Actual source code: aij.c

  1: /*
  2:     Defines the basic matrix operations for the AIJ (compressed row)
  3:   matrix storage format.
  4: */

  6: #include <../src/mat/impls/aij/seq/aij.h>
  7: #include <petscblaslapack.h>
  8: #include <petscbt.h>
  9: #include <petsc/private/kernels/blocktranspose.h>

 11: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 12: #define TYPE AIJ
 13: #define TYPE_BS
 14: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 15: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 16: #undef TYPE
 17: #undef TYPE_BS

 19: static PetscErrorCode MatSeqAIJSetTypeFromOptions(Mat A)
 20: {
 21:   PetscBool flg;
 22:   char      type[256];

 24:   PetscFunctionBegin;
 25:   PetscObjectOptionsBegin((PetscObject)A);
 26:   PetscCall(PetscOptionsFList("-mat_seqaij_type", "Matrix SeqAIJ type", "MatSeqAIJSetType", MatSeqAIJList, "seqaij", type, 256, &flg));
 27:   if (flg) PetscCall(MatSeqAIJSetType(A, type));
 28:   PetscOptionsEnd();
 29:   PetscFunctionReturn(PETSC_SUCCESS);
 30: }

 32: static PetscErrorCode MatGetColumnReductions_SeqAIJ(Mat A, PetscInt type, PetscReal *reductions)
 33: {
 34:   PetscInt    i, m, n;
 35:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

 37:   PetscFunctionBegin;
 38:   PetscCall(MatGetSize(A, &m, &n));
 39:   PetscCall(PetscArrayzero(reductions, n));
 40:   if (type == NORM_2) {
 41:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i] * aij->a[i]);
 42:   } else if (type == NORM_1) {
 43:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i]);
 44:   } else if (type == NORM_INFINITY) {
 45:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] = PetscMax(PetscAbsScalar(aij->a[i]), reductions[aij->j[i]]);
 46:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
 47:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscRealPart(aij->a[i]);
 48:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 49:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscImaginaryPart(aij->a[i]);
 50:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");

 52:   if (type == NORM_2) {
 53:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
 54:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 55:     for (i = 0; i < n; i++) reductions[i] /= m;
 56:   }
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: static PetscErrorCode MatFindOffBlockDiagonalEntries_SeqAIJ(Mat A, IS *is)
 61: {
 62:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
 63:   PetscInt        i, m = A->rmap->n, cnt = 0, bs = A->rmap->bs;
 64:   const PetscInt *jj = a->j, *ii = a->i;
 65:   PetscInt       *rows;

 67:   PetscFunctionBegin;
 68:   for (i = 0; i < m; i++) {
 69:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) cnt++;
 70:   }
 71:   PetscCall(PetscMalloc1(cnt, &rows));
 72:   cnt = 0;
 73:   for (i = 0; i < m; i++) {
 74:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) {
 75:       rows[cnt] = i;
 76:       cnt++;
 77:     }
 78:   }
 79:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, is));
 80:   PetscFunctionReturn(PETSC_SUCCESS);
 81: }

 83: PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat A, PetscInt *nrows, PetscInt **zrows)
 84: {
 85:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
 86:   const MatScalar *aa;
 87:   PetscInt         i, m = A->rmap->n, cnt = 0;
 88:   const PetscInt  *ii = a->i, *jj = a->j, *diag;
 89:   PetscInt        *rows;

 91:   PetscFunctionBegin;
 92:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
 93:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
 94:   diag = a->diag;
 95:   for (i = 0; i < m; i++) {
 96:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) cnt++;
 97:   }
 98:   PetscCall(PetscMalloc1(cnt, &rows));
 99:   cnt = 0;
100:   for (i = 0; i < m; i++) {
101:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) rows[cnt++] = i;
102:   }
103:   *nrows = cnt;
104:   *zrows = rows;
105:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
106:   PetscFunctionReturn(PETSC_SUCCESS);
107: }

109: static PetscErrorCode MatFindZeroDiagonals_SeqAIJ(Mat A, IS *zrows)
110: {
111:   PetscInt nrows, *rows;

113:   PetscFunctionBegin;
114:   *zrows = NULL;
115:   PetscCall(MatFindZeroDiagonals_SeqAIJ_Private(A, &nrows, &rows));
116:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), nrows, rows, PETSC_OWN_POINTER, zrows));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: static PetscErrorCode MatFindNonzeroRows_SeqAIJ(Mat A, IS *keptrows)
121: {
122:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
123:   const MatScalar *aa;
124:   PetscInt         m = A->rmap->n, cnt = 0;
125:   const PetscInt  *ii;
126:   PetscInt         n, i, j, *rows;

128:   PetscFunctionBegin;
129:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
130:   *keptrows = NULL;
131:   ii        = a->i;
132:   for (i = 0; i < m; i++) {
133:     n = ii[i + 1] - ii[i];
134:     if (!n) {
135:       cnt++;
136:       goto ok1;
137:     }
138:     for (j = ii[i]; j < ii[i + 1]; j++) {
139:       if (aa[j] != 0.0) goto ok1;
140:     }
141:     cnt++;
142:   ok1:;
143:   }
144:   if (!cnt) {
145:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
146:     PetscFunctionReturn(PETSC_SUCCESS);
147:   }
148:   PetscCall(PetscMalloc1(A->rmap->n - cnt, &rows));
149:   cnt = 0;
150:   for (i = 0; i < m; i++) {
151:     n = ii[i + 1] - ii[i];
152:     if (!n) continue;
153:     for (j = ii[i]; j < ii[i + 1]; j++) {
154:       if (aa[j] != 0.0) {
155:         rows[cnt++] = i;
156:         break;
157:       }
158:     }
159:   }
160:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
161:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, keptrows));
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: PetscErrorCode MatDiagonalSet_SeqAIJ(Mat Y, Vec D, InsertMode is)
166: {
167:   Mat_SeqAIJ        *aij = (Mat_SeqAIJ *)Y->data;
168:   PetscInt           i, m = Y->rmap->n;
169:   const PetscInt    *diag;
170:   MatScalar         *aa;
171:   const PetscScalar *v;
172:   PetscBool          missing;

174:   PetscFunctionBegin;
175:   if (Y->assembled) {
176:     PetscCall(MatMissingDiagonal_SeqAIJ(Y, &missing, NULL));
177:     if (!missing) {
178:       diag = aij->diag;
179:       PetscCall(VecGetArrayRead(D, &v));
180:       PetscCall(MatSeqAIJGetArray(Y, &aa));
181:       if (is == INSERT_VALUES) {
182:         for (i = 0; i < m; i++) aa[diag[i]] = v[i];
183:       } else {
184:         for (i = 0; i < m; i++) aa[diag[i]] += v[i];
185:       }
186:       PetscCall(MatSeqAIJRestoreArray(Y, &aa));
187:       PetscCall(VecRestoreArrayRead(D, &v));
188:       PetscFunctionReturn(PETSC_SUCCESS);
189:     }
190:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
191:   }
192:   PetscCall(MatDiagonalSet_Default(Y, D, is));
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: PetscErrorCode MatGetRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
197: {
198:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
199:   PetscInt    i, ishift;

201:   PetscFunctionBegin;
202:   if (m) *m = A->rmap->n;
203:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
204:   ishift = 0;
205:   if (symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) {
206:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, ishift, oshift, (PetscInt **)ia, (PetscInt **)ja));
207:   } else if (oshift == 1) {
208:     PetscInt *tia;
209:     PetscInt  nz = a->i[A->rmap->n];
210:     /* malloc space and  add 1 to i and j indices */
211:     PetscCall(PetscMalloc1(A->rmap->n + 1, &tia));
212:     for (i = 0; i < A->rmap->n + 1; i++) tia[i] = a->i[i] + 1;
213:     *ia = tia;
214:     if (ja) {
215:       PetscInt *tja;
216:       PetscCall(PetscMalloc1(nz + 1, &tja));
217:       for (i = 0; i < nz; i++) tja[i] = a->j[i] + 1;
218:       *ja = tja;
219:     }
220:   } else {
221:     *ia = a->i;
222:     if (ja) *ja = a->j;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
228: {
229:   PetscFunctionBegin;
230:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
231:   if ((symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) || oshift == 1) {
232:     PetscCall(PetscFree(*ia));
233:     if (ja) PetscCall(PetscFree(*ja));
234:   }
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
239: {
240:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
241:   PetscInt    i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
242:   PetscInt    nz = a->i[m], row, *jj, mr, col;

244:   PetscFunctionBegin;
245:   *nn = n;
246:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
247:   if (symmetric) {
248:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, 0, oshift, (PetscInt **)ia, (PetscInt **)ja));
249:   } else {
250:     PetscCall(PetscCalloc1(n, &collengths));
251:     PetscCall(PetscMalloc1(n + 1, &cia));
252:     PetscCall(PetscMalloc1(nz, &cja));
253:     jj = a->j;
254:     for (i = 0; i < nz; i++) collengths[jj[i]]++;
255:     cia[0] = oshift;
256:     for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
257:     PetscCall(PetscArrayzero(collengths, n));
258:     jj = a->j;
259:     for (row = 0; row < m; row++) {
260:       mr = a->i[row + 1] - a->i[row];
261:       for (i = 0; i < mr; i++) {
262:         col = *jj++;

264:         cja[cia[col] + collengths[col]++ - oshift] = row + oshift;
265:       }
266:     }
267:     PetscCall(PetscFree(collengths));
268:     *ia = cia;
269:     *ja = cja;
270:   }
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
275: {
276:   PetscFunctionBegin;
277:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

279:   PetscCall(PetscFree(*ia));
280:   PetscCall(PetscFree(*ja));
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: /*
285:  MatGetColumnIJ_SeqAIJ_Color() and MatRestoreColumnIJ_SeqAIJ_Color() are customized from
286:  MatGetColumnIJ_SeqAIJ() and MatRestoreColumnIJ_SeqAIJ() by adding an output
287:  spidx[], index of a->a, to be used in MatTransposeColoringCreate_SeqAIJ() and MatFDColoringCreate_SeqXAIJ()
288: */
289: PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
290: {
291:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
292:   PetscInt        i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
293:   PetscInt        nz = a->i[m], row, mr, col, tmp;
294:   PetscInt       *cspidx;
295:   const PetscInt *jj;

297:   PetscFunctionBegin;
298:   *nn = n;
299:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

301:   PetscCall(PetscCalloc1(n, &collengths));
302:   PetscCall(PetscMalloc1(n + 1, &cia));
303:   PetscCall(PetscMalloc1(nz, &cja));
304:   PetscCall(PetscMalloc1(nz, &cspidx));
305:   jj = a->j;
306:   for (i = 0; i < nz; i++) collengths[jj[i]]++;
307:   cia[0] = oshift;
308:   for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
309:   PetscCall(PetscArrayzero(collengths, n));
310:   jj = a->j;
311:   for (row = 0; row < m; row++) {
312:     mr = a->i[row + 1] - a->i[row];
313:     for (i = 0; i < mr; i++) {
314:       col         = *jj++;
315:       tmp         = cia[col] + collengths[col]++ - oshift;
316:       cspidx[tmp] = a->i[row] + i; /* index of a->j */
317:       cja[tmp]    = row + oshift;
318:     }
319:   }
320:   PetscCall(PetscFree(collengths));
321:   *ia    = cia;
322:   *ja    = cja;
323:   *spidx = cspidx;
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
328: {
329:   PetscFunctionBegin;
330:   PetscCall(MatRestoreColumnIJ_SeqAIJ(A, oshift, symmetric, inodecompressed, n, ia, ja, done));
331:   PetscCall(PetscFree(*spidx));
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }

335: static PetscErrorCode MatSetValuesRow_SeqAIJ(Mat A, PetscInt row, const PetscScalar v[])
336: {
337:   Mat_SeqAIJ  *a  = (Mat_SeqAIJ *)A->data;
338:   PetscInt    *ai = a->i;
339:   PetscScalar *aa;

341:   PetscFunctionBegin;
342:   PetscCall(MatSeqAIJGetArray(A, &aa));
343:   PetscCall(PetscArraycpy(aa + ai[row], v, ai[row + 1] - ai[row]));
344:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /*
349:     MatSeqAIJSetValuesLocalFast - An optimized version of MatSetValuesLocal() for SeqAIJ matrices with several assumptions

351:       -   a single row of values is set with each call
352:       -   no row or column indices are negative or (in error) larger than the number of rows or columns
353:       -   the values are always added to the matrix, not set
354:       -   no new locations are introduced in the nonzero structure of the matrix

356:      This does NOT assume the global column indices are sorted

358: */

360: #include <petsc/private/isimpl.h>
361: PetscErrorCode MatSeqAIJSetValuesLocalFast(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
362: {
363:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
364:   PetscInt        low, high, t, row, nrow, i, col, l;
365:   const PetscInt *rp, *ai = a->i, *ailen = a->ilen, *aj = a->j;
366:   PetscInt        lastcol = -1;
367:   MatScalar      *ap, value, *aa;
368:   const PetscInt *ridx = A->rmap->mapping->indices, *cidx = A->cmap->mapping->indices;

370:   PetscFunctionBegin;
371:   PetscCall(MatSeqAIJGetArray(A, &aa));
372:   row  = ridx[im[0]];
373:   rp   = aj + ai[row];
374:   ap   = aa + ai[row];
375:   nrow = ailen[row];
376:   low  = 0;
377:   high = nrow;
378:   for (l = 0; l < n; l++) { /* loop over added columns */
379:     col   = cidx[in[l]];
380:     value = v[l];

382:     if (col <= lastcol) low = 0;
383:     else high = nrow;
384:     lastcol = col;
385:     while (high - low > 5) {
386:       t = (low + high) / 2;
387:       if (rp[t] > col) high = t;
388:       else low = t;
389:     }
390:     for (i = low; i < high; i++) {
391:       if (rp[i] == col) {
392:         ap[i] += value;
393:         low = i + 1;
394:         break;
395:       }
396:     }
397:   }
398:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
399:   return PETSC_SUCCESS;
400: }

402: PetscErrorCode MatSetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
403: {
404:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
405:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
406:   PetscInt   *imax = a->imax, *ai = a->i, *ailen = a->ilen;
407:   PetscInt   *aj = a->j, nonew = a->nonew, lastcol = -1;
408:   MatScalar  *ap = NULL, value = 0.0, *aa;
409:   PetscBool   ignorezeroentries = a->ignorezeroentries;
410:   PetscBool   roworiented       = a->roworiented;

412:   PetscFunctionBegin;
413:   PetscCall(MatSeqAIJGetArray(A, &aa));
414:   for (k = 0; k < m; k++) { /* loop over added rows */
415:     row = im[k];
416:     if (row < 0) continue;
417:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
418:     rp = PetscSafePointerPlusOffset(aj, ai[row]);
419:     if (!A->structure_only) ap = PetscSafePointerPlusOffset(aa, ai[row]);
420:     rmax = imax[row];
421:     nrow = ailen[row];
422:     low  = 0;
423:     high = nrow;
424:     for (l = 0; l < n; l++) { /* loop over added columns */
425:       if (in[l] < 0) continue;
426:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
427:       col = in[l];
428:       if (v && !A->structure_only) value = roworiented ? v[l + k * n] : v[k + l * m];
429:       if (!A->structure_only && value == 0.0 && ignorezeroentries && is == ADD_VALUES && row != col) continue;

431:       if (col <= lastcol) low = 0;
432:       else high = nrow;
433:       lastcol = col;
434:       while (high - low > 5) {
435:         t = (low + high) / 2;
436:         if (rp[t] > col) high = t;
437:         else low = t;
438:       }
439:       for (i = low; i < high; i++) {
440:         if (rp[i] > col) break;
441:         if (rp[i] == col) {
442:           if (!A->structure_only) {
443:             if (is == ADD_VALUES) {
444:               ap[i] += value;
445:               (void)PetscLogFlops(1.0);
446:             } else ap[i] = value;
447:           }
448:           low = i + 1;
449:           goto noinsert;
450:         }
451:       }
452:       if (value == 0.0 && ignorezeroentries && row != col) goto noinsert;
453:       if (nonew == 1) goto noinsert;
454:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at (%" PetscInt_FMT ",%" PetscInt_FMT ") in the matrix", row, col);
455:       if (A->structure_only) {
456:         MatSeqXAIJReallocateAIJ_structure_only(A, A->rmap->n, 1, nrow, row, col, rmax, ai, aj, rp, imax, nonew, MatScalar);
457:       } else {
458:         MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459:       }
460:       N = nrow++ - 1;
461:       a->nz++;
462:       high++;
463:       /* shift up all the later entries in this row */
464:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
465:       rp[i] = col;
466:       if (!A->structure_only) {
467:         PetscCall(PetscArraymove(ap + i + 1, ap + i, N - i + 1));
468:         ap[i] = value;
469:       }
470:       low = i + 1;
471:     noinsert:;
472:     }
473:     ailen[row] = nrow;
474:   }
475:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
476:   PetscFunctionReturn(PETSC_SUCCESS);
477: }

479: static PetscErrorCode MatSetValues_SeqAIJ_SortedFullNoPreallocation(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
480: {
481:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
482:   PetscInt   *rp, k, row;
483:   PetscInt   *ai = a->i;
484:   PetscInt   *aj = a->j;
485:   MatScalar  *aa, *ap;

487:   PetscFunctionBegin;
488:   PetscCheck(!A->was_assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call on assembled matrix.");
489:   PetscCheck(m * n + a->nz <= a->maxnz, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of entries in matrix will be larger than maximum nonzeros allocated for %" PetscInt_FMT " in MatSeqAIJSetTotalPreallocation()", a->maxnz);

491:   PetscCall(MatSeqAIJGetArray(A, &aa));
492:   for (k = 0; k < m; k++) { /* loop over added rows */
493:     row = im[k];
494:     rp  = aj + ai[row];
495:     ap  = PetscSafePointerPlusOffset(aa, ai[row]);

497:     PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
498:     if (!A->structure_only) {
499:       if (v) {
500:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
501:         v += n;
502:       } else {
503:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
504:       }
505:     }
506:     a->ilen[row]  = n;
507:     a->imax[row]  = n;
508:     a->i[row + 1] = a->i[row] + n;
509:     a->nz += n;
510:   }
511:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@
516:   MatSeqAIJSetTotalPreallocation - Sets an upper bound on the total number of expected nonzeros in the matrix.

518:   Input Parameters:
519: + A       - the `MATSEQAIJ` matrix
520: - nztotal - bound on the number of nonzeros

522:   Level: advanced

524:   Notes:
525:   This can be called if you will be provided the matrix row by row (from row zero) with sorted column indices for each row.
526:   Simply call `MatSetValues()` after this call to provide the matrix entries in the usual manner. This matrix may be used
527:   as always with multiple matrix assemblies.

529: .seealso: [](ch_matrices), `Mat`, `MatSetOption()`, `MAT_SORTED_FULL`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`
530: @*/
531: PetscErrorCode MatSeqAIJSetTotalPreallocation(Mat A, PetscInt nztotal)
532: {
533:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

535:   PetscFunctionBegin;
536:   PetscCall(PetscLayoutSetUp(A->rmap));
537:   PetscCall(PetscLayoutSetUp(A->cmap));
538:   a->maxnz = nztotal;
539:   if (!a->imax) { PetscCall(PetscMalloc1(A->rmap->n, &a->imax)); }
540:   if (!a->ilen) {
541:     PetscCall(PetscMalloc1(A->rmap->n, &a->ilen));
542:   } else {
543:     PetscCall(PetscMemzero(a->ilen, A->rmap->n * sizeof(PetscInt)));
544:   }

546:   /* allocate the matrix space */
547:   PetscCall(PetscShmgetAllocateArray(A->rmap->n + 1, sizeof(PetscInt), (void **)&a->i));
548:   PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscInt), (void **)&a->j));
549:   a->free_ij = PETSC_TRUE;
550:   if (A->structure_only) {
551:     a->free_a = PETSC_FALSE;
552:   } else {
553:     PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscScalar), (void **)&a->a));
554:     a->free_a = PETSC_TRUE;
555:   }
556:   a->i[0]           = 0;
557:   A->ops->setvalues = MatSetValues_SeqAIJ_SortedFullNoPreallocation;
558:   A->preallocated   = PETSC_TRUE;
559:   PetscFunctionReturn(PETSC_SUCCESS);
560: }

562: static PetscErrorCode MatSetValues_SeqAIJ_SortedFull(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
563: {
564:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
565:   PetscInt   *rp, k, row;
566:   PetscInt   *ai = a->i, *ailen = a->ilen;
567:   PetscInt   *aj = a->j;
568:   MatScalar  *aa, *ap;

570:   PetscFunctionBegin;
571:   PetscCall(MatSeqAIJGetArray(A, &aa));
572:   for (k = 0; k < m; k++) { /* loop over added rows */
573:     row = im[k];
574:     PetscCheck(n <= a->imax[row], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Preallocation for row %" PetscInt_FMT " does not match number of columns provided", n);
575:     rp = aj + ai[row];
576:     ap = aa + ai[row];
577:     if (!A->was_assembled) PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
578:     if (!A->structure_only) {
579:       if (v) {
580:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
581:         v += n;
582:       } else {
583:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
584:       }
585:     }
586:     ailen[row] = n;
587:     a->nz += n;
588:   }
589:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatGetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
594: {
595:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
596:   PetscInt        *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
597:   PetscInt        *ai = a->i, *ailen = a->ilen;
598:   const MatScalar *ap, *aa;

600:   PetscFunctionBegin;
601:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
602:   for (k = 0; k < m; k++) { /* loop over rows */
603:     row = im[k];
604:     if (row < 0) {
605:       v += n;
606:       continue;
607:     } /* negative row */
608:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
609:     rp   = PetscSafePointerPlusOffset(aj, ai[row]);
610:     ap   = PetscSafePointerPlusOffset(aa, ai[row]);
611:     nrow = ailen[row];
612:     for (l = 0; l < n; l++) { /* loop over columns */
613:       if (in[l] < 0) {
614:         v++;
615:         continue;
616:       } /* negative column */
617:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
618:       col  = in[l];
619:       high = nrow;
620:       low  = 0; /* assume unsorted */
621:       while (high - low > 5) {
622:         t = (low + high) / 2;
623:         if (rp[t] > col) high = t;
624:         else low = t;
625:       }
626:       for (i = low; i < high; i++) {
627:         if (rp[i] > col) break;
628:         if (rp[i] == col) {
629:           *v++ = ap[i];
630:           goto finished;
631:         }
632:       }
633:       *v++ = 0.0;
634:     finished:;
635:     }
636:   }
637:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatView_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
642: {
643:   Mat_SeqAIJ        *A = (Mat_SeqAIJ *)mat->data;
644:   const PetscScalar *av;
645:   PetscInt           header[4], M, N, m, nz, i;
646:   PetscInt          *rowlens;

648:   PetscFunctionBegin;
649:   PetscCall(PetscViewerSetUp(viewer));

651:   M  = mat->rmap->N;
652:   N  = mat->cmap->N;
653:   m  = mat->rmap->n;
654:   nz = A->nz;

656:   /* write matrix header */
657:   header[0] = MAT_FILE_CLASSID;
658:   header[1] = M;
659:   header[2] = N;
660:   header[3] = nz;
661:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

663:   /* fill in and store row lengths */
664:   PetscCall(PetscMalloc1(m, &rowlens));
665:   for (i = 0; i < m; i++) rowlens[i] = A->i[i + 1] - A->i[i];
666:   PetscCall(PetscViewerBinaryWrite(viewer, rowlens, m, PETSC_INT));
667:   PetscCall(PetscFree(rowlens));
668:   /* store column indices */
669:   PetscCall(PetscViewerBinaryWrite(viewer, A->j, nz, PETSC_INT));
670:   /* store nonzero values */
671:   PetscCall(MatSeqAIJGetArrayRead(mat, &av));
672:   PetscCall(PetscViewerBinaryWrite(viewer, av, nz, PETSC_SCALAR));
673:   PetscCall(MatSeqAIJRestoreArrayRead(mat, &av));

675:   /* write block size option to the viewer's .info file */
676:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
677:   PetscFunctionReturn(PETSC_SUCCESS);
678: }

680: static PetscErrorCode MatView_SeqAIJ_ASCII_structonly(Mat A, PetscViewer viewer)
681: {
682:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
683:   PetscInt    i, k, m = A->rmap->N;

685:   PetscFunctionBegin;
686:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
687:   for (i = 0; i < m; i++) {
688:     PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
689:     for (k = a->i[i]; k < a->i[i + 1]; k++) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ") ", a->j[k]));
690:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
691:   }
692:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
693:   PetscFunctionReturn(PETSC_SUCCESS);
694: }

696: extern PetscErrorCode MatSeqAIJFactorInfo_Matlab(Mat, PetscViewer);

698: static PetscErrorCode MatView_SeqAIJ_ASCII(Mat A, PetscViewer viewer)
699: {
700:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
701:   const PetscScalar *av;
702:   PetscInt           i, j, m = A->rmap->n;
703:   const char        *name;
704:   PetscViewerFormat  format;

706:   PetscFunctionBegin;
707:   if (A->structure_only) {
708:     PetscCall(MatView_SeqAIJ_ASCII_structonly(A, viewer));
709:     PetscFunctionReturn(PETSC_SUCCESS);
710:   }

712:   PetscCall(PetscViewerGetFormat(viewer, &format));
713:   if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);

715:   /* trigger copy to CPU if needed */
716:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
717:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
718:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
719:     PetscInt nofinalvalue = 0;
720:     if (m && ((a->i[m] == a->i[m - 1]) || (a->j[a->nz - 1] != A->cmap->n - 1))) {
721:       /* Need a dummy value to ensure the dimension of the matrix. */
722:       nofinalvalue = 1;
723:     }
724:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
725:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
726:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
727: #if defined(PETSC_USE_COMPLEX)
728:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
729: #else
730:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
731: #endif
732:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

734:     for (i = 0; i < m; i++) {
735:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
736: #if defined(PETSC_USE_COMPLEX)
737:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->j[j] + 1, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
738: #else
739:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->j[j] + 1, (double)a->a[j]));
740: #endif
741:       }
742:     }
743:     if (nofinalvalue) {
744: #if defined(PETSC_USE_COMPLEX)
745:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", m, A->cmap->n, 0., 0.));
746: #else
747:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", m, A->cmap->n, 0.0));
748: #endif
749:     }
750:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
751:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
752:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
753:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
754:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
755:     for (i = 0; i < m; i++) {
756:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
757:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
758: #if defined(PETSC_USE_COMPLEX)
759:         if (PetscImaginaryPart(a->a[j]) > 0.0 && PetscRealPart(a->a[j]) != 0.0) {
760:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
761:         } else if (PetscImaginaryPart(a->a[j]) < 0.0 && PetscRealPart(a->a[j]) != 0.0) {
762:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
763:         } else if (PetscRealPart(a->a[j]) != 0.0) {
764:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
765:         }
766: #else
767:         if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
768: #endif
769:       }
770:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
771:     }
772:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
773:   } else if (format == PETSC_VIEWER_ASCII_SYMMODU) {
774:     PetscInt nzd = 0, fshift = 1, *sptr;
775:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
776:     PetscCall(PetscMalloc1(m + 1, &sptr));
777:     for (i = 0; i < m; i++) {
778:       sptr[i] = nzd + 1;
779:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
780:         if (a->j[j] >= i) {
781: #if defined(PETSC_USE_COMPLEX)
782:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) nzd++;
783: #else
784:           if (a->a[j] != 0.0) nzd++;
785: #endif
786:         }
787:       }
788:     }
789:     sptr[m] = nzd + 1;
790:     PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n\n", m, nzd));
791:     for (i = 0; i < m + 1; i += 6) {
792:       if (i + 4 < m) {
793:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4], sptr[i + 5]));
794:       } else if (i + 3 < m) {
795:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4]));
796:       } else if (i + 2 < m) {
797:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3]));
798:       } else if (i + 1 < m) {
799:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2]));
800:       } else if (i < m) {
801:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1]));
802:       } else {
803:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "\n", sptr[i]));
804:       }
805:     }
806:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
807:     PetscCall(PetscFree(sptr));
808:     for (i = 0; i < m; i++) {
809:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
810:         if (a->j[j] >= i) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " ", a->j[j] + fshift));
811:       }
812:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
813:     }
814:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
815:     for (i = 0; i < m; i++) {
816:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
817:         if (a->j[j] >= i) {
818: #if defined(PETSC_USE_COMPLEX)
819:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e %18.16e ", (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
820: #else
821:           if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e ", (double)a->a[j]));
822: #endif
823:         }
824:       }
825:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
826:     }
827:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
828:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
829:     PetscInt    cnt = 0, jcnt;
830:     PetscScalar value;
831: #if defined(PETSC_USE_COMPLEX)
832:     PetscBool realonly = PETSC_TRUE;

834:     for (i = 0; i < a->i[m]; i++) {
835:       if (PetscImaginaryPart(a->a[i]) != 0.0) {
836:         realonly = PETSC_FALSE;
837:         break;
838:       }
839:     }
840: #endif

842:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
843:     for (i = 0; i < m; i++) {
844:       jcnt = 0;
845:       for (j = 0; j < A->cmap->n; j++) {
846:         if (jcnt < a->i[i + 1] - a->i[i] && j == a->j[cnt]) {
847:           value = a->a[cnt++];
848:           jcnt++;
849:         } else {
850:           value = 0.0;
851:         }
852: #if defined(PETSC_USE_COMPLEX)
853:         if (realonly) {
854:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
855:         } else {
856:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
857:         }
858: #else
859:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
860: #endif
861:       }
862:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
863:     }
864:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
865:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
866:     PetscInt fshift = 1;
867:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
868: #if defined(PETSC_USE_COMPLEX)
869:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
870: #else
871:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
872: #endif
873:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
874:     for (i = 0; i < m; i++) {
875:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
876: #if defined(PETSC_USE_COMPLEX)
877:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->j[j] + fshift, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
878: #else
879:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->j[j] + fshift, (double)a->a[j]));
880: #endif
881:       }
882:     }
883:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
884:   } else {
885:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
886:     if (A->factortype) {
887:       for (i = 0; i < m; i++) {
888:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
889:         /* L part */
890:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
891: #if defined(PETSC_USE_COMPLEX)
892:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
893:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
894:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
895:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
896:           } else {
897:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
898:           }
899: #else
900:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
901: #endif
902:         }
903:         /* diagonal */
904:         j = a->diag[i];
905: #if defined(PETSC_USE_COMPLEX)
906:         if (PetscImaginaryPart(a->a[j]) > 0.0) {
907:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(1.0 / a->a[j]), (double)PetscImaginaryPart(1.0 / a->a[j])));
908:         } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
909:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(1.0 / a->a[j]), (double)(-PetscImaginaryPart(1.0 / a->a[j]))));
910:         } else {
911:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(1.0 / a->a[j])));
912:         }
913: #else
914:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)(1.0 / a->a[j])));
915: #endif

917:         /* U part */
918:         for (j = a->diag[i + 1] + 1; j < a->diag[i]; j++) {
919: #if defined(PETSC_USE_COMPLEX)
920:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
921:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
922:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
923:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
924:           } else {
925:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
926:           }
927: #else
928:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
929: #endif
930:         }
931:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
932:       }
933:     } else {
934:       for (i = 0; i < m; i++) {
935:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
936:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
937: #if defined(PETSC_USE_COMPLEX)
938:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
939:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
940:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
941:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
942:           } else {
943:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
944:           }
945: #else
946:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
947: #endif
948:         }
949:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
950:       }
951:     }
952:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
953:   }
954:   PetscCall(PetscViewerFlush(viewer));
955:   PetscFunctionReturn(PETSC_SUCCESS);
956: }

958: #include <petscdraw.h>
959: static PetscErrorCode MatView_SeqAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
960: {
961:   Mat                A = (Mat)Aa;
962:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
963:   PetscInt           i, j, m = A->rmap->n;
964:   int                color;
965:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
966:   PetscViewer        viewer;
967:   PetscViewerFormat  format;
968:   const PetscScalar *aa;

970:   PetscFunctionBegin;
971:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
972:   PetscCall(PetscViewerGetFormat(viewer, &format));
973:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

975:   /* loop over matrix elements drawing boxes */
976:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
977:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
978:     PetscDrawCollectiveBegin(draw);
979:     /* Blue for negative, Cyan for zero and  Red for positive */
980:     color = PETSC_DRAW_BLUE;
981:     for (i = 0; i < m; i++) {
982:       y_l = m - i - 1.0;
983:       y_r = y_l + 1.0;
984:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
985:         x_l = a->j[j];
986:         x_r = x_l + 1.0;
987:         if (PetscRealPart(aa[j]) >= 0.) continue;
988:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
989:       }
990:     }
991:     color = PETSC_DRAW_CYAN;
992:     for (i = 0; i < m; i++) {
993:       y_l = m - i - 1.0;
994:       y_r = y_l + 1.0;
995:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
996:         x_l = a->j[j];
997:         x_r = x_l + 1.0;
998:         if (aa[j] != 0.) continue;
999:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1000:       }
1001:     }
1002:     color = PETSC_DRAW_RED;
1003:     for (i = 0; i < m; i++) {
1004:       y_l = m - i - 1.0;
1005:       y_r = y_l + 1.0;
1006:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1007:         x_l = a->j[j];
1008:         x_r = x_l + 1.0;
1009:         if (PetscRealPart(aa[j]) <= 0.) continue;
1010:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1011:       }
1012:     }
1013:     PetscDrawCollectiveEnd(draw);
1014:   } else {
1015:     /* use contour shading to indicate magnitude of values */
1016:     /* first determine max of all nonzero values */
1017:     PetscReal minv = 0.0, maxv = 0.0;
1018:     PetscInt  nz = a->nz, count = 0;
1019:     PetscDraw popup;

1021:     for (i = 0; i < nz; i++) {
1022:       if (PetscAbsScalar(aa[i]) > maxv) maxv = PetscAbsScalar(aa[i]);
1023:     }
1024:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1025:     PetscCall(PetscDrawGetPopup(draw, &popup));
1026:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1028:     PetscDrawCollectiveBegin(draw);
1029:     for (i = 0; i < m; i++) {
1030:       y_l = m - i - 1.0;
1031:       y_r = y_l + 1.0;
1032:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1033:         x_l   = a->j[j];
1034:         x_r   = x_l + 1.0;
1035:         color = PetscDrawRealToColor(PetscAbsScalar(aa[count]), minv, maxv);
1036:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1037:         count++;
1038:       }
1039:     }
1040:     PetscDrawCollectiveEnd(draw);
1041:   }
1042:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1043:   PetscFunctionReturn(PETSC_SUCCESS);
1044: }

1046: #include <petscdraw.h>
1047: static PetscErrorCode MatView_SeqAIJ_Draw(Mat A, PetscViewer viewer)
1048: {
1049:   PetscDraw draw;
1050:   PetscReal xr, yr, xl, yl, h, w;
1051:   PetscBool isnull;

1053:   PetscFunctionBegin;
1054:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1055:   PetscCall(PetscDrawIsNull(draw, &isnull));
1056:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1058:   xr = A->cmap->n;
1059:   yr = A->rmap->n;
1060:   h  = yr / 10.0;
1061:   w  = xr / 10.0;
1062:   xr += w;
1063:   yr += h;
1064:   xl = -w;
1065:   yl = -h;
1066:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1067:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1068:   PetscCall(PetscDrawZoom(draw, MatView_SeqAIJ_Draw_Zoom, A));
1069:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1070:   PetscCall(PetscDrawSave(draw));
1071:   PetscFunctionReturn(PETSC_SUCCESS);
1072: }

1074: PetscErrorCode MatView_SeqAIJ(Mat A, PetscViewer viewer)
1075: {
1076:   PetscBool iascii, isbinary, isdraw;

1078:   PetscFunctionBegin;
1079:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1080:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1081:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1082:   if (iascii) PetscCall(MatView_SeqAIJ_ASCII(A, viewer));
1083:   else if (isbinary) PetscCall(MatView_SeqAIJ_Binary(A, viewer));
1084:   else if (isdraw) PetscCall(MatView_SeqAIJ_Draw(A, viewer));
1085:   PetscCall(MatView_SeqAIJ_Inode(A, viewer));
1086:   PetscFunctionReturn(PETSC_SUCCESS);
1087: }

1089: PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat A, MatAssemblyType mode)
1090: {
1091:   Mat_SeqAIJ *a      = (Mat_SeqAIJ *)A->data;
1092:   PetscInt    fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
1093:   PetscInt    m = A->rmap->n, *ip, N, *ailen = a->ilen, rmax = 0, n;
1094:   MatScalar  *aa    = a->a, *ap;
1095:   PetscReal   ratio = 0.6;

1097:   PetscFunctionBegin;
1098:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1099:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1100:   if (A->was_assembled && A->ass_nonzerostate == A->nonzerostate) {
1101:     /* we need to respect users asking to use or not the inodes routine in between matrix assemblies */
1102:     PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1103:     PetscFunctionReturn(PETSC_SUCCESS);
1104:   }

1106:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
1107:   for (i = 1; i < m; i++) {
1108:     /* move each row back by the amount of empty slots (fshift) before it*/
1109:     fshift += imax[i - 1] - ailen[i - 1];
1110:     rmax = PetscMax(rmax, ailen[i]);
1111:     if (fshift) {
1112:       ip = aj + ai[i];
1113:       ap = aa + ai[i];
1114:       N  = ailen[i];
1115:       PetscCall(PetscArraymove(ip - fshift, ip, N));
1116:       if (!A->structure_only) PetscCall(PetscArraymove(ap - fshift, ap, N));
1117:     }
1118:     ai[i] = ai[i - 1] + ailen[i - 1];
1119:   }
1120:   if (m) {
1121:     fshift += imax[m - 1] - ailen[m - 1];
1122:     ai[m] = ai[m - 1] + ailen[m - 1];
1123:   }
1124:   /* reset ilen and imax for each row */
1125:   a->nonzerorowcnt = 0;
1126:   if (A->structure_only) {
1127:     PetscCall(PetscFree(a->imax));
1128:     PetscCall(PetscFree(a->ilen));
1129:   } else { /* !A->structure_only */
1130:     for (i = 0; i < m; i++) {
1131:       ailen[i] = imax[i] = ai[i + 1] - ai[i];
1132:       a->nonzerorowcnt += ((ai[i + 1] - ai[i]) > 0);
1133:     }
1134:   }
1135:   a->nz = ai[m];
1136:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, fshift);
1137:   PetscCall(MatMarkDiagonal_SeqAIJ(A)); // since diagonal info is used a lot, it is helpful to set them up at the end of assembly
1138:   a->diagonaldense = PETSC_TRUE;
1139:   n                = PetscMin(A->rmap->n, A->cmap->n);
1140:   for (i = 0; i < n; i++) {
1141:     if (a->diag[i] >= ai[i + 1]) {
1142:       a->diagonaldense = PETSC_FALSE;
1143:       break;
1144:     }
1145:   }
1146:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded,%" PetscInt_FMT " used\n", m, A->cmap->n, fshift, a->nz));
1147:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1148:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", rmax));

1150:   A->info.mallocs += a->reallocs;
1151:   a->reallocs         = 0;
1152:   A->info.nz_unneeded = (PetscReal)fshift;
1153:   a->rmax             = rmax;

1155:   if (!A->structure_only) PetscCall(MatCheckCompressedRow(A, a->nonzerorowcnt, &a->compressedrow, a->i, m, ratio));
1156:   PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1157:   PetscFunctionReturn(PETSC_SUCCESS);
1158: }

1160: static PetscErrorCode MatRealPart_SeqAIJ(Mat A)
1161: {
1162:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1163:   PetscInt    i, nz = a->nz;
1164:   MatScalar  *aa;

1166:   PetscFunctionBegin;
1167:   PetscCall(MatSeqAIJGetArray(A, &aa));
1168:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1169:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1170:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1171:   PetscFunctionReturn(PETSC_SUCCESS);
1172: }

1174: static PetscErrorCode MatImaginaryPart_SeqAIJ(Mat A)
1175: {
1176:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1177:   PetscInt    i, nz = a->nz;
1178:   MatScalar  *aa;

1180:   PetscFunctionBegin;
1181:   PetscCall(MatSeqAIJGetArray(A, &aa));
1182:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1183:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1184:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1185:   PetscFunctionReturn(PETSC_SUCCESS);
1186: }

1188: PetscErrorCode MatZeroEntries_SeqAIJ(Mat A)
1189: {
1190:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1191:   MatScalar  *aa;

1193:   PetscFunctionBegin;
1194:   PetscCall(MatSeqAIJGetArrayWrite(A, &aa));
1195:   PetscCall(PetscArrayzero(aa, a->i[A->rmap->n]));
1196:   PetscCall(MatSeqAIJRestoreArrayWrite(A, &aa));
1197:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1198:   PetscFunctionReturn(PETSC_SUCCESS);
1199: }

1201: PetscErrorCode MatDestroy_SeqAIJ(Mat A)
1202: {
1203:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1205:   PetscFunctionBegin;
1206:   if (A->hash_active) {
1207:     A->ops[0] = a->cops;
1208:     PetscCall(PetscHMapIJVDestroy(&a->ht));
1209:     PetscCall(PetscFree(a->dnz));
1210:     A->hash_active = PETSC_FALSE;
1211:   }

1213:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
1214:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
1215:   PetscCall(ISDestroy(&a->row));
1216:   PetscCall(ISDestroy(&a->col));
1217:   PetscCall(PetscFree(a->diag));
1218:   PetscCall(PetscFree(a->ibdiag));
1219:   PetscCall(PetscFree(a->imax));
1220:   PetscCall(PetscFree(a->ilen));
1221:   PetscCall(PetscFree(a->ipre));
1222:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
1223:   PetscCall(PetscFree(a->solve_work));
1224:   PetscCall(ISDestroy(&a->icol));
1225:   PetscCall(PetscFree(a->saved_values));
1226:   PetscCall(PetscFree2(a->compressedrow.i, a->compressedrow.rindex));
1227:   PetscCall(MatDestroy_SeqAIJ_Inode(A));
1228:   PetscCall(PetscFree(A->data));

1230:   /* MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted may allocate this.
1231:      That function is so heavily used (sometimes in an hidden way through multnumeric function pointers)
1232:      that is hard to properly add this data to the MatProduct data. We free it here to avoid
1233:      users reusing the matrix object with different data to incur in obscure segmentation faults
1234:      due to different matrix sizes */
1235:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc__ab_dense", NULL));

1237:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
1238:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEnginePut_C", NULL));
1239:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEngineGet_C", NULL));
1240:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetColumnIndices_C", NULL));
1241:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
1242:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
1243:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsbaij_C", NULL));
1244:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqbaij_C", NULL));
1245:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijperm_C", NULL));
1246:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijsell_C", NULL));
1247: #if defined(PETSC_HAVE_MKL_SPARSE)
1248:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijmkl_C", NULL));
1249: #endif
1250: #if defined(PETSC_HAVE_CUDA)
1251:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcusparse_C", NULL));
1252:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", NULL));
1253:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", NULL));
1254: #endif
1255: #if defined(PETSC_HAVE_HIP)
1256:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijhipsparse_C", NULL));
1257:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", NULL));
1258:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", NULL));
1259: #endif
1260: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
1261:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijkokkos_C", NULL));
1262: #endif
1263:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcrl_C", NULL));
1264: #if defined(PETSC_HAVE_ELEMENTAL)
1265:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_elemental_C", NULL));
1266: #endif
1267: #if defined(PETSC_HAVE_SCALAPACK)
1268:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_scalapack_C", NULL));
1269: #endif
1270: #if defined(PETSC_HAVE_HYPRE)
1271:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_hypre_C", NULL));
1272:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", NULL));
1273: #endif
1274:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqdense_C", NULL));
1275:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsell_C", NULL));
1276:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_is_C", NULL));
1277:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsTranspose_C", NULL));
1278:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsHermitianTranspose_C", NULL));
1279:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", NULL));
1280:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetPreallocation_C", NULL));
1281:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocationCSR_C", NULL));
1282:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatReorderForNonzeroDiagonal_C", NULL));
1283:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_is_seqaij_C", NULL));
1284:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqdense_seqaij_C", NULL));
1285:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaij_C", NULL));
1286:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJKron_C", NULL));
1287:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
1288:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
1289:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
1290:   /* these calls do not belong here: the subclasses Duplicate/Destroy are wrong */
1291:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijsell_seqaij_C", NULL));
1292:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijperm_seqaij_C", NULL));
1293:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijviennacl_C", NULL));
1294:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqdense_C", NULL));
1295:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqaij_C", NULL));
1296:   PetscFunctionReturn(PETSC_SUCCESS);
1297: }

1299: PetscErrorCode MatSetOption_SeqAIJ(Mat A, MatOption op, PetscBool flg)
1300: {
1301:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1303:   PetscFunctionBegin;
1304:   switch (op) {
1305:   case MAT_ROW_ORIENTED:
1306:     a->roworiented = flg;
1307:     break;
1308:   case MAT_KEEP_NONZERO_PATTERN:
1309:     a->keepnonzeropattern = flg;
1310:     break;
1311:   case MAT_NEW_NONZERO_LOCATIONS:
1312:     a->nonew = (flg ? 0 : 1);
1313:     break;
1314:   case MAT_NEW_NONZERO_LOCATION_ERR:
1315:     a->nonew = (flg ? -1 : 0);
1316:     break;
1317:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1318:     a->nonew = (flg ? -2 : 0);
1319:     break;
1320:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1321:     a->nounused = (flg ? -1 : 0);
1322:     break;
1323:   case MAT_IGNORE_ZERO_ENTRIES:
1324:     a->ignorezeroentries = flg;
1325:     break;
1326:   case MAT_SPD:
1327:   case MAT_SYMMETRIC:
1328:   case MAT_STRUCTURALLY_SYMMETRIC:
1329:   case MAT_HERMITIAN:
1330:   case MAT_SYMMETRY_ETERNAL:
1331:   case MAT_STRUCTURE_ONLY:
1332:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
1333:   case MAT_SPD_ETERNAL:
1334:     /* if the diagonal matrix is square it inherits some of the properties above */
1335:     break;
1336:   case MAT_FORCE_DIAGONAL_ENTRIES:
1337:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1338:   case MAT_USE_HASH_TABLE:
1339:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
1340:     break;
1341:   case MAT_USE_INODES:
1342:     PetscCall(MatSetOption_SeqAIJ_Inode(A, MAT_USE_INODES, flg));
1343:     break;
1344:   case MAT_SUBMAT_SINGLEIS:
1345:     A->submat_singleis = flg;
1346:     break;
1347:   case MAT_SORTED_FULL:
1348:     if (flg) A->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;
1349:     else A->ops->setvalues = MatSetValues_SeqAIJ;
1350:     break;
1351:   case MAT_FORM_EXPLICIT_TRANSPOSE:
1352:     A->form_explicit_transpose = flg;
1353:     break;
1354:   default:
1355:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "unknown option %d", op);
1356:   }
1357:   PetscFunctionReturn(PETSC_SUCCESS);
1358: }

1360: static PetscErrorCode MatGetDiagonal_SeqAIJ(Mat A, Vec v)
1361: {
1362:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1363:   PetscInt           i, j, n, *ai = a->i, *aj = a->j;
1364:   PetscScalar       *x;
1365:   const PetscScalar *aa;

1367:   PetscFunctionBegin;
1368:   PetscCall(VecGetLocalSize(v, &n));
1369:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1370:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1371:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
1372:     PetscInt *diag = a->diag;
1373:     PetscCall(VecGetArrayWrite(v, &x));
1374:     for (i = 0; i < n; i++) x[i] = 1.0 / aa[diag[i]];
1375:     PetscCall(VecRestoreArrayWrite(v, &x));
1376:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1377:     PetscFunctionReturn(PETSC_SUCCESS);
1378:   }

1380:   PetscCall(VecGetArrayWrite(v, &x));
1381:   for (i = 0; i < n; i++) {
1382:     x[i] = 0.0;
1383:     for (j = ai[i]; j < ai[i + 1]; j++) {
1384:       if (aj[j] == i) {
1385:         x[i] = aa[j];
1386:         break;
1387:       }
1388:     }
1389:   }
1390:   PetscCall(VecRestoreArrayWrite(v, &x));
1391:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1392:   PetscFunctionReturn(PETSC_SUCCESS);
1393: }

1395: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>
1396: PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A, Vec xx, Vec zz, Vec yy)
1397: {
1398:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1399:   const MatScalar   *aa;
1400:   PetscScalar       *y;
1401:   const PetscScalar *x;
1402:   PetscInt           m = A->rmap->n;
1403: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1404:   const MatScalar  *v;
1405:   PetscScalar       alpha;
1406:   PetscInt          n, i, j;
1407:   const PetscInt   *idx, *ii, *ridx = NULL;
1408:   Mat_CompressedRow cprow    = a->compressedrow;
1409:   PetscBool         usecprow = cprow.use;
1410: #endif

1412:   PetscFunctionBegin;
1413:   if (zz != yy) PetscCall(VecCopy(zz, yy));
1414:   PetscCall(VecGetArrayRead(xx, &x));
1415:   PetscCall(VecGetArray(yy, &y));
1416:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));

1418: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1419:   fortranmulttransposeaddaij_(&m, x, a->i, a->j, aa, y);
1420: #else
1421:   if (usecprow) {
1422:     m    = cprow.nrows;
1423:     ii   = cprow.i;
1424:     ridx = cprow.rindex;
1425:   } else {
1426:     ii = a->i;
1427:   }
1428:   for (i = 0; i < m; i++) {
1429:     idx = a->j + ii[i];
1430:     v   = aa + ii[i];
1431:     n   = ii[i + 1] - ii[i];
1432:     if (usecprow) {
1433:       alpha = x[ridx[i]];
1434:     } else {
1435:       alpha = x[i];
1436:     }
1437:     for (j = 0; j < n; j++) y[idx[j]] += alpha * v[j];
1438:   }
1439: #endif
1440:   PetscCall(PetscLogFlops(2.0 * a->nz));
1441:   PetscCall(VecRestoreArrayRead(xx, &x));
1442:   PetscCall(VecRestoreArray(yy, &y));
1443:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1444:   PetscFunctionReturn(PETSC_SUCCESS);
1445: }

1447: PetscErrorCode MatMultTranspose_SeqAIJ(Mat A, Vec xx, Vec yy)
1448: {
1449:   PetscFunctionBegin;
1450:   PetscCall(VecSet(yy, 0.0));
1451:   PetscCall(MatMultTransposeAdd_SeqAIJ(A, xx, yy, yy));
1452:   PetscFunctionReturn(PETSC_SUCCESS);
1453: }

1455: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>

1457: PetscErrorCode MatMult_SeqAIJ(Mat A, Vec xx, Vec yy)
1458: {
1459:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1460:   PetscScalar       *y;
1461:   const PetscScalar *x;
1462:   const MatScalar   *a_a;
1463:   PetscInt           m = A->rmap->n;
1464:   const PetscInt    *ii, *ridx = NULL;
1465:   PetscBool          usecprow = a->compressedrow.use;

1467: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1468:   #pragma disjoint(*x, *y, *aa)
1469: #endif

1471:   PetscFunctionBegin;
1472:   if (a->inode.use && a->inode.checked) {
1473:     PetscCall(MatMult_SeqAIJ_Inode(A, xx, yy));
1474:     PetscFunctionReturn(PETSC_SUCCESS);
1475:   }
1476:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1477:   PetscCall(VecGetArrayRead(xx, &x));
1478:   PetscCall(VecGetArray(yy, &y));
1479:   ii = a->i;
1480:   if (usecprow) { /* use compressed row format */
1481:     PetscCall(PetscArrayzero(y, m));
1482:     m    = a->compressedrow.nrows;
1483:     ii   = a->compressedrow.i;
1484:     ridx = a->compressedrow.rindex;
1485:     PetscPragmaUseOMPKernels(parallel for)
1486:     for (PetscInt i = 0; i < m; i++) {
1487:       PetscInt           n   = ii[i + 1] - ii[i];
1488:       const PetscInt    *aj  = a->j + ii[i];
1489:       const PetscScalar *aa  = a_a + ii[i];
1490:       PetscScalar        sum = 0.0;
1491:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1492:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1493:       y[*ridx++] = sum;
1494:     }
1495:   } else { /* do not use compressed row format */
1496: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJ)
1497:     fortranmultaij_(&m, x, ii, a->j, a_a, y);
1498: #else
1499:     PetscPragmaUseOMPKernels(parallel for)
1500:     for (PetscInt i = 0; i < m; i++) {
1501:       PetscInt           n   = ii[i + 1] - ii[i];
1502:       const PetscInt    *aj  = a->j + ii[i];
1503:       const PetscScalar *aa  = a_a + ii[i];
1504:       PetscScalar        sum = 0.0;
1505:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1506:       y[i] = sum;
1507:     }
1508: #endif
1509:   }
1510:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt));
1511:   PetscCall(VecRestoreArrayRead(xx, &x));
1512:   PetscCall(VecRestoreArray(yy, &y));
1513:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1514:   PetscFunctionReturn(PETSC_SUCCESS);
1515: }

1517: // HACK!!!!! Used by src/mat/tests/ex170.c
1518: PETSC_EXTERN PetscErrorCode MatMultMax_SeqAIJ(Mat A, Vec xx, Vec yy)
1519: {
1520:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1521:   PetscScalar       *y;
1522:   const PetscScalar *x;
1523:   const MatScalar   *aa, *a_a;
1524:   PetscInt           m = A->rmap->n;
1525:   const PetscInt    *aj, *ii, *ridx   = NULL;
1526:   PetscInt           n, i, nonzerorow = 0;
1527:   PetscScalar        sum;
1528:   PetscBool          usecprow = a->compressedrow.use;

1530: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1531:   #pragma disjoint(*x, *y, *aa)
1532: #endif

1534:   PetscFunctionBegin;
1535:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1536:   PetscCall(VecGetArrayRead(xx, &x));
1537:   PetscCall(VecGetArray(yy, &y));
1538:   if (usecprow) { /* use compressed row format */
1539:     m    = a->compressedrow.nrows;
1540:     ii   = a->compressedrow.i;
1541:     ridx = a->compressedrow.rindex;
1542:     for (i = 0; i < m; i++) {
1543:       n   = ii[i + 1] - ii[i];
1544:       aj  = a->j + ii[i];
1545:       aa  = a_a + ii[i];
1546:       sum = 0.0;
1547:       nonzerorow += (n > 0);
1548:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1549:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1550:       y[*ridx++] = sum;
1551:     }
1552:   } else { /* do not use compressed row format */
1553:     ii = a->i;
1554:     for (i = 0; i < m; i++) {
1555:       n   = ii[i + 1] - ii[i];
1556:       aj  = a->j + ii[i];
1557:       aa  = a_a + ii[i];
1558:       sum = 0.0;
1559:       nonzerorow += (n > 0);
1560:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1561:       y[i] = sum;
1562:     }
1563:   }
1564:   PetscCall(PetscLogFlops(2.0 * a->nz - nonzerorow));
1565:   PetscCall(VecRestoreArrayRead(xx, &x));
1566:   PetscCall(VecRestoreArray(yy, &y));
1567:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1568:   PetscFunctionReturn(PETSC_SUCCESS);
1569: }

1571: // HACK!!!!! Used by src/mat/tests/ex170.c
1572: PETSC_EXTERN PetscErrorCode MatMultAddMax_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1573: {
1574:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1575:   PetscScalar       *y, *z;
1576:   const PetscScalar *x;
1577:   const MatScalar   *aa, *a_a;
1578:   PetscInt           m = A->rmap->n, *aj, *ii;
1579:   PetscInt           n, i, *ridx = NULL;
1580:   PetscScalar        sum;
1581:   PetscBool          usecprow = a->compressedrow.use;

1583:   PetscFunctionBegin;
1584:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1585:   PetscCall(VecGetArrayRead(xx, &x));
1586:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1587:   if (usecprow) { /* use compressed row format */
1588:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1589:     m    = a->compressedrow.nrows;
1590:     ii   = a->compressedrow.i;
1591:     ridx = a->compressedrow.rindex;
1592:     for (i = 0; i < m; i++) {
1593:       n   = ii[i + 1] - ii[i];
1594:       aj  = a->j + ii[i];
1595:       aa  = a_a + ii[i];
1596:       sum = y[*ridx];
1597:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1598:       z[*ridx++] = sum;
1599:     }
1600:   } else { /* do not use compressed row format */
1601:     ii = a->i;
1602:     for (i = 0; i < m; i++) {
1603:       n   = ii[i + 1] - ii[i];
1604:       aj  = a->j + ii[i];
1605:       aa  = a_a + ii[i];
1606:       sum = y[i];
1607:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1608:       z[i] = sum;
1609:     }
1610:   }
1611:   PetscCall(PetscLogFlops(2.0 * a->nz));
1612:   PetscCall(VecRestoreArrayRead(xx, &x));
1613:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1614:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1615:   PetscFunctionReturn(PETSC_SUCCESS);
1616: }

1618: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
1619: PetscErrorCode MatMultAdd_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1620: {
1621:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1622:   PetscScalar       *y, *z;
1623:   const PetscScalar *x;
1624:   const MatScalar   *a_a;
1625:   const PetscInt    *ii, *ridx = NULL;
1626:   PetscInt           m        = A->rmap->n;
1627:   PetscBool          usecprow = a->compressedrow.use;

1629:   PetscFunctionBegin;
1630:   if (a->inode.use && a->inode.checked) {
1631:     PetscCall(MatMultAdd_SeqAIJ_Inode(A, xx, yy, zz));
1632:     PetscFunctionReturn(PETSC_SUCCESS);
1633:   }
1634:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1635:   PetscCall(VecGetArrayRead(xx, &x));
1636:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1637:   if (usecprow) { /* use compressed row format */
1638:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1639:     m    = a->compressedrow.nrows;
1640:     ii   = a->compressedrow.i;
1641:     ridx = a->compressedrow.rindex;
1642:     for (PetscInt i = 0; i < m; i++) {
1643:       PetscInt           n   = ii[i + 1] - ii[i];
1644:       const PetscInt    *aj  = a->j + ii[i];
1645:       const PetscScalar *aa  = a_a + ii[i];
1646:       PetscScalar        sum = y[*ridx];
1647:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1648:       z[*ridx++] = sum;
1649:     }
1650:   } else { /* do not use compressed row format */
1651:     ii = a->i;
1652: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJ)
1653:     fortranmultaddaij_(&m, x, ii, a->j, a_a, y, z);
1654: #else
1655:     PetscPragmaUseOMPKernels(parallel for)
1656:     for (PetscInt i = 0; i < m; i++) {
1657:       PetscInt           n   = ii[i + 1] - ii[i];
1658:       const PetscInt    *aj  = a->j + ii[i];
1659:       const PetscScalar *aa  = a_a + ii[i];
1660:       PetscScalar        sum = y[i];
1661:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1662:       z[i] = sum;
1663:     }
1664: #endif
1665:   }
1666:   PetscCall(PetscLogFlops(2.0 * a->nz));
1667:   PetscCall(VecRestoreArrayRead(xx, &x));
1668:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1669:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1670:   PetscFunctionReturn(PETSC_SUCCESS);
1671: }

1673: /*
1674:      Adds diagonal pointers to sparse matrix structure.
1675: */
1676: PetscErrorCode MatMarkDiagonal_SeqAIJ(Mat A)
1677: {
1678:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1679:   PetscInt    i, j, m = A->rmap->n;
1680:   PetscBool   alreadySet = PETSC_TRUE;

1682:   PetscFunctionBegin;
1683:   if (!a->diag) {
1684:     PetscCall(PetscMalloc1(m, &a->diag));
1685:     alreadySet = PETSC_FALSE;
1686:   }
1687:   for (i = 0; i < A->rmap->n; i++) {
1688:     /* If A's diagonal is already correctly set, this fast track enables cheap and repeated MatMarkDiagonal_SeqAIJ() calls */
1689:     if (alreadySet) {
1690:       PetscInt pos = a->diag[i];
1691:       if (pos >= a->i[i] && pos < a->i[i + 1] && a->j[pos] == i) continue;
1692:     }

1694:     a->diag[i] = a->i[i + 1];
1695:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
1696:       if (a->j[j] == i) {
1697:         a->diag[i] = j;
1698:         break;
1699:       }
1700:     }
1701:   }
1702:   PetscFunctionReturn(PETSC_SUCCESS);
1703: }

1705: static PetscErrorCode MatShift_SeqAIJ(Mat A, PetscScalar v)
1706: {
1707:   Mat_SeqAIJ     *a    = (Mat_SeqAIJ *)A->data;
1708:   const PetscInt *diag = (const PetscInt *)a->diag;
1709:   const PetscInt *ii   = (const PetscInt *)a->i;
1710:   PetscInt        i, *mdiag = NULL;
1711:   PetscInt        cnt = 0; /* how many diagonals are missing */

1713:   PetscFunctionBegin;
1714:   if (!A->preallocated || !a->nz) {
1715:     PetscCall(MatSeqAIJSetPreallocation(A, 1, NULL));
1716:     PetscCall(MatShift_Basic(A, v));
1717:     PetscFunctionReturn(PETSC_SUCCESS);
1718:   }

1720:   if (a->diagonaldense) {
1721:     cnt = 0;
1722:   } else {
1723:     PetscCall(PetscCalloc1(A->rmap->n, &mdiag));
1724:     for (i = 0; i < A->rmap->n; i++) {
1725:       if (i < A->cmap->n && diag[i] >= ii[i + 1]) { /* 'out of range' rows never have diagonals */
1726:         cnt++;
1727:         mdiag[i] = 1;
1728:       }
1729:     }
1730:   }
1731:   if (!cnt) {
1732:     PetscCall(MatShift_Basic(A, v));
1733:   } else {
1734:     PetscScalar       *olda = a->a; /* preserve pointers to current matrix nonzeros structure and values */
1735:     PetscInt          *oldj = a->j, *oldi = a->i;
1736:     PetscBool          free_a = a->free_a, free_ij = a->free_ij;
1737:     const PetscScalar *Aa;

1739:     PetscCall(MatSeqAIJGetArrayRead(A, &Aa)); // sync the host
1740:     PetscCall(MatSeqAIJRestoreArrayRead(A, &Aa));

1742:     a->a = NULL;
1743:     a->j = NULL;
1744:     a->i = NULL;
1745:     /* increase the values in imax for each row where a diagonal is being inserted then reallocate the matrix data structures */
1746:     for (i = 0; i < PetscMin(A->rmap->n, A->cmap->n); i++) a->imax[i] += mdiag[i];
1747:     PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, 0, a->imax));

1749:     /* copy old values into new matrix data structure */
1750:     for (i = 0; i < A->rmap->n; i++) {
1751:       PetscCall(MatSetValues(A, 1, &i, a->imax[i] - mdiag[i], &oldj[oldi[i]], &olda[oldi[i]], ADD_VALUES));
1752:       if (i < A->cmap->n) PetscCall(MatSetValue(A, i, i, v, ADD_VALUES));
1753:     }
1754:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1755:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1756:     if (free_a) PetscCall(PetscShmgetDeallocateArray((void **)&olda));
1757:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldj));
1758:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldi));
1759:   }
1760:   PetscCall(PetscFree(mdiag));
1761:   a->diagonaldense = PETSC_TRUE;
1762:   PetscFunctionReturn(PETSC_SUCCESS);
1763: }

1765: /*
1766:      Checks for missing diagonals
1767: */
1768: PetscErrorCode MatMissingDiagonal_SeqAIJ(Mat A, PetscBool *missing, PetscInt *d)
1769: {
1770:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1771:   PetscInt   *diag, *ii = a->i, i;

1773:   PetscFunctionBegin;
1774:   *missing = PETSC_FALSE;
1775:   if (A->rmap->n > 0 && !ii) {
1776:     *missing = PETSC_TRUE;
1777:     if (d) *d = 0;
1778:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
1779:   } else {
1780:     PetscInt n;
1781:     n    = PetscMin(A->rmap->n, A->cmap->n);
1782:     diag = a->diag;
1783:     for (i = 0; i < n; i++) {
1784:       if (diag[i] >= ii[i + 1]) {
1785:         *missing = PETSC_TRUE;
1786:         if (d) *d = i;
1787:         PetscCall(PetscInfo(A, "Matrix is missing diagonal number %" PetscInt_FMT "\n", i));
1788:         break;
1789:       }
1790:     }
1791:   }
1792:   PetscFunctionReturn(PETSC_SUCCESS);
1793: }

1795: #include <petscblaslapack.h>
1796: #include <petsc/private/kernels/blockinvert.h>

1798: /*
1799:     Note that values is allocated externally by the PC and then passed into this routine
1800: */
1801: static PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJ(Mat A, PetscInt nblocks, const PetscInt *bsizes, PetscScalar *diag)
1802: {
1803:   PetscInt        n = A->rmap->n, i, ncnt = 0, *indx, j, bsizemax = 0, *v_pivots;
1804:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
1805:   const PetscReal shift = 0.0;
1806:   PetscInt        ipvt[5];
1807:   PetscCount      flops = 0;
1808:   PetscScalar     work[25], *v_work;

1810:   PetscFunctionBegin;
1811:   allowzeropivot = PetscNot(A->erroriffailure);
1812:   for (i = 0; i < nblocks; i++) ncnt += bsizes[i];
1813:   PetscCheck(ncnt == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Total blocksizes %" PetscInt_FMT " doesn't match number matrix rows %" PetscInt_FMT, ncnt, n);
1814:   for (i = 0; i < nblocks; i++) bsizemax = PetscMax(bsizemax, bsizes[i]);
1815:   PetscCall(PetscMalloc1(bsizemax, &indx));
1816:   if (bsizemax > 7) PetscCall(PetscMalloc2(bsizemax, &v_work, bsizemax, &v_pivots));
1817:   ncnt = 0;
1818:   for (i = 0; i < nblocks; i++) {
1819:     for (j = 0; j < bsizes[i]; j++) indx[j] = ncnt + j;
1820:     PetscCall(MatGetValues(A, bsizes[i], indx, bsizes[i], indx, diag));
1821:     switch (bsizes[i]) {
1822:     case 1:
1823:       *diag = 1.0 / (*diag);
1824:       break;
1825:     case 2:
1826:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
1827:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1828:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
1829:       break;
1830:     case 3:
1831:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
1832:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1833:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
1834:       break;
1835:     case 4:
1836:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
1837:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1838:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
1839:       break;
1840:     case 5:
1841:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
1842:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1843:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
1844:       break;
1845:     case 6:
1846:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
1847:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1848:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
1849:       break;
1850:     case 7:
1851:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
1852:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1853:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
1854:       break;
1855:     default:
1856:       PetscCall(PetscKernel_A_gets_inverse_A(bsizes[i], diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
1857:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1858:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bsizes[i]));
1859:     }
1860:     ncnt += bsizes[i];
1861:     diag += bsizes[i] * bsizes[i];
1862:     flops += 2 * PetscPowInt64(bsizes[i], 3) / 3;
1863:   }
1864:   PetscCall(PetscLogFlops(flops));
1865:   if (bsizemax > 7) PetscCall(PetscFree2(v_work, v_pivots));
1866:   PetscCall(PetscFree(indx));
1867:   PetscFunctionReturn(PETSC_SUCCESS);
1868: }

1870: /*
1871:    Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
1872: */
1873: static PetscErrorCode MatInvertDiagonal_SeqAIJ(Mat A, PetscScalar omega, PetscScalar fshift)
1874: {
1875:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
1876:   PetscInt         i, *diag, m = A->rmap->n;
1877:   const MatScalar *v;
1878:   PetscScalar     *idiag, *mdiag;

1880:   PetscFunctionBegin;
1881:   if (a->idiagvalid) PetscFunctionReturn(PETSC_SUCCESS);
1882:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
1883:   diag = a->diag;
1884:   if (!a->idiag) { PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work)); }

1886:   mdiag = a->mdiag;
1887:   idiag = a->idiag;
1888:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
1889:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
1890:     for (i = 0; i < m; i++) {
1891:       mdiag[i] = v[diag[i]];
1892:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
1893:         if (PetscRealPart(fshift)) {
1894:           PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
1895:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1896:           A->factorerror_zeropivot_value = 0.0;
1897:           A->factorerror_zeropivot_row   = i;
1898:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
1899:       }
1900:       idiag[i] = 1.0 / v[diag[i]];
1901:     }
1902:     PetscCall(PetscLogFlops(m));
1903:   } else {
1904:     for (i = 0; i < m; i++) {
1905:       mdiag[i] = v[diag[i]];
1906:       idiag[i] = omega / (fshift + v[diag[i]]);
1907:     }
1908:     PetscCall(PetscLogFlops(2.0 * m));
1909:   }
1910:   a->idiagvalid = PETSC_TRUE;
1911:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
1912:   PetscFunctionReturn(PETSC_SUCCESS);
1913: }

1915: PetscErrorCode MatSOR_SeqAIJ(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1916: {
1917:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1918:   PetscScalar       *x, d, sum, *t, scale;
1919:   const MatScalar   *v, *idiag = NULL, *mdiag, *aa;
1920:   const PetscScalar *b, *bs, *xb, *ts;
1921:   PetscInt           n, m = A->rmap->n, i;
1922:   const PetscInt    *idx, *diag;

1924:   PetscFunctionBegin;
1925:   if (a->inode.use && a->inode.checked && omega == 1.0 && fshift == 0.0) {
1926:     PetscCall(MatSOR_SeqAIJ_Inode(A, bb, omega, flag, fshift, its, lits, xx));
1927:     PetscFunctionReturn(PETSC_SUCCESS);
1928:   }
1929:   its = its * lits;

1931:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1932:   if (!a->idiagvalid) PetscCall(MatInvertDiagonal_SeqAIJ(A, omega, fshift));
1933:   a->fshift = fshift;
1934:   a->omega  = omega;

1936:   diag  = a->diag;
1937:   t     = a->ssor_work;
1938:   idiag = a->idiag;
1939:   mdiag = a->mdiag;

1941:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1942:   PetscCall(VecGetArray(xx, &x));
1943:   PetscCall(VecGetArrayRead(bb, &b));
1944:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1945:   if (flag == SOR_APPLY_UPPER) {
1946:     /* apply (U + D/omega) to the vector */
1947:     bs = b;
1948:     for (i = 0; i < m; i++) {
1949:       d   = fshift + mdiag[i];
1950:       n   = a->i[i + 1] - diag[i] - 1;
1951:       idx = a->j + diag[i] + 1;
1952:       v   = aa + diag[i] + 1;
1953:       sum = b[i] * d / omega;
1954:       PetscSparseDensePlusDot(sum, bs, v, idx, n);
1955:       x[i] = sum;
1956:     }
1957:     PetscCall(VecRestoreArray(xx, &x));
1958:     PetscCall(VecRestoreArrayRead(bb, &b));
1959:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1960:     PetscCall(PetscLogFlops(a->nz));
1961:     PetscFunctionReturn(PETSC_SUCCESS);
1962:   }

1964:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1965:   if (flag & SOR_EISENSTAT) {
1966:     /* Let  A = L + U + D; where L is lower triangular,
1967:     U is upper triangular, E = D/omega; This routine applies

1969:             (L + E)^{-1} A (U + E)^{-1}

1971:     to a vector efficiently using Eisenstat's trick.
1972:     */
1973:     scale = (2.0 / omega) - 1.0;

1975:     /*  x = (E + U)^{-1} b */
1976:     for (i = m - 1; i >= 0; i--) {
1977:       n   = a->i[i + 1] - diag[i] - 1;
1978:       idx = a->j + diag[i] + 1;
1979:       v   = aa + diag[i] + 1;
1980:       sum = b[i];
1981:       PetscSparseDenseMinusDot(sum, x, v, idx, n);
1982:       x[i] = sum * idiag[i];
1983:     }

1985:     /*  t = b - (2*E - D)x */
1986:     v = aa;
1987:     for (i = 0; i < m; i++) t[i] = b[i] - scale * (v[*diag++]) * x[i];

1989:     /*  t = (E + L)^{-1}t */
1990:     ts   = t;
1991:     diag = a->diag;
1992:     for (i = 0; i < m; i++) {
1993:       n   = diag[i] - a->i[i];
1994:       idx = a->j + a->i[i];
1995:       v   = aa + a->i[i];
1996:       sum = t[i];
1997:       PetscSparseDenseMinusDot(sum, ts, v, idx, n);
1998:       t[i] = sum * idiag[i];
1999:       /*  x = x + t */
2000:       x[i] += t[i];
2001:     }

2003:     PetscCall(PetscLogFlops(6.0 * m - 1 + 2.0 * a->nz));
2004:     PetscCall(VecRestoreArray(xx, &x));
2005:     PetscCall(VecRestoreArrayRead(bb, &b));
2006:     PetscFunctionReturn(PETSC_SUCCESS);
2007:   }
2008:   if (flag & SOR_ZERO_INITIAL_GUESS) {
2009:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2010:       for (i = 0; i < m; i++) {
2011:         n   = diag[i] - a->i[i];
2012:         idx = a->j + a->i[i];
2013:         v   = aa + a->i[i];
2014:         sum = b[i];
2015:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2016:         t[i] = sum;
2017:         x[i] = sum * idiag[i];
2018:       }
2019:       xb = t;
2020:       PetscCall(PetscLogFlops(a->nz));
2021:     } else xb = b;
2022:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2023:       for (i = m - 1; i >= 0; i--) {
2024:         n   = a->i[i + 1] - diag[i] - 1;
2025:         idx = a->j + diag[i] + 1;
2026:         v   = aa + diag[i] + 1;
2027:         sum = xb[i];
2028:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2029:         if (xb == b) {
2030:           x[i] = sum * idiag[i];
2031:         } else {
2032:           x[i] = (1 - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2033:         }
2034:       }
2035:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2036:     }
2037:     its--;
2038:   }
2039:   while (its--) {
2040:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2041:       for (i = 0; i < m; i++) {
2042:         /* lower */
2043:         n   = diag[i] - a->i[i];
2044:         idx = a->j + a->i[i];
2045:         v   = aa + a->i[i];
2046:         sum = b[i];
2047:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2048:         t[i] = sum; /* save application of the lower-triangular part */
2049:         /* upper */
2050:         n   = a->i[i + 1] - diag[i] - 1;
2051:         idx = a->j + diag[i] + 1;
2052:         v   = aa + diag[i] + 1;
2053:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2054:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2055:       }
2056:       xb = t;
2057:       PetscCall(PetscLogFlops(2.0 * a->nz));
2058:     } else xb = b;
2059:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2060:       for (i = m - 1; i >= 0; i--) {
2061:         sum = xb[i];
2062:         if (xb == b) {
2063:           /* whole matrix (no checkpointing available) */
2064:           n   = a->i[i + 1] - a->i[i];
2065:           idx = a->j + a->i[i];
2066:           v   = aa + a->i[i];
2067:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2068:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
2069:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
2070:           n   = a->i[i + 1] - diag[i] - 1;
2071:           idx = a->j + diag[i] + 1;
2072:           v   = aa + diag[i] + 1;
2073:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2074:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2075:         }
2076:       }
2077:       if (xb == b) {
2078:         PetscCall(PetscLogFlops(2.0 * a->nz));
2079:       } else {
2080:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2081:       }
2082:     }
2083:   }
2084:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2085:   PetscCall(VecRestoreArray(xx, &x));
2086:   PetscCall(VecRestoreArrayRead(bb, &b));
2087:   PetscFunctionReturn(PETSC_SUCCESS);
2088: }

2090: static PetscErrorCode MatGetInfo_SeqAIJ(Mat A, MatInfoType flag, MatInfo *info)
2091: {
2092:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2094:   PetscFunctionBegin;
2095:   info->block_size   = 1.0;
2096:   info->nz_allocated = a->maxnz;
2097:   info->nz_used      = a->nz;
2098:   info->nz_unneeded  = (a->maxnz - a->nz);
2099:   info->assemblies   = A->num_ass;
2100:   info->mallocs      = A->info.mallocs;
2101:   info->memory       = 0; /* REVIEW ME */
2102:   if (A->factortype) {
2103:     info->fill_ratio_given  = A->info.fill_ratio_given;
2104:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2105:     info->factor_mallocs    = A->info.factor_mallocs;
2106:   } else {
2107:     info->fill_ratio_given  = 0;
2108:     info->fill_ratio_needed = 0;
2109:     info->factor_mallocs    = 0;
2110:   }
2111:   PetscFunctionReturn(PETSC_SUCCESS);
2112: }

2114: static PetscErrorCode MatZeroRows_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2115: {
2116:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2117:   PetscInt           i, m = A->rmap->n - 1;
2118:   const PetscScalar *xx;
2119:   PetscScalar       *bb, *aa;
2120:   PetscInt           d = 0;

2122:   PetscFunctionBegin;
2123:   if (x && b) {
2124:     PetscCall(VecGetArrayRead(x, &xx));
2125:     PetscCall(VecGetArray(b, &bb));
2126:     for (i = 0; i < N; i++) {
2127:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2128:       if (rows[i] >= A->cmap->n) continue;
2129:       bb[rows[i]] = diag * xx[rows[i]];
2130:     }
2131:     PetscCall(VecRestoreArrayRead(x, &xx));
2132:     PetscCall(VecRestoreArray(b, &bb));
2133:   }

2135:   PetscCall(MatSeqAIJGetArray(A, &aa));
2136:   if (a->keepnonzeropattern) {
2137:     for (i = 0; i < N; i++) {
2138:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2139:       PetscCall(PetscArrayzero(&aa[a->i[rows[i]]], a->ilen[rows[i]]));
2140:     }
2141:     if (diag != 0.0) {
2142:       for (i = 0; i < N; i++) {
2143:         d = rows[i];
2144:         if (rows[i] >= A->cmap->n) continue;
2145:         PetscCheck(a->diag[d] < a->i[d + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in the zeroed row %" PetscInt_FMT, d);
2146:       }
2147:       for (i = 0; i < N; i++) {
2148:         if (rows[i] >= A->cmap->n) continue;
2149:         aa[a->diag[rows[i]]] = diag;
2150:       }
2151:     }
2152:   } else {
2153:     if (diag != 0.0) {
2154:       for (i = 0; i < N; i++) {
2155:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2156:         if (a->ilen[rows[i]] > 0) {
2157:           if (rows[i] >= A->cmap->n) {
2158:             a->ilen[rows[i]] = 0;
2159:           } else {
2160:             a->ilen[rows[i]]    = 1;
2161:             aa[a->i[rows[i]]]   = diag;
2162:             a->j[a->i[rows[i]]] = rows[i];
2163:           }
2164:         } else if (rows[i] < A->cmap->n) { /* in case row was completely empty */
2165:           PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2166:         }
2167:       }
2168:     } else {
2169:       for (i = 0; i < N; i++) {
2170:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2171:         a->ilen[rows[i]] = 0;
2172:       }
2173:     }
2174:     A->nonzerostate++;
2175:   }
2176:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2177:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2178:   PetscFunctionReturn(PETSC_SUCCESS);
2179: }

2181: static PetscErrorCode MatZeroRowsColumns_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2182: {
2183:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2184:   PetscInt           i, j, m = A->rmap->n - 1, d = 0;
2185:   PetscBool          missing, *zeroed, vecs = PETSC_FALSE;
2186:   const PetscScalar *xx;
2187:   PetscScalar       *bb, *aa;

2189:   PetscFunctionBegin;
2190:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);
2191:   PetscCall(MatSeqAIJGetArray(A, &aa));
2192:   if (x && b) {
2193:     PetscCall(VecGetArrayRead(x, &xx));
2194:     PetscCall(VecGetArray(b, &bb));
2195:     vecs = PETSC_TRUE;
2196:   }
2197:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
2198:   for (i = 0; i < N; i++) {
2199:     PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2200:     PetscCall(PetscArrayzero(PetscSafePointerPlusOffset(aa, a->i[rows[i]]), a->ilen[rows[i]]));

2202:     zeroed[rows[i]] = PETSC_TRUE;
2203:   }
2204:   for (i = 0; i < A->rmap->n; i++) {
2205:     if (!zeroed[i]) {
2206:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
2207:         if (a->j[j] < A->rmap->n && zeroed[a->j[j]]) {
2208:           if (vecs) bb[i] -= aa[j] * xx[a->j[j]];
2209:           aa[j] = 0.0;
2210:         }
2211:       }
2212:     } else if (vecs && i < A->cmap->N) bb[i] = diag * xx[i];
2213:   }
2214:   if (x && b) {
2215:     PetscCall(VecRestoreArrayRead(x, &xx));
2216:     PetscCall(VecRestoreArray(b, &bb));
2217:   }
2218:   PetscCall(PetscFree(zeroed));
2219:   if (diag != 0.0) {
2220:     PetscCall(MatMissingDiagonal_SeqAIJ(A, &missing, &d));
2221:     if (missing) {
2222:       for (i = 0; i < N; i++) {
2223:         if (rows[i] >= A->cmap->N) continue;
2224:         PetscCheck(!a->nonew || rows[i] < d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in row %" PetscInt_FMT " (%" PetscInt_FMT ")", d, rows[i]);
2225:         PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2226:       }
2227:     } else {
2228:       for (i = 0; i < N; i++) aa[a->diag[rows[i]]] = diag;
2229:     }
2230:   }
2231:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2232:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2233:   PetscFunctionReturn(PETSC_SUCCESS);
2234: }

2236: PetscErrorCode MatGetRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2237: {
2238:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2239:   const PetscScalar *aa;

2241:   PetscFunctionBegin;
2242:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2243:   *nz = a->i[row + 1] - a->i[row];
2244:   if (v) *v = PetscSafePointerPlusOffset((PetscScalar *)aa, a->i[row]);
2245:   if (idx) {
2246:     if (*nz && a->j) *idx = a->j + a->i[row];
2247:     else *idx = NULL;
2248:   }
2249:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2250:   PetscFunctionReturn(PETSC_SUCCESS);
2251: }

2253: PetscErrorCode MatRestoreRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2254: {
2255:   PetscFunctionBegin;
2256:   PetscFunctionReturn(PETSC_SUCCESS);
2257: }

2259: static PetscErrorCode MatNorm_SeqAIJ(Mat A, NormType type, PetscReal *nrm)
2260: {
2261:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
2262:   const MatScalar *v;
2263:   PetscReal        sum = 0.0;
2264:   PetscInt         i, j;

2266:   PetscFunctionBegin;
2267:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
2268:   if (type == NORM_FROBENIUS) {
2269: #if defined(PETSC_USE_REAL___FP16)
2270:     PetscBLASInt one = 1, nz = a->nz;
2271:     PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&nz, v, &one));
2272: #else
2273:     for (i = 0; i < a->nz; i++) {
2274:       sum += PetscRealPart(PetscConj(*v) * (*v));
2275:       v++;
2276:     }
2277:     *nrm = PetscSqrtReal(sum);
2278: #endif
2279:     PetscCall(PetscLogFlops(2.0 * a->nz));
2280:   } else if (type == NORM_1) {
2281:     PetscReal *tmp;
2282:     PetscInt  *jj = a->j;
2283:     PetscCall(PetscCalloc1(A->cmap->n + 1, &tmp));
2284:     *nrm = 0.0;
2285:     for (j = 0; j < a->nz; j++) {
2286:       tmp[*jj++] += PetscAbsScalar(*v);
2287:       v++;
2288:     }
2289:     for (j = 0; j < A->cmap->n; j++) {
2290:       if (tmp[j] > *nrm) *nrm = tmp[j];
2291:     }
2292:     PetscCall(PetscFree(tmp));
2293:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2294:   } else if (type == NORM_INFINITY) {
2295:     *nrm = 0.0;
2296:     for (j = 0; j < A->rmap->n; j++) {
2297:       const PetscScalar *v2 = PetscSafePointerPlusOffset(v, a->i[j]);
2298:       sum                   = 0.0;
2299:       for (i = 0; i < a->i[j + 1] - a->i[j]; i++) {
2300:         sum += PetscAbsScalar(*v2);
2301:         v2++;
2302:       }
2303:       if (sum > *nrm) *nrm = sum;
2304:     }
2305:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2306:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for two norm");
2307:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
2308:   PetscFunctionReturn(PETSC_SUCCESS);
2309: }

2311: static PetscErrorCode MatIsTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2312: {
2313:   Mat_SeqAIJ      *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2314:   PetscInt        *adx, *bdx, *aii, *bii, *aptr, *bptr;
2315:   const MatScalar *va, *vb;
2316:   PetscInt         ma, na, mb, nb, i;

2318:   PetscFunctionBegin;
2319:   PetscCall(MatGetSize(A, &ma, &na));
2320:   PetscCall(MatGetSize(B, &mb, &nb));
2321:   if (ma != nb || na != mb) {
2322:     *f = PETSC_FALSE;
2323:     PetscFunctionReturn(PETSC_SUCCESS);
2324:   }
2325:   PetscCall(MatSeqAIJGetArrayRead(A, &va));
2326:   PetscCall(MatSeqAIJGetArrayRead(B, &vb));
2327:   aii = aij->i;
2328:   bii = bij->i;
2329:   adx = aij->j;
2330:   bdx = bij->j;
2331:   PetscCall(PetscMalloc1(ma, &aptr));
2332:   PetscCall(PetscMalloc1(mb, &bptr));
2333:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2334:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2336:   *f = PETSC_TRUE;
2337:   for (i = 0; i < ma; i++) {
2338:     while (aptr[i] < aii[i + 1]) {
2339:       PetscInt    idc, idr;
2340:       PetscScalar vc, vr;
2341:       /* column/row index/value */
2342:       idc = adx[aptr[i]];
2343:       idr = bdx[bptr[idc]];
2344:       vc  = va[aptr[i]];
2345:       vr  = vb[bptr[idc]];
2346:       if (i != idr || PetscAbsScalar(vc - vr) > tol) {
2347:         *f = PETSC_FALSE;
2348:         goto done;
2349:       } else {
2350:         aptr[i]++;
2351:         if (B || i != idc) bptr[idc]++;
2352:       }
2353:     }
2354:   }
2355: done:
2356:   PetscCall(PetscFree(aptr));
2357:   PetscCall(PetscFree(bptr));
2358:   PetscCall(MatSeqAIJRestoreArrayRead(A, &va));
2359:   PetscCall(MatSeqAIJRestoreArrayRead(B, &vb));
2360:   PetscFunctionReturn(PETSC_SUCCESS);
2361: }

2363: static PetscErrorCode MatIsHermitianTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2364: {
2365:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2366:   PetscInt   *adx, *bdx, *aii, *bii, *aptr, *bptr;
2367:   MatScalar  *va, *vb;
2368:   PetscInt    ma, na, mb, nb, i;

2370:   PetscFunctionBegin;
2371:   PetscCall(MatGetSize(A, &ma, &na));
2372:   PetscCall(MatGetSize(B, &mb, &nb));
2373:   if (ma != nb || na != mb) {
2374:     *f = PETSC_FALSE;
2375:     PetscFunctionReturn(PETSC_SUCCESS);
2376:   }
2377:   aii = aij->i;
2378:   bii = bij->i;
2379:   adx = aij->j;
2380:   bdx = bij->j;
2381:   va  = aij->a;
2382:   vb  = bij->a;
2383:   PetscCall(PetscMalloc1(ma, &aptr));
2384:   PetscCall(PetscMalloc1(mb, &bptr));
2385:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2386:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2388:   *f = PETSC_TRUE;
2389:   for (i = 0; i < ma; i++) {
2390:     while (aptr[i] < aii[i + 1]) {
2391:       PetscInt    idc, idr;
2392:       PetscScalar vc, vr;
2393:       /* column/row index/value */
2394:       idc = adx[aptr[i]];
2395:       idr = bdx[bptr[idc]];
2396:       vc  = va[aptr[i]];
2397:       vr  = vb[bptr[idc]];
2398:       if (i != idr || PetscAbsScalar(vc - PetscConj(vr)) > tol) {
2399:         *f = PETSC_FALSE;
2400:         goto done;
2401:       } else {
2402:         aptr[i]++;
2403:         if (B || i != idc) bptr[idc]++;
2404:       }
2405:     }
2406:   }
2407: done:
2408:   PetscCall(PetscFree(aptr));
2409:   PetscCall(PetscFree(bptr));
2410:   PetscFunctionReturn(PETSC_SUCCESS);
2411: }

2413: PetscErrorCode MatDiagonalScale_SeqAIJ(Mat A, Vec ll, Vec rr)
2414: {
2415:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2416:   const PetscScalar *l, *r;
2417:   PetscScalar        x;
2418:   MatScalar         *v;
2419:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, M, nz = a->nz;
2420:   const PetscInt    *jj;

2422:   PetscFunctionBegin;
2423:   if (ll) {
2424:     /* The local size is used so that VecMPI can be passed to this routine
2425:        by MatDiagonalScale_MPIAIJ */
2426:     PetscCall(VecGetLocalSize(ll, &m));
2427:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
2428:     PetscCall(VecGetArrayRead(ll, &l));
2429:     PetscCall(MatSeqAIJGetArray(A, &v));
2430:     for (i = 0; i < m; i++) {
2431:       x = l[i];
2432:       M = a->i[i + 1] - a->i[i];
2433:       for (j = 0; j < M; j++) (*v++) *= x;
2434:     }
2435:     PetscCall(VecRestoreArrayRead(ll, &l));
2436:     PetscCall(PetscLogFlops(nz));
2437:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2438:   }
2439:   if (rr) {
2440:     PetscCall(VecGetLocalSize(rr, &n));
2441:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
2442:     PetscCall(VecGetArrayRead(rr, &r));
2443:     PetscCall(MatSeqAIJGetArray(A, &v));
2444:     jj = a->j;
2445:     for (i = 0; i < nz; i++) (*v++) *= r[*jj++];
2446:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2447:     PetscCall(VecRestoreArrayRead(rr, &r));
2448:     PetscCall(PetscLogFlops(nz));
2449:   }
2450:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
2451:   PetscFunctionReturn(PETSC_SUCCESS);
2452: }

2454: PetscErrorCode MatCreateSubMatrix_SeqAIJ(Mat A, IS isrow, IS iscol, PetscInt csize, MatReuse scall, Mat *B)
2455: {
2456:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *c;
2457:   PetscInt          *smap, i, k, kstart, kend, oldcols = A->cmap->n, *lens;
2458:   PetscInt           row, mat_i, *mat_j, tcol, first, step, *mat_ilen, sum, lensi;
2459:   const PetscInt    *irow, *icol;
2460:   const PetscScalar *aa;
2461:   PetscInt           nrows, ncols;
2462:   PetscInt          *starts, *j_new, *i_new, *aj = a->j, *ai = a->i, ii, *ailen = a->ilen;
2463:   MatScalar         *a_new, *mat_a, *c_a;
2464:   Mat                C;
2465:   PetscBool          stride;

2467:   PetscFunctionBegin;
2468:   PetscCall(ISGetIndices(isrow, &irow));
2469:   PetscCall(ISGetLocalSize(isrow, &nrows));
2470:   PetscCall(ISGetLocalSize(iscol, &ncols));

2472:   PetscCall(PetscObjectTypeCompare((PetscObject)iscol, ISSTRIDE, &stride));
2473:   if (stride) {
2474:     PetscCall(ISStrideGetInfo(iscol, &first, &step));
2475:   } else {
2476:     first = 0;
2477:     step  = 0;
2478:   }
2479:   if (stride && step == 1) {
2480:     /* special case of contiguous rows */
2481:     PetscCall(PetscMalloc2(nrows, &lens, nrows, &starts));
2482:     /* loop over new rows determining lens and starting points */
2483:     for (i = 0; i < nrows; i++) {
2484:       kstart    = ai[irow[i]];
2485:       kend      = kstart + ailen[irow[i]];
2486:       starts[i] = kstart;
2487:       for (k = kstart; k < kend; k++) {
2488:         if (aj[k] >= first) {
2489:           starts[i] = k;
2490:           break;
2491:         }
2492:       }
2493:       sum = 0;
2494:       while (k < kend) {
2495:         if (aj[k++] >= first + ncols) break;
2496:         sum++;
2497:       }
2498:       lens[i] = sum;
2499:     }
2500:     /* create submatrix */
2501:     if (scall == MAT_REUSE_MATRIX) {
2502:       PetscInt n_cols, n_rows;
2503:       PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2504:       PetscCheck(n_rows == nrows && n_cols == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reused submatrix wrong size");
2505:       PetscCall(MatZeroEntries(*B));
2506:       C = *B;
2507:     } else {
2508:       PetscInt rbs, cbs;
2509:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2510:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2511:       PetscCall(ISGetBlockSize(isrow, &rbs));
2512:       PetscCall(ISGetBlockSize(iscol, &cbs));
2513:       PetscCall(MatSetBlockSizes(C, rbs, cbs));
2514:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2515:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2516:     }
2517:     c = (Mat_SeqAIJ *)C->data;

2519:     /* loop over rows inserting into submatrix */
2520:     PetscCall(MatSeqAIJGetArrayWrite(C, &a_new)); // Not 'a_new = c->a-new', since that raw usage ignores offload state of C
2521:     j_new = c->j;
2522:     i_new = c->i;
2523:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2524:     for (i = 0; i < nrows; i++) {
2525:       ii    = starts[i];
2526:       lensi = lens[i];
2527:       if (lensi) {
2528:         for (k = 0; k < lensi; k++) *j_new++ = aj[ii + k] - first;
2529:         PetscCall(PetscArraycpy(a_new, aa + starts[i], lensi));
2530:         a_new += lensi;
2531:       }
2532:       i_new[i + 1] = i_new[i] + lensi;
2533:       c->ilen[i]   = lensi;
2534:     }
2535:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &a_new)); // Set C's offload state properly
2536:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2537:     PetscCall(PetscFree2(lens, starts));
2538:   } else {
2539:     PetscCall(ISGetIndices(iscol, &icol));
2540:     PetscCall(PetscCalloc1(oldcols, &smap));
2541:     PetscCall(PetscMalloc1(1 + nrows, &lens));
2542:     for (i = 0; i < ncols; i++) {
2543:       PetscCheck(icol[i] < oldcols, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Requesting column beyond largest column icol[%" PetscInt_FMT "] %" PetscInt_FMT " >= A->cmap->n %" PetscInt_FMT, i, icol[i], oldcols);
2544:       smap[icol[i]] = i + 1;
2545:     }

2547:     /* determine lens of each row */
2548:     for (i = 0; i < nrows; i++) {
2549:       kstart  = ai[irow[i]];
2550:       kend    = kstart + a->ilen[irow[i]];
2551:       lens[i] = 0;
2552:       for (k = kstart; k < kend; k++) {
2553:         if (smap[aj[k]]) lens[i]++;
2554:       }
2555:     }
2556:     /* Create and fill new matrix */
2557:     if (scall == MAT_REUSE_MATRIX) {
2558:       PetscBool equal;

2560:       c = (Mat_SeqAIJ *)((*B)->data);
2561:       PetscCheck((*B)->rmap->n == nrows && (*B)->cmap->n == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong size");
2562:       PetscCall(PetscArraycmp(c->ilen, lens, (*B)->rmap->n, &equal));
2563:       PetscCheck(equal, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong number of nonzeros");
2564:       PetscCall(PetscArrayzero(c->ilen, (*B)->rmap->n));
2565:       C = *B;
2566:     } else {
2567:       PetscInt rbs, cbs;
2568:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2569:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2570:       PetscCall(ISGetBlockSize(isrow, &rbs));
2571:       PetscCall(ISGetBlockSize(iscol, &cbs));
2572:       if (rbs > 1 || cbs > 1) PetscCall(MatSetBlockSizes(C, rbs, cbs));
2573:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2574:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2575:     }
2576:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));

2578:     c = (Mat_SeqAIJ *)C->data;
2579:     PetscCall(MatSeqAIJGetArrayWrite(C, &c_a)); // Not 'c->a', since that raw usage ignores offload state of C
2580:     for (i = 0; i < nrows; i++) {
2581:       row      = irow[i];
2582:       kstart   = ai[row];
2583:       kend     = kstart + a->ilen[row];
2584:       mat_i    = c->i[i];
2585:       mat_j    = PetscSafePointerPlusOffset(c->j, mat_i);
2586:       mat_a    = PetscSafePointerPlusOffset(c_a, mat_i);
2587:       mat_ilen = c->ilen + i;
2588:       for (k = kstart; k < kend; k++) {
2589:         if ((tcol = smap[a->j[k]])) {
2590:           *mat_j++ = tcol - 1;
2591:           *mat_a++ = aa[k];
2592:           (*mat_ilen)++;
2593:         }
2594:       }
2595:     }
2596:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2597:     /* Free work space */
2598:     PetscCall(ISRestoreIndices(iscol, &icol));
2599:     PetscCall(PetscFree(smap));
2600:     PetscCall(PetscFree(lens));
2601:     /* sort */
2602:     for (i = 0; i < nrows; i++) {
2603:       PetscInt ilen;

2605:       mat_i = c->i[i];
2606:       mat_j = PetscSafePointerPlusOffset(c->j, mat_i);
2607:       mat_a = PetscSafePointerPlusOffset(c_a, mat_i);
2608:       ilen  = c->ilen[i];
2609:       PetscCall(PetscSortIntWithScalarArray(ilen, mat_j, mat_a));
2610:     }
2611:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &c_a));
2612:   }
2613: #if defined(PETSC_HAVE_DEVICE)
2614:   PetscCall(MatBindToCPU(C, A->boundtocpu));
2615: #endif
2616:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
2617:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));

2619:   PetscCall(ISRestoreIndices(isrow, &irow));
2620:   *B = C;
2621:   PetscFunctionReturn(PETSC_SUCCESS);
2622: }

2624: static PetscErrorCode MatGetMultiProcBlock_SeqAIJ(Mat mat, MPI_Comm subComm, MatReuse scall, Mat *subMat)
2625: {
2626:   Mat B;

2628:   PetscFunctionBegin;
2629:   if (scall == MAT_INITIAL_MATRIX) {
2630:     PetscCall(MatCreate(subComm, &B));
2631:     PetscCall(MatSetSizes(B, mat->rmap->n, mat->cmap->n, mat->rmap->n, mat->cmap->n));
2632:     PetscCall(MatSetBlockSizesFromMats(B, mat, mat));
2633:     PetscCall(MatSetType(B, MATSEQAIJ));
2634:     PetscCall(MatDuplicateNoCreate_SeqAIJ(B, mat, MAT_COPY_VALUES, PETSC_TRUE));
2635:     *subMat = B;
2636:   } else {
2637:     PetscCall(MatCopy_SeqAIJ(mat, *subMat, SAME_NONZERO_PATTERN));
2638:   }
2639:   PetscFunctionReturn(PETSC_SUCCESS);
2640: }

2642: static PetscErrorCode MatILUFactor_SeqAIJ(Mat inA, IS row, IS col, const MatFactorInfo *info)
2643: {
2644:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)inA->data;
2645:   Mat         outA;
2646:   PetscBool   row_identity, col_identity;

2648:   PetscFunctionBegin;
2649:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 supported for in-place ilu");

2651:   PetscCall(ISIdentity(row, &row_identity));
2652:   PetscCall(ISIdentity(col, &col_identity));

2654:   outA             = inA;
2655:   outA->factortype = MAT_FACTOR_LU;
2656:   PetscCall(PetscFree(inA->solvertype));
2657:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

2659:   PetscCall(PetscObjectReference((PetscObject)row));
2660:   PetscCall(ISDestroy(&a->row));

2662:   a->row = row;

2664:   PetscCall(PetscObjectReference((PetscObject)col));
2665:   PetscCall(ISDestroy(&a->col));

2667:   a->col = col;

2669:   /* Create the inverse permutation so that it can be used in MatLUFactorNumeric() */
2670:   PetscCall(ISDestroy(&a->icol));
2671:   PetscCall(ISInvertPermutation(col, PETSC_DECIDE, &a->icol));

2673:   if (!a->solve_work) { /* this matrix may have been factored before */
2674:     PetscCall(PetscMalloc1(inA->rmap->n + 1, &a->solve_work));
2675:   }

2677:   PetscCall(MatMarkDiagonal_SeqAIJ(inA));
2678:   if (row_identity && col_identity) {
2679:     PetscCall(MatLUFactorNumeric_SeqAIJ_inplace(outA, inA, info));
2680:   } else {
2681:     PetscCall(MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(outA, inA, info));
2682:   }
2683:   PetscFunctionReturn(PETSC_SUCCESS);
2684: }

2686: PetscErrorCode MatScale_SeqAIJ(Mat inA, PetscScalar alpha)
2687: {
2688:   Mat_SeqAIJ  *a = (Mat_SeqAIJ *)inA->data;
2689:   PetscScalar *v;
2690:   PetscBLASInt one = 1, bnz;

2692:   PetscFunctionBegin;
2693:   PetscCall(MatSeqAIJGetArray(inA, &v));
2694:   PetscCall(PetscBLASIntCast(a->nz, &bnz));
2695:   PetscCallBLAS("BLASscal", BLASscal_(&bnz, &alpha, v, &one));
2696:   PetscCall(PetscLogFlops(a->nz));
2697:   PetscCall(MatSeqAIJRestoreArray(inA, &v));
2698:   PetscCall(MatSeqAIJInvalidateDiagonal(inA));
2699:   PetscFunctionReturn(PETSC_SUCCESS);
2700: }

2702: PetscErrorCode MatDestroySubMatrix_Private(Mat_SubSppt *submatj)
2703: {
2704:   PetscInt i;

2706:   PetscFunctionBegin;
2707:   if (!submatj->id) { /* delete data that are linked only to submats[id=0] */
2708:     PetscCall(PetscFree4(submatj->sbuf1, submatj->ptr, submatj->tmp, submatj->ctr));

2710:     for (i = 0; i < submatj->nrqr; ++i) PetscCall(PetscFree(submatj->sbuf2[i]));
2711:     PetscCall(PetscFree3(submatj->sbuf2, submatj->req_size, submatj->req_source1));

2713:     if (submatj->rbuf1) {
2714:       PetscCall(PetscFree(submatj->rbuf1[0]));
2715:       PetscCall(PetscFree(submatj->rbuf1));
2716:     }

2718:     for (i = 0; i < submatj->nrqs; ++i) PetscCall(PetscFree(submatj->rbuf3[i]));
2719:     PetscCall(PetscFree3(submatj->req_source2, submatj->rbuf2, submatj->rbuf3));
2720:     PetscCall(PetscFree(submatj->pa));
2721:   }

2723: #if defined(PETSC_USE_CTABLE)
2724:   PetscCall(PetscHMapIDestroy(&submatj->rmap));
2725:   if (submatj->cmap_loc) PetscCall(PetscFree(submatj->cmap_loc));
2726:   PetscCall(PetscFree(submatj->rmap_loc));
2727: #else
2728:   PetscCall(PetscFree(submatj->rmap));
2729: #endif

2731:   if (!submatj->allcolumns) {
2732: #if defined(PETSC_USE_CTABLE)
2733:     PetscCall(PetscHMapIDestroy((PetscHMapI *)&submatj->cmap));
2734: #else
2735:     PetscCall(PetscFree(submatj->cmap));
2736: #endif
2737:   }
2738:   PetscCall(PetscFree(submatj->row2proc));

2740:   PetscCall(PetscFree(submatj));
2741:   PetscFunctionReturn(PETSC_SUCCESS);
2742: }

2744: PetscErrorCode MatDestroySubMatrix_SeqAIJ(Mat C)
2745: {
2746:   Mat_SeqAIJ  *c       = (Mat_SeqAIJ *)C->data;
2747:   Mat_SubSppt *submatj = c->submatis1;

2749:   PetscFunctionBegin;
2750:   PetscCall((*submatj->destroy)(C));
2751:   PetscCall(MatDestroySubMatrix_Private(submatj));
2752:   PetscFunctionReturn(PETSC_SUCCESS);
2753: }

2755: /* Note this has code duplication with MatDestroySubMatrices_SeqBAIJ() */
2756: static PetscErrorCode MatDestroySubMatrices_SeqAIJ(PetscInt n, Mat *mat[])
2757: {
2758:   PetscInt     i;
2759:   Mat          C;
2760:   Mat_SeqAIJ  *c;
2761:   Mat_SubSppt *submatj;

2763:   PetscFunctionBegin;
2764:   for (i = 0; i < n; i++) {
2765:     C       = (*mat)[i];
2766:     c       = (Mat_SeqAIJ *)C->data;
2767:     submatj = c->submatis1;
2768:     if (submatj) {
2769:       if (--((PetscObject)C)->refct <= 0) {
2770:         PetscCall(PetscFree(C->factorprefix));
2771:         PetscCall((*submatj->destroy)(C));
2772:         PetscCall(MatDestroySubMatrix_Private(submatj));
2773:         PetscCall(PetscFree(C->defaultvectype));
2774:         PetscCall(PetscFree(C->defaultrandtype));
2775:         PetscCall(PetscLayoutDestroy(&C->rmap));
2776:         PetscCall(PetscLayoutDestroy(&C->cmap));
2777:         PetscCall(PetscHeaderDestroy(&C));
2778:       }
2779:     } else {
2780:       PetscCall(MatDestroy(&C));
2781:     }
2782:   }

2784:   /* Destroy Dummy submatrices created for reuse */
2785:   PetscCall(MatDestroySubMatrices_Dummy(n, mat));

2787:   PetscCall(PetscFree(*mat));
2788:   PetscFunctionReturn(PETSC_SUCCESS);
2789: }

2791: static PetscErrorCode MatCreateSubMatrices_SeqAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2792: {
2793:   PetscInt i;

2795:   PetscFunctionBegin;
2796:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n + 1, B));

2798:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqAIJ(A, irow[i], icol[i], PETSC_DECIDE, scall, &(*B)[i]));
2799:   PetscFunctionReturn(PETSC_SUCCESS);
2800: }

2802: static PetscErrorCode MatIncreaseOverlap_SeqAIJ(Mat A, PetscInt is_max, IS is[], PetscInt ov)
2803: {
2804:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2805:   PetscInt        row, i, j, k, l, ll, m, n, *nidx, isz, val;
2806:   const PetscInt *idx;
2807:   PetscInt        start, end, *ai, *aj, bs = (A->rmap->bs > 0 && A->rmap->bs == A->cmap->bs) ? A->rmap->bs : 1;
2808:   PetscBT         table;

2810:   PetscFunctionBegin;
2811:   m  = A->rmap->n / bs;
2812:   ai = a->i;
2813:   aj = a->j;

2815:   PetscCheck(ov >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "illegal negative overlap value used");

2817:   PetscCall(PetscMalloc1(m + 1, &nidx));
2818:   PetscCall(PetscBTCreate(m, &table));

2820:   for (i = 0; i < is_max; i++) {
2821:     /* Initialize the two local arrays */
2822:     isz = 0;
2823:     PetscCall(PetscBTMemzero(m, table));

2825:     /* Extract the indices, assume there can be duplicate entries */
2826:     PetscCall(ISGetIndices(is[i], &idx));
2827:     PetscCall(ISGetLocalSize(is[i], &n));

2829:     if (bs > 1) {
2830:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2831:       for (j = 0; j < n; ++j) {
2832:         if (!PetscBTLookupSet(table, idx[j] / bs)) nidx[isz++] = idx[j] / bs;
2833:       }
2834:       PetscCall(ISRestoreIndices(is[i], &idx));
2835:       PetscCall(ISDestroy(&is[i]));

2837:       k = 0;
2838:       for (j = 0; j < ov; j++) { /* for each overlap */
2839:         n = isz;
2840:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2841:           for (ll = 0; ll < bs; ll++) {
2842:             row   = bs * nidx[k] + ll;
2843:             start = ai[row];
2844:             end   = ai[row + 1];
2845:             for (l = start; l < end; l++) {
2846:               val = aj[l] / bs;
2847:               if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2848:             }
2849:           }
2850:         }
2851:       }
2852:       PetscCall(ISCreateBlock(PETSC_COMM_SELF, bs, isz, nidx, PETSC_COPY_VALUES, (is + i)));
2853:     } else {
2854:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2855:       for (j = 0; j < n; ++j) {
2856:         if (!PetscBTLookupSet(table, idx[j])) nidx[isz++] = idx[j];
2857:       }
2858:       PetscCall(ISRestoreIndices(is[i], &idx));
2859:       PetscCall(ISDestroy(&is[i]));

2861:       k = 0;
2862:       for (j = 0; j < ov; j++) { /* for each overlap */
2863:         n = isz;
2864:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2865:           row   = nidx[k];
2866:           start = ai[row];
2867:           end   = ai[row + 1];
2868:           for (l = start; l < end; l++) {
2869:             val = aj[l];
2870:             if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2871:           }
2872:         }
2873:       }
2874:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, isz, nidx, PETSC_COPY_VALUES, (is + i)));
2875:     }
2876:   }
2877:   PetscCall(PetscBTDestroy(&table));
2878:   PetscCall(PetscFree(nidx));
2879:   PetscFunctionReturn(PETSC_SUCCESS);
2880: }

2882: static PetscErrorCode MatPermute_SeqAIJ(Mat A, IS rowp, IS colp, Mat *B)
2883: {
2884:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2885:   PetscInt        i, nz = 0, m = A->rmap->n, n = A->cmap->n;
2886:   const PetscInt *row, *col;
2887:   PetscInt       *cnew, j, *lens;
2888:   IS              icolp, irowp;
2889:   PetscInt       *cwork = NULL;
2890:   PetscScalar    *vwork = NULL;

2892:   PetscFunctionBegin;
2893:   PetscCall(ISInvertPermutation(rowp, PETSC_DECIDE, &irowp));
2894:   PetscCall(ISGetIndices(irowp, &row));
2895:   PetscCall(ISInvertPermutation(colp, PETSC_DECIDE, &icolp));
2896:   PetscCall(ISGetIndices(icolp, &col));

2898:   /* determine lengths of permuted rows */
2899:   PetscCall(PetscMalloc1(m + 1, &lens));
2900:   for (i = 0; i < m; i++) lens[row[i]] = a->i[i + 1] - a->i[i];
2901:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2902:   PetscCall(MatSetSizes(*B, m, n, m, n));
2903:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2904:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2905:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*B, 0, lens));
2906:   PetscCall(PetscFree(lens));

2908:   PetscCall(PetscMalloc1(n, &cnew));
2909:   for (i = 0; i < m; i++) {
2910:     PetscCall(MatGetRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2911:     for (j = 0; j < nz; j++) cnew[j] = col[cwork[j]];
2912:     PetscCall(MatSetValues_SeqAIJ(*B, 1, &row[i], nz, cnew, vwork, INSERT_VALUES));
2913:     PetscCall(MatRestoreRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2914:   }
2915:   PetscCall(PetscFree(cnew));

2917:   (*B)->assembled = PETSC_FALSE;

2919: #if defined(PETSC_HAVE_DEVICE)
2920:   PetscCall(MatBindToCPU(*B, A->boundtocpu));
2921: #endif
2922:   PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
2923:   PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
2924:   PetscCall(ISRestoreIndices(irowp, &row));
2925:   PetscCall(ISRestoreIndices(icolp, &col));
2926:   PetscCall(ISDestroy(&irowp));
2927:   PetscCall(ISDestroy(&icolp));
2928:   if (rowp == colp) PetscCall(MatPropagateSymmetryOptions(A, *B));
2929:   PetscFunctionReturn(PETSC_SUCCESS);
2930: }

2932: PetscErrorCode MatCopy_SeqAIJ(Mat A, Mat B, MatStructure str)
2933: {
2934:   PetscFunctionBegin;
2935:   /* If the two matrices have the same copy implementation, use fast copy. */
2936:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
2937:     Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2938:     Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
2939:     const PetscScalar *aa;

2941:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2942:     PetscCheck(a->i[A->rmap->n] == b->i[B->rmap->n], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different %" PetscInt_FMT " != %" PetscInt_FMT, a->i[A->rmap->n], b->i[B->rmap->n]);
2943:     PetscCall(PetscArraycpy(b->a, aa, a->i[A->rmap->n]));
2944:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
2945:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2946:   } else {
2947:     PetscCall(MatCopy_Basic(A, B, str));
2948:   }
2949:   PetscFunctionReturn(PETSC_SUCCESS);
2950: }

2952: PETSC_INTERN PetscErrorCode MatSeqAIJGetArray_SeqAIJ(Mat A, PetscScalar *array[])
2953: {
2954:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2956:   PetscFunctionBegin;
2957:   *array = a->a;
2958:   PetscFunctionReturn(PETSC_SUCCESS);
2959: }

2961: PETSC_INTERN PetscErrorCode MatSeqAIJRestoreArray_SeqAIJ(Mat A, PetscScalar *array[])
2962: {
2963:   PetscFunctionBegin;
2964:   *array = NULL;
2965:   PetscFunctionReturn(PETSC_SUCCESS);
2966: }

2968: /*
2969:    Computes the number of nonzeros per row needed for preallocation when X and Y
2970:    have different nonzero structure.
2971: */
2972: PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt m, const PetscInt *xi, const PetscInt *xj, const PetscInt *yi, const PetscInt *yj, PetscInt *nnz)
2973: {
2974:   PetscInt i, j, k, nzx, nzy;

2976:   PetscFunctionBegin;
2977:   /* Set the number of nonzeros in the new matrix */
2978:   for (i = 0; i < m; i++) {
2979:     const PetscInt *xjj = PetscSafePointerPlusOffset(xj, xi[i]), *yjj = PetscSafePointerPlusOffset(yj, yi[i]);
2980:     nzx    = xi[i + 1] - xi[i];
2981:     nzy    = yi[i + 1] - yi[i];
2982:     nnz[i] = 0;
2983:     for (j = 0, k = 0; j < nzx; j++) {                  /* Point in X */
2984:       for (; k < nzy && yjj[k] < xjj[j]; k++) nnz[i]++; /* Catch up to X */
2985:       if (k < nzy && yjj[k] == xjj[j]) k++;             /* Skip duplicate */
2986:       nnz[i]++;
2987:     }
2988:     for (; k < nzy; k++) nnz[i]++;
2989:   }
2990:   PetscFunctionReturn(PETSC_SUCCESS);
2991: }

2993: PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat Y, Mat X, PetscInt *nnz)
2994: {
2995:   PetscInt    m = Y->rmap->N;
2996:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data;
2997:   Mat_SeqAIJ *y = (Mat_SeqAIJ *)Y->data;

2999:   PetscFunctionBegin;
3000:   /* Set the number of nonzeros in the new matrix */
3001:   PetscCall(MatAXPYGetPreallocation_SeqX_private(m, x->i, x->j, y->i, y->j, nnz));
3002:   PetscFunctionReturn(PETSC_SUCCESS);
3003: }

3005: PetscErrorCode MatAXPY_SeqAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
3006: {
3007:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;

3009:   PetscFunctionBegin;
3010:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
3011:     PetscBool e = x->nz == y->nz ? PETSC_TRUE : PETSC_FALSE;
3012:     if (e) {
3013:       PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
3014:       if (e) {
3015:         PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
3016:         if (e) str = SAME_NONZERO_PATTERN;
3017:       }
3018:     }
3019:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
3020:   }
3021:   if (str == SAME_NONZERO_PATTERN) {
3022:     const PetscScalar *xa;
3023:     PetscScalar       *ya, alpha = a;
3024:     PetscBLASInt       one = 1, bnz;

3026:     PetscCall(PetscBLASIntCast(x->nz, &bnz));
3027:     PetscCall(MatSeqAIJGetArray(Y, &ya));
3028:     PetscCall(MatSeqAIJGetArrayRead(X, &xa));
3029:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa, &one, ya, &one));
3030:     PetscCall(MatSeqAIJRestoreArrayRead(X, &xa));
3031:     PetscCall(MatSeqAIJRestoreArray(Y, &ya));
3032:     PetscCall(PetscLogFlops(2.0 * bnz));
3033:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
3034:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
3035:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
3036:     PetscCall(MatAXPY_Basic(Y, a, X, str));
3037:   } else {
3038:     Mat       B;
3039:     PetscInt *nnz;
3040:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
3041:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
3042:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
3043:     PetscCall(MatSetLayouts(B, Y->rmap, Y->cmap));
3044:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
3045:     PetscCall(MatAXPYGetPreallocation_SeqAIJ(Y, X, nnz));
3046:     PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
3047:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
3048:     PetscCall(MatHeaderMerge(Y, &B));
3049:     PetscCall(MatSeqAIJCheckInode(Y));
3050:     PetscCall(PetscFree(nnz));
3051:   }
3052:   PetscFunctionReturn(PETSC_SUCCESS);
3053: }

3055: PETSC_INTERN PetscErrorCode MatConjugate_SeqAIJ(Mat mat)
3056: {
3057: #if defined(PETSC_USE_COMPLEX)
3058:   Mat_SeqAIJ  *aij = (Mat_SeqAIJ *)mat->data;
3059:   PetscInt     i, nz;
3060:   PetscScalar *a;

3062:   PetscFunctionBegin;
3063:   nz = aij->nz;
3064:   PetscCall(MatSeqAIJGetArray(mat, &a));
3065:   for (i = 0; i < nz; i++) a[i] = PetscConj(a[i]);
3066:   PetscCall(MatSeqAIJRestoreArray(mat, &a));
3067: #else
3068:   PetscFunctionBegin;
3069: #endif
3070:   PetscFunctionReturn(PETSC_SUCCESS);
3071: }

3073: static PetscErrorCode MatGetRowMaxAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3074: {
3075:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3076:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3077:   PetscReal        atmp;
3078:   PetscScalar     *x;
3079:   const MatScalar *aa, *av;

3081:   PetscFunctionBegin;
3082:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3083:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3084:   aa = av;
3085:   ai = a->i;
3086:   aj = a->j;

3088:   PetscCall(VecSet(v, 0.0));
3089:   PetscCall(VecGetArrayWrite(v, &x));
3090:   PetscCall(VecGetLocalSize(v, &n));
3091:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3092:   for (i = 0; i < m; i++) {
3093:     ncols = ai[1] - ai[0];
3094:     ai++;
3095:     for (j = 0; j < ncols; j++) {
3096:       atmp = PetscAbsScalar(*aa);
3097:       if (PetscAbsScalar(x[i]) < atmp) {
3098:         x[i] = atmp;
3099:         if (idx) idx[i] = *aj;
3100:       }
3101:       aa++;
3102:       aj++;
3103:     }
3104:   }
3105:   PetscCall(VecRestoreArrayWrite(v, &x));
3106:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3107:   PetscFunctionReturn(PETSC_SUCCESS);
3108: }

3110: static PetscErrorCode MatGetRowSumAbs_SeqAIJ(Mat A, Vec v)
3111: {
3112:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3113:   PetscInt         i, j, m = A->rmap->n, *ai, ncols, n;
3114:   PetscScalar     *x;
3115:   const MatScalar *aa, *av;

3117:   PetscFunctionBegin;
3118:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3119:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3120:   aa = av;
3121:   ai = a->i;

3123:   PetscCall(VecSet(v, 0.0));
3124:   PetscCall(VecGetArrayWrite(v, &x));
3125:   PetscCall(VecGetLocalSize(v, &n));
3126:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3127:   for (i = 0; i < m; i++) {
3128:     ncols = ai[1] - ai[0];
3129:     ai++;
3130:     for (j = 0; j < ncols; j++) {
3131:       x[i] += PetscAbsScalar(*aa);
3132:       aa++;
3133:     }
3134:   }
3135:   PetscCall(VecRestoreArrayWrite(v, &x));
3136:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3137:   PetscFunctionReturn(PETSC_SUCCESS);
3138: }

3140: static PetscErrorCode MatGetRowMax_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3141: {
3142:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3143:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3144:   PetscScalar     *x;
3145:   const MatScalar *aa, *av;

3147:   PetscFunctionBegin;
3148:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3149:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3150:   aa = av;
3151:   ai = a->i;
3152:   aj = a->j;

3154:   PetscCall(VecSet(v, 0.0));
3155:   PetscCall(VecGetArrayWrite(v, &x));
3156:   PetscCall(VecGetLocalSize(v, &n));
3157:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3158:   for (i = 0; i < m; i++) {
3159:     ncols = ai[1] - ai[0];
3160:     ai++;
3161:     if (ncols == A->cmap->n) { /* row is dense */
3162:       x[i] = *aa;
3163:       if (idx) idx[i] = 0;
3164:     } else { /* row is sparse so already KNOW maximum is 0.0 or higher */
3165:       x[i] = 0.0;
3166:       if (idx) {
3167:         for (j = 0; j < ncols; j++) { /* find first implicit 0.0 in the row */
3168:           if (aj[j] > j) {
3169:             idx[i] = j;
3170:             break;
3171:           }
3172:         }
3173:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3174:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3175:       }
3176:     }
3177:     for (j = 0; j < ncols; j++) {
3178:       if (PetscRealPart(x[i]) < PetscRealPart(*aa)) {
3179:         x[i] = *aa;
3180:         if (idx) idx[i] = *aj;
3181:       }
3182:       aa++;
3183:       aj++;
3184:     }
3185:   }
3186:   PetscCall(VecRestoreArrayWrite(v, &x));
3187:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3188:   PetscFunctionReturn(PETSC_SUCCESS);
3189: }

3191: static PetscErrorCode MatGetRowMinAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3192: {
3193:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3194:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3195:   PetscScalar     *x;
3196:   const MatScalar *aa, *av;

3198:   PetscFunctionBegin;
3199:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3200:   aa = av;
3201:   ai = a->i;
3202:   aj = a->j;

3204:   PetscCall(VecSet(v, 0.0));
3205:   PetscCall(VecGetArrayWrite(v, &x));
3206:   PetscCall(VecGetLocalSize(v, &n));
3207:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector, %" PetscInt_FMT " vs. %" PetscInt_FMT " rows", m, n);
3208:   for (i = 0; i < m; i++) {
3209:     ncols = ai[1] - ai[0];
3210:     ai++;
3211:     if (ncols == A->cmap->n) { /* row is dense */
3212:       x[i] = *aa;
3213:       if (idx) idx[i] = 0;
3214:     } else { /* row is sparse so already KNOW minimum is 0.0 or higher */
3215:       x[i] = 0.0;
3216:       if (idx) { /* find first implicit 0.0 in the row */
3217:         for (j = 0; j < ncols; j++) {
3218:           if (aj[j] > j) {
3219:             idx[i] = j;
3220:             break;
3221:           }
3222:         }
3223:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3224:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3225:       }
3226:     }
3227:     for (j = 0; j < ncols; j++) {
3228:       if (PetscAbsScalar(x[i]) > PetscAbsScalar(*aa)) {
3229:         x[i] = *aa;
3230:         if (idx) idx[i] = *aj;
3231:       }
3232:       aa++;
3233:       aj++;
3234:     }
3235:   }
3236:   PetscCall(VecRestoreArrayWrite(v, &x));
3237:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3238:   PetscFunctionReturn(PETSC_SUCCESS);
3239: }

3241: static PetscErrorCode MatGetRowMin_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3242: {
3243:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3244:   PetscInt         i, j, m = A->rmap->n, ncols, n;
3245:   const PetscInt  *ai, *aj;
3246:   PetscScalar     *x;
3247:   const MatScalar *aa, *av;

3249:   PetscFunctionBegin;
3250:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3251:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3252:   aa = av;
3253:   ai = a->i;
3254:   aj = a->j;

3256:   PetscCall(VecSet(v, 0.0));
3257:   PetscCall(VecGetArrayWrite(v, &x));
3258:   PetscCall(VecGetLocalSize(v, &n));
3259:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3260:   for (i = 0; i < m; i++) {
3261:     ncols = ai[1] - ai[0];
3262:     ai++;
3263:     if (ncols == A->cmap->n) { /* row is dense */
3264:       x[i] = *aa;
3265:       if (idx) idx[i] = 0;
3266:     } else { /* row is sparse so already KNOW minimum is 0.0 or lower */
3267:       x[i] = 0.0;
3268:       if (idx) { /* find first implicit 0.0 in the row */
3269:         for (j = 0; j < ncols; j++) {
3270:           if (aj[j] > j) {
3271:             idx[i] = j;
3272:             break;
3273:           }
3274:         }
3275:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3276:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3277:       }
3278:     }
3279:     for (j = 0; j < ncols; j++) {
3280:       if (PetscRealPart(x[i]) > PetscRealPart(*aa)) {
3281:         x[i] = *aa;
3282:         if (idx) idx[i] = *aj;
3283:       }
3284:       aa++;
3285:       aj++;
3286:     }
3287:   }
3288:   PetscCall(VecRestoreArrayWrite(v, &x));
3289:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3290:   PetscFunctionReturn(PETSC_SUCCESS);
3291: }

3293: static PetscErrorCode MatInvertBlockDiagonal_SeqAIJ(Mat A, const PetscScalar **values)
3294: {
3295:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
3296:   PetscInt        i, bs = PetscAbs(A->rmap->bs), mbs = A->rmap->n / bs, ipvt[5], bs2 = bs * bs, *v_pivots, ij[7], *IJ, j;
3297:   MatScalar      *diag, work[25], *v_work;
3298:   const PetscReal shift = 0.0;
3299:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;

3301:   PetscFunctionBegin;
3302:   allowzeropivot = PetscNot(A->erroriffailure);
3303:   if (a->ibdiagvalid) {
3304:     if (values) *values = a->ibdiag;
3305:     PetscFunctionReturn(PETSC_SUCCESS);
3306:   }
3307:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
3308:   if (!a->ibdiag) { PetscCall(PetscMalloc1(bs2 * mbs, &a->ibdiag)); }
3309:   diag = a->ibdiag;
3310:   if (values) *values = a->ibdiag;
3311:   /* factor and invert each block */
3312:   switch (bs) {
3313:   case 1:
3314:     for (i = 0; i < mbs; i++) {
3315:       PetscCall(MatGetValues(A, 1, &i, 1, &i, diag + i));
3316:       if (PetscAbsScalar(diag[i] + shift) < PETSC_MACHINE_EPSILON) {
3317:         if (allowzeropivot) {
3318:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3319:           A->factorerror_zeropivot_value = PetscAbsScalar(diag[i]);
3320:           A->factorerror_zeropivot_row   = i;
3321:           PetscCall(PetscInfo(A, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g\n", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON));
3322:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON);
3323:       }
3324:       diag[i] = (PetscScalar)1.0 / (diag[i] + shift);
3325:     }
3326:     break;
3327:   case 2:
3328:     for (i = 0; i < mbs; i++) {
3329:       ij[0] = 2 * i;
3330:       ij[1] = 2 * i + 1;
3331:       PetscCall(MatGetValues(A, 2, ij, 2, ij, diag));
3332:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
3333:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3334:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
3335:       diag += 4;
3336:     }
3337:     break;
3338:   case 3:
3339:     for (i = 0; i < mbs; i++) {
3340:       ij[0] = 3 * i;
3341:       ij[1] = 3 * i + 1;
3342:       ij[2] = 3 * i + 2;
3343:       PetscCall(MatGetValues(A, 3, ij, 3, ij, diag));
3344:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
3345:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3346:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
3347:       diag += 9;
3348:     }
3349:     break;
3350:   case 4:
3351:     for (i = 0; i < mbs; i++) {
3352:       ij[0] = 4 * i;
3353:       ij[1] = 4 * i + 1;
3354:       ij[2] = 4 * i + 2;
3355:       ij[3] = 4 * i + 3;
3356:       PetscCall(MatGetValues(A, 4, ij, 4, ij, diag));
3357:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
3358:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3359:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
3360:       diag += 16;
3361:     }
3362:     break;
3363:   case 5:
3364:     for (i = 0; i < mbs; i++) {
3365:       ij[0] = 5 * i;
3366:       ij[1] = 5 * i + 1;
3367:       ij[2] = 5 * i + 2;
3368:       ij[3] = 5 * i + 3;
3369:       ij[4] = 5 * i + 4;
3370:       PetscCall(MatGetValues(A, 5, ij, 5, ij, diag));
3371:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3372:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3373:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
3374:       diag += 25;
3375:     }
3376:     break;
3377:   case 6:
3378:     for (i = 0; i < mbs; i++) {
3379:       ij[0] = 6 * i;
3380:       ij[1] = 6 * i + 1;
3381:       ij[2] = 6 * i + 2;
3382:       ij[3] = 6 * i + 3;
3383:       ij[4] = 6 * i + 4;
3384:       ij[5] = 6 * i + 5;
3385:       PetscCall(MatGetValues(A, 6, ij, 6, ij, diag));
3386:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
3387:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3388:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
3389:       diag += 36;
3390:     }
3391:     break;
3392:   case 7:
3393:     for (i = 0; i < mbs; i++) {
3394:       ij[0] = 7 * i;
3395:       ij[1] = 7 * i + 1;
3396:       ij[2] = 7 * i + 2;
3397:       ij[3] = 7 * i + 3;
3398:       ij[4] = 7 * i + 4;
3399:       ij[5] = 7 * i + 5;
3400:       ij[6] = 7 * i + 6;
3401:       PetscCall(MatGetValues(A, 7, ij, 7, ij, diag));
3402:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
3403:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3404:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
3405:       diag += 49;
3406:     }
3407:     break;
3408:   default:
3409:     PetscCall(PetscMalloc3(bs, &v_work, bs, &v_pivots, bs, &IJ));
3410:     for (i = 0; i < mbs; i++) {
3411:       for (j = 0; j < bs; j++) IJ[j] = bs * i + j;
3412:       PetscCall(MatGetValues(A, bs, IJ, bs, IJ, diag));
3413:       PetscCall(PetscKernel_A_gets_inverse_A(bs, diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3414:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3415:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bs));
3416:       diag += bs2;
3417:     }
3418:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3419:   }
3420:   a->ibdiagvalid = PETSC_TRUE;
3421:   PetscFunctionReturn(PETSC_SUCCESS);
3422: }

3424: static PetscErrorCode MatSetRandom_SeqAIJ(Mat x, PetscRandom rctx)
3425: {
3426:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3427:   PetscScalar a, *aa;
3428:   PetscInt    m, n, i, j, col;

3430:   PetscFunctionBegin;
3431:   if (!x->assembled) {
3432:     PetscCall(MatGetSize(x, &m, &n));
3433:     for (i = 0; i < m; i++) {
3434:       for (j = 0; j < aij->imax[i]; j++) {
3435:         PetscCall(PetscRandomGetValue(rctx, &a));
3436:         col = (PetscInt)(n * PetscRealPart(a));
3437:         PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3438:       }
3439:     }
3440:   } else {
3441:     PetscCall(MatSeqAIJGetArrayWrite(x, &aa));
3442:     for (i = 0; i < aij->nz; i++) PetscCall(PetscRandomGetValue(rctx, aa + i));
3443:     PetscCall(MatSeqAIJRestoreArrayWrite(x, &aa));
3444:   }
3445:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3446:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3447:   PetscFunctionReturn(PETSC_SUCCESS);
3448: }

3450: /* Like MatSetRandom_SeqAIJ, but do not set values on columns in range of [low, high) */
3451: PetscErrorCode MatSetRandomSkipColumnRange_SeqAIJ_Private(Mat x, PetscInt low, PetscInt high, PetscRandom rctx)
3452: {
3453:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3454:   PetscScalar a;
3455:   PetscInt    m, n, i, j, col, nskip;

3457:   PetscFunctionBegin;
3458:   nskip = high - low;
3459:   PetscCall(MatGetSize(x, &m, &n));
3460:   n -= nskip; /* shrink number of columns where nonzeros can be set */
3461:   for (i = 0; i < m; i++) {
3462:     for (j = 0; j < aij->imax[i]; j++) {
3463:       PetscCall(PetscRandomGetValue(rctx, &a));
3464:       col = (PetscInt)(n * PetscRealPart(a));
3465:       if (col >= low) col += nskip; /* shift col rightward to skip the hole */
3466:       PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3467:     }
3468:   }
3469:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3470:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3471:   PetscFunctionReturn(PETSC_SUCCESS);
3472: }

3474: static struct _MatOps MatOps_Values = {MatSetValues_SeqAIJ,
3475:                                        MatGetRow_SeqAIJ,
3476:                                        MatRestoreRow_SeqAIJ,
3477:                                        MatMult_SeqAIJ,
3478:                                        /*  4*/ MatMultAdd_SeqAIJ,
3479:                                        MatMultTranspose_SeqAIJ,
3480:                                        MatMultTransposeAdd_SeqAIJ,
3481:                                        NULL,
3482:                                        NULL,
3483:                                        NULL,
3484:                                        /* 10*/ NULL,
3485:                                        MatLUFactor_SeqAIJ,
3486:                                        NULL,
3487:                                        MatSOR_SeqAIJ,
3488:                                        MatTranspose_SeqAIJ,
3489:                                        /*1 5*/ MatGetInfo_SeqAIJ,
3490:                                        MatEqual_SeqAIJ,
3491:                                        MatGetDiagonal_SeqAIJ,
3492:                                        MatDiagonalScale_SeqAIJ,
3493:                                        MatNorm_SeqAIJ,
3494:                                        /* 20*/ NULL,
3495:                                        MatAssemblyEnd_SeqAIJ,
3496:                                        MatSetOption_SeqAIJ,
3497:                                        MatZeroEntries_SeqAIJ,
3498:                                        /* 24*/ MatZeroRows_SeqAIJ,
3499:                                        NULL,
3500:                                        NULL,
3501:                                        NULL,
3502:                                        NULL,
3503:                                        /* 29*/ MatSetUp_Seq_Hash,
3504:                                        NULL,
3505:                                        NULL,
3506:                                        NULL,
3507:                                        NULL,
3508:                                        /* 34*/ MatDuplicate_SeqAIJ,
3509:                                        NULL,
3510:                                        NULL,
3511:                                        MatILUFactor_SeqAIJ,
3512:                                        NULL,
3513:                                        /* 39*/ MatAXPY_SeqAIJ,
3514:                                        MatCreateSubMatrices_SeqAIJ,
3515:                                        MatIncreaseOverlap_SeqAIJ,
3516:                                        MatGetValues_SeqAIJ,
3517:                                        MatCopy_SeqAIJ,
3518:                                        /* 44*/ MatGetRowMax_SeqAIJ,
3519:                                        MatScale_SeqAIJ,
3520:                                        MatShift_SeqAIJ,
3521:                                        MatDiagonalSet_SeqAIJ,
3522:                                        MatZeroRowsColumns_SeqAIJ,
3523:                                        /* 49*/ MatSetRandom_SeqAIJ,
3524:                                        MatGetRowIJ_SeqAIJ,
3525:                                        MatRestoreRowIJ_SeqAIJ,
3526:                                        MatGetColumnIJ_SeqAIJ,
3527:                                        MatRestoreColumnIJ_SeqAIJ,
3528:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
3529:                                        NULL,
3530:                                        NULL,
3531:                                        MatPermute_SeqAIJ,
3532:                                        NULL,
3533:                                        /* 59*/ NULL,
3534:                                        MatDestroy_SeqAIJ,
3535:                                        MatView_SeqAIJ,
3536:                                        NULL,
3537:                                        NULL,
3538:                                        /* 64*/ NULL,
3539:                                        MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ,
3540:                                        NULL,
3541:                                        NULL,
3542:                                        NULL,
3543:                                        /* 69*/ MatGetRowMaxAbs_SeqAIJ,
3544:                                        MatGetRowMinAbs_SeqAIJ,
3545:                                        NULL,
3546:                                        NULL,
3547:                                        NULL,
3548:                                        /* 74*/ NULL,
3549:                                        MatFDColoringApply_AIJ,
3550:                                        NULL,
3551:                                        NULL,
3552:                                        NULL,
3553:                                        /* 79*/ MatFindZeroDiagonals_SeqAIJ,
3554:                                        NULL,
3555:                                        NULL,
3556:                                        NULL,
3557:                                        MatLoad_SeqAIJ,
3558:                                        /* 84*/ NULL,
3559:                                        NULL,
3560:                                        NULL,
3561:                                        NULL,
3562:                                        NULL,
3563:                                        /* 89*/ NULL,
3564:                                        NULL,
3565:                                        MatMatMultNumeric_SeqAIJ_SeqAIJ,
3566:                                        NULL,
3567:                                        NULL,
3568:                                        /* 94*/ MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy,
3569:                                        NULL,
3570:                                        NULL,
3571:                                        MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ,
3572:                                        NULL,
3573:                                        /* 99*/ MatProductSetFromOptions_SeqAIJ,
3574:                                        NULL,
3575:                                        NULL,
3576:                                        MatConjugate_SeqAIJ,
3577:                                        NULL,
3578:                                        /*104*/ MatSetValuesRow_SeqAIJ,
3579:                                        MatRealPart_SeqAIJ,
3580:                                        MatImaginaryPart_SeqAIJ,
3581:                                        NULL,
3582:                                        NULL,
3583:                                        /*109*/ MatMatSolve_SeqAIJ,
3584:                                        NULL,
3585:                                        MatGetRowMin_SeqAIJ,
3586:                                        NULL,
3587:                                        MatMissingDiagonal_SeqAIJ,
3588:                                        /*114*/ NULL,
3589:                                        NULL,
3590:                                        NULL,
3591:                                        NULL,
3592:                                        NULL,
3593:                                        /*119*/ NULL,
3594:                                        NULL,
3595:                                        NULL,
3596:                                        NULL,
3597:                                        MatGetMultiProcBlock_SeqAIJ,
3598:                                        /*124*/ MatFindNonzeroRows_SeqAIJ,
3599:                                        MatGetColumnReductions_SeqAIJ,
3600:                                        MatInvertBlockDiagonal_SeqAIJ,
3601:                                        MatInvertVariableBlockDiagonal_SeqAIJ,
3602:                                        NULL,
3603:                                        /*129*/ NULL,
3604:                                        NULL,
3605:                                        NULL,
3606:                                        MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ,
3607:                                        MatTransposeColoringCreate_SeqAIJ,
3608:                                        /*134*/ MatTransColoringApplySpToDen_SeqAIJ,
3609:                                        MatTransColoringApplyDenToSp_SeqAIJ,
3610:                                        NULL,
3611:                                        NULL,
3612:                                        MatRARtNumeric_SeqAIJ_SeqAIJ,
3613:                                        /*139*/ NULL,
3614:                                        NULL,
3615:                                        NULL,
3616:                                        MatFDColoringSetUp_SeqXAIJ,
3617:                                        MatFindOffBlockDiagonalEntries_SeqAIJ,
3618:                                        MatCreateMPIMatConcatenateSeqMat_SeqAIJ,
3619:                                        /*145*/ MatDestroySubMatrices_SeqAIJ,
3620:                                        NULL,
3621:                                        NULL,
3622:                                        MatCreateGraph_Simple_AIJ,
3623:                                        NULL,
3624:                                        /*150*/ MatTransposeSymbolic_SeqAIJ,
3625:                                        MatEliminateZeros_SeqAIJ,
3626:                                        MatGetRowSumAbs_SeqAIJ,
3627:                                        NULL};

3629: static PetscErrorCode MatSeqAIJSetColumnIndices_SeqAIJ(Mat mat, PetscInt *indices)
3630: {
3631:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3632:   PetscInt    i, nz, n;

3634:   PetscFunctionBegin;
3635:   nz = aij->maxnz;
3636:   n  = mat->rmap->n;
3637:   for (i = 0; i < nz; i++) aij->j[i] = indices[i];
3638:   aij->nz = nz;
3639:   for (i = 0; i < n; i++) aij->ilen[i] = aij->imax[i];
3640:   PetscFunctionReturn(PETSC_SUCCESS);
3641: }

3643: /*
3644:  * Given a sparse matrix with global column indices, compact it by using a local column space.
3645:  * The result matrix helps saving memory in other algorithms, such as MatPtAPSymbolic_MPIAIJ_MPIAIJ_scalable()
3646:  */
3647: PetscErrorCode MatSeqAIJCompactOutExtraColumns_SeqAIJ(Mat mat, ISLocalToGlobalMapping *mapping)
3648: {
3649:   Mat_SeqAIJ   *aij = (Mat_SeqAIJ *)mat->data;
3650:   PetscHMapI    gid1_lid1;
3651:   PetscHashIter tpos;
3652:   PetscInt      gid, lid, i, ec, nz = aij->nz;
3653:   PetscInt     *garray, *jj = aij->j;

3655:   PetscFunctionBegin;
3657:   PetscAssertPointer(mapping, 2);
3658:   /* use a table */
3659:   PetscCall(PetscHMapICreateWithSize(mat->rmap->n, &gid1_lid1));
3660:   ec = 0;
3661:   for (i = 0; i < nz; i++) {
3662:     PetscInt data, gid1 = jj[i] + 1;
3663:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &data));
3664:     if (!data) {
3665:       /* one based table */
3666:       PetscCall(PetscHMapISet(gid1_lid1, gid1, ++ec));
3667:     }
3668:   }
3669:   /* form array of columns we need */
3670:   PetscCall(PetscMalloc1(ec, &garray));
3671:   PetscHashIterBegin(gid1_lid1, tpos);
3672:   while (!PetscHashIterAtEnd(gid1_lid1, tpos)) {
3673:     PetscHashIterGetKey(gid1_lid1, tpos, gid);
3674:     PetscHashIterGetVal(gid1_lid1, tpos, lid);
3675:     PetscHashIterNext(gid1_lid1, tpos);
3676:     gid--;
3677:     lid--;
3678:     garray[lid] = gid;
3679:   }
3680:   PetscCall(PetscSortInt(ec, garray)); /* sort, and rebuild */
3681:   PetscCall(PetscHMapIClear(gid1_lid1));
3682:   for (i = 0; i < ec; i++) PetscCall(PetscHMapISet(gid1_lid1, garray[i] + 1, i + 1));
3683:   /* compact out the extra columns in B */
3684:   for (i = 0; i < nz; i++) {
3685:     PetscInt gid1 = jj[i] + 1;
3686:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &lid));
3687:     lid--;
3688:     jj[i] = lid;
3689:   }
3690:   PetscCall(PetscLayoutDestroy(&mat->cmap));
3691:   PetscCall(PetscHMapIDestroy(&gid1_lid1));
3692:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)mat), ec, ec, 1, &mat->cmap));
3693:   PetscCall(ISLocalToGlobalMappingCreate(PETSC_COMM_SELF, mat->cmap->bs, mat->cmap->n, garray, PETSC_OWN_POINTER, mapping));
3694:   PetscCall(ISLocalToGlobalMappingSetType(*mapping, ISLOCALTOGLOBALMAPPINGHASH));
3695:   PetscFunctionReturn(PETSC_SUCCESS);
3696: }

3698: /*@
3699:   MatSeqAIJSetColumnIndices - Set the column indices for all the rows
3700:   in the matrix.

3702:   Input Parameters:
3703: + mat     - the `MATSEQAIJ` matrix
3704: - indices - the column indices

3706:   Level: advanced

3708:   Notes:
3709:   This can be called if you have precomputed the nonzero structure of the
3710:   matrix and want to provide it to the matrix object to improve the performance
3711:   of the `MatSetValues()` operation.

3713:   You MUST have set the correct numbers of nonzeros per row in the call to
3714:   `MatCreateSeqAIJ()`, and the columns indices MUST be sorted.

3716:   MUST be called before any calls to `MatSetValues()`

3718:   The indices should start with zero, not one.

3720: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`
3721: @*/
3722: PetscErrorCode MatSeqAIJSetColumnIndices(Mat mat, PetscInt *indices)
3723: {
3724:   PetscFunctionBegin;
3726:   PetscAssertPointer(indices, 2);
3727:   PetscUseMethod(mat, "MatSeqAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
3728:   PetscFunctionReturn(PETSC_SUCCESS);
3729: }

3731: static PetscErrorCode MatStoreValues_SeqAIJ(Mat mat)
3732: {
3733:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3734:   size_t      nz  = aij->i[mat->rmap->n];

3736:   PetscFunctionBegin;
3737:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

3739:   /* allocate space for values if not already there */
3740:   if (!aij->saved_values) { PetscCall(PetscMalloc1(nz + 1, &aij->saved_values)); }

3742:   /* copy values over */
3743:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
3744:   PetscFunctionReturn(PETSC_SUCCESS);
3745: }

3747: /*@
3748:   MatStoreValues - Stashes a copy of the matrix values; this allows reusing of the linear part of a Jacobian, while recomputing only the
3749:   nonlinear portion.

3751:   Logically Collect

3753:   Input Parameter:
3754: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3756:   Level: advanced

3758:   Example Usage:
3759: .vb
3760:     Using SNES
3761:     Create Jacobian matrix
3762:     Set linear terms into matrix
3763:     Apply boundary conditions to matrix, at this time matrix must have
3764:       final nonzero structure (i.e. setting the nonlinear terms and applying
3765:       boundary conditions again will not change the nonzero structure
3766:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3767:     MatStoreValues(mat);
3768:     Call SNESSetJacobian() with matrix
3769:     In your Jacobian routine
3770:       MatRetrieveValues(mat);
3771:       Set nonlinear terms in matrix

3773:     Without `SNESSolve()`, i.e. when you handle nonlinear solve yourself:
3774:     // build linear portion of Jacobian
3775:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3776:     MatStoreValues(mat);
3777:     loop over nonlinear iterations
3778:        MatRetrieveValues(mat);
3779:        // call MatSetValues(mat,...) to set nonliner portion of Jacobian
3780:        // call MatAssemblyBegin/End() on matrix
3781:        Solve linear system with Jacobian
3782:     endloop
3783: .ve

3785:   Notes:
3786:   Matrix must already be assembled before calling this routine
3787:   Must set the matrix option `MatSetOption`(mat,`MAT_NEW_NONZERO_LOCATIONS`,`PETSC_FALSE`); before
3788:   calling this routine.

3790:   When this is called multiple times it overwrites the previous set of stored values
3791:   and does not allocated additional space.

3793: .seealso: [](ch_matrices), `Mat`, `MatRetrieveValues()`
3794: @*/
3795: PetscErrorCode MatStoreValues(Mat mat)
3796: {
3797:   PetscFunctionBegin;
3799:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3800:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3801:   PetscUseMethod(mat, "MatStoreValues_C", (Mat), (mat));
3802:   PetscFunctionReturn(PETSC_SUCCESS);
3803: }

3805: static PetscErrorCode MatRetrieveValues_SeqAIJ(Mat mat)
3806: {
3807:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3808:   PetscInt    nz  = aij->i[mat->rmap->n];

3810:   PetscFunctionBegin;
3811:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
3812:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
3813:   /* copy values over */
3814:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
3815:   PetscFunctionReturn(PETSC_SUCCESS);
3816: }

3818: /*@
3819:   MatRetrieveValues - Retrieves the copy of the matrix values that was stored with `MatStoreValues()`

3821:   Logically Collect

3823:   Input Parameter:
3824: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3826:   Level: advanced

3828: .seealso: [](ch_matrices), `Mat`, `MatStoreValues()`
3829: @*/
3830: PetscErrorCode MatRetrieveValues(Mat mat)
3831: {
3832:   PetscFunctionBegin;
3834:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3835:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3836:   PetscUseMethod(mat, "MatRetrieveValues_C", (Mat), (mat));
3837:   PetscFunctionReturn(PETSC_SUCCESS);
3838: }

3840: /*@
3841:   MatCreateSeqAIJ - Creates a sparse matrix in `MATSEQAIJ` (compressed row) format
3842:   (the default parallel PETSc format).  For good matrix assembly performance
3843:   the user should preallocate the matrix storage by setting the parameter `nz`
3844:   (or the array `nnz`).

3846:   Collective

3848:   Input Parameters:
3849: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3850: . m    - number of rows
3851: . n    - number of columns
3852: . nz   - number of nonzeros per row (same for all rows)
3853: - nnz  - array containing the number of nonzeros in the various rows
3854:          (possibly different for each row) or NULL

3856:   Output Parameter:
3857: . A - the matrix

3859:   Options Database Keys:
3860: + -mat_no_inode            - Do not use inodes
3861: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3863:   Level: intermediate

3865:   Notes:
3866:   It is recommend to use `MatCreateFromOptions()` instead of this routine

3868:   If `nnz` is given then `nz` is ignored

3870:   The `MATSEQAIJ` format, also called
3871:   compressed row storage, is fully compatible with standard Fortran
3872:   storage.  That is, the stored row and column indices can begin at
3873:   either one (as in Fortran) or zero.

3875:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3876:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3877:   allocation.

3879:   By default, this format uses inodes (identical nodes) when possible, to
3880:   improve numerical efficiency of matrix-vector products and solves. We
3881:   search for consecutive rows with the same nonzero structure, thereby
3882:   reusing matrix information to achieve increased efficiency.

3884: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
3885: @*/
3886: PetscErrorCode MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
3887: {
3888:   PetscFunctionBegin;
3889:   PetscCall(MatCreate(comm, A));
3890:   PetscCall(MatSetSizes(*A, m, n, m, n));
3891:   PetscCall(MatSetType(*A, MATSEQAIJ));
3892:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, nnz));
3893:   PetscFunctionReturn(PETSC_SUCCESS);
3894: }

3896: /*@
3897:   MatSeqAIJSetPreallocation - For good matrix assembly performance
3898:   the user should preallocate the matrix storage by setting the parameter nz
3899:   (or the array nnz).  By setting these parameters accurately, performance
3900:   during matrix assembly can be increased by more than a factor of 50.

3902:   Collective

3904:   Input Parameters:
3905: + B   - The matrix
3906: . nz  - number of nonzeros per row (same for all rows)
3907: - nnz - array containing the number of nonzeros in the various rows
3908:          (possibly different for each row) or NULL

3910:   Options Database Keys:
3911: + -mat_no_inode            - Do not use inodes
3912: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3914:   Level: intermediate

3916:   Notes:
3917:   If `nnz` is given then `nz` is ignored

3919:   The `MATSEQAIJ` format also called
3920:   compressed row storage, is fully compatible with standard Fortran
3921:   storage.  That is, the stored row and column indices can begin at
3922:   either one (as in Fortran) or zero.  See the users' manual for details.

3924:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3925:   Set nz = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3926:   allocation.

3928:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3929:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3930:   You can also run with the option -info and look for messages with the string
3931:   malloc in them to see if additional memory allocation was needed.

3933:   Developer Notes:
3934:   Use nz of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
3935:   entries or columns indices

3937:   By default, this format uses inodes (identical nodes) when possible, to
3938:   improve numerical efficiency of matrix-vector products and solves. We
3939:   search for consecutive rows with the same nonzero structure, thereby
3940:   reusing matrix information to achieve increased efficiency.

3942: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`, `MatGetInfo()`,
3943:           `MatSeqAIJSetTotalPreallocation()`
3944: @*/
3945: PetscErrorCode MatSeqAIJSetPreallocation(Mat B, PetscInt nz, const PetscInt nnz[])
3946: {
3947:   PetscFunctionBegin;
3950:   PetscTryMethod(B, "MatSeqAIJSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, nz, nnz));
3951:   PetscFunctionReturn(PETSC_SUCCESS);
3952: }

3954: PetscErrorCode MatSeqAIJSetPreallocation_SeqAIJ(Mat B, PetscInt nz, const PetscInt *nnz)
3955: {
3956:   Mat_SeqAIJ *b              = (Mat_SeqAIJ *)B->data;
3957:   PetscBool   skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;
3958:   PetscInt    i;

3960:   PetscFunctionBegin;
3961:   if (B->hash_active) {
3962:     B->ops[0] = b->cops;
3963:     PetscCall(PetscHMapIJVDestroy(&b->ht));
3964:     PetscCall(PetscFree(b->dnz));
3965:     B->hash_active = PETSC_FALSE;
3966:   }
3967:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;
3968:   if (nz == MAT_SKIP_ALLOCATION) {
3969:     skipallocation = PETSC_TRUE;
3970:     nz             = 0;
3971:   }
3972:   PetscCall(PetscLayoutSetUp(B->rmap));
3973:   PetscCall(PetscLayoutSetUp(B->cmap));

3975:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
3976:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
3977:   if (nnz) {
3978:     for (i = 0; i < B->rmap->n; i++) {
3979:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
3980:       PetscCheck(nnz[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, nnz[i], B->cmap->n);
3981:     }
3982:   }

3984:   B->preallocated = PETSC_TRUE;
3985:   if (!skipallocation) {
3986:     if (!b->imax) { PetscCall(PetscMalloc1(B->rmap->n, &b->imax)); }
3987:     if (!b->ilen) {
3988:       /* b->ilen will count nonzeros in each row so far. */
3989:       PetscCall(PetscCalloc1(B->rmap->n, &b->ilen));
3990:     } else {
3991:       PetscCall(PetscMemzero(b->ilen, B->rmap->n * sizeof(PetscInt)));
3992:     }
3993:     if (!b->ipre) PetscCall(PetscMalloc1(B->rmap->n, &b->ipre));
3994:     if (!nnz) {
3995:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 10;
3996:       else if (nz < 0) nz = 1;
3997:       nz = PetscMin(nz, B->cmap->n);
3998:       for (i = 0; i < B->rmap->n; i++) b->imax[i] = nz;
3999:       PetscCall(PetscIntMultError(nz, B->rmap->n, &nz));
4000:     } else {
4001:       PetscInt64 nz64 = 0;
4002:       for (i = 0; i < B->rmap->n; i++) {
4003:         b->imax[i] = nnz[i];
4004:         nz64 += nnz[i];
4005:       }
4006:       PetscCall(PetscIntCast(nz64, &nz));
4007:     }

4009:     /* allocate the matrix space */
4010:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
4011:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&b->j));
4012:     PetscCall(PetscShmgetAllocateArray(B->rmap->n + 1, sizeof(PetscInt), (void **)&b->i));
4013:     b->free_ij = PETSC_TRUE;
4014:     if (B->structure_only) {
4015:       b->free_a = PETSC_FALSE;
4016:     } else {
4017:       PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscScalar), (void **)&b->a));
4018:       b->free_a = PETSC_TRUE;
4019:     }
4020:     b->i[0] = 0;
4021:     for (i = 1; i < B->rmap->n + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];
4022:   } else {
4023:     b->free_a  = PETSC_FALSE;
4024:     b->free_ij = PETSC_FALSE;
4025:   }

4027:   if (b->ipre && nnz != b->ipre && b->imax) {
4028:     /* reserve user-requested sparsity */
4029:     PetscCall(PetscArraycpy(b->ipre, b->imax, B->rmap->n));
4030:   }

4032:   b->nz               = 0;
4033:   b->maxnz            = nz;
4034:   B->info.nz_unneeded = (double)b->maxnz;
4035:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
4036:   B->was_assembled = PETSC_FALSE;
4037:   B->assembled     = PETSC_FALSE;
4038:   /* We simply deem preallocation has changed nonzero state. Updating the state
4039:      will give clients (like AIJKokkos) a chance to know something has happened.
4040:   */
4041:   B->nonzerostate++;
4042:   PetscFunctionReturn(PETSC_SUCCESS);
4043: }

4045: static PetscErrorCode MatResetPreallocation_SeqAIJ(Mat A)
4046: {
4047:   Mat_SeqAIJ *a;
4048:   PetscInt    i;
4049:   PetscBool   skipreset;

4051:   PetscFunctionBegin;

4054:   /* Check local size. If zero, then return */
4055:   if (!A->rmap->n) PetscFunctionReturn(PETSC_SUCCESS);

4057:   a = (Mat_SeqAIJ *)A->data;
4058:   /* if no saved info, we error out */
4059:   PetscCheck(a->ipre, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "No saved preallocation info ");

4061:   PetscCheck(a->i && a->imax && a->ilen, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "Memory info is incomplete, and can not reset preallocation ");

4063:   PetscCall(PetscArraycmp(a->ipre, a->ilen, A->rmap->n, &skipreset));
4064:   if (!skipreset) {
4065:     PetscCall(PetscArraycpy(a->imax, a->ipre, A->rmap->n));
4066:     PetscCall(PetscArrayzero(a->ilen, A->rmap->n));
4067:     a->i[0] = 0;
4068:     for (i = 1; i < A->rmap->n + 1; i++) a->i[i] = a->i[i - 1] + a->imax[i - 1];
4069:     A->preallocated     = PETSC_TRUE;
4070:     a->nz               = 0;
4071:     a->maxnz            = a->i[A->rmap->n];
4072:     A->info.nz_unneeded = (double)a->maxnz;
4073:     A->was_assembled    = PETSC_FALSE;
4074:     A->assembled        = PETSC_FALSE;
4075:   }
4076:   PetscFunctionReturn(PETSC_SUCCESS);
4077: }

4079: /*@
4080:   MatSeqAIJSetPreallocationCSR - Allocates memory for a sparse sequential matrix in `MATSEQAIJ` format.

4082:   Input Parameters:
4083: + B - the matrix
4084: . i - the indices into `j` for the start of each row (indices start with zero)
4085: . j - the column indices for each row (indices start with zero) these must be sorted for each row
4086: - v - optional values in the matrix, use `NULL` if not provided

4088:   Level: developer

4090:   Notes:
4091:   The `i`,`j`,`v` values are COPIED with this routine; to avoid the copy use `MatCreateSeqAIJWithArrays()`

4093:   This routine may be called multiple times with different nonzero patterns (or the same nonzero pattern). The nonzero
4094:   structure will be the union of all the previous nonzero structures.

4096:   Developer Notes:
4097:   An optimization could be added to the implementation where it checks if the `i`, and `j` are identical to the current `i` and `j` and
4098:   then just copies the `v` values directly with `PetscMemcpy()`.

4100:   This routine could also take a `PetscCopyMode` argument to allow sharing the values instead of always copying them.

4102: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`, `MATSEQAIJ`, `MatResetPreallocation()`
4103: @*/
4104: PetscErrorCode MatSeqAIJSetPreallocationCSR(Mat B, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
4105: {
4106:   PetscFunctionBegin;
4109:   PetscTryMethod(B, "MatSeqAIJSetPreallocationCSR_C", (Mat, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, i, j, v));
4110:   PetscFunctionReturn(PETSC_SUCCESS);
4111: }

4113: static PetscErrorCode MatSeqAIJSetPreallocationCSR_SeqAIJ(Mat B, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
4114: {
4115:   PetscInt  i;
4116:   PetscInt  m, n;
4117:   PetscInt  nz;
4118:   PetscInt *nnz;

4120:   PetscFunctionBegin;
4121:   PetscCheck(Ii[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Ii[0] must be 0 it is %" PetscInt_FMT, Ii[0]);

4123:   PetscCall(PetscLayoutSetUp(B->rmap));
4124:   PetscCall(PetscLayoutSetUp(B->cmap));

4126:   PetscCall(MatGetSize(B, &m, &n));
4127:   PetscCall(PetscMalloc1(m + 1, &nnz));
4128:   for (i = 0; i < m; i++) {
4129:     nz = Ii[i + 1] - Ii[i];
4130:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
4131:     nnz[i] = nz;
4132:   }
4133:   PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
4134:   PetscCall(PetscFree(nnz));

4136:   for (i = 0; i < m; i++) PetscCall(MatSetValues_SeqAIJ(B, 1, &i, Ii[i + 1] - Ii[i], J + Ii[i], PetscSafePointerPlusOffset(v, Ii[i]), INSERT_VALUES));

4138:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
4139:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

4141:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
4142:   PetscFunctionReturn(PETSC_SUCCESS);
4143: }

4145: /*@
4146:   MatSeqAIJKron - Computes `C`, the Kronecker product of `A` and `B`.

4148:   Input Parameters:
4149: + A     - left-hand side matrix
4150: . B     - right-hand side matrix
4151: - reuse - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

4153:   Output Parameter:
4154: . C - Kronecker product of `A` and `B`

4156:   Level: intermediate

4158:   Note:
4159:   `MAT_REUSE_MATRIX` can only be used when the nonzero structure of the product matrix has not changed from that last call to `MatSeqAIJKron()`.

4161: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATKAIJ`, `MatReuse`
4162: @*/
4163: PetscErrorCode MatSeqAIJKron(Mat A, Mat B, MatReuse reuse, Mat *C)
4164: {
4165:   PetscFunctionBegin;
4170:   PetscAssertPointer(C, 4);
4171:   if (reuse == MAT_REUSE_MATRIX) {
4174:   }
4175:   PetscTryMethod(A, "MatSeqAIJKron_C", (Mat, Mat, MatReuse, Mat *), (A, B, reuse, C));
4176:   PetscFunctionReturn(PETSC_SUCCESS);
4177: }

4179: static PetscErrorCode MatSeqAIJKron_SeqAIJ(Mat A, Mat B, MatReuse reuse, Mat *C)
4180: {
4181:   Mat                newmat;
4182:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
4183:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
4184:   PetscScalar       *v;
4185:   const PetscScalar *aa, *ba;
4186:   PetscInt          *i, *j, m, n, p, q, nnz = 0, am = A->rmap->n, bm = B->rmap->n, an = A->cmap->n, bn = B->cmap->n;
4187:   PetscBool          flg;

4189:   PetscFunctionBegin;
4190:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4191:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4192:   PetscCheck(!B->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4193:   PetscCheck(B->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4194:   PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &flg));
4195:   PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatType %s", ((PetscObject)B)->type_name);
4196:   PetscCheck(reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatReuse %d", (int)reuse);
4197:   if (reuse == MAT_INITIAL_MATRIX) {
4198:     PetscCall(PetscMalloc2(am * bm + 1, &i, a->i[am] * b->i[bm], &j));
4199:     PetscCall(MatCreate(PETSC_COMM_SELF, &newmat));
4200:     PetscCall(MatSetSizes(newmat, am * bm, an * bn, am * bm, an * bn));
4201:     PetscCall(MatSetType(newmat, MATAIJ));
4202:     i[0] = 0;
4203:     for (m = 0; m < am; ++m) {
4204:       for (p = 0; p < bm; ++p) {
4205:         i[m * bm + p + 1] = i[m * bm + p] + (a->i[m + 1] - a->i[m]) * (b->i[p + 1] - b->i[p]);
4206:         for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4207:           for (q = b->i[p]; q < b->i[p + 1]; ++q) j[nnz++] = a->j[n] * bn + b->j[q];
4208:         }
4209:       }
4210:     }
4211:     PetscCall(MatSeqAIJSetPreallocationCSR(newmat, i, j, NULL));
4212:     *C = newmat;
4213:     PetscCall(PetscFree2(i, j));
4214:     nnz = 0;
4215:   }
4216:   PetscCall(MatSeqAIJGetArray(*C, &v));
4217:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4218:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
4219:   for (m = 0; m < am; ++m) {
4220:     for (p = 0; p < bm; ++p) {
4221:       for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4222:         for (q = b->i[p]; q < b->i[p + 1]; ++q) v[nnz++] = aa[n] * ba[q];
4223:       }
4224:     }
4225:   }
4226:   PetscCall(MatSeqAIJRestoreArray(*C, &v));
4227:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
4228:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
4229:   PetscFunctionReturn(PETSC_SUCCESS);
4230: }

4232: #include <../src/mat/impls/dense/seq/dense.h>
4233: #include <petsc/private/kernels/petscaxpy.h>

4235: /*
4236:     Computes (B'*A')' since computing B*A directly is untenable

4238:                n                       p                          p
4239:         [             ]       [             ]         [                 ]
4240:       m [      A      ]  *  n [       B     ]   =   m [         C       ]
4241:         [             ]       [             ]         [                 ]

4243: */
4244: PetscErrorCode MatMatMultNumeric_SeqDense_SeqAIJ(Mat A, Mat B, Mat C)
4245: {
4246:   Mat_SeqDense      *sub_a = (Mat_SeqDense *)A->data;
4247:   Mat_SeqAIJ        *sub_b = (Mat_SeqAIJ *)B->data;
4248:   Mat_SeqDense      *sub_c = (Mat_SeqDense *)C->data;
4249:   PetscInt           i, j, n, m, q, p;
4250:   const PetscInt    *ii, *idx;
4251:   const PetscScalar *b, *a, *a_q;
4252:   PetscScalar       *c, *c_q;
4253:   PetscInt           clda = sub_c->lda;
4254:   PetscInt           alda = sub_a->lda;

4256:   PetscFunctionBegin;
4257:   m = A->rmap->n;
4258:   n = A->cmap->n;
4259:   p = B->cmap->n;
4260:   a = sub_a->v;
4261:   b = sub_b->a;
4262:   c = sub_c->v;
4263:   if (clda == m) {
4264:     PetscCall(PetscArrayzero(c, m * p));
4265:   } else {
4266:     for (j = 0; j < p; j++)
4267:       for (i = 0; i < m; i++) c[j * clda + i] = 0.0;
4268:   }
4269:   ii  = sub_b->i;
4270:   idx = sub_b->j;
4271:   for (i = 0; i < n; i++) {
4272:     q = ii[i + 1] - ii[i];
4273:     while (q-- > 0) {
4274:       c_q = c + clda * (*idx);
4275:       a_q = a + alda * i;
4276:       PetscKernelAXPY(c_q, *b, a_q, m);
4277:       idx++;
4278:       b++;
4279:     }
4280:   }
4281:   PetscFunctionReturn(PETSC_SUCCESS);
4282: }

4284: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqAIJ(Mat A, Mat B, PetscReal fill, Mat C)
4285: {
4286:   PetscInt  m = A->rmap->n, n = B->cmap->n;
4287:   PetscBool cisdense;

4289:   PetscFunctionBegin;
4290:   PetscCheck(A->cmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "A->cmap->n %" PetscInt_FMT " != B->rmap->n %" PetscInt_FMT, A->cmap->n, B->rmap->n);
4291:   PetscCall(MatSetSizes(C, m, n, m, n));
4292:   PetscCall(MatSetBlockSizesFromMats(C, A, B));
4293:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, MATSEQDENSEHIP, ""));
4294:   if (!cisdense) PetscCall(MatSetType(C, MATDENSE));
4295:   PetscCall(MatSetUp(C));

4297:   C->ops->matmultnumeric = MatMatMultNumeric_SeqDense_SeqAIJ;
4298:   PetscFunctionReturn(PETSC_SUCCESS);
4299: }

4301: /*MC
4302:    MATSEQAIJ - MATSEQAIJ = "seqaij" - A matrix type to be used for sequential sparse matrices,
4303:    based on compressed sparse row format.

4305:    Options Database Key:
4306: . -mat_type seqaij - sets the matrix type to "seqaij" during a call to MatSetFromOptions()

4308:    Level: beginner

4310:    Notes:
4311:     `MatSetValues()` may be called for this matrix type with a `NULL` argument for the numerical values,
4312:     in this case the values associated with the rows and columns one passes in are set to zero
4313:     in the matrix

4315:     `MatSetOptions`(,`MAT_STRUCTURE_ONLY`,`PETSC_TRUE`) may be called for this matrix type. In this no
4316:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

4318:   Developer Note:
4319:     It would be nice if all matrix formats supported passing `NULL` in for the numerical values

4321: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatSetFromOptions()`, `MatSetType()`, `MatCreate()`, `MatType`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4322: M*/

4324: /*MC
4325:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

4327:    This matrix type is identical to `MATSEQAIJ` when constructed with a single process communicator,
4328:    and `MATMPIAIJ` otherwise.  As a result, for single process communicators,
4329:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4330:    for communicators controlling multiple processes.  It is recommended that you call both of
4331:    the above preallocation routines for simplicity.

4333:    Options Database Key:
4334: . -mat_type aij - sets the matrix type to "aij" during a call to `MatSetFromOptions()`

4336:   Level: beginner

4338:    Note:
4339:    Subclasses include `MATAIJCUSPARSE`, `MATAIJPERM`, `MATAIJSELL`, `MATAIJMKL`, `MATAIJCRL`, and also automatically switches over to use inodes when
4340:    enough exist.

4342: .seealso: [](ch_matrices), `Mat`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATMPIAIJ`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4343: M*/

4345: /*MC
4346:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

4348:    Options Database Key:
4349: . -mat_type aijcrl - sets the matrix type to "aijcrl" during a call to `MatSetFromOptions()`

4351:   Level: beginner

4353:    Note:
4354:    This matrix type is identical to `MATSEQAIJCRL` when constructed with a single process communicator,
4355:    and `MATMPIAIJCRL` otherwise.  As a result, for single process communicators,
4356:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4357:    for communicators controlling multiple processes.  It is recommended that you call both of
4358:    the above preallocation routines for simplicity.

4360: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`
4361: M*/

4363: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCRL(Mat, MatType, MatReuse, Mat *);
4364: #if defined(PETSC_HAVE_ELEMENTAL)
4365: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
4366: #endif
4367: #if defined(PETSC_HAVE_SCALAPACK)
4368: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
4369: #endif
4370: #if defined(PETSC_HAVE_HYPRE)
4371: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat A, MatType, MatReuse, Mat *);
4372: #endif

4374: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat, MatType, MatReuse, Mat *);
4375: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);
4376: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

4378: /*@C
4379:   MatSeqAIJGetArray - gives read/write access to the array where the data for a `MATSEQAIJ` matrix is stored

4381:   Not Collective

4383:   Input Parameter:
4384: . A - a `MATSEQAIJ` matrix

4386:   Output Parameter:
4387: . array - pointer to the data

4389:   Level: intermediate

4391:   Fortran Notes:
4392:   `MatSeqAIJGetArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatSeqAIJGetArrayF90()`

4394: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`, `MatSeqAIJGetArrayF90()`
4395: @*/
4396: PetscErrorCode MatSeqAIJGetArray(Mat A, PetscScalar *array[])
4397: {
4398:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4400:   PetscFunctionBegin;
4401:   if (aij->ops->getarray) {
4402:     PetscCall((*aij->ops->getarray)(A, array));
4403:   } else {
4404:     *array = aij->a;
4405:   }
4406:   PetscFunctionReturn(PETSC_SUCCESS);
4407: }

4409: /*@C
4410:   MatSeqAIJRestoreArray - returns access to the array where the data for a `MATSEQAIJ` matrix is stored obtained by `MatSeqAIJGetArray()`

4412:   Not Collective

4414:   Input Parameters:
4415: + A     - a `MATSEQAIJ` matrix
4416: - array - pointer to the data

4418:   Level: intermediate

4420:   Fortran Notes:
4421:   `MatSeqAIJRestoreArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatSeqAIJRestoreArrayF90()`

4423: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayF90()`
4424: @*/
4425: PetscErrorCode MatSeqAIJRestoreArray(Mat A, PetscScalar *array[])
4426: {
4427:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4429:   PetscFunctionBegin;
4430:   if (aij->ops->restorearray) {
4431:     PetscCall((*aij->ops->restorearray)(A, array));
4432:   } else {
4433:     *array = NULL;
4434:   }
4435:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4436:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4437:   PetscFunctionReturn(PETSC_SUCCESS);
4438: }

4440: /*@C
4441:   MatSeqAIJGetArrayRead - gives read-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4443:   Not Collective; No Fortran Support

4445:   Input Parameter:
4446: . A - a `MATSEQAIJ` matrix

4448:   Output Parameter:
4449: . array - pointer to the data

4451:   Level: intermediate

4453: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4454: @*/
4455: PetscErrorCode MatSeqAIJGetArrayRead(Mat A, const PetscScalar *array[])
4456: {
4457:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4459:   PetscFunctionBegin;
4460:   if (aij->ops->getarrayread) {
4461:     PetscCall((*aij->ops->getarrayread)(A, array));
4462:   } else {
4463:     *array = aij->a;
4464:   }
4465:   PetscFunctionReturn(PETSC_SUCCESS);
4466: }

4468: /*@C
4469:   MatSeqAIJRestoreArrayRead - restore the read-only access array obtained from `MatSeqAIJGetArrayRead()`

4471:   Not Collective; No Fortran Support

4473:   Input Parameter:
4474: . A - a `MATSEQAIJ` matrix

4476:   Output Parameter:
4477: . array - pointer to the data

4479:   Level: intermediate

4481: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4482: @*/
4483: PetscErrorCode MatSeqAIJRestoreArrayRead(Mat A, const PetscScalar *array[])
4484: {
4485:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4487:   PetscFunctionBegin;
4488:   if (aij->ops->restorearrayread) {
4489:     PetscCall((*aij->ops->restorearrayread)(A, array));
4490:   } else {
4491:     *array = NULL;
4492:   }
4493:   PetscFunctionReturn(PETSC_SUCCESS);
4494: }

4496: /*@C
4497:   MatSeqAIJGetArrayWrite - gives write-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4499:   Not Collective; No Fortran Support

4501:   Input Parameter:
4502: . A - a `MATSEQAIJ` matrix

4504:   Output Parameter:
4505: . array - pointer to the data

4507:   Level: intermediate

4509: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4510: @*/
4511: PetscErrorCode MatSeqAIJGetArrayWrite(Mat A, PetscScalar *array[])
4512: {
4513:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4515:   PetscFunctionBegin;
4516:   if (aij->ops->getarraywrite) {
4517:     PetscCall((*aij->ops->getarraywrite)(A, array));
4518:   } else {
4519:     *array = aij->a;
4520:   }
4521:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4522:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4523:   PetscFunctionReturn(PETSC_SUCCESS);
4524: }

4526: /*@C
4527:   MatSeqAIJRestoreArrayWrite - restore the read-only access array obtained from MatSeqAIJGetArrayRead

4529:   Not Collective; No Fortran Support

4531:   Input Parameter:
4532: . A - a MATSEQAIJ matrix

4534:   Output Parameter:
4535: . array - pointer to the data

4537:   Level: intermediate

4539: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4540: @*/
4541: PetscErrorCode MatSeqAIJRestoreArrayWrite(Mat A, PetscScalar *array[])
4542: {
4543:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4545:   PetscFunctionBegin;
4546:   if (aij->ops->restorearraywrite) {
4547:     PetscCall((*aij->ops->restorearraywrite)(A, array));
4548:   } else {
4549:     *array = NULL;
4550:   }
4551:   PetscFunctionReturn(PETSC_SUCCESS);
4552: }

4554: /*@C
4555:   MatSeqAIJGetCSRAndMemType - Get the CSR arrays and the memory type of the `MATSEQAIJ` matrix

4557:   Not Collective; No Fortran Support

4559:   Input Parameter:
4560: . mat - a matrix of type `MATSEQAIJ` or its subclasses

4562:   Output Parameters:
4563: + i     - row map array of the matrix
4564: . j     - column index array of the matrix
4565: . a     - data array of the matrix
4566: - mtype - memory type of the arrays

4568:   Level: developer

4570:   Notes:
4571:   Any of the output parameters can be `NULL`, in which case the corresponding value is not returned.
4572:   If mat is a device matrix, the arrays are on the device. Otherwise, they are on the host.

4574:   One can call this routine on a preallocated but not assembled matrix to just get the memory of the CSR underneath the matrix.
4575:   If the matrix is assembled, the data array `a` is guaranteed to have the latest values of the matrix.

4577: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4578: @*/
4579: PetscErrorCode MatSeqAIJGetCSRAndMemType(Mat mat, const PetscInt *i[], const PetscInt *j[], PetscScalar *a[], PetscMemType *mtype)
4580: {
4581:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;

4583:   PetscFunctionBegin;
4584:   PetscCheck(mat->preallocated, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "matrix is not preallocated");
4585:   if (aij->ops->getcsrandmemtype) {
4586:     PetscCall((*aij->ops->getcsrandmemtype)(mat, i, j, a, mtype));
4587:   } else {
4588:     if (i) *i = aij->i;
4589:     if (j) *j = aij->j;
4590:     if (a) *a = aij->a;
4591:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
4592:   }
4593:   PetscFunctionReturn(PETSC_SUCCESS);
4594: }

4596: /*@
4597:   MatSeqAIJGetMaxRowNonzeros - returns the maximum number of nonzeros in any row

4599:   Not Collective

4601:   Input Parameter:
4602: . A - a `MATSEQAIJ` matrix

4604:   Output Parameter:
4605: . nz - the maximum number of nonzeros in any row

4607:   Level: intermediate

4609: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`, `MatSeqAIJGetArrayF90()`
4610: @*/
4611: PetscErrorCode MatSeqAIJGetMaxRowNonzeros(Mat A, PetscInt *nz)
4612: {
4613:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4615:   PetscFunctionBegin;
4616:   *nz = aij->rmax;
4617:   PetscFunctionReturn(PETSC_SUCCESS);
4618: }

4620: static PetscErrorCode MatCOOStructDestroy_SeqAIJ(void *data)
4621: {
4622:   MatCOOStruct_SeqAIJ *coo = (MatCOOStruct_SeqAIJ *)data;

4624:   PetscFunctionBegin;
4625:   PetscCall(PetscFree(coo->perm));
4626:   PetscCall(PetscFree(coo->jmap));
4627:   PetscCall(PetscFree(coo));
4628:   PetscFunctionReturn(PETSC_SUCCESS);
4629: }

4631: PetscErrorCode MatSetPreallocationCOO_SeqAIJ(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
4632: {
4633:   MPI_Comm             comm;
4634:   PetscInt            *i, *j;
4635:   PetscInt             M, N, row, iprev;
4636:   PetscCount           k, p, q, nneg, nnz, start, end; /* Index the coo array, so use PetscCount as their type */
4637:   PetscInt            *Ai;                             /* Change to PetscCount once we use it for row pointers */
4638:   PetscInt            *Aj;
4639:   PetscScalar         *Aa;
4640:   Mat_SeqAIJ          *seqaij = (Mat_SeqAIJ *)mat->data;
4641:   MatType              rtype;
4642:   PetscCount          *perm, *jmap;
4643:   PetscContainer       container;
4644:   MatCOOStruct_SeqAIJ *coo;
4645:   PetscBool            isorted;
4646:   PetscBool            hypre;
4647:   const char          *name;

4649:   PetscFunctionBegin;
4650:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
4651:   PetscCall(MatGetSize(mat, &M, &N));
4652:   i = coo_i;
4653:   j = coo_j;
4654:   PetscCall(PetscMalloc1(coo_n, &perm));

4656:   /* Ignore entries with negative row or col indices; at the same time, check if i[] is already sorted (e.g., MatConvert_AlJ_HYPRE results in this case) */
4657:   isorted = PETSC_TRUE;
4658:   iprev   = PETSC_INT_MIN;
4659:   for (k = 0; k < coo_n; k++) {
4660:     if (j[k] < 0) i[k] = -1;
4661:     if (isorted) {
4662:       if (i[k] < iprev) isorted = PETSC_FALSE;
4663:       else iprev = i[k];
4664:     }
4665:     perm[k] = k;
4666:   }

4668:   /* Sort by row if not already */
4669:   if (!isorted) PetscCall(PetscSortIntWithIntCountArrayPair(coo_n, i, j, perm));

4671:   /* Advance k to the first row with a non-negative index */
4672:   for (k = 0; k < coo_n; k++)
4673:     if (i[k] >= 0) break;
4674:   nneg = k;
4675:   PetscCall(PetscMalloc1(coo_n - nneg + 1, &jmap)); /* +1 to make a CSR-like data structure. jmap[i] originally is the number of repeats for i-th nonzero */
4676:   nnz = 0;                                          /* Total number of unique nonzeros to be counted */
4677:   jmap++;                                           /* Inc jmap by 1 for convenience */

4679:   PetscCall(PetscShmgetAllocateArray(M + 1, sizeof(PetscInt), (void **)&Ai)); /* CSR of A */
4680:   PetscCall(PetscArrayzero(Ai, M + 1));
4681:   PetscCall(PetscShmgetAllocateArray(coo_n - nneg, sizeof(PetscInt), (void **)&Aj)); /* We have at most coo_n-nneg unique nonzeros */

4683:   PetscCall(PetscObjectGetName((PetscObject)mat, &name));
4684:   PetscCall(PetscStrcmp("_internal_COO_mat_for_hypre", name, &hypre));

4686:   /* In each row, sort by column, then unique column indices to get row length */
4687:   Ai++;  /* Inc by 1 for convenience */
4688:   q = 0; /* q-th unique nonzero, with q starting from 0 */
4689:   while (k < coo_n) {
4690:     PetscBool strictly_sorted; // this row is strictly sorted?
4691:     PetscInt  jprev;

4693:     /* get [start,end) indices for this row; also check if cols in this row are strictly sorted */
4694:     row             = i[k];
4695:     start           = k;
4696:     jprev           = PETSC_INT_MIN;
4697:     strictly_sorted = PETSC_TRUE;
4698:     while (k < coo_n && i[k] == row) {
4699:       if (strictly_sorted) {
4700:         if (j[k] <= jprev) strictly_sorted = PETSC_FALSE;
4701:         else jprev = j[k];
4702:       }
4703:       k++;
4704:     }
4705:     end = k;

4707:     /* hack for HYPRE: swap min column to diag so that diagonal values will go first */
4708:     if (hypre) {
4709:       PetscInt  minj    = PETSC_MAX_INT;
4710:       PetscBool hasdiag = PETSC_FALSE;

4712:       if (strictly_sorted) { // fast path to swap the first and the diag
4713:         PetscCount tmp;
4714:         for (p = start; p < end; p++) {
4715:           if (j[p] == row && p != start) {
4716:             j[p]        = j[start];
4717:             j[start]    = row;
4718:             tmp         = perm[start];
4719:             perm[start] = perm[p];
4720:             perm[p]     = tmp;
4721:             break;
4722:           }
4723:         }
4724:       } else {
4725:         for (p = start; p < end; p++) {
4726:           hasdiag = (PetscBool)(hasdiag || (j[p] == row));
4727:           minj    = PetscMin(minj, j[p]);
4728:         }

4730:         if (hasdiag) {
4731:           for (p = start; p < end; p++) {
4732:             if (j[p] == minj) j[p] = row;
4733:             else if (j[p] == row) j[p] = minj;
4734:           }
4735:         }
4736:       }
4737:     }
4738:     // sort by columns in a row
4739:     if (!strictly_sorted) PetscCall(PetscSortIntWithCountArray(end - start, j + start, perm + start));

4741:     if (strictly_sorted) { // fast path to set Aj[], jmap[], Ai[], nnz, q
4742:       for (p = start; p < end; p++, q++) {
4743:         Aj[q]   = j[p];
4744:         jmap[q] = 1;
4745:       }
4746:       Ai[row] = end - start;
4747:       nnz += Ai[row]; // q is already advanced
4748:     } else {
4749:       /* Find number of unique col entries in this row */
4750:       Aj[q]   = j[start]; /* Log the first nonzero in this row */
4751:       jmap[q] = 1;        /* Number of repeats of this nonzero entry */
4752:       Ai[row] = 1;
4753:       nnz++;

4755:       for (p = start + 1; p < end; p++) { /* Scan remaining nonzero in this row */
4756:         if (j[p] != j[p - 1]) {           /* Meet a new nonzero */
4757:           q++;
4758:           jmap[q] = 1;
4759:           Aj[q]   = j[p];
4760:           Ai[row]++;
4761:           nnz++;
4762:         } else {
4763:           jmap[q]++;
4764:         }
4765:       }
4766:       q++; /* Move to next row and thus next unique nonzero */
4767:     }
4768:   }

4770:   Ai--; /* Back to the beginning of Ai[] */
4771:   for (k = 0; k < M; k++) Ai[k + 1] += Ai[k];
4772:   jmap--; // Back to the beginning of jmap[]
4773:   jmap[0] = 0;
4774:   for (k = 0; k < nnz; k++) jmap[k + 1] += jmap[k];

4776:   if (nnz < coo_n - nneg) { /* Reallocate with actual number of unique nonzeros */
4777:     PetscCount *jmap_new;
4778:     PetscInt   *Aj_new;

4780:     PetscCall(PetscMalloc1(nnz + 1, &jmap_new));
4781:     PetscCall(PetscArraycpy(jmap_new, jmap, nnz + 1));
4782:     PetscCall(PetscFree(jmap));
4783:     jmap = jmap_new;

4785:     PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscInt), (void **)&Aj_new));
4786:     PetscCall(PetscArraycpy(Aj_new, Aj, nnz));
4787:     PetscCall(PetscShmgetDeallocateArray((void **)&Aj));
4788:     Aj = Aj_new;
4789:   }

4791:   if (nneg) { /* Discard heading entries with negative indices in perm[], as we'll access it from index 0 in MatSetValuesCOO */
4792:     PetscCount *perm_new;

4794:     PetscCall(PetscMalloc1(coo_n - nneg, &perm_new));
4795:     PetscCall(PetscArraycpy(perm_new, perm + nneg, coo_n - nneg));
4796:     PetscCall(PetscFree(perm));
4797:     perm = perm_new;
4798:   }

4800:   PetscCall(MatGetRootType_Private(mat, &rtype));
4801:   PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscScalar), (void **)&Aa));
4802:   PetscCall(PetscArrayzero(Aa, nnz));
4803:   PetscCall(MatSetSeqAIJWithArrays_private(PETSC_COMM_SELF, M, N, Ai, Aj, Aa, rtype, mat));

4805:   seqaij->free_a = seqaij->free_ij = PETSC_TRUE; /* Let newmat own Ai, Aj and Aa */

4807:   // Put the COO struct in a container and then attach that to the matrix
4808:   PetscCall(PetscMalloc1(1, &coo));
4809:   coo->nz   = nnz;
4810:   coo->n    = coo_n;
4811:   coo->Atot = coo_n - nneg; // Annz is seqaij->nz, so no need to record that again
4812:   coo->jmap = jmap;         // of length nnz+1
4813:   coo->perm = perm;
4814:   PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
4815:   PetscCall(PetscContainerSetPointer(container, coo));
4816:   PetscCall(PetscContainerSetUserDestroy(container, MatCOOStructDestroy_SeqAIJ));
4817:   PetscCall(PetscObjectCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Host", (PetscObject)container));
4818:   PetscCall(PetscContainerDestroy(&container));
4819:   PetscFunctionReturn(PETSC_SUCCESS);
4820: }

4822: static PetscErrorCode MatSetValuesCOO_SeqAIJ(Mat A, const PetscScalar v[], InsertMode imode)
4823: {
4824:   Mat_SeqAIJ          *aseq = (Mat_SeqAIJ *)A->data;
4825:   PetscCount           i, j, Annz = aseq->nz;
4826:   PetscCount          *perm, *jmap;
4827:   PetscScalar         *Aa;
4828:   PetscContainer       container;
4829:   MatCOOStruct_SeqAIJ *coo;

4831:   PetscFunctionBegin;
4832:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container));
4833:   PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not found MatCOOStruct on this matrix");
4834:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));
4835:   perm = coo->perm;
4836:   jmap = coo->jmap;
4837:   PetscCall(MatSeqAIJGetArray(A, &Aa));
4838:   for (i = 0; i < Annz; i++) {
4839:     PetscScalar sum = 0.0;
4840:     for (j = jmap[i]; j < jmap[i + 1]; j++) sum += v[perm[j]];
4841:     Aa[i] = (imode == INSERT_VALUES ? 0.0 : Aa[i]) + sum;
4842:   }
4843:   PetscCall(MatSeqAIJRestoreArray(A, &Aa));
4844:   PetscFunctionReturn(PETSC_SUCCESS);
4845: }

4847: #if defined(PETSC_HAVE_CUDA)
4848: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCUSPARSE(Mat, MatType, MatReuse, Mat *);
4849: #endif
4850: #if defined(PETSC_HAVE_HIP)
4851: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJHIPSPARSE(Mat, MatType, MatReuse, Mat *);
4852: #endif
4853: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4854: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat, MatType, MatReuse, Mat *);
4855: #endif

4857: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat B)
4858: {
4859:   Mat_SeqAIJ *b;
4860:   PetscMPIInt size;

4862:   PetscFunctionBegin;
4863:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
4864:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

4866:   PetscCall(PetscNew(&b));

4868:   B->data   = (void *)b;
4869:   B->ops[0] = MatOps_Values;
4870:   if (B->sortedfull) B->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;

4872:   b->row                = NULL;
4873:   b->col                = NULL;
4874:   b->icol               = NULL;
4875:   b->reallocs           = 0;
4876:   b->ignorezeroentries  = PETSC_FALSE;
4877:   b->roworiented        = PETSC_TRUE;
4878:   b->nonew              = 0;
4879:   b->diag               = NULL;
4880:   b->solve_work         = NULL;
4881:   B->spptr              = NULL;
4882:   b->saved_values       = NULL;
4883:   b->idiag              = NULL;
4884:   b->mdiag              = NULL;
4885:   b->ssor_work          = NULL;
4886:   b->omega              = 1.0;
4887:   b->fshift             = 0.0;
4888:   b->idiagvalid         = PETSC_FALSE;
4889:   b->ibdiagvalid        = PETSC_FALSE;
4890:   b->keepnonzeropattern = PETSC_FALSE;

4892:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4893: #if defined(PETSC_HAVE_MATLAB)
4894:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEnginePut_C", MatlabEnginePut_SeqAIJ));
4895:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEngineGet_C", MatlabEngineGet_SeqAIJ));
4896: #endif
4897:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetColumnIndices_C", MatSeqAIJSetColumnIndices_SeqAIJ));
4898:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqAIJ));
4899:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqAIJ));
4900:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsbaij_C", MatConvert_SeqAIJ_SeqSBAIJ));
4901:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqbaij_C", MatConvert_SeqAIJ_SeqBAIJ));
4902:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijperm_C", MatConvert_SeqAIJ_SeqAIJPERM));
4903:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijsell_C", MatConvert_SeqAIJ_SeqAIJSELL));
4904: #if defined(PETSC_HAVE_MKL_SPARSE)
4905:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijmkl_C", MatConvert_SeqAIJ_SeqAIJMKL));
4906: #endif
4907: #if defined(PETSC_HAVE_CUDA)
4908:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcusparse_C", MatConvert_SeqAIJ_SeqAIJCUSPARSE));
4909:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4910:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", MatProductSetFromOptions_SeqAIJ));
4911: #endif
4912: #if defined(PETSC_HAVE_HIP)
4913:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijhipsparse_C", MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
4914:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4915:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", MatProductSetFromOptions_SeqAIJ));
4916: #endif
4917: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4918:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijkokkos_C", MatConvert_SeqAIJ_SeqAIJKokkos));
4919: #endif
4920:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcrl_C", MatConvert_SeqAIJ_SeqAIJCRL));
4921: #if defined(PETSC_HAVE_ELEMENTAL)
4922:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_elemental_C", MatConvert_SeqAIJ_Elemental));
4923: #endif
4924: #if defined(PETSC_HAVE_SCALAPACK)
4925:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_scalapack_C", MatConvert_AIJ_ScaLAPACK));
4926: #endif
4927: #if defined(PETSC_HAVE_HYPRE)
4928:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_hypre_C", MatConvert_AIJ_HYPRE));
4929:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", MatProductSetFromOptions_Transpose_AIJ_AIJ));
4930: #endif
4931:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqdense_C", MatConvert_SeqAIJ_SeqDense));
4932:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsell_C", MatConvert_SeqAIJ_SeqSELL));
4933:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_is_C", MatConvert_XAIJ_IS));
4934:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsTranspose_C", MatIsTranspose_SeqAIJ));
4935:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsHermitianTranspose_C", MatIsHermitianTranspose_SeqAIJ));
4936:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocation_C", MatSeqAIJSetPreallocation_SeqAIJ));
4937:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetPreallocation_C", MatResetPreallocation_SeqAIJ));
4938:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocationCSR_C", MatSeqAIJSetPreallocationCSR_SeqAIJ));
4939:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatReorderForNonzeroDiagonal_C", MatReorderForNonzeroDiagonal_SeqAIJ));
4940:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_is_seqaij_C", MatProductSetFromOptions_IS_XAIJ));
4941:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqaij_C", MatProductSetFromOptions_SeqDense_SeqAIJ));
4942:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4943:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJKron_C", MatSeqAIJKron_SeqAIJ));
4944:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJ));
4945:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJ));
4946:   PetscCall(MatCreate_SeqAIJ_Inode(B));
4947:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4948:   PetscCall(MatSeqAIJSetTypeFromOptions(B)); /* this allows changing the matrix subtype to say MATSEQAIJPERM */
4949:   PetscFunctionReturn(PETSC_SUCCESS);
4950: }

4952: /*
4953:     Given a matrix generated with MatGetFactor() duplicates all the information in A into C
4954: */
4955: PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
4956: {
4957:   Mat_SeqAIJ *c = (Mat_SeqAIJ *)C->data, *a = (Mat_SeqAIJ *)A->data;
4958:   PetscInt    m = A->rmap->n, i;

4960:   PetscFunctionBegin;
4961:   PetscCheck(A->assembled || cpvalues == MAT_DO_NOT_COPY_VALUES, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");

4963:   C->factortype    = A->factortype;
4964:   c->row           = NULL;
4965:   c->col           = NULL;
4966:   c->icol          = NULL;
4967:   c->reallocs      = 0;
4968:   c->diagonaldense = a->diagonaldense;

4970:   C->assembled = A->assembled;

4972:   if (A->preallocated) {
4973:     PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
4974:     PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

4976:     if (!A->hash_active) {
4977:       PetscCall(PetscMalloc1(m, &c->imax));
4978:       PetscCall(PetscMemcpy(c->imax, a->imax, m * sizeof(PetscInt)));
4979:       PetscCall(PetscMalloc1(m, &c->ilen));
4980:       PetscCall(PetscMemcpy(c->ilen, a->ilen, m * sizeof(PetscInt)));

4982:       /* allocate the matrix space */
4983:       if (mallocmatspace) {
4984:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscScalar), (void **)&c->a));
4985:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscInt), (void **)&c->j));
4986:         PetscCall(PetscShmgetAllocateArray(m + 1, sizeof(PetscInt), (void **)&c->i));
4987:         PetscCall(PetscArraycpy(c->i, a->i, m + 1));
4988:         c->free_a  = PETSC_TRUE;
4989:         c->free_ij = PETSC_TRUE;
4990:         if (m > 0) {
4991:           PetscCall(PetscArraycpy(c->j, a->j, a->i[m]));
4992:           if (cpvalues == MAT_COPY_VALUES) {
4993:             const PetscScalar *aa;

4995:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4996:             PetscCall(PetscArraycpy(c->a, aa, a->i[m]));
4997:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4998:           } else {
4999:             PetscCall(PetscArrayzero(c->a, a->i[m]));
5000:           }
5001:         }
5002:       }
5003:       C->preallocated = PETSC_TRUE;
5004:     } else {
5005:       PetscCheck(mallocmatspace, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot malloc matrix memory from a non-preallocated matrix");
5006:       PetscCall(MatSetUp(C));
5007:     }

5009:     c->ignorezeroentries = a->ignorezeroentries;
5010:     c->roworiented       = a->roworiented;
5011:     c->nonew             = a->nonew;
5012:     if (a->diag) {
5013:       PetscCall(PetscMalloc1(m + 1, &c->diag));
5014:       PetscCall(PetscMemcpy(c->diag, a->diag, m * sizeof(PetscInt)));
5015:     } else c->diag = NULL;

5017:     c->solve_work         = NULL;
5018:     c->saved_values       = NULL;
5019:     c->idiag              = NULL;
5020:     c->ssor_work          = NULL;
5021:     c->keepnonzeropattern = a->keepnonzeropattern;

5023:     c->rmax  = a->rmax;
5024:     c->nz    = a->nz;
5025:     c->maxnz = a->nz; /* Since we allocate exactly the right amount */

5027:     c->compressedrow.use   = a->compressedrow.use;
5028:     c->compressedrow.nrows = a->compressedrow.nrows;
5029:     if (a->compressedrow.use) {
5030:       i = a->compressedrow.nrows;
5031:       PetscCall(PetscMalloc2(i + 1, &c->compressedrow.i, i, &c->compressedrow.rindex));
5032:       PetscCall(PetscArraycpy(c->compressedrow.i, a->compressedrow.i, i + 1));
5033:       PetscCall(PetscArraycpy(c->compressedrow.rindex, a->compressedrow.rindex, i));
5034:     } else {
5035:       c->compressedrow.use    = PETSC_FALSE;
5036:       c->compressedrow.i      = NULL;
5037:       c->compressedrow.rindex = NULL;
5038:     }
5039:     c->nonzerorowcnt = a->nonzerorowcnt;
5040:     C->nonzerostate  = A->nonzerostate;

5042:     PetscCall(MatDuplicate_SeqAIJ_Inode(A, cpvalues, &C));
5043:   }
5044:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
5045:   PetscFunctionReturn(PETSC_SUCCESS);
5046: }

5048: PetscErrorCode MatDuplicate_SeqAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
5049: {
5050:   PetscFunctionBegin;
5051:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
5052:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
5053:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
5054:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
5055:   PetscCall(MatDuplicateNoCreate_SeqAIJ(*B, A, cpvalues, PETSC_TRUE));
5056:   PetscFunctionReturn(PETSC_SUCCESS);
5057: }

5059: PetscErrorCode MatLoad_SeqAIJ(Mat newMat, PetscViewer viewer)
5060: {
5061:   PetscBool isbinary, ishdf5;

5063:   PetscFunctionBegin;
5066:   /* force binary viewer to load .info file if it has not yet done so */
5067:   PetscCall(PetscViewerSetUp(viewer));
5068:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
5069:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
5070:   if (isbinary) {
5071:     PetscCall(MatLoad_SeqAIJ_Binary(newMat, viewer));
5072:   } else if (ishdf5) {
5073: #if defined(PETSC_HAVE_HDF5)
5074:     PetscCall(MatLoad_AIJ_HDF5(newMat, viewer));
5075: #else
5076:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
5077: #endif
5078:   } else {
5079:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
5080:   }
5081:   PetscFunctionReturn(PETSC_SUCCESS);
5082: }

5084: PetscErrorCode MatLoad_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
5085: {
5086:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)mat->data;
5087:   PetscInt    header[4], *rowlens, M, N, nz, sum, rows, cols, i;

5089:   PetscFunctionBegin;
5090:   PetscCall(PetscViewerSetUp(viewer));

5092:   /* read in matrix header */
5093:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
5094:   PetscCheck(header[0] == MAT_FILE_CLASSID, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
5095:   M  = header[1];
5096:   N  = header[2];
5097:   nz = header[3];
5098:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
5099:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
5100:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as SeqAIJ");

5102:   /* set block sizes from the viewer's .info file */
5103:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
5104:   /* set local and global sizes if not set already */
5105:   if (mat->rmap->n < 0) mat->rmap->n = M;
5106:   if (mat->cmap->n < 0) mat->cmap->n = N;
5107:   if (mat->rmap->N < 0) mat->rmap->N = M;
5108:   if (mat->cmap->N < 0) mat->cmap->N = N;
5109:   PetscCall(PetscLayoutSetUp(mat->rmap));
5110:   PetscCall(PetscLayoutSetUp(mat->cmap));

5112:   /* check if the matrix sizes are correct */
5113:   PetscCall(MatGetSize(mat, &rows, &cols));
5114:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

5116:   /* read in row lengths */
5117:   PetscCall(PetscMalloc1(M, &rowlens));
5118:   PetscCall(PetscViewerBinaryRead(viewer, rowlens, M, NULL, PETSC_INT));
5119:   /* check if sum(rowlens) is same as nz */
5120:   sum = 0;
5121:   for (i = 0; i < M; i++) sum += rowlens[i];
5122:   PetscCheck(sum == nz, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);
5123:   /* preallocate and check sizes */
5124:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(mat, 0, rowlens));
5125:   PetscCall(MatGetSize(mat, &rows, &cols));
5126:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
5127:   /* store row lengths */
5128:   PetscCall(PetscArraycpy(a->ilen, rowlens, M));
5129:   PetscCall(PetscFree(rowlens));

5131:   /* fill in "i" row pointers */
5132:   a->i[0] = 0;
5133:   for (i = 0; i < M; i++) a->i[i + 1] = a->i[i] + a->ilen[i];
5134:   /* read in "j" column indices */
5135:   PetscCall(PetscViewerBinaryRead(viewer, a->j, nz, NULL, PETSC_INT));
5136:   /* read in "a" nonzero values */
5137:   PetscCall(PetscViewerBinaryRead(viewer, a->a, nz, NULL, PETSC_SCALAR));

5139:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
5140:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
5141:   PetscFunctionReturn(PETSC_SUCCESS);
5142: }

5144: PetscErrorCode MatEqual_SeqAIJ(Mat A, Mat B, PetscBool *flg)
5145: {
5146:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *b = (Mat_SeqAIJ *)B->data;
5147:   const PetscScalar *aa, *ba;
5148: #if defined(PETSC_USE_COMPLEX)
5149:   PetscInt k;
5150: #endif

5152:   PetscFunctionBegin;
5153:   /* If the  matrix dimensions are not equal,or no of nonzeros */
5154:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz)) {
5155:     *flg = PETSC_FALSE;
5156:     PetscFunctionReturn(PETSC_SUCCESS);
5157:   }

5159:   /* if the a->i are the same */
5160:   PetscCall(PetscArraycmp(a->i, b->i, A->rmap->n + 1, flg));
5161:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5163:   /* if a->j are the same */
5164:   PetscCall(PetscArraycmp(a->j, b->j, a->nz, flg));
5165:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5167:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5168:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
5169:   /* if a->a are the same */
5170: #if defined(PETSC_USE_COMPLEX)
5171:   for (k = 0; k < a->nz; k++) {
5172:     if (PetscRealPart(aa[k]) != PetscRealPart(ba[k]) || PetscImaginaryPart(aa[k]) != PetscImaginaryPart(ba[k])) {
5173:       *flg = PETSC_FALSE;
5174:       PetscFunctionReturn(PETSC_SUCCESS);
5175:     }
5176:   }
5177: #else
5178:   PetscCall(PetscArraycmp(aa, ba, a->nz, flg));
5179: #endif
5180:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
5181:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
5182:   PetscFunctionReturn(PETSC_SUCCESS);
5183: }

5185: /*@
5186:   MatCreateSeqAIJWithArrays - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in CSR format)
5187:   provided by the user.

5189:   Collective

5191:   Input Parameters:
5192: + comm - must be an MPI communicator of size 1
5193: . m    - number of rows
5194: . n    - number of columns
5195: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
5196: . j    - column indices
5197: - a    - matrix values

5199:   Output Parameter:
5200: . mat - the matrix

5202:   Level: intermediate

5204:   Notes:
5205:   The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
5206:   once the matrix is destroyed and not before

5208:   You cannot set new nonzero locations into this matrix, that will generate an error.

5210:   The `i` and `j` indices are 0 based

5212:   The format which is used for the sparse matrix input, is equivalent to a
5213:   row-major ordering.. i.e for the following matrix, the input data expected is
5214:   as shown
5215: .vb
5216:         1 0 0
5217:         2 0 3
5218:         4 5 6

5220:         i =  {0,1,3,6}  [size = nrow+1  = 3+1]
5221:         j =  {0,0,2,0,1,2}  [size = 6]; values must be sorted for each row
5222:         v =  {1,2,3,4,5,6}  [size = 6]
5223: .ve

5225: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateMPIAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`
5226: @*/
5227: PetscErrorCode MatCreateSeqAIJWithArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
5228: {
5229:   PetscInt    ii;
5230:   Mat_SeqAIJ *aij;
5231:   PetscInt    jj;

5233:   PetscFunctionBegin;
5234:   PetscCheck(m <= 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
5235:   PetscCall(MatCreate(comm, mat));
5236:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5237:   /* PetscCall(MatSetBlockSizes(*mat,,)); */
5238:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5239:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, MAT_SKIP_ALLOCATION, NULL));
5240:   aij = (Mat_SeqAIJ *)(*mat)->data;
5241:   PetscCall(PetscMalloc1(m, &aij->imax));
5242:   PetscCall(PetscMalloc1(m, &aij->ilen));

5244:   aij->i       = i;
5245:   aij->j       = j;
5246:   aij->a       = a;
5247:   aij->nonew   = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
5248:   aij->free_a  = PETSC_FALSE;
5249:   aij->free_ij = PETSC_FALSE;

5251:   for (ii = 0, aij->nonzerorowcnt = 0, aij->rmax = 0; ii < m; ii++) {
5252:     aij->ilen[ii] = aij->imax[ii] = i[ii + 1] - i[ii];
5253:     if (PetscDefined(USE_DEBUG)) {
5254:       PetscCheck(i[ii + 1] - i[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
5255:       for (jj = i[ii] + 1; jj < i[ii + 1]; jj++) {
5256:         PetscCheck(j[jj] >= j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is not sorted", jj - i[ii], j[jj], ii);
5257:         PetscCheck(j[jj] != j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is identical to previous entry", jj - i[ii], j[jj], ii);
5258:       }
5259:     }
5260:   }
5261:   if (PetscDefined(USE_DEBUG)) {
5262:     for (ii = 0; ii < aij->i[m]; ii++) {
5263:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
5264:       PetscCheck(j[ii] <= n - 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index to large at location = %" PetscInt_FMT " index = %" PetscInt_FMT " last column = %" PetscInt_FMT, ii, j[ii], n - 1);
5265:     }
5266:   }

5268:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5269:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5270:   PetscFunctionReturn(PETSC_SUCCESS);
5271: }

5273: /*@
5274:   MatCreateSeqAIJFromTriple - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in COO format)
5275:   provided by the user.

5277:   Collective

5279:   Input Parameters:
5280: + comm - must be an MPI communicator of size 1
5281: . m    - number of rows
5282: . n    - number of columns
5283: . i    - row indices
5284: . j    - column indices
5285: . a    - matrix values
5286: . nz   - number of nonzeros
5287: - idx  - if the `i` and `j` indices start with 1 use `PETSC_TRUE` otherwise use `PETSC_FALSE`

5289:   Output Parameter:
5290: . mat - the matrix

5292:   Level: intermediate

5294:   Example:
5295:   For the following matrix, the input data expected is as shown (using 0 based indexing)
5296: .vb
5297:         1 0 0
5298:         2 0 3
5299:         4 5 6

5301:         i =  {0,1,1,2,2,2}
5302:         j =  {0,0,2,0,1,2}
5303:         v =  {1,2,3,4,5,6}
5304: .ve

5306:   Note:
5307:   Instead of using this function, users should also consider `MatSetPreallocationCOO()` and `MatSetValuesCOO()`, which allow repeated or remote entries,
5308:   and are particularly useful in iterative applications.

5310: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateSeqAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`, `MatSetValuesCOO()`, `MatSetPreallocationCOO()`
5311: @*/
5312: PetscErrorCode MatCreateSeqAIJFromTriple(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat, PetscInt nz, PetscBool idx)
5313: {
5314:   PetscInt ii, *nnz, one = 1, row, col;

5316:   PetscFunctionBegin;
5317:   PetscCall(PetscCalloc1(m, &nnz));
5318:   for (ii = 0; ii < nz; ii++) nnz[i[ii] - !!idx] += 1;
5319:   PetscCall(MatCreate(comm, mat));
5320:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5321:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5322:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, 0, nnz));
5323:   for (ii = 0; ii < nz; ii++) {
5324:     if (idx) {
5325:       row = i[ii] - 1;
5326:       col = j[ii] - 1;
5327:     } else {
5328:       row = i[ii];
5329:       col = j[ii];
5330:     }
5331:     PetscCall(MatSetValues(*mat, one, &row, one, &col, &a[ii], ADD_VALUES));
5332:   }
5333:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5334:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5335:   PetscCall(PetscFree(nnz));
5336:   PetscFunctionReturn(PETSC_SUCCESS);
5337: }

5339: PetscErrorCode MatSeqAIJInvalidateDiagonal(Mat A)
5340: {
5341:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

5343:   PetscFunctionBegin;
5344:   a->idiagvalid  = PETSC_FALSE;
5345:   a->ibdiagvalid = PETSC_FALSE;

5347:   PetscCall(MatSeqAIJInvalidateDiagonal_Inode(A));
5348:   PetscFunctionReturn(PETSC_SUCCESS);
5349: }

5351: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
5352: {
5353:   PetscFunctionBegin;
5354:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIAIJ(comm, inmat, n, scall, outmat));
5355:   PetscFunctionReturn(PETSC_SUCCESS);
5356: }

5358: /*
5359:  Permute A into C's *local* index space using rowemb,colemb.
5360:  The embedding are supposed to be injections and the above implies that the range of rowemb is a subset
5361:  of [0,m), colemb is in [0,n).
5362:  If pattern == DIFFERENT_NONZERO_PATTERN, C is preallocated according to A.
5363:  */
5364: PetscErrorCode MatSetSeqMat_SeqAIJ(Mat C, IS rowemb, IS colemb, MatStructure pattern, Mat B)
5365: {
5366:   /* If making this function public, change the error returned in this function away from _PLIB. */
5367:   Mat_SeqAIJ     *Baij;
5368:   PetscBool       seqaij;
5369:   PetscInt        m, n, *nz, i, j, count;
5370:   PetscScalar     v;
5371:   const PetscInt *rowindices, *colindices;

5373:   PetscFunctionBegin;
5374:   if (!B) PetscFunctionReturn(PETSC_SUCCESS);
5375:   /* Check to make sure the target matrix (and embeddings) are compatible with C and each other. */
5376:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQAIJ, &seqaij));
5377:   PetscCheck(seqaij, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is of wrong type");
5378:   if (rowemb) {
5379:     PetscCall(ISGetLocalSize(rowemb, &m));
5380:     PetscCheck(m == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row IS of size %" PetscInt_FMT " is incompatible with matrix row size %" PetscInt_FMT, m, B->rmap->n);
5381:   } else {
5382:     PetscCheck(C->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is row-incompatible with the target matrix");
5383:   }
5384:   if (colemb) {
5385:     PetscCall(ISGetLocalSize(colemb, &n));
5386:     PetscCheck(n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Diag col IS of size %" PetscInt_FMT " is incompatible with input matrix col size %" PetscInt_FMT, n, B->cmap->n);
5387:   } else {
5388:     PetscCheck(C->cmap->n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is col-incompatible with the target matrix");
5389:   }

5391:   Baij = (Mat_SeqAIJ *)B->data;
5392:   if (pattern == DIFFERENT_NONZERO_PATTERN) {
5393:     PetscCall(PetscMalloc1(B->rmap->n, &nz));
5394:     for (i = 0; i < B->rmap->n; i++) nz[i] = Baij->i[i + 1] - Baij->i[i];
5395:     PetscCall(MatSeqAIJSetPreallocation(C, 0, nz));
5396:     PetscCall(PetscFree(nz));
5397:   }
5398:   if (pattern == SUBSET_NONZERO_PATTERN) PetscCall(MatZeroEntries(C));
5399:   count      = 0;
5400:   rowindices = NULL;
5401:   colindices = NULL;
5402:   if (rowemb) PetscCall(ISGetIndices(rowemb, &rowindices));
5403:   if (colemb) PetscCall(ISGetIndices(colemb, &colindices));
5404:   for (i = 0; i < B->rmap->n; i++) {
5405:     PetscInt row;
5406:     row = i;
5407:     if (rowindices) row = rowindices[i];
5408:     for (j = Baij->i[i]; j < Baij->i[i + 1]; j++) {
5409:       PetscInt col;
5410:       col = Baij->j[count];
5411:       if (colindices) col = colindices[col];
5412:       v = Baij->a[count];
5413:       PetscCall(MatSetValues(C, 1, &row, 1, &col, &v, INSERT_VALUES));
5414:       ++count;
5415:     }
5416:   }
5417:   /* FIXME: set C's nonzerostate correctly. */
5418:   /* Assembly for C is necessary. */
5419:   C->preallocated  = PETSC_TRUE;
5420:   C->assembled     = PETSC_TRUE;
5421:   C->was_assembled = PETSC_FALSE;
5422:   PetscFunctionReturn(PETSC_SUCCESS);
5423: }

5425: PetscErrorCode MatEliminateZeros_SeqAIJ(Mat A, PetscBool keep)
5426: {
5427:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5428:   MatScalar  *aa = a->a;
5429:   PetscInt    m = A->rmap->n, fshift = 0, fshift_prev = 0, i, k;
5430:   PetscInt   *ailen = a->ilen, *imax = a->imax, *ai = a->i, *aj = a->j, rmax = 0;

5432:   PetscFunctionBegin;
5433:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot eliminate zeros for unassembled matrix");
5434:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
5435:   for (i = 1; i <= m; i++) {
5436:     /* move each nonzero entry back by the amount of zero slots (fshift) before it*/
5437:     for (k = ai[i - 1]; k < ai[i]; k++) {
5438:       if (aa[k] == 0 && (aj[k] != i - 1 || !keep)) fshift++;
5439:       else {
5440:         if (aa[k] == 0 && aj[k] == i - 1) PetscCall(PetscInfo(A, "Keep the diagonal zero at row %" PetscInt_FMT "\n", i - 1));
5441:         aa[k - fshift] = aa[k];
5442:         aj[k - fshift] = aj[k];
5443:       }
5444:     }
5445:     ai[i - 1] -= fshift_prev; // safe to update ai[i-1] now since it will not be used in the next iteration
5446:     fshift_prev = fshift;
5447:     /* reset ilen and imax for each row */
5448:     ailen[i - 1] = imax[i - 1] = ai[i] - fshift - ai[i - 1];
5449:     a->nonzerorowcnt += ((ai[i] - fshift - ai[i - 1]) > 0);
5450:     rmax = PetscMax(rmax, ailen[i - 1]);
5451:   }
5452:   if (fshift) {
5453:     if (m) {
5454:       ai[m] -= fshift;
5455:       a->nz = ai[m];
5456:     }
5457:     PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; zeros eliminated: %" PetscInt_FMT "; nonzeros left: %" PetscInt_FMT "\n", m, A->cmap->n, fshift, a->nz));
5458:     A->nonzerostate++;
5459:     A->info.nz_unneeded += (PetscReal)fshift;
5460:     a->rmax = rmax;
5461:     if (a->inode.use && a->inode.checked) PetscCall(MatSeqAIJCheckInode(A));
5462:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
5463:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
5464:   }
5465:   PetscFunctionReturn(PETSC_SUCCESS);
5466: }

5468: PetscFunctionList MatSeqAIJList = NULL;

5470: /*@
5471:   MatSeqAIJSetType - Converts a `MATSEQAIJ` matrix to a subtype

5473:   Collective

5475:   Input Parameters:
5476: + mat    - the matrix object
5477: - matype - matrix type

5479:   Options Database Key:
5480: . -mat_seqaij_type  <method> - for example seqaijcrl

5482:   Level: intermediate

5484: .seealso: [](ch_matrices), `Mat`, `PCSetType()`, `VecSetType()`, `MatCreate()`, `MatType`
5485: @*/
5486: PetscErrorCode MatSeqAIJSetType(Mat mat, MatType matype)
5487: {
5488:   PetscBool sametype;
5489:   PetscErrorCode (*r)(Mat, MatType, MatReuse, Mat *);

5491:   PetscFunctionBegin;
5493:   PetscCall(PetscObjectTypeCompare((PetscObject)mat, matype, &sametype));
5494:   if (sametype) PetscFunctionReturn(PETSC_SUCCESS);

5496:   PetscCall(PetscFunctionListFind(MatSeqAIJList, matype, &r));
5497:   PetscCheck(r, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown Mat type given: %s", matype);
5498:   PetscCall((*r)(mat, matype, MAT_INPLACE_MATRIX, &mat));
5499:   PetscFunctionReturn(PETSC_SUCCESS);
5500: }

5502: /*@C
5503:   MatSeqAIJRegister -  - Adds a new sub-matrix type for sequential `MATSEQAIJ` matrices

5505:   Not Collective, No Fortran Support

5507:   Input Parameters:
5508: + sname    - name of a new user-defined matrix type, for example `MATSEQAIJCRL`
5509: - function - routine to convert to subtype

5511:   Level: advanced

5513:   Notes:
5514:   `MatSeqAIJRegister()` may be called multiple times to add several user-defined solvers.

5516:   Then, your matrix can be chosen with the procedural interface at runtime via the option
5517: $     -mat_seqaij_type my_mat

5519: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRegisterAll()`
5520: @*/
5521: PetscErrorCode MatSeqAIJRegister(const char sname[], PetscErrorCode (*function)(Mat, MatType, MatReuse, Mat *))
5522: {
5523:   PetscFunctionBegin;
5524:   PetscCall(MatInitializePackage());
5525:   PetscCall(PetscFunctionListAdd(&MatSeqAIJList, sname, function));
5526:   PetscFunctionReturn(PETSC_SUCCESS);
5527: }

5529: PetscBool MatSeqAIJRegisterAllCalled = PETSC_FALSE;

5531: /*@C
5532:   MatSeqAIJRegisterAll - Registers all of the matrix subtypes of `MATSSEQAIJ`

5534:   Not Collective

5536:   Level: advanced

5538:   Note:
5539:   This registers the versions of `MATSEQAIJ` for GPUs

5541: .seealso: [](ch_matrices), `Mat`, `MatRegisterAll()`, `MatSeqAIJRegister()`
5542: @*/
5543: PetscErrorCode MatSeqAIJRegisterAll(void)
5544: {
5545:   PetscFunctionBegin;
5546:   if (MatSeqAIJRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
5547:   MatSeqAIJRegisterAllCalled = PETSC_TRUE;

5549:   PetscCall(MatSeqAIJRegister(MATSEQAIJCRL, MatConvert_SeqAIJ_SeqAIJCRL));
5550:   PetscCall(MatSeqAIJRegister(MATSEQAIJPERM, MatConvert_SeqAIJ_SeqAIJPERM));
5551:   PetscCall(MatSeqAIJRegister(MATSEQAIJSELL, MatConvert_SeqAIJ_SeqAIJSELL));
5552: #if defined(PETSC_HAVE_MKL_SPARSE)
5553:   PetscCall(MatSeqAIJRegister(MATSEQAIJMKL, MatConvert_SeqAIJ_SeqAIJMKL));
5554: #endif
5555: #if defined(PETSC_HAVE_CUDA)
5556:   PetscCall(MatSeqAIJRegister(MATSEQAIJCUSPARSE, MatConvert_SeqAIJ_SeqAIJCUSPARSE));
5557: #endif
5558: #if defined(PETSC_HAVE_HIP)
5559:   PetscCall(MatSeqAIJRegister(MATSEQAIJHIPSPARSE, MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
5560: #endif
5561: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
5562:   PetscCall(MatSeqAIJRegister(MATSEQAIJKOKKOS, MatConvert_SeqAIJ_SeqAIJKokkos));
5563: #endif
5564: #if defined(PETSC_HAVE_VIENNACL) && defined(PETSC_HAVE_VIENNACL_NO_CUDA)
5565:   PetscCall(MatSeqAIJRegister(MATMPIAIJVIENNACL, MatConvert_SeqAIJ_SeqAIJViennaCL));
5566: #endif
5567:   PetscFunctionReturn(PETSC_SUCCESS);
5568: }

5570: /*
5571:     Special version for direct calls from Fortran
5572: */
5573: #if defined(PETSC_HAVE_FORTRAN_CAPS)
5574:   #define matsetvaluesseqaij_ MATSETVALUESSEQAIJ
5575: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
5576:   #define matsetvaluesseqaij_ matsetvaluesseqaij
5577: #endif

5579: /* Change these macros so can be used in void function */

5581: /* Change these macros so can be used in void function */
5582: /* Identical to PetscCallVoid, except it assigns to *_ierr */
5583: #undef PetscCall
5584: #define PetscCall(...) \
5585:   do { \
5586:     PetscErrorCode ierr_msv_mpiaij = __VA_ARGS__; \
5587:     if (PetscUnlikely(ierr_msv_mpiaij)) { \
5588:       *_ierr = PetscError(PETSC_COMM_SELF, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr_msv_mpiaij, PETSC_ERROR_REPEAT, " "); \
5589:       return; \
5590:     } \
5591:   } while (0)

5593: #undef SETERRQ
5594: #define SETERRQ(comm, ierr, ...) \
5595:   do { \
5596:     *_ierr = PetscError(comm, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr, PETSC_ERROR_INITIAL, __VA_ARGS__); \
5597:     return; \
5598:   } while (0)

5600: PETSC_EXTERN void matsetvaluesseqaij_(Mat *AA, PetscInt *mm, const PetscInt im[], PetscInt *nn, const PetscInt in[], const PetscScalar v[], InsertMode *isis, PetscErrorCode *_ierr)
5601: {
5602:   Mat         A = *AA;
5603:   PetscInt    m = *mm, n = *nn;
5604:   InsertMode  is = *isis;
5605:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5606:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
5607:   PetscInt   *imax, *ai, *ailen;
5608:   PetscInt   *aj, nonew = a->nonew, lastcol = -1;
5609:   MatScalar  *ap, value, *aa;
5610:   PetscBool   ignorezeroentries = a->ignorezeroentries;
5611:   PetscBool   roworiented       = a->roworiented;

5613:   PetscFunctionBegin;
5614:   MatCheckPreallocated(A, 1);
5615:   imax  = a->imax;
5616:   ai    = a->i;
5617:   ailen = a->ilen;
5618:   aj    = a->j;
5619:   aa    = a->a;

5621:   for (k = 0; k < m; k++) { /* loop over added rows */
5622:     row = im[k];
5623:     if (row < 0) continue;
5624:     PetscCheck(row < A->rmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large");
5625:     rp   = aj + ai[row];
5626:     ap   = aa + ai[row];
5627:     rmax = imax[row];
5628:     nrow = ailen[row];
5629:     low  = 0;
5630:     high = nrow;
5631:     for (l = 0; l < n; l++) { /* loop over added columns */
5632:       if (in[l] < 0) continue;
5633:       PetscCheck(in[l] < A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Column too large");
5634:       col = in[l];
5635:       if (roworiented) value = v[l + k * n];
5636:       else value = v[k + l * m];

5638:       if (value == 0.0 && ignorezeroentries && (is == ADD_VALUES)) continue;

5640:       if (col <= lastcol) low = 0;
5641:       else high = nrow;
5642:       lastcol = col;
5643:       while (high - low > 5) {
5644:         t = (low + high) / 2;
5645:         if (rp[t] > col) high = t;
5646:         else low = t;
5647:       }
5648:       for (i = low; i < high; i++) {
5649:         if (rp[i] > col) break;
5650:         if (rp[i] == col) {
5651:           if (is == ADD_VALUES) ap[i] += value;
5652:           else ap[i] = value;
5653:           goto noinsert;
5654:         }
5655:       }
5656:       if (value == 0.0 && ignorezeroentries) goto noinsert;
5657:       if (nonew == 1) goto noinsert;
5658:       PetscCheck(nonew != -1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero in the matrix");
5659:       MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
5660:       N = nrow++ - 1;
5661:       a->nz++;
5662:       high++;
5663:       /* shift up all the later entries in this row */
5664:       for (ii = N; ii >= i; ii--) {
5665:         rp[ii + 1] = rp[ii];
5666:         ap[ii + 1] = ap[ii];
5667:       }
5668:       rp[i] = col;
5669:       ap[i] = value;
5670:     noinsert:;
5671:       low = i + 1;
5672:     }
5673:     ailen[row] = nrow;
5674:   }
5675:   PetscFunctionReturnVoid();
5676: }
5677: /* Undefining these here since they were redefined from their original definition above! No
5678:  * other PETSc functions should be defined past this point, as it is impossible to recover the
5679:  * original definitions */
5680: #undef PetscCall
5681: #undef SETERRQ