Actual source code: aij.c

  1: /*
  2:     Defines the basic matrix operations for the AIJ (compressed row)
  3:   matrix storage format.
  4: */

  6: #include <../src/mat/impls/aij/seq/aij.h>
  7: #include <petscblaslapack.h>
  8: #include <petscbt.h>
  9: #include <petsc/private/kernels/blocktranspose.h>

 11: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 12: #define TYPE AIJ
 13: #define TYPE_BS
 14: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 15: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 16: #undef TYPE
 17: #undef TYPE_BS

 19: static PetscErrorCode MatSeqAIJSetTypeFromOptions(Mat A)
 20: {
 21:   PetscBool flg;
 22:   char      type[256];

 24:   PetscFunctionBegin;
 25:   PetscObjectOptionsBegin((PetscObject)A);
 26:   PetscCall(PetscOptionsFList("-mat_seqaij_type", "Matrix SeqAIJ type", "MatSeqAIJSetType", MatSeqAIJList, "seqaij", type, 256, &flg));
 27:   if (flg) PetscCall(MatSeqAIJSetType(A, type));
 28:   PetscOptionsEnd();
 29:   PetscFunctionReturn(PETSC_SUCCESS);
 30: }

 32: static PetscErrorCode MatGetColumnReductions_SeqAIJ(Mat A, PetscInt type, PetscReal *reductions)
 33: {
 34:   PetscInt    i, m, n;
 35:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

 37:   PetscFunctionBegin;
 38:   PetscCall(MatGetSize(A, &m, &n));
 39:   PetscCall(PetscArrayzero(reductions, n));
 40:   if (type == NORM_2) {
 41:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i] * aij->a[i]);
 42:   } else if (type == NORM_1) {
 43:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i]);
 44:   } else if (type == NORM_INFINITY) {
 45:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] = PetscMax(PetscAbsScalar(aij->a[i]), reductions[aij->j[i]]);
 46:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
 47:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscRealPart(aij->a[i]);
 48:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 49:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscImaginaryPart(aij->a[i]);
 50:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");

 52:   if (type == NORM_2) {
 53:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
 54:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 55:     for (i = 0; i < n; i++) reductions[i] /= m;
 56:   }
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: static PetscErrorCode MatFindOffBlockDiagonalEntries_SeqAIJ(Mat A, IS *is)
 61: {
 62:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
 63:   PetscInt        i, m = A->rmap->n, cnt = 0, bs = A->rmap->bs;
 64:   const PetscInt *jj = a->j, *ii = a->i;
 65:   PetscInt       *rows;

 67:   PetscFunctionBegin;
 68:   for (i = 0; i < m; i++) {
 69:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) cnt++;
 70:   }
 71:   PetscCall(PetscMalloc1(cnt, &rows));
 72:   cnt = 0;
 73:   for (i = 0; i < m; i++) {
 74:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) {
 75:       rows[cnt] = i;
 76:       cnt++;
 77:     }
 78:   }
 79:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, is));
 80:   PetscFunctionReturn(PETSC_SUCCESS);
 81: }

 83: PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat A, PetscInt *nrows, PetscInt **zrows)
 84: {
 85:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
 86:   const MatScalar *aa;
 87:   PetscInt         i, m = A->rmap->n, cnt = 0;
 88:   const PetscInt  *ii = a->i, *jj = a->j, *diag;
 89:   PetscInt        *rows;

 91:   PetscFunctionBegin;
 92:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
 93:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
 94:   diag = a->diag;
 95:   for (i = 0; i < m; i++) {
 96:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) cnt++;
 97:   }
 98:   PetscCall(PetscMalloc1(cnt, &rows));
 99:   cnt = 0;
100:   for (i = 0; i < m; i++) {
101:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) rows[cnt++] = i;
102:   }
103:   *nrows = cnt;
104:   *zrows = rows;
105:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
106:   PetscFunctionReturn(PETSC_SUCCESS);
107: }

109: static PetscErrorCode MatFindZeroDiagonals_SeqAIJ(Mat A, IS *zrows)
110: {
111:   PetscInt nrows, *rows;

113:   PetscFunctionBegin;
114:   *zrows = NULL;
115:   PetscCall(MatFindZeroDiagonals_SeqAIJ_Private(A, &nrows, &rows));
116:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), nrows, rows, PETSC_OWN_POINTER, zrows));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: static PetscErrorCode MatFindNonzeroRows_SeqAIJ(Mat A, IS *keptrows)
121: {
122:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
123:   const MatScalar *aa;
124:   PetscInt         m = A->rmap->n, cnt = 0;
125:   const PetscInt  *ii;
126:   PetscInt         n, i, j, *rows;

128:   PetscFunctionBegin;
129:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
130:   *keptrows = NULL;
131:   ii        = a->i;
132:   for (i = 0; i < m; i++) {
133:     n = ii[i + 1] - ii[i];
134:     if (!n) {
135:       cnt++;
136:       goto ok1;
137:     }
138:     for (j = ii[i]; j < ii[i + 1]; j++) {
139:       if (aa[j] != 0.0) goto ok1;
140:     }
141:     cnt++;
142:   ok1:;
143:   }
144:   if (!cnt) {
145:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
146:     PetscFunctionReturn(PETSC_SUCCESS);
147:   }
148:   PetscCall(PetscMalloc1(A->rmap->n - cnt, &rows));
149:   cnt = 0;
150:   for (i = 0; i < m; i++) {
151:     n = ii[i + 1] - ii[i];
152:     if (!n) continue;
153:     for (j = ii[i]; j < ii[i + 1]; j++) {
154:       if (aa[j] != 0.0) {
155:         rows[cnt++] = i;
156:         break;
157:       }
158:     }
159:   }
160:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
161:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, keptrows));
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: PetscErrorCode MatDiagonalSet_SeqAIJ(Mat Y, Vec D, InsertMode is)
166: {
167:   Mat_SeqAIJ        *aij = (Mat_SeqAIJ *)Y->data;
168:   PetscInt           i, m = Y->rmap->n;
169:   const PetscInt    *diag;
170:   MatScalar         *aa;
171:   const PetscScalar *v;
172:   PetscBool          missing;

174:   PetscFunctionBegin;
175:   if (Y->assembled) {
176:     PetscCall(MatMissingDiagonal_SeqAIJ(Y, &missing, NULL));
177:     if (!missing) {
178:       diag = aij->diag;
179:       PetscCall(VecGetArrayRead(D, &v));
180:       PetscCall(MatSeqAIJGetArray(Y, &aa));
181:       if (is == INSERT_VALUES) {
182:         for (i = 0; i < m; i++) aa[diag[i]] = v[i];
183:       } else {
184:         for (i = 0; i < m; i++) aa[diag[i]] += v[i];
185:       }
186:       PetscCall(MatSeqAIJRestoreArray(Y, &aa));
187:       PetscCall(VecRestoreArrayRead(D, &v));
188:       PetscFunctionReturn(PETSC_SUCCESS);
189:     }
190:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
191:   }
192:   PetscCall(MatDiagonalSet_Default(Y, D, is));
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: PetscErrorCode MatGetRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
197: {
198:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
199:   PetscInt    i, ishift;

201:   PetscFunctionBegin;
202:   if (m) *m = A->rmap->n;
203:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
204:   ishift = 0;
205:   if (symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) {
206:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, ishift, oshift, (PetscInt **)ia, (PetscInt **)ja));
207:   } else if (oshift == 1) {
208:     PetscInt *tia;
209:     PetscInt  nz = a->i[A->rmap->n];
210:     /* malloc space and  add 1 to i and j indices */
211:     PetscCall(PetscMalloc1(A->rmap->n + 1, &tia));
212:     for (i = 0; i < A->rmap->n + 1; i++) tia[i] = a->i[i] + 1;
213:     *ia = tia;
214:     if (ja) {
215:       PetscInt *tja;
216:       PetscCall(PetscMalloc1(nz + 1, &tja));
217:       for (i = 0; i < nz; i++) tja[i] = a->j[i] + 1;
218:       *ja = tja;
219:     }
220:   } else {
221:     *ia = a->i;
222:     if (ja) *ja = a->j;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
228: {
229:   PetscFunctionBegin;
230:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
231:   if ((symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) || oshift == 1) {
232:     PetscCall(PetscFree(*ia));
233:     if (ja) PetscCall(PetscFree(*ja));
234:   }
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
239: {
240:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
241:   PetscInt    i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
242:   PetscInt    nz = a->i[m], row, *jj, mr, col;

244:   PetscFunctionBegin;
245:   *nn = n;
246:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
247:   if (symmetric) {
248:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, 0, oshift, (PetscInt **)ia, (PetscInt **)ja));
249:   } else {
250:     PetscCall(PetscCalloc1(n, &collengths));
251:     PetscCall(PetscMalloc1(n + 1, &cia));
252:     PetscCall(PetscMalloc1(nz, &cja));
253:     jj = a->j;
254:     for (i = 0; i < nz; i++) collengths[jj[i]]++;
255:     cia[0] = oshift;
256:     for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
257:     PetscCall(PetscArrayzero(collengths, n));
258:     jj = a->j;
259:     for (row = 0; row < m; row++) {
260:       mr = a->i[row + 1] - a->i[row];
261:       for (i = 0; i < mr; i++) {
262:         col = *jj++;

264:         cja[cia[col] + collengths[col]++ - oshift] = row + oshift;
265:       }
266:     }
267:     PetscCall(PetscFree(collengths));
268:     *ia = cia;
269:     *ja = cja;
270:   }
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
275: {
276:   PetscFunctionBegin;
277:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

279:   PetscCall(PetscFree(*ia));
280:   PetscCall(PetscFree(*ja));
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: /*
285:  MatGetColumnIJ_SeqAIJ_Color() and MatRestoreColumnIJ_SeqAIJ_Color() are customized from
286:  MatGetColumnIJ_SeqAIJ() and MatRestoreColumnIJ_SeqAIJ() by adding an output
287:  spidx[], index of a->a, to be used in MatTransposeColoringCreate_SeqAIJ() and MatFDColoringCreate_SeqXAIJ()
288: */
289: PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
290: {
291:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
292:   PetscInt        i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
293:   PetscInt        nz = a->i[m], row, mr, col, tmp;
294:   PetscInt       *cspidx;
295:   const PetscInt *jj;

297:   PetscFunctionBegin;
298:   *nn = n;
299:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

301:   PetscCall(PetscCalloc1(n, &collengths));
302:   PetscCall(PetscMalloc1(n + 1, &cia));
303:   PetscCall(PetscMalloc1(nz, &cja));
304:   PetscCall(PetscMalloc1(nz, &cspidx));
305:   jj = a->j;
306:   for (i = 0; i < nz; i++) collengths[jj[i]]++;
307:   cia[0] = oshift;
308:   for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
309:   PetscCall(PetscArrayzero(collengths, n));
310:   jj = a->j;
311:   for (row = 0; row < m; row++) {
312:     mr = a->i[row + 1] - a->i[row];
313:     for (i = 0; i < mr; i++) {
314:       col         = *jj++;
315:       tmp         = cia[col] + collengths[col]++ - oshift;
316:       cspidx[tmp] = a->i[row] + i; /* index of a->j */
317:       cja[tmp]    = row + oshift;
318:     }
319:   }
320:   PetscCall(PetscFree(collengths));
321:   *ia    = cia;
322:   *ja    = cja;
323:   *spidx = cspidx;
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
328: {
329:   PetscFunctionBegin;
330:   PetscCall(MatRestoreColumnIJ_SeqAIJ(A, oshift, symmetric, inodecompressed, n, ia, ja, done));
331:   PetscCall(PetscFree(*spidx));
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }

335: static PetscErrorCode MatSetValuesRow_SeqAIJ(Mat A, PetscInt row, const PetscScalar v[])
336: {
337:   Mat_SeqAIJ  *a  = (Mat_SeqAIJ *)A->data;
338:   PetscInt    *ai = a->i;
339:   PetscScalar *aa;

341:   PetscFunctionBegin;
342:   PetscCall(MatSeqAIJGetArray(A, &aa));
343:   PetscCall(PetscArraycpy(aa + ai[row], v, ai[row + 1] - ai[row]));
344:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /*
349:     MatSeqAIJSetValuesLocalFast - An optimized version of MatSetValuesLocal() for SeqAIJ matrices with several assumptions

351:       -   a single row of values is set with each call
352:       -   no row or column indices are negative or (in error) larger than the number of rows or columns
353:       -   the values are always added to the matrix, not set
354:       -   no new locations are introduced in the nonzero structure of the matrix

356:      This does NOT assume the global column indices are sorted

358: */

360: #include <petsc/private/isimpl.h>
361: PetscErrorCode MatSeqAIJSetValuesLocalFast(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
362: {
363:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
364:   PetscInt        low, high, t, row, nrow, i, col, l;
365:   const PetscInt *rp, *ai = a->i, *ailen = a->ilen, *aj = a->j;
366:   PetscInt        lastcol = -1;
367:   MatScalar      *ap, value, *aa;
368:   const PetscInt *ridx = A->rmap->mapping->indices, *cidx = A->cmap->mapping->indices;

370:   PetscFunctionBegin;
371:   PetscCall(MatSeqAIJGetArray(A, &aa));
372:   row  = ridx[im[0]];
373:   rp   = aj + ai[row];
374:   ap   = aa + ai[row];
375:   nrow = ailen[row];
376:   low  = 0;
377:   high = nrow;
378:   for (l = 0; l < n; l++) { /* loop over added columns */
379:     col   = cidx[in[l]];
380:     value = v[l];

382:     if (col <= lastcol) low = 0;
383:     else high = nrow;
384:     lastcol = col;
385:     while (high - low > 5) {
386:       t = (low + high) / 2;
387:       if (rp[t] > col) high = t;
388:       else low = t;
389:     }
390:     for (i = low; i < high; i++) {
391:       if (rp[i] == col) {
392:         ap[i] += value;
393:         low = i + 1;
394:         break;
395:       }
396:     }
397:   }
398:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
399:   return PETSC_SUCCESS;
400: }

402: PetscErrorCode MatSetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
403: {
404:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
405:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
406:   PetscInt   *imax = a->imax, *ai = a->i, *ailen = a->ilen;
407:   PetscInt   *aj = a->j, nonew = a->nonew, lastcol = -1;
408:   MatScalar  *ap = NULL, value = 0.0, *aa;
409:   PetscBool   ignorezeroentries = a->ignorezeroentries;
410:   PetscBool   roworiented       = a->roworiented;

412:   PetscFunctionBegin;
413:   PetscCall(MatSeqAIJGetArray(A, &aa));
414:   for (k = 0; k < m; k++) { /* loop over added rows */
415:     row = im[k];
416:     if (row < 0) continue;
417:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
418:     rp = PetscSafePointerPlusOffset(aj, ai[row]);
419:     if (!A->structure_only) ap = PetscSafePointerPlusOffset(aa, ai[row]);
420:     rmax = imax[row];
421:     nrow = ailen[row];
422:     low  = 0;
423:     high = nrow;
424:     for (l = 0; l < n; l++) { /* loop over added columns */
425:       if (in[l] < 0) continue;
426:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
427:       col = in[l];
428:       if (v && !A->structure_only) value = roworiented ? v[l + k * n] : v[k + l * m];
429:       if (!A->structure_only && value == 0.0 && ignorezeroentries && is == ADD_VALUES && row != col) continue;

431:       if (col <= lastcol) low = 0;
432:       else high = nrow;
433:       lastcol = col;
434:       while (high - low > 5) {
435:         t = (low + high) / 2;
436:         if (rp[t] > col) high = t;
437:         else low = t;
438:       }
439:       for (i = low; i < high; i++) {
440:         if (rp[i] > col) break;
441:         if (rp[i] == col) {
442:           if (!A->structure_only) {
443:             if (is == ADD_VALUES) {
444:               ap[i] += value;
445:               (void)PetscLogFlops(1.0);
446:             } else ap[i] = value;
447:           }
448:           low = i + 1;
449:           goto noinsert;
450:         }
451:       }
452:       if (value == 0.0 && ignorezeroentries && row != col) goto noinsert;
453:       if (nonew == 1) goto noinsert;
454:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at (%" PetscInt_FMT ",%" PetscInt_FMT ") in the matrix", row, col);
455:       if (A->structure_only) {
456:         MatSeqXAIJReallocateAIJ_structure_only(A, A->rmap->n, 1, nrow, row, col, rmax, ai, aj, rp, imax, nonew, MatScalar);
457:       } else {
458:         MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459:       }
460:       N = nrow++ - 1;
461:       a->nz++;
462:       high++;
463:       /* shift up all the later entries in this row */
464:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
465:       rp[i] = col;
466:       if (!A->structure_only) {
467:         PetscCall(PetscArraymove(ap + i + 1, ap + i, N - i + 1));
468:         ap[i] = value;
469:       }
470:       low = i + 1;
471:     noinsert:;
472:     }
473:     ailen[row] = nrow;
474:   }
475:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
476:   PetscFunctionReturn(PETSC_SUCCESS);
477: }

479: static PetscErrorCode MatSetValues_SeqAIJ_SortedFullNoPreallocation(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
480: {
481:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
482:   PetscInt   *rp, k, row;
483:   PetscInt   *ai = a->i;
484:   PetscInt   *aj = a->j;
485:   MatScalar  *aa, *ap;

487:   PetscFunctionBegin;
488:   PetscCheck(!A->was_assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call on assembled matrix.");
489:   PetscCheck(m * n + a->nz <= a->maxnz, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of entries in matrix will be larger than maximum nonzeros allocated for %" PetscInt_FMT " in MatSeqAIJSetTotalPreallocation()", a->maxnz);

491:   PetscCall(MatSeqAIJGetArray(A, &aa));
492:   for (k = 0; k < m; k++) { /* loop over added rows */
493:     row = im[k];
494:     rp  = aj + ai[row];
495:     ap  = PetscSafePointerPlusOffset(aa, ai[row]);

497:     PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
498:     if (!A->structure_only) {
499:       if (v) {
500:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
501:         v += n;
502:       } else {
503:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
504:       }
505:     }
506:     a->ilen[row]  = n;
507:     a->imax[row]  = n;
508:     a->i[row + 1] = a->i[row] + n;
509:     a->nz += n;
510:   }
511:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@
516:   MatSeqAIJSetTotalPreallocation - Sets an upper bound on the total number of expected nonzeros in the matrix.

518:   Input Parameters:
519: + A       - the `MATSEQAIJ` matrix
520: - nztotal - bound on the number of nonzeros

522:   Level: advanced

524:   Notes:
525:   This can be called if you will be provided the matrix row by row (from row zero) with sorted column indices for each row.
526:   Simply call `MatSetValues()` after this call to provide the matrix entries in the usual manner. This matrix may be used
527:   as always with multiple matrix assemblies.

529: .seealso: [](ch_matrices), `Mat`, `MatSetOption()`, `MAT_SORTED_FULL`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`
530: @*/
531: PetscErrorCode MatSeqAIJSetTotalPreallocation(Mat A, PetscInt nztotal)
532: {
533:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

535:   PetscFunctionBegin;
536:   PetscCall(PetscLayoutSetUp(A->rmap));
537:   PetscCall(PetscLayoutSetUp(A->cmap));
538:   a->maxnz = nztotal;
539:   if (!a->imax) PetscCall(PetscMalloc1(A->rmap->n, &a->imax));
540:   if (!a->ilen) {
541:     PetscCall(PetscMalloc1(A->rmap->n, &a->ilen));
542:   } else {
543:     PetscCall(PetscMemzero(a->ilen, A->rmap->n * sizeof(PetscInt)));
544:   }

546:   /* allocate the matrix space */
547:   PetscCall(PetscShmgetAllocateArray(A->rmap->n + 1, sizeof(PetscInt), (void **)&a->i));
548:   PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscInt), (void **)&a->j));
549:   a->free_ij = PETSC_TRUE;
550:   if (A->structure_only) {
551:     a->free_a = PETSC_FALSE;
552:   } else {
553:     PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscScalar), (void **)&a->a));
554:     a->free_a = PETSC_TRUE;
555:   }
556:   a->i[0]           = 0;
557:   A->ops->setvalues = MatSetValues_SeqAIJ_SortedFullNoPreallocation;
558:   A->preallocated   = PETSC_TRUE;
559:   PetscFunctionReturn(PETSC_SUCCESS);
560: }

562: static PetscErrorCode MatSetValues_SeqAIJ_SortedFull(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
563: {
564:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
565:   PetscInt   *rp, k, row;
566:   PetscInt   *ai = a->i, *ailen = a->ilen;
567:   PetscInt   *aj = a->j;
568:   MatScalar  *aa, *ap;

570:   PetscFunctionBegin;
571:   PetscCall(MatSeqAIJGetArray(A, &aa));
572:   for (k = 0; k < m; k++) { /* loop over added rows */
573:     row = im[k];
574:     PetscCheck(n <= a->imax[row], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Preallocation for row %" PetscInt_FMT " does not match number of columns provided", n);
575:     rp = aj + ai[row];
576:     ap = aa + ai[row];
577:     if (!A->was_assembled) PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
578:     if (!A->structure_only) {
579:       if (v) {
580:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
581:         v += n;
582:       } else {
583:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
584:       }
585:     }
586:     ailen[row] = n;
587:     a->nz += n;
588:   }
589:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatGetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
594: {
595:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
596:   PetscInt        *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
597:   PetscInt        *ai = a->i, *ailen = a->ilen;
598:   const MatScalar *ap, *aa;

600:   PetscFunctionBegin;
601:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
602:   for (k = 0; k < m; k++) { /* loop over rows */
603:     row = im[k];
604:     if (row < 0) {
605:       v += n;
606:       continue;
607:     } /* negative row */
608:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
609:     rp   = PetscSafePointerPlusOffset(aj, ai[row]);
610:     ap   = PetscSafePointerPlusOffset(aa, ai[row]);
611:     nrow = ailen[row];
612:     for (l = 0; l < n; l++) { /* loop over columns */
613:       if (in[l] < 0) {
614:         v++;
615:         continue;
616:       } /* negative column */
617:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
618:       col  = in[l];
619:       high = nrow;
620:       low  = 0; /* assume unsorted */
621:       while (high - low > 5) {
622:         t = (low + high) / 2;
623:         if (rp[t] > col) high = t;
624:         else low = t;
625:       }
626:       for (i = low; i < high; i++) {
627:         if (rp[i] > col) break;
628:         if (rp[i] == col) {
629:           *v++ = ap[i];
630:           goto finished;
631:         }
632:       }
633:       *v++ = 0.0;
634:     finished:;
635:     }
636:   }
637:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatView_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
642: {
643:   Mat_SeqAIJ        *A = (Mat_SeqAIJ *)mat->data;
644:   const PetscScalar *av;
645:   PetscInt           header[4], M, N, m, nz, i;
646:   PetscInt          *rowlens;

648:   PetscFunctionBegin;
649:   PetscCall(PetscViewerSetUp(viewer));

651:   M  = mat->rmap->N;
652:   N  = mat->cmap->N;
653:   m  = mat->rmap->n;
654:   nz = A->nz;

656:   /* write matrix header */
657:   header[0] = MAT_FILE_CLASSID;
658:   header[1] = M;
659:   header[2] = N;
660:   header[3] = nz;
661:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

663:   /* fill in and store row lengths */
664:   PetscCall(PetscMalloc1(m, &rowlens));
665:   for (i = 0; i < m; i++) rowlens[i] = A->i[i + 1] - A->i[i];
666:   if (PetscDefined(USE_DEBUG)) {
667:     PetscInt mnz = 0;

669:     for (i = 0; i < m; i++) mnz += rowlens[i];
670:     PetscCheck(nz == mnz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row lens %" PetscInt_FMT " do not sum to nz %" PetscInt_FMT, mnz, nz);
671:   }
672:   PetscCall(PetscViewerBinaryWrite(viewer, rowlens, m, PETSC_INT));
673:   PetscCall(PetscFree(rowlens));
674:   /* store column indices */
675:   PetscCall(PetscViewerBinaryWrite(viewer, A->j, nz, PETSC_INT));
676:   /* store nonzero values */
677:   PetscCall(MatSeqAIJGetArrayRead(mat, &av));
678:   PetscCall(PetscViewerBinaryWrite(viewer, av, nz, PETSC_SCALAR));
679:   PetscCall(MatSeqAIJRestoreArrayRead(mat, &av));

681:   /* write block size option to the viewer's .info file */
682:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
683:   PetscFunctionReturn(PETSC_SUCCESS);
684: }

686: static PetscErrorCode MatView_SeqAIJ_ASCII_structonly(Mat A, PetscViewer viewer)
687: {
688:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
689:   PetscInt    i, k, m = A->rmap->N;

691:   PetscFunctionBegin;
692:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
693:   for (i = 0; i < m; i++) {
694:     PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
695:     for (k = a->i[i]; k < a->i[i + 1]; k++) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ") ", a->j[k]));
696:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
697:   }
698:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
699:   PetscFunctionReturn(PETSC_SUCCESS);
700: }

702: static PetscErrorCode MatView_SeqAIJ_ASCII(Mat A, PetscViewer viewer)
703: {
704:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
705:   const PetscScalar *av;
706:   PetscInt           i, j, m = A->rmap->n;
707:   const char        *name;
708:   PetscViewerFormat  format;

710:   PetscFunctionBegin;
711:   if (A->structure_only) {
712:     PetscCall(MatView_SeqAIJ_ASCII_structonly(A, viewer));
713:     PetscFunctionReturn(PETSC_SUCCESS);
714:   }

716:   PetscCall(PetscViewerGetFormat(viewer, &format));
717:   // By petsc's rule, even PETSC_VIEWER_ASCII_INFO_DETAIL doesn't print matrix entries
718:   if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);

720:   /* trigger copy to CPU if needed */
721:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
722:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
723:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
724:     PetscInt nofinalvalue = 0;
725:     if (m && ((a->i[m] == a->i[m - 1]) || (a->j[a->nz - 1] != A->cmap->n - 1))) {
726:       /* Need a dummy value to ensure the dimension of the matrix. */
727:       nofinalvalue = 1;
728:     }
729:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
730:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
731:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
732: #if defined(PETSC_USE_COMPLEX)
733:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
734: #else
735:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
736: #endif
737:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

739:     for (i = 0; i < m; i++) {
740:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
741: #if defined(PETSC_USE_COMPLEX)
742:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->j[j] + 1, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
743: #else
744:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->j[j] + 1, (double)a->a[j]));
745: #endif
746:       }
747:     }
748:     if (nofinalvalue) {
749: #if defined(PETSC_USE_COMPLEX)
750:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", m, A->cmap->n, 0., 0.));
751: #else
752:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", m, A->cmap->n, 0.0));
753: #endif
754:     }
755:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
756:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
757:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
758:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
759:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
760:     for (i = 0; i < m; i++) {
761:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
762:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
763: #if defined(PETSC_USE_COMPLEX)
764:         if (PetscImaginaryPart(a->a[j]) > 0.0 && PetscRealPart(a->a[j]) != 0.0) {
765:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
766:         } else if (PetscImaginaryPart(a->a[j]) < 0.0 && PetscRealPart(a->a[j]) != 0.0) {
767:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
768:         } else if (PetscRealPart(a->a[j]) != 0.0) {
769:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
770:         }
771: #else
772:         if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
773: #endif
774:       }
775:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
776:     }
777:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
778:   } else if (format == PETSC_VIEWER_ASCII_SYMMODU) {
779:     PetscInt nzd = 0, fshift = 1, *sptr;
780:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
781:     PetscCall(PetscMalloc1(m + 1, &sptr));
782:     for (i = 0; i < m; i++) {
783:       sptr[i] = nzd + 1;
784:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
785:         if (a->j[j] >= i) {
786: #if defined(PETSC_USE_COMPLEX)
787:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) nzd++;
788: #else
789:           if (a->a[j] != 0.0) nzd++;
790: #endif
791:         }
792:       }
793:     }
794:     sptr[m] = nzd + 1;
795:     PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n\n", m, nzd));
796:     for (i = 0; i < m + 1; i += 6) {
797:       if (i + 4 < m) {
798:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4], sptr[i + 5]));
799:       } else if (i + 3 < m) {
800:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4]));
801:       } else if (i + 2 < m) {
802:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3]));
803:       } else if (i + 1 < m) {
804:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2]));
805:       } else if (i < m) {
806:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1]));
807:       } else {
808:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "\n", sptr[i]));
809:       }
810:     }
811:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
812:     PetscCall(PetscFree(sptr));
813:     for (i = 0; i < m; i++) {
814:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
815:         if (a->j[j] >= i) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " ", a->j[j] + fshift));
816:       }
817:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
818:     }
819:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
820:     for (i = 0; i < m; i++) {
821:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
822:         if (a->j[j] >= i) {
823: #if defined(PETSC_USE_COMPLEX)
824:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e %18.16e ", (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
825: #else
826:           if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e ", (double)a->a[j]));
827: #endif
828:         }
829:       }
830:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
831:     }
832:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
833:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
834:     PetscInt    cnt = 0, jcnt;
835:     PetscScalar value;
836: #if defined(PETSC_USE_COMPLEX)
837:     PetscBool realonly = PETSC_TRUE;

839:     for (i = 0; i < a->i[m]; i++) {
840:       if (PetscImaginaryPart(a->a[i]) != 0.0) {
841:         realonly = PETSC_FALSE;
842:         break;
843:       }
844:     }
845: #endif

847:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
848:     for (i = 0; i < m; i++) {
849:       jcnt = 0;
850:       for (j = 0; j < A->cmap->n; j++) {
851:         if (jcnt < a->i[i + 1] - a->i[i] && j == a->j[cnt]) {
852:           value = a->a[cnt++];
853:           jcnt++;
854:         } else {
855:           value = 0.0;
856:         }
857: #if defined(PETSC_USE_COMPLEX)
858:         if (realonly) {
859:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
860:         } else {
861:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
862:         }
863: #else
864:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
865: #endif
866:       }
867:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
868:     }
869:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
870:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
871:     PetscInt fshift = 1;
872:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
873: #if defined(PETSC_USE_COMPLEX)
874:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
875: #else
876:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
877: #endif
878:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
879:     for (i = 0; i < m; i++) {
880:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
881: #if defined(PETSC_USE_COMPLEX)
882:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->j[j] + fshift, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
883: #else
884:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->j[j] + fshift, (double)a->a[j]));
885: #endif
886:       }
887:     }
888:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
889:   } else {
890:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
891:     if (A->factortype) {
892:       for (i = 0; i < m; i++) {
893:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
894:         /* L part */
895:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
896: #if defined(PETSC_USE_COMPLEX)
897:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
898:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
899:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
900:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
901:           } else {
902:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
903:           }
904: #else
905:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
906: #endif
907:         }
908:         /* diagonal */
909:         j = a->diag[i];
910: #if defined(PETSC_USE_COMPLEX)
911:         if (PetscImaginaryPart(a->a[j]) > 0.0) {
912:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(1 / a->a[j]), (double)PetscImaginaryPart(1 / a->a[j])));
913:         } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
914:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(1 / a->a[j]), (double)(-PetscImaginaryPart(1 / a->a[j]))));
915:         } else {
916:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(1 / a->a[j])));
917:         }
918: #else
919:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)(1 / a->a[j])));
920: #endif

922:         /* U part */
923:         for (j = a->diag[i + 1] + 1; j < a->diag[i]; j++) {
924: #if defined(PETSC_USE_COMPLEX)
925:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
926:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
927:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
928:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
929:           } else {
930:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
931:           }
932: #else
933:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
934: #endif
935:         }
936:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
937:       }
938:     } else {
939:       for (i = 0; i < m; i++) {
940:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
941:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
942: #if defined(PETSC_USE_COMPLEX)
943:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
944:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
945:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
946:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
947:           } else {
948:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
949:           }
950: #else
951:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
952: #endif
953:         }
954:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
955:       }
956:     }
957:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
958:   }
959:   PetscCall(PetscViewerFlush(viewer));
960:   PetscFunctionReturn(PETSC_SUCCESS);
961: }

963: #include <petscdraw.h>
964: static PetscErrorCode MatView_SeqAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
965: {
966:   Mat                A = (Mat)Aa;
967:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
968:   PetscInt           i, j, m = A->rmap->n;
969:   int                color;
970:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
971:   PetscViewer        viewer;
972:   PetscViewerFormat  format;
973:   const PetscScalar *aa;

975:   PetscFunctionBegin;
976:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
977:   PetscCall(PetscViewerGetFormat(viewer, &format));
978:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

980:   /* loop over matrix elements drawing boxes */
981:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
982:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
983:     PetscDrawCollectiveBegin(draw);
984:     /* Blue for negative, Cyan for zero and  Red for positive */
985:     color = PETSC_DRAW_BLUE;
986:     for (i = 0; i < m; i++) {
987:       y_l = m - i - 1.0;
988:       y_r = y_l + 1.0;
989:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
990:         x_l = a->j[j];
991:         x_r = x_l + 1.0;
992:         if (PetscRealPart(aa[j]) >= 0.) continue;
993:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
994:       }
995:     }
996:     color = PETSC_DRAW_CYAN;
997:     for (i = 0; i < m; i++) {
998:       y_l = m - i - 1.0;
999:       y_r = y_l + 1.0;
1000:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1001:         x_l = a->j[j];
1002:         x_r = x_l + 1.0;
1003:         if (aa[j] != 0.) continue;
1004:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1005:       }
1006:     }
1007:     color = PETSC_DRAW_RED;
1008:     for (i = 0; i < m; i++) {
1009:       y_l = m - i - 1.0;
1010:       y_r = y_l + 1.0;
1011:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1012:         x_l = a->j[j];
1013:         x_r = x_l + 1.0;
1014:         if (PetscRealPart(aa[j]) <= 0.) continue;
1015:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1016:       }
1017:     }
1018:     PetscDrawCollectiveEnd(draw);
1019:   } else {
1020:     /* use contour shading to indicate magnitude of values */
1021:     /* first determine max of all nonzero values */
1022:     PetscReal minv = 0.0, maxv = 0.0;
1023:     PetscInt  nz = a->nz, count = 0;
1024:     PetscDraw popup;

1026:     for (i = 0; i < nz; i++) {
1027:       if (PetscAbsScalar(aa[i]) > maxv) maxv = PetscAbsScalar(aa[i]);
1028:     }
1029:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1030:     PetscCall(PetscDrawGetPopup(draw, &popup));
1031:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1033:     PetscDrawCollectiveBegin(draw);
1034:     for (i = 0; i < m; i++) {
1035:       y_l = m - i - 1.0;
1036:       y_r = y_l + 1.0;
1037:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1038:         x_l   = a->j[j];
1039:         x_r   = x_l + 1.0;
1040:         color = PetscDrawRealToColor(PetscAbsScalar(aa[count]), minv, maxv);
1041:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1042:         count++;
1043:       }
1044:     }
1045:     PetscDrawCollectiveEnd(draw);
1046:   }
1047:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1048:   PetscFunctionReturn(PETSC_SUCCESS);
1049: }

1051: #include <petscdraw.h>
1052: static PetscErrorCode MatView_SeqAIJ_Draw(Mat A, PetscViewer viewer)
1053: {
1054:   PetscDraw draw;
1055:   PetscReal xr, yr, xl, yl, h, w;
1056:   PetscBool isnull;

1058:   PetscFunctionBegin;
1059:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1060:   PetscCall(PetscDrawIsNull(draw, &isnull));
1061:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1063:   xr = A->cmap->n;
1064:   yr = A->rmap->n;
1065:   h  = yr / 10.0;
1066:   w  = xr / 10.0;
1067:   xr += w;
1068:   yr += h;
1069:   xl = -w;
1070:   yl = -h;
1071:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1072:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1073:   PetscCall(PetscDrawZoom(draw, MatView_SeqAIJ_Draw_Zoom, A));
1074:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1075:   PetscCall(PetscDrawSave(draw));
1076:   PetscFunctionReturn(PETSC_SUCCESS);
1077: }

1079: PetscErrorCode MatView_SeqAIJ(Mat A, PetscViewer viewer)
1080: {
1081:   PetscBool isascii, isbinary, isdraw;

1083:   PetscFunctionBegin;
1084:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1085:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1086:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1087:   if (isascii) PetscCall(MatView_SeqAIJ_ASCII(A, viewer));
1088:   else if (isbinary) PetscCall(MatView_SeqAIJ_Binary(A, viewer));
1089:   else if (isdraw) PetscCall(MatView_SeqAIJ_Draw(A, viewer));
1090:   PetscCall(MatView_SeqAIJ_Inode(A, viewer));
1091:   PetscFunctionReturn(PETSC_SUCCESS);
1092: }

1094: PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat A, MatAssemblyType mode)
1095: {
1096:   Mat_SeqAIJ *a      = (Mat_SeqAIJ *)A->data;
1097:   PetscInt    fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
1098:   PetscInt    m = A->rmap->n, *ip, N, *ailen = a->ilen, rmax = 0, n;
1099:   MatScalar  *aa    = a->a, *ap;
1100:   PetscReal   ratio = 0.6;

1102:   PetscFunctionBegin;
1103:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1104:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1105:   if (A->was_assembled && A->ass_nonzerostate == A->nonzerostate) {
1106:     /* we need to respect users asking to use or not the inodes routine in between matrix assemblies, e.g., via MatSetOption(A, MAT_USE_INODES, val) */
1107:     PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode)); /* read the sparsity pattern */
1108:     PetscFunctionReturn(PETSC_SUCCESS);
1109:   }

1111:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
1112:   for (i = 1; i < m; i++) {
1113:     /* move each row back by the amount of empty slots (fshift) before it*/
1114:     fshift += imax[i - 1] - ailen[i - 1];
1115:     rmax = PetscMax(rmax, ailen[i]);
1116:     if (fshift) {
1117:       ip = aj + ai[i];
1118:       ap = aa + ai[i];
1119:       N  = ailen[i];
1120:       PetscCall(PetscArraymove(ip - fshift, ip, N));
1121:       if (!A->structure_only) PetscCall(PetscArraymove(ap - fshift, ap, N));
1122:     }
1123:     ai[i] = ai[i - 1] + ailen[i - 1];
1124:   }
1125:   if (m) {
1126:     fshift += imax[m - 1] - ailen[m - 1];
1127:     ai[m] = ai[m - 1] + ailen[m - 1];
1128:   }
1129:   /* reset ilen and imax for each row */
1130:   a->nonzerorowcnt = 0;
1131:   if (A->structure_only) {
1132:     PetscCall(PetscFree(a->imax));
1133:     PetscCall(PetscFree(a->ilen));
1134:   } else { /* !A->structure_only */
1135:     for (i = 0; i < m; i++) {
1136:       ailen[i] = imax[i] = ai[i + 1] - ai[i];
1137:       a->nonzerorowcnt += ((ai[i + 1] - ai[i]) > 0);
1138:     }
1139:   }
1140:   a->nz = ai[m];
1141:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, fshift);
1142:   PetscCall(MatMarkDiagonal_SeqAIJ(A)); // since diagonal info is used a lot, it is helpful to set them up at the end of assembly
1143:   a->diagonaldense = PETSC_TRUE;
1144:   n                = PetscMin(A->rmap->n, A->cmap->n);
1145:   for (i = 0; i < n; i++) {
1146:     if (a->diag[i] >= ai[i + 1]) {
1147:       a->diagonaldense = PETSC_FALSE;
1148:       break;
1149:     }
1150:   }
1151:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded,%" PetscInt_FMT " used\n", m, A->cmap->n, fshift, a->nz));
1152:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1153:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", rmax));

1155:   A->info.mallocs += a->reallocs;
1156:   a->reallocs         = 0;
1157:   A->info.nz_unneeded = (PetscReal)fshift;
1158:   a->rmax             = rmax;

1160:   if (!A->structure_only) PetscCall(MatCheckCompressedRow(A, a->nonzerorowcnt, &a->compressedrow, a->i, m, ratio));
1161:   PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1162:   PetscFunctionReturn(PETSC_SUCCESS);
1163: }

1165: static PetscErrorCode MatRealPart_SeqAIJ(Mat A)
1166: {
1167:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1168:   PetscInt    i, nz = a->nz;
1169:   MatScalar  *aa;

1171:   PetscFunctionBegin;
1172:   PetscCall(MatSeqAIJGetArray(A, &aa));
1173:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1174:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1175:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1176:   PetscFunctionReturn(PETSC_SUCCESS);
1177: }

1179: static PetscErrorCode MatImaginaryPart_SeqAIJ(Mat A)
1180: {
1181:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1182:   PetscInt    i, nz = a->nz;
1183:   MatScalar  *aa;

1185:   PetscFunctionBegin;
1186:   PetscCall(MatSeqAIJGetArray(A, &aa));
1187:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1188:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1189:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1190:   PetscFunctionReturn(PETSC_SUCCESS);
1191: }

1193: PetscErrorCode MatZeroEntries_SeqAIJ(Mat A)
1194: {
1195:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1196:   MatScalar  *aa;

1198:   PetscFunctionBegin;
1199:   PetscCall(MatSeqAIJGetArrayWrite(A, &aa));
1200:   PetscCall(PetscArrayzero(aa, a->i[A->rmap->n]));
1201:   PetscCall(MatSeqAIJRestoreArrayWrite(A, &aa));
1202:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1203:   PetscFunctionReturn(PETSC_SUCCESS);
1204: }

1206: static PetscErrorCode MatReset_SeqAIJ(Mat A)
1207: {
1208:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1210:   PetscFunctionBegin;
1211:   if (A->hash_active) {
1212:     A->ops[0] = a->cops;
1213:     PetscCall(PetscHMapIJVDestroy(&a->ht));
1214:     PetscCall(PetscFree(a->dnz));
1215:     A->hash_active = PETSC_FALSE;
1216:   }

1218:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
1219:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
1220:   PetscCall(ISDestroy(&a->row));
1221:   PetscCall(ISDestroy(&a->col));
1222:   PetscCall(PetscFree(a->diag));
1223:   PetscCall(PetscFree(a->ibdiag));
1224:   PetscCall(PetscFree(a->imax));
1225:   PetscCall(PetscFree(a->ilen));
1226:   PetscCall(PetscFree(a->ipre));
1227:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
1228:   PetscCall(PetscFree(a->solve_work));
1229:   PetscCall(ISDestroy(&a->icol));
1230:   PetscCall(PetscFree(a->saved_values));
1231:   a->compressedrow.use = PETSC_FALSE;
1232:   PetscCall(PetscFree2(a->compressedrow.i, a->compressedrow.rindex));
1233:   PetscCall(MatDestroy_SeqAIJ_Inode(A));
1234:   PetscFunctionReturn(PETSC_SUCCESS);
1235: }

1237: static PetscErrorCode MatResetHash_SeqAIJ(Mat A)
1238: {
1239:   PetscFunctionBegin;
1240:   PetscCall(MatReset_SeqAIJ(A));
1241:   PetscCall(MatCreate_SeqAIJ_Inode(A));
1242:   PetscCall(MatSetUp_Seq_Hash(A));
1243:   A->nonzerostate++;
1244:   PetscFunctionReturn(PETSC_SUCCESS);
1245: }

1247: PetscErrorCode MatDestroy_SeqAIJ(Mat A)
1248: {
1249:   PetscFunctionBegin;
1250:   PetscCall(MatReset_SeqAIJ(A));
1251:   PetscCall(PetscFree(A->data));

1253:   /* MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted may allocate this.
1254:      That function is so heavily used (sometimes in an hidden way through multnumeric function pointers)
1255:      that is hard to properly add this data to the MatProduct data. We free it here to avoid
1256:      users reusing the matrix object with different data to incur in obscure segmentation faults
1257:      due to different matrix sizes */
1258:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc__ab_dense", NULL));

1260:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
1261:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEnginePut_C", NULL));
1262:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEngineGet_C", NULL));
1263:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetColumnIndices_C", NULL));
1264:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
1265:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
1266:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsbaij_C", NULL));
1267:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqbaij_C", NULL));
1268:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijperm_C", NULL));
1269:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijsell_C", NULL));
1270: #if defined(PETSC_HAVE_MKL_SPARSE)
1271:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijmkl_C", NULL));
1272: #endif
1273: #if defined(PETSC_HAVE_CUDA)
1274:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcusparse_C", NULL));
1275:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", NULL));
1276:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", NULL));
1277: #endif
1278: #if defined(PETSC_HAVE_HIP)
1279:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijhipsparse_C", NULL));
1280:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", NULL));
1281:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", NULL));
1282: #endif
1283: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
1284:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijkokkos_C", NULL));
1285: #endif
1286:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcrl_C", NULL));
1287: #if defined(PETSC_HAVE_ELEMENTAL)
1288:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_elemental_C", NULL));
1289: #endif
1290: #if defined(PETSC_HAVE_SCALAPACK)
1291:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_scalapack_C", NULL));
1292: #endif
1293: #if defined(PETSC_HAVE_HYPRE)
1294:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_hypre_C", NULL));
1295:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", NULL));
1296: #endif
1297:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqdense_C", NULL));
1298:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsell_C", NULL));
1299:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_is_C", NULL));
1300:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsTranspose_C", NULL));
1301:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsHermitianTranspose_C", NULL));
1302:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", NULL));
1303:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetPreallocation_C", NULL));
1304:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetHash_C", NULL));
1305:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocationCSR_C", NULL));
1306:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatReorderForNonzeroDiagonal_C", NULL));
1307:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_is_seqaij_C", NULL));
1308:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqdense_seqaij_C", NULL));
1309:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaij_C", NULL));
1310:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJKron_C", NULL));
1311:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
1312:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
1313:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
1314:   /* these calls do not belong here: the subclasses Duplicate/Destroy are wrong */
1315:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijsell_seqaij_C", NULL));
1316:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijperm_seqaij_C", NULL));
1317:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijviennacl_C", NULL));
1318:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqdense_C", NULL));
1319:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqaij_C", NULL));
1320:   PetscFunctionReturn(PETSC_SUCCESS);
1321: }

1323: PetscErrorCode MatSetOption_SeqAIJ(Mat A, MatOption op, PetscBool flg)
1324: {
1325:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1327:   PetscFunctionBegin;
1328:   switch (op) {
1329:   case MAT_ROW_ORIENTED:
1330:     a->roworiented = flg;
1331:     break;
1332:   case MAT_KEEP_NONZERO_PATTERN:
1333:     a->keepnonzeropattern = flg;
1334:     break;
1335:   case MAT_NEW_NONZERO_LOCATIONS:
1336:     a->nonew = (flg ? 0 : 1);
1337:     break;
1338:   case MAT_NEW_NONZERO_LOCATION_ERR:
1339:     a->nonew = (flg ? -1 : 0);
1340:     break;
1341:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1342:     a->nonew = (flg ? -2 : 0);
1343:     break;
1344:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1345:     a->nounused = (flg ? -1 : 0);
1346:     break;
1347:   case MAT_IGNORE_ZERO_ENTRIES:
1348:     a->ignorezeroentries = flg;
1349:     break;
1350:   case MAT_USE_INODES:
1351:     PetscCall(MatSetOption_SeqAIJ_Inode(A, MAT_USE_INODES, flg));
1352:     break;
1353:   case MAT_SUBMAT_SINGLEIS:
1354:     A->submat_singleis = flg;
1355:     break;
1356:   case MAT_SORTED_FULL:
1357:     if (flg) A->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;
1358:     else A->ops->setvalues = MatSetValues_SeqAIJ;
1359:     break;
1360:   case MAT_FORM_EXPLICIT_TRANSPOSE:
1361:     A->form_explicit_transpose = flg;
1362:     break;
1363:   default:
1364:     break;
1365:   }
1366:   PetscFunctionReturn(PETSC_SUCCESS);
1367: }

1369: static PetscErrorCode MatGetDiagonal_SeqAIJ(Mat A, Vec v)
1370: {
1371:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1372:   PetscInt           i, j, n, *ai = a->i, *aj = a->j;
1373:   PetscScalar       *x;
1374:   const PetscScalar *aa;

1376:   PetscFunctionBegin;
1377:   PetscCall(VecGetLocalSize(v, &n));
1378:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1379:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1380:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
1381:     PetscInt *diag = a->diag;
1382:     PetscCall(VecGetArrayWrite(v, &x));
1383:     for (i = 0; i < n; i++) x[i] = 1.0 / aa[diag[i]];
1384:     PetscCall(VecRestoreArrayWrite(v, &x));
1385:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1386:     PetscFunctionReturn(PETSC_SUCCESS);
1387:   }

1389:   PetscCall(VecGetArrayWrite(v, &x));
1390:   for (i = 0; i < n; i++) {
1391:     x[i] = 0.0;
1392:     for (j = ai[i]; j < ai[i + 1]; j++) {
1393:       if (aj[j] == i) {
1394:         x[i] = aa[j];
1395:         break;
1396:       }
1397:     }
1398:   }
1399:   PetscCall(VecRestoreArrayWrite(v, &x));
1400:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1401:   PetscFunctionReturn(PETSC_SUCCESS);
1402: }

1404: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>
1405: PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A, Vec xx, Vec zz, Vec yy)
1406: {
1407:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1408:   const MatScalar   *aa;
1409:   PetscScalar       *y;
1410:   const PetscScalar *x;
1411:   PetscInt           m = A->rmap->n;
1412: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1413:   const MatScalar  *v;
1414:   PetscScalar       alpha;
1415:   PetscInt          n, i, j;
1416:   const PetscInt   *idx, *ii, *ridx = NULL;
1417:   Mat_CompressedRow cprow    = a->compressedrow;
1418:   PetscBool         usecprow = cprow.use;
1419: #endif

1421:   PetscFunctionBegin;
1422:   if (zz != yy) PetscCall(VecCopy(zz, yy));
1423:   PetscCall(VecGetArrayRead(xx, &x));
1424:   PetscCall(VecGetArray(yy, &y));
1425:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));

1427: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1428:   fortranmulttransposeaddaij_(&m, x, a->i, a->j, aa, y);
1429: #else
1430:   if (usecprow) {
1431:     m    = cprow.nrows;
1432:     ii   = cprow.i;
1433:     ridx = cprow.rindex;
1434:   } else {
1435:     ii = a->i;
1436:   }
1437:   for (i = 0; i < m; i++) {
1438:     idx = a->j + ii[i];
1439:     v   = aa + ii[i];
1440:     n   = ii[i + 1] - ii[i];
1441:     if (usecprow) {
1442:       alpha = x[ridx[i]];
1443:     } else {
1444:       alpha = x[i];
1445:     }
1446:     for (j = 0; j < n; j++) y[idx[j]] += alpha * v[j];
1447:   }
1448: #endif
1449:   PetscCall(PetscLogFlops(2.0 * a->nz));
1450:   PetscCall(VecRestoreArrayRead(xx, &x));
1451:   PetscCall(VecRestoreArray(yy, &y));
1452:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1453:   PetscFunctionReturn(PETSC_SUCCESS);
1454: }

1456: PetscErrorCode MatMultTranspose_SeqAIJ(Mat A, Vec xx, Vec yy)
1457: {
1458:   PetscFunctionBegin;
1459:   PetscCall(VecSet(yy, 0.0));
1460:   PetscCall(MatMultTransposeAdd_SeqAIJ(A, xx, yy, yy));
1461:   PetscFunctionReturn(PETSC_SUCCESS);
1462: }

1464: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>

1466: PetscErrorCode MatMult_SeqAIJ(Mat A, Vec xx, Vec yy)
1467: {
1468:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1469:   PetscScalar       *y;
1470:   const PetscScalar *x;
1471:   const MatScalar   *a_a;
1472:   PetscInt           m = A->rmap->n;
1473:   const PetscInt    *ii, *ridx = NULL;
1474:   PetscBool          usecprow = a->compressedrow.use;

1476: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1477:   #pragma disjoint(*x, *y, *aa)
1478: #endif

1480:   PetscFunctionBegin;
1481:   if (a->inode.use && a->inode.checked) {
1482:     PetscCall(MatMult_SeqAIJ_Inode(A, xx, yy));
1483:     PetscFunctionReturn(PETSC_SUCCESS);
1484:   }
1485:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1486:   PetscCall(VecGetArrayRead(xx, &x));
1487:   PetscCall(VecGetArray(yy, &y));
1488:   ii = a->i;
1489:   if (usecprow) { /* use compressed row format */
1490:     PetscCall(PetscArrayzero(y, m));
1491:     m    = a->compressedrow.nrows;
1492:     ii   = a->compressedrow.i;
1493:     ridx = a->compressedrow.rindex;
1494:     PetscPragmaUseOMPKernels(parallel for)
1495:     for (PetscInt i = 0; i < m; i++) {
1496:       PetscInt           n   = ii[i + 1] - ii[i];
1497:       const PetscInt    *aj  = a->j + ii[i];
1498:       const PetscScalar *aa  = a_a + ii[i];
1499:       PetscScalar        sum = 0.0;
1500:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1501:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1502:       y[ridx[i]] = sum;
1503:     }
1504:   } else { /* do not use compressed row format */
1505: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJ)
1506:     fortranmultaij_(&m, x, ii, a->j, a_a, y);
1507: #else
1508:     PetscPragmaUseOMPKernels(parallel for)
1509:     for (PetscInt i = 0; i < m; i++) {
1510:       PetscInt           n   = ii[i + 1] - ii[i];
1511:       const PetscInt    *aj  = a->j + ii[i];
1512:       const PetscScalar *aa  = a_a + ii[i];
1513:       PetscScalar        sum = 0.0;
1514:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1515:       y[i] = sum;
1516:     }
1517: #endif
1518:   }
1519:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt));
1520:   PetscCall(VecRestoreArrayRead(xx, &x));
1521:   PetscCall(VecRestoreArray(yy, &y));
1522:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1523:   PetscFunctionReturn(PETSC_SUCCESS);
1524: }

1526: // HACK!!!!! Used by src/mat/tests/ex170.c
1527: PETSC_EXTERN PetscErrorCode MatMultMax_SeqAIJ(Mat A, Vec xx, Vec yy)
1528: {
1529:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1530:   PetscScalar       *y;
1531:   const PetscScalar *x;
1532:   const MatScalar   *aa, *a_a;
1533:   PetscInt           m = A->rmap->n;
1534:   const PetscInt    *aj, *ii, *ridx   = NULL;
1535:   PetscInt           n, i, nonzerorow = 0;
1536:   PetscScalar        sum;
1537:   PetscBool          usecprow = a->compressedrow.use;

1539: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1540:   #pragma disjoint(*x, *y, *aa)
1541: #endif

1543:   PetscFunctionBegin;
1544:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1545:   PetscCall(VecGetArrayRead(xx, &x));
1546:   PetscCall(VecGetArray(yy, &y));
1547:   if (usecprow) { /* use compressed row format */
1548:     m    = a->compressedrow.nrows;
1549:     ii   = a->compressedrow.i;
1550:     ridx = a->compressedrow.rindex;
1551:     for (i = 0; i < m; i++) {
1552:       n   = ii[i + 1] - ii[i];
1553:       aj  = a->j + ii[i];
1554:       aa  = a_a + ii[i];
1555:       sum = 0.0;
1556:       nonzerorow += (n > 0);
1557:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1558:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1559:       y[*ridx++] = sum;
1560:     }
1561:   } else { /* do not use compressed row format */
1562:     ii = a->i;
1563:     for (i = 0; i < m; i++) {
1564:       n   = ii[i + 1] - ii[i];
1565:       aj  = a->j + ii[i];
1566:       aa  = a_a + ii[i];
1567:       sum = 0.0;
1568:       nonzerorow += (n > 0);
1569:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1570:       y[i] = sum;
1571:     }
1572:   }
1573:   PetscCall(PetscLogFlops(2.0 * a->nz - nonzerorow));
1574:   PetscCall(VecRestoreArrayRead(xx, &x));
1575:   PetscCall(VecRestoreArray(yy, &y));
1576:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1577:   PetscFunctionReturn(PETSC_SUCCESS);
1578: }

1580: // HACK!!!!! Used by src/mat/tests/ex170.c
1581: PETSC_EXTERN PetscErrorCode MatMultAddMax_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1582: {
1583:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1584:   PetscScalar       *y, *z;
1585:   const PetscScalar *x;
1586:   const MatScalar   *aa, *a_a;
1587:   PetscInt           m = A->rmap->n, *aj, *ii;
1588:   PetscInt           n, i, *ridx = NULL;
1589:   PetscScalar        sum;
1590:   PetscBool          usecprow = a->compressedrow.use;

1592:   PetscFunctionBegin;
1593:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1594:   PetscCall(VecGetArrayRead(xx, &x));
1595:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1596:   if (usecprow) { /* use compressed row format */
1597:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1598:     m    = a->compressedrow.nrows;
1599:     ii   = a->compressedrow.i;
1600:     ridx = a->compressedrow.rindex;
1601:     for (i = 0; i < m; i++) {
1602:       n   = ii[i + 1] - ii[i];
1603:       aj  = a->j + ii[i];
1604:       aa  = a_a + ii[i];
1605:       sum = y[*ridx];
1606:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1607:       z[*ridx++] = sum;
1608:     }
1609:   } else { /* do not use compressed row format */
1610:     ii = a->i;
1611:     for (i = 0; i < m; i++) {
1612:       n   = ii[i + 1] - ii[i];
1613:       aj  = a->j + ii[i];
1614:       aa  = a_a + ii[i];
1615:       sum = y[i];
1616:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1617:       z[i] = sum;
1618:     }
1619:   }
1620:   PetscCall(PetscLogFlops(2.0 * a->nz));
1621:   PetscCall(VecRestoreArrayRead(xx, &x));
1622:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1623:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1624:   PetscFunctionReturn(PETSC_SUCCESS);
1625: }

1627: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
1628: PetscErrorCode MatMultAdd_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1629: {
1630:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1631:   PetscScalar       *y, *z;
1632:   const PetscScalar *x;
1633:   const MatScalar   *a_a;
1634:   const PetscInt    *ii, *ridx = NULL;
1635:   PetscInt           m        = A->rmap->n;
1636:   PetscBool          usecprow = a->compressedrow.use;

1638:   PetscFunctionBegin;
1639:   if (a->inode.use && a->inode.checked) {
1640:     PetscCall(MatMultAdd_SeqAIJ_Inode(A, xx, yy, zz));
1641:     PetscFunctionReturn(PETSC_SUCCESS);
1642:   }
1643:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1644:   PetscCall(VecGetArrayRead(xx, &x));
1645:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1646:   if (usecprow) { /* use compressed row format */
1647:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1648:     m    = a->compressedrow.nrows;
1649:     ii   = a->compressedrow.i;
1650:     ridx = a->compressedrow.rindex;
1651:     for (PetscInt i = 0; i < m; i++) {
1652:       PetscInt           n   = ii[i + 1] - ii[i];
1653:       const PetscInt    *aj  = a->j + ii[i];
1654:       const PetscScalar *aa  = a_a + ii[i];
1655:       PetscScalar        sum = y[*ridx];
1656:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1657:       z[*ridx++] = sum;
1658:     }
1659:   } else { /* do not use compressed row format */
1660:     ii = a->i;
1661: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJ)
1662:     fortranmultaddaij_(&m, x, ii, a->j, a_a, y, z);
1663: #else
1664:     PetscPragmaUseOMPKernels(parallel for)
1665:     for (PetscInt i = 0; i < m; i++) {
1666:       PetscInt           n   = ii[i + 1] - ii[i];
1667:       const PetscInt    *aj  = a->j + ii[i];
1668:       const PetscScalar *aa  = a_a + ii[i];
1669:       PetscScalar        sum = y[i];
1670:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1671:       z[i] = sum;
1672:     }
1673: #endif
1674:   }
1675:   PetscCall(PetscLogFlops(2.0 * a->nz));
1676:   PetscCall(VecRestoreArrayRead(xx, &x));
1677:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1678:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1679:   PetscFunctionReturn(PETSC_SUCCESS);
1680: }

1682: /*
1683:      Adds diagonal pointers to sparse matrix nonzero structure.
1684: */
1685: PetscErrorCode MatMarkDiagonal_SeqAIJ(Mat A)
1686: {
1687:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1688:   PetscInt    i, j, m = A->rmap->n;
1689:   PetscBool   alreadySet = PETSC_TRUE;

1691:   PetscFunctionBegin;
1692:   if (!a->diag) {
1693:     PetscCall(PetscMalloc1(m, &a->diag));
1694:     alreadySet = PETSC_FALSE;
1695:   }
1696:   for (i = 0; i < A->rmap->n; i++) {
1697:     /* If A's diagonal is already correctly set, this fast track enables cheap and repeated MatMarkDiagonal_SeqAIJ() calls */
1698:     if (alreadySet) {
1699:       PetscInt pos = a->diag[i];
1700:       if (pos >= a->i[i] && pos < a->i[i + 1] && a->j[pos] == i) continue;
1701:     }

1703:     a->diag[i] = a->i[i + 1];
1704:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
1705:       if (a->j[j] == i) {
1706:         a->diag[i] = j;
1707:         break;
1708:       }
1709:     }
1710:   }
1711:   PetscFunctionReturn(PETSC_SUCCESS);
1712: }

1714: static PetscErrorCode MatShift_SeqAIJ(Mat A, PetscScalar v)
1715: {
1716:   Mat_SeqAIJ     *a    = (Mat_SeqAIJ *)A->data;
1717:   const PetscInt *diag = (const PetscInt *)a->diag;
1718:   const PetscInt *ii   = (const PetscInt *)a->i;
1719:   PetscInt        i, *mdiag = NULL;
1720:   PetscInt        cnt = 0; /* how many diagonals are missing */

1722:   PetscFunctionBegin;
1723:   if (!A->preallocated || !a->nz) {
1724:     PetscCall(MatSeqAIJSetPreallocation(A, 1, NULL));
1725:     PetscCall(MatShift_Basic(A, v));
1726:     PetscFunctionReturn(PETSC_SUCCESS);
1727:   }

1729:   if (a->diagonaldense) {
1730:     cnt = 0;
1731:   } else {
1732:     PetscCall(PetscCalloc1(A->rmap->n, &mdiag));
1733:     for (i = 0; i < A->rmap->n; i++) {
1734:       if (i < A->cmap->n && diag[i] >= ii[i + 1]) { /* 'out of range' rows never have diagonals */
1735:         cnt++;
1736:         mdiag[i] = 1;
1737:       }
1738:     }
1739:   }
1740:   if (!cnt) {
1741:     PetscCall(MatShift_Basic(A, v));
1742:   } else {
1743:     PetscScalar       *olda = a->a; /* preserve pointers to current matrix nonzeros structure and values */
1744:     PetscInt          *oldj = a->j, *oldi = a->i;
1745:     PetscBool          free_a = a->free_a, free_ij = a->free_ij;
1746:     const PetscScalar *Aa;

1748:     PetscCall(MatSeqAIJGetArrayRead(A, &Aa)); // sync the host
1749:     PetscCall(MatSeqAIJRestoreArrayRead(A, &Aa));

1751:     a->a = NULL;
1752:     a->j = NULL;
1753:     a->i = NULL;
1754:     /* increase the values in imax for each row where a diagonal is being inserted then reallocate the matrix data structures */
1755:     for (i = 0; i < PetscMin(A->rmap->n, A->cmap->n); i++) a->imax[i] += mdiag[i];
1756:     PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, 0, a->imax));

1758:     /* copy old values into new matrix data structure */
1759:     for (i = 0; i < A->rmap->n; i++) {
1760:       PetscCall(MatSetValues(A, 1, &i, a->imax[i] - mdiag[i], &oldj[oldi[i]], &olda[oldi[i]], ADD_VALUES));
1761:       if (i < A->cmap->n) PetscCall(MatSetValue(A, i, i, v, ADD_VALUES));
1762:     }
1763:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1764:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1765:     if (free_a) PetscCall(PetscShmgetDeallocateArray((void **)&olda));
1766:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldj));
1767:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldi));
1768:   }
1769:   PetscCall(PetscFree(mdiag));
1770:   a->diagonaldense = PETSC_TRUE;
1771:   PetscFunctionReturn(PETSC_SUCCESS);
1772: }

1774: /*
1775:      Checks for missing diagonals
1776: */
1777: PetscErrorCode MatMissingDiagonal_SeqAIJ(Mat A, PetscBool *missing, PetscInt *d)
1778: {
1779:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1780:   PetscInt   *diag, *ii = a->i, i;

1782:   PetscFunctionBegin;
1783:   *missing = PETSC_FALSE;
1784:   if (A->rmap->n > 0 && !ii) {
1785:     *missing = PETSC_TRUE;
1786:     if (d) *d = 0;
1787:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
1788:   } else {
1789:     PetscInt n;
1790:     n    = PetscMin(A->rmap->n, A->cmap->n);
1791:     diag = a->diag;
1792:     for (i = 0; i < n; i++) {
1793:       if (diag[i] >= ii[i + 1]) {
1794:         *missing = PETSC_TRUE;
1795:         if (d) *d = i;
1796:         PetscCall(PetscInfo(A, "Matrix is missing diagonal number %" PetscInt_FMT "\n", i));
1797:         break;
1798:       }
1799:     }
1800:   }
1801:   PetscFunctionReturn(PETSC_SUCCESS);
1802: }

1804: #include <petscblaslapack.h>
1805: #include <petsc/private/kernels/blockinvert.h>

1807: /*
1808:     Note that values is allocated externally by the PC and then passed into this routine
1809: */
1810: static PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJ(Mat A, PetscInt nblocks, const PetscInt *bsizes, PetscScalar *diag)
1811: {
1812:   PetscInt        n = A->rmap->n, i, ncnt = 0, *indx, j, bsizemax = 0, *v_pivots;
1813:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
1814:   const PetscReal shift = 0.0;
1815:   PetscInt        ipvt[5];
1816:   PetscCount      flops = 0;
1817:   PetscScalar     work[25], *v_work;

1819:   PetscFunctionBegin;
1820:   allowzeropivot = PetscNot(A->erroriffailure);
1821:   for (i = 0; i < nblocks; i++) ncnt += bsizes[i];
1822:   PetscCheck(ncnt == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Total blocksizes %" PetscInt_FMT " doesn't match number matrix rows %" PetscInt_FMT, ncnt, n);
1823:   for (i = 0; i < nblocks; i++) bsizemax = PetscMax(bsizemax, bsizes[i]);
1824:   PetscCall(PetscMalloc1(bsizemax, &indx));
1825:   if (bsizemax > 7) PetscCall(PetscMalloc2(bsizemax, &v_work, bsizemax, &v_pivots));
1826:   ncnt = 0;
1827:   for (i = 0; i < nblocks; i++) {
1828:     for (j = 0; j < bsizes[i]; j++) indx[j] = ncnt + j;
1829:     PetscCall(MatGetValues(A, bsizes[i], indx, bsizes[i], indx, diag));
1830:     switch (bsizes[i]) {
1831:     case 1:
1832:       *diag = 1.0 / (*diag);
1833:       break;
1834:     case 2:
1835:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
1836:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1837:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
1838:       break;
1839:     case 3:
1840:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
1841:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1842:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
1843:       break;
1844:     case 4:
1845:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
1846:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1847:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
1848:       break;
1849:     case 5:
1850:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
1851:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1852:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
1853:       break;
1854:     case 6:
1855:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
1856:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1857:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
1858:       break;
1859:     case 7:
1860:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
1861:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1862:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
1863:       break;
1864:     default:
1865:       PetscCall(PetscKernel_A_gets_inverse_A(bsizes[i], diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
1866:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1867:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bsizes[i]));
1868:     }
1869:     ncnt += bsizes[i];
1870:     diag += bsizes[i] * bsizes[i];
1871:     flops += 2 * PetscPowInt64(bsizes[i], 3) / 3;
1872:   }
1873:   PetscCall(PetscLogFlops(flops));
1874:   if (bsizemax > 7) PetscCall(PetscFree2(v_work, v_pivots));
1875:   PetscCall(PetscFree(indx));
1876:   PetscFunctionReturn(PETSC_SUCCESS);
1877: }

1879: /*
1880:    Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
1881: */
1882: static PetscErrorCode MatInvertDiagonal_SeqAIJ(Mat A, PetscScalar omega, PetscScalar fshift)
1883: {
1884:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
1885:   PetscInt         i, *diag, m = A->rmap->n;
1886:   const MatScalar *v;
1887:   PetscScalar     *idiag, *mdiag;

1889:   PetscFunctionBegin;
1890:   if (a->idiagvalid) PetscFunctionReturn(PETSC_SUCCESS);
1891:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
1892:   diag = a->diag;
1893:   if (!a->idiag) PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work));

1895:   mdiag = a->mdiag;
1896:   idiag = a->idiag;
1897:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
1898:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
1899:     for (i = 0; i < m; i++) {
1900:       mdiag[i] = v[diag[i]];
1901:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
1902:         PetscCheck(PetscRealPart(fshift), PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
1903:         PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
1904:         A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1905:         A->factorerror_zeropivot_value = 0.0;
1906:         A->factorerror_zeropivot_row   = i;
1907:       }
1908:       idiag[i] = 1.0 / v[diag[i]];
1909:     }
1910:     PetscCall(PetscLogFlops(m));
1911:   } else {
1912:     for (i = 0; i < m; i++) {
1913:       mdiag[i] = v[diag[i]];
1914:       idiag[i] = omega / (fshift + v[diag[i]]);
1915:     }
1916:     PetscCall(PetscLogFlops(2.0 * m));
1917:   }
1918:   a->idiagvalid = PETSC_TRUE;
1919:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
1920:   PetscFunctionReturn(PETSC_SUCCESS);
1921: }

1923: PetscErrorCode MatSOR_SeqAIJ(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1924: {
1925:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1926:   PetscScalar       *x, d, sum, *t, scale;
1927:   const MatScalar   *v, *idiag = NULL, *mdiag, *aa;
1928:   const PetscScalar *b, *bs, *xb, *ts;
1929:   PetscInt           n, m = A->rmap->n, i;
1930:   const PetscInt    *idx, *diag;

1932:   PetscFunctionBegin;
1933:   if (a->inode.use && a->inode.checked && omega == 1.0 && fshift == 0.0) {
1934:     PetscCall(MatSOR_SeqAIJ_Inode(A, bb, omega, flag, fshift, its, lits, xx));
1935:     PetscFunctionReturn(PETSC_SUCCESS);
1936:   }
1937:   its = its * lits;

1939:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1940:   if (!a->idiagvalid) PetscCall(MatInvertDiagonal_SeqAIJ(A, omega, fshift));
1941:   a->fshift = fshift;
1942:   a->omega  = omega;

1944:   diag  = a->diag;
1945:   t     = a->ssor_work;
1946:   idiag = a->idiag;
1947:   mdiag = a->mdiag;

1949:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1950:   PetscCall(VecGetArray(xx, &x));
1951:   PetscCall(VecGetArrayRead(bb, &b));
1952:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1953:   if (flag == SOR_APPLY_UPPER) {
1954:     /* apply (U + D/omega) to the vector */
1955:     bs = b;
1956:     for (i = 0; i < m; i++) {
1957:       d   = fshift + mdiag[i];
1958:       n   = a->i[i + 1] - diag[i] - 1;
1959:       idx = a->j + diag[i] + 1;
1960:       v   = aa + diag[i] + 1;
1961:       sum = b[i] * d / omega;
1962:       PetscSparseDensePlusDot(sum, bs, v, idx, n);
1963:       x[i] = sum;
1964:     }
1965:     PetscCall(VecRestoreArray(xx, &x));
1966:     PetscCall(VecRestoreArrayRead(bb, &b));
1967:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1968:     PetscCall(PetscLogFlops(a->nz));
1969:     PetscFunctionReturn(PETSC_SUCCESS);
1970:   }

1972:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1973:   if (flag & SOR_EISENSTAT) {
1974:     /* Let  A = L + U + D; where L is lower triangular,
1975:     U is upper triangular, E = D/omega; This routine applies

1977:             (L + E)^{-1} A (U + E)^{-1}

1979:     to a vector efficiently using Eisenstat's trick.
1980:     */
1981:     scale = (2.0 / omega) - 1.0;

1983:     /*  x = (E + U)^{-1} b */
1984:     for (i = m - 1; i >= 0; i--) {
1985:       n   = a->i[i + 1] - diag[i] - 1;
1986:       idx = a->j + diag[i] + 1;
1987:       v   = aa + diag[i] + 1;
1988:       sum = b[i];
1989:       PetscSparseDenseMinusDot(sum, x, v, idx, n);
1990:       x[i] = sum * idiag[i];
1991:     }

1993:     /*  t = b - (2*E - D)x */
1994:     v = aa;
1995:     for (i = 0; i < m; i++) t[i] = b[i] - scale * (v[*diag++]) * x[i];

1997:     /*  t = (E + L)^{-1}t */
1998:     ts   = t;
1999:     diag = a->diag;
2000:     for (i = 0; i < m; i++) {
2001:       n   = diag[i] - a->i[i];
2002:       idx = a->j + a->i[i];
2003:       v   = aa + a->i[i];
2004:       sum = t[i];
2005:       PetscSparseDenseMinusDot(sum, ts, v, idx, n);
2006:       t[i] = sum * idiag[i];
2007:       /*  x = x + t */
2008:       x[i] += t[i];
2009:     }

2011:     PetscCall(PetscLogFlops(6.0 * m - 1 + 2.0 * a->nz));
2012:     PetscCall(VecRestoreArray(xx, &x));
2013:     PetscCall(VecRestoreArrayRead(bb, &b));
2014:     PetscFunctionReturn(PETSC_SUCCESS);
2015:   }
2016:   if (flag & SOR_ZERO_INITIAL_GUESS) {
2017:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2018:       for (i = 0; i < m; i++) {
2019:         n   = diag[i] - a->i[i];
2020:         idx = a->j + a->i[i];
2021:         v   = aa + a->i[i];
2022:         sum = b[i];
2023:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2024:         t[i] = sum;
2025:         x[i] = sum * idiag[i];
2026:       }
2027:       xb = t;
2028:       PetscCall(PetscLogFlops(a->nz));
2029:     } else xb = b;
2030:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2031:       for (i = m - 1; i >= 0; i--) {
2032:         n   = a->i[i + 1] - diag[i] - 1;
2033:         idx = a->j + diag[i] + 1;
2034:         v   = aa + diag[i] + 1;
2035:         sum = xb[i];
2036:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2037:         if (xb == b) {
2038:           x[i] = sum * idiag[i];
2039:         } else {
2040:           x[i] = (1 - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2041:         }
2042:       }
2043:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2044:     }
2045:     its--;
2046:   }
2047:   while (its--) {
2048:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2049:       for (i = 0; i < m; i++) {
2050:         /* lower */
2051:         n   = diag[i] - a->i[i];
2052:         idx = a->j + a->i[i];
2053:         v   = aa + a->i[i];
2054:         sum = b[i];
2055:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2056:         t[i] = sum; /* save application of the lower-triangular part */
2057:         /* upper */
2058:         n   = a->i[i + 1] - diag[i] - 1;
2059:         idx = a->j + diag[i] + 1;
2060:         v   = aa + diag[i] + 1;
2061:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2062:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2063:       }
2064:       xb = t;
2065:       PetscCall(PetscLogFlops(2.0 * a->nz));
2066:     } else xb = b;
2067:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2068:       for (i = m - 1; i >= 0; i--) {
2069:         sum = xb[i];
2070:         if (xb == b) {
2071:           /* whole matrix (no checkpointing available) */
2072:           n   = a->i[i + 1] - a->i[i];
2073:           idx = a->j + a->i[i];
2074:           v   = aa + a->i[i];
2075:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2076:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
2077:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
2078:           n   = a->i[i + 1] - diag[i] - 1;
2079:           idx = a->j + diag[i] + 1;
2080:           v   = aa + diag[i] + 1;
2081:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2082:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2083:         }
2084:       }
2085:       if (xb == b) {
2086:         PetscCall(PetscLogFlops(2.0 * a->nz));
2087:       } else {
2088:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2089:       }
2090:     }
2091:   }
2092:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2093:   PetscCall(VecRestoreArray(xx, &x));
2094:   PetscCall(VecRestoreArrayRead(bb, &b));
2095:   PetscFunctionReturn(PETSC_SUCCESS);
2096: }

2098: static PetscErrorCode MatGetInfo_SeqAIJ(Mat A, MatInfoType flag, MatInfo *info)
2099: {
2100:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2102:   PetscFunctionBegin;
2103:   info->block_size   = 1.0;
2104:   info->nz_allocated = a->maxnz;
2105:   info->nz_used      = a->nz;
2106:   info->nz_unneeded  = (a->maxnz - a->nz);
2107:   info->assemblies   = A->num_ass;
2108:   info->mallocs      = A->info.mallocs;
2109:   info->memory       = 0; /* REVIEW ME */
2110:   if (A->factortype) {
2111:     info->fill_ratio_given  = A->info.fill_ratio_given;
2112:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2113:     info->factor_mallocs    = A->info.factor_mallocs;
2114:   } else {
2115:     info->fill_ratio_given  = 0;
2116:     info->fill_ratio_needed = 0;
2117:     info->factor_mallocs    = 0;
2118:   }
2119:   PetscFunctionReturn(PETSC_SUCCESS);
2120: }

2122: static PetscErrorCode MatZeroRows_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2123: {
2124:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2125:   PetscInt           i, m = A->rmap->n - 1;
2126:   const PetscScalar *xx;
2127:   PetscScalar       *bb, *aa;
2128:   PetscInt           d = 0;

2130:   PetscFunctionBegin;
2131:   if (x && b) {
2132:     PetscCall(VecGetArrayRead(x, &xx));
2133:     PetscCall(VecGetArray(b, &bb));
2134:     for (i = 0; i < N; i++) {
2135:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2136:       if (rows[i] >= A->cmap->n) continue;
2137:       bb[rows[i]] = diag * xx[rows[i]];
2138:     }
2139:     PetscCall(VecRestoreArrayRead(x, &xx));
2140:     PetscCall(VecRestoreArray(b, &bb));
2141:   }

2143:   PetscCall(MatSeqAIJGetArray(A, &aa));
2144:   if (a->keepnonzeropattern) {
2145:     for (i = 0; i < N; i++) {
2146:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2147:       PetscCall(PetscArrayzero(&aa[a->i[rows[i]]], a->ilen[rows[i]]));
2148:     }
2149:     if (diag != 0.0) {
2150:       for (i = 0; i < N; i++) {
2151:         d = rows[i];
2152:         if (rows[i] >= A->cmap->n) continue;
2153:         PetscCheck(a->diag[d] < a->i[d + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in the zeroed row %" PetscInt_FMT, d);
2154:       }
2155:       for (i = 0; i < N; i++) {
2156:         if (rows[i] >= A->cmap->n) continue;
2157:         aa[a->diag[rows[i]]] = diag;
2158:       }
2159:     }
2160:   } else {
2161:     if (diag != 0.0) {
2162:       for (i = 0; i < N; i++) {
2163:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2164:         if (a->ilen[rows[i]] > 0) {
2165:           if (rows[i] >= A->cmap->n) {
2166:             a->ilen[rows[i]] = 0;
2167:           } else {
2168:             a->ilen[rows[i]]    = 1;
2169:             aa[a->i[rows[i]]]   = diag;
2170:             a->j[a->i[rows[i]]] = rows[i];
2171:           }
2172:         } else if (rows[i] < A->cmap->n) { /* in case row was completely empty */
2173:           PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2174:         }
2175:       }
2176:     } else {
2177:       for (i = 0; i < N; i++) {
2178:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2179:         a->ilen[rows[i]] = 0;
2180:       }
2181:     }
2182:     A->nonzerostate++;
2183:   }
2184:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2185:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2186:   PetscFunctionReturn(PETSC_SUCCESS);
2187: }

2189: static PetscErrorCode MatZeroRowsColumns_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2190: {
2191:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2192:   PetscInt           i, j, m = A->rmap->n - 1, d = 0;
2193:   PetscBool          missing, *zeroed, vecs = PETSC_FALSE;
2194:   const PetscScalar *xx;
2195:   PetscScalar       *bb, *aa;

2197:   PetscFunctionBegin;
2198:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);
2199:   PetscCall(MatSeqAIJGetArray(A, &aa));
2200:   if (x && b) {
2201:     PetscCall(VecGetArrayRead(x, &xx));
2202:     PetscCall(VecGetArray(b, &bb));
2203:     vecs = PETSC_TRUE;
2204:   }
2205:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
2206:   for (i = 0; i < N; i++) {
2207:     PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2208:     PetscCall(PetscArrayzero(PetscSafePointerPlusOffset(aa, a->i[rows[i]]), a->ilen[rows[i]]));

2210:     zeroed[rows[i]] = PETSC_TRUE;
2211:   }
2212:   for (i = 0; i < A->rmap->n; i++) {
2213:     if (!zeroed[i]) {
2214:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
2215:         if (a->j[j] < A->rmap->n && zeroed[a->j[j]]) {
2216:           if (vecs) bb[i] -= aa[j] * xx[a->j[j]];
2217:           aa[j] = 0.0;
2218:         }
2219:       }
2220:     } else if (vecs && i < A->cmap->N) bb[i] = diag * xx[i];
2221:   }
2222:   if (x && b) {
2223:     PetscCall(VecRestoreArrayRead(x, &xx));
2224:     PetscCall(VecRestoreArray(b, &bb));
2225:   }
2226:   PetscCall(PetscFree(zeroed));
2227:   if (diag != 0.0) {
2228:     PetscCall(MatMissingDiagonal_SeqAIJ(A, &missing, &d));
2229:     if (missing) {
2230:       for (i = 0; i < N; i++) {
2231:         if (rows[i] >= A->cmap->N) continue;
2232:         PetscCheck(!a->nonew || rows[i] < d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in row %" PetscInt_FMT " (%" PetscInt_FMT ")", d, rows[i]);
2233:         PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2234:       }
2235:     } else {
2236:       for (i = 0; i < N; i++) aa[a->diag[rows[i]]] = diag;
2237:     }
2238:   }
2239:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2240:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2241:   PetscFunctionReturn(PETSC_SUCCESS);
2242: }

2244: PetscErrorCode MatGetRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2245: {
2246:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2247:   const PetscScalar *aa;

2249:   PetscFunctionBegin;
2250:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2251:   *nz = a->i[row + 1] - a->i[row];
2252:   if (v) *v = PetscSafePointerPlusOffset((PetscScalar *)aa, a->i[row]);
2253:   if (idx) {
2254:     if (*nz && a->j) *idx = a->j + a->i[row];
2255:     else *idx = NULL;
2256:   }
2257:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2258:   PetscFunctionReturn(PETSC_SUCCESS);
2259: }

2261: PetscErrorCode MatRestoreRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2262: {
2263:   PetscFunctionBegin;
2264:   PetscFunctionReturn(PETSC_SUCCESS);
2265: }

2267: static PetscErrorCode MatNorm_SeqAIJ(Mat A, NormType type, PetscReal *nrm)
2268: {
2269:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
2270:   const MatScalar *v;
2271:   PetscReal        sum = 0.0;
2272:   PetscInt         i, j;

2274:   PetscFunctionBegin;
2275:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
2276:   if (type == NORM_FROBENIUS) {
2277: #if defined(PETSC_USE_REAL___FP16)
2278:     PetscBLASInt one = 1, nz = a->nz;
2279:     PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&nz, v, &one));
2280: #else
2281:     for (i = 0; i < a->nz; i++) {
2282:       sum += PetscRealPart(PetscConj(*v) * (*v));
2283:       v++;
2284:     }
2285:     *nrm = PetscSqrtReal(sum);
2286: #endif
2287:     PetscCall(PetscLogFlops(2.0 * a->nz));
2288:   } else if (type == NORM_1) {
2289:     PetscReal *tmp;
2290:     PetscInt  *jj = a->j;
2291:     PetscCall(PetscCalloc1(A->cmap->n + 1, &tmp));
2292:     *nrm = 0.0;
2293:     for (j = 0; j < a->nz; j++) {
2294:       tmp[*jj++] += PetscAbsScalar(*v);
2295:       v++;
2296:     }
2297:     for (j = 0; j < A->cmap->n; j++) {
2298:       if (tmp[j] > *nrm) *nrm = tmp[j];
2299:     }
2300:     PetscCall(PetscFree(tmp));
2301:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2302:   } else if (type == NORM_INFINITY) {
2303:     *nrm = 0.0;
2304:     for (j = 0; j < A->rmap->n; j++) {
2305:       const PetscScalar *v2 = PetscSafePointerPlusOffset(v, a->i[j]);
2306:       sum                   = 0.0;
2307:       for (i = 0; i < a->i[j + 1] - a->i[j]; i++) {
2308:         sum += PetscAbsScalar(*v2);
2309:         v2++;
2310:       }
2311:       if (sum > *nrm) *nrm = sum;
2312:     }
2313:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2314:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for two norm");
2315:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
2316:   PetscFunctionReturn(PETSC_SUCCESS);
2317: }

2319: static PetscErrorCode MatIsTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2320: {
2321:   Mat_SeqAIJ      *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2322:   PetscInt        *adx, *bdx, *aii, *bii, *aptr, *bptr;
2323:   const MatScalar *va, *vb;
2324:   PetscInt         ma, na, mb, nb, i;

2326:   PetscFunctionBegin;
2327:   PetscCall(MatGetSize(A, &ma, &na));
2328:   PetscCall(MatGetSize(B, &mb, &nb));
2329:   if (ma != nb || na != mb) {
2330:     *f = PETSC_FALSE;
2331:     PetscFunctionReturn(PETSC_SUCCESS);
2332:   }
2333:   PetscCall(MatSeqAIJGetArrayRead(A, &va));
2334:   PetscCall(MatSeqAIJGetArrayRead(B, &vb));
2335:   aii = aij->i;
2336:   bii = bij->i;
2337:   adx = aij->j;
2338:   bdx = bij->j;
2339:   PetscCall(PetscMalloc1(ma, &aptr));
2340:   PetscCall(PetscMalloc1(mb, &bptr));
2341:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2342:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2344:   *f = PETSC_TRUE;
2345:   for (i = 0; i < ma; i++) {
2346:     while (aptr[i] < aii[i + 1]) {
2347:       PetscInt    idc, idr;
2348:       PetscScalar vc, vr;
2349:       /* column/row index/value */
2350:       idc = adx[aptr[i]];
2351:       idr = bdx[bptr[idc]];
2352:       vc  = va[aptr[i]];
2353:       vr  = vb[bptr[idc]];
2354:       if (i != idr || PetscAbsScalar(vc - vr) > tol) {
2355:         *f = PETSC_FALSE;
2356:         goto done;
2357:       } else {
2358:         aptr[i]++;
2359:         if (B || i != idc) bptr[idc]++;
2360:       }
2361:     }
2362:   }
2363: done:
2364:   PetscCall(PetscFree(aptr));
2365:   PetscCall(PetscFree(bptr));
2366:   PetscCall(MatSeqAIJRestoreArrayRead(A, &va));
2367:   PetscCall(MatSeqAIJRestoreArrayRead(B, &vb));
2368:   PetscFunctionReturn(PETSC_SUCCESS);
2369: }

2371: static PetscErrorCode MatIsHermitianTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2372: {
2373:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2374:   PetscInt   *adx, *bdx, *aii, *bii, *aptr, *bptr;
2375:   MatScalar  *va, *vb;
2376:   PetscInt    ma, na, mb, nb, i;

2378:   PetscFunctionBegin;
2379:   PetscCall(MatGetSize(A, &ma, &na));
2380:   PetscCall(MatGetSize(B, &mb, &nb));
2381:   if (ma != nb || na != mb) {
2382:     *f = PETSC_FALSE;
2383:     PetscFunctionReturn(PETSC_SUCCESS);
2384:   }
2385:   aii = aij->i;
2386:   bii = bij->i;
2387:   adx = aij->j;
2388:   bdx = bij->j;
2389:   va  = aij->a;
2390:   vb  = bij->a;
2391:   PetscCall(PetscMalloc1(ma, &aptr));
2392:   PetscCall(PetscMalloc1(mb, &bptr));
2393:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2394:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2396:   *f = PETSC_TRUE;
2397:   for (i = 0; i < ma; i++) {
2398:     while (aptr[i] < aii[i + 1]) {
2399:       PetscInt    idc, idr;
2400:       PetscScalar vc, vr;
2401:       /* column/row index/value */
2402:       idc = adx[aptr[i]];
2403:       idr = bdx[bptr[idc]];
2404:       vc  = va[aptr[i]];
2405:       vr  = vb[bptr[idc]];
2406:       if (i != idr || PetscAbsScalar(vc - PetscConj(vr)) > tol) {
2407:         *f = PETSC_FALSE;
2408:         goto done;
2409:       } else {
2410:         aptr[i]++;
2411:         if (B || i != idc) bptr[idc]++;
2412:       }
2413:     }
2414:   }
2415: done:
2416:   PetscCall(PetscFree(aptr));
2417:   PetscCall(PetscFree(bptr));
2418:   PetscFunctionReturn(PETSC_SUCCESS);
2419: }

2421: PetscErrorCode MatDiagonalScale_SeqAIJ(Mat A, Vec ll, Vec rr)
2422: {
2423:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2424:   const PetscScalar *l, *r;
2425:   PetscScalar        x;
2426:   MatScalar         *v;
2427:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, M, nz = a->nz;
2428:   const PetscInt    *jj;

2430:   PetscFunctionBegin;
2431:   if (ll) {
2432:     /* The local size is used so that VecMPI can be passed to this routine
2433:        by MatDiagonalScale_MPIAIJ */
2434:     PetscCall(VecGetLocalSize(ll, &m));
2435:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
2436:     PetscCall(VecGetArrayRead(ll, &l));
2437:     PetscCall(MatSeqAIJGetArray(A, &v));
2438:     for (i = 0; i < m; i++) {
2439:       x = l[i];
2440:       M = a->i[i + 1] - a->i[i];
2441:       for (j = 0; j < M; j++) (*v++) *= x;
2442:     }
2443:     PetscCall(VecRestoreArrayRead(ll, &l));
2444:     PetscCall(PetscLogFlops(nz));
2445:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2446:   }
2447:   if (rr) {
2448:     PetscCall(VecGetLocalSize(rr, &n));
2449:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
2450:     PetscCall(VecGetArrayRead(rr, &r));
2451:     PetscCall(MatSeqAIJGetArray(A, &v));
2452:     jj = a->j;
2453:     for (i = 0; i < nz; i++) (*v++) *= r[*jj++];
2454:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2455:     PetscCall(VecRestoreArrayRead(rr, &r));
2456:     PetscCall(PetscLogFlops(nz));
2457:   }
2458:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
2459:   PetscFunctionReturn(PETSC_SUCCESS);
2460: }

2462: PetscErrorCode MatCreateSubMatrix_SeqAIJ(Mat A, IS isrow, IS iscol, PetscInt csize, MatReuse scall, Mat *B)
2463: {
2464:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *c;
2465:   PetscInt          *smap, i, k, kstart, kend, oldcols = A->cmap->n, *lens;
2466:   PetscInt           row, mat_i, *mat_j, tcol, first, step, *mat_ilen, sum, lensi;
2467:   const PetscInt    *irow, *icol;
2468:   const PetscScalar *aa;
2469:   PetscInt           nrows, ncols;
2470:   PetscInt          *starts, *j_new, *i_new, *aj = a->j, *ai = a->i, ii, *ailen = a->ilen;
2471:   MatScalar         *a_new, *mat_a, *c_a;
2472:   Mat                C;
2473:   PetscBool          stride;

2475:   PetscFunctionBegin;
2476:   PetscCall(ISGetIndices(isrow, &irow));
2477:   PetscCall(ISGetLocalSize(isrow, &nrows));
2478:   PetscCall(ISGetLocalSize(iscol, &ncols));

2480:   PetscCall(PetscObjectTypeCompare((PetscObject)iscol, ISSTRIDE, &stride));
2481:   if (stride) {
2482:     PetscCall(ISStrideGetInfo(iscol, &first, &step));
2483:   } else {
2484:     first = 0;
2485:     step  = 0;
2486:   }
2487:   if (stride && step == 1) {
2488:     /* special case of contiguous rows */
2489:     PetscCall(PetscMalloc2(nrows, &lens, nrows, &starts));
2490:     /* loop over new rows determining lens and starting points */
2491:     for (i = 0; i < nrows; i++) {
2492:       kstart    = ai[irow[i]];
2493:       kend      = kstart + ailen[irow[i]];
2494:       starts[i] = kstart;
2495:       for (k = kstart; k < kend; k++) {
2496:         if (aj[k] >= first) {
2497:           starts[i] = k;
2498:           break;
2499:         }
2500:       }
2501:       sum = 0;
2502:       while (k < kend) {
2503:         if (aj[k++] >= first + ncols) break;
2504:         sum++;
2505:       }
2506:       lens[i] = sum;
2507:     }
2508:     /* create submatrix */
2509:     if (scall == MAT_REUSE_MATRIX) {
2510:       PetscInt n_cols, n_rows;
2511:       PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2512:       PetscCheck(n_rows == nrows && n_cols == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reused submatrix wrong size");
2513:       PetscCall(MatZeroEntries(*B));
2514:       C = *B;
2515:     } else {
2516:       PetscInt rbs, cbs;
2517:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2518:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2519:       PetscCall(ISGetBlockSize(isrow, &rbs));
2520:       PetscCall(ISGetBlockSize(iscol, &cbs));
2521:       PetscCall(MatSetBlockSizes(C, rbs, cbs));
2522:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2523:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2524:     }
2525:     c = (Mat_SeqAIJ *)C->data;

2527:     /* loop over rows inserting into submatrix */
2528:     PetscCall(MatSeqAIJGetArrayWrite(C, &a_new)); // Not 'a_new = c->a-new', since that raw usage ignores offload state of C
2529:     j_new = c->j;
2530:     i_new = c->i;
2531:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2532:     for (i = 0; i < nrows; i++) {
2533:       ii    = starts[i];
2534:       lensi = lens[i];
2535:       if (lensi) {
2536:         for (k = 0; k < lensi; k++) *j_new++ = aj[ii + k] - first;
2537:         PetscCall(PetscArraycpy(a_new, aa + starts[i], lensi));
2538:         a_new += lensi;
2539:       }
2540:       i_new[i + 1] = i_new[i] + lensi;
2541:       c->ilen[i]   = lensi;
2542:     }
2543:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &a_new)); // Set C's offload state properly
2544:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2545:     PetscCall(PetscFree2(lens, starts));
2546:   } else {
2547:     PetscCall(ISGetIndices(iscol, &icol));
2548:     PetscCall(PetscCalloc1(oldcols, &smap));
2549:     PetscCall(PetscMalloc1(1 + nrows, &lens));
2550:     for (i = 0; i < ncols; i++) {
2551:       PetscCheck(icol[i] < oldcols, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Requesting column beyond largest column icol[%" PetscInt_FMT "] %" PetscInt_FMT " >= A->cmap->n %" PetscInt_FMT, i, icol[i], oldcols);
2552:       smap[icol[i]] = i + 1;
2553:     }

2555:     /* determine lens of each row */
2556:     for (i = 0; i < nrows; i++) {
2557:       kstart  = ai[irow[i]];
2558:       kend    = kstart + a->ilen[irow[i]];
2559:       lens[i] = 0;
2560:       for (k = kstart; k < kend; k++) {
2561:         if (smap[aj[k]]) lens[i]++;
2562:       }
2563:     }
2564:     /* Create and fill new matrix */
2565:     if (scall == MAT_REUSE_MATRIX) {
2566:       PetscBool equal;

2568:       c = (Mat_SeqAIJ *)((*B)->data);
2569:       PetscCheck((*B)->rmap->n == nrows && (*B)->cmap->n == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong size");
2570:       PetscCall(PetscArraycmp(c->ilen, lens, (*B)->rmap->n, &equal));
2571:       PetscCheck(equal, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong number of nonzeros");
2572:       PetscCall(PetscArrayzero(c->ilen, (*B)->rmap->n));
2573:       C = *B;
2574:     } else {
2575:       PetscInt rbs, cbs;
2576:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2577:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2578:       PetscCall(ISGetBlockSize(isrow, &rbs));
2579:       PetscCall(ISGetBlockSize(iscol, &cbs));
2580:       if (rbs > 1 || cbs > 1) PetscCall(MatSetBlockSizes(C, rbs, cbs));
2581:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2582:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2583:     }
2584:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));

2586:     c = (Mat_SeqAIJ *)C->data;
2587:     PetscCall(MatSeqAIJGetArrayWrite(C, &c_a)); // Not 'c->a', since that raw usage ignores offload state of C
2588:     for (i = 0; i < nrows; i++) {
2589:       row      = irow[i];
2590:       kstart   = ai[row];
2591:       kend     = kstart + a->ilen[row];
2592:       mat_i    = c->i[i];
2593:       mat_j    = PetscSafePointerPlusOffset(c->j, mat_i);
2594:       mat_a    = PetscSafePointerPlusOffset(c_a, mat_i);
2595:       mat_ilen = c->ilen + i;
2596:       for (k = kstart; k < kend; k++) {
2597:         if ((tcol = smap[a->j[k]])) {
2598:           *mat_j++ = tcol - 1;
2599:           *mat_a++ = aa[k];
2600:           (*mat_ilen)++;
2601:         }
2602:       }
2603:     }
2604:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2605:     /* Free work space */
2606:     PetscCall(ISRestoreIndices(iscol, &icol));
2607:     PetscCall(PetscFree(smap));
2608:     PetscCall(PetscFree(lens));
2609:     /* sort */
2610:     for (i = 0; i < nrows; i++) {
2611:       PetscInt ilen;

2613:       mat_i = c->i[i];
2614:       mat_j = PetscSafePointerPlusOffset(c->j, mat_i);
2615:       mat_a = PetscSafePointerPlusOffset(c_a, mat_i);
2616:       ilen  = c->ilen[i];
2617:       PetscCall(PetscSortIntWithScalarArray(ilen, mat_j, mat_a));
2618:     }
2619:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &c_a));
2620:   }
2621: #if defined(PETSC_HAVE_DEVICE)
2622:   PetscCall(MatBindToCPU(C, A->boundtocpu));
2623: #endif
2624:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
2625:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));

2627:   PetscCall(ISRestoreIndices(isrow, &irow));
2628:   *B = C;
2629:   PetscFunctionReturn(PETSC_SUCCESS);
2630: }

2632: static PetscErrorCode MatGetMultiProcBlock_SeqAIJ(Mat mat, MPI_Comm subComm, MatReuse scall, Mat *subMat)
2633: {
2634:   Mat B;

2636:   PetscFunctionBegin;
2637:   if (scall == MAT_INITIAL_MATRIX) {
2638:     PetscCall(MatCreate(subComm, &B));
2639:     PetscCall(MatSetSizes(B, mat->rmap->n, mat->cmap->n, mat->rmap->n, mat->cmap->n));
2640:     PetscCall(MatSetBlockSizesFromMats(B, mat, mat));
2641:     PetscCall(MatSetType(B, MATSEQAIJ));
2642:     PetscCall(MatDuplicateNoCreate_SeqAIJ(B, mat, MAT_COPY_VALUES, PETSC_TRUE));
2643:     *subMat = B;
2644:   } else {
2645:     PetscCall(MatCopy_SeqAIJ(mat, *subMat, SAME_NONZERO_PATTERN));
2646:   }
2647:   PetscFunctionReturn(PETSC_SUCCESS);
2648: }

2650: static PetscErrorCode MatILUFactor_SeqAIJ(Mat inA, IS row, IS col, const MatFactorInfo *info)
2651: {
2652:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)inA->data;
2653:   Mat         outA;
2654:   PetscBool   row_identity, col_identity;

2656:   PetscFunctionBegin;
2657:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 supported for in-place ilu");

2659:   PetscCall(ISIdentity(row, &row_identity));
2660:   PetscCall(ISIdentity(col, &col_identity));

2662:   outA             = inA;
2663:   outA->factortype = MAT_FACTOR_LU;
2664:   PetscCall(PetscFree(inA->solvertype));
2665:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

2667:   PetscCall(PetscObjectReference((PetscObject)row));
2668:   PetscCall(ISDestroy(&a->row));

2670:   a->row = row;

2672:   PetscCall(PetscObjectReference((PetscObject)col));
2673:   PetscCall(ISDestroy(&a->col));

2675:   a->col = col;

2677:   /* Create the inverse permutation so that it can be used in MatLUFactorNumeric() */
2678:   PetscCall(ISDestroy(&a->icol));
2679:   PetscCall(ISInvertPermutation(col, PETSC_DECIDE, &a->icol));

2681:   if (!a->solve_work) { /* this matrix may have been factored before */
2682:     PetscCall(PetscMalloc1(inA->rmap->n + 1, &a->solve_work));
2683:   }

2685:   PetscCall(MatMarkDiagonal_SeqAIJ(inA));
2686:   if (row_identity && col_identity) {
2687:     PetscCall(MatLUFactorNumeric_SeqAIJ_inplace(outA, inA, info));
2688:   } else {
2689:     PetscCall(MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(outA, inA, info));
2690:   }
2691:   PetscFunctionReturn(PETSC_SUCCESS);
2692: }

2694: PetscErrorCode MatScale_SeqAIJ(Mat inA, PetscScalar alpha)
2695: {
2696:   Mat_SeqAIJ  *a = (Mat_SeqAIJ *)inA->data;
2697:   PetscScalar *v;
2698:   PetscBLASInt one = 1, bnz;

2700:   PetscFunctionBegin;
2701:   PetscCall(MatSeqAIJGetArray(inA, &v));
2702:   PetscCall(PetscBLASIntCast(a->nz, &bnz));
2703:   PetscCallBLAS("BLASscal", BLASscal_(&bnz, &alpha, v, &one));
2704:   PetscCall(PetscLogFlops(a->nz));
2705:   PetscCall(MatSeqAIJRestoreArray(inA, &v));
2706:   PetscCall(MatSeqAIJInvalidateDiagonal(inA));
2707:   PetscFunctionReturn(PETSC_SUCCESS);
2708: }

2710: PetscErrorCode MatDestroySubMatrix_Private(Mat_SubSppt *submatj)
2711: {
2712:   PetscInt i;

2714:   PetscFunctionBegin;
2715:   if (!submatj->id) { /* delete data that are linked only to submats[id=0] */
2716:     PetscCall(PetscFree4(submatj->sbuf1, submatj->ptr, submatj->tmp, submatj->ctr));

2718:     for (i = 0; i < submatj->nrqr; ++i) PetscCall(PetscFree(submatj->sbuf2[i]));
2719:     PetscCall(PetscFree3(submatj->sbuf2, submatj->req_size, submatj->req_source1));

2721:     if (submatj->rbuf1) {
2722:       PetscCall(PetscFree(submatj->rbuf1[0]));
2723:       PetscCall(PetscFree(submatj->rbuf1));
2724:     }

2726:     for (i = 0; i < submatj->nrqs; ++i) PetscCall(PetscFree(submatj->rbuf3[i]));
2727:     PetscCall(PetscFree3(submatj->req_source2, submatj->rbuf2, submatj->rbuf3));
2728:     PetscCall(PetscFree(submatj->pa));
2729:   }

2731: #if defined(PETSC_USE_CTABLE)
2732:   PetscCall(PetscHMapIDestroy(&submatj->rmap));
2733:   if (submatj->cmap_loc) PetscCall(PetscFree(submatj->cmap_loc));
2734:   PetscCall(PetscFree(submatj->rmap_loc));
2735: #else
2736:   PetscCall(PetscFree(submatj->rmap));
2737: #endif

2739:   if (!submatj->allcolumns) {
2740: #if defined(PETSC_USE_CTABLE)
2741:     PetscCall(PetscHMapIDestroy(&submatj->cmap));
2742: #else
2743:     PetscCall(PetscFree(submatj->cmap));
2744: #endif
2745:   }
2746:   PetscCall(PetscFree(submatj->row2proc));

2748:   PetscCall(PetscFree(submatj));
2749:   PetscFunctionReturn(PETSC_SUCCESS);
2750: }

2752: PetscErrorCode MatDestroySubMatrix_SeqAIJ(Mat C)
2753: {
2754:   Mat_SeqAIJ  *c       = (Mat_SeqAIJ *)C->data;
2755:   Mat_SubSppt *submatj = c->submatis1;

2757:   PetscFunctionBegin;
2758:   PetscCall((*submatj->destroy)(C));
2759:   PetscCall(MatDestroySubMatrix_Private(submatj));
2760:   PetscFunctionReturn(PETSC_SUCCESS);
2761: }

2763: /* Note this has code duplication with MatDestroySubMatrices_SeqBAIJ() */
2764: static PetscErrorCode MatDestroySubMatrices_SeqAIJ(PetscInt n, Mat *mat[])
2765: {
2766:   PetscInt     i;
2767:   Mat          C;
2768:   Mat_SeqAIJ  *c;
2769:   Mat_SubSppt *submatj;

2771:   PetscFunctionBegin;
2772:   for (i = 0; i < n; i++) {
2773:     C       = (*mat)[i];
2774:     c       = (Mat_SeqAIJ *)C->data;
2775:     submatj = c->submatis1;
2776:     if (submatj) {
2777:       if (--((PetscObject)C)->refct <= 0) {
2778:         PetscCall(PetscFree(C->factorprefix));
2779:         PetscCall((*submatj->destroy)(C));
2780:         PetscCall(MatDestroySubMatrix_Private(submatj));
2781:         PetscCall(PetscFree(C->defaultvectype));
2782:         PetscCall(PetscFree(C->defaultrandtype));
2783:         PetscCall(PetscLayoutDestroy(&C->rmap));
2784:         PetscCall(PetscLayoutDestroy(&C->cmap));
2785:         PetscCall(PetscHeaderDestroy(&C));
2786:       }
2787:     } else {
2788:       PetscCall(MatDestroy(&C));
2789:     }
2790:   }

2792:   /* Destroy Dummy submatrices created for reuse */
2793:   PetscCall(MatDestroySubMatrices_Dummy(n, mat));

2795:   PetscCall(PetscFree(*mat));
2796:   PetscFunctionReturn(PETSC_SUCCESS);
2797: }

2799: static PetscErrorCode MatCreateSubMatrices_SeqAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2800: {
2801:   PetscInt i;

2803:   PetscFunctionBegin;
2804:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n + 1, B));

2806:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqAIJ(A, irow[i], icol[i], PETSC_DECIDE, scall, &(*B)[i]));
2807:   PetscFunctionReturn(PETSC_SUCCESS);
2808: }

2810: static PetscErrorCode MatIncreaseOverlap_SeqAIJ(Mat A, PetscInt is_max, IS is[], PetscInt ov)
2811: {
2812:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2813:   PetscInt        row, i, j, k, l, ll, m, n, *nidx, isz, val;
2814:   const PetscInt *idx;
2815:   PetscInt        start, end, *ai, *aj, bs = A->rmap->bs == A->cmap->bs ? A->rmap->bs : 1;
2816:   PetscBT         table;

2818:   PetscFunctionBegin;
2819:   m  = A->rmap->n / bs;
2820:   ai = a->i;
2821:   aj = a->j;

2823:   PetscCheck(ov >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "illegal negative overlap value used");

2825:   PetscCall(PetscMalloc1(m + 1, &nidx));
2826:   PetscCall(PetscBTCreate(m, &table));

2828:   for (i = 0; i < is_max; i++) {
2829:     /* Initialize the two local arrays */
2830:     isz = 0;
2831:     PetscCall(PetscBTMemzero(m, table));

2833:     /* Extract the indices, assume there can be duplicate entries */
2834:     PetscCall(ISGetIndices(is[i], &idx));
2835:     PetscCall(ISGetLocalSize(is[i], &n));

2837:     if (bs > 1) {
2838:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2839:       for (j = 0; j < n; ++j) {
2840:         if (!PetscBTLookupSet(table, idx[j] / bs)) nidx[isz++] = idx[j] / bs;
2841:       }
2842:       PetscCall(ISRestoreIndices(is[i], &idx));
2843:       PetscCall(ISDestroy(&is[i]));

2845:       k = 0;
2846:       for (j = 0; j < ov; j++) { /* for each overlap */
2847:         n = isz;
2848:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2849:           for (ll = 0; ll < bs; ll++) {
2850:             row   = bs * nidx[k] + ll;
2851:             start = ai[row];
2852:             end   = ai[row + 1];
2853:             for (l = start; l < end; l++) {
2854:               val = aj[l] / bs;
2855:               if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2856:             }
2857:           }
2858:         }
2859:       }
2860:       PetscCall(ISCreateBlock(PETSC_COMM_SELF, bs, isz, nidx, PETSC_COPY_VALUES, is + i));
2861:     } else {
2862:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2863:       for (j = 0; j < n; ++j) {
2864:         if (!PetscBTLookupSet(table, idx[j])) nidx[isz++] = idx[j];
2865:       }
2866:       PetscCall(ISRestoreIndices(is[i], &idx));
2867:       PetscCall(ISDestroy(&is[i]));

2869:       k = 0;
2870:       for (j = 0; j < ov; j++) { /* for each overlap */
2871:         n = isz;
2872:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2873:           row   = nidx[k];
2874:           start = ai[row];
2875:           end   = ai[row + 1];
2876:           for (l = start; l < end; l++) {
2877:             val = aj[l];
2878:             if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2879:           }
2880:         }
2881:       }
2882:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, isz, nidx, PETSC_COPY_VALUES, is + i));
2883:     }
2884:   }
2885:   PetscCall(PetscBTDestroy(&table));
2886:   PetscCall(PetscFree(nidx));
2887:   PetscFunctionReturn(PETSC_SUCCESS);
2888: }

2890: static PetscErrorCode MatPermute_SeqAIJ(Mat A, IS rowp, IS colp, Mat *B)
2891: {
2892:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2893:   PetscInt        i, nz = 0, m = A->rmap->n, n = A->cmap->n;
2894:   const PetscInt *row, *col;
2895:   PetscInt       *cnew, j, *lens;
2896:   IS              icolp, irowp;
2897:   PetscInt       *cwork = NULL;
2898:   PetscScalar    *vwork = NULL;

2900:   PetscFunctionBegin;
2901:   PetscCall(ISInvertPermutation(rowp, PETSC_DECIDE, &irowp));
2902:   PetscCall(ISGetIndices(irowp, &row));
2903:   PetscCall(ISInvertPermutation(colp, PETSC_DECIDE, &icolp));
2904:   PetscCall(ISGetIndices(icolp, &col));

2906:   /* determine lengths of permuted rows */
2907:   PetscCall(PetscMalloc1(m + 1, &lens));
2908:   for (i = 0; i < m; i++) lens[row[i]] = a->i[i + 1] - a->i[i];
2909:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2910:   PetscCall(MatSetSizes(*B, m, n, m, n));
2911:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2912:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2913:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*B, 0, lens));
2914:   PetscCall(PetscFree(lens));

2916:   PetscCall(PetscMalloc1(n, &cnew));
2917:   for (i = 0; i < m; i++) {
2918:     PetscCall(MatGetRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2919:     for (j = 0; j < nz; j++) cnew[j] = col[cwork[j]];
2920:     PetscCall(MatSetValues_SeqAIJ(*B, 1, &row[i], nz, cnew, vwork, INSERT_VALUES));
2921:     PetscCall(MatRestoreRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2922:   }
2923:   PetscCall(PetscFree(cnew));

2925:   (*B)->assembled = PETSC_FALSE;

2927: #if defined(PETSC_HAVE_DEVICE)
2928:   PetscCall(MatBindToCPU(*B, A->boundtocpu));
2929: #endif
2930:   PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
2931:   PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
2932:   PetscCall(ISRestoreIndices(irowp, &row));
2933:   PetscCall(ISRestoreIndices(icolp, &col));
2934:   PetscCall(ISDestroy(&irowp));
2935:   PetscCall(ISDestroy(&icolp));
2936:   if (rowp == colp) PetscCall(MatPropagateSymmetryOptions(A, *B));
2937:   PetscFunctionReturn(PETSC_SUCCESS);
2938: }

2940: PetscErrorCode MatCopy_SeqAIJ(Mat A, Mat B, MatStructure str)
2941: {
2942:   PetscFunctionBegin;
2943:   /* If the two matrices have the same copy implementation, use fast copy. */
2944:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
2945:     Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2946:     Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
2947:     const PetscScalar *aa;
2948:     PetscScalar       *bb;

2950:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2951:     PetscCall(MatSeqAIJGetArrayWrite(B, &bb));

2953:     PetscCheck(a->i[A->rmap->n] == b->i[B->rmap->n], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different %" PetscInt_FMT " != %" PetscInt_FMT, a->i[A->rmap->n], b->i[B->rmap->n]);
2954:     PetscCall(PetscArraycpy(bb, aa, a->i[A->rmap->n]));
2955:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
2956:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2957:     PetscCall(MatSeqAIJRestoreArrayWrite(B, &bb));
2958:   } else {
2959:     PetscCall(MatCopy_Basic(A, B, str));
2960:   }
2961:   PetscFunctionReturn(PETSC_SUCCESS);
2962: }

2964: PETSC_INTERN PetscErrorCode MatSeqAIJGetArray_SeqAIJ(Mat A, PetscScalar *array[])
2965: {
2966:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2968:   PetscFunctionBegin;
2969:   *array = a->a;
2970:   PetscFunctionReturn(PETSC_SUCCESS);
2971: }

2973: PETSC_INTERN PetscErrorCode MatSeqAIJRestoreArray_SeqAIJ(Mat A, PetscScalar *array[])
2974: {
2975:   PetscFunctionBegin;
2976:   *array = NULL;
2977:   PetscFunctionReturn(PETSC_SUCCESS);
2978: }

2980: /*
2981:    Computes the number of nonzeros per row needed for preallocation when X and Y
2982:    have different nonzero structure.
2983: */
2984: PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt m, const PetscInt *xi, const PetscInt *xj, const PetscInt *yi, const PetscInt *yj, PetscInt *nnz)
2985: {
2986:   PetscInt i, j, k, nzx, nzy;

2988:   PetscFunctionBegin;
2989:   /* Set the number of nonzeros in the new matrix */
2990:   for (i = 0; i < m; i++) {
2991:     const PetscInt *xjj = PetscSafePointerPlusOffset(xj, xi[i]), *yjj = PetscSafePointerPlusOffset(yj, yi[i]);
2992:     nzx    = xi[i + 1] - xi[i];
2993:     nzy    = yi[i + 1] - yi[i];
2994:     nnz[i] = 0;
2995:     for (j = 0, k = 0; j < nzx; j++) {                  /* Point in X */
2996:       for (; k < nzy && yjj[k] < xjj[j]; k++) nnz[i]++; /* Catch up to X */
2997:       if (k < nzy && yjj[k] == xjj[j]) k++;             /* Skip duplicate */
2998:       nnz[i]++;
2999:     }
3000:     for (; k < nzy; k++) nnz[i]++;
3001:   }
3002:   PetscFunctionReturn(PETSC_SUCCESS);
3003: }

3005: PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat Y, Mat X, PetscInt *nnz)
3006: {
3007:   PetscInt    m = Y->rmap->N;
3008:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data;
3009:   Mat_SeqAIJ *y = (Mat_SeqAIJ *)Y->data;

3011:   PetscFunctionBegin;
3012:   /* Set the number of nonzeros in the new matrix */
3013:   PetscCall(MatAXPYGetPreallocation_SeqX_private(m, x->i, x->j, y->i, y->j, nnz));
3014:   PetscFunctionReturn(PETSC_SUCCESS);
3015: }

3017: PetscErrorCode MatAXPY_SeqAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
3018: {
3019:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;

3021:   PetscFunctionBegin;
3022:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
3023:     PetscBool e = x->nz == y->nz ? PETSC_TRUE : PETSC_FALSE;
3024:     if (e) {
3025:       PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
3026:       if (e) {
3027:         PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
3028:         if (e) str = SAME_NONZERO_PATTERN;
3029:       }
3030:     }
3031:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
3032:   }
3033:   if (str == SAME_NONZERO_PATTERN) {
3034:     const PetscScalar *xa;
3035:     PetscScalar       *ya, alpha = a;
3036:     PetscBLASInt       one = 1, bnz;

3038:     PetscCall(PetscBLASIntCast(x->nz, &bnz));
3039:     PetscCall(MatSeqAIJGetArray(Y, &ya));
3040:     PetscCall(MatSeqAIJGetArrayRead(X, &xa));
3041:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa, &one, ya, &one));
3042:     PetscCall(MatSeqAIJRestoreArrayRead(X, &xa));
3043:     PetscCall(MatSeqAIJRestoreArray(Y, &ya));
3044:     PetscCall(PetscLogFlops(2.0 * bnz));
3045:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
3046:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
3047:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
3048:     PetscCall(MatAXPY_Basic(Y, a, X, str));
3049:   } else {
3050:     Mat       B;
3051:     PetscInt *nnz;
3052:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
3053:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
3054:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
3055:     PetscCall(MatSetLayouts(B, Y->rmap, Y->cmap));
3056:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
3057:     PetscCall(MatAXPYGetPreallocation_SeqAIJ(Y, X, nnz));
3058:     PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
3059:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
3060:     PetscCall(MatHeaderMerge(Y, &B));
3061:     PetscCall(MatSeqAIJCheckInode(Y));
3062:     PetscCall(PetscFree(nnz));
3063:   }
3064:   PetscFunctionReturn(PETSC_SUCCESS);
3065: }

3067: PETSC_INTERN PetscErrorCode MatConjugate_SeqAIJ(Mat mat)
3068: {
3069: #if defined(PETSC_USE_COMPLEX)
3070:   Mat_SeqAIJ  *aij = (Mat_SeqAIJ *)mat->data;
3071:   PetscInt     i, nz;
3072:   PetscScalar *a;

3074:   PetscFunctionBegin;
3075:   nz = aij->nz;
3076:   PetscCall(MatSeqAIJGetArray(mat, &a));
3077:   for (i = 0; i < nz; i++) a[i] = PetscConj(a[i]);
3078:   PetscCall(MatSeqAIJRestoreArray(mat, &a));
3079: #else
3080:   PetscFunctionBegin;
3081: #endif
3082:   PetscFunctionReturn(PETSC_SUCCESS);
3083: }

3085: static PetscErrorCode MatGetRowMaxAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3086: {
3087:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3088:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3089:   PetscReal        atmp;
3090:   PetscScalar     *x;
3091:   const MatScalar *aa, *av;

3093:   PetscFunctionBegin;
3094:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3095:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3096:   aa = av;
3097:   ai = a->i;
3098:   aj = a->j;

3100:   PetscCall(VecGetArrayWrite(v, &x));
3101:   PetscCall(VecGetLocalSize(v, &n));
3102:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3103:   for (i = 0; i < m; i++) {
3104:     ncols = ai[1] - ai[0];
3105:     ai++;
3106:     x[i] = 0;
3107:     for (j = 0; j < ncols; j++) {
3108:       atmp = PetscAbsScalar(*aa);
3109:       if (PetscAbsScalar(x[i]) < atmp) {
3110:         x[i] = atmp;
3111:         if (idx) idx[i] = *aj;
3112:       }
3113:       aa++;
3114:       aj++;
3115:     }
3116:   }
3117:   PetscCall(VecRestoreArrayWrite(v, &x));
3118:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3119:   PetscFunctionReturn(PETSC_SUCCESS);
3120: }

3122: static PetscErrorCode MatGetRowSumAbs_SeqAIJ(Mat A, Vec v)
3123: {
3124:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3125:   PetscInt         i, j, m = A->rmap->n, *ai, ncols, n;
3126:   PetscScalar     *x;
3127:   const MatScalar *aa, *av;

3129:   PetscFunctionBegin;
3130:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3131:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3132:   aa = av;
3133:   ai = a->i;

3135:   PetscCall(VecGetArrayWrite(v, &x));
3136:   PetscCall(VecGetLocalSize(v, &n));
3137:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3138:   for (i = 0; i < m; i++) {
3139:     ncols = ai[1] - ai[0];
3140:     ai++;
3141:     x[i] = 0;
3142:     for (j = 0; j < ncols; j++) {
3143:       x[i] += PetscAbsScalar(*aa);
3144:       aa++;
3145:     }
3146:   }
3147:   PetscCall(VecRestoreArrayWrite(v, &x));
3148:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3149:   PetscFunctionReturn(PETSC_SUCCESS);
3150: }

3152: static PetscErrorCode MatGetRowMax_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3153: {
3154:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3155:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3156:   PetscScalar     *x;
3157:   const MatScalar *aa, *av;

3159:   PetscFunctionBegin;
3160:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3161:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3162:   aa = av;
3163:   ai = a->i;
3164:   aj = a->j;

3166:   PetscCall(VecGetArrayWrite(v, &x));
3167:   PetscCall(VecGetLocalSize(v, &n));
3168:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3169:   for (i = 0; i < m; i++) {
3170:     ncols = ai[1] - ai[0];
3171:     ai++;
3172:     if (ncols == A->cmap->n) { /* row is dense */
3173:       x[i] = *aa;
3174:       if (idx) idx[i] = 0;
3175:     } else { /* row is sparse so already KNOW maximum is 0.0 or higher */
3176:       x[i] = 0.0;
3177:       if (idx) {
3178:         for (j = 0; j < ncols; j++) { /* find first implicit 0.0 in the row */
3179:           if (aj[j] > j) {
3180:             idx[i] = j;
3181:             break;
3182:           }
3183:         }
3184:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3185:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3186:       }
3187:     }
3188:     for (j = 0; j < ncols; j++) {
3189:       if (PetscRealPart(x[i]) < PetscRealPart(*aa)) {
3190:         x[i] = *aa;
3191:         if (idx) idx[i] = *aj;
3192:       }
3193:       aa++;
3194:       aj++;
3195:     }
3196:   }
3197:   PetscCall(VecRestoreArrayWrite(v, &x));
3198:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3199:   PetscFunctionReturn(PETSC_SUCCESS);
3200: }

3202: static PetscErrorCode MatGetRowMinAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3203: {
3204:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3205:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3206:   PetscScalar     *x;
3207:   const MatScalar *aa, *av;

3209:   PetscFunctionBegin;
3210:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3211:   aa = av;
3212:   ai = a->i;
3213:   aj = a->j;

3215:   PetscCall(VecGetArrayWrite(v, &x));
3216:   PetscCall(VecGetLocalSize(v, &n));
3217:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector, %" PetscInt_FMT " vs. %" PetscInt_FMT " rows", m, n);
3218:   for (i = 0; i < m; i++) {
3219:     ncols = ai[1] - ai[0];
3220:     ai++;
3221:     if (ncols == A->cmap->n) { /* row is dense */
3222:       x[i] = *aa;
3223:       if (idx) idx[i] = 0;
3224:     } else { /* row is sparse so already KNOW minimum is 0.0 or higher */
3225:       x[i] = 0.0;
3226:       if (idx) { /* find first implicit 0.0 in the row */
3227:         for (j = 0; j < ncols; j++) {
3228:           if (aj[j] > j) {
3229:             idx[i] = j;
3230:             break;
3231:           }
3232:         }
3233:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3234:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3235:       }
3236:     }
3237:     for (j = 0; j < ncols; j++) {
3238:       if (PetscAbsScalar(x[i]) > PetscAbsScalar(*aa)) {
3239:         x[i] = *aa;
3240:         if (idx) idx[i] = *aj;
3241:       }
3242:       aa++;
3243:       aj++;
3244:     }
3245:   }
3246:   PetscCall(VecRestoreArrayWrite(v, &x));
3247:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3248:   PetscFunctionReturn(PETSC_SUCCESS);
3249: }

3251: static PetscErrorCode MatGetRowMin_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3252: {
3253:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3254:   PetscInt         i, j, m = A->rmap->n, ncols, n;
3255:   const PetscInt  *ai, *aj;
3256:   PetscScalar     *x;
3257:   const MatScalar *aa, *av;

3259:   PetscFunctionBegin;
3260:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3261:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3262:   aa = av;
3263:   ai = a->i;
3264:   aj = a->j;

3266:   PetscCall(VecGetArrayWrite(v, &x));
3267:   PetscCall(VecGetLocalSize(v, &n));
3268:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3269:   for (i = 0; i < m; i++) {
3270:     ncols = ai[1] - ai[0];
3271:     ai++;
3272:     if (ncols == A->cmap->n) { /* row is dense */
3273:       x[i] = *aa;
3274:       if (idx) idx[i] = 0;
3275:     } else { /* row is sparse so already KNOW minimum is 0.0 or lower */
3276:       x[i] = 0.0;
3277:       if (idx) { /* find first implicit 0.0 in the row */
3278:         for (j = 0; j < ncols; j++) {
3279:           if (aj[j] > j) {
3280:             idx[i] = j;
3281:             break;
3282:           }
3283:         }
3284:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3285:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3286:       }
3287:     }
3288:     for (j = 0; j < ncols; j++) {
3289:       if (PetscRealPart(x[i]) > PetscRealPart(*aa)) {
3290:         x[i] = *aa;
3291:         if (idx) idx[i] = *aj;
3292:       }
3293:       aa++;
3294:       aj++;
3295:     }
3296:   }
3297:   PetscCall(VecRestoreArrayWrite(v, &x));
3298:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3299:   PetscFunctionReturn(PETSC_SUCCESS);
3300: }

3302: static PetscErrorCode MatInvertBlockDiagonal_SeqAIJ(Mat A, const PetscScalar **values)
3303: {
3304:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
3305:   PetscInt        i, bs = A->rmap->bs, mbs = A->rmap->n / bs, ipvt[5], bs2 = bs * bs, *v_pivots, ij[7], *IJ, j;
3306:   MatScalar      *diag, work[25], *v_work;
3307:   const PetscReal shift = 0.0;
3308:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;

3310:   PetscFunctionBegin;
3311:   allowzeropivot = PetscNot(A->erroriffailure);
3312:   if (a->ibdiagvalid) {
3313:     if (values) *values = a->ibdiag;
3314:     PetscFunctionReturn(PETSC_SUCCESS);
3315:   }
3316:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
3317:   if (!a->ibdiag) PetscCall(PetscMalloc1(bs2 * mbs, &a->ibdiag));
3318:   diag = a->ibdiag;
3319:   if (values) *values = a->ibdiag;
3320:   /* factor and invert each block */
3321:   switch (bs) {
3322:   case 1:
3323:     for (i = 0; i < mbs; i++) {
3324:       PetscCall(MatGetValues(A, 1, &i, 1, &i, diag + i));
3325:       if (PetscAbsScalar(diag[i] + shift) < PETSC_MACHINE_EPSILON) {
3326:         PetscCheck(allowzeropivot, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON);
3327:         A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3328:         A->factorerror_zeropivot_value = PetscAbsScalar(diag[i]);
3329:         A->factorerror_zeropivot_row   = i;
3330:         PetscCall(PetscInfo(A, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g\n", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON));
3331:       }
3332:       diag[i] = (PetscScalar)1.0 / (diag[i] + shift);
3333:     }
3334:     break;
3335:   case 2:
3336:     for (i = 0; i < mbs; i++) {
3337:       ij[0] = 2 * i;
3338:       ij[1] = 2 * i + 1;
3339:       PetscCall(MatGetValues(A, 2, ij, 2, ij, diag));
3340:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
3341:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3342:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
3343:       diag += 4;
3344:     }
3345:     break;
3346:   case 3:
3347:     for (i = 0; i < mbs; i++) {
3348:       ij[0] = 3 * i;
3349:       ij[1] = 3 * i + 1;
3350:       ij[2] = 3 * i + 2;
3351:       PetscCall(MatGetValues(A, 3, ij, 3, ij, diag));
3352:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
3353:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3354:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
3355:       diag += 9;
3356:     }
3357:     break;
3358:   case 4:
3359:     for (i = 0; i < mbs; i++) {
3360:       ij[0] = 4 * i;
3361:       ij[1] = 4 * i + 1;
3362:       ij[2] = 4 * i + 2;
3363:       ij[3] = 4 * i + 3;
3364:       PetscCall(MatGetValues(A, 4, ij, 4, ij, diag));
3365:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
3366:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3367:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
3368:       diag += 16;
3369:     }
3370:     break;
3371:   case 5:
3372:     for (i = 0; i < mbs; i++) {
3373:       ij[0] = 5 * i;
3374:       ij[1] = 5 * i + 1;
3375:       ij[2] = 5 * i + 2;
3376:       ij[3] = 5 * i + 3;
3377:       ij[4] = 5 * i + 4;
3378:       PetscCall(MatGetValues(A, 5, ij, 5, ij, diag));
3379:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3380:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3381:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
3382:       diag += 25;
3383:     }
3384:     break;
3385:   case 6:
3386:     for (i = 0; i < mbs; i++) {
3387:       ij[0] = 6 * i;
3388:       ij[1] = 6 * i + 1;
3389:       ij[2] = 6 * i + 2;
3390:       ij[3] = 6 * i + 3;
3391:       ij[4] = 6 * i + 4;
3392:       ij[5] = 6 * i + 5;
3393:       PetscCall(MatGetValues(A, 6, ij, 6, ij, diag));
3394:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
3395:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3396:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
3397:       diag += 36;
3398:     }
3399:     break;
3400:   case 7:
3401:     for (i = 0; i < mbs; i++) {
3402:       ij[0] = 7 * i;
3403:       ij[1] = 7 * i + 1;
3404:       ij[2] = 7 * i + 2;
3405:       ij[3] = 7 * i + 3;
3406:       ij[4] = 7 * i + 4;
3407:       ij[5] = 7 * i + 5;
3408:       ij[6] = 7 * i + 6;
3409:       PetscCall(MatGetValues(A, 7, ij, 7, ij, diag));
3410:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
3411:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3412:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
3413:       diag += 49;
3414:     }
3415:     break;
3416:   default:
3417:     PetscCall(PetscMalloc3(bs, &v_work, bs, &v_pivots, bs, &IJ));
3418:     for (i = 0; i < mbs; i++) {
3419:       for (j = 0; j < bs; j++) IJ[j] = bs * i + j;
3420:       PetscCall(MatGetValues(A, bs, IJ, bs, IJ, diag));
3421:       PetscCall(PetscKernel_A_gets_inverse_A(bs, diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3422:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3423:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bs));
3424:       diag += bs2;
3425:     }
3426:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3427:   }
3428:   a->ibdiagvalid = PETSC_TRUE;
3429:   PetscFunctionReturn(PETSC_SUCCESS);
3430: }

3432: static PetscErrorCode MatSetRandom_SeqAIJ(Mat x, PetscRandom rctx)
3433: {
3434:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3435:   PetscScalar a, *aa;
3436:   PetscInt    m, n, i, j, col;

3438:   PetscFunctionBegin;
3439:   if (!x->assembled) {
3440:     PetscCall(MatGetSize(x, &m, &n));
3441:     for (i = 0; i < m; i++) {
3442:       for (j = 0; j < aij->imax[i]; j++) {
3443:         PetscCall(PetscRandomGetValue(rctx, &a));
3444:         col = (PetscInt)(n * PetscRealPart(a));
3445:         PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3446:       }
3447:     }
3448:   } else {
3449:     PetscCall(MatSeqAIJGetArrayWrite(x, &aa));
3450:     for (i = 0; i < aij->nz; i++) PetscCall(PetscRandomGetValue(rctx, aa + i));
3451:     PetscCall(MatSeqAIJRestoreArrayWrite(x, &aa));
3452:   }
3453:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3454:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3455:   PetscFunctionReturn(PETSC_SUCCESS);
3456: }

3458: /* Like MatSetRandom_SeqAIJ, but do not set values on columns in range of [low, high) */
3459: PetscErrorCode MatSetRandomSkipColumnRange_SeqAIJ_Private(Mat x, PetscInt low, PetscInt high, PetscRandom rctx)
3460: {
3461:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3462:   PetscScalar a;
3463:   PetscInt    m, n, i, j, col, nskip;

3465:   PetscFunctionBegin;
3466:   nskip = high - low;
3467:   PetscCall(MatGetSize(x, &m, &n));
3468:   n -= nskip; /* shrink number of columns where nonzeros can be set */
3469:   for (i = 0; i < m; i++) {
3470:     for (j = 0; j < aij->imax[i]; j++) {
3471:       PetscCall(PetscRandomGetValue(rctx, &a));
3472:       col = (PetscInt)(n * PetscRealPart(a));
3473:       if (col >= low) col += nskip; /* shift col rightward to skip the hole */
3474:       PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3475:     }
3476:   }
3477:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3478:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3479:   PetscFunctionReturn(PETSC_SUCCESS);
3480: }

3482: static struct _MatOps MatOps_Values = {MatSetValues_SeqAIJ,
3483:                                        MatGetRow_SeqAIJ,
3484:                                        MatRestoreRow_SeqAIJ,
3485:                                        MatMult_SeqAIJ,
3486:                                        /*  4*/ MatMultAdd_SeqAIJ,
3487:                                        MatMultTranspose_SeqAIJ,
3488:                                        MatMultTransposeAdd_SeqAIJ,
3489:                                        NULL,
3490:                                        NULL,
3491:                                        NULL,
3492:                                        /* 10*/ NULL,
3493:                                        MatLUFactor_SeqAIJ,
3494:                                        NULL,
3495:                                        MatSOR_SeqAIJ,
3496:                                        MatTranspose_SeqAIJ,
3497:                                        /* 15*/ MatGetInfo_SeqAIJ,
3498:                                        MatEqual_SeqAIJ,
3499:                                        MatGetDiagonal_SeqAIJ,
3500:                                        MatDiagonalScale_SeqAIJ,
3501:                                        MatNorm_SeqAIJ,
3502:                                        /* 20*/ NULL,
3503:                                        MatAssemblyEnd_SeqAIJ,
3504:                                        MatSetOption_SeqAIJ,
3505:                                        MatZeroEntries_SeqAIJ,
3506:                                        /* 24*/ MatZeroRows_SeqAIJ,
3507:                                        NULL,
3508:                                        NULL,
3509:                                        NULL,
3510:                                        NULL,
3511:                                        /* 29*/ MatSetUp_Seq_Hash,
3512:                                        NULL,
3513:                                        NULL,
3514:                                        NULL,
3515:                                        NULL,
3516:                                        /* 34*/ MatDuplicate_SeqAIJ,
3517:                                        NULL,
3518:                                        NULL,
3519:                                        MatILUFactor_SeqAIJ,
3520:                                        NULL,
3521:                                        /* 39*/ MatAXPY_SeqAIJ,
3522:                                        MatCreateSubMatrices_SeqAIJ,
3523:                                        MatIncreaseOverlap_SeqAIJ,
3524:                                        MatGetValues_SeqAIJ,
3525:                                        MatCopy_SeqAIJ,
3526:                                        /* 44*/ MatGetRowMax_SeqAIJ,
3527:                                        MatScale_SeqAIJ,
3528:                                        MatShift_SeqAIJ,
3529:                                        MatDiagonalSet_SeqAIJ,
3530:                                        MatZeroRowsColumns_SeqAIJ,
3531:                                        /* 49*/ MatSetRandom_SeqAIJ,
3532:                                        MatGetRowIJ_SeqAIJ,
3533:                                        MatRestoreRowIJ_SeqAIJ,
3534:                                        MatGetColumnIJ_SeqAIJ,
3535:                                        MatRestoreColumnIJ_SeqAIJ,
3536:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
3537:                                        NULL,
3538:                                        NULL,
3539:                                        MatPermute_SeqAIJ,
3540:                                        NULL,
3541:                                        /* 59*/ NULL,
3542:                                        MatDestroy_SeqAIJ,
3543:                                        MatView_SeqAIJ,
3544:                                        NULL,
3545:                                        NULL,
3546:                                        /* 64*/ MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ,
3547:                                        NULL,
3548:                                        NULL,
3549:                                        NULL,
3550:                                        MatGetRowMaxAbs_SeqAIJ,
3551:                                        /* 69*/ MatGetRowMinAbs_SeqAIJ,
3552:                                        NULL,
3553:                                        NULL,
3554:                                        MatFDColoringApply_AIJ,
3555:                                        NULL,
3556:                                        /* 74*/ MatFindZeroDiagonals_SeqAIJ,
3557:                                        NULL,
3558:                                        NULL,
3559:                                        NULL,
3560:                                        MatLoad_SeqAIJ,
3561:                                        /* 79*/ NULL,
3562:                                        NULL,
3563:                                        NULL,
3564:                                        NULL,
3565:                                        NULL,
3566:                                        /* 84*/ NULL,
3567:                                        MatMatMultNumeric_SeqAIJ_SeqAIJ,
3568:                                        MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy,
3569:                                        NULL,
3570:                                        MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ,
3571:                                        /* 90*/ NULL,
3572:                                        MatProductSetFromOptions_SeqAIJ,
3573:                                        NULL,
3574:                                        NULL,
3575:                                        MatConjugate_SeqAIJ,
3576:                                        /* 94*/ NULL,
3577:                                        MatSetValuesRow_SeqAIJ,
3578:                                        MatRealPart_SeqAIJ,
3579:                                        MatImaginaryPart_SeqAIJ,
3580:                                        NULL,
3581:                                        /* 99*/ NULL,
3582:                                        MatMatSolve_SeqAIJ,
3583:                                        NULL,
3584:                                        MatGetRowMin_SeqAIJ,
3585:                                        NULL,
3586:                                        /*104*/ MatMissingDiagonal_SeqAIJ,
3587:                                        NULL,
3588:                                        NULL,
3589:                                        NULL,
3590:                                        NULL,
3591:                                        /*109*/ NULL,
3592:                                        NULL,
3593:                                        NULL,
3594:                                        NULL,
3595:                                        NULL,
3596:                                        /*114*/ MatGetMultiProcBlock_SeqAIJ,
3597:                                        MatFindNonzeroRows_SeqAIJ,
3598:                                        MatGetColumnReductions_SeqAIJ,
3599:                                        MatInvertBlockDiagonal_SeqAIJ,
3600:                                        MatInvertVariableBlockDiagonal_SeqAIJ,
3601:                                        /*119*/ NULL,
3602:                                        NULL,
3603:                                        NULL,
3604:                                        MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ,
3605:                                        MatTransposeColoringCreate_SeqAIJ,
3606:                                        /*124*/ MatTransColoringApplySpToDen_SeqAIJ,
3607:                                        MatTransColoringApplyDenToSp_SeqAIJ,
3608:                                        MatRARtNumeric_SeqAIJ_SeqAIJ,
3609:                                        NULL,
3610:                                        NULL,
3611:                                        /*129*/ MatFDColoringSetUp_SeqXAIJ,
3612:                                        MatFindOffBlockDiagonalEntries_SeqAIJ,
3613:                                        MatCreateMPIMatConcatenateSeqMat_SeqAIJ,
3614:                                        MatDestroySubMatrices_SeqAIJ,
3615:                                        NULL,
3616:                                        /*134*/ NULL,
3617:                                        MatCreateGraph_Simple_AIJ,
3618:                                        MatTransposeSymbolic_SeqAIJ,
3619:                                        MatEliminateZeros_SeqAIJ,
3620:                                        MatGetRowSumAbs_SeqAIJ,
3621:                                        /*139*/ NULL,
3622:                                        NULL,
3623:                                        NULL,
3624:                                        MatCopyHashToXAIJ_Seq_Hash,
3625:                                        NULL};

3627: static PetscErrorCode MatSeqAIJSetColumnIndices_SeqAIJ(Mat mat, PetscInt *indices)
3628: {
3629:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3630:   PetscInt    i, nz, n;

3632:   PetscFunctionBegin;
3633:   nz = aij->maxnz;
3634:   n  = mat->rmap->n;
3635:   for (i = 0; i < nz; i++) aij->j[i] = indices[i];
3636:   aij->nz = nz;
3637:   for (i = 0; i < n; i++) aij->ilen[i] = aij->imax[i];
3638:   PetscFunctionReturn(PETSC_SUCCESS);
3639: }

3641: /*
3642:  * Given a sparse matrix with global column indices, compact it by using a local column space.
3643:  * The result matrix helps saving memory in other algorithms, such as MatPtAPSymbolic_MPIAIJ_MPIAIJ_scalable()
3644:  */
3645: PetscErrorCode MatSeqAIJCompactOutExtraColumns_SeqAIJ(Mat mat, ISLocalToGlobalMapping *mapping)
3646: {
3647:   Mat_SeqAIJ   *aij = (Mat_SeqAIJ *)mat->data;
3648:   PetscHMapI    gid1_lid1;
3649:   PetscHashIter tpos;
3650:   PetscInt      gid, lid, i, ec, nz = aij->nz;
3651:   PetscInt     *garray, *jj = aij->j;

3653:   PetscFunctionBegin;
3655:   PetscAssertPointer(mapping, 2);
3656:   /* use a table */
3657:   PetscCall(PetscHMapICreateWithSize(mat->rmap->n, &gid1_lid1));
3658:   ec = 0;
3659:   for (i = 0; i < nz; i++) {
3660:     PetscInt data, gid1 = jj[i] + 1;
3661:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &data));
3662:     if (!data) {
3663:       /* one based table */
3664:       PetscCall(PetscHMapISet(gid1_lid1, gid1, ++ec));
3665:     }
3666:   }
3667:   /* form array of columns we need */
3668:   PetscCall(PetscMalloc1(ec, &garray));
3669:   PetscHashIterBegin(gid1_lid1, tpos);
3670:   while (!PetscHashIterAtEnd(gid1_lid1, tpos)) {
3671:     PetscHashIterGetKey(gid1_lid1, tpos, gid);
3672:     PetscHashIterGetVal(gid1_lid1, tpos, lid);
3673:     PetscHashIterNext(gid1_lid1, tpos);
3674:     gid--;
3675:     lid--;
3676:     garray[lid] = gid;
3677:   }
3678:   PetscCall(PetscSortInt(ec, garray)); /* sort, and rebuild */
3679:   PetscCall(PetscHMapIClear(gid1_lid1));
3680:   for (i = 0; i < ec; i++) PetscCall(PetscHMapISet(gid1_lid1, garray[i] + 1, i + 1));
3681:   /* compact out the extra columns in B */
3682:   for (i = 0; i < nz; i++) {
3683:     PetscInt gid1 = jj[i] + 1;
3684:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &lid));
3685:     lid--;
3686:     jj[i] = lid;
3687:   }
3688:   PetscCall(PetscLayoutDestroy(&mat->cmap));
3689:   PetscCall(PetscHMapIDestroy(&gid1_lid1));
3690:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)mat), ec, ec, 1, &mat->cmap));
3691:   PetscCall(ISLocalToGlobalMappingCreate(PETSC_COMM_SELF, mat->cmap->bs, mat->cmap->n, garray, PETSC_OWN_POINTER, mapping));
3692:   PetscCall(ISLocalToGlobalMappingSetType(*mapping, ISLOCALTOGLOBALMAPPINGHASH));
3693:   PetscFunctionReturn(PETSC_SUCCESS);
3694: }

3696: /*@
3697:   MatSeqAIJSetColumnIndices - Set the column indices for all the rows
3698:   in the matrix.

3700:   Input Parameters:
3701: + mat     - the `MATSEQAIJ` matrix
3702: - indices - the column indices

3704:   Level: advanced

3706:   Notes:
3707:   This can be called if you have precomputed the nonzero structure of the
3708:   matrix and want to provide it to the matrix object to improve the performance
3709:   of the `MatSetValues()` operation.

3711:   You MUST have set the correct numbers of nonzeros per row in the call to
3712:   `MatCreateSeqAIJ()`, and the columns indices MUST be sorted.

3714:   MUST be called before any calls to `MatSetValues()`

3716:   The indices should start with zero, not one.

3718: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`
3719: @*/
3720: PetscErrorCode MatSeqAIJSetColumnIndices(Mat mat, PetscInt *indices)
3721: {
3722:   PetscFunctionBegin;
3724:   PetscAssertPointer(indices, 2);
3725:   PetscUseMethod(mat, "MatSeqAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
3726:   PetscFunctionReturn(PETSC_SUCCESS);
3727: }

3729: static PetscErrorCode MatStoreValues_SeqAIJ(Mat mat)
3730: {
3731:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3732:   size_t      nz  = aij->i[mat->rmap->n];

3734:   PetscFunctionBegin;
3735:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

3737:   /* allocate space for values if not already there */
3738:   if (!aij->saved_values) PetscCall(PetscMalloc1(nz + 1, &aij->saved_values));

3740:   /* copy values over */
3741:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
3742:   PetscFunctionReturn(PETSC_SUCCESS);
3743: }

3745: /*@
3746:   MatStoreValues - Stashes a copy of the matrix values; this allows reusing of the linear part of a Jacobian, while recomputing only the
3747:   nonlinear portion.

3749:   Logically Collect

3751:   Input Parameter:
3752: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3754:   Level: advanced

3756:   Example Usage:
3757: .vb
3758:     Using SNES
3759:     Create Jacobian matrix
3760:     Set linear terms into matrix
3761:     Apply boundary conditions to matrix, at this time matrix must have
3762:       final nonzero structure (i.e. setting the nonlinear terms and applying
3763:       boundary conditions again will not change the nonzero structure
3764:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3765:     MatStoreValues(mat);
3766:     Call SNESSetJacobian() with matrix
3767:     In your Jacobian routine
3768:       MatRetrieveValues(mat);
3769:       Set nonlinear terms in matrix

3771:     Without `SNESSolve()`, i.e. when you handle nonlinear solve yourself:
3772:     // build linear portion of Jacobian
3773:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3774:     MatStoreValues(mat);
3775:     loop over nonlinear iterations
3776:        MatRetrieveValues(mat);
3777:        // call MatSetValues(mat,...) to set nonliner portion of Jacobian
3778:        // call MatAssemblyBegin/End() on matrix
3779:        Solve linear system with Jacobian
3780:     endloop
3781: .ve

3783:   Notes:
3784:   Matrix must already be assembled before calling this routine
3785:   Must set the matrix option `MatSetOption`(mat,`MAT_NEW_NONZERO_LOCATIONS`,`PETSC_FALSE`); before
3786:   calling this routine.

3788:   When this is called multiple times it overwrites the previous set of stored values
3789:   and does not allocated additional space.

3791: .seealso: [](ch_matrices), `Mat`, `MatRetrieveValues()`
3792: @*/
3793: PetscErrorCode MatStoreValues(Mat mat)
3794: {
3795:   PetscFunctionBegin;
3797:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3798:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3799:   PetscUseMethod(mat, "MatStoreValues_C", (Mat), (mat));
3800:   PetscFunctionReturn(PETSC_SUCCESS);
3801: }

3803: static PetscErrorCode MatRetrieveValues_SeqAIJ(Mat mat)
3804: {
3805:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3806:   PetscInt    nz  = aij->i[mat->rmap->n];

3808:   PetscFunctionBegin;
3809:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
3810:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
3811:   /* copy values over */
3812:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
3813:   PetscFunctionReturn(PETSC_SUCCESS);
3814: }

3816: /*@
3817:   MatRetrieveValues - Retrieves the copy of the matrix values that was stored with `MatStoreValues()`

3819:   Logically Collect

3821:   Input Parameter:
3822: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3824:   Level: advanced

3826: .seealso: [](ch_matrices), `Mat`, `MatStoreValues()`
3827: @*/
3828: PetscErrorCode MatRetrieveValues(Mat mat)
3829: {
3830:   PetscFunctionBegin;
3832:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3833:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3834:   PetscUseMethod(mat, "MatRetrieveValues_C", (Mat), (mat));
3835:   PetscFunctionReturn(PETSC_SUCCESS);
3836: }

3838: /*@
3839:   MatCreateSeqAIJ - Creates a sparse matrix in `MATSEQAIJ` (compressed row) format
3840:   (the default parallel PETSc format).  For good matrix assembly performance
3841:   the user should preallocate the matrix storage by setting the parameter `nz`
3842:   (or the array `nnz`).

3844:   Collective

3846:   Input Parameters:
3847: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3848: . m    - number of rows
3849: . n    - number of columns
3850: . nz   - number of nonzeros per row (same for all rows)
3851: - nnz  - array containing the number of nonzeros in the various rows
3852:          (possibly different for each row) or NULL

3854:   Output Parameter:
3855: . A - the matrix

3857:   Options Database Keys:
3858: + -mat_no_inode            - Do not use inodes
3859: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3861:   Level: intermediate

3863:   Notes:
3864:   It is recommend to use `MatCreateFromOptions()` instead of this routine

3866:   If `nnz` is given then `nz` is ignored

3868:   The `MATSEQAIJ` format, also called
3869:   compressed row storage, is fully compatible with standard Fortran
3870:   storage.  That is, the stored row and column indices can begin at
3871:   either one (as in Fortran) or zero.

3873:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3874:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3875:   allocation.

3877:   By default, this format uses inodes (identical nodes) when possible, to
3878:   improve numerical efficiency of matrix-vector products and solves. We
3879:   search for consecutive rows with the same nonzero structure, thereby
3880:   reusing matrix information to achieve increased efficiency.

3882: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
3883: @*/
3884: PetscErrorCode MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
3885: {
3886:   PetscFunctionBegin;
3887:   PetscCall(MatCreate(comm, A));
3888:   PetscCall(MatSetSizes(*A, m, n, m, n));
3889:   PetscCall(MatSetType(*A, MATSEQAIJ));
3890:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, nnz));
3891:   PetscFunctionReturn(PETSC_SUCCESS);
3892: }

3894: /*@
3895:   MatSeqAIJSetPreallocation - For good matrix assembly performance
3896:   the user should preallocate the matrix storage by setting the parameter nz
3897:   (or the array nnz).  By setting these parameters accurately, performance
3898:   during matrix assembly can be increased by more than a factor of 50.

3900:   Collective

3902:   Input Parameters:
3903: + B   - The matrix
3904: . nz  - number of nonzeros per row (same for all rows)
3905: - nnz - array containing the number of nonzeros in the various rows
3906:          (possibly different for each row) or NULL

3908:   Options Database Keys:
3909: + -mat_no_inode            - Do not use inodes
3910: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3912:   Level: intermediate

3914:   Notes:
3915:   If `nnz` is given then `nz` is ignored

3917:   The `MATSEQAIJ` format also called
3918:   compressed row storage, is fully compatible with standard Fortran
3919:   storage.  That is, the stored row and column indices can begin at
3920:   either one (as in Fortran) or zero.  See the users' manual for details.

3922:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3923:   Set nz = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3924:   allocation.

3926:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3927:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3928:   You can also run with the option -info and look for messages with the string
3929:   malloc in them to see if additional memory allocation was needed.

3931:   Developer Notes:
3932:   Use nz of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
3933:   entries or columns indices

3935:   By default, this format uses inodes (identical nodes) when possible, to
3936:   improve numerical efficiency of matrix-vector products and solves. We
3937:   search for consecutive rows with the same nonzero structure, thereby
3938:   reusing matrix information to achieve increased efficiency.

3940: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`, `MatGetInfo()`,
3941:           `MatSeqAIJSetTotalPreallocation()`
3942: @*/
3943: PetscErrorCode MatSeqAIJSetPreallocation(Mat B, PetscInt nz, const PetscInt nnz[])
3944: {
3945:   PetscFunctionBegin;
3948:   PetscTryMethod(B, "MatSeqAIJSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, nz, nnz));
3949:   PetscFunctionReturn(PETSC_SUCCESS);
3950: }

3952: PetscErrorCode MatSeqAIJSetPreallocation_SeqAIJ(Mat B, PetscInt nz, const PetscInt *nnz)
3953: {
3954:   Mat_SeqAIJ *b              = (Mat_SeqAIJ *)B->data;
3955:   PetscBool   skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;
3956:   PetscInt    i;

3958:   PetscFunctionBegin;
3959:   if (B->hash_active) {
3960:     B->ops[0] = b->cops;
3961:     PetscCall(PetscHMapIJVDestroy(&b->ht));
3962:     PetscCall(PetscFree(b->dnz));
3963:     B->hash_active = PETSC_FALSE;
3964:   }
3965:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;
3966:   if (nz == MAT_SKIP_ALLOCATION) {
3967:     skipallocation = PETSC_TRUE;
3968:     nz             = 0;
3969:   }
3970:   PetscCall(PetscLayoutSetUp(B->rmap));
3971:   PetscCall(PetscLayoutSetUp(B->cmap));

3973:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
3974:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
3975:   if (nnz) {
3976:     for (i = 0; i < B->rmap->n; i++) {
3977:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
3978:       PetscCheck(nnz[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, nnz[i], B->cmap->n);
3979:     }
3980:   }

3982:   B->preallocated = PETSC_TRUE;
3983:   if (!skipallocation) {
3984:     if (!b->imax) PetscCall(PetscMalloc1(B->rmap->n, &b->imax));
3985:     if (!b->ilen) {
3986:       /* b->ilen will count nonzeros in each row so far. */
3987:       PetscCall(PetscCalloc1(B->rmap->n, &b->ilen));
3988:     } else {
3989:       PetscCall(PetscMemzero(b->ilen, B->rmap->n * sizeof(PetscInt)));
3990:     }
3991:     if (!b->ipre) PetscCall(PetscMalloc1(B->rmap->n, &b->ipre));
3992:     if (!nnz) {
3993:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 10;
3994:       else if (nz < 0) nz = 1;
3995:       nz = PetscMin(nz, B->cmap->n);
3996:       for (i = 0; i < B->rmap->n; i++) b->imax[i] = nz;
3997:       PetscCall(PetscIntMultError(nz, B->rmap->n, &nz));
3998:     } else {
3999:       PetscInt64 nz64 = 0;
4000:       for (i = 0; i < B->rmap->n; i++) {
4001:         b->imax[i] = nnz[i];
4002:         nz64 += nnz[i];
4003:       }
4004:       PetscCall(PetscIntCast(nz64, &nz));
4005:     }

4007:     /* allocate the matrix space */
4008:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
4009:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&b->j));
4010:     PetscCall(PetscShmgetAllocateArray(B->rmap->n + 1, sizeof(PetscInt), (void **)&b->i));
4011:     b->free_ij = PETSC_TRUE;
4012:     if (B->structure_only) {
4013:       b->free_a = PETSC_FALSE;
4014:     } else {
4015:       PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscScalar), (void **)&b->a));
4016:       b->free_a = PETSC_TRUE;
4017:     }
4018:     b->i[0] = 0;
4019:     for (i = 1; i < B->rmap->n + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];
4020:   } else {
4021:     b->free_a  = PETSC_FALSE;
4022:     b->free_ij = PETSC_FALSE;
4023:   }

4025:   if (b->ipre && nnz != b->ipre && b->imax) {
4026:     /* reserve user-requested sparsity */
4027:     PetscCall(PetscArraycpy(b->ipre, b->imax, B->rmap->n));
4028:   }

4030:   b->nz               = 0;
4031:   b->maxnz            = nz;
4032:   B->info.nz_unneeded = (double)b->maxnz;
4033:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
4034:   B->was_assembled = PETSC_FALSE;
4035:   B->assembled     = PETSC_FALSE;
4036:   /* We simply deem preallocation has changed nonzero state. Updating the state
4037:      will give clients (like AIJKokkos) a chance to know something has happened.
4038:   */
4039:   B->nonzerostate++;
4040:   PetscFunctionReturn(PETSC_SUCCESS);
4041: }

4043: PetscErrorCode MatResetPreallocation_SeqAIJ_Private(Mat A, PetscBool *memoryreset)
4044: {
4045:   Mat_SeqAIJ *a;
4046:   PetscInt    i;
4047:   PetscBool   skipreset;

4049:   PetscFunctionBegin;

4052:   PetscCheck(A->insertmode == NOT_SET_VALUES, PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot reset preallocation after setting some values but not yet calling MatAssemblyBegin()/MatAssemblyEnd()");
4053:   if (A->num_ass == 0) PetscFunctionReturn(PETSC_SUCCESS);

4055:   /* Check local size. If zero, then return */
4056:   if (!A->rmap->n) PetscFunctionReturn(PETSC_SUCCESS);

4058:   a = (Mat_SeqAIJ *)A->data;
4059:   /* if no saved info, we error out */
4060:   PetscCheck(a->ipre, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "No saved preallocation info ");

4062:   PetscCheck(a->i && a->imax && a->ilen, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "Memory info is incomplete, and cannot reset preallocation ");

4064:   PetscCall(PetscArraycmp(a->ipre, a->ilen, A->rmap->n, &skipreset));
4065:   if (skipreset) PetscCall(MatZeroEntries(A));
4066:   else {
4067:     PetscCall(PetscArraycpy(a->imax, a->ipre, A->rmap->n));
4068:     PetscCall(PetscArrayzero(a->ilen, A->rmap->n));
4069:     a->i[0] = 0;
4070:     for (i = 1; i < A->rmap->n + 1; i++) a->i[i] = a->i[i - 1] + a->imax[i - 1];
4071:     A->preallocated     = PETSC_TRUE;
4072:     a->nz               = 0;
4073:     a->maxnz            = a->i[A->rmap->n];
4074:     A->info.nz_unneeded = (double)a->maxnz;
4075:     A->was_assembled    = PETSC_FALSE;
4076:     A->assembled        = PETSC_FALSE;
4077:     A->nonzerostate++;
4078:     /* Log that the state of this object has changed; this will help guarantee that preconditioners get re-setup */
4079:     PetscCall(PetscObjectStateIncrease((PetscObject)A));
4080:   }
4081:   if (memoryreset) *memoryreset = (PetscBool)!skipreset;
4082:   PetscFunctionReturn(PETSC_SUCCESS);
4083: }

4085: static PetscErrorCode MatResetPreallocation_SeqAIJ(Mat A)
4086: {
4087:   PetscFunctionBegin;
4088:   PetscCall(MatResetPreallocation_SeqAIJ_Private(A, NULL));
4089:   PetscFunctionReturn(PETSC_SUCCESS);
4090: }

4092: /*@
4093:   MatSeqAIJSetPreallocationCSR - Allocates memory for a sparse sequential matrix in `MATSEQAIJ` format.

4095:   Input Parameters:
4096: + B - the matrix
4097: . i - the indices into `j` for the start of each row (indices start with zero)
4098: . j - the column indices for each row (indices start with zero) these must be sorted for each row
4099: - v - optional values in the matrix, use `NULL` if not provided

4101:   Level: developer

4103:   Notes:
4104:   The `i`,`j`,`v` values are COPIED with this routine; to avoid the copy use `MatCreateSeqAIJWithArrays()`

4106:   This routine may be called multiple times with different nonzero patterns (or the same nonzero pattern). The nonzero
4107:   structure will be the union of all the previous nonzero structures.

4109:   Developer Notes:
4110:   An optimization could be added to the implementation where it checks if the `i`, and `j` are identical to the current `i` and `j` and
4111:   then just copies the `v` values directly with `PetscMemcpy()`.

4113:   This routine could also take a `PetscCopyMode` argument to allow sharing the values instead of always copying them.

4115: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`, `MATSEQAIJ`, `MatResetPreallocation()`
4116: @*/
4117: PetscErrorCode MatSeqAIJSetPreallocationCSR(Mat B, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
4118: {
4119:   PetscFunctionBegin;
4122:   PetscTryMethod(B, "MatSeqAIJSetPreallocationCSR_C", (Mat, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, i, j, v));
4123:   PetscFunctionReturn(PETSC_SUCCESS);
4124: }

4126: static PetscErrorCode MatSeqAIJSetPreallocationCSR_SeqAIJ(Mat B, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
4127: {
4128:   PetscInt  i;
4129:   PetscInt  m, n;
4130:   PetscInt  nz;
4131:   PetscInt *nnz;

4133:   PetscFunctionBegin;
4134:   PetscCheck(Ii[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Ii[0] must be 0 it is %" PetscInt_FMT, Ii[0]);

4136:   PetscCall(PetscLayoutSetUp(B->rmap));
4137:   PetscCall(PetscLayoutSetUp(B->cmap));

4139:   PetscCall(MatGetSize(B, &m, &n));
4140:   PetscCall(PetscMalloc1(m + 1, &nnz));
4141:   for (i = 0; i < m; i++) {
4142:     nz = Ii[i + 1] - Ii[i];
4143:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
4144:     nnz[i] = nz;
4145:   }
4146:   PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
4147:   PetscCall(PetscFree(nnz));

4149:   for (i = 0; i < m; i++) PetscCall(MatSetValues_SeqAIJ(B, 1, &i, Ii[i + 1] - Ii[i], J + Ii[i], PetscSafePointerPlusOffset(v, Ii[i]), INSERT_VALUES));

4151:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
4152:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

4154:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
4155:   PetscFunctionReturn(PETSC_SUCCESS);
4156: }

4158: /*@
4159:   MatSeqAIJKron - Computes `C`, the Kronecker product of `A` and `B`.

4161:   Input Parameters:
4162: + A     - left-hand side matrix
4163: . B     - right-hand side matrix
4164: - reuse - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

4166:   Output Parameter:
4167: . C - Kronecker product of `A` and `B`

4169:   Level: intermediate

4171:   Note:
4172:   `MAT_REUSE_MATRIX` can only be used when the nonzero structure of the product matrix has not changed from that last call to `MatSeqAIJKron()`.

4174: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATKAIJ`, `MatReuse`
4175: @*/
4176: PetscErrorCode MatSeqAIJKron(Mat A, Mat B, MatReuse reuse, Mat *C)
4177: {
4178:   PetscFunctionBegin;
4183:   PetscAssertPointer(C, 4);
4184:   if (reuse == MAT_REUSE_MATRIX) {
4187:   }
4188:   PetscTryMethod(A, "MatSeqAIJKron_C", (Mat, Mat, MatReuse, Mat *), (A, B, reuse, C));
4189:   PetscFunctionReturn(PETSC_SUCCESS);
4190: }

4192: static PetscErrorCode MatSeqAIJKron_SeqAIJ(Mat A, Mat B, MatReuse reuse, Mat *C)
4193: {
4194:   Mat                newmat;
4195:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
4196:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
4197:   PetscScalar       *v;
4198:   const PetscScalar *aa, *ba;
4199:   PetscInt          *i, *j, m, n, p, q, nnz = 0, am = A->rmap->n, bm = B->rmap->n, an = A->cmap->n, bn = B->cmap->n;
4200:   PetscBool          flg;

4202:   PetscFunctionBegin;
4203:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4204:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4205:   PetscCheck(!B->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4206:   PetscCheck(B->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4207:   PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &flg));
4208:   PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatType %s", ((PetscObject)B)->type_name);
4209:   PetscCheck(reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatReuse %d", (int)reuse);
4210:   if (reuse == MAT_INITIAL_MATRIX) {
4211:     PetscCall(PetscMalloc2(am * bm + 1, &i, a->i[am] * b->i[bm], &j));
4212:     PetscCall(MatCreate(PETSC_COMM_SELF, &newmat));
4213:     PetscCall(MatSetSizes(newmat, am * bm, an * bn, am * bm, an * bn));
4214:     PetscCall(MatSetType(newmat, MATAIJ));
4215:     i[0] = 0;
4216:     for (m = 0; m < am; ++m) {
4217:       for (p = 0; p < bm; ++p) {
4218:         i[m * bm + p + 1] = i[m * bm + p] + (a->i[m + 1] - a->i[m]) * (b->i[p + 1] - b->i[p]);
4219:         for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4220:           for (q = b->i[p]; q < b->i[p + 1]; ++q) j[nnz++] = a->j[n] * bn + b->j[q];
4221:         }
4222:       }
4223:     }
4224:     PetscCall(MatSeqAIJSetPreallocationCSR(newmat, i, j, NULL));
4225:     *C = newmat;
4226:     PetscCall(PetscFree2(i, j));
4227:     nnz = 0;
4228:   }
4229:   PetscCall(MatSeqAIJGetArray(*C, &v));
4230:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4231:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
4232:   for (m = 0; m < am; ++m) {
4233:     for (p = 0; p < bm; ++p) {
4234:       for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4235:         for (q = b->i[p]; q < b->i[p + 1]; ++q) v[nnz++] = aa[n] * ba[q];
4236:       }
4237:     }
4238:   }
4239:   PetscCall(MatSeqAIJRestoreArray(*C, &v));
4240:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
4241:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
4242:   PetscFunctionReturn(PETSC_SUCCESS);
4243: }

4245: #include <../src/mat/impls/dense/seq/dense.h>
4246: #include <petsc/private/kernels/petscaxpy.h>

4248: /*
4249:     Computes (B'*A')' since computing B*A directly is untenable

4251:                n                       p                          p
4252:         [             ]       [             ]         [                 ]
4253:       m [      A      ]  *  n [       B     ]   =   m [         C       ]
4254:         [             ]       [             ]         [                 ]

4256: */
4257: PetscErrorCode MatMatMultNumeric_SeqDense_SeqAIJ(Mat A, Mat B, Mat C)
4258: {
4259:   Mat_SeqDense      *sub_a = (Mat_SeqDense *)A->data;
4260:   Mat_SeqAIJ        *sub_b = (Mat_SeqAIJ *)B->data;
4261:   Mat_SeqDense      *sub_c = (Mat_SeqDense *)C->data;
4262:   PetscInt           i, j, n, m, q, p;
4263:   const PetscInt    *ii, *idx;
4264:   const PetscScalar *b, *a, *a_q;
4265:   PetscScalar       *c, *c_q;
4266:   PetscInt           clda = sub_c->lda;
4267:   PetscInt           alda = sub_a->lda;

4269:   PetscFunctionBegin;
4270:   m = A->rmap->n;
4271:   n = A->cmap->n;
4272:   p = B->cmap->n;
4273:   a = sub_a->v;
4274:   b = sub_b->a;
4275:   c = sub_c->v;
4276:   if (clda == m) {
4277:     PetscCall(PetscArrayzero(c, m * p));
4278:   } else {
4279:     for (j = 0; j < p; j++)
4280:       for (i = 0; i < m; i++) c[j * clda + i] = 0.0;
4281:   }
4282:   ii  = sub_b->i;
4283:   idx = sub_b->j;
4284:   for (i = 0; i < n; i++) {
4285:     q = ii[i + 1] - ii[i];
4286:     while (q-- > 0) {
4287:       c_q = c + clda * (*idx);
4288:       a_q = a + alda * i;
4289:       PetscKernelAXPY(c_q, *b, a_q, m);
4290:       idx++;
4291:       b++;
4292:     }
4293:   }
4294:   PetscFunctionReturn(PETSC_SUCCESS);
4295: }

4297: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqAIJ(Mat A, Mat B, PetscReal fill, Mat C)
4298: {
4299:   PetscInt  m = A->rmap->n, n = B->cmap->n;
4300:   PetscBool cisdense;

4302:   PetscFunctionBegin;
4303:   PetscCheck(A->cmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "A->cmap->n %" PetscInt_FMT " != B->rmap->n %" PetscInt_FMT, A->cmap->n, B->rmap->n);
4304:   PetscCall(MatSetSizes(C, m, n, m, n));
4305:   PetscCall(MatSetBlockSizesFromMats(C, A, B));
4306:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, MATSEQDENSEHIP, ""));
4307:   if (!cisdense) PetscCall(MatSetType(C, MATDENSE));
4308:   PetscCall(MatSetUp(C));

4310:   C->ops->matmultnumeric = MatMatMultNumeric_SeqDense_SeqAIJ;
4311:   PetscFunctionReturn(PETSC_SUCCESS);
4312: }

4314: /*MC
4315:    MATSEQAIJ - MATSEQAIJ = "seqaij" - A matrix type to be used for sequential sparse matrices,
4316:    based on compressed sparse row format.

4318:    Options Database Key:
4319: . -mat_type seqaij - sets the matrix type to "seqaij" during a call to MatSetFromOptions()

4321:    Level: beginner

4323:    Notes:
4324:     `MatSetValues()` may be called for this matrix type with a `NULL` argument for the numerical values,
4325:     in this case the values associated with the rows and columns one passes in are set to zero
4326:     in the matrix

4328:     `MatSetOptions`(,`MAT_STRUCTURE_ONLY`,`PETSC_TRUE`) may be called for this matrix type. In this no
4329:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

4331:   Developer Note:
4332:     It would be nice if all matrix formats supported passing `NULL` in for the numerical values

4334: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatSetFromOptions()`, `MatSetType()`, `MatCreate()`, `MatType`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4335: M*/

4337: /*MC
4338:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

4340:    This matrix type is identical to `MATSEQAIJ` when constructed with a single process communicator,
4341:    and `MATMPIAIJ` otherwise.  As a result, for single process communicators,
4342:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4343:    for communicators controlling multiple processes.  It is recommended that you call both of
4344:    the above preallocation routines for simplicity.

4346:    Options Database Key:
4347: . -mat_type aij - sets the matrix type to "aij" during a call to `MatSetFromOptions()`

4349:   Level: beginner

4351:    Note:
4352:    Subclasses include `MATAIJCUSPARSE`, `MATAIJPERM`, `MATAIJSELL`, `MATAIJMKL`, `MATAIJCRL`, and also automatically switches over to use inodes when
4353:    enough exist.

4355: .seealso: [](ch_matrices), `Mat`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATMPIAIJ`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4356: M*/

4358: /*MC
4359:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

4361:    Options Database Key:
4362: . -mat_type aijcrl - sets the matrix type to "aijcrl" during a call to `MatSetFromOptions()`

4364:   Level: beginner

4366:    Note:
4367:    This matrix type is identical to `MATSEQAIJCRL` when constructed with a single process communicator,
4368:    and `MATMPIAIJCRL` otherwise.  As a result, for single process communicators,
4369:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4370:    for communicators controlling multiple processes.  It is recommended that you call both of
4371:    the above preallocation routines for simplicity.

4373: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`
4374: M*/

4376: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCRL(Mat, MatType, MatReuse, Mat *);
4377: #if defined(PETSC_HAVE_ELEMENTAL)
4378: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
4379: #endif
4380: #if defined(PETSC_HAVE_SCALAPACK)
4381: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
4382: #endif
4383: #if defined(PETSC_HAVE_HYPRE)
4384: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat A, MatType, MatReuse, Mat *);
4385: #endif

4387: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat, MatType, MatReuse, Mat *);
4388: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);
4389: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

4391: /*@C
4392:   MatSeqAIJGetArray - gives read/write access to the array where the data for a `MATSEQAIJ` matrix is stored

4394:   Not Collective

4396:   Input Parameter:
4397: . A - a `MATSEQAIJ` matrix

4399:   Output Parameter:
4400: . array - pointer to the data

4402:   Level: intermediate

4404: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`
4405: @*/
4406: PetscErrorCode MatSeqAIJGetArray(Mat A, PetscScalar *array[])
4407: {
4408:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4410:   PetscFunctionBegin;
4411:   if (aij->ops->getarray) {
4412:     PetscCall((*aij->ops->getarray)(A, array));
4413:   } else {
4414:     *array = aij->a;
4415:   }
4416:   PetscFunctionReturn(PETSC_SUCCESS);
4417: }

4419: /*@C
4420:   MatSeqAIJRestoreArray - returns access to the array where the data for a `MATSEQAIJ` matrix is stored obtained by `MatSeqAIJGetArray()`

4422:   Not Collective

4424:   Input Parameters:
4425: + A     - a `MATSEQAIJ` matrix
4426: - array - pointer to the data

4428:   Level: intermediate

4430: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`
4431: @*/
4432: PetscErrorCode MatSeqAIJRestoreArray(Mat A, PetscScalar *array[])
4433: {
4434:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4436:   PetscFunctionBegin;
4437:   if (aij->ops->restorearray) {
4438:     PetscCall((*aij->ops->restorearray)(A, array));
4439:   } else {
4440:     *array = NULL;
4441:   }
4442:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4443:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4444:   PetscFunctionReturn(PETSC_SUCCESS);
4445: }

4447: /*@C
4448:   MatSeqAIJGetArrayRead - gives read-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4450:   Not Collective; No Fortran Support

4452:   Input Parameter:
4453: . A - a `MATSEQAIJ` matrix

4455:   Output Parameter:
4456: . array - pointer to the data

4458:   Level: intermediate

4460: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4461: @*/
4462: PetscErrorCode MatSeqAIJGetArrayRead(Mat A, const PetscScalar *array[])
4463: {
4464:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4466:   PetscFunctionBegin;
4467:   if (aij->ops->getarrayread) {
4468:     PetscCall((*aij->ops->getarrayread)(A, array));
4469:   } else {
4470:     *array = aij->a;
4471:   }
4472:   PetscFunctionReturn(PETSC_SUCCESS);
4473: }

4475: /*@C
4476:   MatSeqAIJRestoreArrayRead - restore the read-only access array obtained from `MatSeqAIJGetArrayRead()`

4478:   Not Collective; No Fortran Support

4480:   Input Parameter:
4481: . A - a `MATSEQAIJ` matrix

4483:   Output Parameter:
4484: . array - pointer to the data

4486:   Level: intermediate

4488: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4489: @*/
4490: PetscErrorCode MatSeqAIJRestoreArrayRead(Mat A, const PetscScalar *array[])
4491: {
4492:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4494:   PetscFunctionBegin;
4495:   if (aij->ops->restorearrayread) {
4496:     PetscCall((*aij->ops->restorearrayread)(A, array));
4497:   } else {
4498:     *array = NULL;
4499:   }
4500:   PetscFunctionReturn(PETSC_SUCCESS);
4501: }

4503: /*@C
4504:   MatSeqAIJGetArrayWrite - gives write-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4506:   Not Collective; No Fortran Support

4508:   Input Parameter:
4509: . A - a `MATSEQAIJ` matrix

4511:   Output Parameter:
4512: . array - pointer to the data

4514:   Level: intermediate

4516: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4517: @*/
4518: PetscErrorCode MatSeqAIJGetArrayWrite(Mat A, PetscScalar *array[])
4519: {
4520:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4522:   PetscFunctionBegin;
4523:   if (aij->ops->getarraywrite) {
4524:     PetscCall((*aij->ops->getarraywrite)(A, array));
4525:   } else {
4526:     *array = aij->a;
4527:   }
4528:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4529:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4530:   PetscFunctionReturn(PETSC_SUCCESS);
4531: }

4533: /*@C
4534:   MatSeqAIJRestoreArrayWrite - restore the read-only access array obtained from MatSeqAIJGetArrayRead

4536:   Not Collective; No Fortran Support

4538:   Input Parameter:
4539: . A - a MATSEQAIJ matrix

4541:   Output Parameter:
4542: . array - pointer to the data

4544:   Level: intermediate

4546: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4547: @*/
4548: PetscErrorCode MatSeqAIJRestoreArrayWrite(Mat A, PetscScalar *array[])
4549: {
4550:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4552:   PetscFunctionBegin;
4553:   if (aij->ops->restorearraywrite) {
4554:     PetscCall((*aij->ops->restorearraywrite)(A, array));
4555:   } else {
4556:     *array = NULL;
4557:   }
4558:   PetscFunctionReturn(PETSC_SUCCESS);
4559: }

4561: /*@C
4562:   MatSeqAIJGetCSRAndMemType - Get the CSR arrays and the memory type of the `MATSEQAIJ` matrix

4564:   Not Collective; No Fortran Support

4566:   Input Parameter:
4567: . mat - a matrix of type `MATSEQAIJ` or its subclasses

4569:   Output Parameters:
4570: + i     - row map array of the matrix
4571: . j     - column index array of the matrix
4572: . a     - data array of the matrix
4573: - mtype - memory type of the arrays

4575:   Level: developer

4577:   Notes:
4578:   Any of the output parameters can be `NULL`, in which case the corresponding value is not returned.
4579:   If mat is a device matrix, the arrays are on the device. Otherwise, they are on the host.

4581:   One can call this routine on a preallocated but not assembled matrix to just get the memory of the CSR underneath the matrix.
4582:   If the matrix is assembled, the data array `a` is guaranteed to have the latest values of the matrix.

4584: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4585: @*/
4586: PetscErrorCode MatSeqAIJGetCSRAndMemType(Mat mat, const PetscInt *i[], const PetscInt *j[], PetscScalar *a[], PetscMemType *mtype)
4587: {
4588:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;

4590:   PetscFunctionBegin;
4591:   PetscCheck(mat->preallocated, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "matrix is not preallocated");
4592:   if (aij->ops->getcsrandmemtype) {
4593:     PetscCall((*aij->ops->getcsrandmemtype)(mat, i, j, a, mtype));
4594:   } else {
4595:     if (i) *i = aij->i;
4596:     if (j) *j = aij->j;
4597:     if (a) *a = aij->a;
4598:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
4599:   }
4600:   PetscFunctionReturn(PETSC_SUCCESS);
4601: }

4603: /*@
4604:   MatSeqAIJGetMaxRowNonzeros - returns the maximum number of nonzeros in any row

4606:   Not Collective

4608:   Input Parameter:
4609: . A - a `MATSEQAIJ` matrix

4611:   Output Parameter:
4612: . nz - the maximum number of nonzeros in any row

4614:   Level: intermediate

4616: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`
4617: @*/
4618: PetscErrorCode MatSeqAIJGetMaxRowNonzeros(Mat A, PetscInt *nz)
4619: {
4620:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4622:   PetscFunctionBegin;
4623:   *nz = aij->rmax;
4624:   PetscFunctionReturn(PETSC_SUCCESS);
4625: }

4627: static PetscErrorCode MatCOOStructDestroy_SeqAIJ(void **data)
4628: {
4629:   MatCOOStruct_SeqAIJ *coo = (MatCOOStruct_SeqAIJ *)*data;

4631:   PetscFunctionBegin;
4632:   PetscCall(PetscFree(coo->perm));
4633:   PetscCall(PetscFree(coo->jmap));
4634:   PetscCall(PetscFree(coo));
4635:   PetscFunctionReturn(PETSC_SUCCESS);
4636: }

4638: PetscErrorCode MatSetPreallocationCOO_SeqAIJ(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
4639: {
4640:   MPI_Comm             comm;
4641:   PetscInt            *i, *j;
4642:   PetscInt             M, N, row, iprev;
4643:   PetscCount           k, p, q, nneg, nnz, start, end; /* Index the coo array, so use PetscCount as their type */
4644:   PetscInt            *Ai;                             /* Change to PetscCount once we use it for row pointers */
4645:   PetscInt            *Aj;
4646:   PetscScalar         *Aa;
4647:   Mat_SeqAIJ          *seqaij = (Mat_SeqAIJ *)mat->data;
4648:   MatType              rtype;
4649:   PetscCount          *perm, *jmap;
4650:   MatCOOStruct_SeqAIJ *coo;
4651:   PetscBool            isorted;
4652:   PetscBool            hypre;

4654:   PetscFunctionBegin;
4655:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
4656:   PetscCall(MatGetSize(mat, &M, &N));
4657:   i = coo_i;
4658:   j = coo_j;
4659:   PetscCall(PetscMalloc1(coo_n, &perm));

4661:   /* Ignore entries with negative row or col indices; at the same time, check if i[] is already sorted (e.g., MatConvert_AlJ_HYPRE results in this case) */
4662:   isorted = PETSC_TRUE;
4663:   iprev   = PETSC_INT_MIN;
4664:   for (k = 0; k < coo_n; k++) {
4665:     if (j[k] < 0) i[k] = -1;
4666:     if (isorted) {
4667:       if (i[k] < iprev) isorted = PETSC_FALSE;
4668:       else iprev = i[k];
4669:     }
4670:     perm[k] = k;
4671:   }

4673:   /* Sort by row if not already */
4674:   if (!isorted) PetscCall(PetscSortIntWithIntCountArrayPair(coo_n, i, j, perm));
4675:   PetscCheck(i == NULL || i[coo_n - 1] < M, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "COO row index %" PetscInt_FMT " is >= the matrix row size %" PetscInt_FMT, i[coo_n - 1], M);

4677:   /* Advance k to the first row with a non-negative index */
4678:   for (k = 0; k < coo_n; k++)
4679:     if (i[k] >= 0) break;
4680:   nneg = k;
4681:   PetscCall(PetscMalloc1(coo_n - nneg + 1, &jmap)); /* +1 to make a CSR-like data structure. jmap[i] originally is the number of repeats for i-th nonzero */
4682:   nnz = 0;                                          /* Total number of unique nonzeros to be counted */
4683:   jmap++;                                           /* Inc jmap by 1 for convenience */

4685:   PetscCall(PetscShmgetAllocateArray(M + 1, sizeof(PetscInt), (void **)&Ai)); /* CSR of A */
4686:   PetscCall(PetscArrayzero(Ai, M + 1));
4687:   PetscCall(PetscShmgetAllocateArray(coo_n - nneg, sizeof(PetscInt), (void **)&Aj)); /* We have at most coo_n-nneg unique nonzeros */

4689:   PetscCall(PetscStrcmp("_internal_COO_mat_for_hypre", ((PetscObject)mat)->name, &hypre));

4691:   /* In each row, sort by column, then unique column indices to get row length */
4692:   Ai++;  /* Inc by 1 for convenience */
4693:   q = 0; /* q-th unique nonzero, with q starting from 0 */
4694:   while (k < coo_n) {
4695:     PetscBool strictly_sorted; // this row is strictly sorted?
4696:     PetscInt  jprev;

4698:     /* get [start,end) indices for this row; also check if cols in this row are strictly sorted */
4699:     row             = i[k];
4700:     start           = k;
4701:     jprev           = PETSC_INT_MIN;
4702:     strictly_sorted = PETSC_TRUE;
4703:     while (k < coo_n && i[k] == row) {
4704:       if (strictly_sorted) {
4705:         if (j[k] <= jprev) strictly_sorted = PETSC_FALSE;
4706:         else jprev = j[k];
4707:       }
4708:       k++;
4709:     }
4710:     end = k;

4712:     /* hack for HYPRE: swap min column to diag so that diagonal values will go first */
4713:     if (hypre) {
4714:       PetscInt  minj    = PETSC_INT_MAX;
4715:       PetscBool hasdiag = PETSC_FALSE;

4717:       if (strictly_sorted) { // fast path to swap the first and the diag
4718:         PetscCount tmp;
4719:         for (p = start; p < end; p++) {
4720:           if (j[p] == row && p != start) {
4721:             j[p]        = j[start]; // swap j[], so that the diagonal value will go first (manipulated by perm[])
4722:             j[start]    = row;
4723:             tmp         = perm[start];
4724:             perm[start] = perm[p]; // also swap perm[] so we can save the call to PetscSortIntWithCountArray() below
4725:             perm[p]     = tmp;
4726:             break;
4727:           }
4728:         }
4729:       } else {
4730:         for (p = start; p < end; p++) {
4731:           hasdiag = (PetscBool)(hasdiag || (j[p] == row));
4732:           minj    = PetscMin(minj, j[p]);
4733:         }

4735:         if (hasdiag) {
4736:           for (p = start; p < end; p++) {
4737:             if (j[p] == minj) j[p] = row;
4738:             else if (j[p] == row) j[p] = minj;
4739:           }
4740:         }
4741:       }
4742:     }
4743:     // sort by columns in a row. perm[] indicates their original order
4744:     if (!strictly_sorted) PetscCall(PetscSortIntWithCountArray(end - start, j + start, perm + start));
4745:     PetscCheck(end == start || j[end - 1] < N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "COO column index %" PetscInt_FMT " is >= the matrix column size %" PetscInt_FMT, j[end - 1], N);

4747:     if (strictly_sorted) { // fast path to set Aj[], jmap[], Ai[], nnz, q
4748:       for (p = start; p < end; p++, q++) {
4749:         Aj[q]   = j[p];
4750:         jmap[q] = 1;
4751:       }
4752:       PetscCall(PetscIntCast(end - start, Ai + row));
4753:       nnz += Ai[row]; // q is already advanced
4754:     } else {
4755:       /* Find number of unique col entries in this row */
4756:       Aj[q]   = j[start]; /* Log the first nonzero in this row */
4757:       jmap[q] = 1;        /* Number of repeats of this nonzero entry */
4758:       Ai[row] = 1;
4759:       nnz++;

4761:       for (p = start + 1; p < end; p++) { /* Scan remaining nonzero in this row */
4762:         if (j[p] != j[p - 1]) {           /* Meet a new nonzero */
4763:           q++;
4764:           jmap[q] = 1;
4765:           Aj[q]   = j[p];
4766:           Ai[row]++;
4767:           nnz++;
4768:         } else {
4769:           jmap[q]++;
4770:         }
4771:       }
4772:       q++; /* Move to next row and thus next unique nonzero */
4773:     }
4774:   }

4776:   Ai--; /* Back to the beginning of Ai[] */
4777:   for (k = 0; k < M; k++) Ai[k + 1] += Ai[k];
4778:   jmap--; // Back to the beginning of jmap[]
4779:   jmap[0] = 0;
4780:   for (k = 0; k < nnz; k++) jmap[k + 1] += jmap[k];

4782:   if (nnz < coo_n - nneg) { /* Reallocate with actual number of unique nonzeros */
4783:     PetscCount *jmap_new;
4784:     PetscInt   *Aj_new;

4786:     PetscCall(PetscMalloc1(nnz + 1, &jmap_new));
4787:     PetscCall(PetscArraycpy(jmap_new, jmap, nnz + 1));
4788:     PetscCall(PetscFree(jmap));
4789:     jmap = jmap_new;

4791:     PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscInt), (void **)&Aj_new));
4792:     PetscCall(PetscArraycpy(Aj_new, Aj, nnz));
4793:     PetscCall(PetscShmgetDeallocateArray((void **)&Aj));
4794:     Aj = Aj_new;
4795:   }

4797:   if (nneg) { /* Discard heading entries with negative indices in perm[], as we'll access it from index 0 in MatSetValuesCOO */
4798:     PetscCount *perm_new;

4800:     PetscCall(PetscMalloc1(coo_n - nneg, &perm_new));
4801:     PetscCall(PetscArraycpy(perm_new, perm + nneg, coo_n - nneg));
4802:     PetscCall(PetscFree(perm));
4803:     perm = perm_new;
4804:   }

4806:   PetscCall(MatGetRootType_Private(mat, &rtype));
4807:   PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscScalar), (void **)&Aa));
4808:   PetscCall(PetscArrayzero(Aa, nnz));
4809:   PetscCall(MatSetSeqAIJWithArrays_private(PETSC_COMM_SELF, M, N, Ai, Aj, Aa, rtype, mat));

4811:   seqaij->free_a = seqaij->free_ij = PETSC_TRUE; /* Let newmat own Ai, Aj and Aa */

4813:   // Put the COO struct in a container and then attach that to the matrix
4814:   PetscCall(PetscMalloc1(1, &coo));
4815:   PetscCall(PetscIntCast(nnz, &coo->nz));
4816:   coo->n    = coo_n;
4817:   coo->Atot = coo_n - nneg; // Annz is seqaij->nz, so no need to record that again
4818:   coo->jmap = jmap;         // of length nnz+1
4819:   coo->perm = perm;
4820:   PetscCall(PetscObjectContainerCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Host", coo, MatCOOStructDestroy_SeqAIJ));
4821:   PetscFunctionReturn(PETSC_SUCCESS);
4822: }

4824: static PetscErrorCode MatSetValuesCOO_SeqAIJ(Mat A, const PetscScalar v[], InsertMode imode)
4825: {
4826:   Mat_SeqAIJ          *aseq = (Mat_SeqAIJ *)A->data;
4827:   PetscCount           i, j, Annz = aseq->nz;
4828:   PetscCount          *perm, *jmap;
4829:   PetscScalar         *Aa;
4830:   PetscContainer       container;
4831:   MatCOOStruct_SeqAIJ *coo;

4833:   PetscFunctionBegin;
4834:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container));
4835:   PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not found MatCOOStruct on this matrix");
4836:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));
4837:   perm = coo->perm;
4838:   jmap = coo->jmap;
4839:   PetscCall(MatSeqAIJGetArray(A, &Aa));
4840:   for (i = 0; i < Annz; i++) {
4841:     PetscScalar sum = 0.0;
4842:     for (j = jmap[i]; j < jmap[i + 1]; j++) sum += v[perm[j]];
4843:     Aa[i] = (imode == INSERT_VALUES ? 0.0 : Aa[i]) + sum;
4844:   }
4845:   PetscCall(MatSeqAIJRestoreArray(A, &Aa));
4846:   PetscFunctionReturn(PETSC_SUCCESS);
4847: }

4849: #if defined(PETSC_HAVE_CUDA)
4850: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCUSPARSE(Mat, MatType, MatReuse, Mat *);
4851: #endif
4852: #if defined(PETSC_HAVE_HIP)
4853: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJHIPSPARSE(Mat, MatType, MatReuse, Mat *);
4854: #endif
4855: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4856: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat, MatType, MatReuse, Mat *);
4857: #endif

4859: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat B)
4860: {
4861:   Mat_SeqAIJ *b;
4862:   PetscMPIInt size;

4864:   PetscFunctionBegin;
4865:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
4866:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

4868:   PetscCall(PetscNew(&b));

4870:   B->data   = (void *)b;
4871:   B->ops[0] = MatOps_Values;
4872:   if (B->sortedfull) B->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;

4874:   b->row                = NULL;
4875:   b->col                = NULL;
4876:   b->icol               = NULL;
4877:   b->reallocs           = 0;
4878:   b->ignorezeroentries  = PETSC_FALSE;
4879:   b->roworiented        = PETSC_TRUE;
4880:   b->nonew              = 0;
4881:   b->diag               = NULL;
4882:   b->solve_work         = NULL;
4883:   B->spptr              = NULL;
4884:   b->saved_values       = NULL;
4885:   b->idiag              = NULL;
4886:   b->mdiag              = NULL;
4887:   b->ssor_work          = NULL;
4888:   b->omega              = 1.0;
4889:   b->fshift             = 0.0;
4890:   b->idiagvalid         = PETSC_FALSE;
4891:   b->ibdiagvalid        = PETSC_FALSE;
4892:   b->keepnonzeropattern = PETSC_FALSE;

4894:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4895: #if defined(PETSC_HAVE_MATLAB)
4896:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEnginePut_C", MatlabEnginePut_SeqAIJ));
4897:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEngineGet_C", MatlabEngineGet_SeqAIJ));
4898: #endif
4899:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetColumnIndices_C", MatSeqAIJSetColumnIndices_SeqAIJ));
4900:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqAIJ));
4901:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqAIJ));
4902:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsbaij_C", MatConvert_SeqAIJ_SeqSBAIJ));
4903:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqbaij_C", MatConvert_SeqAIJ_SeqBAIJ));
4904:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijperm_C", MatConvert_SeqAIJ_SeqAIJPERM));
4905:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijsell_C", MatConvert_SeqAIJ_SeqAIJSELL));
4906: #if defined(PETSC_HAVE_MKL_SPARSE)
4907:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijmkl_C", MatConvert_SeqAIJ_SeqAIJMKL));
4908: #endif
4909: #if defined(PETSC_HAVE_CUDA)
4910:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcusparse_C", MatConvert_SeqAIJ_SeqAIJCUSPARSE));
4911:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4912:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", MatProductSetFromOptions_SeqAIJ));
4913: #endif
4914: #if defined(PETSC_HAVE_HIP)
4915:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijhipsparse_C", MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
4916:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4917:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", MatProductSetFromOptions_SeqAIJ));
4918: #endif
4919: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4920:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijkokkos_C", MatConvert_SeqAIJ_SeqAIJKokkos));
4921: #endif
4922:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcrl_C", MatConvert_SeqAIJ_SeqAIJCRL));
4923: #if defined(PETSC_HAVE_ELEMENTAL)
4924:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_elemental_C", MatConvert_SeqAIJ_Elemental));
4925: #endif
4926: #if defined(PETSC_HAVE_SCALAPACK)
4927:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_scalapack_C", MatConvert_AIJ_ScaLAPACK));
4928: #endif
4929: #if defined(PETSC_HAVE_HYPRE)
4930:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_hypre_C", MatConvert_AIJ_HYPRE));
4931:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", MatProductSetFromOptions_Transpose_AIJ_AIJ));
4932: #endif
4933:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqdense_C", MatConvert_SeqAIJ_SeqDense));
4934:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsell_C", MatConvert_SeqAIJ_SeqSELL));
4935:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_is_C", MatConvert_XAIJ_IS));
4936:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsTranspose_C", MatIsTranspose_SeqAIJ));
4937:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsHermitianTranspose_C", MatIsHermitianTranspose_SeqAIJ));
4938:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocation_C", MatSeqAIJSetPreallocation_SeqAIJ));
4939:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetPreallocation_C", MatResetPreallocation_SeqAIJ));
4940:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetHash_C", MatResetHash_SeqAIJ));
4941:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocationCSR_C", MatSeqAIJSetPreallocationCSR_SeqAIJ));
4942:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatReorderForNonzeroDiagonal_C", MatReorderForNonzeroDiagonal_SeqAIJ));
4943:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_is_seqaij_C", MatProductSetFromOptions_IS_XAIJ));
4944:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqaij_C", MatProductSetFromOptions_SeqDense_SeqAIJ));
4945:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4946:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJKron_C", MatSeqAIJKron_SeqAIJ));
4947:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJ));
4948:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJ));
4949:   PetscCall(MatCreate_SeqAIJ_Inode(B));
4950:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4951:   PetscCall(MatSeqAIJSetTypeFromOptions(B)); /* this allows changing the matrix subtype to say MATSEQAIJPERM */
4952:   PetscFunctionReturn(PETSC_SUCCESS);
4953: }

4955: /*
4956:     Given a matrix generated with MatGetFactor() duplicates all the information in A into C
4957: */
4958: PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
4959: {
4960:   Mat_SeqAIJ *c = (Mat_SeqAIJ *)C->data, *a = (Mat_SeqAIJ *)A->data;
4961:   PetscInt    m = A->rmap->n, i;

4963:   PetscFunctionBegin;
4964:   PetscCheck(A->assembled || cpvalues == MAT_DO_NOT_COPY_VALUES, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");

4966:   C->factortype    = A->factortype;
4967:   c->row           = NULL;
4968:   c->col           = NULL;
4969:   c->icol          = NULL;
4970:   c->reallocs      = 0;
4971:   c->diagonaldense = a->diagonaldense;

4973:   C->assembled = A->assembled;

4975:   if (A->preallocated) {
4976:     PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
4977:     PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

4979:     if (!A->hash_active) {
4980:       PetscCall(PetscMalloc1(m, &c->imax));
4981:       PetscCall(PetscMemcpy(c->imax, a->imax, m * sizeof(PetscInt)));
4982:       PetscCall(PetscMalloc1(m, &c->ilen));
4983:       PetscCall(PetscMemcpy(c->ilen, a->ilen, m * sizeof(PetscInt)));

4985:       /* allocate the matrix space */
4986:       if (mallocmatspace) {
4987:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscScalar), (void **)&c->a));
4988:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscInt), (void **)&c->j));
4989:         PetscCall(PetscShmgetAllocateArray(m + 1, sizeof(PetscInt), (void **)&c->i));
4990:         PetscCall(PetscArraycpy(c->i, a->i, m + 1));
4991:         c->free_a  = PETSC_TRUE;
4992:         c->free_ij = PETSC_TRUE;
4993:         if (m > 0) {
4994:           PetscCall(PetscArraycpy(c->j, a->j, a->i[m]));
4995:           if (cpvalues == MAT_COPY_VALUES) {
4996:             const PetscScalar *aa;

4998:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4999:             PetscCall(PetscArraycpy(c->a, aa, a->i[m]));
5000:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5001:           } else {
5002:             PetscCall(PetscArrayzero(c->a, a->i[m]));
5003:           }
5004:         }
5005:       }
5006:       C->preallocated = PETSC_TRUE;
5007:     } else {
5008:       PetscCheck(mallocmatspace, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot malloc matrix memory from a non-preallocated matrix");
5009:       PetscCall(MatSetUp(C));
5010:     }

5012:     c->ignorezeroentries = a->ignorezeroentries;
5013:     c->roworiented       = a->roworiented;
5014:     c->nonew             = a->nonew;
5015:     if (a->diag) {
5016:       PetscCall(PetscMalloc1(m + 1, &c->diag));
5017:       PetscCall(PetscMemcpy(c->diag, a->diag, m * sizeof(PetscInt)));
5018:     } else c->diag = NULL;

5020:     c->solve_work         = NULL;
5021:     c->saved_values       = NULL;
5022:     c->idiag              = NULL;
5023:     c->ssor_work          = NULL;
5024:     c->keepnonzeropattern = a->keepnonzeropattern;

5026:     c->rmax  = a->rmax;
5027:     c->nz    = a->nz;
5028:     c->maxnz = a->nz; /* Since we allocate exactly the right amount */

5030:     c->compressedrow.use   = a->compressedrow.use;
5031:     c->compressedrow.nrows = a->compressedrow.nrows;
5032:     if (a->compressedrow.use) {
5033:       i = a->compressedrow.nrows;
5034:       PetscCall(PetscMalloc2(i + 1, &c->compressedrow.i, i, &c->compressedrow.rindex));
5035:       PetscCall(PetscArraycpy(c->compressedrow.i, a->compressedrow.i, i + 1));
5036:       PetscCall(PetscArraycpy(c->compressedrow.rindex, a->compressedrow.rindex, i));
5037:     } else {
5038:       c->compressedrow.use    = PETSC_FALSE;
5039:       c->compressedrow.i      = NULL;
5040:       c->compressedrow.rindex = NULL;
5041:     }
5042:     c->nonzerorowcnt = a->nonzerorowcnt;
5043:     C->nonzerostate  = A->nonzerostate;

5045:     PetscCall(MatDuplicate_SeqAIJ_Inode(A, cpvalues, &C));
5046:   }
5047:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
5048:   PetscFunctionReturn(PETSC_SUCCESS);
5049: }

5051: PetscErrorCode MatDuplicate_SeqAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
5052: {
5053:   PetscFunctionBegin;
5054:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
5055:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
5056:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
5057:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
5058:   PetscCall(MatDuplicateNoCreate_SeqAIJ(*B, A, cpvalues, PETSC_TRUE));
5059:   PetscFunctionReturn(PETSC_SUCCESS);
5060: }

5062: PetscErrorCode MatLoad_SeqAIJ(Mat newMat, PetscViewer viewer)
5063: {
5064:   PetscBool isbinary, ishdf5;

5066:   PetscFunctionBegin;
5069:   /* force binary viewer to load .info file if it has not yet done so */
5070:   PetscCall(PetscViewerSetUp(viewer));
5071:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
5072:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
5073:   if (isbinary) {
5074:     PetscCall(MatLoad_SeqAIJ_Binary(newMat, viewer));
5075:   } else if (ishdf5) {
5076: #if defined(PETSC_HAVE_HDF5)
5077:     PetscCall(MatLoad_AIJ_HDF5(newMat, viewer));
5078: #else
5079:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
5080: #endif
5081:   } else {
5082:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
5083:   }
5084:   PetscFunctionReturn(PETSC_SUCCESS);
5085: }

5087: PetscErrorCode MatLoad_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
5088: {
5089:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)mat->data;
5090:   PetscInt    header[4], *rowlens, M, N, nz, sum, rows, cols, i;

5092:   PetscFunctionBegin;
5093:   PetscCall(PetscViewerSetUp(viewer));

5095:   /* read in matrix header */
5096:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
5097:   PetscCheck(header[0] == MAT_FILE_CLASSID, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
5098:   M  = header[1];
5099:   N  = header[2];
5100:   nz = header[3];
5101:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
5102:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
5103:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as SeqAIJ");

5105:   /* set block sizes from the viewer's .info file */
5106:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
5107:   /* set local and global sizes if not set already */
5108:   if (mat->rmap->n < 0) mat->rmap->n = M;
5109:   if (mat->cmap->n < 0) mat->cmap->n = N;
5110:   if (mat->rmap->N < 0) mat->rmap->N = M;
5111:   if (mat->cmap->N < 0) mat->cmap->N = N;
5112:   PetscCall(PetscLayoutSetUp(mat->rmap));
5113:   PetscCall(PetscLayoutSetUp(mat->cmap));

5115:   /* check if the matrix sizes are correct */
5116:   PetscCall(MatGetSize(mat, &rows, &cols));
5117:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

5119:   /* read in row lengths */
5120:   PetscCall(PetscMalloc1(M, &rowlens));
5121:   PetscCall(PetscViewerBinaryRead(viewer, rowlens, M, NULL, PETSC_INT));
5122:   /* check if sum(rowlens) is same as nz */
5123:   sum = 0;
5124:   for (i = 0; i < M; i++) sum += rowlens[i];
5125:   PetscCheck(sum == nz, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);
5126:   /* preallocate and check sizes */
5127:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(mat, 0, rowlens));
5128:   PetscCall(MatGetSize(mat, &rows, &cols));
5129:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
5130:   /* store row lengths */
5131:   PetscCall(PetscArraycpy(a->ilen, rowlens, M));
5132:   PetscCall(PetscFree(rowlens));

5134:   /* fill in "i" row pointers */
5135:   a->i[0] = 0;
5136:   for (i = 0; i < M; i++) a->i[i + 1] = a->i[i] + a->ilen[i];
5137:   /* read in "j" column indices */
5138:   PetscCall(PetscViewerBinaryRead(viewer, a->j, nz, NULL, PETSC_INT));
5139:   /* read in "a" nonzero values */
5140:   PetscCall(PetscViewerBinaryRead(viewer, a->a, nz, NULL, PETSC_SCALAR));

5142:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
5143:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
5144:   PetscFunctionReturn(PETSC_SUCCESS);
5145: }

5147: PetscErrorCode MatEqual_SeqAIJ(Mat A, Mat B, PetscBool *flg)
5148: {
5149:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *b = (Mat_SeqAIJ *)B->data;
5150:   const PetscScalar *aa, *ba;
5151: #if defined(PETSC_USE_COMPLEX)
5152:   PetscInt k;
5153: #endif

5155:   PetscFunctionBegin;
5156:   /* If the  matrix dimensions are not equal,or no of nonzeros */
5157:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz)) {
5158:     *flg = PETSC_FALSE;
5159:     PetscFunctionReturn(PETSC_SUCCESS);
5160:   }

5162:   /* if the a->i are the same */
5163:   PetscCall(PetscArraycmp(a->i, b->i, A->rmap->n + 1, flg));
5164:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5166:   /* if a->j are the same */
5167:   PetscCall(PetscArraycmp(a->j, b->j, a->nz, flg));
5168:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5170:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5171:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
5172:   /* if a->a are the same */
5173: #if defined(PETSC_USE_COMPLEX)
5174:   for (k = 0; k < a->nz; k++) {
5175:     if (PetscRealPart(aa[k]) != PetscRealPart(ba[k]) || PetscImaginaryPart(aa[k]) != PetscImaginaryPart(ba[k])) {
5176:       *flg = PETSC_FALSE;
5177:       PetscFunctionReturn(PETSC_SUCCESS);
5178:     }
5179:   }
5180: #else
5181:   PetscCall(PetscArraycmp(aa, ba, a->nz, flg));
5182: #endif
5183:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
5184:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
5185:   PetscFunctionReturn(PETSC_SUCCESS);
5186: }

5188: /*@
5189:   MatCreateSeqAIJWithArrays - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in CSR format)
5190:   provided by the user.

5192:   Collective

5194:   Input Parameters:
5195: + comm - must be an MPI communicator of size 1
5196: . m    - number of rows
5197: . n    - number of columns
5198: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
5199: . j    - column indices
5200: - a    - matrix values

5202:   Output Parameter:
5203: . mat - the matrix

5205:   Level: intermediate

5207:   Notes:
5208:   The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
5209:   once the matrix is destroyed and not before

5211:   You cannot set new nonzero locations into this matrix, that will generate an error.

5213:   The `i` and `j` indices are 0 based

5215:   The format which is used for the sparse matrix input, is equivalent to a
5216:   row-major ordering.. i.e for the following matrix, the input data expected is
5217:   as shown
5218: .vb
5219:         1 0 0
5220:         2 0 3
5221:         4 5 6

5223:         i =  {0,1,3,6}  [size = nrow+1  = 3+1]
5224:         j =  {0,0,2,0,1,2}  [size = 6]; values must be sorted for each row
5225:         v =  {1,2,3,4,5,6}  [size = 6]
5226: .ve

5228: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateMPIAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`
5229: @*/
5230: PetscErrorCode MatCreateSeqAIJWithArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
5231: {
5232:   PetscInt    ii;
5233:   Mat_SeqAIJ *aij;
5234:   PetscInt    jj;

5236:   PetscFunctionBegin;
5237:   PetscCheck(m <= 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
5238:   PetscCall(MatCreate(comm, mat));
5239:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5240:   /* PetscCall(MatSetBlockSizes(*mat,,)); */
5241:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5242:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, MAT_SKIP_ALLOCATION, NULL));
5243:   aij = (Mat_SeqAIJ *)(*mat)->data;
5244:   PetscCall(PetscMalloc1(m, &aij->imax));
5245:   PetscCall(PetscMalloc1(m, &aij->ilen));

5247:   aij->i       = i;
5248:   aij->j       = j;
5249:   aij->a       = a;
5250:   aij->nonew   = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
5251:   aij->free_a  = PETSC_FALSE;
5252:   aij->free_ij = PETSC_FALSE;

5254:   for (ii = 0, aij->nonzerorowcnt = 0, aij->rmax = 0; ii < m; ii++) {
5255:     aij->ilen[ii] = aij->imax[ii] = i[ii + 1] - i[ii];
5256:     if (PetscDefined(USE_DEBUG)) {
5257:       PetscCheck(i[ii + 1] - i[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
5258:       for (jj = i[ii] + 1; jj < i[ii + 1]; jj++) {
5259:         PetscCheck(j[jj] >= j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is not sorted", jj - i[ii], j[jj], ii);
5260:         PetscCheck(j[jj] != j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is identical to previous entry", jj - i[ii], j[jj], ii);
5261:       }
5262:     }
5263:   }
5264:   if (PetscDefined(USE_DEBUG)) {
5265:     for (ii = 0; ii < aij->i[m]; ii++) {
5266:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
5267:       PetscCheck(j[ii] <= n - 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index to large at location = %" PetscInt_FMT " index = %" PetscInt_FMT " last column = %" PetscInt_FMT, ii, j[ii], n - 1);
5268:     }
5269:   }

5271:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5272:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5273:   PetscFunctionReturn(PETSC_SUCCESS);
5274: }

5276: /*@
5277:   MatCreateSeqAIJFromTriple - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in COO format)
5278:   provided by the user.

5280:   Collective

5282:   Input Parameters:
5283: + comm - must be an MPI communicator of size 1
5284: . m    - number of rows
5285: . n    - number of columns
5286: . i    - row indices
5287: . j    - column indices
5288: . a    - matrix values
5289: . nz   - number of nonzeros
5290: - idx  - if the `i` and `j` indices start with 1 use `PETSC_TRUE` otherwise use `PETSC_FALSE`

5292:   Output Parameter:
5293: . mat - the matrix

5295:   Level: intermediate

5297:   Example:
5298:   For the following matrix, the input data expected is as shown (using 0 based indexing)
5299: .vb
5300:         1 0 0
5301:         2 0 3
5302:         4 5 6

5304:         i =  {0,1,1,2,2,2}
5305:         j =  {0,0,2,0,1,2}
5306:         v =  {1,2,3,4,5,6}
5307: .ve

5309:   Note:
5310:   Instead of using this function, users should also consider `MatSetPreallocationCOO()` and `MatSetValuesCOO()`, which allow repeated or remote entries,
5311:   and are particularly useful in iterative applications.

5313: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateSeqAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`, `MatSetValuesCOO()`, `MatSetPreallocationCOO()`
5314: @*/
5315: PetscErrorCode MatCreateSeqAIJFromTriple(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat, PetscCount nz, PetscBool idx)
5316: {
5317:   PetscInt ii, *nnz, one = 1, row, col;

5319:   PetscFunctionBegin;
5320:   PetscCall(PetscCalloc1(m, &nnz));
5321:   for (ii = 0; ii < nz; ii++) nnz[i[ii] - !!idx] += 1;
5322:   PetscCall(MatCreate(comm, mat));
5323:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5324:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5325:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, 0, nnz));
5326:   for (ii = 0; ii < nz; ii++) {
5327:     if (idx) {
5328:       row = i[ii] - 1;
5329:       col = j[ii] - 1;
5330:     } else {
5331:       row = i[ii];
5332:       col = j[ii];
5333:     }
5334:     PetscCall(MatSetValues(*mat, one, &row, one, &col, &a[ii], ADD_VALUES));
5335:   }
5336:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5337:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5338:   PetscCall(PetscFree(nnz));
5339:   PetscFunctionReturn(PETSC_SUCCESS);
5340: }

5342: PetscErrorCode MatSeqAIJInvalidateDiagonal(Mat A)
5343: {
5344:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

5346:   PetscFunctionBegin;
5347:   a->idiagvalid  = PETSC_FALSE;
5348:   a->ibdiagvalid = PETSC_FALSE;

5350:   PetscCall(MatSeqAIJInvalidateDiagonal_Inode(A));
5351:   PetscFunctionReturn(PETSC_SUCCESS);
5352: }

5354: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
5355: {
5356:   PetscFunctionBegin;
5357:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIAIJ(comm, inmat, n, scall, outmat));
5358:   PetscFunctionReturn(PETSC_SUCCESS);
5359: }

5361: /*
5362:  Permute A into C's *local* index space using rowemb,colemb.
5363:  The embedding are supposed to be injections and the above implies that the range of rowemb is a subset
5364:  of [0,m), colemb is in [0,n).
5365:  If pattern == DIFFERENT_NONZERO_PATTERN, C is preallocated according to A.
5366:  */
5367: PetscErrorCode MatSetSeqMat_SeqAIJ(Mat C, IS rowemb, IS colemb, MatStructure pattern, Mat B)
5368: {
5369:   /* If making this function public, change the error returned in this function away from _PLIB. */
5370:   Mat_SeqAIJ     *Baij;
5371:   PetscBool       seqaij;
5372:   PetscInt        m, n, *nz, i, j, count;
5373:   PetscScalar     v;
5374:   const PetscInt *rowindices, *colindices;

5376:   PetscFunctionBegin;
5377:   if (!B) PetscFunctionReturn(PETSC_SUCCESS);
5378:   /* Check to make sure the target matrix (and embeddings) are compatible with C and each other. */
5379:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQAIJ, &seqaij));
5380:   PetscCheck(seqaij, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is of wrong type");
5381:   if (rowemb) {
5382:     PetscCall(ISGetLocalSize(rowemb, &m));
5383:     PetscCheck(m == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row IS of size %" PetscInt_FMT " is incompatible with matrix row size %" PetscInt_FMT, m, B->rmap->n);
5384:   } else {
5385:     PetscCheck(C->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is row-incompatible with the target matrix");
5386:   }
5387:   if (colemb) {
5388:     PetscCall(ISGetLocalSize(colemb, &n));
5389:     PetscCheck(n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Diag col IS of size %" PetscInt_FMT " is incompatible with input matrix col size %" PetscInt_FMT, n, B->cmap->n);
5390:   } else {
5391:     PetscCheck(C->cmap->n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is col-incompatible with the target matrix");
5392:   }

5394:   Baij = (Mat_SeqAIJ *)B->data;
5395:   if (pattern == DIFFERENT_NONZERO_PATTERN) {
5396:     PetscCall(PetscMalloc1(B->rmap->n, &nz));
5397:     for (i = 0; i < B->rmap->n; i++) nz[i] = Baij->i[i + 1] - Baij->i[i];
5398:     PetscCall(MatSeqAIJSetPreallocation(C, 0, nz));
5399:     PetscCall(PetscFree(nz));
5400:   }
5401:   if (pattern == SUBSET_NONZERO_PATTERN) PetscCall(MatZeroEntries(C));
5402:   count      = 0;
5403:   rowindices = NULL;
5404:   colindices = NULL;
5405:   if (rowemb) PetscCall(ISGetIndices(rowemb, &rowindices));
5406:   if (colemb) PetscCall(ISGetIndices(colemb, &colindices));
5407:   for (i = 0; i < B->rmap->n; i++) {
5408:     PetscInt row;
5409:     row = i;
5410:     if (rowindices) row = rowindices[i];
5411:     for (j = Baij->i[i]; j < Baij->i[i + 1]; j++) {
5412:       PetscInt col;
5413:       col = Baij->j[count];
5414:       if (colindices) col = colindices[col];
5415:       v = Baij->a[count];
5416:       PetscCall(MatSetValues(C, 1, &row, 1, &col, &v, INSERT_VALUES));
5417:       ++count;
5418:     }
5419:   }
5420:   /* FIXME: set C's nonzerostate correctly. */
5421:   /* Assembly for C is necessary. */
5422:   C->preallocated  = PETSC_TRUE;
5423:   C->assembled     = PETSC_TRUE;
5424:   C->was_assembled = PETSC_FALSE;
5425:   PetscFunctionReturn(PETSC_SUCCESS);
5426: }

5428: PetscErrorCode MatEliminateZeros_SeqAIJ(Mat A, PetscBool keep)
5429: {
5430:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5431:   MatScalar  *aa = a->a;
5432:   PetscInt    m = A->rmap->n, fshift = 0, fshift_prev = 0, i, k;
5433:   PetscInt   *ailen = a->ilen, *imax = a->imax, *ai = a->i, *aj = a->j, rmax = 0;

5435:   PetscFunctionBegin;
5436:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot eliminate zeros for unassembled matrix");
5437:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
5438:   for (i = 1; i <= m; i++) {
5439:     /* move each nonzero entry back by the amount of zero slots (fshift) before it*/
5440:     for (k = ai[i - 1]; k < ai[i]; k++) {
5441:       if (aa[k] == 0 && (aj[k] != i - 1 || !keep)) fshift++;
5442:       else {
5443:         if (aa[k] == 0 && aj[k] == i - 1) PetscCall(PetscInfo(A, "Keep the diagonal zero at row %" PetscInt_FMT "\n", i - 1));
5444:         aa[k - fshift] = aa[k];
5445:         aj[k - fshift] = aj[k];
5446:       }
5447:     }
5448:     ai[i - 1] -= fshift_prev; // safe to update ai[i-1] now since it will not be used in the next iteration
5449:     fshift_prev = fshift;
5450:     /* reset ilen and imax for each row */
5451:     ailen[i - 1] = imax[i - 1] = ai[i] - fshift - ai[i - 1];
5452:     a->nonzerorowcnt += ((ai[i] - fshift - ai[i - 1]) > 0);
5453:     rmax = PetscMax(rmax, ailen[i - 1]);
5454:   }
5455:   if (fshift) {
5456:     if (m) {
5457:       ai[m] -= fshift;
5458:       a->nz = ai[m];
5459:     }
5460:     PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; zeros eliminated: %" PetscInt_FMT "; nonzeros left: %" PetscInt_FMT "\n", m, A->cmap->n, fshift, a->nz));
5461:     A->nonzerostate++;
5462:     A->info.nz_unneeded += (PetscReal)fshift;
5463:     a->rmax = rmax;
5464:     if (a->inode.use && a->inode.checked) PetscCall(MatSeqAIJCheckInode(A));
5465:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
5466:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
5467:   }
5468:   PetscFunctionReturn(PETSC_SUCCESS);
5469: }

5471: PetscFunctionList MatSeqAIJList = NULL;

5473: /*@
5474:   MatSeqAIJSetType - Converts a `MATSEQAIJ` matrix to a subtype

5476:   Collective

5478:   Input Parameters:
5479: + mat    - the matrix object
5480: - matype - matrix type

5482:   Options Database Key:
5483: . -mat_seqaij_type  <method> - for example seqaijcrl

5485:   Level: intermediate

5487: .seealso: [](ch_matrices), `Mat`, `PCSetType()`, `VecSetType()`, `MatCreate()`, `MatType`
5488: @*/
5489: PetscErrorCode MatSeqAIJSetType(Mat mat, MatType matype)
5490: {
5491:   PetscBool sametype;
5492:   PetscErrorCode (*r)(Mat, MatType, MatReuse, Mat *);

5494:   PetscFunctionBegin;
5496:   PetscCall(PetscObjectTypeCompare((PetscObject)mat, matype, &sametype));
5497:   if (sametype) PetscFunctionReturn(PETSC_SUCCESS);

5499:   PetscCall(PetscFunctionListFind(MatSeqAIJList, matype, &r));
5500:   PetscCheck(r, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown Mat type given: %s", matype);
5501:   PetscCall((*r)(mat, matype, MAT_INPLACE_MATRIX, &mat));
5502:   PetscFunctionReturn(PETSC_SUCCESS);
5503: }

5505: /*@C
5506:   MatSeqAIJRegister -  - Adds a new sub-matrix type for sequential `MATSEQAIJ` matrices

5508:   Not Collective, No Fortran Support

5510:   Input Parameters:
5511: + sname    - name of a new user-defined matrix type, for example `MATSEQAIJCRL`
5512: - function - routine to convert to subtype

5514:   Level: advanced

5516:   Notes:
5517:   `MatSeqAIJRegister()` may be called multiple times to add several user-defined solvers.

5519:   Then, your matrix can be chosen with the procedural interface at runtime via the option
5520: .vb
5521:   -mat_seqaij_type my_mat
5522: .ve

5524: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRegisterAll()`
5525: @*/
5526: PetscErrorCode MatSeqAIJRegister(const char sname[], PetscErrorCode (*function)(Mat, MatType, MatReuse, Mat *))
5527: {
5528:   PetscFunctionBegin;
5529:   PetscCall(MatInitializePackage());
5530:   PetscCall(PetscFunctionListAdd(&MatSeqAIJList, sname, function));
5531:   PetscFunctionReturn(PETSC_SUCCESS);
5532: }

5534: PetscBool MatSeqAIJRegisterAllCalled = PETSC_FALSE;

5536: /*@C
5537:   MatSeqAIJRegisterAll - Registers all of the matrix subtypes of `MATSSEQAIJ`

5539:   Not Collective

5541:   Level: advanced

5543:   Note:
5544:   This registers the versions of `MATSEQAIJ` for GPUs

5546: .seealso: [](ch_matrices), `Mat`, `MatRegisterAll()`, `MatSeqAIJRegister()`
5547: @*/
5548: PetscErrorCode MatSeqAIJRegisterAll(void)
5549: {
5550:   PetscFunctionBegin;
5551:   if (MatSeqAIJRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
5552:   MatSeqAIJRegisterAllCalled = PETSC_TRUE;

5554:   PetscCall(MatSeqAIJRegister(MATSEQAIJCRL, MatConvert_SeqAIJ_SeqAIJCRL));
5555:   PetscCall(MatSeqAIJRegister(MATSEQAIJPERM, MatConvert_SeqAIJ_SeqAIJPERM));
5556:   PetscCall(MatSeqAIJRegister(MATSEQAIJSELL, MatConvert_SeqAIJ_SeqAIJSELL));
5557: #if defined(PETSC_HAVE_MKL_SPARSE)
5558:   PetscCall(MatSeqAIJRegister(MATSEQAIJMKL, MatConvert_SeqAIJ_SeqAIJMKL));
5559: #endif
5560: #if defined(PETSC_HAVE_CUDA)
5561:   PetscCall(MatSeqAIJRegister(MATSEQAIJCUSPARSE, MatConvert_SeqAIJ_SeqAIJCUSPARSE));
5562: #endif
5563: #if defined(PETSC_HAVE_HIP)
5564:   PetscCall(MatSeqAIJRegister(MATSEQAIJHIPSPARSE, MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
5565: #endif
5566: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
5567:   PetscCall(MatSeqAIJRegister(MATSEQAIJKOKKOS, MatConvert_SeqAIJ_SeqAIJKokkos));
5568: #endif
5569: #if defined(PETSC_HAVE_VIENNACL) && defined(PETSC_HAVE_VIENNACL_NO_CUDA)
5570:   PetscCall(MatSeqAIJRegister(MATMPIAIJVIENNACL, MatConvert_SeqAIJ_SeqAIJViennaCL));
5571: #endif
5572:   PetscFunctionReturn(PETSC_SUCCESS);
5573: }

5575: /*
5576:     Special version for direct calls from Fortran
5577: */
5578: #if defined(PETSC_HAVE_FORTRAN_CAPS)
5579:   #define matsetvaluesseqaij_ MATSETVALUESSEQAIJ
5580: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
5581:   #define matsetvaluesseqaij_ matsetvaluesseqaij
5582: #endif

5584: /* Change these macros so can be used in void function */

5586: /* Change these macros so can be used in void function */
5587: /* Identical to PetscCallVoid, except it assigns to *_ierr */
5588: #undef PetscCall
5589: #define PetscCall(...) \
5590:   do { \
5591:     PetscErrorCode ierr_msv_mpiaij = __VA_ARGS__; \
5592:     if (PetscUnlikely(ierr_msv_mpiaij)) { \
5593:       *_ierr = PetscError(PETSC_COMM_SELF, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr_msv_mpiaij, PETSC_ERROR_REPEAT, " "); \
5594:       return; \
5595:     } \
5596:   } while (0)

5598: #undef SETERRQ
5599: #define SETERRQ(comm, ierr, ...) \
5600:   do { \
5601:     *_ierr = PetscError(comm, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr, PETSC_ERROR_INITIAL, __VA_ARGS__); \
5602:     return; \
5603:   } while (0)

5605: PETSC_EXTERN void matsetvaluesseqaij_(Mat *AA, PetscInt *mm, const PetscInt im[], PetscInt *nn, const PetscInt in[], const PetscScalar v[], InsertMode *isis, PetscErrorCode *_ierr)
5606: {
5607:   Mat         A = *AA;
5608:   PetscInt    m = *mm, n = *nn;
5609:   InsertMode  is = *isis;
5610:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5611:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
5612:   PetscInt   *imax, *ai, *ailen;
5613:   PetscInt   *aj, nonew = a->nonew, lastcol = -1;
5614:   MatScalar  *ap, value, *aa;
5615:   PetscBool   ignorezeroentries = a->ignorezeroentries;
5616:   PetscBool   roworiented       = a->roworiented;

5618:   PetscFunctionBegin;
5619:   MatCheckPreallocated(A, 1);
5620:   imax  = a->imax;
5621:   ai    = a->i;
5622:   ailen = a->ilen;
5623:   aj    = a->j;
5624:   aa    = a->a;

5626:   for (k = 0; k < m; k++) { /* loop over added rows */
5627:     row = im[k];
5628:     if (row < 0) continue;
5629:     PetscCheck(row < A->rmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large");
5630:     rp   = aj + ai[row];
5631:     ap   = aa + ai[row];
5632:     rmax = imax[row];
5633:     nrow = ailen[row];
5634:     low  = 0;
5635:     high = nrow;
5636:     for (l = 0; l < n; l++) { /* loop over added columns */
5637:       if (in[l] < 0) continue;
5638:       PetscCheck(in[l] < A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Column too large");
5639:       col = in[l];
5640:       if (roworiented) value = v[l + k * n];
5641:       else value = v[k + l * m];

5643:       if (value == 0.0 && ignorezeroentries && (is == ADD_VALUES)) continue;

5645:       if (col <= lastcol) low = 0;
5646:       else high = nrow;
5647:       lastcol = col;
5648:       while (high - low > 5) {
5649:         t = (low + high) / 2;
5650:         if (rp[t] > col) high = t;
5651:         else low = t;
5652:       }
5653:       for (i = low; i < high; i++) {
5654:         if (rp[i] > col) break;
5655:         if (rp[i] == col) {
5656:           if (is == ADD_VALUES) ap[i] += value;
5657:           else ap[i] = value;
5658:           goto noinsert;
5659:         }
5660:       }
5661:       if (value == 0.0 && ignorezeroentries) goto noinsert;
5662:       if (nonew == 1) goto noinsert;
5663:       PetscCheck(nonew != -1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero in the matrix");
5664:       MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
5665:       N = nrow++ - 1;
5666:       a->nz++;
5667:       high++;
5668:       /* shift up all the later entries in this row */
5669:       for (ii = N; ii >= i; ii--) {
5670:         rp[ii + 1] = rp[ii];
5671:         ap[ii + 1] = ap[ii];
5672:       }
5673:       rp[i] = col;
5674:       ap[i] = value;
5675:     noinsert:;
5676:       low = i + 1;
5677:     }
5678:     ailen[row] = nrow;
5679:   }
5680:   PetscFunctionReturnVoid();
5681: }
5682: /* Undefining these here since they were redefined from their original definition above! No
5683:  * other PETSc functions should be defined past this point, as it is impossible to recover the
5684:  * original definitions */
5685: #undef PetscCall
5686: #undef SETERRQ