Actual source code: aijkok.kokkos.cxx

  1: #include <petsc_kokkos.hpp>
  2: #include <petscvec_kokkos.hpp>
  3: #include <petscmat_kokkos.hpp>
  4: #include <petscpkg_version.h>
  5: #include <petsc/private/petscimpl.h>
  6: #include <petsc/private/sfimpl.h>
  7: #include <petsc/private/kokkosimpl.hpp>
  8: #include <petscsystypes.h>
  9: #include <petscerror.h>

 11: #include <Kokkos_Core.hpp>
 12: #include <KokkosBlas.hpp>
 13: #include <KokkosSparse_CrsMatrix.hpp>

 15: // To suppress compiler warnings:
 16: // /path/include/KokkosSparse_spmv_bsrmatrix_tpl_spec_decl.hpp:434:63:
 17: // warning: 'cusparseStatus_t cusparseDbsrmm(cusparseHandle_t, cusparseDirection_t, cusparseOperation_t,
 18: // cusparseOperation_t, int, int, int, int, const double*, cusparseMatDescr_t, const double*, const int*, const int*,
 19: // int, const double*, int, const double*, double*, int)' is deprecated: please use cusparseSpMM instead [-Wdeprecated-declarations]
 20: PETSC_PRAGMA_DIAGNOSTIC_IGNORED_BEGIN("-Wdeprecated-declarations")
 21: #include <KokkosSparse_spmv.hpp>
 22: PETSC_PRAGMA_DIAGNOSTIC_IGNORED_END()

 24: #include <KokkosSparse_spiluk.hpp>
 25: #include <KokkosSparse_sptrsv.hpp>
 26: #include <KokkosSparse_spgemm.hpp>
 27: #include <KokkosSparse_spadd.hpp>
 28: #include <KokkosBatched_LU_Decl.hpp>
 29: #include <KokkosBatched_InverseLU_Decl.hpp>

 31: #include <../src/mat/impls/aij/seq/kokkos/aijkok.hpp>

 33: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_GE(3, 7, 0)
 34:   #include <KokkosSparse_Utils.hpp>
 35: using KokkosSparse::sort_crs_matrix;
 36: using KokkosSparse::Impl::transpose_matrix;
 37: #else
 38:   #include <KokkosKernels_Sorting.hpp>
 39: using KokkosKernels::sort_crs_matrix;
 40: using KokkosKernels::Impl::transpose_matrix;
 41: #endif

 43: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_GE(4, 6, 0)
 44: using KokkosSparse::spiluk_symbolic;
 45: using KokkosSparse::spiluk_numeric;
 46: using KokkosSparse::sptrsv_symbolic;
 47: using KokkosSparse::sptrsv_solve;
 48: using KokkosSparse::Experimental::SPTRSVAlgorithm;
 49: using KokkosSparse::Experimental::SPILUKAlgorithm;
 50: #else
 51: using KokkosSparse::Experimental::spiluk_symbolic;
 52: using KokkosSparse::Experimental::spiluk_numeric;
 53: using KokkosSparse::Experimental::sptrsv_symbolic;
 54: using KokkosSparse::Experimental::sptrsv_solve;
 55: using KokkosSparse::Experimental::SPTRSVAlgorithm;
 56: using KokkosSparse::Experimental::SPILUKAlgorithm;
 57: #endif

 59: static PetscErrorCode MatSetOps_SeqAIJKokkos(Mat); /* Forward declaration */

 61: /* MatAssemblyEnd_SeqAIJKokkos() happens when we finalized nonzeros of the matrix, either after
 62:    we assembled the matrix on host, or after we directly produced the matrix data on device (ex., through MatMatMult).
 63:    In the latter case, it is important to set a_dual's sync state correctly.
 64:  */
 65: static PetscErrorCode MatAssemblyEnd_SeqAIJKokkos(Mat A, MatAssemblyType mode)
 66: {
 67:   Mat_SeqAIJ       *aijseq;
 68:   Mat_SeqAIJKokkos *aijkok;

 70:   PetscFunctionBegin;
 71:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
 72:   PetscCall(MatAssemblyEnd_SeqAIJ(A, mode));

 74:   aijseq = static_cast<Mat_SeqAIJ *>(A->data);
 75:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

 77:   /* If aijkok does not exist, we just copy i, j to device.
 78:      If aijkok already exists, but the device's nonzero pattern does not match with the host's, we assume the latest data is on host.
 79:      In both cases, we build a new aijkok structure.
 80:   */
 81:   if (!aijkok || aijkok->nonzerostate != A->nonzerostate) { /* aijkok might not exist yet or nonzero pattern has changed */
 82:     delete aijkok;
 83:     aijkok   = new Mat_SeqAIJKokkos(A->rmap->n, A->cmap->n, aijseq, A->nonzerostate, PETSC_FALSE /*don't copy mat values to device*/);
 84:     A->spptr = aijkok;
 85:   } else if (A->rmap->n && aijkok->diag_dual.extent(0) == 0) { // MatProduct might directly produce AIJ on device, but not the diag.
 86:     MatRowMapKokkosViewHost diag_h(aijseq->diag, A->rmap->n);
 87:     auto                    diag_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), diag_h);
 88:     aijkok->diag_dual              = MatRowMapKokkosDualView(diag_d, diag_h);
 89:   }
 90:   PetscFunctionReturn(PETSC_SUCCESS);
 91: }

 93: /* Sync CSR data to device if not yet */
 94: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosSyncDevice(Mat A)
 95: {
 96:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

 98:   PetscFunctionBegin;
 99:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Can't sync factorized matrix from host to device");
100:   PetscCheck(aijkok, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Unexpected NULL (Mat_SeqAIJKokkos*)A->spptr");
101:   if (aijkok->a_dual.need_sync_device()) {
102:     aijkok->a_dual.sync_device();
103:     aijkok->transpose_updated = PETSC_FALSE; /* values of the transpose is out-of-date */
104:     aijkok->hermitian_updated = PETSC_FALSE;
105:   }
106:   PetscFunctionReturn(PETSC_SUCCESS);
107: }

109: /* Mark the CSR data on device as modified */
110: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosModifyDevice(Mat A)
111: {
112:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

114:   PetscFunctionBegin;
115:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Not supported for factorized matries");
116:   aijkok->a_dual.clear_sync_state();
117:   aijkok->a_dual.modify_device();
118:   aijkok->transpose_updated = PETSC_FALSE;
119:   aijkok->hermitian_updated = PETSC_FALSE;
120:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
121:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
122:   PetscFunctionReturn(PETSC_SUCCESS);
123: }

125: static PetscErrorCode MatSeqAIJKokkosSyncHost(Mat A)
126: {
127:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
128:   auto              exec   = PetscGetKokkosExecutionSpace();

130:   PetscFunctionBegin;
131:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
132:   /* We do not expect one needs factors on host  */
133:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Can't sync factorized matrix from device to host");
134:   PetscCheck(aijkok, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Missing AIJKOK");
135:   PetscCall(KokkosDualViewSync<HostMirrorMemorySpace>(aijkok->a_dual, exec));
136:   PetscFunctionReturn(PETSC_SUCCESS);
137: }

139: static PetscErrorCode MatSeqAIJGetArray_SeqAIJKokkos(Mat A, PetscScalar *array[])
140: {
141:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

143:   PetscFunctionBegin;
144:   /* aijkok contains valid pointers only if the host's nonzerostate matches with the device's.
145:     Calling MatSeqAIJSetPreallocation() or MatSetValues() on host, where aijseq->{i,j,a} might be
146:     reallocated, will lead to stale {i,j,a}_dual in aijkok. In both operations, the hosts's nonzerostate
147:     must have been updated. The stale aijkok will be rebuilt during MatAssemblyEnd.
148:   */
149:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
150:     auto exec = PetscGetKokkosExecutionSpace();
151:     PetscCallCXX(aijkok->a_dual.sync_host(exec));
152:     PetscCallCXX(exec.fence());
153:     *array = aijkok->a_dual.view_host().data();
154:   } else { /* Happens when calling MatSetValues on a newly created matrix */
155:     *array = static_cast<Mat_SeqAIJ *>(A->data)->a;
156:   }
157:   PetscFunctionReturn(PETSC_SUCCESS);
158: }

160: static PetscErrorCode MatSeqAIJRestoreArray_SeqAIJKokkos(Mat A, PetscScalar *array[])
161: {
162:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

164:   PetscFunctionBegin;
165:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) aijkok->a_dual.modify_host();
166:   PetscFunctionReturn(PETSC_SUCCESS);
167: }

169: static PetscErrorCode MatSeqAIJGetArrayRead_SeqAIJKokkos(Mat A, const PetscScalar *array[])
170: {
171:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

173:   PetscFunctionBegin;
174:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
175:     auto exec = PetscGetKokkosExecutionSpace();
176:     PetscCallCXX(aijkok->a_dual.sync_host(exec));
177:     PetscCallCXX(exec.fence());
178:     *array = aijkok->a_dual.view_host().data();
179:   } else {
180:     *array = static_cast<Mat_SeqAIJ *>(A->data)->a;
181:   }
182:   PetscFunctionReturn(PETSC_SUCCESS);
183: }

185: static PetscErrorCode MatSeqAIJRestoreArrayRead_SeqAIJKokkos(Mat A, const PetscScalar *array[])
186: {
187:   PetscFunctionBegin;
188:   *array = NULL;
189:   PetscFunctionReturn(PETSC_SUCCESS);
190: }

192: static PetscErrorCode MatSeqAIJGetArrayWrite_SeqAIJKokkos(Mat A, PetscScalar *array[])
193: {
194:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

196:   PetscFunctionBegin;
197:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
198:     *array = aijkok->a_dual.view_host().data();
199:   } else { /* Ex. happens with MatZeroEntries on a preallocated but not assembled matrix */
200:     *array = static_cast<Mat_SeqAIJ *>(A->data)->a;
201:   }
202:   PetscFunctionReturn(PETSC_SUCCESS);
203: }

205: static PetscErrorCode MatSeqAIJRestoreArrayWrite_SeqAIJKokkos(Mat A, PetscScalar *array[])
206: {
207:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

209:   PetscFunctionBegin;
210:   if (aijkok && A->nonzerostate == aijkok->nonzerostate) {
211:     aijkok->a_dual.clear_sync_state();
212:     aijkok->a_dual.modify_host();
213:   }
214:   PetscFunctionReturn(PETSC_SUCCESS);
215: }

217: static PetscErrorCode MatSeqAIJGetCSRAndMemType_SeqAIJKokkos(Mat A, const PetscInt **i, const PetscInt **j, PetscScalar **a, PetscMemType *mtype)
218: {
219:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

221:   PetscFunctionBegin;
222:   PetscCheck(aijkok != NULL, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "aijkok is NULL");

224:   if (i) *i = aijkok->i_device_data();
225:   if (j) *j = aijkok->j_device_data();
226:   if (a) {
227:     aijkok->a_dual.sync_device();
228:     *a = aijkok->a_device_data();
229:   }
230:   if (mtype) *mtype = PETSC_MEMTYPE_KOKKOS;
231:   PetscFunctionReturn(PETSC_SUCCESS);
232: }

234: /*
235:   Generate the sparsity pattern of a MatSeqAIJKokkos matrix's transpose on device.

237:   Input Parameter:
238: .  A       - the MATSEQAIJKOKKOS matrix

240:   Output Parameters:
241: +  perm_d - the permutation array on device, which connects Ta(i) = Aa(perm(i))
242: -  T_d    - the transpose on device, whose value array is allocated but not initialized
243: */
244: static PetscErrorCode MatSeqAIJKokkosGenerateTransposeStructure(Mat A, MatRowMapKokkosView &perm_d, KokkosCsrMatrix &T_d)
245: {
246:   Mat_SeqAIJ             *aseq = static_cast<Mat_SeqAIJ *>(A->data);
247:   PetscInt                nz = aseq->nz, m = A->rmap->N, n = A->cmap->n;
248:   const PetscInt         *Ai = aseq->i, *Aj = aseq->j;
249:   MatRowMapKokkosViewHost Ti_h(NoInit("Ti"), n + 1);
250:   MatRowMapType          *Ti = Ti_h.data();
251:   MatColIdxKokkosViewHost Tj_h(NoInit("Tj"), nz);
252:   MatRowMapKokkosViewHost perm_h(NoInit("permutation"), nz);
253:   PetscInt               *Tj   = Tj_h.data();
254:   PetscInt               *perm = perm_h.data();
255:   PetscInt               *offset;

257:   PetscFunctionBegin;
258:   // Populate Ti
259:   PetscCallCXX(Kokkos::deep_copy(Ti_h, 0));
260:   Ti++;
261:   for (PetscInt i = 0; i < nz; i++) Ti[Aj[i]]++;
262:   Ti--;
263:   for (PetscInt i = 0; i < n; i++) Ti[i + 1] += Ti[i];

265:   // Populate Tj and the permutation array
266:   PetscCall(PetscCalloc1(n, &offset)); // offset in each T row to fill in its column indices
267:   for (PetscInt i = 0; i < m; i++) {
268:     for (PetscInt j = Ai[i]; j < Ai[i + 1]; j++) { // A's (i,j) is T's (j,i)
269:       PetscInt r    = Aj[j];                       // row r of T
270:       PetscInt disp = Ti[r] + offset[r];

272:       Tj[disp]   = i; // col i of T
273:       perm[disp] = j;
274:       offset[r]++;
275:     }
276:   }
277:   PetscCall(PetscFree(offset));

279:   // Sort each row of T, along with the permutation array
280:   for (PetscInt i = 0; i < n; i++) PetscCall(PetscSortIntWithArray(Ti[i + 1] - Ti[i], Tj + Ti[i], perm + Ti[i]));

282:   // Output perm and T on device
283:   auto Ti_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), Ti_h);
284:   auto Tj_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), Tj_h);
285:   PetscCallCXX(T_d = KokkosCsrMatrix("csrmatT", n, m, nz, MatScalarKokkosView("Ta", nz), Ti_d, Tj_d));
286:   PetscCallCXX(perm_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), perm_h));
287:   PetscFunctionReturn(PETSC_SUCCESS);
288: }

290: // Generate the transpose on device and cache it internally
291: // Note: KK transpose_matrix() does not have support symbolic/numeric transpose, so we do it on our own
292: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosGenerateTranspose_Private(Mat A, KokkosCsrMatrix *csrmatT)
293: {
294:   Mat_SeqAIJ       *aseq = static_cast<Mat_SeqAIJ *>(A->data);
295:   Mat_SeqAIJKokkos *akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
296:   PetscInt          nz = aseq->nz, m = A->rmap->N, n = A->cmap->n;
297:   KokkosCsrMatrix  &T = akok->csrmatT;

299:   PetscFunctionBegin;
300:   PetscCheck(akok, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Unexpected NULL (Mat_SeqAIJKokkos*)A->spptr");
301:   PetscCallCXX(akok->a_dual.sync_device()); // Sync A's values since we are going to access them on device

303:   const auto &Aa = akok->a_dual.view_device();

305:   if (A->symmetric == PETSC_BOOL3_TRUE) {
306:     *csrmatT = akok->csrmat;
307:   } else {
308:     // See if we already have a cached transpose and its value is up to date
309:     if (T.numRows() == n && T.numCols() == m) {  // this indicates csrmatT had been generated before, otherwise T has 0 rows/cols after construction
310:       if (!akok->transpose_updated) {            // if the value is out of date, update the cached version
311:         const auto &perm = akok->transpose_perm; // get the permutation array
312:         auto       &Ta   = T.values;

314:         PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { Ta(i) = Aa(perm(i)); }));
315:       }
316:     } else { // Generate T of size n x m for the first time
317:       MatRowMapKokkosView perm;

319:       PetscCall(MatSeqAIJKokkosGenerateTransposeStructure(A, perm, T));
320:       akok->transpose_perm = perm; // cache the perm in this matrix for reuse
321:       PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { T.values(i) = Aa(perm(i)); }));
322:     }
323:     akok->transpose_updated = PETSC_TRUE;
324:     *csrmatT                = akok->csrmatT;
325:   }
326:   PetscFunctionReturn(PETSC_SUCCESS);
327: }

329: // Generate the Hermitian on device and cache it internally
330: static PetscErrorCode MatSeqAIJKokkosGenerateHermitian_Private(Mat A, KokkosCsrMatrix *csrmatH)
331: {
332:   Mat_SeqAIJ       *aseq = static_cast<Mat_SeqAIJ *>(A->data);
333:   Mat_SeqAIJKokkos *akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
334:   PetscInt          nz = aseq->nz, m = A->rmap->N, n = A->cmap->n;
335:   KokkosCsrMatrix  &T = akok->csrmatH;

337:   PetscFunctionBegin;
338:   PetscCheck(akok, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Unexpected NULL (Mat_SeqAIJKokkos*)A->spptr");
339:   PetscCallCXX(akok->a_dual.sync_device()); // Sync A's values since we are going to access them on device

341:   const auto &Aa = akok->a_dual.view_device();

343:   if (A->hermitian == PETSC_BOOL3_TRUE) {
344:     *csrmatH = akok->csrmat;
345:   } else {
346:     // See if we already have a cached hermitian and its value is up to date
347:     if (T.numRows() == n && T.numCols() == m) {  // this indicates csrmatT had been generated before, otherwise T has 0 rows/cols after construction
348:       if (!akok->hermitian_updated) {            // if the value is out of date, update the cached version
349:         const auto &perm = akok->transpose_perm; // get the permutation array
350:         auto       &Ta   = T.values;

352:         PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { Ta(i) = PetscConj(Aa(perm(i))); }));
353:       }
354:     } else { // Generate T of size n x m for the first time
355:       MatRowMapKokkosView perm;

357:       PetscCall(MatSeqAIJKokkosGenerateTransposeStructure(A, perm, T));
358:       akok->transpose_perm = perm; // cache the perm in this matrix for reuse
359:       PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt i) { T.values(i) = PetscConj(Aa(perm(i))); }));
360:     }
361:     akok->hermitian_updated = PETSC_TRUE;
362:     *csrmatH                = akok->csrmatH;
363:   }
364:   PetscFunctionReturn(PETSC_SUCCESS);
365: }

367: /* y = A x */
368: static PetscErrorCode MatMult_SeqAIJKokkos(Mat A, Vec xx, Vec yy)
369: {
370:   Mat_SeqAIJKokkos          *aijkok;
371:   ConstPetscScalarKokkosView xv;
372:   PetscScalarKokkosView      yv;

374:   PetscFunctionBegin;
375:   PetscCall(PetscLogGpuTimeBegin());
376:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
377:   PetscCall(VecGetKokkosView(xx, &xv));
378:   PetscCall(VecGetKokkosViewWrite(yy, &yv));
379:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
380:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), "N", 1.0 /*alpha*/, aijkok->csrmat, xv, 0.0 /*beta*/, yv)); /* y = alpha A x + beta y */
381:   PetscCall(VecRestoreKokkosView(xx, &xv));
382:   PetscCall(VecRestoreKokkosViewWrite(yy, &yv));
383:   /* 2.0*nnz - numRows seems more accurate here but assumes there are no zero-rows. So a little sloppy here. */
384:   PetscCall(PetscLogGpuFlops(2.0 * aijkok->csrmat.nnz()));
385:   PetscCall(PetscLogGpuTimeEnd());
386:   PetscFunctionReturn(PETSC_SUCCESS);
387: }

389: /* y = A^T x */
390: static PetscErrorCode MatMultTranspose_SeqAIJKokkos(Mat A, Vec xx, Vec yy)
391: {
392:   Mat_SeqAIJKokkos          *aijkok;
393:   const char                *mode;
394:   ConstPetscScalarKokkosView xv;
395:   PetscScalarKokkosView      yv;
396:   KokkosCsrMatrix            csrmat;

398:   PetscFunctionBegin;
399:   PetscCall(PetscLogGpuTimeBegin());
400:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
401:   PetscCall(VecGetKokkosView(xx, &xv));
402:   PetscCall(VecGetKokkosViewWrite(yy, &yv));
403:   if (A->form_explicit_transpose) {
404:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmat));
405:     mode = "N";
406:   } else {
407:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
408:     csrmat = aijkok->csrmat;
409:     mode   = "T";
410:   }
411:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 0.0 /*beta*/, yv)); /* y = alpha A^T x + beta y */
412:   PetscCall(VecRestoreKokkosView(xx, &xv));
413:   PetscCall(VecRestoreKokkosViewWrite(yy, &yv));
414:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
415:   PetscCall(PetscLogGpuTimeEnd());
416:   PetscFunctionReturn(PETSC_SUCCESS);
417: }

419: /* y = A^H x */
420: static PetscErrorCode MatMultHermitianTranspose_SeqAIJKokkos(Mat A, Vec xx, Vec yy)
421: {
422:   Mat_SeqAIJKokkos          *aijkok;
423:   const char                *mode;
424:   ConstPetscScalarKokkosView xv;
425:   PetscScalarKokkosView      yv;
426:   KokkosCsrMatrix            csrmat;

428:   PetscFunctionBegin;
429:   PetscCall(PetscLogGpuTimeBegin());
430:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
431:   PetscCall(VecGetKokkosView(xx, &xv));
432:   PetscCall(VecGetKokkosViewWrite(yy, &yv));
433:   if (A->form_explicit_transpose) {
434:     PetscCall(MatSeqAIJKokkosGenerateHermitian_Private(A, &csrmat));
435:     mode = "N";
436:   } else {
437:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
438:     csrmat = aijkok->csrmat;
439:     mode   = "C";
440:   }
441:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 0.0 /*beta*/, yv)); /* y = alpha A^H x + beta y */
442:   PetscCall(VecRestoreKokkosView(xx, &xv));
443:   PetscCall(VecRestoreKokkosViewWrite(yy, &yv));
444:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
445:   PetscCall(PetscLogGpuTimeEnd());
446:   PetscFunctionReturn(PETSC_SUCCESS);
447: }

449: /* z = A x + y */
450: static PetscErrorCode MatMultAdd_SeqAIJKokkos(Mat A, Vec xx, Vec yy, Vec zz)
451: {
452:   Mat_SeqAIJKokkos          *aijkok;
453:   ConstPetscScalarKokkosView xv;
454:   PetscScalarKokkosView      zv;

456:   PetscFunctionBegin;
457:   PetscCall(PetscLogGpuTimeBegin());
458:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
459:   if (zz != yy) PetscCall(VecCopy(yy, zz)); // depending on yy's sync flags, zz might get its latest data on host
460:   PetscCall(VecGetKokkosView(xx, &xv));
461:   PetscCall(VecGetKokkosView(zz, &zv)); // do after VecCopy(yy, zz) to get the latest data on device
462:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
463:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), "N", 1.0 /*alpha*/, aijkok->csrmat, xv, 1.0 /*beta*/, zv)); /* z = alpha A x + beta z */
464:   PetscCall(VecRestoreKokkosView(xx, &xv));
465:   PetscCall(VecRestoreKokkosView(zz, &zv));
466:   PetscCall(PetscLogGpuFlops(2.0 * aijkok->csrmat.nnz()));
467:   PetscCall(PetscLogGpuTimeEnd());
468:   PetscFunctionReturn(PETSC_SUCCESS);
469: }

471: /* z = A^T x + y */
472: static PetscErrorCode MatMultTransposeAdd_SeqAIJKokkos(Mat A, Vec xx, Vec yy, Vec zz)
473: {
474:   Mat_SeqAIJKokkos          *aijkok;
475:   const char                *mode;
476:   ConstPetscScalarKokkosView xv;
477:   PetscScalarKokkosView      zv;
478:   KokkosCsrMatrix            csrmat;

480:   PetscFunctionBegin;
481:   PetscCall(PetscLogGpuTimeBegin());
482:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
483:   if (zz != yy) PetscCall(VecCopy(yy, zz));
484:   PetscCall(VecGetKokkosView(xx, &xv));
485:   PetscCall(VecGetKokkosView(zz, &zv));
486:   if (A->form_explicit_transpose) {
487:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmat));
488:     mode = "N";
489:   } else {
490:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
491:     csrmat = aijkok->csrmat;
492:     mode   = "T";
493:   }
494:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 1.0 /*beta*/, zv)); /* z = alpha A^T x + beta z */
495:   PetscCall(VecRestoreKokkosView(xx, &xv));
496:   PetscCall(VecRestoreKokkosView(zz, &zv));
497:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
498:   PetscCall(PetscLogGpuTimeEnd());
499:   PetscFunctionReturn(PETSC_SUCCESS);
500: }

502: /* z = A^H x + y */
503: static PetscErrorCode MatMultHermitianTransposeAdd_SeqAIJKokkos(Mat A, Vec xx, Vec yy, Vec zz)
504: {
505:   Mat_SeqAIJKokkos          *aijkok;
506:   const char                *mode;
507:   ConstPetscScalarKokkosView xv;
508:   PetscScalarKokkosView      zv;
509:   KokkosCsrMatrix            csrmat;

511:   PetscFunctionBegin;
512:   PetscCall(PetscLogGpuTimeBegin());
513:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
514:   if (zz != yy) PetscCall(VecCopy(yy, zz));
515:   PetscCall(VecGetKokkosView(xx, &xv));
516:   PetscCall(VecGetKokkosView(zz, &zv));
517:   if (A->form_explicit_transpose) {
518:     PetscCall(MatSeqAIJKokkosGenerateHermitian_Private(A, &csrmat));
519:     mode = "N";
520:   } else {
521:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
522:     csrmat = aijkok->csrmat;
523:     mode   = "C";
524:   }
525:   PetscCallCXX(KokkosSparse::spmv(PetscGetKokkosExecutionSpace(), mode, 1.0 /*alpha*/, csrmat, xv, 1.0 /*beta*/, zv)); /* z = alpha A^H x + beta z */
526:   PetscCall(VecRestoreKokkosView(xx, &xv));
527:   PetscCall(VecRestoreKokkosView(zz, &zv));
528:   PetscCall(PetscLogGpuFlops(2.0 * csrmat.nnz()));
529:   PetscCall(PetscLogGpuTimeEnd());
530:   PetscFunctionReturn(PETSC_SUCCESS);
531: }

533: static PetscErrorCode MatSetOption_SeqAIJKokkos(Mat A, MatOption op, PetscBool flg)
534: {
535:   Mat_SeqAIJKokkos *aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

537:   PetscFunctionBegin;
538:   switch (op) {
539:   case MAT_FORM_EXPLICIT_TRANSPOSE:
540:     /* need to destroy the transpose matrix if present to prevent from logic errors if flg is set to true later */
541:     if (A->form_explicit_transpose && !flg && aijkok) PetscCall(aijkok->DestroyMatTranspose());
542:     A->form_explicit_transpose = flg;
543:     break;
544:   default:
545:     PetscCall(MatSetOption_SeqAIJ(A, op, flg));
546:     break;
547:   }
548:   PetscFunctionReturn(PETSC_SUCCESS);
549: }

551: /* Depending on reuse, either build a new mat, or use the existing mat */
552: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat A, MatType mtype, MatReuse reuse, Mat *newmat)
553: {
554:   Mat_SeqAIJ *aseq;

556:   PetscFunctionBegin;
557:   PetscCall(PetscKokkosInitializeCheck());
558:   if (reuse == MAT_INITIAL_MATRIX) {                      /* Build a brand new mat */
559:     PetscCall(MatDuplicate(A, MAT_COPY_VALUES, newmat));  /* the returned newmat is a SeqAIJKokkos */
560:   } else if (reuse == MAT_REUSE_MATRIX) {                 /* Reuse the mat created before */
561:     PetscCall(MatCopy(A, *newmat, SAME_NONZERO_PATTERN)); /* newmat is already a SeqAIJKokkos */
562:   } else if (reuse == MAT_INPLACE_MATRIX) {               /* newmat is A */
563:     PetscCheck(A == *newmat, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "A != *newmat with MAT_INPLACE_MATRIX");
564:     PetscCall(PetscFree(A->defaultvectype));
565:     PetscCall(PetscStrallocpy(VECKOKKOS, &A->defaultvectype)); /* Allocate and copy the string */
566:     PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATSEQAIJKOKKOS));
567:     PetscCall(MatSetOps_SeqAIJKokkos(A));
568:     aseq = static_cast<Mat_SeqAIJ *>(A->data);
569:     if (A->assembled) { /* Copy i, j (but not values) to device for an assembled matrix if not yet */
570:       PetscCheck(!A->spptr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Expect NULL (Mat_SeqAIJKokkos*)A->spptr");
571:       A->spptr = new Mat_SeqAIJKokkos(A->rmap->n, A->cmap->n, aseq, A->nonzerostate, PETSC_FALSE);
572:     }
573:   }
574:   PetscFunctionReturn(PETSC_SUCCESS);
575: }

577: /* MatDuplicate always creates a new matrix. MatDuplicate can be called either on an assembled matrix or
578:    an unassembled matrix, even though MAT_COPY_VALUES is not allowed for unassembled matrix.
579:  */
580: static PetscErrorCode MatDuplicate_SeqAIJKokkos(Mat A, MatDuplicateOption dupOption, Mat *B)
581: {
582:   Mat_SeqAIJ       *bseq;
583:   Mat_SeqAIJKokkos *akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr), *bkok;
584:   Mat               mat;

586:   PetscFunctionBegin;
587:   /* Do not copy values on host as A's latest values might be on device. We don't want to do sync blindly */
588:   PetscCall(MatDuplicate_SeqAIJ(A, MAT_DO_NOT_COPY_VALUES, B));
589:   mat = *B;
590:   if (A->assembled) {
591:     bseq = static_cast<Mat_SeqAIJ *>(mat->data);
592:     bkok = new Mat_SeqAIJKokkos(mat->rmap->n, mat->cmap->n, bseq, mat->nonzerostate, PETSC_FALSE);
593:     bkok->a_dual.clear_sync_state(); /* Clear B's sync state as it will be decided below */
594:     /* Now copy values to B if needed */
595:     if (dupOption == MAT_COPY_VALUES) {
596:       if (akok->a_dual.need_sync_device()) {
597:         Kokkos::deep_copy(bkok->a_dual.view_host(), akok->a_dual.view_host());
598:         bkok->a_dual.modify_host();
599:       } else { /* If device has the latest data, we only copy data on device */
600:         Kokkos::deep_copy(bkok->a_dual.view_device(), akok->a_dual.view_device());
601:         bkok->a_dual.modify_device();
602:       }
603:     } else { /* MAT_DO_NOT_COPY_VALUES or MAT_SHARE_NONZERO_PATTERN. B's values should be zeroed */
604:       /* B's values on host should be already zeroed by MatDuplicate_SeqAIJ() */
605:       bkok->a_dual.modify_host();
606:     }
607:     mat->spptr = bkok;
608:   }

610:   PetscCall(PetscFree(mat->defaultvectype));
611:   PetscCall(PetscStrallocpy(VECKOKKOS, &mat->defaultvectype)); /* Allocate and copy the string */
612:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, MATSEQAIJKOKKOS));
613:   PetscCall(MatSetOps_SeqAIJKokkos(mat));
614:   PetscFunctionReturn(PETSC_SUCCESS);
615: }

617: static PetscErrorCode MatTranspose_SeqAIJKokkos(Mat A, MatReuse reuse, Mat *B)
618: {
619:   Mat               At;
620:   KokkosCsrMatrix   internT;
621:   Mat_SeqAIJKokkos *atkok, *bkok;

623:   PetscFunctionBegin;
624:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
625:   PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &internT)); /* Generate a transpose internally */
626:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
627:     /* Deep copy internT, as we want to isolate the internal transpose */
628:     PetscCallCXX(atkok = new Mat_SeqAIJKokkos(KokkosCsrMatrix("csrmat", internT)));
629:     PetscCall(MatCreateSeqAIJKokkosWithCSRMatrix(PetscObjectComm((PetscObject)A), atkok, &At));
630:     if (reuse == MAT_INITIAL_MATRIX) *B = At;
631:     else PetscCall(MatHeaderReplace(A, &At)); /* Replace A with At inplace */
632:   } else {                                    /* MAT_REUSE_MATRIX, just need to copy values to B on device */
633:     if ((*B)->assembled) {
634:       bkok = static_cast<Mat_SeqAIJKokkos *>((*B)->spptr);
635:       PetscCallCXX(Kokkos::deep_copy(bkok->a_dual.view_device(), internT.values));
636:       PetscCall(MatSeqAIJKokkosModifyDevice(*B));
637:     } else if ((*B)->preallocated) { /* It is ok for B to be only preallocated, as needed in MatTranspose_MPIAIJ */
638:       Mat_SeqAIJ             *bseq = static_cast<Mat_SeqAIJ *>((*B)->data);
639:       MatScalarKokkosViewHost a_h(bseq->a, internT.nnz()); /* bseq->nz = 0 if unassembled */
640:       MatColIdxKokkosViewHost j_h(bseq->j, internT.nnz());
641:       PetscCallCXX(Kokkos::deep_copy(a_h, internT.values));
642:       PetscCallCXX(Kokkos::deep_copy(j_h, internT.graph.entries));
643:     } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "B must be assembled or preallocated");
644:   }
645:   PetscFunctionReturn(PETSC_SUCCESS);
646: }

648: static PetscErrorCode MatDestroy_SeqAIJKokkos(Mat A)
649: {
650:   Mat_SeqAIJKokkos *aijkok;

652:   PetscFunctionBegin;
653:   if (A->factortype == MAT_FACTOR_NONE) {
654:     aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
655:     delete aijkok;
656:   } else {
657:     delete static_cast<Mat_SeqAIJKokkosTriFactors *>(A->spptr);
658:   }
659:   A->spptr = NULL;
660:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
661:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
662:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
663: #if defined(PETSC_HAVE_HYPRE)
664:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijkokkos_hypre_C", NULL));
665: #endif
666:   PetscCall(MatDestroy_SeqAIJ(A));
667:   PetscFunctionReturn(PETSC_SUCCESS);
668: }

670: /*MC
671:    MATSEQAIJKOKKOS - MATAIJKOKKOS = "(seq)aijkokkos" - A matrix type to be used for sparse matrices with Kokkos

673:    A matrix type using Kokkos-Kernels CrsMatrix type for portability across different device types

675:    Options Database Key:
676: .  -mat_type aijkokkos - sets the matrix type to `MATSEQAIJKOKKOS` during a call to `MatSetFromOptions()`

678:   Level: beginner

680: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJKokkos()`, `MATMPIAIJKOKKOS`
681: M*/
682: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJKokkos(Mat A)
683: {
684:   PetscFunctionBegin;
685:   PetscCall(PetscKokkosInitializeCheck());
686:   PetscCall(MatCreate_SeqAIJ(A));
687:   PetscCall(MatConvert_SeqAIJ_SeqAIJKokkos(A, MATSEQAIJKOKKOS, MAT_INPLACE_MATRIX, &A));
688:   PetscFunctionReturn(PETSC_SUCCESS);
689: }

691: /* Merge A, B into a matrix C. A is put before B. C's size would be A->rmap->n by (A->cmap->n + B->cmap->n) */
692: PetscErrorCode MatSeqAIJKokkosMergeMats(Mat A, Mat B, MatReuse reuse, Mat *C)
693: {
694:   Mat_SeqAIJ         *a, *b;
695:   Mat_SeqAIJKokkos   *akok, *bkok, *ckok;
696:   MatScalarKokkosView aa, ba, ca;
697:   MatRowMapKokkosView ai, bi, ci;
698:   MatColIdxKokkosView aj, bj, cj;
699:   PetscInt            m, n, nnz, aN;

701:   PetscFunctionBegin;
704:   PetscAssertPointer(C, 4);
705:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
706:   PetscCheckTypeName(B, MATSEQAIJKOKKOS);
707:   PetscCheck(A->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Invalid number or rows %" PetscInt_FMT " != %" PetscInt_FMT, A->rmap->n, B->rmap->n);
708:   PetscCheck(reuse != MAT_INPLACE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MAT_INPLACE_MATRIX not supported");

710:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
711:   PetscCall(MatSeqAIJKokkosSyncDevice(B));
712:   a    = static_cast<Mat_SeqAIJ *>(A->data);
713:   b    = static_cast<Mat_SeqAIJ *>(B->data);
714:   akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
715:   bkok = static_cast<Mat_SeqAIJKokkos *>(B->spptr);
716:   aa   = akok->a_dual.view_device();
717:   ai   = akok->i_dual.view_device();
718:   ba   = bkok->a_dual.view_device();
719:   bi   = bkok->i_dual.view_device();
720:   m    = A->rmap->n; /* M, N and nnz of C */
721:   n    = A->cmap->n + B->cmap->n;
722:   nnz  = a->nz + b->nz;
723:   aN   = A->cmap->n; /* N of A */
724:   if (reuse == MAT_INITIAL_MATRIX) {
725:     aj           = akok->j_dual.view_device();
726:     bj           = bkok->j_dual.view_device();
727:     auto ca_dual = MatScalarKokkosDualView("a", aa.extent(0) + ba.extent(0));
728:     auto ci_dual = MatRowMapKokkosDualView("i", ai.extent(0));
729:     auto cj_dual = MatColIdxKokkosDualView("j", aj.extent(0) + bj.extent(0));
730:     ca           = ca_dual.view_device();
731:     ci           = ci_dual.view_device();
732:     cj           = cj_dual.view_device();

734:     /* Concatenate A and B in parallel using Kokkos hierarchical parallelism */
735:     Kokkos::parallel_for(
736:       Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), m, Kokkos::AUTO()), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
737:         PetscInt i       = t.league_rank(); /* row i */
738:         PetscInt coffset = ai(i) + bi(i), alen = ai(i + 1) - ai(i), blen = bi(i + 1) - bi(i);

740:         Kokkos::single(Kokkos::PerTeam(t), [=]() { /* this side effect only happens once per whole team */
741:                                                    ci(i) = coffset;
742:                                                    if (i == m - 1) ci(m) = ai(m) + bi(m);
743:         });

745:         Kokkos::parallel_for(Kokkos::TeamThreadRange(t, alen + blen), [&](PetscInt k) {
746:           if (k < alen) {
747:             ca(coffset + k) = aa(ai(i) + k);
748:             cj(coffset + k) = aj(ai(i) + k);
749:           } else {
750:             ca(coffset + k) = ba(bi(i) + k - alen);
751:             cj(coffset + k) = bj(bi(i) + k - alen) + aN; /* Entries in B get new column indices in C */
752:           }
753:         });
754:       });
755:     ca_dual.modify_device();
756:     ci_dual.modify_device();
757:     cj_dual.modify_device();
758:     PetscCallCXX(ckok = new Mat_SeqAIJKokkos(m, n, nnz, ci_dual, cj_dual, ca_dual));
759:     PetscCall(MatCreateSeqAIJKokkosWithCSRMatrix(PETSC_COMM_SELF, ckok, C));
760:   } else if (reuse == MAT_REUSE_MATRIX) {
762:     PetscCheckTypeName(*C, MATSEQAIJKOKKOS);
763:     ckok = static_cast<Mat_SeqAIJKokkos *>((*C)->spptr);
764:     ca   = ckok->a_dual.view_device();
765:     ci   = ckok->i_dual.view_device();

767:     Kokkos::parallel_for(
768:       Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), m, Kokkos::AUTO()), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
769:         PetscInt i    = t.league_rank(); /* row i */
770:         PetscInt alen = ai(i + 1) - ai(i), blen = bi(i + 1) - bi(i);
771:         Kokkos::parallel_for(Kokkos::TeamThreadRange(t, alen + blen), [&](PetscInt k) {
772:           if (k < alen) ca(ci(i) + k) = aa(ai(i) + k);
773:           else ca(ci(i) + k) = ba(bi(i) + k - alen);
774:         });
775:       });
776:     PetscCall(MatSeqAIJKokkosModifyDevice(*C));
777:   }
778:   PetscFunctionReturn(PETSC_SUCCESS);
779: }

781: static PetscErrorCode MatProductDataDestroy_SeqAIJKokkos(void *pdata)
782: {
783:   PetscFunctionBegin;
784:   delete static_cast<MatProductData_SeqAIJKokkos *>(pdata);
785:   PetscFunctionReturn(PETSC_SUCCESS);
786: }

788: static PetscErrorCode MatProductNumeric_SeqAIJKokkos_SeqAIJKokkos(Mat C)
789: {
790:   Mat_Product                 *product = C->product;
791:   Mat                          A, B;
792:   bool                         transA, transB; /* use bool, since KK needs this type */
793:   Mat_SeqAIJKokkos            *akok, *bkok, *ckok;
794:   Mat_SeqAIJ                  *c;
795:   MatProductData_SeqAIJKokkos *pdata;
796:   KokkosCsrMatrix              csrmatA, csrmatB;

798:   PetscFunctionBegin;
799:   MatCheckProduct(C, 1);
800:   PetscCheck(C->product->data, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data empty");
801:   pdata = static_cast<MatProductData_SeqAIJKokkos *>(C->product->data);

803:   // See if numeric has already been done in symbolic (e.g., user calls MatMatMult(A,B,MAT_INITIAL_MATRIX,..,C)).
804:   // If yes, skip the numeric, but reset the flag so that next time when user calls MatMatMult(E,F,MAT_REUSE_MATRIX,..,C),
805:   // we still do numeric.
806:   if (pdata->reusesym) { // numeric reuses results from symbolic
807:     pdata->reusesym = PETSC_FALSE;
808:     PetscFunctionReturn(PETSC_SUCCESS);
809:   }

811:   switch (product->type) {
812:   case MATPRODUCT_AB:
813:     transA = false;
814:     transB = false;
815:     break;
816:   case MATPRODUCT_AtB:
817:     transA = true;
818:     transB = false;
819:     break;
820:   case MATPRODUCT_ABt:
821:     transA = false;
822:     transB = true;
823:     break;
824:   default:
825:     SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Unsupported product type %s", MatProductTypes[product->type]);
826:   }

828:   A = product->A;
829:   B = product->B;
830:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
831:   PetscCall(MatSeqAIJKokkosSyncDevice(B));
832:   akok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
833:   bkok = static_cast<Mat_SeqAIJKokkos *>(B->spptr);
834:   ckok = static_cast<Mat_SeqAIJKokkos *>(C->spptr);

836:   PetscCheck(ckok, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Device data structure spptr is empty");

838:   csrmatA = akok->csrmat;
839:   csrmatB = bkok->csrmat;

841:   /* TODO: Once KK spgemm implements transpose, we can get rid of the explicit transpose here */
842:   if (transA) {
843:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmatA));
844:     transA = false;
845:   }

847:   if (transB) {
848:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(B, &csrmatB));
849:     transB = false;
850:   }
851:   PetscCall(PetscLogGpuTimeBegin());
852:   PetscCallCXX(KokkosSparse::spgemm_numeric(pdata->kh, csrmatA, transA, csrmatB, transB, ckok->csrmat));
853: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_LT(4, 0, 0)
854:   auto spgemmHandle = pdata->kh.get_spgemm_handle();
855:   if (spgemmHandle->get_sort_option() != 1) PetscCallCXX(sort_crs_matrix(ckok->csrmat)); /* without sort, mat_tests-ex62_14_seqaijkokkos fails */
856: #endif

858:   PetscCall(PetscLogGpuTimeEnd());
859:   PetscCall(MatSeqAIJKokkosModifyDevice(C));
860:   /* shorter version of MatAssemblyEnd_SeqAIJ */
861:   c = (Mat_SeqAIJ *)C->data;
862:   PetscCall(PetscInfo(C, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: 0 unneeded,%" PetscInt_FMT " used\n", C->rmap->n, C->cmap->n, c->nz));
863:   PetscCall(PetscInfo(C, "Number of mallocs during MatSetValues() is 0\n"));
864:   PetscCall(PetscInfo(C, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", c->rmax));
865:   c->reallocs         = 0;
866:   C->info.mallocs     = 0;
867:   C->info.nz_unneeded = 0;
868:   C->assembled = C->was_assembled = PETSC_TRUE;
869:   C->num_ass++;
870:   PetscFunctionReturn(PETSC_SUCCESS);
871: }

873: static PetscErrorCode MatProductSymbolic_SeqAIJKokkos_SeqAIJKokkos(Mat C)
874: {
875:   Mat_Product                 *product = C->product;
876:   MatProductType               ptype;
877:   Mat                          A, B;
878:   bool                         transA, transB;
879:   Mat_SeqAIJKokkos            *akok, *bkok, *ckok;
880:   MatProductData_SeqAIJKokkos *pdata;
881:   MPI_Comm                     comm;
882:   KokkosCsrMatrix              csrmatA, csrmatB, csrmatC;

884:   PetscFunctionBegin;
885:   MatCheckProduct(C, 1);
886:   PetscCall(PetscObjectGetComm((PetscObject)C, &comm));
887:   PetscCheck(!product->data, comm, PETSC_ERR_PLIB, "Product data not empty");
888:   A = product->A;
889:   B = product->B;
890:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
891:   PetscCall(MatSeqAIJKokkosSyncDevice(B));
892:   akok    = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
893:   bkok    = static_cast<Mat_SeqAIJKokkos *>(B->spptr);
894:   csrmatA = akok->csrmat;
895:   csrmatB = bkok->csrmat;

897:   ptype = product->type;
898:   // Take advantage of the symmetry if true
899:   if (A->symmetric == PETSC_BOOL3_TRUE && ptype == MATPRODUCT_AtB) {
900:     ptype                                          = MATPRODUCT_AB;
901:     product->symbolic_used_the_fact_A_is_symmetric = PETSC_TRUE;
902:   }
903:   if (B->symmetric == PETSC_BOOL3_TRUE && ptype == MATPRODUCT_ABt) {
904:     ptype                                          = MATPRODUCT_AB;
905:     product->symbolic_used_the_fact_B_is_symmetric = PETSC_TRUE;
906:   }

908:   switch (ptype) {
909:   case MATPRODUCT_AB:
910:     transA = false;
911:     transB = false;
912:     PetscCall(MatSetBlockSizesFromMats(C, A, B));
913:     break;
914:   case MATPRODUCT_AtB:
915:     transA = true;
916:     transB = false;
917:     if (A->cmap->bs > 0) PetscCall(PetscLayoutSetBlockSize(C->rmap, A->cmap->bs));
918:     if (B->cmap->bs > 0) PetscCall(PetscLayoutSetBlockSize(C->cmap, B->cmap->bs));
919:     break;
920:   case MATPRODUCT_ABt:
921:     transA = false;
922:     transB = true;
923:     if (A->rmap->bs > 0) PetscCall(PetscLayoutSetBlockSize(C->rmap, A->rmap->bs));
924:     if (B->rmap->bs > 0) PetscCall(PetscLayoutSetBlockSize(C->cmap, B->rmap->bs));
925:     break;
926:   default:
927:     SETERRQ(comm, PETSC_ERR_PLIB, "Unsupported product type %s", MatProductTypes[product->type]);
928:   }
929:   PetscCallCXX(product->data = pdata = new MatProductData_SeqAIJKokkos());
930:   pdata->reusesym = product->api_user;

932:   /* TODO: add command line options to select spgemm algorithms */
933:   auto spgemm_alg = KokkosSparse::SPGEMMAlgorithm::SPGEMM_DEFAULT; /* default alg is TPL if enabled, otherwise KK */

935:   /* CUDA-10.2's spgemm has bugs. We prefer the SpGEMMreuse APIs introduced in cuda-11.4 */
936: #if defined(KOKKOSKERNELS_ENABLE_TPL_CUSPARSE)
937:   #if PETSC_PKG_CUDA_VERSION_LT(11, 4, 0)
938:   spgemm_alg = KokkosSparse::SPGEMMAlgorithm::SPGEMM_KK;
939:   #endif
940: #endif
941:   PetscCallCXX(pdata->kh.create_spgemm_handle(spgemm_alg));

943:   PetscCall(PetscLogGpuTimeBegin());
944:   /* TODO: Get rid of the explicit transpose once KK-spgemm implements the transpose option */
945:   if (transA) {
946:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(A, &csrmatA));
947:     transA = false;
948:   }

950:   if (transB) {
951:     PetscCall(MatSeqAIJKokkosGenerateTranspose_Private(B, &csrmatB));
952:     transB = false;
953:   }

955:   PetscCallCXX(KokkosSparse::spgemm_symbolic(pdata->kh, csrmatA, transA, csrmatB, transB, csrmatC));
956:   /* spgemm_symbolic() only populates C's rowmap, but not C's column indices.
957:     So we have to do a fake spgemm_numeric() here to get csrmatC.j_d setup, before
958:     calling new Mat_SeqAIJKokkos().
959:     TODO: Remove the fake spgemm_numeric() after KK fixed this problem.
960:   */
961:   PetscCallCXX(KokkosSparse::spgemm_numeric(pdata->kh, csrmatA, transA, csrmatB, transB, csrmatC));
962: #if PETSC_PKG_KOKKOS_KERNELS_VERSION_LT(4, 0, 0)
963:   /* Query if KK outputs a sorted matrix. If not, we need to sort it */
964:   auto spgemmHandle = pdata->kh.get_spgemm_handle();
965:   if (spgemmHandle->get_sort_option() != 1) PetscCallCXX(sort_crs_matrix(csrmatC)); /* sort_option defaults to -1 in KK!*/
966: #endif
967:   PetscCall(PetscLogGpuTimeEnd());

969:   PetscCallCXX(ckok = new Mat_SeqAIJKokkos(csrmatC));
970:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(C, ckok));
971:   C->product->destroy = MatProductDataDestroy_SeqAIJKokkos;
972:   PetscFunctionReturn(PETSC_SUCCESS);
973: }

975: /* handles sparse matrix matrix ops */
976: static PetscErrorCode MatProductSetFromOptions_SeqAIJKokkos(Mat mat)
977: {
978:   Mat_Product *product = mat->product;
979:   PetscBool    Biskok = PETSC_FALSE, Ciskok = PETSC_TRUE;

981:   PetscFunctionBegin;
982:   MatCheckProduct(mat, 1);
983:   PetscCall(PetscObjectTypeCompare((PetscObject)product->B, MATSEQAIJKOKKOS, &Biskok));
984:   if (product->type == MATPRODUCT_ABC) PetscCall(PetscObjectTypeCompare((PetscObject)product->C, MATSEQAIJKOKKOS, &Ciskok));
985:   if (Biskok && Ciskok) {
986:     switch (product->type) {
987:     case MATPRODUCT_AB:
988:     case MATPRODUCT_AtB:
989:     case MATPRODUCT_ABt:
990:       mat->ops->productsymbolic = MatProductSymbolic_SeqAIJKokkos_SeqAIJKokkos;
991:       break;
992:     case MATPRODUCT_PtAP:
993:     case MATPRODUCT_RARt:
994:     case MATPRODUCT_ABC:
995:       mat->ops->productsymbolic = MatProductSymbolic_ABC_Basic;
996:       break;
997:     default:
998:       break;
999:     }
1000:   } else { /* fallback for AIJ */
1001:     PetscCall(MatProductSetFromOptions_SeqAIJ(mat));
1002:   }
1003:   PetscFunctionReturn(PETSC_SUCCESS);
1004: }

1006: static PetscErrorCode MatScale_SeqAIJKokkos(Mat A, PetscScalar a)
1007: {
1008:   Mat_SeqAIJKokkos *aijkok;

1010:   PetscFunctionBegin;
1011:   PetscCall(PetscLogGpuTimeBegin());
1012:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1013:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1014:   KokkosBlas::scal(PetscGetKokkosExecutionSpace(), aijkok->a_dual.view_device(), a, aijkok->a_dual.view_device());
1015:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1016:   PetscCall(PetscLogGpuFlops(aijkok->a_dual.extent(0)));
1017:   PetscCall(PetscLogGpuTimeEnd());
1018:   PetscFunctionReturn(PETSC_SUCCESS);
1019: }

1021: // add a to A's diagonal (if A is square) or main diagonal (if A is rectangular)
1022: static PetscErrorCode MatShift_SeqAIJKokkos(Mat A, PetscScalar a)
1023: {
1024:   Mat_SeqAIJ *aijseq = static_cast<Mat_SeqAIJ *>(A->data);

1026:   PetscFunctionBegin;
1027:   if (A->assembled && aijseq->diagonaldense) { // no missing diagonals
1028:     PetscInt n = PetscMin(A->rmap->n, A->cmap->n);

1030:     PetscCall(PetscLogGpuTimeBegin());
1031:     PetscCall(MatSeqAIJKokkosSyncDevice(A));
1032:     const auto  aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1033:     const auto &Aa     = aijkok->a_dual.view_device();
1034:     const auto &Adiag  = aijkok->diag_dual.view_device();
1035:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, n), KOKKOS_LAMBDA(const PetscInt i) { Aa(Adiag(i)) += a; }));
1036:     PetscCall(MatSeqAIJKokkosModifyDevice(A));
1037:     PetscCall(PetscLogGpuFlops(n));
1038:     PetscCall(PetscLogGpuTimeEnd());
1039:   } else { // need reassembly, very slow!
1040:     PetscCall(MatShift_Basic(A, a));
1041:   }
1042:   PetscFunctionReturn(PETSC_SUCCESS);
1043: }

1045: static PetscErrorCode MatDiagonalSet_SeqAIJKokkos(Mat Y, Vec D, InsertMode is)
1046: {
1047:   Mat_SeqAIJ *aijseq = static_cast<Mat_SeqAIJ *>(Y->data);

1049:   PetscFunctionBegin;
1050:   if (Y->assembled && aijseq->diagonaldense) { // no missing diagonals
1051:     ConstPetscScalarKokkosView dv;
1052:     PetscInt                   n, nv;

1054:     PetscCall(PetscLogGpuTimeBegin());
1055:     PetscCall(MatSeqAIJKokkosSyncDevice(Y));
1056:     PetscCall(VecGetKokkosView(D, &dv));
1057:     PetscCall(VecGetLocalSize(D, &nv));
1058:     n = PetscMin(Y->rmap->n, Y->cmap->n);
1059:     PetscCheck(n == nv, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_SIZ, "Matrix size and vector size do not match");

1061:     const auto  aijkok = static_cast<Mat_SeqAIJKokkos *>(Y->spptr);
1062:     const auto &Aa     = aijkok->a_dual.view_device();
1063:     const auto &Adiag  = aijkok->diag_dual.view_device();
1064:     PetscCallCXX(Kokkos::parallel_for(
1065:       Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, n), KOKKOS_LAMBDA(const PetscInt i) {
1066:         if (is == INSERT_VALUES) Aa(Adiag(i)) = dv(i);
1067:         else Aa(Adiag(i)) += dv(i);
1068:       }));
1069:     PetscCall(VecRestoreKokkosView(D, &dv));
1070:     PetscCall(MatSeqAIJKokkosModifyDevice(Y));
1071:     PetscCall(PetscLogGpuFlops(n));
1072:     PetscCall(PetscLogGpuTimeEnd());
1073:   } else { // need reassembly, very slow!
1074:     PetscCall(MatDiagonalSet_Default(Y, D, is));
1075:   }
1076:   PetscFunctionReturn(PETSC_SUCCESS);
1077: }

1079: static PetscErrorCode MatDiagonalScale_SeqAIJKokkos(Mat A, Vec ll, Vec rr)
1080: {
1081:   Mat_SeqAIJ                *aijseq = static_cast<Mat_SeqAIJ *>(A->data);
1082:   PetscInt                   m = A->rmap->n, n = A->cmap->n, nz = aijseq->nz;
1083:   ConstPetscScalarKokkosView lv, rv;

1085:   PetscFunctionBegin;
1086:   PetscCall(PetscLogGpuTimeBegin());
1087:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1088:   const auto  aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1089:   const auto &Aa     = aijkok->a_dual.view_device();
1090:   const auto &Ai     = aijkok->i_dual.view_device();
1091:   const auto &Aj     = aijkok->j_dual.view_device();
1092:   if (ll) {
1093:     PetscCall(VecGetLocalSize(ll, &m));
1094:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
1095:     PetscCall(VecGetKokkosView(ll, &lv));
1096:     PetscCallCXX(Kokkos::parallel_for( // for each row
1097:       Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), m, Kokkos::AUTO()), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
1098:         PetscInt i   = t.league_rank(); // row i
1099:         PetscInt len = Ai(i + 1) - Ai(i);
1100:         // scale entries on the row
1101:         Kokkos::parallel_for(Kokkos::TeamThreadRange(t, len), [&](PetscInt j) { Aa(Ai(i) + j) *= lv(i); });
1102:       }));
1103:     PetscCall(VecRestoreKokkosView(ll, &lv));
1104:     PetscCall(PetscLogGpuFlops(nz));
1105:   }
1106:   if (rr) {
1107:     PetscCall(VecGetLocalSize(rr, &n));
1108:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
1109:     PetscCall(VecGetKokkosView(rr, &rv));
1110:     PetscCallCXX(Kokkos::parallel_for( // for each nonzero
1111:       Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, nz), KOKKOS_LAMBDA(const PetscInt k) { Aa(k) *= rv(Aj(k)); }));
1112:     PetscCall(VecRestoreKokkosView(rr, &lv));
1113:     PetscCall(PetscLogGpuFlops(nz));
1114:   }
1115:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1116:   PetscCall(PetscLogGpuTimeEnd());
1117:   PetscFunctionReturn(PETSC_SUCCESS);
1118: }

1120: static PetscErrorCode MatZeroEntries_SeqAIJKokkos(Mat A)
1121: {
1122:   Mat_SeqAIJKokkos *aijkok;

1124:   PetscFunctionBegin;
1125:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1126:   if (aijkok) { /* Only zero the device if data is already there */
1127:     KokkosBlas::fill(PetscGetKokkosExecutionSpace(), aijkok->a_dual.view_device(), 0.0);
1128:     PetscCall(MatSeqAIJKokkosModifyDevice(A));
1129:   } else { /* Might be preallocated but not assembled */
1130:     PetscCall(MatZeroEntries_SeqAIJ(A));
1131:   }
1132:   PetscFunctionReturn(PETSC_SUCCESS);
1133: }

1135: static PetscErrorCode MatGetDiagonal_SeqAIJKokkos(Mat A, Vec x)
1136: {
1137:   Mat_SeqAIJKokkos     *aijkok;
1138:   PetscInt              n;
1139:   PetscScalarKokkosView xv;

1141:   PetscFunctionBegin;
1142:   PetscCall(VecGetLocalSize(x, &n));
1143:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1144:   PetscCheck(A->factortype == MAT_FACTOR_NONE, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatGetDiagonal_SeqAIJKokkos not supported on factored matrices");

1146:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1147:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);

1149:   const auto &Aa    = aijkok->a_dual.view_device();
1150:   const auto &Ai    = aijkok->i_dual.view_device();
1151:   const auto &Adiag = aijkok->diag_dual.view_device();

1153:   PetscCall(VecGetKokkosViewWrite(x, &xv));
1154:   Kokkos::parallel_for(
1155:     Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, n), KOKKOS_LAMBDA(const PetscInt i) {
1156:       if (Adiag(i) < Ai(i + 1)) xv(i) = Aa(Adiag(i));
1157:       else xv(i) = 0;
1158:     });
1159:   PetscCall(VecRestoreKokkosViewWrite(x, &xv));
1160:   PetscFunctionReturn(PETSC_SUCCESS);
1161: }

1163: /* Get a Kokkos View from a mat of type MatSeqAIJKokkos */
1164: PetscErrorCode MatSeqAIJGetKokkosView(Mat A, ConstMatScalarKokkosView *kv)
1165: {
1166:   Mat_SeqAIJKokkos *aijkok;

1168:   PetscFunctionBegin;
1170:   PetscAssertPointer(kv, 2);
1171:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1172:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1173:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1174:   *kv    = aijkok->a_dual.view_device();
1175:   PetscFunctionReturn(PETSC_SUCCESS);
1176: }

1178: PetscErrorCode MatSeqAIJRestoreKokkosView(Mat A, ConstMatScalarKokkosView *kv)
1179: {
1180:   PetscFunctionBegin;
1182:   PetscAssertPointer(kv, 2);
1183:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1184:   PetscFunctionReturn(PETSC_SUCCESS);
1185: }

1187: PetscErrorCode MatSeqAIJGetKokkosView(Mat A, MatScalarKokkosView *kv)
1188: {
1189:   Mat_SeqAIJKokkos *aijkok;

1191:   PetscFunctionBegin;
1193:   PetscAssertPointer(kv, 2);
1194:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1195:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1196:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1197:   *kv    = aijkok->a_dual.view_device();
1198:   PetscFunctionReturn(PETSC_SUCCESS);
1199: }

1201: PetscErrorCode MatSeqAIJRestoreKokkosView(Mat A, MatScalarKokkosView *kv)
1202: {
1203:   PetscFunctionBegin;
1205:   PetscAssertPointer(kv, 2);
1206:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1207:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1208:   PetscFunctionReturn(PETSC_SUCCESS);
1209: }

1211: PetscErrorCode MatSeqAIJGetKokkosViewWrite(Mat A, MatScalarKokkosView *kv)
1212: {
1213:   Mat_SeqAIJKokkos *aijkok;

1215:   PetscFunctionBegin;
1217:   PetscAssertPointer(kv, 2);
1218:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1219:   aijkok = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1220:   *kv    = aijkok->a_dual.view_device();
1221:   PetscFunctionReturn(PETSC_SUCCESS);
1222: }

1224: PetscErrorCode MatSeqAIJRestoreKokkosViewWrite(Mat A, MatScalarKokkosView *kv)
1225: {
1226:   PetscFunctionBegin;
1228:   PetscAssertPointer(kv, 2);
1229:   PetscCheckTypeName(A, MATSEQAIJKOKKOS);
1230:   PetscCall(MatSeqAIJKokkosModifyDevice(A));
1231:   PetscFunctionReturn(PETSC_SUCCESS);
1232: }

1234: PetscErrorCode MatCreateSeqAIJKokkosWithKokkosViews(MPI_Comm comm, PetscInt m, PetscInt n, Kokkos::View<PetscInt *> &i_d, Kokkos::View<PetscInt *> &j_d, Kokkos::View<PetscScalar *> &a_d, Mat *A)
1235: {
1236:   Mat_SeqAIJKokkos *akok;

1238:   PetscFunctionBegin;
1239:   auto exec = PetscGetKokkosExecutionSpace();
1240:   // Create host copies of the input aij
1241:   auto i_h = Kokkos::create_mirror_view_and_copy(HostMirrorMemorySpace(), i_d);
1242:   auto j_h = Kokkos::create_mirror_view_and_copy(HostMirrorMemorySpace(), j_d);
1243:   // Don't copy the vals to the host now
1244:   auto a_h = Kokkos::create_mirror_view(HostMirrorMemorySpace(), a_d);

1246:   MatScalarKokkosDualView a_dual = MatScalarKokkosDualView(a_d, a_h);
1247:   // Note we have modified device data so it will copy lazily
1248:   a_dual.modify_device();
1249:   MatRowMapKokkosDualView i_dual = MatRowMapKokkosDualView(i_d, i_h);
1250:   MatColIdxKokkosDualView j_dual = MatColIdxKokkosDualView(j_d, j_h);

1252:   PetscCallCXX(akok = new Mat_SeqAIJKokkos(m, n, j_dual.extent(0), i_dual, j_dual, a_dual));
1253:   PetscCall(MatCreate(comm, A));
1254:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(*A, akok));
1255:   PetscFunctionReturn(PETSC_SUCCESS);
1256: }

1258: /* Computes Y += alpha X */
1259: static PetscErrorCode MatAXPY_SeqAIJKokkos(Mat Y, PetscScalar alpha, Mat X, MatStructure pattern)
1260: {
1261:   Mat_SeqAIJ              *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;
1262:   Mat_SeqAIJKokkos        *xkok, *ykok, *zkok;
1263:   ConstMatScalarKokkosView Xa;
1264:   MatScalarKokkosView      Ya;
1265:   auto                     exec = PetscGetKokkosExecutionSpace();

1267:   PetscFunctionBegin;
1268:   PetscCheckTypeName(Y, MATSEQAIJKOKKOS);
1269:   PetscCheckTypeName(X, MATSEQAIJKOKKOS);
1270:   PetscCall(MatSeqAIJKokkosSyncDevice(Y));
1271:   PetscCall(MatSeqAIJKokkosSyncDevice(X));
1272:   PetscCall(PetscLogGpuTimeBegin());

1274:   if (pattern != SAME_NONZERO_PATTERN && x->nz == y->nz) {
1275:     PetscBool e;
1276:     PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
1277:     if (e) {
1278:       PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
1279:       if (e) pattern = SAME_NONZERO_PATTERN;
1280:     }
1281:   }

1283:   /* cusparseDcsrgeam2() computes C = alpha A + beta B. If one knew sparsity pattern of C, one can skip
1284:     cusparseScsrgeam2_bufferSizeExt() / cusparseXcsrgeam2Nnz(), and directly call cusparseScsrgeam2().
1285:     If X is SUBSET_NONZERO_PATTERN of Y, we could take advantage of this cusparse feature. However,
1286:     KokkosSparse::spadd(alpha,A,beta,B,C) has symbolic and numeric phases, MatAXPY does not.
1287:   */
1288:   ykok = static_cast<Mat_SeqAIJKokkos *>(Y->spptr);
1289:   xkok = static_cast<Mat_SeqAIJKokkos *>(X->spptr);
1290:   Xa   = xkok->a_dual.view_device();
1291:   Ya   = ykok->a_dual.view_device();

1293:   if (pattern == SAME_NONZERO_PATTERN) {
1294:     KokkosBlas::axpy(exec, alpha, Xa, Ya);
1295:     PetscCall(MatSeqAIJKokkosModifyDevice(Y));
1296:   } else if (pattern == SUBSET_NONZERO_PATTERN) {
1297:     MatRowMapKokkosView Xi = xkok->i_dual.view_device(), Yi = ykok->i_dual.view_device();
1298:     MatColIdxKokkosView Xj = xkok->j_dual.view_device(), Yj = ykok->j_dual.view_device();

1300:     Kokkos::parallel_for(
1301:       Kokkos::TeamPolicy<>(exec, Y->rmap->n, 1), KOKKOS_LAMBDA(const KokkosTeamMemberType &t) {
1302:         PetscInt i = t.league_rank(); // row i
1303:         Kokkos::single(Kokkos::PerTeam(t), [=]() {
1304:           // Only one thread works in a team
1305:           PetscInt p, q = Yi(i);
1306:           for (p = Xi(i); p < Xi(i + 1); p++) {          // For each nonzero on row i of X,
1307:             while (Xj(p) != Yj(q) && q < Yi(i + 1)) q++; // find the matching nonzero on row i of Y.
1308:             if (Xj(p) == Yj(q)) {                        // Found it
1309:               Ya(q) += alpha * Xa(p);
1310:               q++;
1311:             } else {
1312:             // If not found, it indicates the input is wrong (X is not a SUBSET_NONZERO_PATTERN of Y).
1313:             // Just insert a NaN at the beginning of row i if it is not empty, to make the result wrong.
1314: #if PETSC_PKG_KOKKOS_VERSION_GE(3, 7, 0)
1315:               if (Yi(i) != Yi(i + 1)) Ya(Yi(i)) = Kokkos::ArithTraits<PetscScalar>::nan();
1316: #else
1317:               if (Yi(i) != Yi(i + 1)) Ya(Yi(i)) = Kokkos::Experimental::nan("1");
1318: #endif
1319:             }
1320:           }
1321:         });
1322:       });
1323:     PetscCall(MatSeqAIJKokkosModifyDevice(Y));
1324:   } else { // different nonzero patterns
1325:     Mat             Z;
1326:     KokkosCsrMatrix zcsr;
1327:     KernelHandle    kh;
1328:     kh.create_spadd_handle(true); // X, Y are sorted
1329:     KokkosSparse::spadd_symbolic(&kh, xkok->csrmat, ykok->csrmat, zcsr);
1330:     KokkosSparse::spadd_numeric(&kh, alpha, xkok->csrmat, (PetscScalar)1.0, ykok->csrmat, zcsr);
1331:     zkok = new Mat_SeqAIJKokkos(zcsr);
1332:     PetscCall(MatCreateSeqAIJKokkosWithCSRMatrix(PETSC_COMM_SELF, zkok, &Z));
1333:     PetscCall(MatHeaderReplace(Y, &Z));
1334:     kh.destroy_spadd_handle();
1335:   }
1336:   PetscCall(PetscLogGpuTimeEnd());
1337:   PetscCall(PetscLogGpuFlops(xkok->a_dual.extent(0) * 2)); // Because we scaled X and then added it to Y
1338:   PetscFunctionReturn(PETSC_SUCCESS);
1339: }

1341: struct MatCOOStruct_SeqAIJKokkos {
1342:   PetscCount           n;
1343:   PetscCount           Atot;
1344:   PetscInt             nz;
1345:   PetscCountKokkosView jmap;
1346:   PetscCountKokkosView perm;

1348:   MatCOOStruct_SeqAIJKokkos(const MatCOOStruct_SeqAIJ *coo_h)
1349:   {
1350:     nz   = coo_h->nz;
1351:     n    = coo_h->n;
1352:     Atot = coo_h->Atot;
1353:     jmap = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), PetscCountKokkosViewHost(coo_h->jmap, nz + 1));
1354:     perm = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), PetscCountKokkosViewHost(coo_h->perm, Atot));
1355:   }
1356: };

1358: static PetscErrorCode MatCOOStructDestroy_SeqAIJKokkos(void **data)
1359: {
1360:   PetscFunctionBegin;
1361:   PetscCallCXX(delete static_cast<MatCOOStruct_SeqAIJKokkos *>(*data));
1362:   PetscFunctionReturn(PETSC_SUCCESS);
1363: }

1365: static PetscErrorCode MatSetPreallocationCOO_SeqAIJKokkos(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
1366: {
1367:   Mat_SeqAIJKokkos          *akok;
1368:   Mat_SeqAIJ                *aseq;
1369:   PetscContainer             container_h;
1370:   MatCOOStruct_SeqAIJ       *coo_h;
1371:   MatCOOStruct_SeqAIJKokkos *coo_d;

1373:   PetscFunctionBegin;
1374:   PetscCall(MatSetPreallocationCOO_SeqAIJ(mat, coo_n, coo_i, coo_j));
1375:   aseq = static_cast<Mat_SeqAIJ *>(mat->data);
1376:   akok = static_cast<Mat_SeqAIJKokkos *>(mat->spptr);
1377:   delete akok;
1378:   mat->spptr = akok = new Mat_SeqAIJKokkos(mat->rmap->n, mat->cmap->n, aseq, mat->nonzerostate + 1, PETSC_FALSE);
1379:   PetscCall(MatZeroEntries_SeqAIJKokkos(mat));

1381:   // Copy the COO struct to device
1382:   PetscCall(PetscObjectQuery((PetscObject)mat, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container_h));
1383:   PetscCall(PetscContainerGetPointer(container_h, (void **)&coo_h));
1384:   PetscCallCXX(coo_d = new MatCOOStruct_SeqAIJKokkos(coo_h));

1386:   // Put the COO struct in a container and then attach that to the matrix
1387:   PetscCall(PetscObjectContainerCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Device", coo_d, MatCOOStructDestroy_SeqAIJKokkos));
1388:   PetscFunctionReturn(PETSC_SUCCESS);
1389: }

1391: static PetscErrorCode MatSetValuesCOO_SeqAIJKokkos(Mat A, const PetscScalar v[], InsertMode imode)
1392: {
1393:   MatScalarKokkosView        Aa;
1394:   ConstMatScalarKokkosView   kv;
1395:   PetscMemType               memtype;
1396:   PetscContainer             container;
1397:   MatCOOStruct_SeqAIJKokkos *coo;

1399:   PetscFunctionBegin;
1400:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Device", (PetscObject *)&container));
1401:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));

1403:   const auto &n    = coo->n;
1404:   const auto &Annz = coo->nz;
1405:   const auto &jmap = coo->jmap;
1406:   const auto &perm = coo->perm;

1408:   PetscCall(PetscGetMemType(v, &memtype));
1409:   if (PetscMemTypeHost(memtype)) { /* If user gave v[] in host, we might need to copy it to device if any */
1410:     kv = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), ConstMatScalarKokkosViewHost(v, n));
1411:   } else {
1412:     kv = ConstMatScalarKokkosView(v, n); /* Directly use v[]'s memory */
1413:   }

1415:   if (imode == INSERT_VALUES) PetscCall(MatSeqAIJGetKokkosViewWrite(A, &Aa)); /* write matrix values */
1416:   else PetscCall(MatSeqAIJGetKokkosView(A, &Aa));                             /* read & write matrix values */

1418:   PetscCall(PetscLogGpuTimeBegin());
1419:   Kokkos::parallel_for(
1420:     Kokkos::RangePolicy<>(PetscGetKokkosExecutionSpace(), 0, Annz), KOKKOS_LAMBDA(const PetscCount i) {
1421:       PetscScalar sum = 0.0;
1422:       for (PetscCount k = jmap(i); k < jmap(i + 1); k++) sum += kv(perm(k));
1423:       Aa(i) = (imode == INSERT_VALUES ? 0.0 : Aa(i)) + sum;
1424:     });
1425:   PetscCall(PetscLogGpuTimeEnd());

1427:   if (imode == INSERT_VALUES) PetscCall(MatSeqAIJRestoreKokkosViewWrite(A, &Aa));
1428:   else PetscCall(MatSeqAIJRestoreKokkosView(A, &Aa));
1429:   PetscFunctionReturn(PETSC_SUCCESS);
1430: }

1432: static PetscErrorCode MatSetOps_SeqAIJKokkos(Mat A)
1433: {
1434:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1436:   PetscFunctionBegin;
1437:   A->offloadmask = PETSC_OFFLOAD_KOKKOS; /* We do not really use this flag */
1438:   A->boundtocpu  = PETSC_FALSE;

1440:   A->ops->assemblyend               = MatAssemblyEnd_SeqAIJKokkos;
1441:   A->ops->destroy                   = MatDestroy_SeqAIJKokkos;
1442:   A->ops->duplicate                 = MatDuplicate_SeqAIJKokkos;
1443:   A->ops->axpy                      = MatAXPY_SeqAIJKokkos;
1444:   A->ops->scale                     = MatScale_SeqAIJKokkos;
1445:   A->ops->zeroentries               = MatZeroEntries_SeqAIJKokkos;
1446:   A->ops->productsetfromoptions     = MatProductSetFromOptions_SeqAIJKokkos;
1447:   A->ops->mult                      = MatMult_SeqAIJKokkos;
1448:   A->ops->multadd                   = MatMultAdd_SeqAIJKokkos;
1449:   A->ops->multtranspose             = MatMultTranspose_SeqAIJKokkos;
1450:   A->ops->multtransposeadd          = MatMultTransposeAdd_SeqAIJKokkos;
1451:   A->ops->multhermitiantranspose    = MatMultHermitianTranspose_SeqAIJKokkos;
1452:   A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_SeqAIJKokkos;
1453:   A->ops->productnumeric            = MatProductNumeric_SeqAIJKokkos_SeqAIJKokkos;
1454:   A->ops->transpose                 = MatTranspose_SeqAIJKokkos;
1455:   A->ops->setoption                 = MatSetOption_SeqAIJKokkos;
1456:   A->ops->getdiagonal               = MatGetDiagonal_SeqAIJKokkos;
1457:   A->ops->shift                     = MatShift_SeqAIJKokkos;
1458:   A->ops->diagonalset               = MatDiagonalSet_SeqAIJKokkos;
1459:   A->ops->diagonalscale             = MatDiagonalScale_SeqAIJKokkos;
1460:   a->ops->getarray                  = MatSeqAIJGetArray_SeqAIJKokkos;
1461:   a->ops->restorearray              = MatSeqAIJRestoreArray_SeqAIJKokkos;
1462:   a->ops->getarrayread              = MatSeqAIJGetArrayRead_SeqAIJKokkos;
1463:   a->ops->restorearrayread          = MatSeqAIJRestoreArrayRead_SeqAIJKokkos;
1464:   a->ops->getarraywrite             = MatSeqAIJGetArrayWrite_SeqAIJKokkos;
1465:   a->ops->restorearraywrite         = MatSeqAIJRestoreArrayWrite_SeqAIJKokkos;
1466:   a->ops->getcsrandmemtype          = MatSeqAIJGetCSRAndMemType_SeqAIJKokkos;

1468:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJKokkos));
1469:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJKokkos));
1470: #if defined(PETSC_HAVE_HYPRE)
1471:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijkokkos_hypre_C", MatConvert_AIJ_HYPRE));
1472: #endif
1473:   PetscFunctionReturn(PETSC_SUCCESS);
1474: }

1476: /*
1477:    Extract the (prescribled) diagonal blocks of the matrix and then invert them

1479:   Input Parameters:
1480: +  A       - the MATSEQAIJKOKKOS matrix
1481: .  bs      - block sizes in 'csr' format, i.e., the i-th block has size bs(i+1) - bs(i)
1482: .  bs2     - square of block sizes in 'csr' format, i.e., the i-th block should be stored at offset bs2(i) in diagVal[]
1483: .  blkMap  - map row ids to block ids, i.e., row i belongs to the block blkMap(i)
1484: -  work    - a pre-allocated work buffer (as big as diagVal) for use by this routine

1486:   Output Parameter:
1487: .  diagVal - the (pre-allocated) buffer to store the inverted blocks (each block is stored in column-major order)
1488: */
1489: PETSC_INTERN PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJKokkos(Mat A, const PetscIntKokkosView &bs, const PetscIntKokkosView &bs2, const PetscIntKokkosView &blkMap, PetscScalarKokkosView &work, PetscScalarKokkosView &diagVal)
1490: {
1491:   Mat_SeqAIJKokkos *akok    = static_cast<Mat_SeqAIJKokkos *>(A->spptr);
1492:   PetscInt          nblocks = bs.extent(0) - 1;

1494:   PetscFunctionBegin;
1495:   PetscCall(MatSeqAIJKokkosSyncDevice(A)); // Since we'll access A's value on device

1497:   // Pull out the diagonal blocks of the matrix and then invert the blocks
1498:   auto Aa    = akok->a_dual.view_device();
1499:   auto Ai    = akok->i_dual.view_device();
1500:   auto Aj    = akok->j_dual.view_device();
1501:   auto Adiag = akok->diag_dual.view_device();
1502:   // TODO: how to tune the team size?
1503: #if defined(KOKKOS_ENABLE_UNIFIED_MEMORY)
1504:   auto ts = Kokkos::AUTO();
1505: #else
1506:   auto ts = 16; // improved performance 30% over Kokkos::AUTO() with CUDA, but failed with "Kokkos::abort: Requested Team Size is too large!" on CPUs
1507: #endif
1508:   PetscCallCXX(Kokkos::parallel_for(
1509:     Kokkos::TeamPolicy<>(PetscGetKokkosExecutionSpace(), nblocks, ts), KOKKOS_LAMBDA(const KokkosTeamMemberType &teamMember) {
1510:       const PetscInt bid    = teamMember.league_rank();                                                   // block id
1511:       const PetscInt rstart = bs(bid);                                                                    // this block starts from this row
1512:       const PetscInt m      = bs(bid + 1) - bs(bid);                                                      // size of this block
1513:       const auto    &B      = Kokkos::View<PetscScalar **, Kokkos::LayoutLeft>(&diagVal(bs2(bid)), m, m); // column-major order
1514:       const auto    &W      = PetscScalarKokkosView(&work(bs2(bid)), m * m);

1516:       Kokkos::parallel_for(Kokkos::TeamThreadRange(teamMember, m), [=](const PetscInt &r) { // r-th row in B
1517:         PetscInt i = rstart + r;                                                            // i-th row in A

1519:         if (Ai(i) <= Adiag(i) && Adiag(i) < Ai(i + 1)) { // if the diagonal exists (common case)
1520:           PetscInt first = Adiag(i) - r;                 // we start to check nonzeros from here along this row

1522:           for (PetscInt c = 0; c < m; c++) {                   // walk n steps to see what column indices we will meet
1523:             if (first + c < Ai(i) || first + c >= Ai(i + 1)) { // this entry (first+c) is out of range of this row, in other words, its value is zero
1524:               B(r, c) = 0.0;
1525:             } else if (Aj(first + c) == rstart + c) { // this entry is right on the (rstart+c) column
1526:               B(r, c) = Aa(first + c);
1527:             } else { // this entry does not show up in the CSR
1528:               B(r, c) = 0.0;
1529:             }
1530:           }
1531:         } else { // rare case that the diagonal does not exist
1532:           const PetscInt begin = Ai(i);
1533:           const PetscInt end   = Ai(i + 1);
1534:           for (PetscInt c = 0; c < m; c++) B(r, c) = 0.0;
1535:           for (PetscInt j = begin; j < end; j++) { // scan the whole row; could use binary search but this is a rare case so we did not.
1536:             if (rstart <= Aj(j) && Aj(j) < rstart + m) B(r, Aj(j) - rstart) = Aa(j);
1537:             else if (Aj(j) >= rstart + m) break;
1538:           }
1539:         }
1540:       });

1542:       // LU-decompose B (w/o pivoting) and then invert B
1543:       KokkosBatched::TeamLU<KokkosTeamMemberType, KokkosBatched::Algo::LU::Unblocked>::invoke(teamMember, B, 0.0);
1544:       KokkosBatched::TeamInverseLU<KokkosTeamMemberType, KokkosBatched::Algo::InverseLU::Unblocked>::invoke(teamMember, B, W);
1545:     }));
1546:   // PetscLogGpuFlops() is done in the caller PCSetUp_VPBJacobi_Kokkos as we don't want to compute the flops in kernels
1547:   PetscFunctionReturn(PETSC_SUCCESS);
1548: }

1550: PETSC_INTERN PetscErrorCode MatSetSeqAIJKokkosWithCSRMatrix(Mat A, Mat_SeqAIJKokkos *akok)
1551: {
1552:   Mat_SeqAIJ *aseq;
1553:   PetscInt    i, m, n;
1554:   auto        exec = PetscGetKokkosExecutionSpace();

1556:   PetscFunctionBegin;
1557:   PetscCheck(!A->spptr, PETSC_COMM_SELF, PETSC_ERR_PLIB, "A->spptr is supposed to be empty");

1559:   m = akok->nrows();
1560:   n = akok->ncols();
1561:   PetscCall(MatSetSizes(A, m, n, m, n));
1562:   PetscCall(MatSetType(A, MATSEQAIJKOKKOS));

1564:   /* Set up data structures of A as a MATSEQAIJ */
1565:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, MAT_SKIP_ALLOCATION, NULL));
1566:   aseq = (Mat_SeqAIJ *)A->data;

1568:   PetscCallCXX(akok->i_dual.sync_host(exec)); /* We always need sync'ed i, j on host */
1569:   PetscCallCXX(akok->j_dual.sync_host(exec));
1570:   PetscCallCXX(exec.fence());

1572:   aseq->i       = akok->i_host_data();
1573:   aseq->j       = akok->j_host_data();
1574:   aseq->a       = akok->a_host_data();
1575:   aseq->nonew   = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
1576:   aseq->free_a  = PETSC_FALSE;
1577:   aseq->free_ij = PETSC_FALSE;
1578:   aseq->nz      = akok->nnz();
1579:   aseq->maxnz   = aseq->nz;

1581:   PetscCall(PetscMalloc1(m, &aseq->imax));
1582:   PetscCall(PetscMalloc1(m, &aseq->ilen));
1583:   for (i = 0; i < m; i++) aseq->ilen[i] = aseq->imax[i] = aseq->i[i + 1] - aseq->i[i];

1585:   /* It is critical to set the nonzerostate, as we use it to check if sparsity pattern (hence data) has changed on host in MatAssemblyEnd */
1586:   akok->nonzerostate = A->nonzerostate;
1587:   A->spptr           = akok; /* Set A->spptr before MatAssembly so that A->spptr won't be allocated again there */
1588:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1589:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1590:   PetscFunctionReturn(PETSC_SUCCESS);
1591: }

1593: PETSC_INTERN PetscErrorCode MatSeqAIJKokkosGetKokkosCsrMatrix(Mat A, KokkosCsrMatrix *csr)
1594: {
1595:   PetscFunctionBegin;
1596:   PetscCall(MatSeqAIJKokkosSyncDevice(A));
1597:   *csr = static_cast<Mat_SeqAIJKokkos *>(A->spptr)->csrmat;
1598:   PetscFunctionReturn(PETSC_SUCCESS);
1599: }

1601: PETSC_INTERN PetscErrorCode MatCreateSeqAIJKokkosWithKokkosCsrMatrix(MPI_Comm comm, KokkosCsrMatrix csr, Mat *A)
1602: {
1603:   Mat_SeqAIJKokkos *akok;

1605:   PetscFunctionBegin;
1606:   PetscCallCXX(akok = new Mat_SeqAIJKokkos(csr));
1607:   PetscCall(MatCreate(comm, A));
1608:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(*A, akok));
1609:   PetscFunctionReturn(PETSC_SUCCESS);
1610: }

1612: /* Crete a SEQAIJKOKKOS matrix with a Mat_SeqAIJKokkos data structure

1614:    Note we have names like MatSeqAIJSetPreallocationCSR, so I use capitalized CSR
1615:  */
1616: PETSC_INTERN PetscErrorCode MatCreateSeqAIJKokkosWithCSRMatrix(MPI_Comm comm, Mat_SeqAIJKokkos *akok, Mat *A)
1617: {
1618:   PetscFunctionBegin;
1619:   PetscCall(MatCreate(comm, A));
1620:   PetscCall(MatSetSeqAIJKokkosWithCSRMatrix(*A, akok));
1621:   PetscFunctionReturn(PETSC_SUCCESS);
1622: }

1624: /*@C
1625:   MatCreateSeqAIJKokkos - Creates a sparse matrix in `MATSEQAIJKOKKOS` (compressed row) format
1626:   (the default parallel PETSc format). This matrix will ultimately be handled by
1627:   Kokkos for calculations.

1629:   Collective

1631:   Input Parameters:
1632: + comm - MPI communicator, set to `PETSC_COMM_SELF`
1633: . m    - number of rows
1634: . n    - number of columns
1635: . nz   - number of nonzeros per row (same for all rows), ignored if `nnz` is provided
1636: - nnz  - array containing the number of nonzeros in the various rows (possibly different for each row) or `NULL`

1638:   Output Parameter:
1639: . A - the matrix

1641:   Level: intermediate

1643:   Notes:
1644:   It is recommended that one use the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
1645:   MatXXXXSetPreallocation() paradgm instead of this routine directly.
1646:   [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]

1648:   The AIJ format, also called
1649:   compressed row storage, is fully compatible with standard Fortran
1650:   storage.  That is, the stored row and column indices can begin at
1651:   either one (as in Fortran) or zero.

1653:   Specify the preallocated storage with either `nz` or `nnz` (not both).
1654:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
1655:   allocation.

1657: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
1658: @*/
1659: PetscErrorCode MatCreateSeqAIJKokkos(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
1660: {
1661:   PetscFunctionBegin;
1662:   PetscCall(PetscKokkosInitializeCheck());
1663:   PetscCall(MatCreate(comm, A));
1664:   PetscCall(MatSetSizes(*A, m, n, m, n));
1665:   PetscCall(MatSetType(*A, MATSEQAIJKOKKOS));
1666:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, (PetscInt *)nnz));
1667:   PetscFunctionReturn(PETSC_SUCCESS);
1668: }

1670: // After matrix numeric factorization, there are still steps to do before triangular solve can be called.
1671: // For example, for transpose solve, we might need to compute the transpose matrices if the solver does not support it (such as KK, while cusparse does).
1672: // In cusparse, one has to call cusparseSpSV_analysis() with updated triangular matrix values before calling cusparseSpSV_solve().
1673: // Simiarily, in KK sptrsv_symbolic() has to be called before sptrsv_solve(). We put these steps in MatSeqAIJKokkos{Transpose}SolveCheck.
1674: static PetscErrorCode MatSeqAIJKokkosSolveCheck(Mat A)
1675: {
1676:   Mat_SeqAIJKokkosTriFactors *factors   = (Mat_SeqAIJKokkosTriFactors *)A->spptr;
1677:   const PetscBool             has_lower = factors->iL_d.extent(0) ? PETSC_TRUE : PETSC_FALSE; // false with Choleksy
1678:   const PetscBool             has_upper = factors->iU_d.extent(0) ? PETSC_TRUE : PETSC_FALSE; // true with LU and Choleksy

1680:   PetscFunctionBegin;
1681:   if (!factors->sptrsv_symbolic_completed) { // If sptrsv_symbolic was not called yet
1682:     if (has_upper) PetscCallCXX(sptrsv_symbolic(&factors->khU, factors->iU_d, factors->jU_d, factors->aU_d));
1683:     if (has_lower) PetscCallCXX(sptrsv_symbolic(&factors->khL, factors->iL_d, factors->jL_d, factors->aL_d));
1684:     factors->sptrsv_symbolic_completed = PETSC_TRUE;
1685:   }
1686:   PetscFunctionReturn(PETSC_SUCCESS);
1687: }

1689: static PetscErrorCode MatSeqAIJKokkosTransposeSolveCheck(Mat A)
1690: {
1691:   const PetscInt              n         = A->rmap->n;
1692:   Mat_SeqAIJKokkosTriFactors *factors   = (Mat_SeqAIJKokkosTriFactors *)A->spptr;
1693:   const PetscBool             has_lower = factors->iL_d.extent(0) ? PETSC_TRUE : PETSC_FALSE; // false with Choleksy
1694:   const PetscBool             has_upper = factors->iU_d.extent(0) ? PETSC_TRUE : PETSC_FALSE; // true with LU or Choleksy

1696:   PetscFunctionBegin;
1697:   if (!factors->transpose_updated) {
1698:     if (has_upper) {
1699:       if (!factors->iUt_d.extent(0)) {                                 // Allocate Ut on device if not yet
1700:         factors->iUt_d = MatRowMapKokkosView("factors->iUt_d", n + 1); // KK requires this view to be initialized to 0 to call transpose_matrix
1701:         factors->jUt_d = MatColIdxKokkosView(NoInit("factors->jUt_d"), factors->jU_d.extent(0));
1702:         factors->aUt_d = MatScalarKokkosView(NoInit("factors->aUt_d"), factors->aU_d.extent(0));
1703:       }

1705:       if (factors->iU_h.extent(0)) { // If U is on host (factorization was done on host), we also compute the transpose on host
1706:         if (!factors->U) {
1707:           Mat_SeqAIJ *seq;

1709:           PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, n, n, factors->iU_h.data(), factors->jU_h.data(), factors->aU_h.data(), &factors->U));
1710:           PetscCall(MatTranspose(factors->U, MAT_INITIAL_MATRIX, &factors->Ut));

1712:           seq            = static_cast<Mat_SeqAIJ *>(factors->Ut->data);
1713:           factors->iUt_h = MatRowMapKokkosViewHost(seq->i, n + 1);
1714:           factors->jUt_h = MatColIdxKokkosViewHost(seq->j, seq->nz);
1715:           factors->aUt_h = MatScalarKokkosViewHost(seq->a, seq->nz);
1716:         } else {
1717:           PetscCall(MatTranspose(factors->U, MAT_REUSE_MATRIX, &factors->Ut)); // Matrix Ut' data is aliased with {i, j, a}Ut_h
1718:         }
1719:         // Copy Ut from host to device
1720:         PetscCallCXX(Kokkos::deep_copy(factors->iUt_d, factors->iUt_h));
1721:         PetscCallCXX(Kokkos::deep_copy(factors->jUt_d, factors->jUt_h));
1722:         PetscCallCXX(Kokkos::deep_copy(factors->aUt_d, factors->aUt_h));
1723:       } else { // If U was computed on device, we also compute the transpose there
1724:         // TODO: KK transpose_matrix() does not sort column indices, however cusparse requires sorted indices. We have to sort the indices, until KK provides finer control options.
1725:         PetscCallCXX(transpose_matrix<ConstMatRowMapKokkosView, ConstMatColIdxKokkosView, ConstMatScalarKokkosView, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView, MatRowMapKokkosView, DefaultExecutionSpace>(n, n, factors->iU_d,
1726:                                                                                                                                                                                                                                factors->jU_d, factors->aU_d,
1727:                                                                                                                                                                                                                                factors->iUt_d, factors->jUt_d,
1728:                                                                                                                                                                                                                                factors->aUt_d));
1729:         PetscCallCXX(sort_crs_matrix<DefaultExecutionSpace, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView>(factors->iUt_d, factors->jUt_d, factors->aUt_d));
1730:       }
1731:       PetscCallCXX(sptrsv_symbolic(&factors->khUt, factors->iUt_d, factors->jUt_d, factors->aUt_d));
1732:     }

1734:     // do the same for L with LU
1735:     if (has_lower) {
1736:       if (!factors->iLt_d.extent(0)) {                                 // Allocate Lt on device if not yet
1737:         factors->iLt_d = MatRowMapKokkosView("factors->iLt_d", n + 1); // KK requires this view to be initialized to 0 to call transpose_matrix
1738:         factors->jLt_d = MatColIdxKokkosView(NoInit("factors->jLt_d"), factors->jL_d.extent(0));
1739:         factors->aLt_d = MatScalarKokkosView(NoInit("factors->aLt_d"), factors->aL_d.extent(0));
1740:       }

1742:       if (factors->iL_h.extent(0)) { // If L is on host, we also compute the transpose on host
1743:         if (!factors->L) {
1744:           Mat_SeqAIJ *seq;

1746:           PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, n, n, factors->iL_h.data(), factors->jL_h.data(), factors->aL_h.data(), &factors->L));
1747:           PetscCall(MatTranspose(factors->L, MAT_INITIAL_MATRIX, &factors->Lt));

1749:           seq            = static_cast<Mat_SeqAIJ *>(factors->Lt->data);
1750:           factors->iLt_h = MatRowMapKokkosViewHost(seq->i, n + 1);
1751:           factors->jLt_h = MatColIdxKokkosViewHost(seq->j, seq->nz);
1752:           factors->aLt_h = MatScalarKokkosViewHost(seq->a, seq->nz);
1753:         } else {
1754:           PetscCall(MatTranspose(factors->L, MAT_REUSE_MATRIX, &factors->Lt)); // Matrix Lt' data is aliased with {i, j, a}Lt_h
1755:         }
1756:         // Copy Lt from host to device
1757:         PetscCallCXX(Kokkos::deep_copy(factors->iLt_d, factors->iLt_h));
1758:         PetscCallCXX(Kokkos::deep_copy(factors->jLt_d, factors->jLt_h));
1759:         PetscCallCXX(Kokkos::deep_copy(factors->aLt_d, factors->aLt_h));
1760:       } else { // If L was computed on device, we also compute the transpose there
1761:         // TODO: KK transpose_matrix() does not sort column indices, however cusparse requires sorted indices. We have to sort the indices, until KK provides finer control options.
1762:         PetscCallCXX(transpose_matrix<ConstMatRowMapKokkosView, ConstMatColIdxKokkosView, ConstMatScalarKokkosView, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView, MatRowMapKokkosView, DefaultExecutionSpace>(n, n, factors->iL_d,
1763:                                                                                                                                                                                                                                factors->jL_d, factors->aL_d,
1764:                                                                                                                                                                                                                                factors->iLt_d, factors->jLt_d,
1765:                                                                                                                                                                                                                                factors->aLt_d));
1766:         PetscCallCXX(sort_crs_matrix<DefaultExecutionSpace, MatRowMapKokkosView, MatColIdxKokkosView, MatScalarKokkosView>(factors->iLt_d, factors->jLt_d, factors->aLt_d));
1767:       }
1768:       PetscCallCXX(sptrsv_symbolic(&factors->khLt, factors->iLt_d, factors->jLt_d, factors->aLt_d));
1769:     }

1771:     factors->transpose_updated = PETSC_TRUE;
1772:   }
1773:   PetscFunctionReturn(PETSC_SUCCESS);
1774: }

1776: // Solve Ax = b, with RAR = U^T D U, where R is the row (and col) permutation matrix on A.
1777: // R is represented by rowperm in factors. If R is identity (i.e, no reordering), then rowperm is empty.
1778: static PetscErrorCode MatSolve_SeqAIJKokkos_Cholesky(Mat A, Vec bb, Vec xx)
1779: {
1780:   auto                        exec    = PetscGetKokkosExecutionSpace();
1781:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;
1782:   PetscInt                    m       = A->rmap->n;
1783:   PetscScalarKokkosView       D       = factors->D_d;
1784:   PetscScalarKokkosView       X, Y, B; // alias
1785:   ConstPetscScalarKokkosView  b;
1786:   PetscScalarKokkosView       x;
1787:   PetscIntKokkosView         &rowperm  = factors->rowperm;
1788:   PetscBool                   identity = rowperm.extent(0) ? PETSC_FALSE : PETSC_TRUE;

1790:   PetscFunctionBegin;
1791:   PetscCall(PetscLogGpuTimeBegin());
1792:   PetscCall(MatSeqAIJKokkosSolveCheck(A));          // for UX = T
1793:   PetscCall(MatSeqAIJKokkosTransposeSolveCheck(A)); // for U^T Y = B
1794:   PetscCall(VecGetKokkosView(bb, &b));
1795:   PetscCall(VecGetKokkosViewWrite(xx, &x));

1797:   // Solve U^T Y = B
1798:   if (identity) { // Reorder b with the row permutation
1799:     B = PetscScalarKokkosView(const_cast<PetscScalar *>(b.data()), b.extent(0));
1800:     Y = factors->workVector;
1801:   } else {
1802:     B = factors->workVector;
1803:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { B(i) = b(rowperm(i)); }));
1804:     Y = x;
1805:   }
1806:   PetscCallCXX(sptrsv_solve(exec, &factors->khUt, factors->iUt_d, factors->jUt_d, factors->aUt_d, B, Y));

1808:   // Solve diag(D) Y' = Y.
1809:   // Actually just do Y' = Y*D since D is already inverted in MatCholeskyFactorNumeric_SeqAIJ(). It is basically a vector element-wise multiplication.
1810:   PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { Y(i) = Y(i) * D(i); }));

1812:   // Solve UX = Y
1813:   if (identity) {
1814:     X = x;
1815:   } else {
1816:     X = factors->workVector; // B is not needed anymore
1817:   }
1818:   PetscCallCXX(sptrsv_solve(exec, &factors->khU, factors->iU_d, factors->jU_d, factors->aU_d, Y, X));

1820:   // Reorder X with the inverse column (row) permutation
1821:   if (!identity) {
1822:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { x(rowperm(i)) = X(i); }));
1823:   }

1825:   PetscCall(VecRestoreKokkosView(bb, &b));
1826:   PetscCall(VecRestoreKokkosViewWrite(xx, &x));
1827:   PetscCall(PetscLogGpuTimeEnd());
1828:   PetscFunctionReturn(PETSC_SUCCESS);
1829: }

1831: // Solve Ax = b, with RAC = LU, where R and C are row and col permutation matrices on A respectively.
1832: // R and C are represented by rowperm and colperm in factors.
1833: // If R or C is identity (i.e, no reordering), then rowperm or colperm is empty.
1834: static PetscErrorCode MatSolve_SeqAIJKokkos_LU(Mat A, Vec bb, Vec xx)
1835: {
1836:   auto                        exec    = PetscGetKokkosExecutionSpace();
1837:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;
1838:   PetscInt                    m       = A->rmap->n;
1839:   PetscScalarKokkosView       X, Y, B; // alias
1840:   ConstPetscScalarKokkosView  b;
1841:   PetscScalarKokkosView       x;
1842:   PetscIntKokkosView         &rowperm      = factors->rowperm;
1843:   PetscIntKokkosView         &colperm      = factors->colperm;
1844:   PetscBool                   row_identity = rowperm.extent(0) ? PETSC_FALSE : PETSC_TRUE;
1845:   PetscBool                   col_identity = colperm.extent(0) ? PETSC_FALSE : PETSC_TRUE;

1847:   PetscFunctionBegin;
1848:   PetscCall(PetscLogGpuTimeBegin());
1849:   PetscCall(MatSeqAIJKokkosSolveCheck(A));
1850:   PetscCall(VecGetKokkosView(bb, &b));
1851:   PetscCall(VecGetKokkosViewWrite(xx, &x));

1853:   // Solve L Y = B (i.e., L (U C^- x) = R b).  R b indicates applying the row permutation on b.
1854:   if (row_identity) {
1855:     B = PetscScalarKokkosView(const_cast<PetscScalar *>(b.data()), b.extent(0));
1856:     Y = factors->workVector;
1857:   } else {
1858:     B = factors->workVector;
1859:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { B(i) = b(rowperm(i)); }));
1860:     Y = x;
1861:   }
1862:   PetscCallCXX(sptrsv_solve(exec, &factors->khL, factors->iL_d, factors->jL_d, factors->aL_d, B, Y));

1864:   // Solve U C^- x = Y
1865:   if (col_identity) {
1866:     X = x;
1867:   } else {
1868:     X = factors->workVector;
1869:   }
1870:   PetscCallCXX(sptrsv_solve(exec, &factors->khU, factors->iU_d, factors->jU_d, factors->aU_d, Y, X));

1872:   // x = C X; Reorder X with the inverse col permutation
1873:   if (!col_identity) {
1874:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { x(colperm(i)) = X(i); }));
1875:   }

1877:   PetscCall(VecRestoreKokkosView(bb, &b));
1878:   PetscCall(VecRestoreKokkosViewWrite(xx, &x));
1879:   PetscCall(PetscLogGpuTimeEnd());
1880:   PetscFunctionReturn(PETSC_SUCCESS);
1881: }

1883: // Solve A^T x = b, with RAC = LU, where R and C are row and col permutation matrices on A respectively.
1884: // R and C are represented by rowperm and colperm in factors.
1885: // If R or C is identity (i.e, no reordering), then rowperm or colperm is empty.
1886: // A = R^-1 L U C^-1, so A^T = C^-T U^T L^T R^-T. But since C^- = C^T, R^- = R^T, we have A^T = C U^T L^T R.
1887: static PetscErrorCode MatSolveTranspose_SeqAIJKokkos_LU(Mat A, Vec bb, Vec xx)
1888: {
1889:   auto                        exec    = PetscGetKokkosExecutionSpace();
1890:   Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)A->spptr;
1891:   PetscInt                    m       = A->rmap->n;
1892:   PetscScalarKokkosView       X, Y, B; // alias
1893:   ConstPetscScalarKokkosView  b;
1894:   PetscScalarKokkosView       x;
1895:   PetscIntKokkosView         &rowperm      = factors->rowperm;
1896:   PetscIntKokkosView         &colperm      = factors->colperm;
1897:   PetscBool                   row_identity = rowperm.extent(0) ? PETSC_FALSE : PETSC_TRUE;
1898:   PetscBool                   col_identity = colperm.extent(0) ? PETSC_FALSE : PETSC_TRUE;

1900:   PetscFunctionBegin;
1901:   PetscCall(PetscLogGpuTimeBegin());
1902:   PetscCall(MatSeqAIJKokkosTransposeSolveCheck(A)); // Update L^T, U^T if needed, and do sptrsv symbolic for L^T, U^T
1903:   PetscCall(VecGetKokkosView(bb, &b));
1904:   PetscCall(VecGetKokkosViewWrite(xx, &x));

1906:   // Solve U^T Y = B (i.e., U^T (L^T R x) = C^- b).  Note C^- b = C^T b, which means applying the column permutation on b.
1907:   if (col_identity) { // Reorder b with the col permutation
1908:     B = PetscScalarKokkosView(const_cast<PetscScalar *>(b.data()), b.extent(0));
1909:     Y = factors->workVector;
1910:   } else {
1911:     B = factors->workVector;
1912:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { B(i) = b(colperm(i)); }));
1913:     Y = x;
1914:   }
1915:   PetscCallCXX(sptrsv_solve(exec, &factors->khUt, factors->iUt_d, factors->jUt_d, factors->aUt_d, B, Y));

1917:   // Solve L^T X = Y
1918:   if (row_identity) {
1919:     X = x;
1920:   } else {
1921:     X = factors->workVector;
1922:   }
1923:   PetscCallCXX(sptrsv_solve(exec, &factors->khLt, factors->iLt_d, factors->jLt_d, factors->aLt_d, Y, X));

1925:   // x = R^- X = R^T X; Reorder X with the inverse row permutation
1926:   if (!row_identity) {
1927:     PetscCallCXX(Kokkos::parallel_for(Kokkos::RangePolicy<>(exec, 0, m), KOKKOS_LAMBDA(const PetscInt i) { x(rowperm(i)) = X(i); }));
1928:   }

1930:   PetscCall(VecRestoreKokkosView(bb, &b));
1931:   PetscCall(VecRestoreKokkosViewWrite(xx, &x));
1932:   PetscCall(PetscLogGpuTimeEnd());
1933:   PetscFunctionReturn(PETSC_SUCCESS);
1934: }

1936: static PetscErrorCode MatLUFactorNumeric_SeqAIJKokkos(Mat B, Mat A, const MatFactorInfo *info)
1937: {
1938:   PetscFunctionBegin;
1939:   PetscCall(MatSeqAIJKokkosSyncHost(A));
1940:   PetscCall(MatLUFactorNumeric_SeqAIJ(B, A, info));

1942:   if (!info->solveonhost) { // if solve on host, then we don't need to copy L, U to device
1943:     Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)B->spptr;
1944:     Mat_SeqAIJ                 *b       = static_cast<Mat_SeqAIJ *>(B->data);
1945:     const PetscInt             *Bi = b->i, *Bj = b->j, *Bdiag = b->diag;
1946:     const MatScalar            *Ba = b->a;
1947:     PetscInt                    m = B->rmap->n, n = B->cmap->n;

1949:     if (factors->iL_h.extent(0) == 0) { // Allocate memory and copy the L, U structure for the first time
1950:       // Allocate memory and copy the structure
1951:       factors->iL_h = MatRowMapKokkosViewHost(NoInit("iL_h"), m + 1);
1952:       factors->jL_h = MatColIdxKokkosViewHost(NoInit("jL_h"), (Bi[m] - Bi[0]) + m); // + the diagonal entries
1953:       factors->aL_h = MatScalarKokkosViewHost(NoInit("aL_h"), (Bi[m] - Bi[0]) + m);
1954:       factors->iU_h = MatRowMapKokkosViewHost(NoInit("iU_h"), m + 1);
1955:       factors->jU_h = MatColIdxKokkosViewHost(NoInit("jU_h"), (Bdiag[0] - Bdiag[m]));
1956:       factors->aU_h = MatScalarKokkosViewHost(NoInit("aU_h"), (Bdiag[0] - Bdiag[m]));

1958:       PetscInt *Li = factors->iL_h.data();
1959:       PetscInt *Lj = factors->jL_h.data();
1960:       PetscInt *Ui = factors->iU_h.data();
1961:       PetscInt *Uj = factors->jU_h.data();

1963:       Li[0] = Ui[0] = 0;
1964:       for (PetscInt i = 0; i < m; i++) {
1965:         PetscInt llen = Bi[i + 1] - Bi[i];       // exclusive of the diagonal entry
1966:         PetscInt ulen = Bdiag[i] - Bdiag[i + 1]; // inclusive of the diagonal entry

1968:         PetscArraycpy(Lj + Li[i], Bj + Bi[i], llen); // entries of L on the left of the diagonal
1969:         Lj[Li[i] + llen] = i;                        // diagonal entry of L

1971:         Uj[Ui[i]] = i;                                                  // diagonal entry of U
1972:         PetscArraycpy(Uj + Ui[i] + 1, Bj + Bdiag[i + 1] + 1, ulen - 1); // entries of U on  the right of the diagonal

1974:         Li[i + 1] = Li[i] + llen + 1;
1975:         Ui[i + 1] = Ui[i] + ulen;
1976:       }

1978:       factors->iL_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), factors->iL_h);
1979:       factors->jL_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), factors->jL_h);
1980:       factors->iU_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), factors->iU_h);
1981:       factors->jU_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), factors->jU_h);
1982:       factors->aL_d = Kokkos::create_mirror_view(DefaultMemorySpace(), factors->aL_h);
1983:       factors->aU_d = Kokkos::create_mirror_view(DefaultMemorySpace(), factors->aU_h);

1985:       // Copy row/col permutation to device
1986:       IS        rowperm = ((Mat_SeqAIJ *)B->data)->row;
1987:       PetscBool row_identity;
1988:       PetscCall(ISIdentity(rowperm, &row_identity));
1989:       if (!row_identity) {
1990:         const PetscInt *ip;

1992:         PetscCall(ISGetIndices(rowperm, &ip));
1993:         factors->rowperm = PetscIntKokkosView(NoInit("rowperm"), m);
1994:         PetscCallCXX(Kokkos::deep_copy(factors->rowperm, PetscIntKokkosViewHost(const_cast<PetscInt *>(ip), m)));
1995:         PetscCall(ISRestoreIndices(rowperm, &ip));
1996:         PetscCall(PetscLogCpuToGpu(m * sizeof(PetscInt)));
1997:       }

1999:       IS        colperm = ((Mat_SeqAIJ *)B->data)->col;
2000:       PetscBool col_identity;
2001:       PetscCall(ISIdentity(colperm, &col_identity));
2002:       if (!col_identity) {
2003:         const PetscInt *ip;

2005:         PetscCall(ISGetIndices(colperm, &ip));
2006:         factors->colperm = PetscIntKokkosView(NoInit("colperm"), n);
2007:         PetscCallCXX(Kokkos::deep_copy(factors->colperm, PetscIntKokkosViewHost(const_cast<PetscInt *>(ip), n)));
2008:         PetscCall(ISRestoreIndices(colperm, &ip));
2009:         PetscCall(PetscLogCpuToGpu(n * sizeof(PetscInt)));
2010:       }

2012:       /* Create sptrsv handles for L, U and their transpose */
2013: #if defined(KOKKOSKERNELS_ENABLE_TPL_CUSPARSE)
2014:       auto sptrsv_alg = SPTRSVAlgorithm::SPTRSV_CUSPARSE;
2015: #else
2016:       auto sptrsv_alg = SPTRSVAlgorithm::SEQLVLSCHD_TP1;
2017: #endif
2018:       factors->khL.create_sptrsv_handle(sptrsv_alg, m, true /* L is lower tri */);
2019:       factors->khU.create_sptrsv_handle(sptrsv_alg, m, false /* U is not lower tri */);
2020:       factors->khLt.create_sptrsv_handle(sptrsv_alg, m, false /* L^T is not lower tri */);
2021:       factors->khUt.create_sptrsv_handle(sptrsv_alg, m, true /* U^T is lower tri */);
2022:     }

2024:     // Copy the value
2025:     for (PetscInt i = 0; i < m; i++) {
2026:       PetscInt        llen = Bi[i + 1] - Bi[i];
2027:       PetscInt        ulen = Bdiag[i] - Bdiag[i + 1];
2028:       const PetscInt *Li   = factors->iL_h.data();
2029:       const PetscInt *Ui   = factors->iU_h.data();

2031:       PetscScalar *La = factors->aL_h.data();
2032:       PetscScalar *Ua = factors->aU_h.data();

2034:       PetscArraycpy(La + Li[i], Ba + Bi[i], llen); // entries of L
2035:       La[Li[i] + llen] = 1.0;                      // diagonal entry

2037:       Ua[Ui[i]] = 1.0 / Ba[Bdiag[i]];                                 // diagonal entry
2038:       PetscArraycpy(Ua + Ui[i] + 1, Ba + Bdiag[i + 1] + 1, ulen - 1); // entries of U
2039:     }

2041:     PetscCallCXX(Kokkos::deep_copy(factors->aL_d, factors->aL_h));
2042:     PetscCallCXX(Kokkos::deep_copy(factors->aU_d, factors->aU_h));
2043:     // Once the factors' values have changed, we need to update their transpose and redo sptrsv symbolic
2044:     factors->transpose_updated         = PETSC_FALSE;
2045:     factors->sptrsv_symbolic_completed = PETSC_FALSE;

2047:     B->ops->solve          = MatSolve_SeqAIJKokkos_LU;
2048:     B->ops->solvetranspose = MatSolveTranspose_SeqAIJKokkos_LU;
2049:   }

2051:   B->ops->matsolve          = NULL;
2052:   B->ops->matsolvetranspose = NULL;
2053:   PetscFunctionReturn(PETSC_SUCCESS);
2054: }

2056: static PetscErrorCode MatILUFactorNumeric_SeqAIJKokkos_ILU0(Mat B, Mat A, const MatFactorInfo *info)
2057: {
2058:   Mat_SeqAIJKokkos           *aijkok   = (Mat_SeqAIJKokkos *)A->spptr;
2059:   Mat_SeqAIJKokkosTriFactors *factors  = (Mat_SeqAIJKokkosTriFactors *)B->spptr;
2060:   PetscInt                    fill_lev = info->levels;

2062:   PetscFunctionBegin;
2063:   PetscCall(PetscLogGpuTimeBegin());
2064:   PetscCheck(!info->factoronhost, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "MatFactorInfo.factoronhost should be false");
2065:   PetscCall(MatSeqAIJKokkosSyncDevice(A));

2067:   auto a_d = aijkok->a_dual.view_device();
2068:   auto i_d = aijkok->i_dual.view_device();
2069:   auto j_d = aijkok->j_dual.view_device();

2071:   PetscCallCXX(spiluk_numeric(&factors->kh, fill_lev, i_d, j_d, a_d, factors->iL_d, factors->jL_d, factors->aL_d, factors->iU_d, factors->jU_d, factors->aU_d));

2073:   B->assembled              = PETSC_TRUE;
2074:   B->preallocated           = PETSC_TRUE;
2075:   B->ops->solve             = MatSolve_SeqAIJKokkos_LU;
2076:   B->ops->solvetranspose    = MatSolveTranspose_SeqAIJKokkos_LU;
2077:   B->ops->matsolve          = NULL;
2078:   B->ops->matsolvetranspose = NULL;

2080:   /* Once the factors' value changed, we need to update their transpose and sptrsv handle */
2081:   factors->transpose_updated         = PETSC_FALSE;
2082:   factors->sptrsv_symbolic_completed = PETSC_FALSE;
2083:   /* TODO: log flops, but how to know that? */
2084:   PetscCall(PetscLogGpuTimeEnd());
2085:   PetscFunctionReturn(PETSC_SUCCESS);
2086: }

2088: // Use KK's spiluk_symbolic() to do ILU0 symbolic factorization, with no row/col reordering
2089: static PetscErrorCode MatILUFactorSymbolic_SeqAIJKokkos_ILU0(Mat B, Mat A, IS, IS, const MatFactorInfo *info)
2090: {
2091:   Mat_SeqAIJKokkos           *aijkok;
2092:   Mat_SeqAIJ                 *b;
2093:   Mat_SeqAIJKokkosTriFactors *factors  = (Mat_SeqAIJKokkosTriFactors *)B->spptr;
2094:   PetscInt                    fill_lev = info->levels;
2095:   PetscInt                    nnzA     = ((Mat_SeqAIJ *)A->data)->nz, nnzL, nnzU;
2096:   PetscInt                    n        = A->rmap->n;

2098:   PetscFunctionBegin;
2099:   PetscCheck(!info->factoronhost, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "MatFactorInfo's factoronhost should be false as we are doing it on device right now");
2100:   PetscCall(MatSeqAIJKokkosSyncDevice(A));

2102:   /* Create a spiluk handle and then do symbolic factorization */
2103:   nnzL = nnzU = PetscRealIntMultTruncate(info->fill, nnzA);
2104:   factors->kh.create_spiluk_handle(SPILUKAlgorithm::SEQLVLSCHD_TP1, n, nnzL, nnzU);

2106:   auto spiluk_handle = factors->kh.get_spiluk_handle();

2108:   Kokkos::realloc(factors->iL_d, n + 1); /* Free old arrays and realloc */
2109:   Kokkos::realloc(factors->jL_d, spiluk_handle->get_nnzL());
2110:   Kokkos::realloc(factors->iU_d, n + 1);
2111:   Kokkos::realloc(factors->jU_d, spiluk_handle->get_nnzU());

2113:   aijkok   = (Mat_SeqAIJKokkos *)A->spptr;
2114:   auto i_d = aijkok->i_dual.view_device();
2115:   auto j_d = aijkok->j_dual.view_device();
2116:   PetscCallCXX(spiluk_symbolic(&factors->kh, fill_lev, i_d, j_d, factors->iL_d, factors->jL_d, factors->iU_d, factors->jU_d));
2117:   /* TODO: if spiluk_symbolic is asynchronous, do we need to sync before calling get_nnzL()? */

2119:   Kokkos::resize(factors->jL_d, spiluk_handle->get_nnzL()); /* Shrink or expand, and retain old value */
2120:   Kokkos::resize(factors->jU_d, spiluk_handle->get_nnzU());
2121:   Kokkos::realloc(factors->aL_d, spiluk_handle->get_nnzL()); /* No need to retain old value */
2122:   Kokkos::realloc(factors->aU_d, spiluk_handle->get_nnzU());

2124:   /* TODO: add options to select sptrsv algorithms */
2125:   /* Create sptrsv handles for L, U and their transpose */
2126: #if defined(KOKKOSKERNELS_ENABLE_TPL_CUSPARSE)
2127:   auto sptrsv_alg = SPTRSVAlgorithm::SPTRSV_CUSPARSE;
2128: #else
2129:   auto sptrsv_alg = SPTRSVAlgorithm::SEQLVLSCHD_TP1;
2130: #endif

2132:   factors->khL.create_sptrsv_handle(sptrsv_alg, n, true /* L is lower tri */);
2133:   factors->khU.create_sptrsv_handle(sptrsv_alg, n, false /* U is not lower tri */);
2134:   factors->khLt.create_sptrsv_handle(sptrsv_alg, n, false /* L^T is not lower tri */);
2135:   factors->khUt.create_sptrsv_handle(sptrsv_alg, n, true /* U^T is lower tri */);

2137:   /* Fill fields of the factor matrix B */
2138:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(B, MAT_SKIP_ALLOCATION, NULL));
2139:   b     = (Mat_SeqAIJ *)B->data;
2140:   b->nz = b->maxnz          = spiluk_handle->get_nnzL() + spiluk_handle->get_nnzU();
2141:   B->info.fill_ratio_given  = info->fill;
2142:   B->info.fill_ratio_needed = nnzA > 0 ? ((PetscReal)b->nz) / ((PetscReal)nnzA) : 1.0;

2144:   B->ops->lufactornumeric = MatILUFactorNumeric_SeqAIJKokkos_ILU0;
2145:   PetscFunctionReturn(PETSC_SUCCESS);
2146: }

2148: static PetscErrorCode MatLUFactorSymbolic_SeqAIJKokkos(Mat B, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
2149: {
2150:   PetscFunctionBegin;
2151:   PetscCall(MatLUFactorSymbolic_SeqAIJ(B, A, isrow, iscol, info));
2152:   PetscCheck(!B->spptr, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Expected a NULL spptr");
2153:   PetscCallCXX(B->spptr = new Mat_SeqAIJKokkosTriFactors(B->rmap->n));
2154:   B->ops->lufactornumeric = MatLUFactorNumeric_SeqAIJKokkos;
2155:   PetscFunctionReturn(PETSC_SUCCESS);
2156: }

2158: static PetscErrorCode MatILUFactorSymbolic_SeqAIJKokkos(Mat B, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
2159: {
2160:   PetscBool row_identity = PETSC_FALSE, col_identity = PETSC_FALSE;

2162:   PetscFunctionBegin;
2163:   if (!info->factoronhost) {
2164:     PetscCall(ISIdentity(isrow, &row_identity));
2165:     PetscCall(ISIdentity(iscol, &col_identity));
2166:   }

2168:   PetscCheck(!B->spptr, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Expected a NULL spptr");
2169:   PetscCallCXX(B->spptr = new Mat_SeqAIJKokkosTriFactors(B->rmap->n));

2171:   if (!info->factoronhost && !info->levels && row_identity && col_identity) { // if level 0 and no reordering
2172:     PetscCall(MatILUFactorSymbolic_SeqAIJKokkos_ILU0(B, A, isrow, iscol, info));
2173:   } else {
2174:     PetscCall(MatILUFactorSymbolic_SeqAIJ(B, A, isrow, iscol, info)); // otherwise, use PETSc's ILU on host
2175:     B->ops->lufactornumeric = MatLUFactorNumeric_SeqAIJKokkos;
2176:   }
2177:   PetscFunctionReturn(PETSC_SUCCESS);
2178: }

2180: static PetscErrorCode MatCholeskyFactorNumeric_SeqAIJKokkos(Mat B, Mat A, const MatFactorInfo *info)
2181: {
2182:   PetscFunctionBegin;
2183:   PetscCall(MatSeqAIJKokkosSyncHost(A));
2184:   PetscCall(MatCholeskyFactorNumeric_SeqAIJ(B, A, info));

2186:   if (!info->solveonhost) { // if solve on host, then we don't need to copy L, U to device
2187:     Mat_SeqAIJKokkosTriFactors *factors = (Mat_SeqAIJKokkosTriFactors *)B->spptr;
2188:     Mat_SeqAIJ                 *b       = static_cast<Mat_SeqAIJ *>(B->data);
2189:     const PetscInt             *Bi = b->i, *Bj = b->j, *Bdiag = b->diag;
2190:     const MatScalar            *Ba = b->a;
2191:     PetscInt                    m  = B->rmap->n;

2193:     if (factors->iU_h.extent(0) == 0) { // First time of numeric factorization
2194:       // Allocate memory and copy the structure
2195:       factors->iU_h = PetscIntKokkosViewHost(const_cast<PetscInt *>(Bi), m + 1); // wrap Bi as iU_h
2196:       factors->jU_h = MatColIdxKokkosViewHost(NoInit("jU_h"), Bi[m]);
2197:       factors->aU_h = MatScalarKokkosViewHost(NoInit("aU_h"), Bi[m]);
2198:       factors->D_h  = MatScalarKokkosViewHost(NoInit("D_h"), m);
2199:       factors->aU_d = Kokkos::create_mirror_view(DefaultMemorySpace(), factors->aU_h);
2200:       factors->D_d  = Kokkos::create_mirror_view(DefaultMemorySpace(), factors->D_h);

2202:       // Build jU_h from the skewed Aj
2203:       PetscInt *Uj = factors->jU_h.data();
2204:       for (PetscInt i = 0; i < m; i++) {
2205:         PetscInt ulen = Bi[i + 1] - Bi[i];
2206:         Uj[Bi[i]]     = i;                                              // diagonal entry
2207:         PetscCall(PetscArraycpy(Uj + Bi[i] + 1, Bj + Bi[i], ulen - 1)); // entries of U on the right of the diagonal
2208:       }

2210:       // Copy iU, jU to device
2211:       PetscCallCXX(factors->iU_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), factors->iU_h));
2212:       PetscCallCXX(factors->jU_d = Kokkos::create_mirror_view_and_copy(DefaultMemorySpace(), factors->jU_h));

2214:       // Copy row/col permutation to device
2215:       IS        rowperm = ((Mat_SeqAIJ *)B->data)->row;
2216:       PetscBool row_identity;
2217:       PetscCall(ISIdentity(rowperm, &row_identity));
2218:       if (!row_identity) {
2219:         const PetscInt *ip;

2221:         PetscCall(ISGetIndices(rowperm, &ip));
2222:         PetscCallCXX(factors->rowperm = PetscIntKokkosView(NoInit("rowperm"), m));
2223:         PetscCallCXX(Kokkos::deep_copy(factors->rowperm, PetscIntKokkosViewHost(const_cast<PetscInt *>(ip), m)));
2224:         PetscCall(ISRestoreIndices(rowperm, &ip));
2225:         PetscCall(PetscLogCpuToGpu(m * sizeof(PetscInt)));
2226:       }

2228:       // Create sptrsv handles for U and U^T
2229: #if defined(KOKKOSKERNELS_ENABLE_TPL_CUSPARSE)
2230:       auto sptrsv_alg = SPTRSVAlgorithm::SPTRSV_CUSPARSE;
2231: #else
2232:       auto sptrsv_alg = SPTRSVAlgorithm::SEQLVLSCHD_TP1;
2233: #endif
2234:       factors->khU.create_sptrsv_handle(sptrsv_alg, m, false /* U is not lower tri */);
2235:       factors->khUt.create_sptrsv_handle(sptrsv_alg, m, true /* U^T is lower tri */);
2236:     }
2237:     // These pointers were set MatCholeskyFactorNumeric_SeqAIJ(), so we always need to update them
2238:     B->ops->solve          = MatSolve_SeqAIJKokkos_Cholesky;
2239:     B->ops->solvetranspose = MatSolve_SeqAIJKokkos_Cholesky;

2241:     // Copy the value
2242:     PetscScalar *Ua = factors->aU_h.data();
2243:     PetscScalar *D  = factors->D_h.data();
2244:     for (PetscInt i = 0; i < m; i++) {
2245:       D[i]      = Ba[Bdiag[i]];     // actually Aa[Adiag[i]] is the inverse of the diagonal
2246:       Ua[Bi[i]] = (PetscScalar)1.0; // set the unit diagonal for U
2247:       for (PetscInt k = 0; k < Bi[i + 1] - Bi[i] - 1; k++) Ua[Bi[i] + 1 + k] = -Ba[Bi[i] + k];
2248:     }
2249:     PetscCallCXX(Kokkos::deep_copy(factors->aU_d, factors->aU_h));
2250:     PetscCallCXX(Kokkos::deep_copy(factors->D_d, factors->D_h));

2252:     factors->sptrsv_symbolic_completed = PETSC_FALSE; // When numeric value changed, we must do these again
2253:     factors->transpose_updated         = PETSC_FALSE;
2254:   }

2256:   B->ops->matsolve          = NULL;
2257:   B->ops->matsolvetranspose = NULL;
2258:   PetscFunctionReturn(PETSC_SUCCESS);
2259: }

2261: static PetscErrorCode MatICCFactorSymbolic_SeqAIJKokkos(Mat B, Mat A, IS perm, const MatFactorInfo *info)
2262: {
2263:   PetscFunctionBegin;
2264:   if (info->solveonhost) {
2265:     // If solve on host, we have to change the type, as eventually we need to call MatSolve_SeqSBAIJ_1_NaturalOrdering() etc.
2266:     PetscCall(MatSetType(B, MATSEQSBAIJ));
2267:     PetscCall(MatSeqSBAIJSetPreallocation(B, 1, MAT_SKIP_ALLOCATION, NULL));
2268:   }

2270:   PetscCall(MatICCFactorSymbolic_SeqAIJ(B, A, perm, info));

2272:   if (!info->solveonhost) {
2273:     // If solve on device, B is still a MATSEQAIJKOKKOS, so we are good to allocate B->spptr
2274:     PetscCheck(!B->spptr, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Expected a NULL spptr");
2275:     PetscCallCXX(B->spptr = new Mat_SeqAIJKokkosTriFactors(B->rmap->n));
2276:     B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqAIJKokkos;
2277:   }
2278:   PetscFunctionReturn(PETSC_SUCCESS);
2279: }

2281: static PetscErrorCode MatCholeskyFactorSymbolic_SeqAIJKokkos(Mat B, Mat A, IS perm, const MatFactorInfo *info)
2282: {
2283:   PetscFunctionBegin;
2284:   if (info->solveonhost) {
2285:     // If solve on host, we have to change the type, as eventually we need to call MatSolve_SeqSBAIJ_1_NaturalOrdering() etc.
2286:     PetscCall(MatSetType(B, MATSEQSBAIJ));
2287:     PetscCall(MatSeqSBAIJSetPreallocation(B, 1, MAT_SKIP_ALLOCATION, NULL));
2288:   }

2290:   PetscCall(MatCholeskyFactorSymbolic_SeqAIJ(B, A, perm, info)); // it sets B's two ISes ((Mat_SeqAIJ*)B->data)->{row, col} to perm

2292:   if (!info->solveonhost) {
2293:     // If solve on device, B is still a MATSEQAIJKOKKOS, so we are good to allocate B->spptr
2294:     PetscCheck(!B->spptr, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Expected a NULL spptr");
2295:     PetscCallCXX(B->spptr = new Mat_SeqAIJKokkosTriFactors(B->rmap->n));
2296:     B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqAIJKokkos;
2297:   }
2298:   PetscFunctionReturn(PETSC_SUCCESS);
2299: }

2301: // The _Kokkos suffix means we will use Kokkos as a solver for the SeqAIJKokkos matrix
2302: static PetscErrorCode MatFactorGetSolverType_SeqAIJKokkos_Kokkos(Mat A, MatSolverType *type)
2303: {
2304:   PetscFunctionBegin;
2305:   *type = MATSOLVERKOKKOS;
2306:   PetscFunctionReturn(PETSC_SUCCESS);
2307: }

2309: /*MC
2310:   MATSOLVERKOKKOS = "Kokkos" - A matrix solver type providing triangular solvers for sequential matrices
2311:   on a single GPU of type, `MATSEQAIJKOKKOS`, `MATAIJKOKKOS`.

2313:   Level: beginner

2315: .seealso: [](ch_matrices), `Mat`, `PCFactorSetMatSolverType()`, `MatSolverType`, `MatCreateSeqAIJKokkos()`, `MATAIJKOKKOS`, `MatKokkosSetFormat()`, `MatKokkosStorageFormat`, `MatKokkosFormatOperation`
2316: M*/
2317: PETSC_EXTERN PetscErrorCode MatGetFactor_SeqAIJKokkos_Kokkos(Mat A, MatFactorType ftype, Mat *B) /* MatGetFactor_<MatType>_<MatSolverType> */
2318: {
2319:   PetscInt n = A->rmap->n;
2320:   MPI_Comm comm;

2322:   PetscFunctionBegin;
2323:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
2324:   PetscCall(MatCreate(comm, B));
2325:   PetscCall(MatSetSizes(*B, n, n, n, n));
2326:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2327:   (*B)->factortype = ftype;
2328:   PetscCall(MatSetType(*B, MATSEQAIJKOKKOS));
2329:   PetscCall(MatSeqAIJSetPreallocation(*B, MAT_SKIP_ALLOCATION, NULL));
2330:   PetscCheck(!(*B)->spptr, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Expected a NULL spptr");

2332:   if (ftype == MAT_FACTOR_LU || ftype == MAT_FACTOR_ILU || ftype == MAT_FACTOR_ILUDT) {
2333:     (*B)->ops->lufactorsymbolic  = MatLUFactorSymbolic_SeqAIJKokkos;
2334:     (*B)->ops->ilufactorsymbolic = MatILUFactorSymbolic_SeqAIJKokkos;
2335:     PetscCall(PetscStrallocpy(MATORDERINGND, (char **)&(*B)->preferredordering[MAT_FACTOR_LU]));
2336:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_ILU]));
2337:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_ILUDT]));
2338:   } else if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
2339:     (*B)->ops->iccfactorsymbolic      = MatICCFactorSymbolic_SeqAIJKokkos;
2340:     (*B)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqAIJKokkos;
2341:     PetscCall(PetscStrallocpy(MATORDERINGND, (char **)&(*B)->preferredordering[MAT_FACTOR_CHOLESKY]));
2342:     PetscCall(PetscStrallocpy(MATORDERINGNATURAL, (char **)&(*B)->preferredordering[MAT_FACTOR_ICC]));
2343:   } else SETERRQ(comm, PETSC_ERR_SUP, "MatFactorType %s is not supported by MatType SeqAIJKokkos", MatFactorTypes[ftype]);

2345:   // The factorization can use the ordering provided in MatLUFactorSymbolic(), MatCholeskyFactorSymbolic() etc, though we do it on host
2346:   (*B)->canuseordering = PETSC_TRUE;
2347:   PetscCall(PetscObjectComposeFunction((PetscObject)*B, "MatFactorGetSolverType_C", MatFactorGetSolverType_SeqAIJKokkos_Kokkos));
2348:   PetscFunctionReturn(PETSC_SUCCESS);
2349: }

2351: PETSC_INTERN PetscErrorCode MatSolverTypeRegister_Kokkos(void)
2352: {
2353:   PetscFunctionBegin;
2354:   PetscCall(MatSolverTypeRegister(MATSOLVERKOKKOS, MATSEQAIJKOKKOS, MAT_FACTOR_LU, MatGetFactor_SeqAIJKokkos_Kokkos));
2355:   PetscCall(MatSolverTypeRegister(MATSOLVERKOKKOS, MATSEQAIJKOKKOS, MAT_FACTOR_CHOLESKY, MatGetFactor_SeqAIJKokkos_Kokkos));
2356:   PetscCall(MatSolverTypeRegister(MATSOLVERKOKKOS, MATSEQAIJKOKKOS, MAT_FACTOR_ILU, MatGetFactor_SeqAIJKokkos_Kokkos));
2357:   PetscCall(MatSolverTypeRegister(MATSOLVERKOKKOS, MATSEQAIJKOKKOS, MAT_FACTOR_ICC, MatGetFactor_SeqAIJKokkos_Kokkos));
2358:   PetscFunctionReturn(PETSC_SUCCESS);
2359: }

2361: /* Utility to print out a KokkosCsrMatrix for debugging */
2362: PETSC_INTERN PetscErrorCode PrintCsrMatrix(const KokkosCsrMatrix &csrmat)
2363: {
2364:   const auto        &iv = Kokkos::create_mirror_view_and_copy(HostMirrorMemorySpace(), csrmat.graph.row_map);
2365:   const auto        &jv = Kokkos::create_mirror_view_and_copy(HostMirrorMemorySpace(), csrmat.graph.entries);
2366:   const auto        &av = Kokkos::create_mirror_view_and_copy(HostMirrorMemorySpace(), csrmat.values);
2367:   const PetscInt    *i  = iv.data();
2368:   const PetscInt    *j  = jv.data();
2369:   const PetscScalar *a  = av.data();
2370:   PetscInt           m = csrmat.numRows(), n = csrmat.numCols(), nnz = csrmat.nnz();

2372:   PetscFunctionBegin;
2373:   PetscCall(PetscPrintf(PETSC_COMM_SELF, "%" PetscInt_FMT " x %" PetscInt_FMT " SeqAIJKokkos, with %" PetscInt_FMT " nonzeros\n", m, n, nnz));
2374:   for (PetscInt k = 0; k < m; k++) {
2375:     PetscCall(PetscPrintf(PETSC_COMM_SELF, "%" PetscInt_FMT ": ", k));
2376:     for (PetscInt p = i[k]; p < i[k + 1]; p++) PetscCall(PetscPrintf(PETSC_COMM_SELF, "%" PetscInt_FMT "(%.1f), ", j[p], (double)PetscRealPart(a[p])));
2377:     PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n"));
2378:   }
2379:   PetscFunctionReturn(PETSC_SUCCESS);
2380: }