Actual source code: aijkok.kokkos.cxx

  1: #include <petsc_kokkos.hpp>
  2: #include <petscvec_kokkos.hpp>
  3: #include <petscpkg_version.h>
  4: #include <petsc/private/petscimpl.h>
  5: #include <petsc/private/sfimpl.h>
  6: #include <petscsystypes.h>
  7: #include <petscerror.h>

  9: #include <Kokkos_Core.hpp>
 10: #include <KokkosBlas.hpp>
 11: #include <KokkosSparse_CrsMatrix.hpp>
 12: #include <KokkosSparse_spmv.hpp>
 13: #include <KokkosSparse_spiluk.hpp>
 14: #include <KokkosSparse_sptrsv.hpp>
 15: #include <KokkosSparse_spgemm.hpp>
 16: #include <KokkosSparse_spadd.hpp>
 17: #include <KokkosBatched_LU_Decl.hpp>
 18: #include <KokkosBatched_InverseLU_Decl.hpp>

 20: #include <../src/mat/impls/aij/seq/kokkos/aijkok.hpp>

 22: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_GE(3, 7, 0)
 23:   #include <KokkosSparse_Utils.hpp>
 24: using KokkosSparse::sort_crs_matrix;
 25: using KokkosSparse::Impl::transpose_matrix;
 26: #else
 27:   #include <KokkosKernels_Sorting.hpp>
 28: using KokkosKernels::sort_crs_matrix;
 29: using KokkosKernels::Impl::transpose_matrix;
 30: #endif

 32: static PetscErrorCode MatSetOps_SeqAIJKokkos(Mat); /* Forward declaration */

 34: /* MatAssemblyEnd_SeqAIJKokkos() happens when we finalized nonzeros of the matrix, either after
 35:    we assembled the matrix on host, or after we directly produced the matrix data on device (ex., through MatMatMult).
 36:    In the latter case, it is important to set a_dual's sync state correctly.
 37:  */
 38: static PetscErrorCode MatAssemblyEnd_SeqAIJKokkos(Mat A, MatAssemblyType mode)
 39: {
 40:   Mat_SeqAIJ       *aijseq;
 41:   Mat_SeqAIJKokkos *aijkok;

 43:   PetscFunctionBegin;
 44:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
 45:   PetscCall(MatAssemblyEnd_SeqAIJ(A, mode));

 47:   aijseq = static_cast<Mat_SeqAIJ *>(A->data);
 48:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

 50:   /* If aijkok does not exist, we just copy i, j to device.
 51:      If aijkok already exists, but the device's nonzero pattern does not match with the host's, we assume the latest data is on host.
 52:      In both cases, we build a new aijkok structure.
 53:   */
 54:   if (!aijkok || aijkok->nonzerostate != A->nonzerostate) { /* aijkok might not exist yet or nonzero pattern has changed */
 55:     delete aijkok;
 56:     aijkok   = new Mat_SeqAIJKokkos(A->rmap->n, A->cmap->n, aijseq, A->nonzerostate, PETSC_FALSE /*don't copy mat values to device*/);
 57:     A->spptr = aijkok;
 58:   } else if (A->rmap->n && aijkok->diag_dual.extent(0) == 0) { // MatProduct might directly produce AIJ on device, but not the diag.
 59:     MatRowMapKokkosViewHost diag_h(aijseq->diag, A->rmap->n);
 60:     auto                    diag_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), diag_h);
 61:     aijkok->diag_dual              = MatRowMapKokkosDualView(diag_d, diag_h);
 62:   }
 63:   PetscFunctionReturn(PETSC_SUCCESS);
 64: }

 66: /* Sync CSR data to device if not yet */
 67: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosSyncDevice(Mat A)
 68: {
 69:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

 71:   PetscFunctionBegin;
 72:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Can't sync factorized matrix from host to device");
 73:   PetscCheck(aijkok, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Unexpected NULL (Mat_SeqAIJKokkos*)A->spptr");
 74:   if (aijkok->a_dual.need_sync_device()) {
 75:     aijkok->a_dual.sync_device();
 76:     aijkok->transpose_updated = PETSC_FALSE; /* values of the transpose is out-of-date */
 77:     aijkok->hermitian_updated = PETSC_FALSE;
 78:   }
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: /* Mark the CSR data on device as modified */
 83: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosModifyDevice(Mat A)
 84: {
 85:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

 87:   PetscFunctionBegin;
 88:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Not supported for factorized matries");
 89:   aijkok->a_dual.clear_sync_state();
 90:   aijkok->a_dual.modify_device();
 91:   aijkok->transpose_updated = PETSC_FALSE;
 92:   aijkok->hermitian_updated = PETSC_FALSE;
 93:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
 94:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
 95:   PetscFunctionReturn(PETSC_SUCCESS);
 96: }

 98: static PetscErrorCode MatSeqAIJKokkosSyncHost(Mat A)
 99: {
100:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
101:   auto             &exec   = PetscGetKokkosExecutionSpace();

103:   PetscFunctionBegin;
104:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
105:   /* We do not expect one needs factors on host  */
106:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Can't sync factorized matrix from device to host");
107:   PetscCheck(aijkok, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Missing AIJKOK");
108:   PetscCallCXX(aijkok->a_dual.sync_host(exec));
109:   PetscCallCXX(exec.fence());
110:   PetscFunctionReturn(PETSC_SUCCESS);
111: }

113: static PetscErrorCode MatSeqAIJGetArray_SeqAIJKokkos(Mat A, PetscScalar *array[])
114: {
115:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

117:   PetscFunctionBegin;
118:   /* aijkok contains valid pointers only if the host's nonzerostate matches with the device's.
119:     Calling MatSeqAIJSetPreallocation() or MatSetValues() on host, where aijseq->{i,j,a} might be
120:     reallocated, will lead to stale {i,j,a}_dual in aijkok. In both operations, the hosts's nonzerostate
121:     must have been updated. The stale aijkok will be rebuilt during MatAssemblyEnd.
122:   */
123:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
124:     auto &exec = PetscGetKokkosExecutionSpace();
125:     PetscCallCXX(aijkok->a_dual.sync_host(exec));
126:     PetscCallCXX(exec.fence());
127:     *array = aijkok->a_dual.view_host().data();
128:   } else { /* Happens when calling MatSetValues on a newly created matrix */
129:     *array = static_cast<Mat_SeqAIJ *>(A->data)->a;
130:   }
131:   PetscFunctionReturn(PETSC_SUCCESS);
132: }

134: static PetscErrorCode MatSeqAIJRestoreArray_SeqAIJKokkos(Mat A, PetscScalar *array[])
135: {
136:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

138:   PetscFunctionBegin;
139:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) aijkok->a_dual.modify_host();
140:   PetscFunctionReturn(PETSC_SUCCESS);
141: }

143: static PetscErrorCode MatSeqAIJGetArrayRead_SeqAIJKokkos(Mat A, const PetscScalar *array[])
144: {
145:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

147:   PetscFunctionBegin;
148:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
149:     auto &exec = PetscGetKokkosExecutionSpace();
150:     PetscCallCXX(aijkok->a_dual.sync_host(exec));
151:     PetscCallCXX(exec.fence());
152:     *array = aijkok->a_dual.view_host().data();
153:   } else {
154:     *array = static_cast<Mat_SeqAIJ *>(A->data)->a;
155:   }
156:   PetscFunctionReturn(PETSC_SUCCESS);
157: }

159: static PetscErrorCode MatSeqAIJRestoreArrayRead_SeqAIJKokkos(Mat A, const PetscScalar *array[])
160: {
161:   PetscFunctionBegin;
162:   *array = NULL;
163:   PetscFunctionReturn(PETSC_SUCCESS);
164: }

166: static PetscErrorCode MatSeqAIJGetArrayWrite_SeqAIJKokkos(Mat A, PetscScalar *array[])
167: {
168:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

170:   PetscFunctionBegin;
171:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
172:     *array = aijkok->a_dual.view_host().data();
173:   } else { /* Ex. happens with MatZeroEntries on a preallocated but not assembled matrix */
174:     *array = static_cast<Mat_SeqAIJ *>(A->data)->a;
175:   }
176:   PetscFunctionReturn(PETSC_SUCCESS);
177: }

179: static PetscErrorCode MatSeqAIJRestoreArrayWrite_SeqAIJKokkos(Mat A, PetscScalar *array[])
180: {
181:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

183:   PetscFunctionBegin;
184:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
185:     aijkok->a_dual.clear_sync_state();
186:     aijkok->a_dual.modify_host();
187:   }
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: static PetscErrorCode MatSeqAIJGetCSRAndMemType_SeqAIJKokkos(Mat A, const PetscInt **i, const PetscInt **j, PetscScalar **a, PetscMemType *mtype)
192: {
193:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

195:   PetscFunctionBegin;
196:   PetscCheck(aijkok != NULL, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "aijkok is NULL");

198:   if (i) *i = aijkok->i_device_data();
199:   if (j) *j = aijkok->j_device_data();
200:   if (a) {
201:     aijkok->a_dual.sync_device();
202:     *a = aijkok->a_device_data();
203:   }
204:   if (mtype) *mtype = PETSC_MEMTYPE_KOKKOS;
205:   PetscFunctionReturn(PETSC_SUCCESS);
206: }

208: /*
209:   Generate the sparsity pattern of a MatSeqAIJKokkos matrix's transpose on device.

211:   Input Parameter:
212: .  A       - the MATSEQAIJKOKKOS matrix

214:   Output Parameters:
215: +  perm_d - the permutation array on device, which connects Ta(i) = Aa(perm(i))
216: -  T_d    - the transpose on device, whose value array is allocated but not initialized
217: */
218: static PetscErrorCode MatSeqAIJKokkosGenerateTransposeStructure(Mat A, MatRowMapKokkosView &perm_d, KokkosCsrMatrix &T_d)
219: {
220:   Mat_SeqAIJ             *aseq = static_cast<Mat_SeqAIJ *>(A->data);
221:   PetscInt                nz = aseq->nz, m = A->rmap->N, n = A->cmap->n;
222:   const PetscInt         *Ai = aseq->i, *Aj = aseq->j;
223:   MatRowMapKokkosViewHost Ti_h(NoInit("Ti"), n + 1);
224:   MatRowMapType          *Ti = Ti_h.data();
225:   MatColIdxKokkosViewHost Tj_h(NoInit("Tj"), nz);
226:   MatRowMapKokkosViewHost perm_h(NoInit("permutation"), nz);
227:   PetscInt               *Tj   = Tj_h.data();
228:   PetscInt               *perm = perm_h.data();
229:   PetscInt               *offset;

231:   PetscFunctionBegin;
232:   // Populate Ti
233:   PetscCallCXX(Kokkos::deep_copy(Ti_h, 0));
234:   Ti++;
235:   for (PetscInt i = 0; i < nz; i++) Ti[Aj[i]]++;
236:   Ti--;
237:   for (PetscInt i = 0; i < n; i++) Ti[i + 1] += Ti[i];

239:   // Populate Tj and the permutation array
240:   PetscCall(PetscCalloc1(n, &offset)); // offset in each T row to fill in its column indices
241:   for (PetscInt i = 0; i < m; i++) {
242:     for (PetscInt j = Ai[i]; j < Ai[i + 1]; j++) { // A's (i,j) is T's (j,i)
243:       PetscInt r    = Aj[j];                       // row r of T
244:       PetscInt disp = Ti[r] + offset[r];

246:       Tj[disp]   = i; // col i of T
247:       perm[disp] = j;
248:       offset[r]++;
249:     }
250:   }
251:   PetscCall(PetscFree(offset));

253:   // Sort each row of T, along with the permutation array
254:   for (PetscInt i = 0; i < n; i++) PetscCall(PetscSortIntWithArray(Ti[i + 1] - Ti[i], Tj + Ti[i], perm + Ti[i]));

256:   // Output perm and T on device
257:   auto Ti_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), Ti_h);
258:   auto Tj_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), Tj_h);
259:   PetscCallCXX(T_d = KokkosCsrMatrix("csrmatT", n, m, nz, MatScalarKokkosView("Ta", nz), Ti_d, Tj_d));
260:   PetscCallCXX(perm_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), perm_h));
261:   PetscFunctionReturn(PETSC_SUCCESS);
262: }

264: // Generate the transpose on device and cache it internally
265: // Note: KK transpose_matrix() does not have support symbolic/numeric transpose, so we do it on our own
266: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosGenerateTranspose_Private(Mat A, KokkosCsrMatrix *csrmatT)
267: {
268:   Mat_SeqAIJ       *aseq = static_cast<Mat_SeqAIJ *>(A->data);
269:   Mat_SeqAIJKokkos *akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
270:   PetscInt          nz = aseq->nz, m = A->rmap->N, n = A->cmap->n;
271:   KokkosCsrMatrix  &T = akok->csrmatT;

273:   PetscFunctionBegin;
274:   PetscCheck(akok, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Unexpected NULL (Mat_SeqAIJKokkos*)A->spptr");
275:   PetscCallCXX(akok->a_dual.sync_device()); // Sync A's values since we are going to access them on device

277:   const auto &Aa = akok->a_dual.view_device();

279:   if (A->symmetric == PETSC_BOOL3_TRUE) {
280:     *csrmatT = akok->csrmat;
281:   } else {
282:     // See if we already have a cached transpose and its value is up to date
283:     if (T.numRows() == n && T.numCols() == m) {  // this indicates csrmatT had been generated before, otherwise T has 0 rows/cols after construction
284:       if (!akok->transpose_updated) {            // if the value is out of date, update the cached version
285:         const auto &perm = akok->transpose_perm; // get the permutation array
286:         auto       &Ta   = T.values;

288:         PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { Ta(i) = Aa(perm(i)); }));
289:       }
290:     } else { // Generate T of size n x m for the first time
291:       MatRowMapKokkosView perm;

293:       PetscCall(MatSeqAIJKokkosGenerateTransposeStructure(A, perm, T));
294:       akok->transpose_perm = perm; // cache the perm in this matrix for reuse
295:       PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { T.values(i) = Aa(perm(i)); }));
296:     }
297:     akok->transpose_updated = PETSC_TRUE;
298:     *csrmatT                = akok->csrmatT;
299:   }
300:   PetscFunctionReturn(PETSC_SUCCESS);
301: }

303: // Generate the Hermitian on device and cache it internally
304: static PetscErrorCode MatSeqAIJKokkosGenerateHermitian_Private(Mat A, KokkosCsrMatrix *csrmatH)
305: {
306:   Mat_SeqAIJ       *aseq = static_cast<Mat_SeqAIJ *>(A->data);
307:   Mat_SeqAIJKokkos *akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
308:   PetscInt          nz = aseq->nz, m = A->rmap->N, n = A->cmap->n;
309:   KokkosCsrMatrix  &T = akok->csrmatH;

311:   PetscFunctionBegin;
312:   PetscCheck(akok, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Unexpected NULL (Mat_SeqAIJKokkos*)A->spptr");
313:   PetscCallCXX(akok->a_dual.sync_device()); // Sync A's values since we are going to access them on device

315:   const auto &Aa = akok->a_dual.view_device();

317:   if (A->hermitian == PETSC_BOOL3_TRUE) {
318:     *csrmatH = akok->csrmat;
319:   } else {
320:     // See if we already have a cached hermitian and its value is up to date
321:     if (T.numRows() == n && T.numCols() == m) {  // this indicates csrmatT had been generated before, otherwise T has 0 rows/cols after construction
322:       if (!akok->hermitian_updated) {            // if the value is out of date, update the cached version
323:         const auto &perm = akok->transpose_perm; // get the permutation array
324:         auto       &Ta   = T.values;

326:         PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { Ta(i) = PetscConj(Aa(perm(i))); }));
327:       }
328:     } else { // Generate T of size n x m for the first time
329:       MatRowMapKokkosView perm;

331:       PetscCall(MatSeqAIJKokkosGenerateTransposeStructure(A, perm, T));
332:       akok->transpose_perm = perm; // cache the perm in this matrix for reuse
333:       PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { T.values(i) = PetscConj(Aa(perm(i))); }));
334:     }
335:     akok->hermitian_updated = PETSC_TRUE;
336:     *csrmatH                = akok->csrmatH;
337:   }
338:   PetscFunctionReturn(PETSC_SUCCESS);
339: }

341: /* y = A x */
342: static PetscErrorCode MatMult_SeqAIJKokkos(Mat A, Vec xx, Vec yy)
343: {
344:   Mat_SeqAIJKokkos          *aijkok;
345:   ConstPetscScalarKokkosView xv;
346:   PetscScalarKokkosView      yv;

348:   PetscFunctionBegin;
349:   PetscCall(PetscLogGpuTimeBegin());
350:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
351:   PetscCall(VecGetKokkosView(xx, &xv));
352:   PetscCall(VecGetKokkosViewWrite(yy, &yv));
353:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
354:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), "N", 1.0 /*alpha*/, aijkok->csrmat, xv, 0.0 /*beta*/, yv)); /* y = alpha A x + beta y */
355:   PetscCall(VecRestoreKokkosView(xx, &xv));
356:   PetscCall(VecRestoreKokkosViewWrite(yy, &yv));
357:   /* 2.0*nnz - numRows seems more accurate here but assumes there are no zero-rows. So a little sloppy here. */
358:   PetscCall(PetscLogGpuFlops(2.0 * aijkok->csrmat.nnz()));
359:   PetscCall(PetscLogGpuTimeEnd());
360:   PetscFunctionReturn(PETSC_SUCCESS);
361: }

363: /* y = A^T x */
364: static PetscErrorCode MatMultTranspose_SeqAIJKokkos(Mat A, Vec xx, Vec yy)
365: {
366:   Mat_SeqAIJKokkos          *aijkok;
367:   const char                *mode;
368:   ConstPetscScalarKokkosView xv;
369:   PetscScalarKokkosView      yv;
370:   KokkosCsrMatrix            csrmat;

372:   PetscFunctionBegin;
373:   PetscCall(PetscLogGpuTimeBegin());
374:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
375:   PetscCall(VecGetKokkosView(xx, &xv));
376:   PetscCall(VecGetKokkosViewWrite(yy, &yv));
377:   if (A->form_explicit_transpose) {
378:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmat));
379:     mode = "N";
380:   } else {
381:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
382:     csrmat = aijkok->csrmat;
383:     mode   = "T";
384:   }
385:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 0.0 /*beta*/, yv)); /* y = alpha A^T x + beta y */
386:   PetscCall(VecRestoreKokkosView(xx, &xv));
387:   PetscCall(VecRestoreKokkosViewWrite(yy, &yv));
388:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
389:   PetscCall(PetscLogGpuTimeEnd());
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }

393: /* y = A^H x */
394: static PetscErrorCode MatMultHermitianTranspose_SeqAIJKokkos(Mat A, Vec xx, Vec yy)
395: {
396:   Mat_SeqAIJKokkos          *aijkok;
397:   const char                *mode;
398:   ConstPetscScalarKokkosView xv;
399:   PetscScalarKokkosView      yv;
400:   KokkosCsrMatrix            csrmat;

402:   PetscFunctionBegin;
403:   PetscCall(PetscLogGpuTimeBegin());
404:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
405:   PetscCall(VecGetKokkosView(xx, &xv));
406:   PetscCall(VecGetKokkosViewWrite(yy, &yv));
407:   if (A->form_explicit_transpose) {
408:     PetscCall(MatSeqAIJKokkosGenerateHermitian_Private(A, &csrmat));
409:     mode = "N";
410:   } else {
411:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
412:     csrmat = aijkok->csrmat;
413:     mode   = "C";
414:   }
415:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 0.0 /*beta*/, yv)); /* y = alpha A^H x + beta y */
416:   PetscCall(VecRestoreKokkosView(xx, &xv));
417:   PetscCall(VecRestoreKokkosViewWrite(yy, &yv));
418:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
419:   PetscCall(PetscLogGpuTimeEnd());
420:   PetscFunctionReturn(PETSC_SUCCESS);
421: }

423: /* z = A x + y */
424: static PetscErrorCode MatMultAdd_SeqAIJKokkos(Mat A, Vec xx, Vec yy, Vec zz)
425: {
426:   Mat_SeqAIJKokkos          *aijkok;
427:   ConstPetscScalarKokkosView xv, yv;
428:   PetscScalarKokkosView      zv;

430:   PetscFunctionBegin;
431:   PetscCall(PetscLogGpuTimeBegin());
432:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
433:   PetscCall(VecGetKokkosView(xx, &xv));
434:   PetscCall(VecGetKokkosView(yy, &yv));
435:   PetscCall(VecGetKokkosViewWrite(zz, &zv));
436:   if (zz != yy) Kokkos::deep_copy(zv, yv);
437:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
438:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), "N", 1.0 /*alpha*/, aijkok->csrmat, xv, 1.0 /*beta*/, zv)); /* z = alpha A x + beta z */
439:   PetscCall(VecRestoreKokkosView(xx, &xv));
440:   PetscCall(VecRestoreKokkosView(yy, &yv));
441:   PetscCall(VecRestoreKokkosViewWrite(zz, &zv));
442:   PetscCall(PetscLogGpuFlops(2.0 * aijkok->csrmat.nnz()));
443:   PetscCall(PetscLogGpuTimeEnd());
444:   PetscFunctionReturn(PETSC_SUCCESS);
445: }

447: /* z = A^T x + y */
448: static PetscErrorCode MatMultTransposeAdd_SeqAIJKokkos(Mat A, Vec xx, Vec yy, Vec zz)
449: {
450:   Mat_SeqAIJKokkos          *aijkok;
451:   const char                *mode;
452:   ConstPetscScalarKokkosView xv, yv;
453:   PetscScalarKokkosView      zv;
454:   KokkosCsrMatrix            csrmat;

456:   PetscFunctionBegin;
457:   PetscCall(PetscLogGpuTimeBegin());
458:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
459:   PetscCall(VecGetKokkosView(xx, &xv));
460:   PetscCall(VecGetKokkosView(yy, &yv));
461:   PetscCall(VecGetKokkosViewWrite(zz, &zv));
462:   if (zz != yy) Kokkos::deep_copy(zv, yv);
463:   if (A->form_explicit_transpose) {
464:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmat));
465:     mode = "N";
466:   } else {
467:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
468:     csrmat = aijkok->csrmat;
469:     mode   = "T";
470:   }
471:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 1.0 /*beta*/, zv)); /* z = alpha A^T x + beta z */
472:   PetscCall(VecRestoreKokkosView(xx, &xv));
473:   PetscCall(VecRestoreKokkosView(yy, &yv));
474:   PetscCall(VecRestoreKokkosViewWrite(zz, &zv));
475:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
476:   PetscCall(PetscLogGpuTimeEnd());
477:   PetscFunctionReturn(PETSC_SUCCESS);
478: }

480: /* z = A^H x + y */
481: static PetscErrorCode MatMultHermitianTransposeAdd_SeqAIJKokkos(Mat A, Vec xx, Vec yy, Vec zz)
482: {
483:   Mat_SeqAIJKokkos          *aijkok;
484:   const char                *mode;
485:   ConstPetscScalarKokkosView xv, yv;
486:   PetscScalarKokkosView      zv;
487:   KokkosCsrMatrix            csrmat;

489:   PetscFunctionBegin;
490:   PetscCall(PetscLogGpuTimeBegin());
491:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
492:   PetscCall(VecGetKokkosView(xx, &xv));
493:   PetscCall(VecGetKokkosView(yy, &yv));
494:   PetscCall(VecGetKokkosViewWrite(zz, &zv));
495:   if (zz != yy) Kokkos::deep_copy(zv, yv);
496:   if (A->form_explicit_transpose) {
497:     PetscCall(MatSeqAIJKokkosGenerateHermitian_Private(A, &csrmat));
498:     mode = "N";
499:   } else {
500:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
501:     csrmat = aijkok->csrmat;
502:     mode   = "C";
503:   }
504:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 1.0 /*beta*/, zv)); /* z = alpha A^H x + beta z */
505:   PetscCall(VecRestoreKokkosView(xx, &xv));
506:   PetscCall(VecRestoreKokkosView(yy, &yv));
507:   PetscCall(VecRestoreKokkosViewWrite(zz, &zv));
508:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
509:   PetscCall(PetscLogGpuTimeEnd());
510:   PetscFunctionReturn(PETSC_SUCCESS);
511: }

513: static PetscErrorCode MatSetOption_SeqAIJKokkos(Mat A, MatOption op, PetscBool flg)
514: {
515:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

517:   PetscFunctionBegin;
518:   switch (op) {
519:   case MAT_FORM_EXPLICIT_TRANSPOSE:
520:     /* need to destroy the transpose matrix if present to prevent from logic errors if flg is set to true later */
521:     if (A->form_explicit_transpose && !flg && aijkok) PetscCall(aijkok->DestroyMatTranspose());
522:     A->form_explicit_transpose = flg;
523:     break;
524:   default:
525:     PetscCall(MatSetOption_SeqAIJ(A, op, flg));
526:     break;
527:   }
528:   PetscFunctionReturn(PETSC_SUCCESS);
529: }

531: /* Depending on reuse, either build a new mat, or use the existing mat */
532: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat A, MatType mtype, MatReuse reuse, Mat *newmat)
533: {
534:   Mat_SeqAIJ *aseq;

536:   PetscFunctionBegin;
537:   PetscCall(PetscKokkosInitializeCheck());
538:   if (reuse == MAT_INITIAL_MATRIX) {                      /* Build a brand new mat */
539:     PetscCall(MatDuplicate(A, MAT_COPY_VALUES, newmat));  /* the returned newmat is a SeqAIJKokkos */
540:   } else if (reuse == MAT_REUSE_MATRIX) {                 /* Reuse the mat created before */
541:     PetscCall(MatCopy(A, *newmat, SAME_NONZERO_PATTERN)); /* newmat is already a SeqAIJKokkos */
542:   } else if (reuse == MAT_INPLACE_MATRIX) {               /* newmat is A */
543:     PetscCheck(A == *newmat, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "A != *newmat with MAT_INPLACE_MATRIX");
544:     PetscCall(PetscFree(A->defaultvectype));
545:     PetscCall(PetscStrallocpy(VECKOKKOS, &A->defaultvectype)); /* Allocate and copy the string */
546:     PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATSEQAIJKOKKOS));
547:     PetscCall(MatSetOps_SeqAIJKokkos(A));
548:     aseq = static_cast<Mat_SeqAIJ *>(A->data);
549:     if (A->assembled) { /* Copy i, j (but not values) to device for an assembled matrix if not yet */
550:       PetscCheck(!A->spptr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Expect NULL (Mat_SeqAIJKokkos*)A->spptr");
551:       A->spptr = new Mat_SeqAIJKokkos(A->rmap->n, A->cmap->n, aseq, A->nonzerostate, PETSC_FALSE);
552:     }
553:   }
554:   PetscFunctionReturn(PETSC_SUCCESS);
555: }

557: /* MatDuplicate always creates a new matrix. MatDuplicate can be called either on an assembled matrix or
558:    an unassembled matrix, even though MAT_COPY_VALUES is not allowed for unassembled matrix.
559:  */
560: static PetscErrorCode MatDuplicate_SeqAIJKokkos(Mat A, MatDuplicateOption dupOption, Mat *B)
561: {
562:   Mat_SeqAIJ       *bseq;
563:   Mat_SeqAIJKokkos *akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr), *bkok;
564:   Mat               mat;

566:   PetscFunctionBegin;
567:   /* Do not copy values on host as A's latest values might be on device. We don't want to do sync blindly */
568:   PetscCall(MatDuplicate_SeqAIJ(A, MAT_DO_NOT_COPY_VALUES, B));
569:   mat = *B;
570:   if (A->assembled) {
571:     bseq = static_cast<Mat_SeqAIJ *>(mat->data);
572:     bkok = new Mat_SeqAIJKokkos(mat->rmap->n, mat->cmap->n, bseq, mat->nonzerostate, PETSC_FALSE);
573:     bkok->a_dual.clear_sync_state(); /* Clear B's sync state as it will be decided below */
574:     /* Now copy values to B if needed */
575:     if (dupOption == MAT_COPY_VALUES) {
576:       if (akok->a_dual.need_sync_device()) {
577:         Kokkos::deep_copy(bkok->a_dual.view_host(), akok->a_dual.view_host());
578:         bkok->a_dual.modify_host();
579:       } else { /* If device has the latest data, we only copy data on device */
580:         Kokkos::deep_copy(bkok->a_dual.view_device(), akok->a_dual.view_device());
581:         bkok->a_dual.modify_device();
582:       }
583:     } else { /* MAT_DO_NOT_COPY_VALUES or MAT_SHARE_NONZERO_PATTERN. B's values should be zeroed */
584:       /* B's values on host should be already zeroed by MatDuplicate_SeqAIJ() */
585:       bkok->a_dual.modify_host();
586:     }
587:     mat->spptr = bkok;
588:   }

590:   PetscCall(PetscFree(mat->defaultvectype));
591:   PetscCall(PetscStrallocpy(VECKOKKOS, &mat->defaultvectype)); /* Allocate and copy the string */
592:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, MATSEQAIJKOKKOS));
593:   PetscCall(MatSetOps_SeqAIJKokkos(mat));
594:   PetscFunctionReturn(PETSC_SUCCESS);
595: }

597: static PetscErrorCode MatTranspose_SeqAIJKokkos(Mat A, MatReuse reuse, Mat *B)
598: {
599:   Mat               At;
600:   KokkosCsrMatrix   internT;
601:   Mat_SeqAIJKokkos *atkok, *bkok;

603:   PetscFunctionBegin;
604:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
605:   PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &internT)); /* Generate a transpose internally */
606:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
607:     /* Deep copy internT, as we want to isolate the internal transpose */
608:     PetscCallCXX(atkok = new Mat_SeqAIJKokkos(KokkosCsrMatrix("csrmat", internT)));
609:     PetscCall(MatCreateSeqAIJKokkosWithCSRMatrix(PetscObjectComm((PetscObject)A), atkok, &At));
610:     if (reuse == MAT_INITIAL_MATRIX) *B = At;
611:     else PetscCall(MatHeaderReplace(A, &At)); /* Replace A with At inplace */
612:   } else {                                    /* MAT_REUSE_MATRIX, just need to copy values to B on device */
613:     if ((*B)->assembled) {
614:       bkok = static_cast<Mat_SeqAIJKokkos *>((*B)->spptr);
615:       PetscCallCXX(Kokkos::deep_copy(bkok->a_dual.view_device(), internT.values));
616:       PetscCall(MatSeqAIJKokkosModifyDevice(*B));
617:     } else if ((*B)->preallocated) { /* It is ok for B to be only preallocated, as needed in MatTranspose_MPIAIJ */
618:       Mat_SeqAIJ             *bseq = static_cast<Mat_SeqAIJ *>((*B)->data);
619:       MatScalarKokkosViewHost a_h(bseq->a, internT.nnz()); /* bseq->nz = 0 if unassembled */
620:       MatColIdxKokkosViewHost j_h(bseq->j, internT.nnz());
621:       PetscCallCXX(Kokkos::deep_copy(a_h, internT.values));
622:       PetscCallCXX(Kokkos::deep_copy(j_h, internT.graph.entries));
623:     } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "B must be assembled or preallocated");
624:   }
625:   PetscFunctionReturn(PETSC_SUCCESS);
626: }

628: static PetscErrorCode MatDestroy_SeqAIJKokkos(Mat A)
629: {
630:   Mat_SeqAIJKokkos *aijkok;

632:   PetscFunctionBegin;
633:   if (A->factortype == MAT_FACTOR_NONE) {
634:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
635:     delete aijkok;
636:   } else {
637:     delete static_cast<Mat_SeqAIJKokkosTriFactors *>(A->spptr);
638:   }
639:   A->spptr = NULL;
640:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
641:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
642:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
643:   PetscCall(MatDestroy_SeqAIJ(A));
644:   PetscFunctionReturn(PETSC_SUCCESS);
645: }

647: /*MC
648:    MATSEQAIJKOKKOS - MATAIJKOKKOS = "(seq)aijkokkos" - A matrix type to be used for sparse matrices with Kokkos

650:    A matrix type using Kokkos-Kernels CrsMatrix type for portability across different device types

652:    Options Database Key:
653: .  -mat_type aijkokkos - sets the matrix type to `MATSEQAIJKOKKOS` during a call to `MatSetFromOptions()`

655:   Level: beginner

657: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJKokkos()`, `MATMPIAIJKOKKOS`
658: M*/
659: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJKokkos(Mat A)
660: {
661:   PetscFunctionBegin;
662:   PetscCall(PetscKokkosInitializeCheck());
663:   PetscCall(MatCreate_SeqAIJ(A));
664:   PetscCall(MatConvert_SeqAIJ_SeqAIJKokkos(A, MATSEQAIJKOKKOS, MAT_INPLACE_MATRIX, &A));
665:   PetscFunctionReturn(PETSC_SUCCESS);
666: }

668: /* Merge A, B into a matrix C. A is put before B. C's size would be A->rmap->n by (A->cmap->n + B->cmap->n) */
669: PetscErrorCode MatSeqAIJKokkosMergeMats(Mat A, Mat B, MatReuse reuse, Mat *C)
670: {
671:   Mat_SeqAIJ         *a, *b;
672:   Mat_SeqAIJKokkos   *akok, *bkok, *ckok;
673:   MatScalarKokkosView aa, ba, ca;
674:   MatRowMapKokkosView ai, bi, ci;
675:   MatColIdxKokkosView aj, bj, cj;
676:   PetscInt            m, n, nnz, aN;

678:   PetscFunctionBegin;
681:   PetscAssertPointer(C, 4);
682:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
683:   PetscCheckTypeName(B, MATSEQAIJKOKKOS);
684:   PetscCheck(A->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Invalid number or rows %" PetscInt_FMT " != %" PetscInt_FMT, A->rmap->n, B->rmap->n);
685:   PetscCheck(reuse != MAT_INPLACE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MAT_INPLACE_MATRIX not supported");

687:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
688:   PetscCall(MatSeqAIJKokkosSyncDevice(B));
689:   a    = static_cast<Mat_SeqAIJ *>(A->data);
690:   b    = static_cast<Mat_SeqAIJ *>(B->data);
691:   akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
692:   bkok = static_cast<Mat_SeqAIJKokkos *>(B->spptr);
693:   aa   = akok->a_dual.view_device();
694:   ai   = akok->i_dual.view_device();
695:   ba   = bkok->a_dual.view_device();
696:   bi   = bkok->i_dual.view_device();
697:   m    = A->rmap->n; /* M, N and nnz of C */
698:   n    = A->cmap->n + B->cmap->n;
699:   nnz  = a->nz + b->nz;
700:   aN   = A->cmap->n; /* N of A */
701:   if (reuse == MAT_INITIAL_MATRIX) {
702:     aj           = akok->j_dual.view_device();
703:     bj           = bkok->j_dual.view_device();
704:     auto ca_dual = MatScalarKokkosDualView("a", aa.extent(0) + ba.extent(0));
705:     auto ci_dual = MatRowMapKokkosDualView("i", ai.extent(0));
706:     auto cj_dual = MatColIdxKokkosDualView("j", aj.extent(0) + bj.extent(0));
707:     ca           = ca_dual.view_device();
708:     ci           = ci_dual.view_device();
709:     cj           = cj_dual.view_device();

711:     /* Concatenate A and B in parallel using Kokkos hierarchical parallelism */
712:     Kokkos::parallel_for(
713:       Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), m, Kokkos::AUTO()), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
714:         PetscInt i       = t.league_rank(); /* row i */
715:         PetscInt coffset = ai(i) + bi(i), alen = ai(i + 1) - ai(i), blen = bi(i + 1) - bi(i);

717:         Kokkos::single(Kokkos::PerTeam(t), [=]() { /* this side effect only happens once per whole team */
718:                                                    ci(i) = coffset;
719:                                                    if (i == m - 1) ci(m) = ai(m) + bi(m);
720:         });

722:         Kokkos::parallel_for(Kokkos::TeamThreadRange(t, alen + blen), [&](PetscInt k) {
723:           if (k < alen) {
724:             ca(coffset + k) = aa(ai(i) + k);
725:             cj(coffset + k) = aj(ai(i) + k);
726:           } else {
727:             ca(coffset + k) = ba(bi(i) + k - alen);
728:             cj(coffset + k) = bj(bi(i) + k - alen) + aN; /* Entries in B get new column indices in C */
729:           }
730:         });
731:       });
732:     ca_dual.modify_device();
733:     ci_dual.modify_device();
734:     cj_dual.modify_device();
735:     PetscCallCXX(ckok = new Mat_SeqAIJKokkos(m, n, nnz, ci_dual, cj_dual, ca_dual));
736:     PetscCall(MatCreateSeqAIJKokkosWithCSRMatrix(PETSC_COMM_SELF, ckok, C));
737:   } else if (reuse == MAT_REUSE_MATRIX) {
739:     PetscCheckTypeName(*C, MATSEQAIJKOKKOS);
740:     ckok = static_cast<Mat_SeqAIJKokkos *>((*C)->spptr);
741:     ca   = ckok->a_dual.view_device();
742:     ci   = ckok->i_dual.view_device();

744:     Kokkos::parallel_for(
745:       Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), m, Kokkos::AUTO()), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
746:         PetscInt i    = t.league_rank(); /* row i */
747:         PetscInt alen = ai(i + 1) - ai(i), blen = bi(i + 1) - bi(i);
748:         Kokkos::parallel_for(Kokkos::TeamThreadRange(t, alen + blen), [&](PetscInt k) {
749:           if (k < alen) ca(ci(i) + k) = aa(ai(i) + k);
750:           else ca(ci(i) + k) = ba(bi(i) + k - alen);
751:         });
752:       });
753:     PetscCall(MatSeqAIJKokkosModifyDevice(*C));
754:   }
755:   PetscFunctionReturn(PETSC_SUCCESS);
756: }

758: static PetscErrorCode MatProductDataDestroy_SeqAIJKokkos(void *pdata)
759: {
760:   PetscFunctionBegin;
761:   delete static_cast<MatProductData_SeqAIJKokkos *>(pdata);
762:   PetscFunctionReturn(PETSC_SUCCESS);
763: }

765: static PetscErrorCode MatProductNumeric_SeqAIJKokkos_SeqAIJKokkos(Mat C)
766: {
767:   Mat_Product                 *product = C->product;
768:   Mat                          A, B;
769:   bool                         transA, transB; /* use bool, since KK needs this type */
770:   Mat_SeqAIJKokkos            *akok, *bkok, *ckok;
771:   Mat_SeqAIJ                  *c;
772:   MatProductData_SeqAIJKokkos *pdata;
773:   KokkosCsrMatrix              csrmatA, csrmatB;

775:   PetscFunctionBegin;
776:   MatCheckProduct(C, 1);
777:   PetscCheck(C->product->data, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data empty");
778:   pdata = static_cast<MatProductData_SeqAIJKokkos *>(C->product->data);

780:   // See if numeric has already been done in symbolic (e.g., user calls MatMatMult(A,B,MAT_INITIAL_MATRIX,..,C)).
781:   // If yes, skip the numeric, but reset the flag so that next time when user calls MatMatMult(E,F,MAT_REUSE_MATRIX,..,C),
782:   // we still do numeric.
783:   if (pdata->reusesym) { // numeric reuses results from symbolic
784:     pdata->reusesym = PETSC_FALSE;
785:     PetscFunctionReturn(PETSC_SUCCESS);
786:   }

788:   switch (product->type) {
789:   case MATPRODUCT_AB:
790:     transA = false;
791:     transB = false;
792:     break;
793:   case MATPRODUCT_AtB:
794:     transA = true;
795:     transB = false;
796:     break;
797:   case MATPRODUCT_ABt:
798:     transA = false;
799:     transB = true;
800:     break;
801:   default:
802:     SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Unsupported product type %s", MatProductTypes[product->type]);
803:   }

805:   A = product->A;
806:   B = product->B;
807:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
808:   PetscCall(MatSeqAIJKokkosSyncDevice(B));
809:   akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
810:   bkok = static_cast<Mat_SeqAIJKokkos *>(B->spptr);
811:   ckok = static_cast<Mat_SeqAIJKokkos *>(C->spptr);

813:   PetscCheck(ckok, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Device data structure spptr is empty");

815:   csrmatA = akok->csrmat;
816:   csrmatB = bkok->csrmat;

818:   /* TODO: Once KK spgemm implements transpose, we can get rid of the explicit transpose here */
819:   if (transA) {
820:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmatA));
821:     transA = false;
822:   }

824:   if (transB) {
825:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(B, &csrmatB));
826:     transB = false;
827:   }
828:   PetscCall(PetscLogGpuTimeBegin());
829:   PetscCallCXX(KokkosSparse::spgemm_numeric(pdata->kh, csrmatA, transA, csrmatB, transB, ckok->csrmat));
830: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_LT(4, 0, 0)
831:   auto spgemmHandle = pdata->kh.get_spgemm_handle();
832:   if (spgemmHandle->get_sort_option() != 1) PetscCallCXX(sort_crs_matrix(ckok->csrmat)); /* without sort, mat_tests-ex62_14_seqaijkokkos fails */
833: #endif

835:   PetscCall(PetscLogGpuTimeEnd());
836:   PetscCall(MatSeqAIJKokkosModifyDevice(C));
837:   /* shorter version of MatAssemblyEnd_SeqAIJ */
838:   c = (Mat_SeqAIJ *)C->data;
839:   PetscCall(PetscInfo(C, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: 0 unneeded,%" PetscInt_FMT " used\n", C->rmap->n, C->cmap->n, c->nz));
840:   PetscCall(PetscInfo(C, "Number of mallocs during MatSetValues() is 0\n"));
841:   PetscCall(PetscInfo(C, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", c->rmax));
842:   c->reallocs         = 0;
843:   C->info.mallocs     = 0;
844:   C->info.nz_unneeded = 0;
845:   C->assembled = C->was_assembled = PETSC_TRUE;
846:   C->num_ass++;
847:   PetscFunctionReturn(PETSC_SUCCESS);
848: }

850: static PetscErrorCode MatProductSymbolic_SeqAIJKokkos_SeqAIJKokkos(Mat C)
851: {
852:   Mat_Product                 *product = C->product;
853:   MatProductType               ptype;
854:   Mat                          A, B;
855:   bool                         transA, transB;
856:   Mat_SeqAIJKokkos            *akok, *bkok, *ckok;
857:   MatProductData_SeqAIJKokkos *pdata;
858:   MPI_Comm                     comm;
859:   KokkosCsrMatrix              csrmatA, csrmatB, csrmatC;

861:   PetscFunctionBegin;
862:   MatCheckProduct(C, 1);
863:   PetscCall(PetscObjectGetComm((PetscObject)C, &comm));
864:   PetscCheck(!product->data, comm, PETSC_ERR_PLIB, "Product data not empty");
865:   A = product->A;
866:   B = product->B;
867:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
868:   PetscCall(MatSeqAIJKokkosSyncDevice(B));
869:   akok    = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
870:   bkok    = static_cast<Mat_SeqAIJKokkos *>(B->spptr);
871:   csrmatA = akok->csrmat;
872:   csrmatB = bkok->csrmat;

874:   ptype = product->type;
875:   // Take advantage of the symmetry if true
876:   if (A->symmetric == PETSC_BOOL3_TRUE && ptype == MATPRODUCT_AtB) {
877:     ptype                                          = MATPRODUCT_AB;
878:     product->symbolic_used_the_fact_A_is_symmetric = PETSC_TRUE;
879:   }
880:   if (B->symmetric == PETSC_BOOL3_TRUE && ptype == MATPRODUCT_ABt) {
881:     ptype                                          = MATPRODUCT_AB;
882:     product->symbolic_used_the_fact_B_is_symmetric = PETSC_TRUE;
883:   }

885:   switch (ptype) {
886:   case MATPRODUCT_AB:
887:     transA = false;
888:     transB = false;
889:     break;
890:   case MATPRODUCT_AtB:
891:     transA = true;
892:     transB = false;
893:     break;
894:   case MATPRODUCT_ABt:
895:     transA = false;
896:     transB = true;
897:     break;
898:   default:
899:     SETERRQ(comm, PETSC_ERR_PLIB, "Unsupported product type %s", MatProductTypes[product->type]);
900:   }
901:   PetscCallCXX(product->data = pdata = new MatProductData_SeqAIJKokkos());
902:   pdata->reusesym = product->api_user;

904:   /* TODO: add command line options to select spgemm algorithms */
905:   auto spgemm_alg = KokkosSparse::SPGEMMAlgorithm::SPGEMM_DEFAULT; /* default alg is TPL if enabled, otherwise KK */

907:   /* CUDA-10.2's spgemm has bugs. We prefer the SpGEMMreuse APIs introduced in cuda-11.4 */
908: #if defined(KOKKOSKERNELS_ENABLE_TPL_CUSPARSE)
909:   #if PETSC_PKG_CUDA_VERSION_LT(11, 4, 0)
910:   spgemm_alg = KokkosSparse::SPGEMMAlgorithm::SPGEMM_KK;
911:   #endif
912: #endif
913:   PetscCallCXX(pdata->kh.create_spgemm_handle(spgemm_alg));

915:   PetscCall(PetscLogGpuTimeBegin());
916:   /* TODO: Get rid of the explicit transpose once KK-spgemm implements the transpose option */
917:   if (transA) {
918:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmatA));
919:     transA = false;
920:   }

922:   if (transB) {
923:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(B, &csrmatB));
924:     transB = false;
925:   }

927:   PetscCallCXX(KokkosSparse::spgemm_symbolic(pdata->kh, csrmatA, transA, csrmatB, transB, csrmatC));
928:   /* spgemm_symbolic() only populates C's rowmap, but not C's column indices.
929:     So we have to do a fake spgemm_numeric() here to get csrmatC.j_d setup, before
930:     calling new Mat_SeqAIJKokkos().
931:     TODO: Remove the fake spgemm_numeric() after KK fixed this problem.
932:   */
933:   PetscCallCXX(KokkosSparse::spgemm_numeric(pdata->kh, csrmatA, transA, csrmatB, transB, csrmatC));
934: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_LT(4, 0, 0)
935:   /* Query if KK outputs a sorted matrix. If not, we need to sort it */
936:   auto spgemmHandle = pdata->kh.get_spgemm_handle();
937:   if (spgemmHandle->get_sort_option() != 1) PetscCallCXX(sort_crs_matrix(csrmatC)); /* sort_option defaults to -1 in KK!*/
938: #endif
939:   PetscCall(PetscLogGpuTimeEnd());

941:   PetscCallCXX(ckok = new Mat_SeqAIJKokkos(csrmatC));
942:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(C, ckok));
943:   C->product->destroy = MatProductDataDestroy_SeqAIJKokkos;
944:   PetscFunctionReturn(PETSC_SUCCESS);
945: }

947: /* handles sparse matrix matrix ops */
948: static PetscErrorCode MatProductSetFromOptions_SeqAIJKokkos(Mat mat)
949: {
950:   Mat_Product *product = mat->product;
951:   PetscBool    Biskok = PETSC_FALSE, Ciskok = PETSC_TRUE;

953:   PetscFunctionBegin;
954:   MatCheckProduct(mat, 1);
955:   PetscCall(PetscObjectTypeCompare((PetscObject)product->B, MATSEQAIJKOKKOS, &Biskok));
956:   if (product->type == MATPRODUCT_ABC) PetscCall(PetscObjectTypeCompare((PetscObject)product->C, MATSEQAIJKOKKOS, &Ciskok));
957:   if (Biskok && Ciskok) {
958:     switch (product->type) {
959:     case MATPRODUCT_AB:
960:     case MATPRODUCT_AtB:
961:     case MATPRODUCT_ABt:
962:       mat->ops->productsymbolic = MatProductSymbolic_SeqAIJKokkos_SeqAIJKokkos;
963:       break;
964:     case MATPRODUCT_PtAP:
965:     case MATPRODUCT_RARt:
966:     case MATPRODUCT_ABC:
967:       mat->ops->productsymbolic = MatProductSymbolic_ABC_Basic;
968:       break;
969:     default:
970:       break;
971:     }
972:   } else { /* fallback for AIJ */
973:     PetscCall(MatProductSetFromOptions_SeqAIJ(mat));
974:   }
975:   PetscFunctionReturn(PETSC_SUCCESS);
976: }

978: static PetscErrorCode MatScale_SeqAIJKokkos(Mat A, PetscScalar a)
979: {
980:   Mat_SeqAIJKokkos *aijkok;

982:   PetscFunctionBegin;
983:   PetscCall(PetscLogGpuTimeBegin());
984:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
985:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
986:   KokkosBlas::scal(PetscGetKokkosExecutionSpace(), aijkok->a_dual.view_device(), a, aijkok->a_dual.view_device());
987:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
988:   PetscCall(PetscLogGpuFlops(aijkok->a_dual.extent(0)));
989:   PetscCall(PetscLogGpuTimeEnd());
990:   PetscFunctionReturn(PETSC_SUCCESS);
991: }

993: // add a to A's diagonal (if A is square) or main diagonal (if A is rectangular)
994: static PetscErrorCode MatShift_SeqAIJKokkos(Mat A, PetscScalar a)
995: {
996:   Mat_SeqAIJ *aijseq = static_cast<Mat_SeqAIJ *>(A->data);

998:   PetscFunctionBegin;
999:   if (A->assembled && aijseq->diagonaldense) { // no missing diagonals
1000:     PetscInt n = PetscMin(A->rmap->n, A->cmap->n);

1002:     PetscCall(PetscLogGpuTimeBegin());
1003:     PetscCall(MatSeqAIJKokkosSyncDevice(A));
1004:     const auto  aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1005:     const auto &Aa     = aijkok->a_dual.view_device();
1006:     const auto &Adiag  = aijkok->diag_dual.view_device();
1007:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, n), KOKKOS_LAMBDA(const PetscInt i) { Aa(Adiag(i)) += a; }));
1008:     PetscCall(MatSeqAIJKokkosModifyDevice(A));
1009:     PetscCall(PetscLogGpuFlops(n));
1010:     PetscCall(PetscLogGpuTimeEnd());
1011:   } else { // need reassembly, very slow!
1012:     PetscCall(MatShift_Basic(A, a));
1013:   }
1014:   PetscFunctionReturn(PETSC_SUCCESS);
1015: }

1017: static PetscErrorCode MatDiagonalSet_SeqAIJKokkos(Mat Y, Vec D, InsertMode is)
1018: {
1019:   Mat_SeqAIJ *aijseq = static_cast<Mat_SeqAIJ *>(Y->data);

1021:   PetscFunctionBegin;
1022:   if (Y->assembled && aijseq->diagonaldense) { // no missing diagonals
1023:     ConstPetscScalarKokkosView dv;
1024:     PetscInt                   n, nv;

1026:     PetscCall(PetscLogGpuTimeBegin());
1027:     PetscCall(MatSeqAIJKokkosSyncDevice(Y));
1028:     PetscCall(VecGetKokkosView(D, &dv));
1029:     PetscCall(VecGetLocalSize(D, &nv));
1030:     n = PetscMin(Y->rmap->n, Y->cmap->n);
1031:     PetscCheck(n == nv, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_SIZ, "Matrix size and vector size do not match");

1033:     const auto  aijkok = static_cast<Mat_SeqAIJKokkos *>(Y->spptr);
1034:     const auto &Aa     = aijkok->a_dual.view_device();
1035:     const auto &Adiag  = aijkok->diag_dual.view_device();
1036:     PetscCallCXX(Kokkos::parallel_for(
1037:       Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, n), KOKKOS_LAMBDA(const PetscInt i) {
1038:         if (is == INSERT_VALUES) Aa(Adiag(i)) = dv(i);
1039:         else Aa(Adiag(i)) += dv(i);
1040:       }));
1041:     PetscCall(VecRestoreKokkosView(D, &dv));
1042:     PetscCall(MatSeqAIJKokkosModifyDevice(Y));
1043:     PetscCall(PetscLogGpuFlops(n));
1044:     PetscCall(PetscLogGpuTimeEnd());
1045:   } else { // need reassembly, very slow!
1046:     PetscCall(MatDiagonalSet_Default(Y, D, is));
1047:   }
1048:   PetscFunctionReturn(PETSC_SUCCESS);
1049: }

1051: static PetscErrorCode MatDiagonalScale_SeqAIJKokkos(Mat A, Vec ll, Vec rr)
1052: {
1053:   Mat_SeqAIJ                *aijseq = static_cast<Mat_SeqAIJ *>(A->data);
1054:   PetscInt                   m = A->rmap->n, n = A->cmap->n, nz = aijseq->nz;
1055:   ConstPetscScalarKokkosView lv, rv;

1057:   PetscFunctionBegin;
1058:   PetscCall(PetscLogGpuTimeBegin());
1059:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1060:   const auto  aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1061:   const auto &Aa     = aijkok->a_dual.view_device();
1062:   const auto &Ai     = aijkok->i_dual.view_device();
1063:   const auto &Aj     = aijkok->j_dual.view_device();
1064:   if (ll) {
1065:     PetscCall(VecGetLocalSize(ll, &m));
1066:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
1067:     PetscCall(VecGetKokkosView(ll, &lv));
1068:     PetscCallCXX(Kokkos::parallel_for( // for each row
1069:       Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), m, Kokkos::AUTO()), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
1070:         PetscInt i   = t.league_rank(); // row i
1071:         PetscInt len = Ai(i + 1) - Ai(i);
1072:         // scale entries on the row
1073:         Kokkos::parallel_for(Kokkos::TeamThreadRange(t, len), [&](PetscInt j) { Aa(Ai(i) + j) *= lv(i); });
1074:       }));
1075:     PetscCall(VecRestoreKokkosView(ll, &lv));
1076:     PetscCall(PetscLogGpuFlops(nz));
1077:   }
1078:   if (rr) {
1079:     PetscCall(VecGetLocalSize(rr, &n));
1080:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
1081:     PetscCall(VecGetKokkosView(rr, &rv));
1082:     PetscCallCXX(Kokkos::parallel_for( // for each nonzero
1083:       Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt k) { Aa(k) *= rv(Aj(k)); }));
1084:     PetscCall(VecRestoreKokkosView(rr, &lv));
1085:     PetscCall(PetscLogGpuFlops(nz));
1086:   }
1087:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1088:   PetscCall(PetscLogGpuTimeEnd());
1089:   PetscFunctionReturn(PETSC_SUCCESS);
1090: }

1092: static PetscErrorCode MatZeroEntries_SeqAIJKokkos(Mat A)
1093: {
1094:   Mat_SeqAIJKokkos *aijkok;

1096:   PetscFunctionBegin;
1097:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1098:   if (aijkok) { /* Only zero the device if data is already there */
1099:     KokkosBlas::fill(PetscGetKokkosExecutionSpace(), aijkok->a_dual.view_device(), 0.0);
1100:     PetscCall(MatSeqAIJKokkosModifyDevice(A));
1101:   } else { /* Might be preallocated but not assembled */
1102:     PetscCall(MatZeroEntries_SeqAIJ(A));
1103:   }
1104:   PetscFunctionReturn(PETSC_SUCCESS);
1105: }

1107: static PetscErrorCode MatGetDiagonal_SeqAIJKokkos(Mat A, Vec x)
1108: {
1109:   Mat_SeqAIJKokkos     *aijkok;
1110:   PetscInt              n;
1111:   PetscScalarKokkosView xv;

1113:   PetscFunctionBegin;
1114:   PetscCall(VecGetLocalSize(x, &n));
1115:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1116:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatGetDiagonal_SeqAIJKokkos not supported on factored matrices");

1118:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1119:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

1121:   const auto &Aa    = aijkok->a_dual.view_device();
1122:   const auto &Ai    = aijkok->i_dual.view_device();
1123:   const auto &Adiag = aijkok->diag_dual.view_device();

1125:   PetscCall(VecGetKokkosViewWrite(x, &xv));
1126:   Kokkos::parallel_for(
1127:     Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, n), KOKKOS_LAMBDA(const PetscInt i) {
1128:       if (Adiag(i) < Ai(i + 1)) xv(i) = Aa(Adiag(i));
1129:       else xv(i) = 0;
1130:     });
1131:   PetscCall(VecRestoreKokkosViewWrite(x, &xv));
1132:   PetscFunctionReturn(PETSC_SUCCESS);
1133: }

1135: /* Get a Kokkos View from a mat of type MatSeqAIJKokkos */
1136: PetscErrorCode MatSeqAIJGetKokkosView(Mat A, ConstMatScalarKokkosView *kv)
1137: {
1138:   Mat_SeqAIJKokkos *aijkok;

1140:   PetscFunctionBegin;
1142:   PetscAssertPointer(kv, 2);
1143:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1144:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1145:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1146:   *kv    = aijkok->a_dual.view_device();
1147:   PetscFunctionReturn(PETSC_SUCCESS);
1148: }

1150: PetscErrorCode MatSeqAIJRestoreKokkosView(Mat A, ConstMatScalarKokkosView *kv)
1151: {
1152:   PetscFunctionBegin;
1154:   PetscAssertPointer(kv, 2);
1155:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1156:   PetscFunctionReturn(PETSC_SUCCESS);
1157: }

1159: PetscErrorCode MatSeqAIJGetKokkosView(Mat A, MatScalarKokkosView *kv)
1160: {
1161:   Mat_SeqAIJKokkos *aijkok;

1163:   PetscFunctionBegin;
1165:   PetscAssertPointer(kv, 2);
1166:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1167:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1168:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1169:   *kv    = aijkok->a_dual.view_device();
1170:   PetscFunctionReturn(PETSC_SUCCESS);
1171: }

1173: PetscErrorCode MatSeqAIJRestoreKokkosView(Mat A, MatScalarKokkosView *kv)
1174: {
1175:   PetscFunctionBegin;
1177:   PetscAssertPointer(kv, 2);
1178:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1179:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1180:   PetscFunctionReturn(PETSC_SUCCESS);
1181: }

1183: PetscErrorCode MatSeqAIJGetKokkosViewWrite(Mat A, MatScalarKokkosView *kv)
1184: {
1185:   Mat_SeqAIJKokkos *aijkok;

1187:   PetscFunctionBegin;
1189:   PetscAssertPointer(kv, 2);
1190:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1191:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1192:   *kv    = aijkok->a_dual.view_device();
1193:   PetscFunctionReturn(PETSC_SUCCESS);
1194: }

1196: PetscErrorCode MatSeqAIJRestoreKokkosViewWrite(Mat A, MatScalarKokkosView *kv)
1197: {
1198:   PetscFunctionBegin;
1200:   PetscAssertPointer(kv, 2);
1201:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1202:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1203:   PetscFunctionReturn(PETSC_SUCCESS);
1204: }

1206: /* Computes Y += alpha X */
1207: static PetscErrorCode MatAXPY_SeqAIJKokkos(Mat Y, PetscScalar alpha, Mat X, MatStructure pattern)
1208: {
1209:   Mat_SeqAIJ              *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;
1210:   Mat_SeqAIJKokkos        *xkok, *ykok, *zkok;
1211:   ConstMatScalarKokkosView Xa;
1212:   MatScalarKokkosView      Ya;
1213:   auto                    &exec = PetscGetKokkosExecutionSpace();

1215:   PetscFunctionBegin;
1216:   PetscCheckTypeName(Y, MATSEQAIJKOKKOS);
1217:   PetscCheckTypeName(X, MATSEQAIJKOKKOS);
1218:   PetscCall(MatSeqAIJKokkosSyncDevice(Y));
1219:   PetscCall(MatSeqAIJKokkosSyncDevice(X));
1220:   PetscCall(PetscLogGpuTimeBegin());

1222:   if (pattern != SAME_NONZERO_PATTERN && x->nz == y->nz) {
1223:     PetscBool e;
1224:     PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
1225:     if (e) {
1226:       PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
1227:       if (e) pattern = SAME_NONZERO_PATTERN;
1228:     }
1229:   }

1231:   /* cusparseDcsrgeam2() computes C = alpha A + beta B. If one knew sparsity pattern of C, one can skip
1232:     cusparseScsrgeam2_bufferSizeExt() / cusparseXcsrgeam2Nnz(), and directly call cusparseScsrgeam2().
1233:     If X is SUBSET_NONZERO_PATTERN of Y, we could take advantage of this cusparse feature. However,
1234:     KokkosSparse::spadd(alpha,A,beta,B,C) has symbolic and numeric phases, MatAXPY does not.
1235:   */
1236:   ykok = static_cast<Mat_SeqAIJKokkos *>(Y->spptr);
1237:   xkok = static_cast<Mat_SeqAIJKokkos *>(X->spptr);
1238:   Xa   = xkok->a_dual.view_device();
1239:   Ya   = ykok->a_dual.view_device();

1241:   if (pattern == SAME_NONZERO_PATTERN) {
1242:     KokkosBlas::axpy(exec, alpha, Xa, Ya);
1243:     PetscCall(MatSeqAIJKokkosModifyDevice(Y));
1244:   } else if (pattern == SUBSET_NONZERO_PATTERN) {
1245:     MatRowMapKokkosView Xi = xkok->i_dual.view_device(), Yi = ykok->i_dual.view_device();
1246:     MatColIdxKokkosView Xj = xkok->j_dual.view_device(), Yj = ykok->j_dual.view_device();

1248:     Kokkos::parallel_for(
1249:       Kokkos::TeamPolicy<>(exec, Y->rmap->n, 1), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
1250:         PetscInt i = t.league_rank(); // row i
1251:         Kokkos::single(Kokkos::PerTeam(t), [=]() {
1252:           // Only one thread works in a team
1253:           PetscInt p, q = Yi(i);
1254:           for (p = Xi(i); p < Xi(i + 1); p++) {          // For each nonzero on row i of X,
1255:             while (Xj(p) != Yj(q) && q < Yi(i + 1)) q++; // find the matching nonzero on row i of Y.
1256:             if (Xj(p) == Yj(q)) {                        // Found it
1257:               Ya(q) += alpha * Xa(p);
1258:               q++;
1259:             } else {
1260:             // If not found, it indicates the input is wrong (X is not a SUBSET_NONZERO_PATTERN of Y).
1261:             // Just insert a NaN at the beginning of row i if it is not empty, to make the result wrong.
1262: #if PETSC_PKG_KOKKOS_VERSION_GE(3, 7, 0)
1263:               if (Yi(i) != Yi(i + 1)) Ya(Yi(i)) = Kokkos::ArithTraits<PetscScalar>::nan();
1264: #else
1265:               if (Yi(i) != Yi(i + 1)) Ya(Yi(i)) = Kokkos::Experimental::nan("1");
1266: #endif
1267:             }
1268:           }
1269:         });
1270:       });
1271:     PetscCall(MatSeqAIJKokkosModifyDevice(Y));
1272:   } else { // different nonzero patterns
1273:     Mat             Z;
1274:     KokkosCsrMatrix zcsr;
1275:     KernelHandle    kh;
1276:     kh.create_spadd_handle(true); // X, Y are sorted
1277:     KokkosSparse::spadd_symbolic(&kh, xkok->csrmat, ykok->csrmat, zcsr);
1278:     KokkosSparse::spadd_numeric(&kh, alpha, xkok->csrmat, (PetscScalar)1.0, ykok->csrmat, zcsr);
1279:     zkok = new Mat_SeqAIJKokkos(zcsr);
1280:     PetscCall(MatCreateSeqAIJKokkosWithCSRMatrix(PETSC_COMM_SELF, zkok, &Z));
1281:     PetscCall(MatHeaderReplace(Y, &Z));
1282:     kh.destroy_spadd_handle();
1283:   }
1284:   PetscCall(PetscLogGpuTimeEnd());
1285:   PetscCall(PetscLogGpuFlops(xkok->a_dual.extent(0) * 2)); // Because we scaled X and then added it to Y
1286:   PetscFunctionReturn(PETSC_SUCCESS);
1287: }

1289: struct MatCOOStruct_SeqAIJKokkos {
1290:   PetscCount           n;
1291:   PetscCount           Atot;
1292:   PetscInt             nz;
1293:   PetscCountKokkosView jmap;
1294:   PetscCountKokkosView perm;

1296:   MatCOOStruct_SeqAIJKokkos(const MatCOOStruct_SeqAIJ *coo_h)
1297:   {
1298:     nz   = coo_h->nz;
1299:     n    = coo_h->n;
1300:     Atot = coo_h->Atot;
1301:     jmap = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), PetscCountKokkosViewHost(coo_h->jmap, nz + 1));
1302:     perm = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), PetscCountKokkosViewHost(coo_h->perm, Atot));
1303:   }
1304: };

1306: static PetscErrorCode MatCOOStructDestroy_SeqAIJKokkos(void *data)
1307: {
1308:   PetscFunctionBegin;
1309:   PetscCallCXX(delete static_cast<MatCOOStruct_SeqAIJKokkos *>(data));
1310:   PetscFunctionReturn(PETSC_SUCCESS);
1311: }

1313: static PetscErrorCode MatSetPreallocationCOO_SeqAIJKokkos(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
1314: {
1315:   Mat_SeqAIJKokkos          *akok;
1316:   Mat_SeqAIJ                *aseq;
1317:   PetscContainer             container_h, container_d;
1318:   MatCOOStruct_SeqAIJ       *coo_h;
1319:   MatCOOStruct_SeqAIJKokkos *coo_d;

1321:   PetscFunctionBegin;
1322:   PetscCall(MatSetPreallocationCOO_SeqAIJ(mat, coo_n, coo_i, coo_j));
1323:   aseq = static_cast<Mat_SeqAIJ *>(mat->data);
1324:   akok = static_cast<Mat_SeqAIJKokkos *>(mat->spptr);
1325:   delete akok;
1326:   mat->spptr = akok = new Mat_SeqAIJKokkos(mat->rmap->n, mat->cmap->n, aseq, mat->nonzerostate + 1, PETSC_FALSE);
1327:   PetscCall(MatZeroEntries_SeqAIJKokkos(mat));

1329:   // Copy the COO struct to device
1330:   PetscCall(PetscObjectQuery((PetscObject)mat, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container_h));
1331:   PetscCall(PetscContainerGetPointer(container_h, (void **)&coo_h));
1332:   PetscCallCXX(coo_d = new MatCOOStruct_SeqAIJKokkos(coo_h));

1334:   // Put the COO struct in a container and then attach that to the matrix
1335:   PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container_d));
1336:   PetscCall(PetscContainerSetPointer(container_d, coo_d));
1337:   PetscCall(PetscContainerSetUserDestroy(container_d, MatCOOStructDestroy_SeqAIJKokkos));
1338:   PetscCall(PetscObjectCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Device", (PetscObject)container_d));
1339:   PetscCall(PetscContainerDestroy(&container_d));
1340:   PetscFunctionReturn(PETSC_SUCCESS);
1341: }

1343: static PetscErrorCode MatSetValuesCOO_SeqAIJKokkos(Mat A, const PetscScalar v[], InsertMode imode)
1344: {
1345:   MatScalarKokkosView        Aa;
1346:   ConstMatScalarKokkosView   kv;
1347:   PetscMemType               memtype;
1348:   PetscContainer             container;
1349:   MatCOOStruct_SeqAIJKokkos *coo;

1351:   PetscFunctionBegin;
1352:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Device", (PetscObject *)&container));
1353:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));

1355:   const auto &n    = coo->n;
1356:   const auto &Annz = coo->nz;
1357:   const auto &jmap = coo->jmap;
1358:   const auto &perm = coo->perm;

1360:   PetscCall(PetscGetMemType(v, &memtype));
1361:   if (PetscMemTypeHost(memtype)) { /* If user gave v[] in host, we might need to copy it to device if any */
1362:     kv = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), ConstMatScalarKokkosViewHost(v, n));
1363:   } else {
1364:     kv = ConstMatScalarKokkosView(v, n); /* Directly use v[]'s memory */
1365:   }

1367:   if (imode == INSERT_VALUES) PetscCall(MatSeqAIJGetKokkosViewWrite(A, &Aa)); /* write matrix values */
1368:   else PetscCall(MatSeqAIJGetKokkosView(A, &Aa));                             /* read & write matrix values */

1370:   PetscCall(PetscLogGpuTimeBegin());
1371:   Kokkos::parallel_for(
1372:     Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, Annz), KOKKOS_LAMBDA(const PetscCount i) {
1373:       PetscScalar sum = 0.0;
1374:       for (PetscCount k = jmap(i); k < jmap(i + 1); k++) sum += kv(perm(k));
1375:       Aa(i) = (imode == INSERT_VALUES ? 0.0 : Aa(i)) + sum;
1376:     });
1377:   PetscCall(PetscLogGpuTimeEnd());

1379:   if (imode == INSERT_VALUES) PetscCall(MatSeqAIJRestoreKokkosViewWrite(A, &Aa));
1380:   else PetscCall(MatSeqAIJRestoreKokkosView(A, &Aa));
1381:   PetscFunctionReturn(PETSC_SUCCESS);
1382: }

1384: static PetscErrorCode MatLUFactorNumeric_SeqAIJKokkos(Mat B, Mat A, const MatFactorInfo *info)
1385: {
1386:   PetscFunctionBegin;
1387:   PetscCall(MatSeqAIJKokkosSyncHost(A));
1388:   PetscCall(MatLUFactorNumeric_SeqAIJ(B, A, info));
1389:   B->offloadmask = PETSC_OFFLOAD_CPU;
1390:   PetscFunctionReturn(PETSC_SUCCESS);
1391: }

1393: static PetscErrorCode MatSetOps_SeqAIJKokkos(Mat A)
1394: {
1395:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1397:   PetscFunctionBegin;
1398:   A->offloadmask = PETSC_OFFLOAD_KOKKOS; /* We do not really use this flag */
1399:   A->boundtocpu  = PETSC_FALSE;

1401:   A->ops->assemblyend               = MatAssemblyEnd_SeqAIJKokkos;
1402:   A->ops->destroy                   = MatDestroy_SeqAIJKokkos;
1403:   A->ops->duplicate                 = MatDuplicate_SeqAIJKokkos;
1404:   A->ops->axpy                      = MatAXPY_SeqAIJKokkos;
1405:   A->ops->scale                     = MatScale_SeqAIJKokkos;
1406:   A->ops->zeroentries               = MatZeroEntries_SeqAIJKokkos;
1407:   A->ops->productsetfromoptions     = MatProductSetFromOptions_SeqAIJKokkos;
1408:   A->ops->mult                      = MatMult_SeqAIJKokkos;
1409:   A->ops->multadd                   = MatMultAdd_SeqAIJKokkos;
1410:   A->ops->multtranspose             = MatMultTranspose_SeqAIJKokkos;
1411:   A->ops->multtransposeadd          = MatMultTransposeAdd_SeqAIJKokkos;
1412:   A->ops->multhermitiantranspose    = MatMultHermitianTranspose_SeqAIJKokkos;
1413:   A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_SeqAIJKokkos;
1414:   A->ops->productnumeric            = MatProductNumeric_SeqAIJKokkos_SeqAIJKokkos;
1415:   A->ops->transpose                 = MatTranspose_SeqAIJKokkos;
1416:   A->ops->setoption                 = MatSetOption_SeqAIJKokkos;
1417:   A->ops->getdiagonal               = MatGetDiagonal_SeqAIJKokkos;
1418:   A->ops->shift                     = MatShift_SeqAIJKokkos;
1419:   A->ops->diagonalset               = MatDiagonalSet_SeqAIJKokkos;
1420:   A->ops->diagonalscale             = MatDiagonalScale_SeqAIJKokkos;
1421:   a->ops->getarray                  = MatSeqAIJGetArray_SeqAIJKokkos;
1422:   a->ops->restorearray              = MatSeqAIJRestoreArray_SeqAIJKokkos;
1423:   a->ops->getarrayread              = MatSeqAIJGetArrayRead_SeqAIJKokkos;
1424:   a->ops->restorearrayread          = MatSeqAIJRestoreArrayRead_SeqAIJKokkos;
1425:   a->ops->getarraywrite             = MatSeqAIJGetArrayWrite_SeqAIJKokkos;
1426:   a->ops->restorearraywrite         = MatSeqAIJRestoreArrayWrite_SeqAIJKokkos;
1427:   a->ops->getcsrandmemtype          = MatSeqAIJGetCSRAndMemType_SeqAIJKokkos;

1429:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJKokkos));
1430:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJKokkos));
1431:   PetscFunctionReturn(PETSC_SUCCESS);
1432: }

1434: /*
1435:    Extract the (prescribled) diagonal blocks of the matrix and then invert them

1437:   Input Parameters:
1438: +  A       - the MATSEQAIJKOKKOS matrix
1439: .  bs      - block sizes in 'csr' format, i.e., the i-th block has size bs(i+1) - bs(i)
1440: .  bs2     - square of block sizes in 'csr' format, i.e., the i-th block should be stored at offset bs2(i) in diagVal[]
1441: .  blkMap  - map row ids to block ids, i.e., row i belongs to the block blkMap(i)
1442: -  work    - a pre-allocated work buffer (as big as diagVal) for use by this routine

1444:   Output Parameter:
1445: .  diagVal - the (pre-allocated) buffer to store the inverted blocks (each block is stored in column-major order)
1446: */
1447: PETSC_INTERN PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJKokkos(Mat A, const PetscIntKokkosView &bs, const PetscIntKokkosView &bs2, const PetscIntKokkosView &blkMap, PetscScalarKokkosView &work, PetscScalarKokkosView &diagVal)
1448: {
1449:   Mat_SeqAIJKokkos *akok    = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1450:   PetscInt          nblocks = bs.extent(0) - 1;

1452:   PetscFunctionBegin;
1453:   PetscCall(MatSeqAIJKokkosSyncDevice(A)); // Since we'll access A's value on device

1455:   // Pull out the diagonal blocks of the matrix and then invert the blocks
1456:   auto Aa    = akok->a_dual.view_device();
1457:   auto Ai    = akok->i_dual.view_device();
1458:   auto Aj    = akok->j_dual.view_device();
1459:   auto Adiag = akok->diag_dual.view_device();
1460:   // TODO: how to tune the team size?
1461: #if defined(KOKKOS_ENABLE_DEFAULT_DEVICE_TYPE_HOST)
1462:   auto ts = Kokkos::AUTO();
1463: #else
1464:   auto ts = 16; // improved performance 30% over Kokkos::AUTO() with CUDA, but failed with "Kokkos::abort: Requested Team Size is too large!" on CPUs
1465: #endif
1466:   PetscCallCXX(Kokkos::parallel_for(
1467:     Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), nblocks, ts), KOKKOS_LAMBDA(const KokkosTeamMemberType &teamMember) {
1468:       const PetscInt bid    = teamMember.league_rank();                                                   // block id
1469:       const PetscInt rstart = bs(bid);                                                                    // this block starts from this row
1470:       const PetscInt m      = bs(bid + 1) - bs(bid);                                                      // size of this block
1471:       const auto    &B      = Kokkos::View<PetscScalar **, Kokkos::LayoutLeft>(&diagVal(bs2(bid)), m, m); // column-major order
1472:       const auto    &W      = PetscScalarKokkosView(&work(bs2(bid)), m * m);

1474:       Kokkos::parallel_for(Kokkos::TeamThreadRange(teamMember, m), [=](const PetscInt &r) { // r-th row in B
1475:         PetscInt i = rstart + r;                                                            // i-th row in A

1477:         if (Ai(i) <= Adiag(i) && Adiag(i) < Ai(i + 1)) { // if the diagonal exists (common case)
1478:           PetscInt first = Adiag(i) - r;                 // we start to check nonzeros from here along this row

1480:           for (PetscInt c = 0; c < m; c++) {                   // walk n steps to see what column indices we will meet
1481:             if (first + c < Ai(i) || first + c >= Ai(i + 1)) { // this entry (first+c) is out of range of this row, in other words, its value is zero
1482:               B(r, c) = 0.0;
1483:             } else if (Aj(first + c) == rstart + c) { // this entry is right on the (rstart+c) column
1484:               B(r, c) = Aa(first + c);
1485:             } else { // this entry does not show up in the CSR
1486:               B(r, c) = 0.0;
1487:             }
1488:           }
1489:         } else { // rare case that the diagonal does not exist
1490:           const PetscInt begin = Ai(i);
1491:           const PetscInt end   = Ai(i + 1);
1492:           for (PetscInt c = 0; c < m; c++) B(r, c) = 0.0;
1493:           for (PetscInt j = begin; j < end; j++) { // scan the whole row; could use binary search but this is a rare case so we did not.
1494:             if (rstart <= Aj(j) && Aj(j) < rstart + m) B(r, Aj(j) - rstart) = Aa(j);
1495:             else if (Aj(j) >= rstart + m) break;
1496:           }
1497:         }
1498:       });

1500:       // LU-decompose B (w/o pivoting) and then invert B
1501:       KokkosBatched::TeamLU<KokkosTeamMemberType, KokkosBatched::Algo::LU::Unblocked>::invoke(teamMember, B, 0.0);
1502:       KokkosBatched::TeamInverseLU<KokkosTeamMemberType, KokkosBatched::Algo::InverseLU::Unblocked>::invoke(teamMember, B, W);
1503:     }));
1504:   // PetscLogGpuFlops() is done in the caller PCSetUp_VPBJacobi_Kokkos as we don't want to compute the flops in kernels
1505:   PetscFunctionReturn(PETSC_SUCCESS);
1506: }

1508: PETSC_INTERN PetscErrorCode MatSetSeqAIJKokkosWithCSRMatrix(Mat A, Mat_SeqAIJKokkos *akok)
1509: {
1510:   Mat_SeqAIJ *aseq;
1511:   PetscInt    i, m, n;
1512:   auto       &exec = PetscGetKokkosExecutionSpace();

1514:   PetscFunctionBegin;
1515:   PetscCheck(!A->spptr, PETSC_COMM_SELF, PETSC_ERR_PLIB, "A->spptr is supposed to be empty");

1517:   m = akok->nrows();
1518:   n = akok->ncols();
1519:   PetscCall(MatSetSizes(A, m, n, m, n));
1520:   PetscCall(MatSetType(A, MATSEQAIJKOKKOS));

1522:   /* Set up data structures of A as a MATSEQAIJ */
1523:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, MAT_SKIP_ALLOCATION, NULL));
1524:   aseq = (Mat_SeqAIJ *)(A)->data;

1526:   PetscCallCXX(akok->i_dual.sync_host(exec)); /* We always need sync'ed i, j on host */
1527:   PetscCallCXX(akok->j_dual.sync_host(exec));
1528:   PetscCallCXX(exec.fence());

1530:   aseq->i            = akok->i_host_data();
1531:   aseq->j            = akok->j_host_data();
1532:   aseq->a            = akok->a_host_data();
1533:   aseq->nonew        = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
1534:   aseq->singlemalloc = PETSC_FALSE;
1535:   aseq->free_a       = PETSC_FALSE;
1536:   aseq->free_ij      = PETSC_FALSE;
1537:   aseq->nz           = akok->nnz();
1538:   aseq->maxnz        = aseq->nz;

1540:   PetscCall(PetscMalloc1(m, &aseq->imax));
1541:   PetscCall(PetscMalloc1(m, &aseq->ilen));
1542:   for (i = 0; i < m; i++) aseq->ilen[i] = aseq->imax[i] = aseq->i[i + 1] - aseq->i[i];

1544:   /* It is critical to set the nonzerostate, as we use it to check if sparsity pattern (hence data) has changed on host in MatAssemblyEnd */
1545:   akok->nonzerostate = A->nonzerostate;
1546:   A->spptr           = akok; /* Set A->spptr before MatAssembly so that A->spptr won't be allocated again there */
1547:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1548:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1549:   PetscFunctionReturn(PETSC_SUCCESS);
1550: }

1552: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosGetKokkosCsrMatrix(Mat A, KokkosCsrMatrix *csr)
1553: {
1554:   PetscFunctionBegin;
1555:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1556:   *csr = static_cast<Mat_SeqAIJKokkos *>(A->spptr)->csrmat;
1557:   PetscFunctionReturn(PETSC_SUCCESS);
1558: }

1560: PETSC_INTERN PetscErrorCode MatCreateSeqAIJKokkosWithKokkosCsrMatrix(MPI_Comm comm, KokkosCsrMatrix csr, Mat *A)
1561: {
1562:   Mat_SeqAIJKokkos *akok;

1564:   PetscFunctionBegin;
1565:   PetscCallCXX(akok = new Mat_SeqAIJKokkos(csr));
1566:   PetscCall(MatCreate(comm, A));
1567:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(*A, akok));
1568:   PetscFunctionReturn(PETSC_SUCCESS);
1569: }

1571: /* Crete a SEQAIJKOKKOS matrix with a Mat_SeqAIJKokkos data structure

1573:    Note we have names like MatSeqAIJSetPreallocationCSR, so I use capitalized CSR
1574:  */
1575: PETSC_INTERN PetscErrorCode MatCreateSeqAIJKokkosWithCSRMatrix(MPI_Comm comm, Mat_SeqAIJKokkos *akok, Mat *A)
1576: {
1577:   PetscFunctionBegin;
1578:   PetscCall(MatCreate(comm, A));
1579:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(*A, akok));
1580:   PetscFunctionReturn(PETSC_SUCCESS);
1581: }

1583: /*@C
1584:   MatCreateSeqAIJKokkos - Creates a sparse matrix in `MATSEQAIJKOKKOS` (compressed row) format
1585:   (the default parallel PETSc format). This matrix will ultimately be handled by
1586:   Kokkos for calculations.

1588:   Collective

1590:   Input Parameters:
1591: + comm - MPI communicator, set to `PETSC_COMM_SELF`
1592: . m    - number of rows
1593: . n    - number of columns
1594: . nz   - number of nonzeros per row (same for all rows), ignored if `nnz` is provided
1595: - nnz  - array containing the number of nonzeros in the various rows (possibly different for each row) or `NULL`

1597:   Output Parameter:
1598: . A - the matrix

1600:   Level: intermediate

1602:   Notes:
1603:   It is recommended that one use the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
1604:   MatXXXXSetPreallocation() paradgm instead of this routine directly.
1605:   [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]

1607:   The AIJ format, also called
1608:   compressed row storage, is fully compatible with standard Fortran
1609:   storage.  That is, the stored row and column indices can begin at
1610:   either one (as in Fortran) or zero.

1612:   Specify the preallocated storage with either `nz` or `nnz` (not both).
1613:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
1614:   allocation.

1616: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
1617: @*/
1618: PetscErrorCode MatCreateSeqAIJKokkos(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
1619: {
1620:   PetscFunctionBegin;
1621:   PetscCall(PetscKokkosInitializeCheck());
1622:   PetscCall(MatCreate(comm, A));
1623:   PetscCall(MatSetSizes(*A, m, n, m, n));
1624:   PetscCall(MatSetType(*A, MATSEQAIJKOKKOS));
1625:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, (PetscInt *)nnz));
1626:   PetscFunctionReturn(PETSC_SUCCESS);
1627: }

1629: static PetscErrorCode MatLUFactorSymbolic_SeqAIJKokkos(Mat B, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
1630: {
1631:   PetscFunctionBegin;
1632:   PetscCall(MatLUFactorSymbolic_SeqAIJ(B, A, isrow, iscol, info));
1633:   B->ops->lufactornumeric = MatLUFactorNumeric_SeqAIJKokkos;
1634:   PetscFunctionReturn(PETSC_SUCCESS);
1635: }

1637: static PetscErrorCode MatSeqAIJKokkosSymbolicSolveCheck(Mat A)
1638: {
1639:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;

1641:   PetscFunctionBegin;
1642:   if (!factors->sptrsv_symbolic_completed) {
1643:     KokkosSparse::Experimental::sptrsv_symbolic(&factors->khU, factors->iU_d, factors->jU_d, factors->aU_d);
1644:     KokkosSparse::Experimental::sptrsv_symbolic(&factors->khL, factors->iL_d, factors->jL_d, factors->aL_d);
1645:     factors->sptrsv_symbolic_completed = PETSC_TRUE;
1646:   }
1647:   PetscFunctionReturn(PETSC_SUCCESS);
1648: }

1650: /* Check if we need to update factors etc for transpose solve */
1651: static PetscErrorCode MatSeqAIJKokkosTransposeSolveCheck(Mat A)
1652: {
1653:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;
1654:   MatColIdxType               n       = A->rmap->n;

1656:   PetscFunctionBegin;
1657:   if (!factors->transpose_updated) { /* TODO: KK needs to provide functions to do numeric transpose only */
1658:     /* Update L^T and do sptrsv symbolic */
1659:     factors->iLt_d = MatRowMapKokkosView("factors->iLt_d", n + 1); // KK requires 0
1660:     factors->jLt_d = MatColIdxKokkosView(NoInit("factors->jLt_d"), factors->jL_d.extent(0));
1661:     factors->aLt_d = MatScalarKokkosView(NoInit("factors->aLt_d"), factors->aL_d.extent(0));

1663:     transpose_matrix<ConstMatRowMapKokkosView, ConstMatColIdxKokkosView, ConstMatScalarKokkosView, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView, MatRowMapKokkosView, DefaultExecutionSpace>(n, n, factors->iL_d, factors->jL_d, factors->aL_d,
1664:                                                                                                                                                                                                               factors->iLt_d, factors->jLt_d, factors->aLt_d);

1666:     /* TODO: KK transpose_matrix() does not sort column indices, however cusparse requires sorted indices.
1667:       We have to sort the indices, until KK provides finer control options.
1668:     */
1669:     sort_crs_matrix<DefaultExecutionSpace, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView>(factors->iLt_d, factors->jLt_d, factors->aLt_d);

1671:     KokkosSparse::Experimental::sptrsv_symbolic(&factors->khLt, factors->iLt_d, factors->jLt_d, factors->aLt_d);

1673:     /* Update U^T and do sptrsv symbolic */
1674:     factors->iUt_d = MatRowMapKokkosView("factors->iUt_d", n + 1); // KK requires 0
1675:     factors->jUt_d = MatColIdxKokkosView(NoInit("factors->jUt_d"), factors->jU_d.extent(0));
1676:     factors->aUt_d = MatScalarKokkosView(NoInit("factors->aUt_d"), factors->aU_d.extent(0));

1678:     transpose_matrix<ConstMatRowMapKokkosView, ConstMatColIdxKokkosView, ConstMatScalarKokkosView, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView, MatRowMapKokkosView, DefaultExecutionSpace>(n, n, factors->iU_d, factors->jU_d, factors->aU_d,
1679:                                                                                                                                                                                                               factors->iUt_d, factors->jUt_d, factors->aUt_d);

1681:     /* Sort indices. See comments above */
1682:     sort_crs_matrix<DefaultExecutionSpace, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView>(factors->iUt_d, factors->jUt_d, factors->aUt_d);

1684:     KokkosSparse::Experimental::sptrsv_symbolic(&factors->khUt, factors->iUt_d, factors->jUt_d, factors->aUt_d);
1685:     factors->transpose_updated = PETSC_TRUE;
1686:   }
1687:   PetscFunctionReturn(PETSC_SUCCESS);
1688: }

1690: /* Solve Ax = b, with A = LU */
1691: static PetscErrorCode MatSolve_SeqAIJKokkos(Mat A, Vec b, Vec x)
1692: {
1693:   ConstPetscScalarKokkosView  bv;
1694:   PetscScalarKokkosView       xv;
1695:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;

1697:   PetscFunctionBegin;
1698:   PetscCall(PetscLogGpuTimeBegin());
1699:   PetscCall(MatSeqAIJKokkosSymbolicSolveCheck(A));
1700:   PetscCall(VecGetKokkosView(b, &bv));
1701:   PetscCall(VecGetKokkosViewWrite(x, &xv));
1702:   /* Solve L tmpv = b */
1703:   PetscCallCXX(KokkosSparse::Experimental::sptrsv_solve(&factors->khL, factors->iL_d, factors->jL_d, factors->aL_d, bv, factors->workVector));
1704:   /* Solve Ux = tmpv */
1705:   PetscCallCXX(KokkosSparse::Experimental::sptrsv_solve(&factors->khU, factors->iU_d, factors->jU_d, factors->aU_d, factors->workVector, xv));
1706:   PetscCall(VecRestoreKokkosView(b, &bv));
1707:   PetscCall(VecRestoreKokkosViewWrite(x, &xv));
1708:   PetscCall(PetscLogGpuTimeEnd());
1709:   PetscFunctionReturn(PETSC_SUCCESS);
1710: }

1712: /* Solve A^T x = b, where A^T = U^T L^T */
1713: static PetscErrorCode MatSolveTranspose_SeqAIJKokkos(Mat A, Vec b, Vec x)
1714: {
1715:   ConstPetscScalarKokkosView  bv;
1716:   PetscScalarKokkosView       xv;
1717:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;

1719:   PetscFunctionBegin;
1720:   PetscCall(PetscLogGpuTimeBegin());
1721:   PetscCall(MatSeqAIJKokkosTransposeSolveCheck(A));
1722:   PetscCall(VecGetKokkosView(b, &bv));
1723:   PetscCall(VecGetKokkosViewWrite(x, &xv));
1724:   /* Solve U^T tmpv = b */
1725:   KokkosSparse::Experimental::sptrsv_solve(&factors->khUt, factors->iUt_d, factors->jUt_d, factors->aUt_d, bv, factors->workVector);

1727:   /* Solve L^T x = tmpv */
1728:   KokkosSparse::Experimental::sptrsv_solve(&factors->khLt, factors->iLt_d, factors->jLt_d, factors->aLt_d, factors->workVector, xv);
1729:   PetscCall(VecRestoreKokkosView(b, &bv));
1730:   PetscCall(VecRestoreKokkosViewWrite(x, &xv));
1731:   PetscCall(PetscLogGpuTimeEnd());
1732:   PetscFunctionReturn(PETSC_SUCCESS);
1733: }

1735: static PetscErrorCode MatILUFactorNumeric_SeqAIJKokkos(Mat B, Mat A, const MatFactorInfo *info)
1736: {
1737:   Mat_SeqAIJKokkos           *aijkok   = (Mat_SeqAIJKokkos *)A->spptr;
1738:   Mat_SeqAIJKokkosTriFactors *factors  = (Mat_SeqAIJKokkosTriFactors *)B->spptr;
1739:   PetscInt                    fill_lev = info->levels;

1741:   PetscFunctionBegin;
1742:   PetscCall(PetscLogGpuTimeBegin());
1743:   PetscCall(MatSeqAIJKokkosSyncDevice(A));

1745:   auto a_d = aijkok->a_dual.view_device();
1746:   auto i_d = aijkok->i_dual.view_device();
1747:   auto j_d = aijkok->j_dual.view_device();

1749:   KokkosSparse::Experimental::spiluk_numeric(&factors->kh, fill_lev, i_d, j_d, a_d, factors->iL_d, factors->jL_d, factors->aL_d, factors->iU_d, factors->jU_d, factors->aU_d);

1751:   B->assembled              = PETSC_TRUE;
1752:   B->preallocated           = PETSC_TRUE;
1753:   B->ops->solve             = MatSolve_SeqAIJKokkos;
1754:   B->ops->solvetranspose    = MatSolveTranspose_SeqAIJKokkos;
1755:   B->ops->matsolve          = NULL;
1756:   B->ops->matsolvetranspose = NULL;
1757:   B->offloadmask            = PETSC_OFFLOAD_GPU;

1759:   /* Once the factors' value changed, we need to update their transpose and sptrsv handle */
1760:   factors->transpose_updated         = PETSC_FALSE;
1761:   factors->sptrsv_symbolic_completed = PETSC_FALSE;
1762:   /* TODO: log flops, but how to know that? */
1763:   PetscCall(PetscLogGpuTimeEnd());
1764:   PetscFunctionReturn(PETSC_SUCCESS);
1765: }

1767: static PetscErrorCode MatILUFactorSymbolic_SeqAIJKokkos(Mat B, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
1768: {
1769:   Mat_SeqAIJKokkos           *aijkok;
1770:   Mat_SeqAIJ                 *b;
1771:   Mat_SeqAIJKokkosTriFactors *factors  = (Mat_SeqAIJKokkosTriFactors *)B->spptr;
1772:   PetscInt                    fill_lev = info->levels;
1773:   PetscInt                    nnzA     = ((Mat_SeqAIJ *)A->data)->nz, nnzL, nnzU;
1774:   PetscInt                    n        = A->rmap->n;

1776:   PetscFunctionBegin;
1777:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1778:   /* Rebuild factors */
1779:   if (factors) {
1780:     factors->Destroy();
1781:   } /* Destroy the old if it exists */
1782:   else {
1783:     B->spptr = factors = new Mat_SeqAIJKokkosTriFactors(n);
1784:   }

1786:   /* Create a spiluk handle and then do symbolic factorization */
1787:   nnzL = nnzU = PetscRealIntMultTruncate(info->fill, nnzA);
1788:   factors->kh.create_spiluk_handle(KokkosSparse::Experimental::SPILUKAlgorithm::SEQLVLSCHD_TP1, n, nnzL, nnzU);

1790:   auto spiluk_handle = factors->kh.get_spiluk_handle();

1792:   Kokkos::realloc(factors->iL_d, n + 1); /* Free old arrays and realloc */
1793:   Kokkos::realloc(factors->jL_d, spiluk_handle->get_nnzL());
1794:   Kokkos::realloc(factors->iU_d, n + 1);
1795:   Kokkos::realloc(factors->jU_d, spiluk_handle->get_nnzU());

1797:   aijkok   = (Mat_SeqAIJKokkos *)A->spptr;
1798:   auto i_d = aijkok->i_dual.view_device();
1799:   auto j_d = aijkok->j_dual.view_device();
1800:   KokkosSparse::Experimental::spiluk_symbolic(&factors->kh, fill_lev, i_d, j_d, factors->iL_d, factors->jL_d, factors->iU_d, factors->jU_d);
1801:   /* TODO: if spiluk_symbolic is asynchronous, do we need to sync before calling get_nnzL()? */

1803:   Kokkos::resize(factors->jL_d, spiluk_handle->get_nnzL()); /* Shrink or expand, and retain old value */
1804:   Kokkos::resize(factors->jU_d, spiluk_handle->get_nnzU());
1805:   Kokkos::realloc(factors->aL_d, spiluk_handle->get_nnzL()); /* No need to retain old value */
1806:   Kokkos::realloc(factors->aU_d, spiluk_handle->get_nnzU());

1808:   /* TODO: add options to select sptrsv algorithms */
1809:   /* Create sptrsv handles for L, U and their transpose */
1810: #if defined(KOKKOSKERNELS_ENABLE_TPL_CUSPARSE)
1811:   auto sptrsv_alg = KokkosSparse::Experimental::SPTRSVAlgorithm::SPTRSV_CUSPARSE;
1812: #else
1813:   auto sptrsv_alg = KokkosSparse::Experimental::SPTRSVAlgorithm::SEQLVLSCHD_TP1;
1814: #endif

1816:   factors->khL.create_sptrsv_handle(sptrsv_alg, n, true /* L is lower tri */);
1817:   factors->khU.create_sptrsv_handle(sptrsv_alg, n, false /* U is not lower tri */);
1818:   factors->khLt.create_sptrsv_handle(sptrsv_alg, n, false /* L^T is not lower tri */);
1819:   factors->khUt.create_sptrsv_handle(sptrsv_alg, n, true /* U^T is lower tri */);

1821:   /* Fill fields of the factor matrix B */
1822:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(B, MAT_SKIP_ALLOCATION, NULL));
1823:   b     = (Mat_SeqAIJ *)B->data;
1824:   b->nz = b->maxnz          = spiluk_handle->get_nnzL() + spiluk_handle->get_nnzU();
1825:   B->info.fill_ratio_given  = info->fill;
1826:   B->info.fill_ratio_needed = nnzA > 0 ? ((PetscReal)b->nz) / ((PetscReal)nnzA) : 1.0;

1828:   B->offloadmask          = PETSC_OFFLOAD_GPU;
1829:   B->ops->lufactornumeric = MatILUFactorNumeric_SeqAIJKokkos;
1830:   PetscFunctionReturn(PETSC_SUCCESS);
1831: }

1833: static PetscErrorCode MatFactorGetSolverType_SeqAIJKokkos(Mat A, MatSolverType *type)
1834: {
1835:   PetscFunctionBegin;
1836:   *type = MATSOLVERKOKKOS;
1837:   PetscFunctionReturn(PETSC_SUCCESS);
1838: }

1840: /*MC
1841:   MATSOLVERKOKKOS = "Kokkos" - A matrix solver type providing triangular solvers for sequential matrices
1842:   on a single GPU of type, `MATSEQAIJKOKKOS`, `MATAIJKOKKOS`.

1844:   Level: beginner

1846: .seealso: [](ch_matrices), `Mat`, `PCFactorSetMatSolverType()`, `MatSolverType`, `MatCreateSeqAIJKokkos()`, `MATAIJKOKKOS`, `MatKokkosSetFormat()`, `MatKokkosStorageFormat`, `MatKokkosFormatOperation`
1847: M*/
1848: PETSC_EXTERN PetscErrorCode MatGetFactor_SeqAIJKokkos_Kokkos(Mat A, MatFactorType ftype, Mat *B) /* MatGetFactor_<MatType>_<MatSolverType> */
1849: {
1850:   PetscInt n = A->rmap->n;

1852:   PetscFunctionBegin;
1853:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
1854:   PetscCall(MatSetSizes(*B, n, n, n, n));
1855:   (*B)->factortype = ftype;
1856:   PetscCall(PetscStrallocpy(MATORDERINGND, (char **)&(*B)->preferredordering[MAT_FACTOR_LU]));
1857:   PetscCall(MatSetType(*B, MATSEQAIJKOKKOS));

1859:   if (ftype == MAT_FACTOR_LU) {
1860:     PetscCall(MatSetBlockSizesFromMats(*B, A, A));
1861:     (*B)->canuseordering        = PETSC_TRUE;
1862:     (*B)->ops->lufactorsymbolic = MatLUFactorSymbolic_SeqAIJKokkos;
1863:   } else if (ftype == MAT_FACTOR_ILU) {
1864:     PetscCall(MatSetBlockSizesFromMats(*B, A, A));
1865:     (*B)->canuseordering         = PETSC_FALSE;
1866:     (*B)->ops->ilufactorsymbolic = MatILUFactorSymbolic_SeqAIJKokkos;
1867:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "MatFactorType %s is not supported by MatType SeqAIJKokkos", MatFactorTypes[ftype]);

1869:   PetscCall(MatSeqAIJSetPreallocation(*B, MAT_SKIP_ALLOCATION, NULL));
1870:   PetscCall(PetscObjectComposeFunction((PetscObject)*B, "MatFactorGetSolverType_C", MatFactorGetSolverType_SeqAIJKokkos));
1871:   PetscFunctionReturn(PETSC_SUCCESS);
1872: }

1874: PETSC_INTERN PetscErrorCode MatSolverTypeRegister_KOKKOS(void)
1875: {
1876:   PetscFunctionBegin;
1877:   PetscCall(MatSolverTypeRegister(MATSOLVERKOKKOS, MATSEQAIJKOKKOS, MAT_FACTOR_LU, MatGetFactor_SeqAIJKokkos_Kokkos));
1878:   PetscCall(MatSolverTypeRegister(MATSOLVERKOKKOS, MATSEQAIJKOKKOS, MAT_FACTOR_ILU, MatGetFactor_SeqAIJKokkos_Kokkos));
1879:   PetscFunctionReturn(PETSC_SUCCESS);
1880: }

1882: /* Utility to print out a KokkosCsrMatrix for debugging */
1883: PETSC_INTERN PetscErrorCode PrintCsrMatrix(const KokkosCsrMatrix &csrmat)
1884: {
1885:   const auto        &iv = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), csrmat.graph.row_map);
1886:   const auto        &jv = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), csrmat.graph.entries);
1887:   const auto        &av = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), csrmat.values);
1888:   const PetscInt    *i  = iv.data();
1889:   const PetscInt    *j  = jv.data();
1890:   const PetscScalar *a  = av.data();
1891:   PetscInt           m = csrmat.numRows(), n = csrmat.numCols(), nnz = csrmat.nnz();

1893:   PetscFunctionBegin;
1894:   PetscCall(PetscPrintf(PETSC_COMM_SELF, "%" PetscInt_FMT " x %" PetscInt_FMT " SeqAIJKokkos, with %" PetscInt_FMT " nonzeros\n", m, n, nnz));
1895:   for (PetscInt k = 0; k < m; k++) {
1896:     PetscCall(PetscPrintf(PETSC_COMM_SELF, "%" PetscInt_FMT ": ", k));
1897:     for (PetscInt p = i[k]; p < i[k + 1]; p++) PetscCall(PetscPrintf(PETSC_COMM_SELF, "%" PetscInt_FMT "(%.1f), ", j[p], (double)PetscRealPart(a[p])));
1898:     PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
1899:   }
1900:   PetscFunctionReturn(PETSC_SUCCESS);
1901: }