->j;
2532:     i_new = c->i;
2533:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2534:     for (i = 0; i < nrows; i++) {
2535:       ii    = starts[i];
2536:       lensi = lens[i];
2537:       if (lensi) {
2538:         for (k = 0; k < lensi; k++) *j_new++ = aj[ii + k] - first;
2539:         PetscCall(PetscArraycpy(a_new, aa + starts[i], lensi));
2540:         a_new += lensi;
2541:       }
2542:       i_new[i + 1] = i_new[i] + lensi;
2543:       c->ilen[i]   = lensi;
2544:     }
2545:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &a_new)); // Set C's offload state properly
2546:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2547:     PetscCall(PetscFree2(lens, starts));
2548:   } else {
2549:     PetscCall(ISGetIndices(iscol, &icol));
2550:     PetscCall(PetscCalloc1(oldcols, &smap));
2551:     PetscCall(PetscMalloc1(1 + nrows, &lens));
2552:     for (i = 0; i < ncols; i++) {
2553:       PetscCheck(icol[i] < oldcols, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Requesting column beyond largest column icol[%" PetscInt_FMT "] %" PetscInt_FMT " >= A->cmap->n %" PetscInt_FMT, i, icol[i], oldcols);
2554:       smap[icol[i]] = i + 1;
2555:     }

2557:     /* determine lens of each row */
2558:     for (i = 0; i < nrows; i++) {
2559:       kstart  = ai[irow[i]];
2560:       kend    = kstart + a->ilen[irow[i]];
2561:       lens[i] = 0;
2562:       for (k = kstart; k < kend; k++) {
2563:         if (smap[aj[k]]) lens[i]++;
2564:       }
2565:     }
2566:     /* Create and fill new matrix */
2567:     if (scall == MAT_REUSE_MATRIX) {
2568:       PetscBool equal;

2570:       c = (Mat_SeqAIJ *)((*B)->data);
2571:       PetscCheck((*B)->rmap->n == nrows && (*B)->cmap->n == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong size");
2572:       PetscCall(PetscArraycmp(c->ilen, lens, (*B)->rmap->n, &equal));
2573:       PetscCheck(equal, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong number of nonzeros");
2574:       PetscCall(PetscArrayzero(c->ilen, (*B)->rmap->n));
2575:       C = *B;
2576:     } else {
2577:       PetscInt rbs, cbs;
2578:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2579:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2580:       PetscCall(ISGetBlockSize(isrow, &rbs));
2581:       PetscCall(ISGetBlockSize(iscol, &cbs));
2582:       if (rbs > 1 || cbs > 1) PetscCall(MatSetBlockSizes(C, rbs, cbs));
2583:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2584:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2585:     }
2586:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));

2588:     c = (Mat_SeqAIJ *)C->data;
2589:     PetscCall(MatSeqAIJGetArrayWrite(C, &c_a)); // Not 'c->a', since that raw usage ignores offload state of C
2590:     for (i = 0; i < nrows; i++) {
2591:       row      = irow[i];
2592:       kstart   = ai[row];
2593:       kend     = kstart + a->ilen[row];
2594:       mat_i    = c->i[i];
2595:       mat_j    = PetscSafePointerPlusOffset(c->j, mat_i);
2596:       mat_a    = PetscSafePointerPlusOffset(c_a, mat_i);
2597:       mat_ilen = c->ilen + i;
2598:       for (k = kstart; k < kend; k++) {
2599:         if ((tcol = smap[a->j[k]])) {
2600:           *mat_j++ = tcol - 1;
2601:           *mat_a++ = aa[k];
2602:           (*mat_ilen)++;
2603:         }
2604:       }
2605:     }
2606:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2607:     /* Free work space */
2608:     PetscCall(ISRestoreIndices(iscol, &icol));
2609:     PetscCall(PetscFree(smap));
2610:     PetscCall(PetscFree(lens));
2611:     /* sort */
2612:     for (i = 0; i < nrows; i++) {
2613:       PetscInt ilen;

2615:       mat_i = c->i[i];
2616:       mat_j = PetscSafePointerPlusOffset(c->j, mat_i);
2617:       mat_a = PetscSafePointerPlusOffset(c_a, mat_i);
2618:       ilen  = c->ilen[i];
2619:       PetscCall(PetscSortIntWithScalarArray(ilen, mat_j, mat_a));
2620:     }
2621:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &c_a));
2622:   }
2623: #if defined(PETSC_HAVE_DEVICE)
2624:   PetscCall(MatBindToCPU(C, A->boundtocpu));
2625: #endif
2626:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
2627:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));

2629:   PetscCall(ISRestoreIndices(isrow, &irow));
2630:   *B = C;
2631:   PetscFunctionReturn(PETSC_SUCCESS);
2632: }

2634: static PetscErrorCode MatGetMultiProcBlock_SeqAIJ(Mat mat, MPI_Comm subComm, MatReuse scall, Mat *subMat)
2635: {
2636:   Mat B;

2638:   PetscFunctionBegin;
2639:   if (scall == MAT_INITIAL_MATRIX) {
2640:     PetscCall(MatCreate(subComm, &B));
2641:     PetscCall(MatSetSizes(B, mat->rmap->n, mat->cmap->n, mat->rmap->n, mat->cmap->n));
2642:     PetscCall(MatSetBlockSizesFromMats(B, mat, mat));
2643:     PetscCall(MatSetType(B, MATSEQAIJ));
2644:     PetscCall(MatDuplicateNoCreate_SeqAIJ(B, mat, MAT_COPY_VALUES, PETSC_TRUE));
2645:     *subMat = B;
2646:   } else {
2647:     PetscCall(MatCopy_SeqAIJ(mat, *subMat, SAME_NONZERO_PATTERN));
2648:   }
2649:   PetscFunctionReturn(PETSC_SUCCESS);
2650: }

2652: static PetscErrorCode MatILUFactor_SeqAIJ(Mat inA, IS row, IS col, const MatFactorInfo *info)
2653: {
2654:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)inA->data;
2655:   Mat         outA;
2656:   PetscBool   row_identity, col_identity;

2658:   PetscFunctionBegin;
2659:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 supported for in-place ilu");

2661:   PetscCall(ISIdentity(row, &row_identity));
2662:   PetscCall(ISIdentity(col, &col_identity));

2664:   outA             = inA;
2665:   outA->factortype = MAT_FACTOR_LU;
2666:   PetscCall(PetscFree(inA->solvertype));
2667:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

2669:   PetscCall(PetscObjectReference((PetscObject)row));
2670:   PetscCall(ISDestroy(&a->row));

2672:   a->row = row;

2674:   PetscCall(PetscObjectReference((PetscObject)col));
2675:   PetscCall(ISDestroy(&a->col));

2677:   a->col = col;

2679:   /* Create the inverse permutation so that it can be used in MatLUFactorNumeric() */
2680:   PetscCall(ISDestroy(&a->icol));
2681:   PetscCall(ISInvertPermutation(col, PETSC_DECIDE, &a->icol));

2683:   if (!a->solve_work) { /* this matrix may have been factored before */
2684:     PetscCall(PetscMalloc1(inA->rmap->n + 1, &a->solve_work));
2685:   }

2687:   PetscCall(MatMarkDiagonal_SeqAIJ(inA));
2688:   if (row_identity && col_identity) {
2689:     PetscCall(MatLUFactorNumeric_SeqAIJ_inplace(outA, inA, info));
2690:   } else {
2691:     PetscCall(MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(outA, inA, info));
2692:   }
2693:   PetscFunctionReturn(PETSC_SUCCESS);
2694: }

2696: PetscErrorCode MatScale_SeqAIJ(Mat inA, PetscScalar alpha)
2697: {
2698:   Mat_SeqAIJ  *a = (Mat_SeqAIJ *)inA->data;
2699:   PetscScalar *v;
2700:   PetscBLASInt one = 1, bnz;

2702:   PetscFunctionBegin;
2703:   PetscCall(MatSeqAIJGetArray(inA, &v));
2704:   PetscCall(PetscBLASIntCast(a->nz, &bnz));
2705:   PetscCallBLAS("BLASscal", BLASscal_(&bnz, &alpha, v, &one));
2706:   PetscCall(PetscLogFlops(a->nz));
2707:   PetscCall(MatSeqAIJRestoreArray(inA, &v));
2708:   PetscCall(MatSeqAIJInvalidateDiagonal(inA));
2709:   PetscFunctionReturn(PETSC_SUCCESS);
2710: }

2712: PetscErrorCode MatDestroySubMatrix_Private(Mat_SubSppt *submatj)
2713: {
2714:   PetscInt i;

2716:   PetscFunctionBegin;
2717:   if (!submatj->id) { /* delete data that are linked only to submats[id=0] */
2718:     PetscCall(PetscFree4(submatj->sbuf1, submatj->ptr, submatj->tmp, submatj->ctr));

2720:     for (i = 0; i < submatj->nrqr; ++i) PetscCall(PetscFree(submatj->sbuf2[i]));
2721:     PetscCall(PetscFree3(submatj->sbuf2, submatj->req_size, submatj->req_source1));

2723:     if (submatj->rbuf1) {
2724:       PetscCall(PetscFree(submatj->rbuf1[0]));
2725:       PetscCall(PetscFree(submatj->rbuf1));
2726:     }

2728:     for (i = 0; i < submatj->nrqs; ++i) PetscCall(PetscFree(submatj->rbuf3[i]));
2729:     PetscCall(PetscFree3(submatj->req_source2, submatj->rbuf2, submatj->rbuf3));
2730:     PetscCall(PetscFree(submatj->pa));
2731:   }

2733: #if defined(PETSC_USE_CTABLE)
2734:   PetscCall(PetscHMapIDestroy(&submatj->rmap));
2735:   if (submatj->cmap_loc) PetscCall(PetscFree(submatj->cmap_loc));
2736:   PetscCall(PetscFree(submatj->rmap_loc));
2737: #else
2738:   PetscCall(PetscFree(submatj->rmap));
2739: #endif

2741:   if (!submatj->allcolumns) {
2742: #if defined(PETSC_USE_CTABLE)
2743:     PetscCall(PetscHMapIDestroy(&submatj->cmap));
2744: #else
2745:     PetscCall(PetscFree(submatj->cmap));
2746: #endif
2747:   }
2748:   PetscCall(PetscFree(submatj->row2proc));

2750:   PetscCall(PetscFree(submatj));
2751:   PetscFunctionReturn(PETSC_SUCCESS);
2752: }

2754: PetscErrorCode MatDestroySubMatrix_SeqAIJ(Mat C)
2755: {
2756:   Mat_SeqAIJ  *c       = (Mat_SeqAIJ *)C->data;
2757:   Mat_SubSppt *submatj = c->submatis1;

2759:   PetscFunctionBegin;
2760:   PetscCall((*submatj->destroy)(C));
2761:   PetscCall(MatDestroySubMatrix_Private(submatj));
2762:   PetscFunctionReturn(PETSC_SUCCESS);
2763: }

2765: /* Note this has code duplication with MatDestroySubMatrices_SeqBAIJ() */
2766: static PetscErrorCode MatDestroySubMatrices_SeqAIJ(PetscInt n, Mat *mat[])
2767: {
2768:   PetscInt     i;
2769:   Mat          C;
2770:   Mat_SeqAIJ  *c;
2771:   Mat_SubSppt *submatj;

2773:   PetscFunctionBegin;
2774:   for (i = 0; i < n; i++) {
2775:     C       = (*mat)[i];
2776:     c       = (Mat_SeqAIJ *)C->data;
2777:     submatj = c->submatis1;
2778:     if (submatj) {
2779:       if (--((PetscObject)C)->refct <= 0) {
2780:         PetscCall(PetscFree(C->factorprefix));
2781:         PetscCall((*submatj->destroy)(C));
2782:         PetscCall(MatDestroySubMatrix_Private(submatj));
2783:         PetscCall(PetscFree(C->defaultvectype));
2784:         PetscCall(PetscFree(C->defaultrandtype));
2785:         PetscCall(PetscLayoutDestroy(&C->rmap));
2786:         PetscCall(PetscLayoutDestroy(&C->cmap));
2787:         PetscCall(PetscHeaderDestroy(&C));
2788:       }
2789:     } else {
2790:       PetscCall(MatDestroy(&C));
2791:     }
2792:   }

2794:   /* Destroy Dummy submatrices created for reuse */
2795:   PetscCall(MatDestroySubMatrices_Dummy(n, mat));

2797:   PetscCall(PetscFree(*mat));
2798:   PetscFunctionReturn(PETSC_SUCCESS);
2799: }

2801: static PetscErrorCode MatCreateSubMatrices_SeqAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2802: {
2803:   PetscInt i;

2805:   PetscFunctionBegin;
2806:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n + 1, B));

2808:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqAIJ(A, irow[i], icol[i], PETSC_DECIDE, scall, &(*B)[i]));
2809:   PetscFunctionReturn(PETSC_SUCCESS);
2810: }

2812: static PetscErrorCode MatIncreaseOverlap_SeqAIJ(Mat A, PetscInt is_max, IS is[], PetscInt ov)
2813: {
2814:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2815:   PetscInt        row, i, j, k, l, ll, m, n, *nidx, isz, val;
2816:   const PetscInt *idx;
2817:   PetscInt        start, end, *ai, *aj, bs = A->rmap->bs == A->cmap->bs ? A->rmap->bs : 1;
2818:   PetscBT         table;

2820:   PetscFunctionBegin;
2821:   m  = A->rmap->n / bs;
2822:   ai = a->i;
2823:   aj = a->j;

2825:   PetscCheck(ov >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "illegal negative overlap value used");

2827:   PetscCall(PetscMalloc1(m + 1, &nidx));
2828:   PetscCall(PetscBTCreate(m, &table));

2830:   for (i = 0; i < is_max; i++) {
2831:     /* Initialize the two local arrays */
2832:     isz = 0;
2833:     PetscCall(PetscBTMemzero(m, table));

2835:     /* Extract the indices, assume there can be duplicate entries */
2836:     PetscCall(ISGetIndices(is[i], &idx));
2837:     PetscCall(ISGetLocalSize(is[i], &n));

2839:     if (bs > 1) {
2840:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2841:       for (j = 0; j < n; ++j) {
2842:         if (!PetscBTLookupSet(table, idx[j] / bs)) nidx[isz++] = idx[j] / bs;
2843:       }
2844:       PetscCall(ISRestoreIndices(is[i], &idx));
2845:       PetscCall(ISDestroy(&is[i]));

2847:       k = 0;
2848:       for (j = 0; j < ov; j++) { /* for each overlap */
2849:         n = isz;
2850:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2851:           for (ll = 0; ll < bs; ll++) {
2852:             row   = bs * nidx[k] + ll;
2853:             start = ai[row];
2854:             end   = ai[row + 1];
2855:             for (l = start; l < end; l++) {
2856:               val = aj[l] / bs;
2857:               if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2858:             }
2859:           }
2860:         }
2861:       }
2862:       PetscCall(ISCreateBlock(PETSC_COMM_SELF, bs, isz, nidx, PETSC_COPY_VALUES, is + i));
2863:     } else {
2864:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2865:       for (j = 0; j < n; ++j) {
2866:         if (!PetscBTLookupSet(table, idx[j])) nidx[isz++] = idx[j];
2867:       }
2868:       PetscCall(ISRestoreIndices(is[i], &idx));
2869:       PetscCall(ISDestroy(&is[i]));

2871:       k = 0;
2872:       for (j = 0; j < ov; j++) { /* for each overlap */
2873:         n = isz;
2874:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2875:           row   = nidx[k];
2876:           start = ai[row];
2877:           end   = ai[row + 1];
2878:           for (l = start; l < end; l++) {
2879:             val = aj[l];
2880:             if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2881:           }
2882:         }
2883:       }
2884:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, isz, nidx, PETSC_COPY_VALUES, is + i));
2885:     }
2886:   }
2887:   PetscCall(PetscBTDestroy(&table));
2888:   PetscCall(PetscFree(nidx));
2889:   PetscFunctionReturn(PETSC_SUCCESS);
2890: }

2892: static PetscErrorCode MatPermute_SeqAIJ(Mat A, IS rowp, IS colp, Mat *B)
2893: {
2894:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2895:   PetscInt        i, nz = 0, m = A->rmap->n, n = A->cmap->n;
2896:   const PetscInt *row, *col;
2897:   PetscInt       *cnew, j, *lens;
2898:   IS              icolp, irowp;
2899:   PetscInt       *cwork = NULL;
2900:   PetscScalar    *vwork = NULL;

2902:   PetscFunctionBegin;
2903:   PetscCall(ISInvertPermutation(rowp, PETSC_DECIDE, &irowp));
2904:   PetscCall(ISGetIndices(irowp, &row));
2905:   PetscCall(ISInvertPermutation(colp, PETSC_DECIDE, &icolp));
2906:   PetscCall(ISGetIndices(icolp, &col));

2908:   /* determine lengths of permuted rows */
2909:   PetscCall(PetscMalloc1(m + 1, &lens));
2910:   for (i = 0; i < m; i++) lens[row[i]] = a->i[i + 1] - a->i[i];
2911:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2912:   PetscCall(MatSetSizes(*B, m, n, m, n));
2913:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2914:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2915:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*B, 0, lens));
2916:   PetscCall(PetscFree(lens));

2918:   PetscCall(PetscMalloc1(n, &cnew));
2919:   for (i = 0; i < m; i++) {
2920:     PetscCall(MatGetRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2921:     for (j = 0; j < nz; j++) cnew[j] = col[cwork[j]];
2922:     PetscCall(MatSetValues_SeqAIJ(*B, 1, &row[i], nz, cnew, vwork, INSERT_VALUES));
2923:     PetscCall(MatRestoreRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2924:   }
2925:   PetscCall(PetscFree(cnew));

2927:   (*B)->assembled = PETSC_FALSE;

2929: #if defined(PETSC_HAVE_DEVICE)
2930:   PetscCall(MatBindToCPU(*B, A->boundtocpu));
2931: #endif
2932:   PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
2933:   PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
2934:   PetscCall(ISRestoreIndices(irowp, &row));
2935:   PetscCall(ISRestoreIndices(icolp, &col));
2936:   PetscCall(ISDestroy(&irowp));
2937:   PetscCall(ISDestroy(&icolp));
2938:   if (rowp == colp) PetscCall(MatPropagateSymmetryOptions(A, *B));
2939:   PetscFunctionReturn(PETSC_SUCCESS);
2940: }

2942: PetscErrorCode MatCopy_SeqAIJ(Mat A, Mat B, MatStructure str)
2943: {
2944:   PetscFunctionBegin;
2945:   /* If the two matrices have the same copy implementation, use fast copy. */
2946:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
2947:     Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2948:     Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
2949:     const PetscScalar *aa;

2951:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2952:     PetscCheck(a->i[A->rmap->n] == b->i[B->rmap->n], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different %" PetscInt_FMT " != %" PetscInt_FMT, a->i[A->rmap->n], b->i[B->rmap->n]);
2953:     PetscCall(PetscArraycpy(b->a, aa, a->i[A->rmap->n]));
2954:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
2955:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2956:   } else {
2957:     PetscCall(MatCopy_Basic(A, B, str));
2958:   }
2959:   PetscFunctionReturn(PETSC_SUCCESS);
2960: }

2962: PETSC_INTERN PetscErrorCode MatSeqAIJGetArray_SeqAIJ(Mat A, PetscScalar *array[])
2963: {
2964:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2966:   PetscFunctionBegin;
2967:   *array = a->a;
2968:   PetscFunctionReturn(PETSC_SUCCESS);
2969: }

2971: PETSC_INTERN PetscErrorCode MatSeqAIJRestoreArray_SeqAIJ(Mat A, PetscScalar *array[])
2972: {
2973:   PetscFunctionBegin;
2974:   *array = NULL;
2975:   PetscFunctionReturn(PETSC_SUCCESS);
2976: }

2978: /*
2979:    Computes the number of nonzeros per row needed for preallocation when X and Y
2980:    have different nonzero structure.
2981: */
2982: PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt m, const PetscInt *xi, const PetscInt *xj, const PetscInt *yi, const PetscInt *yj, PetscInt *nnz)
2983: {
2984:   PetscInt i, j, k, nzx, nzy;

2986:   PetscFunctionBegin;
2987:   /* Set the number of nonzeros in the new matrix */
2988:   for (i = 0; i < m; i++) {
2989:     const PetscInt *xjj = PetscSafePointerPlusOffset(xj, xi[i]), *yjj = PetscSafePointerPlusOffset(yj, yi[i]);
2990:     nzx    = xi[i + 1] - xi[i];
2991:     nzy    = yi[i + 1] - yi[i];
2992:     nnz[i] = 0;
2993:     for (j = 0, k = 0; j < nzx; j++) {                  /* Point in X */
2994:       for (; k < nzy && yjj[k] < xjj[j]; k++) nnz[i]++; /* Catch up to X */
2995:       if (k < nzy && yjj[k] == xjj[j]) k++;             /* Skip duplicate */
2996:       nnz[i]++;
2997:     }
2998:     for (; k < nzy; k++) nnz[i]++;
2999:   }
3000:   PetscFunctionReturn(PETSC_SUCCESS);
3001: }

3003: PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat Y, Mat X, PetscInt *nnz)
3004: {
3005:   PetscInt    m = Y->rmap->N;
3006:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data;
3007:   Mat_SeqAIJ *y = (Mat_SeqAIJ *)Y->data;

3009:   PetscFunctionBegin;
3010:   /* Set the number of nonzeros in the new matrix */
3011:   PetscCall(MatAXPYGetPreallocation_SeqX_private(m, x->i, x->j, y->i, y->j, nnz));
3012:   PetscFunctionReturn(PETSC_SUCCESS);
3013: }

3015: PetscErrorCode MatAXPY_SeqAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
3016: {
3017:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;

3019:   PetscFunctionBegin;
3020:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
3021:     PetscBool e = x->nz == y->nz ? PETSC_TRUE : PETSC_FALSE;
3022:     if (e) {
3023:       PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
3024:       if (e) {
3025:         PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
3026:         if (e) str = SAME_NONZERO_PATTERN;
3027:       }
3028:     }
3029:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
3030:   }
3031:   if (str == SAME_NONZERO_PATTERN) {
3032:     const PetscScalar *xa;
3033:     PetscScalar       *ya, alpha = a;
3034:     PetscBLASInt       one = 1, bnz;

3036:     PetscCall(PetscBLASIntCast(x->nz, &bnz));
3037:     PetscCall(MatSeqAIJGetArray(Y, &ya));
3038:     PetscCall(MatSeqAIJGetArrayRead(X, &xa));
3039:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa, &one, ya, &one));
3040:     PetscCall(MatSeqAIJRestoreArrayRead(X, &xa));
3041:     PetscCall(MatSeqAIJRestoreArray(Y, &ya));
3042:     PetscCall(PetscLogFlops(2.0 * bnz));
3043:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
3044:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
3045:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
3046:     PetscCall(MatAXPY_Basic(Y, a, X, str));
3047:   } else {
3048:     Mat       B;
3049:     PetscInt *nnz;
3050:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
3051:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
3052:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
3053:     PetscCall(MatSetLayouts(B, Y->rmap, Y->cmap));
3054:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
3055:     PetscCall(MatAXPYGetPreallocation_SeqAIJ(Y, X, nnz));
3056:     PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
3057:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
3058:     PetscCall(MatHeaderMerge(Y, &B));
3059:     PetscCall(MatSeqAIJCheckInode(Y));
3060:     PetscCall(PetscFree(nnz));
3061:   }
3062:   PetscFunctionReturn(PETSC_SUCCESS);
3063: }

3065: PETSC_INTERN PetscErrorCode MatConjugate_SeqAIJ(Mat mat)
3066: {
3067: #if defined(PETSC_USE_COMPLEX)
3068:   Mat_SeqAIJ  *aij = (Mat_SeqAIJ *)mat->data;
3069:   PetscInt     i, nz;
3070:   PetscScalar *a;

3072:   PetscFunctionBegin;
3073:   nz = aij->nz;
3074:   PetscCall(MatSeqAIJGetArray(mat, &a));
3075:   for (i = 0; i < nz; i++) a[i] = PetscConj(a[i]);
3076:   PetscCall(MatSeqAIJRestoreArray(mat, &a));
3077: #else
3078:   PetscFunctionBegin;
3079: #endif
3080:   PetscFunctionReturn(PETSC_SUCCESS);
3081: }

3083: static PetscErrorCode MatGetRowMaxAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3084: {
3085:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3086:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3087:   PetscReal        atmp;
3088:   PetscScalar     *x;
3089:   const MatScalar *aa, *av;

3091:   PetscFunctionBegin;
3092:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3093:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3094:   aa = av;
3095:   ai = a->i;
3096:   aj = a->j;

3098:   PetscCall(VecGetArrayWrite(v, &x));
3099:   PetscCall(VecGetLocalSize(v, &n));
3100:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3101:   for (i = 0; i < m; i++) {
3102:     ncols = ai[1] - ai[0];
3103:     ai++;
3104:     x[i] = 0;
3105:     for (j = 0; j < ncols; j++) {
3106:       atmp = PetscAbsScalar(*aa);
3107:       if (PetscAbsScalar(x[i]) < atmp) {
3108:         x[i] = atmp;
3109:         if (idx) idx[i] = *aj;
3110:       }
3111:       aa++;
3112:       aj++;
3113:     }
3114:   }
3115:   PetscCall(VecRestoreArrayWrite(v, &x));
3116:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3117:   PetscFunctionReturn(PETSC_SUCCESS);
3118: }

3120: static PetscErrorCode MatGetRowSumAbs_SeqAIJ(Mat A, Vec v)
3121: {
3122:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3123:   PetscInt         i, j, m = A->rmap->n, *ai, ncols, n;
3124:   PetscScalar     *x;
3125:   const MatScalar *aa, *av;

3127:   PetscFunctionBegin;
3128:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3129:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3130:   aa = av;
3131:   ai = a->i;

3133:   PetscCall(VecGetArrayWrite(v, &x));
3134:   PetscCall(VecGetLocalSize(v, &n));
3135:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3136:   for (i = 0; i < m; i++) {
3137:     ncols = ai[1] - ai[0];
3138:     ai++;
3139:     x[i] = 0;
3140:     for (j = 0; j < ncols; j++) {
3141:       x[i] += PetscAbsScalar(*aa);
3142:       aa++;
3143:     }
3144:   }
3145:   PetscCall(VecRestoreArrayWrite(v, &x));
3146:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3147:   PetscFunctionReturn(PETSC_SUCCESS);
3148: }

3150: static PetscErrorCode MatGetRowMax_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3151: {
3152:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3153:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3154:   PetscScalar     *x;
3155:   const MatScalar *aa, *av;

3157:   PetscFunctionBegin;
3158:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3159:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3160:   aa = av;
3161:   ai = a->i;
3162:   aj = a->j;

3164:   PetscCall(VecGetArrayWrite(v, &x));
3165:   PetscCall(VecGetLocalSize(v, &n));
3166:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3167:   for (i = 0; i < m; i++) {
3168:     ncols = ai[1] - ai[0];
3169:     ai++;
3170:     if (ncols == A->cmap->n) { /* row is dense */
3171:       x[i] = *aa;
3172:       if (idx) idx[i] = 0;
3173:     } else { /* row is sparse so already KNOW maximum is 0.0 or higher */
3174:       x[i] = 0.0;
3175:       if (idx) {
3176:         for (j = 0; j < ncols; j++) { /* find first implicit 0.0 in the row */
3177:           if (aj[j] > j) {
3178:             idx[i] = j;
3179:             break;
3180:           }
3181:         }
3182:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3183:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3184:       }
3185:     }
3186:     for (j = 0; j < ncols; j++) {
3187:       if (PetscRealPart(x[i]) < PetscRealPart(*aa)) {
3188:         x[i] = *aa;
3189:         if (idx) idx[i] = *aj;
3190:       }
3191:       aa++;
3192:       aj++;
3193:     }
3194:   }
3195:   PetscCall(VecRestoreArrayWrite(v, &x));
3196:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3197:   PetscFunctionReturn(PETSC_SUCCESS);
3198: }

3200: static PetscErrorCode MatGetRowMinAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3201: {
3202:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3203:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3204:   PetscScalar     *x;
3205:   const MatScalar *aa, *av;

3207:   PetscFunctionBegin;
3208:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3209:   aa = av;
3210:   ai = a->i;
3211:   aj = a->j;

3213:   PetscCall(VecGetArrayWrite(v, &x));
3214:   PetscCall(VecGetLocalSize(v, &n));
3215:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector, %" PetscInt_FMT " vs. %" PetscInt_FMT " rows", m, n);
3216:   for (i = 0; i < m; i++) {
3217:     ncols = ai[1] - ai[0];
3218:     ai++;
3219:     if (ncols == A->cmap->n) { /* row is dense */
3220:       x[i] = *aa;
3221:       if (idx) idx[i] = 0;
3222:     } else { /* row is sparse so already KNOW minimum is 0.0 or higher */
3223:       x[i] = 0.0;
3224:       if (idx) { /* find first implicit 0.0 in the row */
3225:         for (j = 0; j < ncols; j++) {
3226:           if (aj[j] > j) {
3227:             idx[i] = j;
3228:             break;
3229:           }
3230:         }
3231:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3232:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3233:       }
3234:     }
3235:     for (j = 0; j < ncols; j++) {
3236:       if (PetscAbsScalar(x[i]) > PetscAbsScalar(*aa)) {
3237:         x[i] = *aa;
3238:         if (idx) idx[i] = *aj;
3239:       }
3240:       aa++;
3241:       aj++;
3242:     }
3243:   }
3244:   PetscCall(VecRestoreArrayWrite(v, &x));
3245:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3246:   PetscFunctionReturn(PETSC_SUCCESS);
3247: }

3249: static PetscErrorCode MatGetRowMin_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3250: {
3251:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3252:   PetscInt         i, j, m = A->rmap->n, ncols, n;
3253:   const PetscInt  *ai, *aj;
3254:   PetscScalar     *x;
3255:   const MatScalar *aa, *av;

3257:   PetscFunctionBegin;
3258:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3259:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3260:   aa = av;
3261:   ai = a->i;
3262:   aj = a->j;

3264:   PetscCall(VecGetArrayWrite(v, &x));
3265:   PetscCall(VecGetLocalSize(v, &n));
3266:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3267:   for (i = 0; i < m; i++) {
3268:     ncols = ai[1] - ai[0];
3269:     ai++;
3270:     if (ncols == A->cmap->n) { /* row is dense */
3271:       x[i] = *aa;
3272:       if (idx) idx[i] = 0;
3273:     } else { /* row is sparse so already KNOW minimum is 0.0 or lower */
3274:       x[i] = 0.0;
3275:       if (idx) { /* find first implicit 0.0 in the row */
3276:         for (j = 0; j < ncols; j++) {
3277:           if (aj[j] > j) {
3278:             idx[i] = j;
3279:             break;
3280:           }
3281:         }
3282:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3283:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3284:       }
3285:     }
3286:     for (j = 0; j < ncols; j++) {
3287:       if (PetscRealPart(x[i]) > PetscRealPart(*aa)) {
3288:         x[i] = *aa;
3289:         if (idx) idx[i] = *aj;
3290:       }
3291:       aa++;
3292:       aj++;
3293:     }
3294:   }
3295:   PetscCall(VecRestoreArrayWrite(v, &x));
3296:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3297:   PetscFunctionReturn(PETSC_SUCCESS);
3298: }

3300: static PetscErrorCode MatInvertBlockDiagonal_SeqAIJ(Mat A, const PetscScalar **values)
3301: {
3302:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
3303:   PetscInt        i, bs = A->rmap->bs, mbs = A->rmap->n / bs, ipvt[5], bs2 = bs * bs, *v_pivots, ij[7], *IJ, j;
3304:   MatScalar      *diag, work[25], *v_work;
3305:   const PetscReal shift = 0.0;
3306:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;

3308:   PetscFunctionBegin;
3309:   allowzeropivot = PetscNot(A->erroriffailure);
3310:   if (a->ibdiagvalid) {
3311:     if (values) *values = a->ibdiag;
3312:     PetscFunctionReturn(PETSC_SUCCESS);
3313:   }
3314:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
3315:   if (!a->ibdiag) { PetscCall(PetscMalloc1(bs2 * mbs, &a->ibdiag)); }
3316:   diag = a->ibdiag;
3317:   if (values) *values = a->ibdiag;
3318:   /* factor and invert each block */
3319:   switch (bs) {
3320:   case 1:
3321:     for (i = 0; i < mbs; i++) {
3322:       PetscCall(MatGetValues(A, 1, &i, 1, &i, diag + i));
3323:       if (PetscAbsScalar(diag[i] + shift) < PETSC_MACHINE_EPSILON) {
3324:         if (allowzeropivot) {
3325:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3326:           A->factorerror_zeropivot_value = PetscAbsScalar(diag[i]);
3327:           A->factorerror_zeropivot_row   = i;
3328:           PetscCall(PetscInfo(A, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g\n", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON));
3329:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON);
3330:       }
3331:       diag[i] = (PetscScalar)1.0 / (diag[i] + shift);
3332:     }
3333:     break;
3334:   case 2:
3335:     for (i = 0; i < mbs; i++) {
3336:       ij[0] = 2 * i;
3337:       ij[1] = 2 * i + 1;
3338:       PetscCall(MatGetValues(A, 2, ij, 2, ij, diag));
3339:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
3340:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3341:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
3342:       diag += 4;
3343:     }
3344:     break;
3345:   case 3:
3346:     for (i = 0; i < mbs; i++) {
3347:       ij[0] = 3 * i;
3348:       ij[1] = 3 * i + 1;
3349:       ij[2] = 3 * i + 2;
3350:       PetscCall(MatGetValues(A, 3, ij, 3, ij, diag));
3351:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
3352:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3353:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
3354:       diag += 9;
3355:     }
3356:     break;
3357:   case 4:
3358:     for (i = 0; i < mbs; i++) {
3359:       ij[0] = 4 * i;
3360:       ij[1] = 4 * i + 1;
3361:       ij[2] = 4 * i + 2;
3362:       ij[3] = 4 * i + 3;
3363:       PetscCall(MatGetValues(A, 4, ij, 4, ij, diag));
3364:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
3365:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3366:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
3367:       diag += 16;
3368:     }
3369:     break;
3370:   case 5:
3371:     for (i = 0; i < mbs; i++) {
3372:       ij[0] = 5 * i;
3373:       ij[1] = 5 * i + 1;
3374:       ij[2] = 5 * i + 2;
3375:       ij[3] = 5 * i + 3;
3376:       ij[4] = 5 * i + 4;
3377:       PetscCall(MatGetValues(A, 5, ij, 5, ij, diag));
3378:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3379:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3380:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
3381:       diag += 25;
3382:     }
3383:     break;
3384:   case 6:
3385:     for (i = 0; i < mbs; i++) {
3386:       ij[0] = 6 * i;
3387:       ij[1] = 6 * i + 1;
3388:       ij[2] = 6 * i + 2;
3389:       ij[3] = 6 * i + 3;
3390:       ij[4] = 6 * i + 4;
3391:       ij[5] = 6 * i + 5;
3392:       PetscCall(MatGetValues(A, 6, ij, 6, ij, diag));
3393:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
3394:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3395:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
3396:       diag += 36;
3397:     }
3398:     break;
3399:   case 7:
3400:     for (i = 0; i < mbs; i++) {
3401:       ij[0] = 7 * i;
3402:       ij[1] = 7 * i + 1;
3403:       ij[2] = 7 * i + 2;
3404:       ij[3] = 7 * i + 3;
3405:       ij[4] = 7 * i + 4;
3406:       ij[5] = 7 * i + 5;
3407:       ij[6] = 7 * i + 6;
3408:       PetscCall(MatGetValues(A, 7, ij, 7, ij, diag));
3409:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
3410:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3411:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
3412:       diag += 49;
3413:     }
3414:     break;
3415:   default:
3416:     PetscCall(PetscMalloc3(bs, &v_work, bs, &v_pivots, bs, &IJ));
3417:     for (i = 0; i < mbs; i++) {
3418:       for (j = 0; j < bs; j++) IJ[j] = bs * i + j;
3419:       PetscCall(MatGetValues(A, bs, IJ, bs, IJ, diag));
3420:       PetscCall(PetscKernel_A_gets_inverse_A(bs, diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3421:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3422:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bs));
3423:       diag += bs2;
3424:     }
3425:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3426:   }
3427:   a->ibdiagvalid = PETSC_TRUE;
3428:   PetscFunctionReturn(PETSC_SUCCESS);
3429: }

3431: static PetscErrorCode MatSetRandom_SeqAIJ(Mat x, PetscRandom rctx)
3432: {
3433:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3434:   PetscScalar a, *aa;
3435:   PetscInt    m, n, i, j, col;

3437:   PetscFunctionBegin;
3438:   if (!x->assembled) {
3439:     PetscCall(MatGetSize(x, &m, &n));
3440:     for (i = 0; i < m; i++) {
3441:       for (j = 0; j < aij->imax[i]; j++) {
3442:         PetscCall(PetscRandomGetValue(rctx, &a));
3443:         col = (PetscInt)(n * PetscRealPart(a));
3444:         PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3445:       }
3446:     }
3447:   } else {
3448:     PetscCall(MatSeqAIJGetArrayWrite(x, &aa));
3449:     for (i = 0; i < aij->nz; i++) PetscCall(PetscRandomGetValue(rctx, aa + i));
3450:     PetscCall(MatSeqAIJRestoreArrayWrite(x, &aa));
3451:   }
3452:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3453:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3454:   PetscFunctionReturn(PETSC_SUCCESS);
3455: }

3457: /* Like MatSetRandom_SeqAIJ, but do not set values on columns in range of [low, high) */
3458: PetscErrorCode MatSetRandomSkipColumnRange_SeqAIJ_Private(Mat x, PetscInt low, PetscInt high, PetscRandom rctx)
3459: {
3460:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3461:   PetscScalar a;
3462:   PetscInt    m, n, i, j, col, nskip;

3464:   PetscFunctionBegin;
3465:   nskip = high - low;
3466:   PetscCall(MatGetSize(x, &m, &n));
3467:   n -= nskip; /* shrink number of columns where nonzeros can be set */
3468:   for (i = 0; i < m; i++) {
3469:     for (j = 0; j < aij->imax[i]; j++) {
3470:       PetscCall(PetscRandomGetValue(rctx, &a));
3471:       col = (PetscInt)(n * PetscRealPart(a));
3472:       if (col >= low) col += nskip; /* shift col rightward to skip the hole */
3473:       PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3474:     }
3475:   }
3476:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3477:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3478:   PetscFunctionReturn(PETSC_SUCCESS);
3479: }

3481: static struct _MatOps MatOps_Values = {MatSetValues_SeqAIJ,
3482:                                        MatGetRow_SeqAIJ,
3483:                                        MatRestoreRow_SeqAIJ,
3484:                                        MatMult_SeqAIJ,
3485:                                        /*  4*/ MatMultAdd_SeqAIJ,
3486:                                        MatMultTranspose_SeqAIJ,
3487:                                        MatMultTransposeAdd_SeqAIJ,
3488:                                        NULL,
3489:                                        NULL,
3490:                                        NULL,
3491:                                        /* 10*/ NULL,
3492:                                        MatLUFactor_SeqAIJ,
3493:                                        NULL,
3494:                                        MatSOR_SeqAIJ,
3495:                                        MatTranspose_SeqAIJ,
3496:                                        /*1 5*/ MatGetInfo_SeqAIJ,
3497:                                        MatEqual_SeqAIJ,
3498:                                        MatGetDiagonal_SeqAIJ,
3499:                                        MatDiagonalScale_SeqAIJ,
3500:                                        MatNorm_SeqAIJ,
3501:                                        /* 20*/ NULL,
3502:                                        MatAssemblyEnd_SeqAIJ,
3503:                                        MatSetOption_SeqAIJ,
3504:                                        MatZeroEntries_SeqAIJ,
3505:                                        /* 24*/ MatZeroRows_SeqAIJ,
3506:                                        NULL,
3507:                                        NULL,
3508:                                        NULL,
3509:                                        NULL,
3510:                                        /* 29*/ MatSetUp_Seq_Hash,
3511:                                        NULL,
3512:                                        NULL,
3513:                                        NULL,
3514:                                        NULL,
3515:                                        /* 34*/ MatDuplicate_SeqAIJ,
3516:                                        NULL,
3517:                                        NULL,
3518:                                        MatILUFactor_SeqAIJ,
3519:                                        NULL,
3520:                                        /* 39*/ MatAXPY_SeqAIJ,
3521:                                        MatCreateSubMatrices_SeqAIJ,
3522:                                        MatIncreaseOverlap_SeqAIJ,
3523:                                        MatGetValues_SeqAIJ,
3524:                                        MatCopy_SeqAIJ,
3525:                                        /* 44*/ MatGetRowMax_SeqAIJ,
3526:                                        MatScale_SeqAIJ,
3527:                                        MatShift_SeqAIJ,
3528:                                        MatDiagonalSet_SeqAIJ,
3529:                                        MatZeroRowsColumns_SeqAIJ,
3530:                                        /* 49*/ MatSetRandom_SeqAIJ,
3531:                                        MatGetRowIJ_SeqAIJ,
3532:                                        MatRestoreRowIJ_SeqAIJ,
3533:                                        MatGetColumnIJ_SeqAIJ,
3534:                                        MatRestoreColumnIJ_SeqAIJ,
3535:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
3536:                                        NULL,
3537:                                        NULL,
3538:                                        MatPermute_SeqAIJ,
3539:                                        NULL,
3540:                                        /* 59*/ NULL,
3541:                                        MatDestroy_SeqAIJ,
3542:                                        MatView_SeqAIJ,
3543:                                        NULL,
3544:                                        NULL,
3545:                                        /* 64*/ NULL,
3546:                                        MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ,
3547:                                        NULL,
3548:                                        NULL,
3549:                                        NULL,
3550:                                        /* 69*/ MatGetRowMaxAbs_SeqAIJ,
3551:                                        MatGetRowMinAbs_SeqAIJ,
3552:                                        NULL,
3553:                                        NULL,
3554:                                        NULL,
3555:                                        /* 74*/ NULL,
3556:                                        MatFDColoringApply_AIJ,
3557:                                        NULL,
3558:                                        NULL,
3559:                                        NULL,
3560:                                        /* 79*/ MatFindZeroDiagonals_SeqAIJ,
3561:                                        NULL,
3562:                                        NULL,
3563:                                        NULL,
3564:                                        MatLoad_SeqAIJ,
3565:                                        /* 84*/ NULL,
3566:                                        NULL,
3567:                                        NULL,
3568:                                        NULL,
3569:                                        NULL,
3570:                                        /* 89*/ NULL,
3571:                                        NULL,
3572:                                        MatMatMultNumeric_SeqAIJ_SeqAIJ,
3573:                                        NULL,
3574:                                        NULL,
3575:                                        /* 94*/ MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy,
3576:                                        NULL,
3577:                                        NULL,
3578:                                        MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ,
3579:                                        NULL,
3580:                                        /* 99*/ MatProductSetFromOptions_SeqAIJ,
3581:                                        NULL,
3582:                                        NULL,
3583:                                        MatConjugate_SeqAIJ,
3584:                                        NULL,
3585:                                        /*104*/ MatSetValuesRow_SeqAIJ,
3586:                                        MatRealPart_SeqAIJ,
3587:                                        MatImaginaryPart_SeqAIJ,
3588:                                        NULL,
3589:                                        NULL,
3590:                                        /*109*/ MatMatSolve_SeqAIJ,
3591:                                        NULL,
3592:                                        MatGetRowMin_SeqAIJ,
3593:                                        NULL,
3594:                                        MatMissingDiagonal_SeqAIJ,
3595:                                        /*114*/ NULL,
3596:                                        NULL,
3597:                                        NULL,
3598:                                        NULL,
3599:                                        NULL,
3600:                                        /*119*/ NULL,
3601:                                        NULL,
3602:                                        NULL,
3603:                                        NULL,
3604:                                        MatGetMultiProcBlock_SeqAIJ,
3605:                                        /*124*/ MatFindNonzeroRows_SeqAIJ,
3606:                                        MatGetColumnReductions_SeqAIJ,
3607:                                        MatInvertBlockDiagonal_SeqAIJ,
3608:                                        MatInvertVariableBlockDiagonal_SeqAIJ,
3609:                                        NULL,
3610:                                        /*129*/ NULL,
3611:                                        NULL,
3612:                                        NULL,
3613:                                        MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ,
3614:                                        MatTransposeColoringCreate_SeqAIJ,
3615:                                        /*134*/ MatTransColoringApplySpToDen_SeqAIJ,
3616:                                        MatTransColoringApplyDenToSp_SeqAIJ,
3617:                                        NULL,
3618:                                        NULL,
3619:                                        MatRARtNumeric_SeqAIJ_SeqAIJ,
3620:                                        /*139*/ NULL,
3621:                                        NULL,
3622:                                        NULL,
3623:                                        MatFDColoringSetUp_SeqXAIJ,
3624:                                        MatFindOffBlockDiagonalEntries_SeqAIJ,
3625:                                        MatCreateMPIMatConcatenateSeqMat_SeqAIJ,
3626:                                        /*145*/ MatDestroySubMatrices_SeqAIJ,
3627:                                        NULL,
3628:                                        NULL,
3629:                                        MatCreateGraph_Simple_AIJ,
3630:                                        NULL,
3631:                                        /*150*/ MatTransposeSymbolic_SeqAIJ,
3632:                                        MatEliminateZeros_SeqAIJ,
3633:                                        MatGetRowSumAbs_SeqAIJ,
3634:                                        NULL,
3635:                                        NULL,
3636:                                        /*155*/ NULL,
3637:                                        MatCopyHashToXAIJ_Seq_Hash};

3639: static PetscErrorCode MatSeqAIJSetColumnIndices_SeqAIJ(Mat mat, PetscInt *indices)
3640: {
3641:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3642:   PetscInt    i, nz, n;

3644:   PetscFunctionBegin;
3645:   nz = aij->maxnz;
3646:   n  = mat->rmap->n;
3647:   for (i = 0; i < nz; i++) aij->j[i] = indices[i];
3648:   aij->nz = nz;
3649:   for (i = 0; i < n; i++) aij->ilen[i] = aij->imax[i];
3650:   PetscFunctionReturn(PETSC_SUCCESS);
3651: }

3653: /*
3654:  * Given a sparse matrix with global column indices, compact it by using a local column space.
3655:  * The result matrix helps saving memory in other algorithms, such as MatPtAPSymbolic_MPIAIJ_MPIAIJ_scalable()
3656:  */
3657: PetscErrorCode MatSeqAIJCompactOutExtraColumns_SeqAIJ(Mat mat, ISLocalToGlobalMapping *mapping)
3658: {
3659:   Mat_SeqAIJ   *aij = (Mat_SeqAIJ *)mat->data;
3660:   PetscHMapI    gid1_lid1;
3661:   PetscHashIter tpos;
3662:   PetscInt      gid, lid, i, ec, nz = aij->nz;
3663:   PetscInt     *garray, *jj = aij->j;

3665:   PetscFunctionBegin;
3667:   PetscAssertPointer(mapping, 2);
3668:   /* use a table */
3669:   PetscCall(PetscHMapICreateWithSize(mat->rmap->n, &gid1_lid1));
3670:   ec = 0;
3671:   for (i = 0; i < nz; i++) {
3672:     PetscInt data, gid1 = jj[i] + 1;
3673:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &data));
3674:     if (!data) {
3675:       /* one based table */
3676:       PetscCall(PetscHMapISet(gid1_lid1, gid1, ++ec));
3677:     }
3678:   }
3679:   /* form array of columns we need */
3680:   PetscCall(PetscMalloc1(ec, &garray));
3681:   PetscHashIterBegin(gid1_lid1, tpos);
3682:   while (!PetscHashIterAtEnd(gid1_lid1, tpos)) {
3683:     PetscHashIterGetKey(gid1_lid1, tpos, gid);
3684:     PetscHashIterGetVal(gid1_lid1, tpos, lid);
3685:     PetscHashIterNext(gid1_lid1, tpos);
3686:     gid--;
3687:     lid--;
3688:     garray[lid] = gid;
3689:   }
3690:   PetscCall(PetscSortInt(ec, garray)); /* sort, and rebuild */
3691:   PetscCall(PetscHMapIClear(gid1_lid1));
3692:   for (i = 0; i < ec; i++) PetscCall(PetscHMapISet(gid1_lid1, garray[i] + 1, i + 1));
3693:   /* compact out the extra columns in B */
3694:   for (i = 0; i < nz; i++) {
3695:     PetscInt gid1 = jj[i] + 1;
3696:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &lid));
3697:     lid--;
3698:     jj[i] = lid;
3699:   }
3700:   PetscCall(PetscLayoutDestroy(&mat->cmap));
3701:   PetscCall(PetscHMapIDestroy(&gid1_lid1));
3702:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)mat), ec, ec, 1, &mat->cmap));
3703:   PetscCall(ISLocalToGlobalMappingCreate(PETSC_COMM_SELF, mat->cmap->bs, mat->cmap->n, garray, PETSC_OWN_POINTER, mapping));
3704:   PetscCall(ISLocalToGlobalMappingSetType(*mapping, ISLOCALTOGLOBALMAPPINGHASH));
3705:   PetscFunctionReturn(PETSC_SUCCESS);
3706: }

3708: /*@
3709:   MatSeqAIJSetColumnIndices - Set the column indices for all the rows
3710:   in the matrix.

3712:   Input Parameters:
3713: + mat     - the `MATSEQAIJ` matrix
3714: - indices - the column indices

3716:   Level: advanced

3718:   Notes:
3719:   This can be called if you have precomputed the nonzero structure of the
3720:   matrix and want to provide it to the matrix object to improve the performance
3721:   of the `MatSetValues()` operation.

3723:   You MUST have set the correct numbers of nonzeros per row in the call to
3724:   `MatCreateSeqAIJ()`, and the columns indices MUST be sorted.

3726:   MUST be called before any calls to `MatSetValues()`

3728:   The indices should start with zero, not one.

3730: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`
3731: @*/
3732: PetscErrorCode MatSeqAIJSetColumnIndices(Mat mat, PetscInt *indices)
3733: {
3734:   PetscFunctionBegin;
3736:   PetscAssertPointer(indices, 2);
3737:   PetscUseMethod(mat, "MatSeqAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
3738:   PetscFunctionReturn(PETSC_SUCCESS);
3739: }

3741: static PetscErrorCode MatStoreValues_SeqAIJ(Mat mat)
3742: {
3743:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3744:   size_t      nz  = aij->i[mat->rmap->n];

3746:   PetscFunctionBegin;
3747:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

3749:   /* allocate space for values if not already there */
3750:   if (!aij->saved_values) { PetscCall(PetscMalloc1(nz + 1, &aij->saved_values)); }

3752:   /* copy values over */
3753:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
3754:   PetscFunctionReturn(PETSC_SUCCESS);
3755: }

3757: /*@
3758:   MatStoreValues - Stashes a copy of the matrix values; this allows reusing of the linear part of a Jacobian, while recomputing only the
3759:   nonlinear portion.

3761:   Logically Collect

3763:   Input Parameter:
3764: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3766:   Level: advanced

3768:   Example Usage:
3769: .vb
3770:     Using SNES
3771:     Create Jacobian matrix
3772:     Set linear terms into matrix
3773:     Apply boundary conditions to matrix, at this time matrix must have
3774:       final nonzero structure (i.e. setting the nonlinear terms and applying
3775:       boundary conditions again will not change the nonzero structure
3776:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3777:     MatStoreValues(mat);
3778:     Call SNESSetJacobian() with matrix
3779:     In your Jacobian routine
3780:       MatRetrieveValues(mat);
3781:       Set nonlinear terms in matrix

3783:     Without `SNESSolve()`, i.e. when you handle nonlinear solve yourself:
3784:     // build linear portion of Jacobian
3785:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3786:     MatStoreValues(mat);
3787:     loop over nonlinear iterations
3788:        MatRetrieveValues(mat);
3789:        // call MatSetValues(mat,...) to set nonliner portion of Jacobian
3790:        // call MatAssemblyBegin/End() on matrix
3791:        Solve linear system with Jacobian
3792:     endloop
3793: .ve

3795:   Notes:
3796:   Matrix must already be assembled before calling this routine
3797:   Must set the matrix option `MatSetOption`(mat,`MAT_NEW_NONZERO_LOCATIONS`,`PETSC_FALSE`); before
3798:   calling this routine.

3800:   When this is called multiple times it overwrites the previous set of stored values
3801:   and does not allocated additional space.

3803: .seealso: [](ch_matrices), `Mat`, `MatRetrieveValues()`
3804: @*/
3805: PetscErrorCode MatStoreValues(Mat mat)
3806: {
3807:   PetscFunctionBegin;
3809:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3810:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3811:   PetscUseMethod(mat, "MatStoreValues_C", (Mat), (mat));
3812:   PetscFunctionReturn(PETSC_SUCCESS);
3813: }

3815: static PetscErrorCode MatRetrieveValues_SeqAIJ(Mat mat)
3816: {
3817:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3818:   PetscInt    nz  = aij->i[mat->rmap->n];

3820:   PetscFunctionBegin;
3821:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
3822:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
3823:   /* copy values over */
3824:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
3825:   PetscFunctionReturn(PETSC_SUCCESS);
3826: }

3828: /*@
3829:   MatRetrieveValues - Retrieves the copy of the matrix values that was stored with `MatStoreValues()`

3831:   Logically Collect

3833:   Input Parameter:
3834: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3836:   Level: advanced

3838: .seealso: [](ch_matrices), `Mat`, `MatStoreValues()`
3839: @*/
3840: PetscErrorCode MatRetrieveValues(Mat mat)
3841: {
3842:   PetscFunctionBegin;
3844:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3845:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3846:   PetscUseMethod(mat, "MatRetrieveValues_C", (Mat), (mat));
3847:   PetscFunctionReturn(PETSC_SUCCESS);
3848: }

3850: /*@
3851:   MatCreateSeqAIJ - Creates a sparse matrix in `MATSEQAIJ` (compressed row) format
3852:   (the default parallel PETSc format).  For good matrix assembly performance
3853:   the user should preallocate the matrix storage by setting the parameter `nz`
3854:   (or the array `nnz`).

3856:   Collective

3858:   Input Parameters:
3859: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3860: . m    - number of rows
3861: . n    - number of columns
3862: . nz   - number of nonzeros per row (same for all rows)
3863: - nnz  - array containing the number of nonzeros in the various rows
3864:          (possibly different for each row) or NULL

3866:   Output Parameter:
3867: . A - the matrix

3869:   Options Database Keys:
3870: + -mat_no_inode            - Do not use inodes
3871: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3873:   Level: intermediate

3875:   Notes:
3876:   It is recommend to use `MatCreateFromOptions()` instead of this routine

3878:   If `nnz` is given then `nz` is ignored

3880:   The `MATSEQAIJ` format, also called
3881:   compressed row storage, is fully compatible with standard Fortran
3882:   storage.  That is, the stored row and column indices can begin at
3883:   either one (as in Fortran) or zero.

3885:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3886:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3887:   allocation.

3889:   By default, this format uses inodes (identical nodes) when possible, to
3890:   improve numerical efficiency of matrix-vector products and solves. We
3891:   search for consecutive rows with the same nonzero structure, thereby
3892:   reusing matrix information to achieve increased efficiency.

3894: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
3895: @*/
3896: PetscErrorCode MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
3897: {
3898:   PetscFunctionBegin;
3899:   PetscCall(MatCreate(comm, A));
3900:   PetscCall(MatSetSizes(*A, m, n, m, n));
3901:   PetscCall(MatSetType(*A, MATSEQAIJ));
3902:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, nnz));
3903:   PetscFunctionReturn(PETSC_SUCCESS);
3904: }

3906: /*@
3907:   MatSeqAIJSetPreallocation - For good matrix assembly performance
3908:   the user should preallocate the matrix storage by setting the parameter nz
3909:   (or the array nnz).  By setting these parameters accurately, performance
3910:   during matrix assembly can be increased by more than a factor of 50.

3912:   Collective

3914:   Input Parameters:
3915: + B   - The matrix
3916: . nz  - number of nonzeros per row (same for all rows)
3917: - nnz - array containing the number of nonzeros in the various rows
3918:          (possibly different for each row) or NULL

3920:   Options Database Keys:
3921: + -mat_no_inode            - Do not use inodes
3922: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3924:   Level: intermediate

3926:   Notes:
3927:   If `nnz` is given then `nz` is ignored

3929:   The `MATSEQAIJ` format also called
3930:   compressed row storage, is fully compatible with standard Fortran
3931:   storage.  That is, the stored row and column indices can begin at
3932:   either one (as in Fortran) or zero.  See the users' manual for details.

3934:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3935:   Set nz = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3936:   allocation.

3938:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3939:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3940:   You can also run with the option -info and look for messages with the string
3941:   malloc in them to see if additional memory allocation was needed.

3943:   Developer Notes:
3944:   Use nz of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
3945:   entries or columns indices

3947:   By default, this format uses inodes (identical nodes) when possible, to
3948:   improve numerical efficiency of matrix-vector products and solves. We
3949:   search for consecutive rows with the same nonzero structure, thereby
3950:   reusing matrix information to achieve increased efficiency.

3952: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`, `MatGetInfo()`,
3953:           `MatSeqAIJSetTotalPreallocation()`
3954: @*/
3955: PetscErrorCode MatSeqAIJSetPreallocation(Mat B, PetscInt nz, const PetscInt nnz[])
3956: {
3957:   PetscFunctionBegin;
3960:   PetscTryMethod(B, "MatSeqAIJSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, nz, nnz));
3961:   PetscFunctionReturn(PETSC_SUCCESS);
3962: }

3964: PetscErrorCode MatSeqAIJSetPreallocation_SeqAIJ(Mat B, PetscInt nz, const PetscInt *nnz)
3965: {
3966:   Mat_SeqAIJ *b              = (Mat_SeqAIJ *)B->data;
3967:   PetscBool   skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;
3968:   PetscInt    i;

3970:   PetscFunctionBegin;
3971:   if (B->hash_active) {
3972:     B->ops[0] = b->cops;
3973:     PetscCall(PetscHMapIJVDestroy(&b->ht));
3974:     PetscCall(PetscFree(b->dnz));
3975:     B->hash_active = PETSC_FALSE;
3976:   }
3977:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;
3978:   if (nz == MAT_SKIP_ALLOCATION) {
3979:     skipallocation = PETSC_TRUE;
3980:     nz             = 0;
3981:   }
3982:   PetscCall(PetscLayoutSetUp(B->rmap));
3983:   PetscCall(PetscLayoutSetUp(B->cmap));

3985:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
3986:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
3987:   if (nnz) {
3988:     for (i = 0; i < B->rmap->n; i++) {
3989:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
3990:       PetscCheck(nnz[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, nnz[i], B->cmap->n);
3991:     }
3992:   }

3994:   B->preallocated = PETSC_TRUE;
3995:   if (!skipallocation) {
3996:     if (!b->imax) { PetscCall(PetscMalloc1(B->rmap->n, &b->imax)); }
3997:     if (!b->ilen) {
3998:       /* b->ilen will count nonzeros in each row so far. */
3999:       PetscCall(PetscCalloc1(B->rmap->n, &b->ilen));
4000:     } else {
4001:       PetscCall(PetscMemzero(b->ilen, B->rmap->n * sizeof(PetscInt)));
4002:     }
4003:     if (!b->ipre) PetscCall(PetscMalloc1(B->rmap->n, &b->ipre));
4004:     if (!nnz) {
4005:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 10;
4006:       else if (nz < 0) nz = 1;
4007:       nz = PetscMin(nz, B->cmap->n);
4008:       for (i = 0; i < B->rmap->n; i++) b->imax[i] = nz;
4009:       PetscCall(PetscIntMultError(nz, B->rmap->n, &nz));
4010:     } else {
4011:       PetscInt64 nz64 = 0;
4012:       for (i = 0; i < B->rmap->n; i++) {
4013:         b->imax[i] = nnz[i];
4014:         nz64 += nnz[i];
4015:       }
4016:       PetscCall(PetscIntCast(nz64, &nz));
4017:     }

4019:     /* allocate the matrix space */
4020:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
4021:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&b->j));
4022:     PetscCall(PetscShmgetAllocateArray(B->rmap->n + 1, sizeof(PetscInt), (void **)&b->i));
4023:     b->free_ij = PETSC_TRUE;
4024:     if (B->structure_only) {
4025:       b->free_a = PETSC_FALSE;
4026:     } else {
4027:       PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscScalar), (void **)&b->a));
4028:       b->free_a = PETSC_TRUE;
4029:     }
4030:     b->i[0] = 0;
4031:     for (i = 1; i < B->rmap->n + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];
4032:   } else {
4033:     b->free_a  = PETSC_FALSE;
4034:     b->free_ij = PETSC_FALSE;
4035:   }

4037:   if (b->ipre && nnz != b->ipre && b->imax) {
4038:     /* reserve user-requested sparsity */
4039:     PetscCall(PetscArraycpy(b->ipre, b->imax, B->rmap->n));
4040:   }

4042:   b->nz               = 0;
4043:   b->maxnz            = nz;
4044:   B->info.nz_unneeded = (double)b->maxnz;
4045:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
4046:   B->was_assembled = PETSC_FALSE;
4047:   B->assembled     = PETSC_FALSE;
4048:   /* We simply deem preallocation has changed nonzero state. Updating the state
4049:      will give clients (like AIJKokkos) a chance to know something has happened.
4050:   */
4051:   B->nonzerostate++;
4052:   PetscFunctionReturn(PETSC_SUCCESS);
4053: }

4055: PetscErrorCode MatResetPreallocation_SeqAIJ_Private(Mat A, PetscBool *memoryreset)
4056: {
4057:   Mat_SeqAIJ *a;
4058:   PetscInt    i;
4059:   PetscBool   skipreset;

4061:   PetscFunctionBegin;

4064:   PetscCheck(A->insertmode == NOT_SET_VALUES, PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot reset preallocation after setting some values but not yet calling MatAssemblyBegin()/MatAssemblyEnd()");
4065:   if (A->num_ass == 0) PetscFunctionReturn(PETSC_SUCCESS);

4067:   /* Check local size. If zero, then return */
4068:   if (!A->rmap->n) PetscFunctionReturn(PETSC_SUCCESS);

4070:   a = (Mat_SeqAIJ *)A->data;
4071:   /* if no saved info, we error out */
4072:   PetscCheck(a->ipre, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "No saved preallocation info ");

4074:   PetscCheck(a->i && a->imax && a->ilen, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "Memory info is incomplete, and cannot reset preallocation ");

4076:   PetscCall(PetscArraycmp(a->ipre, a->ilen, A->rmap->n, &skipreset));
4077:   if (skipreset) PetscCall(MatZeroEntries(A));
4078:   else {
4079:     PetscCall(PetscArraycpy(a->imax, a->ipre, A->rmap->n));
4080:     PetscCall(PetscArrayzero(a->ilen, A->rmap->n));
4081:     a->i[0] = 0;
4082:     for (i = 1; i < A->rmap->n + 1; i++) a->i[i] = a->i[i - 1] + a->imax[i - 1];
4083:     A->preallocated     = PETSC_TRUE;
4084:     a->nz               = 0;
4085:     a->maxnz            = a->i[A->rmap->n];
4086:     A->info.nz_unneeded = (double)a->maxnz;
4087:     A->was_assembled    = PETSC_FALSE;
4088:     A->assembled        = PETSC_FALSE;
4089:     A->nonzerostate++;
4090:     /* Log that the state of this object has changed; this will help guarantee that preconditioners get re-setup */
4091:     PetscCall(PetscObjectStateIncrease((PetscObject)A));
4092:   }
4093:   if (memoryreset) *memoryreset = (PetscBool)!skipreset;
4094:   PetscFunctionReturn(PETSC_SUCCESS);
4095: }

4097: static PetscErrorCode MatResetPreallocation_SeqAIJ(Mat A)
4098: {
4099:   PetscFunctionBegin;
4100:   PetscCall(MatResetPreallocation_SeqAIJ_Private(A, NULL));
4101:   PetscFunctionReturn(PETSC_SUCCESS);
4102: }

4104: /*@
4105:   MatSeqAIJSetPreallocationCSR - Allocates memory for a sparse sequential matrix in `MATSEQAIJ` format.

4107:   Input Parameters:
4108: + B - the matrix
4109: . i - the indices into `j` for the start of each row (indices start with zero)
4110: . j - the column indices for each row (indices start with zero) these must be sorted for each row
4111: - v - optional values in the matrix, use `NULL` if not provided

4113:   Level: developer

4115:   Notes:
4116:   The `i`,`j`,`v` values are COPIED with this routine; to avoid the copy use `MatCreateSeqAIJWithArrays()`

4118:   This routine may be called multiple times with different nonzero patterns (or the same nonzero pattern). The nonzero
4119:   structure will be the union of all the previous nonzero structures.

4121:   Developer Notes:
4122:   An optimization could be added to the implementation where it checks if the `i`, and `j` are identical to the current `i` and `j` and
4123:   then just copies the `v` values directly with `PetscMemcpy()`.

4125:   This routine could also take a `PetscCopyMode` argument to allow sharing the values instead of always copying them.

4127: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`, `MATSEQAIJ`, `MatResetPreallocation()`
4128: @*/
4129: PetscErrorCode MatSeqAIJSetPreallocationCSR(Mat B, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
4130: {
4131:   PetscFunctionBegin;
4134:   PetscTryMethod(B, "MatSeqAIJSetPreallocationCSR_C", (Mat, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, i, j, v));
4135:   PetscFunctionReturn(PETSC_SUCCESS);
4136: }

4138: static PetscErrorCode MatSeqAIJSetPreallocationCSR_SeqAIJ(Mat B, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
4139: {
4140:   PetscInt  i;
4141:   PetscInt  m, n;
4142:   PetscInt  nz;
4143:   PetscInt *nnz;

4145:   PetscFunctionBegin;
4146:   PetscCheck(Ii[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Ii[0] must be 0 it is %" PetscInt_FMT, Ii[0]);

4148:   PetscCall(PetscLayoutSetUp(B->rmap));
4149:   PetscCall(PetscLayoutSetUp(B->cmap));

4151:   PetscCall(MatGetSize(B, &m, &n));
4152:   PetscCall(PetscMalloc1(m + 1, &nnz));
4153:   for (i = 0; i < m; i++) {
4154:     nz = Ii[i + 1] - Ii[i];
4155:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
4156:     nnz[i] = nz;
4157:   }
4158:   PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
4159:   PetscCall(PetscFree(nnz));

4161:   for (i = 0; i < m; i++) PetscCall(MatSetValues_SeqAIJ(B, 1, &i, Ii[i + 1] - Ii[i], J + Ii[i], PetscSafePointerPlusOffset(v, Ii[i]), INSERT_VALUES));

4163:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
4164:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

4166:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
4167:   PetscFunctionReturn(PETSC_SUCCESS);
4168: }

4170: /*@
4171:   MatSeqAIJKron - Computes `C`, the Kronecker product of `A` and `B`.

4173:   Input Parameters:
4174: + A     - left-hand side matrix
4175: . B     - right-hand side matrix
4176: - reuse - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

4178:   Output Parameter:
4179: . C - Kronecker product of `A` and `B`

4181:   Level: intermediate

4183:   Note:
4184:   `MAT_REUSE_MATRIX` can only be used when the nonzero structure of the product matrix has not changed from that last call to `MatSeqAIJKron()`.

4186: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATKAIJ`, `MatReuse`
4187: @*/
4188: PetscErrorCode MatSeqAIJKron(Mat A, Mat B, MatReuse reuse, Mat *C)
4189: {
4190:   PetscFunctionBegin;
4195:   PetscAssertPointer(C, 4);
4196:   if (reuse == MAT_REUSE_MATRIX) {
4199:   }
4200:   PetscTryMethod(A, "MatSeqAIJKron_C", (Mat, Mat, MatReuse, Mat *), (A, B, reuse, C));
4201:   PetscFunctionReturn(PETSC_SUCCESS);
4202: }

4204: static PetscErrorCode MatSeqAIJKron_SeqAIJ(Mat A, Mat B, MatReuse reuse, Mat *C)
4205: {
4206:   Mat                newmat;
4207:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
4208:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
4209:   PetscScalar       *v;
4210:   const PetscScalar *aa, *ba;
4211:   PetscInt          *i, *j, m, n, p, q, nnz = 0, am = A->rmap->n, bm = B->rmap->n, an = A->cmap->n, bn = B->cmap->n;
4212:   PetscBool          flg;

4214:   PetscFunctionBegin;
4215:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4216:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4217:   PetscCheck(!B->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4218:   PetscCheck(B->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4219:   PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &flg));
4220:   PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatType %s", ((PetscObject)B)->type_name);
4221:   PetscCheck(reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatReuse %d", (int)reuse);
4222:   if (reuse == MAT_INITIAL_MATRIX) {
4223:     PetscCall(PetscMalloc2(am * bm + 1, &i, a->i[am] * b->i[bm], &j));
4224:     PetscCall(MatCreate(PETSC_COMM_SELF, &newmat));
4225:     PetscCall(MatSetSizes(newmat, am * bm, an * bn, am * bm, an * bn));
4226:     PetscCall(MatSetType(newmat, MATAIJ));
4227:     i[0] = 0;
4228:     for (m = 0; m < am; ++m) {
4229:       for (p = 0; p < bm; ++p) {
4230:         i[m * bm + p + 1] = i[m * bm + p] + (a->i[m + 1] - a->i[m]) * (b->i[p + 1] - b->i[p]);
4231:         for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4232:           for (q = b->i[p]; q < b->i[p + 1]; ++q) j[nnz++] = a->j[n] * bn + b->j[q];
4233:         }
4234:       }
4235:     }
4236:     PetscCall(MatSeqAIJSetPreallocationCSR(newmat, i, j, NULL));
4237:     *C = newmat;
4238:     PetscCall(PetscFree2(i, j));
4239:     nnz = 0;
4240:   }
4241:   PetscCall(MatSeqAIJGetArray(*C, &v));
4242:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4243:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
4244:   for (m = 0; m < am; ++m) {
4245:     for (p = 0; p < bm; ++p) {
4246:       for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4247:         for (q = b->i[p]; q < b->i[p + 1]; ++q) v[nnz++] = aa[n] * ba[q];
4248:       }
4249:     }
4250:   }
4251:   PetscCall(MatSeqAIJRestoreArray(*C, &v));
4252:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
4253:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
4254:   PetscFunctionReturn(PETSC_SUCCESS);
4255: }

4257: #include <../src/mat/impls/dense/seq/dense.h>
4258: #include <petsc/private/kernels/petscaxpy.h>

4260: /*
4261:     Computes (B'*A')' since computing B*A directly is untenable

4263:                n                       p                          p
4264:         [             ]       [             ]         [                 ]
4265:       m [      A      ]  *  n [       B     ]   =   m [         C       ]
4266:         [             ]       [             ]         [                 ]

4268: */
4269: PetscErrorCode MatMatMultNumeric_SeqDense_SeqAIJ(Mat A, Mat B, Mat C)
4270: {
4271:   Mat_SeqDense      *sub_a = (Mat_SeqDense *)A->data;
4272:   Mat_SeqAIJ        *sub_b = (Mat_SeqAIJ *)B->data;
4273:   Mat_SeqDense      *sub_c = (Mat_SeqDense *)C->data;
4274:   PetscInt           i, j, n, m, q, p;
4275:   const PetscInt    *ii, *idx;
4276:   const PetscScalar *b, *a, *a_q;
4277:   PetscScalar       *c, *c_q;
4278:   PetscInt           clda = sub_c->lda;
4279:   PetscInt           alda = sub_a->lda;

4281:   PetscFunctionBegin;
4282:   m = A->rmap->n;
4283:   n = A->cmap->n;
4284:   p = B->cmap->n;
4285:   a = sub_a->v;
4286:   b = sub_b->a;
4287:   c = sub_c->v;
4288:   if (clda == m) {
4289:     PetscCall(PetscArrayzero(c, m * p));
4290:   } else {
4291:     for (j = 0; j < p; j++)
4292:       for (i = 0; i < m; i++) c[j * clda + i] = 0.0;
4293:   }
4294:   ii  = sub_b->i;
4295:   idx = sub_b->j;
4296:   for (i = 0; i < n; i++) {
4297:     q = ii[i + 1] - ii[i];
4298:     while (q-- > 0) {
4299:       c_q = c + clda * (*idx);
4300:       a_q = a + alda * i;
4301:       PetscKernelAXPY(c_q, *b, a_q, m);
4302:       idx++;
4303:       b++;
4304:     }
4305:   }
4306:   PetscFunctionReturn(PETSC_SUCCESS);
4307: }

4309: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqAIJ(Mat A, Mat B, PetscReal fill, Mat C)
4310: {
4311:   PetscInt  m = A->rmap->n, n = B->cmap->n;
4312:   PetscBool cisdense;

4314:   PetscFunctionBegin;
4315:   PetscCheck(A->cmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "A->cmap->n %" PetscInt_FMT " != B->rmap->n %" PetscInt_FMT, A->cmap->n, B->rmap->n);
4316:   PetscCall(MatSetSizes(C, m, n, m, n));
4317:   PetscCall(MatSetBlockSizesFromMats(C, A, B));
4318:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, MATSEQDENSEHIP, ""));
4319:   if (!cisdense) PetscCall(MatSetType(C, MATDENSE));
4320:   PetscCall(MatSetUp(C));

4322:   C->ops->matmultnumeric = MatMatMultNumeric_SeqDense_SeqAIJ;
4323:   PetscFunctionReturn(PETSC_SUCCESS);
4324: }

4326: /*MC
4327:    MATSEQAIJ - MATSEQAIJ = "seqaij" - A matrix type to be used for sequential sparse matrices,
4328:    based on compressed sparse row format.

4330:    Options Database Key:
4331: . -mat_type seqaij - sets the matrix type to "seqaij" during a call to MatSetFromOptions()

4333:    Level: beginner

4335:    Notes:
4336:     `MatSetValues()` may be called for this matrix type with a `NULL` argument for the numerical values,
4337:     in this case the values associated with the rows and columns one passes in are set to zero
4338:     in the matrix

4340:     `MatSetOptions`(,`MAT_STRUCTURE_ONLY`,`PETSC_TRUE`) may be called for this matrix type. In this no
4341:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

4343:   Developer Note:
4344:     It would be nice if all matrix formats supported passing `NULL` in for the numerical values

4346: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatSetFromOptions()`, `MatSetType()`, `MatCreate()`, `MatType`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4347: M*/

4349: /*MC
4350:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

4352:    This matrix type is identical to `MATSEQAIJ` when constructed with a single process communicator,
4353:    and `MATMPIAIJ` otherwise.  As a result, for single process communicators,
4354:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4355:    for communicators controlling multiple processes.  It is recommended that you call both of
4356:    the above preallocation routines for simplicity.

4358:    Options Database Key:
4359: . -mat_type aij - sets the matrix type to "aij" during a call to `MatSetFromOptions()`

4361:   Level: beginner

4363:    Note:
4364:    Subclasses include `MATAIJCUSPARSE`, `MATAIJPERM`, `MATAIJSELL`, `MATAIJMKL`, `MATAIJCRL`, and also automatically switches over to use inodes when
4365:    enough exist.

4367: .seealso: [](ch_matrices), `Mat`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATMPIAIJ`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4368: M*/

4370: /*MC
4371:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

4373:    Options Database Key:
4374: . -mat_type aijcrl - sets the matrix type to "aijcrl" during a call to `MatSetFromOptions()`

4376:   Level: beginner

4378:    Note:
4379:    This matrix type is identical to `MATSEQAIJCRL` when constructed with a single process communicator,
4380:    and `MATMPIAIJCRL` otherwise.  As a result, for single process communicators,
4381:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4382:    for communicators controlling multiple processes.  It is recommended that you call both of
4383:    the above preallocation routines for simplicity.

4385: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`
4386: M*/

4388: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCRL(Mat, MatType, MatReuse, Mat *);
4389: #if defined(PETSC_HAVE_ELEMENTAL)
4390: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
4391: #endif
4392: #if defined(PETSC_HAVE_SCALAPACK)
4393: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
4394: #endif
4395: #if defined(PETSC_HAVE_HYPRE)
4396: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat A, MatType, MatReuse, Mat *);
4397: #endif

4399: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat, MatType, MatReuse, Mat *);
4400: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);
4401: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

4403: /*@C
4404:   MatSeqAIJGetArray - gives read/write access to the array where the data for a `MATSEQAIJ` matrix is stored

4406:   Not Collective

4408:   Input Parameter:
4409: . A - a `MATSEQAIJ` matrix

4411:   Output Parameter:
4412: . array - pointer to the data

4414:   Level: intermediate

4416: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`
4417: @*/
4418: PetscErrorCode MatSeqAIJGetArray(Mat A, PetscScalar *array[])
4419: {
4420:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4422:   PetscFunctionBegin;
4423:   if (aij->ops->getarray) {
4424:     PetscCall((*aij->ops->getarray)(A, array));
4425:   } else {
4426:     *array = aij->a;
4427:   }
4428:   PetscFunctionReturn(PETSC_SUCCESS);
4429: }

4431: /*@C
4432:   MatSeqAIJRestoreArray - returns access to the array where the data for a `MATSEQAIJ` matrix is stored obtained by `MatSeqAIJGetArray()`

4434:   Not Collective

4436:   Input Parameters:
4437: + A     - a `MATSEQAIJ` matrix
4438: - array - pointer to the data

4440:   Level: intermediate

4442: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`
4443: @*/
4444: PetscErrorCode MatSeqAIJRestoreArray(Mat A, PetscScalar *array[])
4445: {
4446:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4448:   PetscFunctionBegin;
4449:   if (aij->ops->restorearray) {
4450:     PetscCall((*aij->ops->restorearray)(A, array));
4451:   } else {
4452:     *array = NULL;
4453:   }
4454:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4455:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4456:   PetscFunctionReturn(PETSC_SUCCESS);
4457: }

4459: /*@C
4460:   MatSeqAIJGetArrayRead - gives read-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4462:   Not Collective; No Fortran Support

4464:   Input Parameter:
4465: . A - a `MATSEQAIJ` matrix

4467:   Output Parameter:
4468: . array - pointer to the data

4470:   Level: intermediate

4472: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4473: @*/
4474: PetscErrorCode MatSeqAIJGetArrayRead(Mat A, const PetscScalar *array[])
4475: {
4476:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4478:   PetscFunctionBegin;
4479:   if (aij->ops->getarrayread) {
4480:     PetscCall((*aij->ops->getarrayread)(A, array));
4481:   } else {
4482:     *array = aij->a;
4483:   }
4484:   PetscFunctionReturn(PETSC_SUCCESS);
4485: }

4487: /*@C
4488:   MatSeqAIJRestoreArrayRead - restore the read-only access array obtained from `MatSeqAIJGetArrayRead()`

4490:   Not Collective; No Fortran Support

4492:   Input Parameter:
4493: . A - a `MATSEQAIJ` matrix

4495:   Output Parameter:
4496: . array - pointer to the data

4498:   Level: intermediate

4500: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4501: @*/
4502: PetscErrorCode MatSeqAIJRestoreArrayRead(Mat A, const PetscScalar *array[])
4503: {
4504:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4506:   PetscFunctionBegin;
4507:   if (aij->ops->restorearrayread) {
4508:     PetscCall((*aij->ops->restorearrayread)(A, array));
4509:   } else {
4510:     *array = NULL;
4511:   }
4512:   PetscFunctionReturn(PETSC_SUCCESS);
4513: }

4515: /*@C
4516:   MatSeqAIJGetArrayWrite - gives write-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4518:   Not Collective; No Fortran Support

4520:   Input Parameter:
4521: . A - a `MATSEQAIJ` matrix

4523:   Output Parameter:
4524: . array - pointer to the data

4526:   Level: intermediate

4528: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4529: @*/
4530: PetscErrorCode MatSeqAIJGetArrayWrite(Mat A, PetscScalar *array[])
4531: {
4532:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4534:   PetscFunctionBegin;
4535:   if (aij->ops->getarraywrite) {
4536:     PetscCall((*aij->ops->getarraywrite)(A, array));
4537:   } else {
4538:     *array = aij->a;
4539:   }
4540:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4541:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4542:   PetscFunctionReturn(PETSC_SUCCESS);
4543: }

4545: /*@C
4546:   MatSeqAIJRestoreArrayWrite - restore the read-only access array obtained from MatSeqAIJGetArrayRead

4548:   Not Collective; No Fortran Support

4550:   Input Parameter:
4551: . A - a MATSEQAIJ matrix

4553:   Output Parameter:
4554: . array - pointer to the data

4556:   Level: intermediate

4558: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4559: @*/
4560: PetscErrorCode MatSeqAIJRestoreArrayWrite(Mat A, PetscScalar *array[])
4561: {
4562:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4564:   PetscFunctionBegin;
4565:   if (aij->ops->restorearraywrite) {
4566:     PetscCall((*aij->ops->restorearraywrite)(A, array));
4567:   } else {
4568:     *array = NULL;
4569:   }
4570:   PetscFunctionReturn(PETSC_SUCCESS);
4571: }

4573: /*@C
4574:   MatSeqAIJGetCSRAndMemType - Get the CSR arrays and the memory type of the `MATSEQAIJ` matrix

4576:   Not Collective; No Fortran Support

4578:   Input Parameter:
4579: . mat - a matrix of type `MATSEQAIJ` or its subclasses

4581:   Output Parameters:
4582: + i     - row map array of the matrix
4583: . j     - column index array of the matrix
4584: . a     - data array of the matrix
4585: - mtype - memory type of the arrays

4587:   Level: developer

4589:   Notes:
4590:   Any of the output parameters can be `NULL`, in which case the corresponding value is not returned.
4591:   If mat is a device matrix, the arrays are on the device. Otherwise, they are on the host.

4593:   One can call this routine on a preallocated but not assembled matrix to just get the memory of the CSR underneath the matrix.
4594:   If the matrix is assembled, the data array `a` is guaranteed to have the latest values of the matrix.

4596: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4597: @*/
4598: PetscErrorCode MatSeqAIJGetCSRAndMemType(Mat mat, const PetscInt *i[], const PetscInt *j[], PetscScalar *a[], PetscMemType *mtype)
4599: {
4600:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;

4602:   PetscFunctionBegin;
4603:   PetscCheck(mat->preallocated, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "matrix is not preallocated");
4604:   if (aij->ops->getcsrandmemtype) {
4605:     PetscCall((*aij->ops->getcsrandmemtype)(mat, i, j, a, mtype));
4606:   } else {
4607:     if (i) *i = aij->i;
4608:     if (j) *j = aij->j;
4609:     if (a) *a = aij->a;
4610:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
4611:   }
4612:   PetscFunctionReturn(PETSC_SUCCESS);
4613: }

4615: /*@
4616:   MatSeqAIJGetMaxRowNonzeros - returns the maximum number of nonzeros in any row

4618:   Not Collective

4620:   Input Parameter:
4621: . A - a `MATSEQAIJ` matrix

4623:   Output Parameter:
4624: . nz - the maximum number of nonzeros in any row

4626:   Level: intermediate

4628: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`
4629: @*/
4630: PetscErrorCode MatSeqAIJGetMaxRowNonzeros(Mat A, PetscInt *nz)
4631: {
4632:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4634:   PetscFunctionBegin;
4635:   *nz = aij->rmax;
4636:   PetscFunctionReturn(PETSC_SUCCESS);
4637: }

4639: static PetscErrorCode MatCOOStructDestroy_SeqAIJ(void **data)
4640: {
4641:   MatCOOStruct_SeqAIJ *coo = (MatCOOStruct_SeqAIJ *)*data;

4643:   PetscFunctionBegin;
4644:   PetscCall(PetscFree(coo->perm));
4645:   PetscCall(PetscFree(coo->jmap));
4646:   PetscCall(PetscFree(coo));
4647:   PetscFunctionReturn(PETSC_SUCCESS);
4648: }

4650: PetscErrorCode MatSetPreallocationCOO_SeqAIJ(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
4651: {
4652:   MPI_Comm             comm;
4653:   PetscInt            *i, *j;
4654:   PetscInt             M, N, row, iprev;
4655:   PetscCount           k, p, q, nneg, nnz, start, end; /* Index the coo array, so use PetscCount as their type */
4656:   PetscInt            *Ai;                             /* Change to PetscCount once we use it for row pointers */
4657:   PetscInt            *Aj;
4658:   PetscScalar         *Aa;
4659:   Mat_SeqAIJ          *seqaij = (Mat_SeqAIJ *)mat->data;
4660:   MatType              rtype;
4661:   PetscCount          *perm, *jmap;
4662:   MatCOOStruct_SeqAIJ *coo;
4663:   PetscBool            isorted;
4664:   PetscBool            hypre;
4665:   const char          *name;

4667:   PetscFunctionBegin;
4668:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
4669:   PetscCall(MatGetSize(mat, &M, &N));
4670:   i = coo_i;
4671:   j = coo_j;
4672:   PetscCall(PetscMalloc1(coo_n, &perm));

4674:   /* Ignore entries with negative row or col indices; at the same time, check if i[] is already sorted (e.g., MatConvert_AlJ_HYPRE results in this case) */
4675:   isorted = PETSC_TRUE;
4676:   iprev   = PETSC_INT_MIN;
4677:   for (k = 0; k < coo_n; k++) {
4678:     if (j[k] < 0) i[k] = -1;
4679:     if (isorted) {
4680:       if (i[k] < iprev) isorted = PETSC_FALSE;
4681:       else iprev = i[k];
4682:     }
4683:     perm[k] = k;
4684:   }

4686:   /* Sort by row if not already */
4687:   if (!isorted) PetscCall(PetscSortIntWithIntCountArrayPair(coo_n, i, j, perm));

4689:   /* Advance k to the first row with a non-negative index */
4690:   for (k = 0; k < coo_n; k++)
4691:     if (i[k] >= 0) break;
4692:   nneg = k;
4693:   PetscCall(PetscMalloc1(coo_n - nneg + 1, &jmap)); /* +1 to make a CSR-like data structure. jmap[i] originally is the number of repeats for i-th nonzero */
4694:   nnz = 0;                                          /* Total number of unique nonzeros to be counted */
4695:   jmap++;                                           /* Inc jmap by 1 for convenience */

4697:   PetscCall(PetscShmgetAllocateArray(M + 1, sizeof(PetscInt), (void **)&Ai)); /* CSR of A */
4698:   PetscCall(PetscArrayzero(Ai, M + 1));
4699:   PetscCall(PetscShmgetAllocateArray(coo_n - nneg, sizeof(PetscInt), (void **)&Aj)); /* We have at most coo_n-nneg unique nonzeros */

4701:   PetscCall(PetscObjectGetName((PetscObject)mat, &name));
4702:   PetscCall(PetscStrcmp("_internal_COO_mat_for_hypre", name, &hypre));

4704:   /* In each row, sort by column, then unique column indices to get row length */
4705:   Ai++;  /* Inc by 1 for convenience */
4706:   q = 0; /* q-th unique nonzero, with q starting from 0 */
4707:   while (k < coo_n) {
4708:     PetscBool strictly_sorted; // this row is strictly sorted?
4709:     PetscInt  jprev;

4711:     /* get [start,end) indices for this row; also check if cols in this row are strictly sorted */
4712:     row             = i[k];
4713:     start           = k;
4714:     jprev           = PETSC_INT_MIN;
4715:     strictly_sorted = PETSC_TRUE;
4716:     while (k < coo_n && i[k] == row) {
4717:       if (strictly_sorted) {
4718:         if (j[k] <= jprev) strictly_sorted = PETSC_FALSE;
4719:         else jprev = j[k];
4720:       }
4721:       k++;
4722:     }
4723:     end = k;

4725:     /* hack for HYPRE: swap min column to diag so that diagonal values will go first */
4726:     if (hypre) {
4727:       PetscInt  minj    = PETSC_INT_MAX;
4728:       PetscBool hasdiag = PETSC_FALSE;

4730:       if (strictly_sorted) { // fast path to swap the first and the diag
4731:         PetscCount tmp;
4732:         for (p = start; p < end; p++) {
4733:           if (j[p] == row && p != start) {
4734:             j[p]        = j[start]; // swap j[], so that the diagonal value will go first (manipulated by perm[])
4735:             j[start]    = row;
4736:             tmp         = perm[start];
4737:             perm[start] = perm[p]; // also swap perm[] so we can save the call to PetscSortIntWithCountArray() below
4738:             perm[p]     = tmp;
4739:             break;
4740:           }
4741:         }
4742:       } else {
4743:         for (p = start; p < end; p++) {
4744:           hasdiag = (PetscBool)(hasdiag || (j[p] == row));
4745:           minj    = PetscMin(minj, j[p]);
4746:         }

4748:         if (hasdiag) {
4749:           for (p = start; p < end; p++) {
4750:             if (j[p] == minj) j[p] = row;
4751:             else if (j[p] == row) j[p] = minj;
4752:           }
4753:         }
4754:       }
4755:     }
4756:     // sort by columns in a row. perm[] indicates their original order
4757:     if (!strictly_sorted) PetscCall(PetscSortIntWithCountArray(end - start, j + start, perm + start));

4759:     if (strictly_sorted) { // fast path to set Aj[], jmap[], Ai[], nnz, q
4760:       for (p = start; p < end; p++, q++) {
4761:         Aj[q]   = j[p];
4762:         jmap[q] = 1;
4763:       }
4764:       PetscCall(PetscIntCast(end - start, Ai + row));
4765:       nnz += Ai[row]; // q is already advanced
4766:     } else {
4767:       /* Find number of unique col entries in this row */
4768:       Aj[q]   = j[start]; /* Log the first nonzero in this row */
4769:       jmap[q] = 1;        /* Number of repeats of this nonzero entry */
4770:       Ai[row] = 1;
4771:       nnz++;

4773:       for (p = start + 1; p < end; p++) { /* Scan remaining nonzero in this row */
4774:         if (j[p] != j[p - 1]) {           /* Meet a new nonzero */
4775:           q++;
4776:           jmap[q] = 1;
4777:           Aj[q]   = j[p];
4778:           Ai[row]++;
4779:           nnz++;
4780:         } else {
4781:           jmap[q]++;
4782:         }
4783:       }
4784:       q++; /* Move to next row and thus next unique nonzero */
4785:     }
4786:   }

4788:   Ai--; /* Back to the beginning of Ai[] */
4789:   for (k = 0; k < M; k++) Ai[k + 1] += Ai[k];
4790:   jmap--; // Back to the beginning of jmap[]
4791:   jmap[0] = 0;
4792:   for (k = 0; k < nnz; k++) jmap[k + 1] += jmap[k];

4794:   if (nnz < coo_n - nneg) { /* Reallocate with actual number of unique nonzeros */
4795:     PetscCount *jmap_new;
4796:     PetscInt   *Aj_new;

4798:     PetscCall(PetscMalloc1(nnz + 1, &jmap_new));
4799:     PetscCall(PetscArraycpy(jmap_new, jmap, nnz + 1));
4800:     PetscCall(PetscFree(jmap));
4801:     jmap = jmap_new;

4803:     PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscInt), (void **)&Aj_new));
4804:     PetscCall(PetscArraycpy(Aj_new, Aj, nnz));
4805:     PetscCall(PetscShmgetDeallocateArray((void **)&Aj));
4806:     Aj = Aj_new;
4807:   }

4809:   if (nneg) { /* Discard heading entries with negative indices in perm[], as we'll access it from index 0 in MatSetValuesCOO */
4810:     PetscCount *perm_new;

4812:     PetscCall(PetscMalloc1(coo_n - nneg, &perm_new));
4813:     PetscCall(PetscArraycpy(perm_new, perm + nneg, coo_n - nneg));
4814:     PetscCall(PetscFree(perm));
4815:     perm = perm_new;
4816:   }

4818:   PetscCall(MatGetRootType_Private(mat, &rtype));
4819:   PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscScalar), (void **)&Aa));
4820:   PetscCall(PetscArrayzero(Aa, nnz));
4821:   PetscCall(MatSetSeqAIJWithArrays_private(PETSC_COMM_SELF, M, N, Ai, Aj, Aa, rtype, mat));

4823:   seqaij->free_a = seqaij->free_ij = PETSC_TRUE; /* Let newmat own Ai, Aj and Aa */

4825:   // Put the COO struct in a container and then attach that to the matrix
4826:   PetscCall(PetscMalloc1(1, &coo));
4827:   PetscCall(PetscIntCast(nnz, &coo->nz));
4828:   coo->n    = coo_n;
4829:   coo->Atot = coo_n - nneg; // Annz is seqaij->nz, so no need to record that again
4830:   coo->jmap = jmap;         // of length nnz+1
4831:   coo->perm = perm;
4832:   PetscCall(PetscObjectContainerCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Host", coo, MatCOOStructDestroy_SeqAIJ));
4833:   PetscFunctionReturn(PETSC_SUCCESS);
4834: }

4836: static PetscErrorCode MatSetValuesCOO_SeqAIJ(Mat A, const PetscScalar v[], InsertMode imode)
4837: {
4838:   Mat_SeqAIJ          *aseq = (Mat_SeqAIJ *)A->data;
4839:   PetscCount           i, j, Annz = aseq->nz;
4840:   PetscCount          *perm, *jmap;
4841:   PetscScalar         *Aa;
4842:   PetscContainer       container;
4843:   MatCOOStruct_SeqAIJ *coo;

4845:   PetscFunctionBegin;
4846:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container));
4847:   PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not found MatCOOStruct on this matrix");
4848:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));
4849:   perm = coo->perm;
4850:   jmap = coo->jmap;
4851:   PetscCall(MatSeqAIJGetArray(A, &Aa));
4852:   for (i = 0; i < Annz; i++) {
4853:     PetscScalar sum = 0.0;
4854:     for (j = jmap[i]; j < jmap[i + 1]; j++) sum += v[perm[j]];
4855:     Aa[i] = (imode == INSERT_VALUES ? 0.0 : Aa[i]) + sum;
4856:   }
4857:   PetscCall(MatSeqAIJRestoreArray(A, &Aa));
4858:   PetscFunctionReturn(PETSC_SUCCESS);
4859: }

4861: #if defined(PETSC_HAVE_CUDA)
4862: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCUSPARSE(Mat, MatType, MatReuse, Mat *);
4863: #endif
4864: #if defined(PETSC_HAVE_HIP)
4865: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJHIPSPARSE(Mat, MatType, MatReuse, Mat *);
4866: #endif
4867: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4868: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat, MatType, MatReuse, Mat *);
4869: #endif

4871: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat B)
4872: {
4873:   Mat_SeqAIJ *b;
4874:   PetscMPIInt size;

4876:   PetscFunctionBegin;
4877:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
4878:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

4880:   PetscCall(PetscNew(&b));

4882:   B->data   = (void *)b;
4883:   B->ops[0] = MatOps_Values;
4884:   if (B->sortedfull) B->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;

4886:   b->row                = NULL;
4887:   b->col                = NULL;
4888:   b->icol               = NULL;
4889:   b->reallocs           = 0;
4890:   b->ignorezeroentries  = PETSC_FALSE;
4891:   b->roworiented        = PETSC_TRUE;
4892:   b->nonew              = 0;
4893:   b->diag               = NULL;
4894:   b->solve_work         = NULL;
4895:   B->spptr              = NULL;
4896:   b->saved_values       = NULL;
4897:   b->idiag              = NULL;
4898:   b->mdiag              = NULL;
4899:   b->ssor_work          = NULL;
4900:   b->omega              = 1.0;
4901:   b->fshift             = 0.0;
4902:   b->idiagvalid         = PETSC_FALSE;
4903:   b->ibdiagvalid        = PETSC_FALSE;
4904:   b->keepnonzeropattern = PETSC_FALSE;

4906:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4907: #if defined(PETSC_HAVE_MATLAB)
4908:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEnginePut_C", MatlabEnginePut_SeqAIJ));
4909:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEngineGet_C", MatlabEngineGet_SeqAIJ));
4910: #endif
4911:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetColumnIndices_C", MatSeqAIJSetColumnIndices_SeqAIJ));
4912:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqAIJ));
4913:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqAIJ));
4914:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsbaij_C", MatConvert_SeqAIJ_SeqSBAIJ));
4915:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqbaij_C", MatConvert_SeqAIJ_SeqBAIJ));
4916:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijperm_C", MatConvert_SeqAIJ_SeqAIJPERM));
4917:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijsell_C", MatConvert_SeqAIJ_SeqAIJSELL));
4918: #if defined(PETSC_HAVE_MKL_SPARSE)
4919:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijmkl_C", MatConvert_SeqAIJ_SeqAIJMKL));
4920: #endif
4921: #if defined(PETSC_HAVE_CUDA)
4922:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcusparse_C", MatConvert_SeqAIJ_SeqAIJCUSPARSE));
4923:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4924:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", MatProductSetFromOptions_SeqAIJ));
4925: #endif
4926: #if defined(PETSC_HAVE_HIP)
4927:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijhipsparse_C", MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
4928:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4929:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", MatProductSetFromOptions_SeqAIJ));
4930: #endif
4931: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4932:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijkokkos_C", MatConvert_SeqAIJ_SeqAIJKokkos));
4933: #endif
4934:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcrl_C", MatConvert_SeqAIJ_SeqAIJCRL));
4935: #if defined(PETSC_HAVE_ELEMENTAL)
4936:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_elemental_C", MatConvert_SeqAIJ_Elemental));
4937: #endif
4938: #if defined(PETSC_HAVE_SCALAPACK)
4939:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_scalapack_C", MatConvert_AIJ_ScaLAPACK));
4940: #endif
4941: #if defined(PETSC_HAVE_HYPRE)
4942:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_hypre_C", MatConvert_AIJ_HYPRE));
4943:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", MatProductSetFromOptions_Transpose_AIJ_AIJ));
4944: #endif
4945:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqdense_C", MatConvert_SeqAIJ_SeqDense));
4946:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsell_C", MatConvert_SeqAIJ_SeqSELL));
4947:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_is_C", MatConvert_XAIJ_IS));
4948:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsTranspose_C", MatIsTranspose_SeqAIJ));
4949:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsHermitianTranspose_C", MatIsHermitianTranspose_SeqAIJ));
4950:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocation_C", MatSeqAIJSetPreallocation_SeqAIJ));
4951:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetPreallocation_C", MatResetPreallocation_SeqAIJ));
4952:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetHash_C", MatResetHash_SeqAIJ));
4953:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocationCSR_C", MatSeqAIJSetPreallocationCSR_SeqAIJ));
4954:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatReorderForNonzeroDiagonal_C", MatReorderForNonzeroDiagonal_SeqAIJ));
4955:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_is_seqaij_C", MatProductSetFromOptions_IS_XAIJ));
4956:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqaij_C", MatProductSetFromOptions_SeqDense_SeqAIJ));
4957:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4958:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJKron_C", MatSeqAIJKron_SeqAIJ));
4959:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJ));
4960:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJ));
4961:   PetscCall(MatCreate_SeqAIJ_Inode(B));
4962:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4963:   PetscCall(MatSeqAIJSetTypeFromOptions(B)); /* this allows changing the matrix subtype to say MATSEQAIJPERM */
4964:   PetscFunctionReturn(PETSC_SUCCESS);
4965: }

4967: /*
4968:     Given a matrix generated with MatGetFactor() duplicates all the information in A into C
4969: */
4970: PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
4971: {
4972:   Mat_SeqAIJ *c = (Mat_SeqAIJ *)C->data, *a = (Mat_SeqAIJ *)A->data;
4973:   PetscInt    m = A->rmap->n, i;

4975:   PetscFunctionBegin;
4976:   PetscCheck(A->assembled || cpvalues == MAT_DO_NOT_COPY_VALUES, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");

4978:   C->factortype    = A->factortype;
4979:   c->row           = NULL;
4980:   c->col           = NULL;
4981:   c->icol          = NULL;
4982:   c->reallocs      = 0;
4983:   c->diagonaldense = a->diagonaldense;

4985:   C->assembled = A->assembled;

4987:   if (A->preallocated) {
4988:     PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
4989:     PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

4991:     if (!A->hash_active) {
4992:       PetscCall(PetscMalloc1(m, &c->imax));
4993:       PetscCall(PetscMemcpy(c->imax, a->imax, m * sizeof(PetscInt)));
4994:       PetscCall(PetscMalloc1(m, &c->ilen));
4995:       PetscCall(PetscMemcpy(c->ilen, a->ilen, m * sizeof(PetscInt)));

4997:       /* allocate the matrix space */
4998:       if (mallocmatspace) {
4999:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscScalar), (void **)&c->a));
5000:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscInt), (void **)&c->j));
5001:         PetscCall(PetscShmgetAllocateArray(m + 1, sizeof(PetscInt), (void **)&c->i));
5002:         PetscCall(PetscArraycpy(c->i, a->i, m + 1));
5003:         c->free_a  = PETSC_TRUE;
5004:         c->free_ij = PETSC_TRUE;
5005:         if (m > 0) {
5006:           PetscCall(PetscArraycpy(c->j, a->j, a->i[m]));
5007:           if (cpvalues == MAT_COPY_VALUES) {
5008:             const PetscScalar *aa;

5010:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5011:             PetscCall(PetscArraycpy(c->a, aa, a->i[m]));
5012:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5013:           } else {
5014:             PetscCall(PetscArrayzero(c->a, a->i[m]));
5015:           }
5016:         }
5017:       }
5018:       C->preallocated = PETSC_TRUE;
5019:     } else {
5020:       PetscCheck(mallocmatspace, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot malloc matrix memory from a non-preallocated matrix");
5021:       PetscCall(MatSetUp(C));
5022:     }

5024:     c->ignorezeroentries = a->ignorezeroentries;
5025:     c->roworiented       = a->roworiented;
5026:     c->nonew             = a->nonew;
5027:     if (a->diag) {
5028:       PetscCall(PetscMalloc1(m + 1, &c->diag));
5029:       PetscCall(PetscMemcpy(c->diag, a->diag, m * sizeof(PetscInt)));
5030:     } else c->diag = NULL;

5032:     c->solve_work         = NULL;
5033:     c->saved_values       = NULL;
5034:     c->idiag              = NULL;
5035:     c->ssor_work          = NULL;
5036:     c->keepnonzeropattern = a->keepnonzeropattern;

5038:     c->rmax  = a->rmax;
5039:     c->nz    = a->nz;
5040:     c->maxnz = a->nz; /* Since we allocate exactly the right amount */

5042:     c->compressedrow.use   = a->compressedrow.use;
5043:     c->compressedrow.nrows = a->compressedrow.nrows;
5044:     if (a->compressedrow.use) {
5045:       i = a->compressedrow.nrows;
5046:       PetscCall(PetscMalloc2(i + 1, &c->compressedrow.i, i, &c->compressedrow.rindex));
5047:       PetscCall(PetscArraycpy(c->compressedrow.i, a->compressedrow.i, i + 1));
5048:       PetscCall(PetscArraycpy(c->compressedrow.rindex, a->compressedrow.rindex, i));
5049:     } else {
5050:       c->compressedrow.use    = PETSC_FALSE;
5051:       c->compressedrow.i      = NULL;
5052:       c->compressedrow.rindex = NULL;
5053:     }
5054:     c->nonzerorowcnt = a->nonzerorowcnt;
5055:     C->nonzerostate  = A->nonzerostate;

5057:     PetscCall(MatDuplicate_SeqAIJ_Inode(A, cpvalues, &C));
5058:   }
5059:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
5060:   PetscFunctionReturn(PETSC_SUCCESS);
5061: }

5063: PetscErrorCode MatDuplicate_SeqAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
5064: {
5065:   PetscFunctionBegin;
5066:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
5067:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
5068:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
5069:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
5070:   PetscCall(MatDuplicateNoCreate_SeqAIJ(*B, A, cpvalues, PETSC_TRUE));
5071:   PetscFunctionReturn(PETSC_SUCCESS);
5072: }

5074: PetscErrorCode MatLoad_SeqAIJ(Mat newMat, PetscViewer viewer)
5075: {
5076:   PetscBool isbinary, ishdf5;

5078:   PetscFunctionBegin;
5081:   /* force binary viewer to load .info file if it has not yet done so */
5082:   PetscCall(PetscViewerSetUp(viewer));
5083:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
5084:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
5085:   if (isbinary) {
5086:     PetscCall(MatLoad_SeqAIJ_Binary(newMat, viewer));
5087:   } else if (ishdf5) {
5088: #if defined(PETSC_HAVE_HDF5)
5089:     PetscCall(MatLoad_AIJ_HDF5(newMat, viewer));
5090: #else
5091:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
5092: #endif
5093:   } else {
5094:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
5095:   }
5096:   PetscFunctionReturn(PETSC_SUCCESS);
5097: }

5099: PetscErrorCode MatLoad_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
5100: {
5101:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)mat->data;
5102:   PetscInt    header[4], *rowlens, M, N, nz, sum, rows, cols, i;

5104:   PetscFunctionBegin;
5105:   PetscCall(PetscViewerSetUp(viewer));

5107:   /* read in matrix header */
5108:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
5109:   PetscCheck(header[0] == MAT_FILE_CLASSID, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
5110:   M  = header[1];
5111:   N  = header[2];
5112:   nz = header[3];
5113:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
5114:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
5115:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as SeqAIJ");

5117:   /* set block sizes from the viewer's .info file */
5118:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
5119:   /* set local and global sizes if not set already */
5120:   if (mat->rmap->n < 0) mat->rmap->n = M;
5121:   if (mat->cmap->n < 0) mat->cmap->n = N;
5122:   if (mat->rmap->N < 0) mat->rmap->N = M;
5123:   if (mat->cmap->N < 0) mat->cmap->N = N;
5124:   PetscCall(PetscLayoutSetUp(mat->rmap));
5125:   PetscCall(PetscLayoutSetUp(mat->cmap));

5127:   /* check if the matrix sizes are correct */
5128:   PetscCall(MatGetSize(mat, &rows, &cols));
5129:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

5131:   /* read in row lengths */
5132:   PetscCall(PetscMalloc1(M, &rowlens));
5133:   PetscCall(PetscViewerBinaryRead(viewer, rowlens, M, NULL, PETSC_INT));
5134:   /* check if sum(rowlens) is same as nz */
5135:   sum = 0;
5136:   for (i = 0; i < M; i++) sum += rowlens[i];
5137:   PetscCheck(sum == nz, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);
5138:   /* preallocate and check sizes */
5139:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(mat, 0, rowlens));
5140:   PetscCall(MatGetSize(mat, &rows, &cols));
5141:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
5142:   /* store row lengths */
5143:   PetscCall(PetscArraycpy(a->ilen, rowlens, M));
5144:   PetscCall(PetscFree(rowlens));

5146:   /* fill in "i" row pointers */
5147:   a->i[0] = 0;
5148:   for (i = 0; i < M; i++) a->i[i + 1] = a->i[i] + a->ilen[i];
5149:   /* read in "j" column indices */
5150:   PetscCall(PetscViewerBinaryRead(viewer, a->j, nz, NULL, PETSC_INT));
5151:   /* read in "a" nonzero values */
5152:   PetscCall(PetscViewerBinaryRead(viewer, a->a, nz, NULL, PETSC_SCALAR));

5154:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
5155:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
5156:   PetscFunctionReturn(PETSC_SUCCESS);
5157: }

5159: PetscErrorCode MatEqual_SeqAIJ(Mat A, Mat B, PetscBool *flg)
5160: {
5161:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *b = (Mat_SeqAIJ *)B->data;
5162:   const PetscScalar *aa, *ba;
5163: #if defined(PETSC_USE_COMPLEX)
5164:   PetscInt k;
5165: #endif

5167:   PetscFunctionBegin;
5168:   /* If the  matrix dimensions are not equal,or no of nonzeros */
5169:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz)) {
5170:     *flg = PETSC_FALSE;
5171:     PetscFunctionReturn(PETSC_SUCCESS);
5172:   }

5174:   /* if the a->i are the same */
5175:   PetscCall(PetscArraycmp(a->i, b->i, A->rmap->n + 1, flg));
5176:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5178:   /* if a->j are the same */
5179:   PetscCall(PetscArraycmp(a->j, b->j, a->nz, flg));
5180:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5182:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5183:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
5184:   /* if a->a are the same */
5185: #if defined(PETSC_USE_COMPLEX)
5186:   for (k = 0; k < a->nz; k++) {
5187:     if (PetscRealPart(aa[k]) != PetscRealPart(ba[k]) || PetscImaginaryPart(aa[k]) != PetscImaginaryPart(ba[k])) {
5188:       *flg = PETSC_FALSE;
5189:       PetscFunctionReturn(PETSC_SUCCESS);
5190:     }
5191:   }
5192: #else
5193:   PetscCall(PetscArraycmp(aa, ba, a->nz, flg));
5194: #endif
5195:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
5196:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
5197:   PetscFunctionReturn(PETSC_SUCCESS);
5198: }

5200: /*@
5201:   MatCreateSeqAIJWithArrays - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in CSR format)
5202:   provided by the user.

5204:   Collective

5206:   Input Parameters:
5207: + comm - must be an MPI communicator of size 1
5208: . m    - number of rows
5209: . n    - number of columns
5210: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
5211: . j    - column indices
5212: - a    - matrix values

5214:   Output Parameter:
5215: . mat - the matrix

5217:   Level: intermediate

5219:   Notes:
5220:   The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
5221:   once the matrix is destroyed and not before

5223:   You cannot set new nonzero locations into this matrix, that will generate an error.

5225:   The `i` and `j` indices are 0 based

5227:   The format which is used for the sparse matrix input, is equivalent to a
5228:   row-major ordering.. i.e for the following matrix, the input data expected is
5229:   as shown
5230: .vb
5231:         1 0 0
5232:         2 0 3
5233:         4 5 6

5235:         i =  {0,1,3,6}  [size = nrow+1  = 3+1]
5236:         j =  {0,0,2,0,1,2}  [size = 6]; values must be sorted for each row
5237:         v =  {1,2,3,4,5,6}  [size = 6]
5238: .ve

5240: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateMPIAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`
5241: @*/
5242: PetscErrorCode MatCreateSeqAIJWithArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
5243: {
5244:   PetscInt    ii;
5245:   Mat_SeqAIJ *aij;
5246:   PetscInt    jj;

5248:   PetscFunctionBegin;
5249:   PetscCheck(m <= 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
5250:   PetscCall(MatCreate(comm, mat));
5251:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5252:   /* PetscCall(MatSetBlockSizes(*mat,,)); */
5253:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5254:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, MAT_SKIP_ALLOCATION, NULL));
5255:   aij = (Mat_SeqAIJ *)(*mat)->data;
5256:   PetscCall(PetscMalloc1(m, &aij->imax));
5257:   PetscCall(PetscMalloc1(m, &aij->ilen));

5259:   aij->i       = i;
5260:   aij->j       = j;
5261:   aij->a       = a;
5262:   aij->nonew   = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
5263:   aij->free_a  = PETSC_FALSE;
5264:   aij->free_ij = PETSC_FALSE;

5266:   for (ii = 0, aij->nonzerorowcnt = 0, aij->rmax = 0; ii < m; ii++) {
5267:     aij->ilen[ii] = aij->imax[ii] = i[ii + 1] - i[ii];
5268:     if (PetscDefined(USE_DEBUG)) {
5269:       PetscCheck(i[ii + 1] - i[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
5270:       for (jj = i[ii] + 1; jj < i[ii + 1]; jj++) {
5271:         PetscCheck(j[jj] >= j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is not sorted", jj - i[ii], j[jj], ii);
5272:         PetscCheck(j[jj] != j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is identical to previous entry", jj - i[ii], j[jj], ii);
5273:       }
5274:     }
5275:   }
5276:   if (PetscDefined(USE_DEBUG)) {
5277:     for (ii = 0; ii < aij->i[m]; ii++) {
5278:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
5279:       PetscCheck(j[ii] <= n - 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index to large at location = %" PetscInt_FMT " index = %" PetscInt_FMT " last column = %" PetscInt_FMT, ii, j[ii], n - 1);
5280:     }
5281:   }

5283:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5284:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5285:   PetscFunctionReturn(PETSC_SUCCESS);
5286: }

5288: /*@
5289:   MatCreateSeqAIJFromTriple - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in COO format)
5290:   provided by the user.

5292:   Collective

5294:   Input Parameters:
5295: + comm - must be an MPI communicator of size 1
5296: . m    - number of rows
5297: . n    - number of columns
5298: . i    - row indices
5299: . j    - column indices
5300: . a    - matrix values
5301: . nz   - number of nonzeros
5302: - idx  - if the `i` and `j` indices start with 1 use `PETSC_TRUE` otherwise use `PETSC_FALSE`

5304:   Output Parameter:
5305: . mat - the matrix

5307:   Level: intermediate

5309:   Example:
5310:   For the following matrix, the input data expected is as shown (using 0 based indexing)
5311: .vb
5312:         1 0 0
5313:         2 0 3
5314:         4 5 6

5316:         i =  {0,1,1,2,2,2}
5317:         j =  {0,0,2,0,1,2}
5318:         v =  {1,2,3,4,5,6}
5319: .ve

5321:   Note:
5322:   Instead of using this function, users should also consider `MatSetPreallocationCOO()` and `MatSetValuesCOO()`, which allow repeated or remote entries,
5323:   and are particularly useful in iterative applications.

5325: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateSeqAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`, `MatSetValuesCOO()`, `MatSetPreallocationCOO()`
5326: @*/
5327: PetscErrorCode MatCreateSeqAIJFromTriple(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat, PetscCount nz, PetscBool idx)
5328: {
5329:   PetscInt ii, *nnz, one = 1, row, col;

5331:   PetscFunctionBegin;
5332:   PetscCall(PetscCalloc1(m, &nnz));
5333:   for (ii = 0; ii < nz; ii++) nnz[i[ii] - !!idx] += 1;
5334:   PetscCall(MatCreate(comm, mat));
5335:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5336:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5337:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, 0, nnz));
5338:   for (ii = 0; ii < nz; ii++) {
5339:     if (idx) {
5340:       row = i[ii] - 1;
5341:       col = j[ii] - 1;
5342:     } else {
5343:       row = i[ii];
5344:       col = j[ii];
5345:     }
5346:     PetscCall(MatSetValues(*mat, one, &row, one, &col, &a[ii], ADD_VALUES));
5347:   }
5348:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5349:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5350:   PetscCall(PetscFree(nnz));
5351:   PetscFunctionReturn(PETSC_SUCCESS);
5352: }

5354: PetscErrorCode MatSeqAIJInvalidateDiagonal(Mat A)
5355: {
5356:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

5358:   PetscFunctionBegin;
5359:   a->idiagvalid  = PETSC_FALSE;
5360:   a->ibdiagvalid = PETSC_FALSE;

5362:   PetscCall(MatSeqAIJInvalidateDiagonal_Inode(A));
5363:   PetscFunctionReturn(PETSC_SUCCESS);
5364: }

5366: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
5367: {
5368:   PetscFunctionBegin;
5369:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIAIJ(comm, inmat, n, scall, outmat));
5370:   PetscFunctionReturn(PETSC_SUCCESS);
5371: }

5373: /*
5374:  Permute A into C's *local* index space using rowemb,colemb.
5375:  The embedding are supposed to be injections and the above implies that the range of rowemb is a subset
5376:  of [0,m), colemb is in [0,n).
5377:  If pattern == DIFFERENT_NONZERO_PATTERN, C is preallocated according to A.
5378:  */
5379: PetscErrorCode MatSetSeqMat_SeqAIJ(Mat C, IS rowemb, IS colemb, MatStructure pattern, Mat B)
5380: {
5381:   /* If making this function public, change the error returned in this function away from _PLIB. */
5382:   Mat_SeqAIJ     *Baij;
5383:   PetscBool       seqaij;
5384:   PetscInt        m, n, *nz, i, j, count;
5385:   PetscScalar     v;
5386:   const PetscInt *rowindices, *colindices;

5388:   PetscFunctionBegin;
5389:   if (!B) PetscFunctionReturn(PETSC_SUCCESS);
5390:   /* Check to make sure the target matrix (and embeddings) are compatible with C and each other. */
5391:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQAIJ, &seqaij));
5392:   PetscCheck(seqaij, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is of wrong type");
5393:   if (rowemb) {
5394:     PetscCall(ISGetLocalSize(rowemb, &m));
5395:     PetscCheck(m == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row IS of size %" PetscInt_FMT " is incompatible with matrix row size %" PetscInt_FMT, m, B->rmap->n);
5396:   } else {
5397:     PetscCheck(C->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is row-incompatible with the target matrix");
5398:   }
5399:   if (colemb) {
5400:     PetscCall(ISGetLocalSize(colemb, &n));
5401:     PetscCheck(n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Diag col IS of size %" PetscInt_FMT " is incompatible with input matrix col size %" PetscInt_FMT, n, B->cmap->n);
5402:   } else {
5403:     PetscCheck(C->cmap->n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is col-incompatible with the target matrix");
5404:   }

5406:   Baij = (Mat_SeqAIJ *)B->data;
5407:   if (pattern == DIFFERENT_NONZERO_PATTERN) {
5408:     PetscCall(PetscMalloc1(B->rmap->n, &nz));
5409:     for (i = 0; i < B->rmap->n; i++) nz[i] = Baij->i[i + 1] - Baij->i[i];
5410:     PetscCall(MatSeqAIJSetPreallocation(C, 0, nz));
5411:     PetscCall(PetscFree(nz));
5412:   }
5413:   if (pattern == SUBSET_NONZERO_PATTERN) PetscCall(MatZeroEntries(C));
5414:   count      = 0;
5415:   rowindices = NULL;
5416:   colindices = NULL;
5417:   if (rowemb) PetscCall(ISGetIndices(rowemb, &rowindices));
5418:   if (colemb) PetscCall(ISGetIndices(colemb, &colindices));
5419:   for (i = 0; i < B->rmap->n; i++) {
5420:     PetscInt row;
5421:     row = i;
5422:     if (rowindices) row = rowindices[i];
5423:     for (j = Baij->i[i]; j < Baij->i[i + 1]; j++) {
5424:       PetscInt col;
5425:       col = Baij->j[count];
5426:       if (colindices) col = colindices[col];
5427:       v = Baij->a[count];
5428:       PetscCall(MatSetValues(C, 1, &row, 1, &col, &v, INSERT_VALUES));
5429:       ++count;
5430:     }
5431:   }
5432:   /* FIXME: set C's nonzerostate correctly. */
5433:   /* Assembly for C is necessary. */
5434:   C->preallocated  = PETSC_TRUE;
5435:   C->assembled     = PETSC_TRUE;
5436:   C->was_assembled = PETSC_FALSE;
5437:   PetscFunctionReturn(PETSC_SUCCESS);
5438: }

5440: PetscErrorCode MatEliminateZeros_SeqAIJ(Mat A, PetscBool keep)
5441: {
5442:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5443:   MatScalar  *aa = a->a;
5444:   PetscInt    m = A->rmap->n, fshift = 0, fshift_prev = 0, i, k;
5445:   PetscInt   *ailen = a->ilen, *imax = a->imax, *ai = a->i, *aj = a->j, rmax = 0;

5447:   PetscFunctionBegin;
5448:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot eliminate zeros for unassembled matrix");
5449:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
5450:   for (i = 1; i <= m; i++) {
5451:     /* move each nonzero entry back by the amount of zero slots (fshift) before it*/
5452:     for (k = ai[i - 1]; k < ai[i]; k++) {
5453:       if (aa[k] == 0 && (aj[k] != i - 1 || !keep)) fshift++;
5454:       else {
5455:         if (aa[k] == 0 && aj[k] == i - 1) PetscCall(PetscInfo(A, "Keep the diagonal zero at row %" PetscInt_FMT "\n", i - 1));
5456:         aa[k - fshift] = aa[k];
5457:         aj[k - fshift] = aj[k];
5458:       }
5459:     }
5460:     ai[i - 1] -= fshift_prev; // safe to update ai[i-1] now since it will not be used in the next iteration
5461:     fshift_prev = fshift;
5462:     /* reset ilen and imax for each row */
5463:     ailen[i - 1] = imax[i - 1] = ai[i] - fshift - ai[i - 1];
5464:     a->nonzerorowcnt += ((ai[i] - fshift - ai[i - 1]) > 0);
5465:     rmax = PetscMax(rmax, ailen[i - 1]);
5466:   }
5467:   if (fshift) {
5468:     if (m) {
5469:       ai[m] -= fshift;
5470:       a->nz = ai[m];
5471:     }
5472:     PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; zeros eliminated: %" PetscInt_FMT "; nonzeros left: %" PetscInt_FMT "\n", m, A->cmap->n, fshift, a->nz));
5473:     A->nonzerostate++;
5474:     A->info.nz_unneeded += (PetscReal)fshift;
5475:     a->rmax = rmax;
5476:     if (a->inode.use && a->inode.checked) PetscCall(MatSeqAIJCheckInode(A));
5477:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
5478:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
5479:   }
5480:   PetscFunctionReturn(PETSC_SUCCESS);
5481: }

5483: PetscFunctionList MatSeqAIJList = NULL;

5485: /*@
5486:   MatSeqAIJSetType - Converts a `MATSEQAIJ` matrix to a subtype

5488:   Collective

5490:   Input Parameters:
5491: + mat    - the matrix object
5492: - matype - matrix type

5494:   Options Database Key:
5495: . -mat_seqaij_type  <method> - for example seqaijcrl

5497:   Level: intermediate

5499: .seealso: [](ch_matrices), `Mat`, `PCSetType()`, `VecSetType()`, `MatCreate()`, `MatType`
5500: @*/
5501: PetscErrorCode MatSeqAIJSetType(Mat mat, MatType matype)
5502: {
5503:   PetscBool sametype;
5504:   PetscErrorCode (*r)(Mat, MatType, MatReuse, Mat *);

5506:   PetscFunctionBegin;
5508:   PetscCall(PetscObjectTypeCompare((PetscObject)mat, matype, &sametype));
5509:   if (sametype) PetscFunctionReturn(PETSC_SUCCESS);

5511:   PetscCall(PetscFunctionListFind(MatSeqAIJList, matype, &r));
5512:   PetscCheck(r, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown Mat type given: %s", matype);
5513:   PetscCall((*r)(mat, matype, MAT_INPLACE_MATRIX, &mat));
5514:   PetscFunctionReturn(PETSC_SUCCESS);
5515: }

5517: /*@C
5518:   MatSeqAIJRegister -  - Adds a new sub-matrix type for sequential `MATSEQAIJ` matrices

5520:   Not Collective, No Fortran Support

5522:   Input Parameters:
5523: + sname    - name of a new user-defined matrix type, for example `MATSEQAIJCRL`
5524: - function - routine to convert to subtype

5526:   Level: advanced

5528:   Notes:
5529:   `MatSeqAIJRegister()` may be called multiple times to add several user-defined solvers.

5531:   Then, your matrix can be chosen with the procedural interface at runtime via the option
5532: $     -mat_seqaij_type my_mat

5534: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRegisterAll()`
5535: @*/
5536: PetscErrorCode MatSeqAIJRegister(const char sname[], PetscErrorCode (*function)(Mat, MatType, MatReuse, Mat *))
5537: {
5538:   PetscFunctionBegin;
5539:   PetscCall(MatInitializePackage());
5540:   PetscCall(PetscFunctionListAdd(&MatSeqAIJList, sname, function));
5541:   PetscFunctionReturn(PETSC_SUCCESS);
5542: }

5544: PetscBool MatSeqAIJRegisterAllCalled = PETSC_FALSE;

5546: /*@C
5547:   MatSeqAIJRegisterAll - Registers all of the matrix subtypes of `MATSSEQAIJ`

5549:   Not Collective

5551:   Level: advanced

5553:   Note:
5554:   This registers the versions of `MATSEQAIJ` for GPUs

5556: .seealso: [](ch_matrices), `Mat`, `MatRegisterAll()`, `MatSeqAIJRegister()`
5557: @*/
5558: PetscErrorCode MatSeqAIJRegisterAll(void)
5559: {
5560:   PetscFunctionBegin;
5561:   if (MatSeqAIJRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
5562:   MatSeqAIJRegisterAllCalled = PETSC_TRUE;

5564:   PetscCall(MatSeqAIJRegister(MATSEQAIJCRL, MatConvert_SeqAIJ_SeqAIJCRL));
5565:   PetscCall(MatSeqAIJRegister(MATSEQAIJPERM, MatConvert_SeqAIJ_SeqAIJPERM));
5566:   PetscCall(MatSeqAIJRegister(MATSEQAIJSELL, MatConvert_SeqAIJ_SeqAIJSELL));
5567: #if defined(PETSC_HAVE_MKL_SPARSE)
5568:   PetscCall(MatSeqAIJRegister(MATSEQAIJMKL, MatConvert_SeqAIJ_SeqAIJMKL));
5569: #endif
5570: #if defined(PETSC_HAVE_CUDA)
5571:   PetscCall(MatSeqAIJRegister(MATSEQAIJCUSPARSE, MatConvert_SeqAIJ_SeqAIJCUSPARSE));
5572: #endif
5573: #if defined(PETSC_HAVE_HIP)
5574:   PetscCall(MatSeqAIJRegister(MATSEQAIJHIPSPARSE, MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
5575: #endif
5576: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
5577:   PetscCall(MatSeqAIJRegister(MATSEQAIJKOKKOS, MatConvert_SeqAIJ_SeqAIJKokkos));
5578: #endif
5579: #if defined(PETSC_HAVE_VIENNACL) && defined(PETSC_HAVE_VIENNACL_NO_CUDA)
5580:   PetscCall(MatSeqAIJRegister(MATMPIAIJVIENNACL, MatConvert_SeqAIJ_SeqAIJViennaCL));
5581: #endif
5582:   PetscFunctionReturn(PETSC_SUCCESS);
5583: }

5585: /*
5586:     Special version for direct calls from Fortran
5587: */
5588: #if defined(PETSC_HAVE_FORTRAN_CAPS)
5589:   #define matsetvaluesseqaij_ MATSETVALUESSEQAIJ
5590: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
5591:   #define matsetvaluesseqaij_ matsetvaluesseqaij
5592: #endif

5594: /* Change these macros so can be used in void function */

5596: /* Change these macros so can be used in void function */
5597: /* Identical to PetscCallVoid, except it assigns to *_ierr */
5598: #undef PetscCall
5599: #define PetscCall(...) \
5600:   do { \
5601:     PetscErrorCode ierr_msv_mpiaij = __VA_ARGS__; \
5602:     if (PetscUnlikely(ierr_msv_mpiaij)) { \
5603:       *_ierr = PetscError(PETSC_COMM_SELF, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr_msv_mpiaij, PETSC_ERROR_REPEAT, " "); \
5604:       return; \
5605:     } \
5606:   } while (0)

5608: #undef SETERRQ
5609: #define SETERRQ(comm, ierr, ...) \
5610:   do { \
5611:     *_ierr = PetscError(comm, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr, PETSC_ERROR_INITIAL, __VA_ARGS__); \
5612:     return; \
5613:   } while (0)

5615: PETSC_EXTERN void matsetvaluesseqaij_(Mat *AA, PetscInt *mm, const PetscInt im[], PetscInt *nn, const PetscInt in[], const PetscScalar v[], InsertMode *isis, PetscErrorCode *_ierr)
5616: {
5617:   Mat         A = *AA;
5618:   PetscInt    m = *mm, n = *nn;
5619:   InsertMode  is = *isis;
5620:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5621:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
5622:   PetscInt   *imax, *ai, *ailen;
5623:   PetscInt   *aj, nonew = a->nonew, lastcol = -1;
5624:   MatScalar  *ap, value, *aa;
5625:   PetscBool   ignorezeroentries = a->ignorezeroentries;
5626:   PetscBool   roworiented       = a->roworiented;

5628:   PetscFunctionBegin;
5629:   MatCheckPreallocated(A, 1);
5630:   imax  = a->imax;
5631:   ai    = a->i;
5632:   ailen = a->ilen;
5633:   aj    = a->j;
5634:   aa    = a->a;

5636:   for (k = 0; k < m; k++) { /* loop over added rows */
5637:     row = im[k];
5638:     if (row < 0) continue;
5639:     PetscCheck(row < A->rmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large");
5640:     rp   = aj + ai[row];
5641:     ap   = aa + ai[row];
5642:     rmax = imax[row];
5643:     nrow = ailen[row];
5644:     low  = 0;
5645:     high = nrow;
5646:     for (l = 0; l < n; l++) { /* loop over added columns */
5647:       if (in[l] < 0) continue;
5648:       PetscCheck(in[l] < A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Column too large");
5649:       col = in[l];
5650:       if (roworiented) value = v[l + k * n];
5651:       else value = v[k + l * m];

5653:       if (value == 0.0 && ignorezeroentries && (is == ADD_VALUES)) continue;

5655:       if (col <= lastcol) low = 0;
5656:       else high = nrow;
5657:       lastcol = col;
5658:       while (high - low > 5) {
5659:         t = (low + high) / 2;
5660:         if (rp[t] > col) high = t;
5661:         else low = t;
5662:       }
5663:       for (i = low; i < high; i++) {
5664:         if (rp[i] > col) break;
5665:         if (rp[i] == col) {
5666:           if (is == ADD_VALUES) ap[i] += value;
5667:           else ap[i] = value;
5668:           goto noinsert;
5669:         }
5670:       }
5671:       if (value == 0.0 && ignorezeroentries) goto noinsert;
5672:       if (nonew == 1) goto noinsert;
5673:       PetscCheck(nonew != -1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero in the matrix");
5674:       MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
5675:       N = nrow++ - 1;
5676:       a->nz++;
5677:       high++;
5678:       /* shift up all the later entries in this row */
5679:       for (ii = N; ii >= i; ii--) {
5680:         rp[ii + 1] = rp[ii];
5681:         ap[ii + 1] = ap[ii];
5682:       }
5683:       rp[i] = col;
5684:       ap[i] = value;
5685:     noinsert:;
5686:       low = i + 1;
5687:     }
5688:     ailen[row] = nrow;
5689:   }
5690:   PetscFunctionReturnVoid();
5691: }
5692: /* Undefining these here since they were redefined from their original definition above! No
5693:  * other PETSc functions should be defined past this point, as it is impossible to recover the
5694:  * original definitions */
5695: #undef PetscCall
5696: #undef SETERRQ