Actual source code: mpibaij.c

  1: #include <../src/mat/impls/baij/mpi/mpibaij.h>

  3: #include <petsc/private/hashseti.h>
  4: #include <petscblaslapack.h>
  5: #include <petscsf.h>

  7: static PetscErrorCode MatDestroy_MPIBAIJ(Mat mat)
  8: {
  9:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;

 11:   PetscFunctionBegin;
 12:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows=%" PetscInt_FMT ",Cols=%" PetscInt_FMT, mat->rmap->N, mat->cmap->N));
 13:   PetscCall(MatStashDestroy_Private(&mat->stash));
 14:   PetscCall(MatStashDestroy_Private(&mat->bstash));
 15:   PetscCall(MatDestroy(&baij->A));
 16:   PetscCall(MatDestroy(&baij->B));
 17: #if defined(PETSC_USE_CTABLE)
 18:   PetscCall(PetscHMapIDestroy(&baij->colmap));
 19: #else
 20:   PetscCall(PetscFree(baij->colmap));
 21: #endif
 22:   PetscCall(PetscFree(baij->garray));
 23:   PetscCall(VecDestroy(&baij->lvec));
 24:   PetscCall(VecScatterDestroy(&baij->Mvctx));
 25:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));
 26:   PetscCall(PetscFree(baij->barray));
 27:   PetscCall(PetscFree2(baij->hd, baij->ht));
 28:   PetscCall(PetscFree(baij->rangebs));
 29:   PetscCall(PetscFree(mat->data));

 31:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
 32:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatStoreValues_C", NULL));
 33:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatRetrieveValues_C", NULL));
 34:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIBAIJSetPreallocation_C", NULL));
 35:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIBAIJSetPreallocationCSR_C", NULL));
 36:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDiagonalScaleLocal_C", NULL));
 37:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSetHashTableFactor_C", NULL));
 38:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpisbaij_C", NULL));
 39:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpiadj_C", NULL));
 40:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpiaij_C", NULL));
 41: #if defined(PETSC_HAVE_HYPRE)
 42:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_hypre_C", NULL));
 43: #endif
 44:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_is_C", NULL));
 45:   PetscFunctionReturn(PETSC_SUCCESS);
 46: }

 48: /* defines MatSetValues_MPI_Hash(), MatAssemblyBegin_MPI_Hash(), and  MatAssemblyEnd_MPI_Hash() */
 49: #define TYPE BAIJ
 50: #include "../src/mat/impls/aij/mpi/mpihashmat.h"
 51: #undef TYPE

 53: #if defined(PETSC_HAVE_HYPRE)
 54: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat, MatType, MatReuse, Mat *);
 55: #endif

 57: static PetscErrorCode MatGetRowMaxAbs_MPIBAIJ(Mat A, Vec v, PetscInt idx[])
 58: {
 59:   Mat_MPIBAIJ       *a = (Mat_MPIBAIJ *)A->data;
 60:   PetscInt           i, *idxb = NULL, m = A->rmap->n, bs = A->cmap->bs;
 61:   PetscScalar       *vv;
 62:   Vec                vB, vA;
 63:   const PetscScalar *va, *vb;

 65:   PetscFunctionBegin;
 66:   PetscCall(MatCreateVecs(a->A, NULL, &vA));
 67:   PetscCall(MatGetRowMaxAbs(a->A, vA, idx));

 69:   PetscCall(VecGetArrayRead(vA, &va));
 70:   if (idx) {
 71:     for (i = 0; i < m; i++) {
 72:       if (PetscAbsScalar(va[i])) idx[i] += A->cmap->rstart;
 73:     }
 74:   }

 76:   PetscCall(MatCreateVecs(a->B, NULL, &vB));
 77:   PetscCall(PetscMalloc1(m, &idxb));
 78:   PetscCall(MatGetRowMaxAbs(a->B, vB, idxb));

 80:   PetscCall(VecGetArrayWrite(v, &vv));
 81:   PetscCall(VecGetArrayRead(vB, &vb));
 82:   for (i = 0; i < m; i++) {
 83:     if (PetscAbsScalar(va[i]) < PetscAbsScalar(vb[i])) {
 84:       vv[i] = vb[i];
 85:       if (idx) idx[i] = bs * a->garray[idxb[i] / bs] + (idxb[i] % bs);
 86:     } else {
 87:       vv[i] = va[i];
 88:       if (idx && PetscAbsScalar(va[i]) == PetscAbsScalar(vb[i]) && idxb[i] != -1 && idx[i] > bs * a->garray[idxb[i] / bs] + (idxb[i] % bs)) idx[i] = bs * a->garray[idxb[i] / bs] + (idxb[i] % bs);
 89:     }
 90:   }
 91:   PetscCall(VecRestoreArrayWrite(v, &vv));
 92:   PetscCall(VecRestoreArrayRead(vA, &va));
 93:   PetscCall(VecRestoreArrayRead(vB, &vb));
 94:   PetscCall(PetscFree(idxb));
 95:   PetscCall(VecDestroy(&vA));
 96:   PetscCall(VecDestroy(&vB));
 97:   PetscFunctionReturn(PETSC_SUCCESS);
 98: }

100: static PetscErrorCode MatGetRowSumAbs_MPIBAIJ(Mat A, Vec v)
101: {
102:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
103:   Vec          vB, vA;

105:   PetscFunctionBegin;
106:   PetscCall(MatCreateVecs(a->A, NULL, &vA));
107:   PetscCall(MatGetRowSumAbs(a->A, vA));
108:   PetscCall(MatCreateVecs(a->B, NULL, &vB));
109:   PetscCall(MatGetRowSumAbs(a->B, vB));
110:   PetscCall(VecAXPY(vA, 1.0, vB));
111:   PetscCall(VecDestroy(&vB));
112:   PetscCall(VecCopy(vA, v));
113:   PetscCall(VecDestroy(&vA));
114:   PetscFunctionReturn(PETSC_SUCCESS);
115: }

117: static PetscErrorCode MatStoreValues_MPIBAIJ(Mat mat)
118: {
119:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)mat->data;

121:   PetscFunctionBegin;
122:   PetscCall(MatStoreValues(aij->A));
123:   PetscCall(MatStoreValues(aij->B));
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: static PetscErrorCode MatRetrieveValues_MPIBAIJ(Mat mat)
128: {
129:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)mat->data;

131:   PetscFunctionBegin;
132:   PetscCall(MatRetrieveValues(aij->A));
133:   PetscCall(MatRetrieveValues(aij->B));
134:   PetscFunctionReturn(PETSC_SUCCESS);
135: }

137: /*
138:      Local utility routine that creates a mapping from the global column
139:    number to the local number in the off-diagonal part of the local
140:    storage of the matrix.  This is done in a non scalable way since the
141:    length of colmap equals the global matrix length.
142: */
143: PetscErrorCode MatCreateColmap_MPIBAIJ_Private(Mat mat)
144: {
145:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
146:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ *)baij->B->data;
147:   PetscInt     nbs = B->nbs, i, bs = mat->rmap->bs;

149:   PetscFunctionBegin;
150: #if defined(PETSC_USE_CTABLE)
151:   PetscCall(PetscHMapICreateWithSize(baij->nbs, &baij->colmap));
152:   for (i = 0; i < nbs; i++) PetscCall(PetscHMapISet(baij->colmap, baij->garray[i] + 1, i * bs + 1));
153: #else
154:   PetscCall(PetscCalloc1(baij->Nbs + 1, &baij->colmap));
155:   for (i = 0; i < nbs; i++) baij->colmap[baij->garray[i]] = i * bs + 1;
156: #endif
157:   PetscFunctionReturn(PETSC_SUCCESS);
158: }

160: #define MatSetValues_SeqBAIJ_A_Private(row, col, value, addv, orow, ocol) \
161:   do { \
162:     brow = row / bs; \
163:     rp   = PetscSafePointerPlusOffset(aj, ai[brow]); \
164:     ap   = PetscSafePointerPlusOffset(aa, bs2 * ai[brow]); \
165:     rmax = aimax[brow]; \
166:     nrow = ailen[brow]; \
167:     bcol = col / bs; \
168:     ridx = row % bs; \
169:     cidx = col % bs; \
170:     low  = 0; \
171:     high = nrow; \
172:     while (high - low > 3) { \
173:       t = (low + high) / 2; \
174:       if (rp[t] > bcol) high = t; \
175:       else low = t; \
176:     } \
177:     for (_i = low; _i < high; _i++) { \
178:       if (rp[_i] > bcol) break; \
179:       if (rp[_i] == bcol) { \
180:         bap = ap + bs2 * _i + bs * cidx + ridx; \
181:         if (addv == ADD_VALUES) *bap += value; \
182:         else *bap = value; \
183:         goto a_noinsert; \
184:       } \
185:     } \
186:     if (a->nonew == 1) goto a_noinsert; \
187:     PetscCheck(a->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
188:     MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, aimax, a->nonew, MatScalar); \
189:     N = nrow++ - 1; \
190:     /* shift up all the later entries in this row */ \
191:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
192:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
193:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
194:     rp[_i]                          = bcol; \
195:     ap[bs2 * _i + bs * cidx + ridx] = value; \
196:   a_noinsert:; \
197:     ailen[brow] = nrow; \
198:   } while (0)

200: #define MatSetValues_SeqBAIJ_B_Private(row, col, value, addv, orow, ocol) \
201:   do { \
202:     brow = row / bs; \
203:     rp   = PetscSafePointerPlusOffset(bj, bi[brow]); \
204:     ap   = PetscSafePointerPlusOffset(ba, bs2 * bi[brow]); \
205:     rmax = bimax[brow]; \
206:     nrow = bilen[brow]; \
207:     bcol = col / bs; \
208:     ridx = row % bs; \
209:     cidx = col % bs; \
210:     low  = 0; \
211:     high = nrow; \
212:     while (high - low > 3) { \
213:       t = (low + high) / 2; \
214:       if (rp[t] > bcol) high = t; \
215:       else low = t; \
216:     } \
217:     for (_i = low; _i < high; _i++) { \
218:       if (rp[_i] > bcol) break; \
219:       if (rp[_i] == bcol) { \
220:         bap = ap + bs2 * _i + bs * cidx + ridx; \
221:         if (addv == ADD_VALUES) *bap += value; \
222:         else *bap = value; \
223:         goto b_noinsert; \
224:       } \
225:     } \
226:     if (b->nonew == 1) goto b_noinsert; \
227:     PetscCheck(b->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column  (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
228:     MatSeqXAIJReallocateAIJ(B, b->mbs, bs2, nrow, brow, bcol, rmax, ba, bi, bj, rp, ap, bimax, b->nonew, MatScalar); \
229:     N = nrow++ - 1; \
230:     /* shift up all the later entries in this row */ \
231:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
232:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
233:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
234:     rp[_i]                          = bcol; \
235:     ap[bs2 * _i + bs * cidx + ridx] = value; \
236:   b_noinsert:; \
237:     bilen[brow] = nrow; \
238:   } while (0)

240: PetscErrorCode MatSetValues_MPIBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
241: {
242:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
243:   MatScalar    value;
244:   PetscBool    roworiented = baij->roworiented;
245:   PetscInt     i, j, row, col;
246:   PetscInt     rstart_orig = mat->rmap->rstart;
247:   PetscInt     rend_orig = mat->rmap->rend, cstart_orig = mat->cmap->rstart;
248:   PetscInt     cend_orig = mat->cmap->rend, bs = mat->rmap->bs;

250:   /* Some Variables required in the macro */
251:   Mat          A     = baij->A;
252:   Mat_SeqBAIJ *a     = (Mat_SeqBAIJ *)A->data;
253:   PetscInt    *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
254:   MatScalar   *aa = a->a;

256:   Mat          B     = baij->B;
257:   Mat_SeqBAIJ *b     = (Mat_SeqBAIJ *)B->data;
258:   PetscInt    *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j;
259:   MatScalar   *ba = b->a;

261:   PetscInt  *rp, ii, nrow, _i, rmax, N, brow, bcol;
262:   PetscInt   low, high, t, ridx, cidx, bs2 = a->bs2;
263:   MatScalar *ap, *bap;

265:   PetscFunctionBegin;
266:   for (i = 0; i < m; i++) {
267:     if (im[i] < 0) continue;
268:     PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
269:     if (im[i] >= rstart_orig && im[i] < rend_orig) {
270:       row = im[i] - rstart_orig;
271:       for (j = 0; j < n; j++) {
272:         if (in[j] >= cstart_orig && in[j] < cend_orig) {
273:           col = in[j] - cstart_orig;
274:           if (roworiented) value = v[i * n + j];
275:           else value = v[i + j * m];
276:           MatSetValues_SeqBAIJ_A_Private(row, col, value, addv, im[i], in[j]);
277:         } else if (in[j] < 0) {
278:           continue;
279:         } else {
280:           PetscCheck(in[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
281:           if (mat->was_assembled) {
282:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
283: #if defined(PETSC_USE_CTABLE)
284:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] / bs + 1, 0, &col));
285:             col = col - 1;
286: #else
287:             col = baij->colmap[in[j] / bs] - 1;
288: #endif
289:             if (col < 0 && !((Mat_SeqBAIJ *)baij->B->data)->nonew) {
290:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
291:               col = in[j];
292:               /* Reinitialize the variables required by MatSetValues_SeqBAIJ_B_Private() */
293:               B     = baij->B;
294:               b     = (Mat_SeqBAIJ *)B->data;
295:               bimax = b->imax;
296:               bi    = b->i;
297:               bilen = b->ilen;
298:               bj    = b->j;
299:               ba    = b->a;
300:             } else {
301:               PetscCheck(col >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
302:               col += in[j] % bs;
303:             }
304:           } else col = in[j];
305:           if (roworiented) value = v[i * n + j];
306:           else value = v[i + j * m];
307:           MatSetValues_SeqBAIJ_B_Private(row, col, value, addv, im[i], in[j]);
308:           /* PetscCall(MatSetValues_SeqBAIJ(baij->B,1,&row,1,&col,&value,addv)); */
309:         }
310:       }
311:     } else {
312:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
313:       if (!baij->donotstash) {
314:         mat->assembled = PETSC_FALSE;
315:         if (roworiented) {
316:           PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, PETSC_FALSE));
317:         } else {
318:           PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, PETSC_FALSE));
319:         }
320:       }
321:     }
322:   }
323:   PetscFunctionReturn(PETSC_SUCCESS);
324: }

326: static inline PetscErrorCode MatSetValuesBlocked_SeqBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
327: {
328:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ *)A->data;
329:   PetscInt          *rp, low, high, t, ii, jj, nrow, i, rmax, N;
330:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
331:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
332:   PetscBool          roworiented = a->roworiented;
333:   const PetscScalar *value       = v;
334:   MatScalar         *ap, *aa = a->a, *bap;

336:   PetscFunctionBegin;
337:   rp    = aj + ai[row];
338:   ap    = aa + bs2 * ai[row];
339:   rmax  = imax[row];
340:   nrow  = ailen[row];
341:   value = v;
342:   low   = 0;
343:   high  = nrow;
344:   while (high - low > 7) {
345:     t = (low + high) / 2;
346:     if (rp[t] > col) high = t;
347:     else low = t;
348:   }
349:   for (i = low; i < high; i++) {
350:     if (rp[i] > col) break;
351:     if (rp[i] == col) {
352:       bap = ap + bs2 * i;
353:       if (roworiented) {
354:         if (is == ADD_VALUES) {
355:           for (ii = 0; ii < bs; ii++) {
356:             for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
357:           }
358:         } else {
359:           for (ii = 0; ii < bs; ii++) {
360:             for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
361:           }
362:         }
363:       } else {
364:         if (is == ADD_VALUES) {
365:           for (ii = 0; ii < bs; ii++, value += bs) {
366:             for (jj = 0; jj < bs; jj++) bap[jj] += value[jj];
367:             bap += bs;
368:           }
369:         } else {
370:           for (ii = 0; ii < bs; ii++, value += bs) {
371:             for (jj = 0; jj < bs; jj++) bap[jj] = value[jj];
372:             bap += bs;
373:           }
374:         }
375:       }
376:       goto noinsert2;
377:     }
378:   }
379:   if (nonew == 1) goto noinsert2;
380:   PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new global block indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
381:   MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
382:   N = nrow++ - 1;
383:   high++;
384:   /* shift up all the later entries in this row */
385:   PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
386:   PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
387:   rp[i] = col;
388:   bap   = ap + bs2 * i;
389:   if (roworiented) {
390:     for (ii = 0; ii < bs; ii++) {
391:       for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
392:     }
393:   } else {
394:     for (ii = 0; ii < bs; ii++) {
395:       for (jj = 0; jj < bs; jj++) *bap++ = *value++;
396:     }
397:   }
398: noinsert2:;
399:   ailen[row] = nrow;
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: /*
404:     This routine should be optimized so that the block copy at ** Here a copy is required ** below is not needed
405:     by passing additional stride information into the MatSetValuesBlocked_SeqBAIJ_Inlined() routine
406: */
407: static PetscErrorCode MatSetValuesBlocked_MPIBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
408: {
409:   Mat_MPIBAIJ       *baij = (Mat_MPIBAIJ *)mat->data;
410:   const PetscScalar *value;
411:   MatScalar         *barray      = baij->barray;
412:   PetscBool          roworiented = baij->roworiented;
413:   PetscInt           i, j, ii, jj, row, col, rstart = baij->rstartbs;
414:   PetscInt           rend = baij->rendbs, cstart = baij->cstartbs, stepval;
415:   PetscInt           cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

417:   PetscFunctionBegin;
418:   if (!barray) {
419:     PetscCall(PetscMalloc1(bs2, &barray));
420:     baij->barray = barray;
421:   }

423:   if (roworiented) stepval = (n - 1) * bs;
424:   else stepval = (m - 1) * bs;

426:   for (i = 0; i < m; i++) {
427:     if (im[i] < 0) continue;
428:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed row too large %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
429:     if (im[i] >= rstart && im[i] < rend) {
430:       row = im[i] - rstart;
431:       for (j = 0; j < n; j++) {
432:         /* If NumCol = 1 then a copy is not required */
433:         if ((roworiented) && (n == 1)) {
434:           barray = (MatScalar *)v + i * bs2;
435:         } else if ((!roworiented) && (m == 1)) {
436:           barray = (MatScalar *)v + j * bs2;
437:         } else { /* Here a copy is required */
438:           if (roworiented) {
439:             value = v + (i * (stepval + bs) + j) * bs;
440:           } else {
441:             value = v + (j * (stepval + bs) + i) * bs;
442:           }
443:           for (ii = 0; ii < bs; ii++, value += bs + stepval) {
444:             for (jj = 0; jj < bs; jj++) barray[jj] = value[jj];
445:             barray += bs;
446:           }
447:           barray -= bs2;
448:         }

450:         if (in[j] >= cstart && in[j] < cend) {
451:           col = in[j] - cstart;
452:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
453:         } else if (in[j] < 0) {
454:           continue;
455:         } else {
456:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed column too large %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
457:           if (mat->was_assembled) {
458:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

460: #if defined(PETSC_USE_CTABLE)
461:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
462:             col = col < 1 ? -1 : (col - 1) / bs;
463: #else
464:             col = baij->colmap[in[j]] < 1 ? -1 : (baij->colmap[in[j]] - 1) / bs;
465: #endif
466:             if (col < 0 && !((Mat_SeqBAIJ *)baij->B->data)->nonew) {
467:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
468:               col = in[j];
469:             } else PetscCheck(col >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new blocked indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
470:           } else col = in[j];
471:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
472:         }
473:       }
474:     } else {
475:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process block indexed row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
476:       if (!baij->donotstash) {
477:         if (roworiented) {
478:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
479:         } else {
480:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
481:         }
482:       }
483:     }
484:   }
485:   PetscFunctionReturn(PETSC_SUCCESS);
486: }

488: #define HASH_KEY             0.6180339887
489: #define HASH(size, key, tmp) (tmp = (key) * HASH_KEY, (PetscInt)((size) * (tmp - (PetscInt)tmp)))
490: /* #define HASH(size,key) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
491: /* #define HASH(size,key,tmp) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
492: static PetscErrorCode MatSetValues_MPIBAIJ_HT(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
493: {
494:   Mat_MPIBAIJ *baij        = (Mat_MPIBAIJ *)mat->data;
495:   PetscBool    roworiented = baij->roworiented;
496:   PetscInt     i, j, row, col;
497:   PetscInt     rstart_orig = mat->rmap->rstart;
498:   PetscInt     rend_orig = mat->rmap->rend, Nbs = baij->Nbs;
499:   PetscInt     h1, key, size = baij->ht_size, bs = mat->rmap->bs, *HT = baij->ht, idx;
500:   PetscReal    tmp;
501:   MatScalar  **HD       = baij->hd, value;
502:   PetscInt     total_ct = baij->ht_total_ct, insert_ct = baij->ht_insert_ct;

504:   PetscFunctionBegin;
505:   for (i = 0; i < m; i++) {
506:     if (PetscDefined(USE_DEBUG)) {
507:       PetscCheck(im[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row");
508:       PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
509:     }
510:     row = im[i];
511:     if (row >= rstart_orig && row < rend_orig) {
512:       for (j = 0; j < n; j++) {
513:         col = in[j];
514:         if (roworiented) value = v[i * n + j];
515:         else value = v[i + j * m];
516:         /* Look up PetscInto the Hash Table */
517:         key = (row / bs) * Nbs + (col / bs) + 1;
518:         h1  = HASH(size, key, tmp);

520:         idx = h1;
521:         if (PetscDefined(USE_DEBUG)) {
522:           insert_ct++;
523:           total_ct++;
524:           if (HT[idx] != key) {
525:             for (idx = h1; (idx < size) && (HT[idx] != key); idx++, total_ct++);
526:             if (idx == size) {
527:               for (idx = 0; (idx < h1) && (HT[idx] != key); idx++, total_ct++);
528:               PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
529:             }
530:           }
531:         } else if (HT[idx] != key) {
532:           for (idx = h1; (idx < size) && (HT[idx] != key); idx++);
533:           if (idx == size) {
534:             for (idx = 0; (idx < h1) && (HT[idx] != key); idx++);
535:             PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
536:           }
537:         }
538:         /* A HASH table entry is found, so insert the values at the correct address */
539:         if (addv == ADD_VALUES) *(HD[idx] + (col % bs) * bs + (row % bs)) += value;
540:         else *(HD[idx] + (col % bs) * bs + (row % bs)) = value;
541:       }
542:     } else if (!baij->donotstash) {
543:       if (roworiented) {
544:         PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, PETSC_FALSE));
545:       } else {
546:         PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, PETSC_FALSE));
547:       }
548:     }
549:   }
550:   if (PetscDefined(USE_DEBUG)) {
551:     baij->ht_total_ct += total_ct;
552:     baij->ht_insert_ct += insert_ct;
553:   }
554:   PetscFunctionReturn(PETSC_SUCCESS);
555: }

557: static PetscErrorCode MatSetValuesBlocked_MPIBAIJ_HT(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
558: {
559:   Mat_MPIBAIJ       *baij        = (Mat_MPIBAIJ *)mat->data;
560:   PetscBool          roworiented = baij->roworiented;
561:   PetscInt           i, j, ii, jj, row, col;
562:   PetscInt           rstart = baij->rstartbs;
563:   PetscInt           rend = mat->rmap->rend, stepval, bs = mat->rmap->bs, bs2 = baij->bs2, nbs2 = n * bs2;
564:   PetscInt           h1, key, size = baij->ht_size, idx, *HT = baij->ht, Nbs = baij->Nbs;
565:   PetscReal          tmp;
566:   MatScalar        **HD = baij->hd, *baij_a;
567:   const PetscScalar *v_t, *value;
568:   PetscInt           total_ct = baij->ht_total_ct, insert_ct = baij->ht_insert_ct;

570:   PetscFunctionBegin;
571:   if (roworiented) stepval = (n - 1) * bs;
572:   else stepval = (m - 1) * bs;

574:   for (i = 0; i < m; i++) {
575:     if (PetscDefined(USE_DEBUG)) {
576:       PetscCheck(im[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row: %" PetscInt_FMT, im[i]);
577:       PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
578:     }
579:     row = im[i];
580:     v_t = v + i * nbs2;
581:     if (row >= rstart && row < rend) {
582:       for (j = 0; j < n; j++) {
583:         col = in[j];

585:         /* Look up into the Hash Table */
586:         key = row * Nbs + col + 1;
587:         h1  = HASH(size, key, tmp);

589:         idx = h1;
590:         if (PetscDefined(USE_DEBUG)) {
591:           total_ct++;
592:           insert_ct++;
593:           if (HT[idx] != key) {
594:             for (idx = h1; (idx < size) && (HT[idx] != key); idx++, total_ct++);
595:             if (idx == size) {
596:               for (idx = 0; (idx < h1) && (HT[idx] != key); idx++, total_ct++);
597:               PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
598:             }
599:           }
600:         } else if (HT[idx] != key) {
601:           for (idx = h1; (idx < size) && (HT[idx] != key); idx++);
602:           if (idx == size) {
603:             for (idx = 0; (idx < h1) && (HT[idx] != key); idx++);
604:             PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
605:           }
606:         }
607:         baij_a = HD[idx];
608:         if (roworiented) {
609:           /*value = v + i*(stepval+bs)*bs + j*bs;*/
610:           /* value = v + (i*(stepval+bs)+j)*bs; */
611:           value = v_t;
612:           v_t += bs;
613:           if (addv == ADD_VALUES) {
614:             for (ii = 0; ii < bs; ii++, value += stepval) {
615:               for (jj = ii; jj < bs2; jj += bs) baij_a[jj] += *value++;
616:             }
617:           } else {
618:             for (ii = 0; ii < bs; ii++, value += stepval) {
619:               for (jj = ii; jj < bs2; jj += bs) baij_a[jj] = *value++;
620:             }
621:           }
622:         } else {
623:           value = v + j * (stepval + bs) * bs + i * bs;
624:           if (addv == ADD_VALUES) {
625:             for (ii = 0; ii < bs; ii++, value += stepval, baij_a += bs) {
626:               for (jj = 0; jj < bs; jj++) baij_a[jj] += *value++;
627:             }
628:           } else {
629:             for (ii = 0; ii < bs; ii++, value += stepval, baij_a += bs) {
630:               for (jj = 0; jj < bs; jj++) baij_a[jj] = *value++;
631:             }
632:           }
633:         }
634:       }
635:     } else {
636:       if (!baij->donotstash) {
637:         if (roworiented) {
638:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
639:         } else {
640:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
641:         }
642:       }
643:     }
644:   }
645:   if (PetscDefined(USE_DEBUG)) {
646:     baij->ht_total_ct += total_ct;
647:     baij->ht_insert_ct += insert_ct;
648:   }
649:   PetscFunctionReturn(PETSC_SUCCESS);
650: }

652: static PetscErrorCode MatGetValues_MPIBAIJ(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt idxn[], PetscScalar v[])
653: {
654:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
655:   PetscInt     bs = mat->rmap->bs, i, j, bsrstart = mat->rmap->rstart, bsrend = mat->rmap->rend;
656:   PetscInt     bscstart = mat->cmap->rstart, bscend = mat->cmap->rend, row, col, data;

658:   PetscFunctionBegin;
659:   for (i = 0; i < m; i++) {
660:     if (idxm[i] < 0) continue; /* negative row */
661:     PetscCheck(idxm[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm[i], mat->rmap->N - 1);
662:     PetscCheck(idxm[i] >= bsrstart && idxm[i] < bsrend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local values currently supported");
663:     row = idxm[i] - bsrstart;
664:     for (j = 0; j < n; j++) {
665:       if (idxn[j] < 0) continue; /* negative column */
666:       PetscCheck(idxn[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, idxn[j], mat->cmap->N - 1);
667:       if (idxn[j] >= bscstart && idxn[j] < bscend) {
668:         col = idxn[j] - bscstart;
669:         PetscCall(MatGetValues_SeqBAIJ(baij->A, 1, &row, 1, &col, v + i * n + j));
670:       } else {
671:         if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
672: #if defined(PETSC_USE_CTABLE)
673:         PetscCall(PetscHMapIGetWithDefault(baij->colmap, idxn[j] / bs + 1, 0, &data));
674:         data--;
675: #else
676:         data = baij->colmap[idxn[j] / bs] - 1;
677: #endif
678:         if (data < 0 || baij->garray[data / bs] != idxn[j] / bs) *(v + i * n + j) = 0.0;
679:         else {
680:           col = data + idxn[j] % bs;
681:           PetscCall(MatGetValues_SeqBAIJ(baij->B, 1, &row, 1, &col, v + i * n + j));
682:         }
683:       }
684:     }
685:   }
686:   PetscFunctionReturn(PETSC_SUCCESS);
687: }

689: static PetscErrorCode MatNorm_MPIBAIJ(Mat mat, NormType type, PetscReal *nrm)
690: {
691:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
692:   Mat_SeqBAIJ *amat = (Mat_SeqBAIJ *)baij->A->data, *bmat = (Mat_SeqBAIJ *)baij->B->data;
693:   PetscInt     i, j, bs2 = baij->bs2, bs = baij->A->rmap->bs, nz, row, col;
694:   PetscReal    sum = 0.0;
695:   MatScalar   *v;

697:   PetscFunctionBegin;
698:   if (baij->size == 1) {
699:     PetscCall(MatNorm(baij->A, type, nrm));
700:   } else {
701:     if (type == NORM_FROBENIUS) {
702:       v  = amat->a;
703:       nz = amat->nz * bs2;
704:       for (i = 0; i < nz; i++) {
705:         sum += PetscRealPart(PetscConj(*v) * (*v));
706:         v++;
707:       }
708:       v  = bmat->a;
709:       nz = bmat->nz * bs2;
710:       for (i = 0; i < nz; i++) {
711:         sum += PetscRealPart(PetscConj(*v) * (*v));
712:         v++;
713:       }
714:       PetscCallMPI(MPIU_Allreduce(&sum, nrm, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
715:       *nrm = PetscSqrtReal(*nrm);
716:     } else if (type == NORM_1) { /* max column sum */
717:       Vec          col, bcol;
718:       PetscScalar *array;
719:       PetscInt    *jj, *garray = baij->garray;

721:       PetscCall(MatCreateVecs(mat, &col, NULL));
722:       PetscCall(VecSet(col, 0.0));
723:       PetscCall(VecGetArrayWrite(col, &array));
724:       v  = amat->a;
725:       jj = amat->j;
726:       for (i = 0; i < amat->nz; i++) {
727:         for (j = 0; j < bs; j++) {
728:           PetscInt col = bs * *jj + j; /* column index */

730:           for (row = 0; row < bs; row++) array[col] += PetscAbsScalar(*v++);
731:         }
732:         jj++;
733:       }
734:       PetscCall(VecRestoreArrayWrite(col, &array));
735:       PetscCall(MatCreateVecs(baij->B, &bcol, NULL));
736:       PetscCall(VecSet(bcol, 0.0));
737:       PetscCall(VecGetArrayWrite(bcol, &array));
738:       v  = bmat->a;
739:       jj = bmat->j;
740:       for (i = 0; i < bmat->nz; i++) {
741:         for (j = 0; j < bs; j++) {
742:           PetscInt col = bs * *jj + j; /* column index */

744:           for (row = 0; row < bs; row++) array[col] += PetscAbsScalar(*v++);
745:         }
746:         jj++;
747:       }
748:       PetscCall(VecSetValuesBlocked(col, bmat->nbs, garray, array, ADD_VALUES));
749:       PetscCall(VecRestoreArrayWrite(bcol, &array));
750:       PetscCall(VecDestroy(&bcol));
751:       PetscCall(VecAssemblyBegin(col));
752:       PetscCall(VecAssemblyEnd(col));
753:       PetscCall(VecNorm(col, NORM_INFINITY, nrm));
754:       PetscCall(VecDestroy(&col));
755:     } else if (type == NORM_INFINITY) { /* max row sum */
756:       PetscReal *sums;
757:       PetscCall(PetscMalloc1(bs, &sums));
758:       sum = 0.0;
759:       for (j = 0; j < amat->mbs; j++) {
760:         for (row = 0; row < bs; row++) sums[row] = 0.0;
761:         v  = amat->a + bs2 * amat->i[j];
762:         nz = amat->i[j + 1] - amat->i[j];
763:         for (i = 0; i < nz; i++) {
764:           for (col = 0; col < bs; col++) {
765:             for (row = 0; row < bs; row++) {
766:               sums[row] += PetscAbsScalar(*v);
767:               v++;
768:             }
769:           }
770:         }
771:         v  = bmat->a + bs2 * bmat->i[j];
772:         nz = bmat->i[j + 1] - bmat->i[j];
773:         for (i = 0; i < nz; i++) {
774:           for (col = 0; col < bs; col++) {
775:             for (row = 0; row < bs; row++) {
776:               sums[row] += PetscAbsScalar(*v);
777:               v++;
778:             }
779:           }
780:         }
781:         for (row = 0; row < bs; row++) {
782:           if (sums[row] > sum) sum = sums[row];
783:         }
784:       }
785:       PetscCallMPI(MPIU_Allreduce(&sum, nrm, 1, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)mat)));
786:       PetscCall(PetscFree(sums));
787:     } else SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "No support for this norm yet");
788:   }
789:   PetscFunctionReturn(PETSC_SUCCESS);
790: }

792: /*
793:   Creates the hash table, and sets the table
794:   This table is created only once.
795:   If new entries need to be added to the matrix
796:   then the hash table has to be destroyed and
797:   recreated.
798: */
799: static PetscErrorCode MatCreateHashTable_MPIBAIJ_Private(Mat mat, PetscReal factor)
800: {
801:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
802:   Mat          A = baij->A, B = baij->B;
803:   Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)B->data;
804:   PetscInt     i, j, k, nz = a->nz + b->nz, h1, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
805:   PetscInt     ht_size, bs2 = baij->bs2, rstart = baij->rstartbs;
806:   PetscInt     cstart = baij->cstartbs, *garray = baij->garray, row, col, Nbs = baij->Nbs;
807:   PetscInt    *HT, key;
808:   MatScalar  **HD;
809:   PetscReal    tmp;
810: #if defined(PETSC_USE_INFO)
811:   PetscInt ct = 0, max = 0;
812: #endif

814:   PetscFunctionBegin;
815:   if (baij->ht) PetscFunctionReturn(PETSC_SUCCESS);

817:   baij->ht_size = (PetscInt)(factor * nz);
818:   ht_size       = baij->ht_size;

820:   /* Allocate Memory for Hash Table */
821:   PetscCall(PetscCalloc2(ht_size, &baij->hd, ht_size, &baij->ht));
822:   HD = baij->hd;
823:   HT = baij->ht;

825:   /* Loop Over A */
826:   for (i = 0; i < a->mbs; i++) {
827:     for (j = ai[i]; j < ai[i + 1]; j++) {
828:       row = i + rstart;
829:       col = aj[j] + cstart;

831:       key = row * Nbs + col + 1;
832:       h1  = HASH(ht_size, key, tmp);
833:       for (k = 0; k < ht_size; k++) {
834:         if (!HT[(h1 + k) % ht_size]) {
835:           HT[(h1 + k) % ht_size] = key;
836:           HD[(h1 + k) % ht_size] = a->a + j * bs2;
837:           break;
838: #if defined(PETSC_USE_INFO)
839:         } else {
840:           ct++;
841: #endif
842:         }
843:       }
844: #if defined(PETSC_USE_INFO)
845:       if (k > max) max = k;
846: #endif
847:     }
848:   }
849:   /* Loop Over B */
850:   for (i = 0; i < b->mbs; i++) {
851:     for (j = bi[i]; j < bi[i + 1]; j++) {
852:       row = i + rstart;
853:       col = garray[bj[j]];
854:       key = row * Nbs + col + 1;
855:       h1  = HASH(ht_size, key, tmp);
856:       for (k = 0; k < ht_size; k++) {
857:         if (!HT[(h1 + k) % ht_size]) {
858:           HT[(h1 + k) % ht_size] = key;
859:           HD[(h1 + k) % ht_size] = b->a + j * bs2;
860:           break;
861: #if defined(PETSC_USE_INFO)
862:         } else {
863:           ct++;
864: #endif
865:         }
866:       }
867: #if defined(PETSC_USE_INFO)
868:       if (k > max) max = k;
869: #endif
870:     }
871:   }

873:   /* Print Summary */
874: #if defined(PETSC_USE_INFO)
875:   for (i = 0, j = 0; i < ht_size; i++) {
876:     if (HT[i]) j++;
877:   }
878:   PetscCall(PetscInfo(mat, "Average Search = %5.2g,max search = %" PetscInt_FMT "\n", (!j) ? 0.0 : (double)(((PetscReal)(ct + j)) / j), max));
879: #endif
880:   PetscFunctionReturn(PETSC_SUCCESS);
881: }

883: static PetscErrorCode MatAssemblyBegin_MPIBAIJ(Mat mat, MatAssemblyType mode)
884: {
885:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
886:   PetscInt     nstash, reallocs;

888:   PetscFunctionBegin;
889:   if (baij->donotstash || mat->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);

891:   PetscCall(MatStashScatterBegin_Private(mat, &mat->stash, mat->rmap->range));
892:   PetscCall(MatStashScatterBegin_Private(mat, &mat->bstash, baij->rangebs));
893:   PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
894:   PetscCall(PetscInfo(mat, "Stash has %" PetscInt_FMT " entries,uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
895:   PetscCall(MatStashGetInfo_Private(&mat->bstash, &nstash, &reallocs));
896:   PetscCall(PetscInfo(mat, "Block-Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
897:   PetscFunctionReturn(PETSC_SUCCESS);
898: }

900: static PetscErrorCode MatAssemblyEnd_MPIBAIJ(Mat mat, MatAssemblyType mode)
901: {
902:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
903:   Mat_SeqBAIJ *a    = (Mat_SeqBAIJ *)baij->A->data;
904:   PetscInt     i, j, rstart, ncols, flg, bs2 = baij->bs2;
905:   PetscInt    *row, *col;
906:   PetscBool    r1, r2, r3, all_assembled;
907:   MatScalar   *val;
908:   PetscMPIInt  n;

910:   PetscFunctionBegin;
911:   /* do not use 'b=(Mat_SeqBAIJ*)baij->B->data' as B can be reset in disassembly */
912:   if (!baij->donotstash && !mat->nooffprocentries) {
913:     while (1) {
914:       PetscCall(MatStashScatterGetMesg_Private(&mat->stash, &n, &row, &col, &val, &flg));
915:       if (!flg) break;

917:       for (i = 0; i < n;) {
918:         /* Now identify the consecutive vals belonging to the same row */
919:         for (j = i, rstart = row[j]; j < n; j++) {
920:           if (row[j] != rstart) break;
921:         }
922:         if (j < n) ncols = j - i;
923:         else ncols = n - i;
924:         /* Now assemble all these values with a single function call */
925:         PetscCall(MatSetValues_MPIBAIJ(mat, 1, row + i, ncols, col + i, val + i, mat->insertmode));
926:         i = j;
927:       }
928:     }
929:     PetscCall(MatStashScatterEnd_Private(&mat->stash));
930:     /* Now process the block-stash. Since the values are stashed column-oriented,
931:        set the row-oriented flag to column-oriented, and after MatSetValues()
932:        restore the original flags */
933:     r1 = baij->roworiented;
934:     r2 = a->roworiented;
935:     r3 = ((Mat_SeqBAIJ *)baij->B->data)->roworiented;

937:     baij->roworiented                           = PETSC_FALSE;
938:     a->roworiented                              = PETSC_FALSE;
939:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = PETSC_FALSE;
940:     while (1) {
941:       PetscCall(MatStashScatterGetMesg_Private(&mat->bstash, &n, &row, &col, &val, &flg));
942:       if (!flg) break;

944:       for (i = 0; i < n;) {
945:         /* Now identify the consecutive vals belonging to the same row */
946:         for (j = i, rstart = row[j]; j < n; j++) {
947:           if (row[j] != rstart) break;
948:         }
949:         if (j < n) ncols = j - i;
950:         else ncols = n - i;
951:         PetscCall(MatSetValuesBlocked_MPIBAIJ(mat, 1, row + i, ncols, col + i, val + i * bs2, mat->insertmode));
952:         i = j;
953:       }
954:     }
955:     PetscCall(MatStashScatterEnd_Private(&mat->bstash));

957:     baij->roworiented                           = r1;
958:     a->roworiented                              = r2;
959:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = r3;
960:   }

962:   PetscCall(MatAssemblyBegin(baij->A, mode));
963:   PetscCall(MatAssemblyEnd(baij->A, mode));

965:   /* determine if any process has disassembled, if so we must
966:      also disassemble ourselves, in order that we may reassemble. */
967:   /*
968:      if nonzero structure of submatrix B cannot change then we know that
969:      no process disassembled thus we can skip this stuff
970:   */
971:   if (!((Mat_SeqBAIJ *)baij->B->data)->nonew) {
972:     PetscCallMPI(MPIU_Allreduce(&mat->was_assembled, &all_assembled, 1, MPI_C_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
973:     if (mat->was_assembled && !all_assembled) PetscCall(MatDisAssemble_MPIBAIJ(mat));
974:   }

976:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) PetscCall(MatSetUpMultiply_MPIBAIJ(mat));
977:   PetscCall(MatAssemblyBegin(baij->B, mode));
978:   PetscCall(MatAssemblyEnd(baij->B, mode));

980: #if defined(PETSC_USE_INFO)
981:   if (baij->ht && mode == MAT_FINAL_ASSEMBLY) {
982:     PetscCall(PetscInfo(mat, "Average Hash Table Search in MatSetValues = %5.2f\n", (double)((PetscReal)baij->ht_total_ct) / baij->ht_insert_ct));

984:     baij->ht_total_ct  = 0;
985:     baij->ht_insert_ct = 0;
986:   }
987: #endif
988:   if (baij->ht_flag && !baij->ht && mode == MAT_FINAL_ASSEMBLY) {
989:     PetscCall(MatCreateHashTable_MPIBAIJ_Private(mat, baij->ht_fact));

991:     mat->ops->setvalues        = MatSetValues_MPIBAIJ_HT;
992:     mat->ops->setvaluesblocked = MatSetValuesBlocked_MPIBAIJ_HT;
993:   }

995:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));

997:   baij->rowvalues = NULL;

999:   /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
1000:   if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
1001:     PetscObjectState state = baij->A->nonzerostate + baij->B->nonzerostate;
1002:     PetscCallMPI(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));
1003:   }
1004:   PetscFunctionReturn(PETSC_SUCCESS);
1005: }

1007: #include <petscdraw.h>
1008: static PetscErrorCode MatView_MPIBAIJ_ASCIIorDraworSocket(Mat mat, PetscViewer viewer)
1009: {
1010:   Mat_MPIBAIJ      *baij = (Mat_MPIBAIJ *)mat->data;
1011:   PetscMPIInt       rank = baij->rank;
1012:   PetscInt          bs   = mat->rmap->bs;
1013:   PetscBool         isascii, isdraw;
1014:   PetscViewer       sviewer;
1015:   PetscViewerFormat format;

1017:   PetscFunctionBegin;
1018:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1019:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1020:   if (isascii) {
1021:     PetscCall(PetscViewerGetFormat(viewer, &format));
1022:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1023:       MatInfo info;
1024:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1025:       PetscCall(MatGetInfo(mat, MAT_LOCAL, &info));
1026:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
1027:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " bs %" PetscInt_FMT " mem %g\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
1028:                                                    mat->rmap->bs, info.memory));
1029:       PetscCall(MatGetInfo(baij->A, MAT_LOCAL, &info));
1030:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] on-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1031:       PetscCall(MatGetInfo(baij->B, MAT_LOCAL, &info));
1032:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] off-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1033:       PetscCall(PetscViewerFlush(viewer));
1034:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1035:       PetscCall(PetscViewerASCIIPrintf(viewer, "Information on VecScatter used in matrix-vector product: \n"));
1036:       PetscCall(VecScatterView(baij->Mvctx, viewer));
1037:       PetscFunctionReturn(PETSC_SUCCESS);
1038:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
1039:       PetscCall(PetscViewerASCIIPrintf(viewer, "  block size is %" PetscInt_FMT "\n", bs));
1040:       PetscFunctionReturn(PETSC_SUCCESS);
1041:     } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
1042:       PetscFunctionReturn(PETSC_SUCCESS);
1043:     }
1044:   }

1046:   if (isdraw) {
1047:     PetscDraw draw;
1048:     PetscBool isnull;
1049:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1050:     PetscCall(PetscDrawIsNull(draw, &isnull));
1051:     if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
1052:   }

1054:   {
1055:     /* assemble the entire matrix onto first processor. */
1056:     Mat          A;
1057:     Mat_SeqBAIJ *Aloc;
1058:     PetscInt     M = mat->rmap->N, N = mat->cmap->N, *ai, *aj, col, i, j, k, *rvals, mbs = baij->mbs;
1059:     MatScalar   *a;
1060:     const char  *matname;

1062:     /* Here we are creating a temporary matrix, so will assume MPIBAIJ is acceptable */
1063:     /* Perhaps this should be the type of mat? */
1064:     PetscCall(MatCreate(PetscObjectComm((PetscObject)mat), &A));
1065:     if (rank == 0) {
1066:       PetscCall(MatSetSizes(A, M, N, M, N));
1067:     } else {
1068:       PetscCall(MatSetSizes(A, 0, 0, M, N));
1069:     }
1070:     PetscCall(MatSetType(A, MATMPIBAIJ));
1071:     PetscCall(MatMPIBAIJSetPreallocation(A, mat->rmap->bs, 0, NULL, 0, NULL));
1072:     PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_FALSE));

1074:     /* copy over the A part */
1075:     Aloc = (Mat_SeqBAIJ *)baij->A->data;
1076:     ai   = Aloc->i;
1077:     aj   = Aloc->j;
1078:     a    = Aloc->a;
1079:     PetscCall(PetscMalloc1(bs, &rvals));

1081:     for (i = 0; i < mbs; i++) {
1082:       rvals[0] = bs * (baij->rstartbs + i);
1083:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1084:       for (j = ai[i]; j < ai[i + 1]; j++) {
1085:         col = (baij->cstartbs + aj[j]) * bs;
1086:         for (k = 0; k < bs; k++) {
1087:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
1088:           col++;
1089:           a += bs;
1090:         }
1091:       }
1092:     }
1093:     /* copy over the B part */
1094:     Aloc = (Mat_SeqBAIJ *)baij->B->data;
1095:     ai   = Aloc->i;
1096:     aj   = Aloc->j;
1097:     a    = Aloc->a;
1098:     for (i = 0; i < mbs; i++) {
1099:       rvals[0] = bs * (baij->rstartbs + i);
1100:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1101:       for (j = ai[i]; j < ai[i + 1]; j++) {
1102:         col = baij->garray[aj[j]] * bs;
1103:         for (k = 0; k < bs; k++) {
1104:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
1105:           col++;
1106:           a += bs;
1107:         }
1108:       }
1109:     }
1110:     PetscCall(PetscFree(rvals));
1111:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1112:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1113:     /*
1114:        Everyone has to call to draw the matrix since the graphics waits are
1115:        synchronized across all processors that share the PetscDraw object
1116:     */
1117:     PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1118:     if (((PetscObject)mat)->name) PetscCall(PetscObjectGetName((PetscObject)mat, &matname));
1119:     if (rank == 0) {
1120:       if (((PetscObject)mat)->name) PetscCall(PetscObjectSetName((PetscObject)((Mat_MPIBAIJ *)A->data)->A, matname));
1121:       PetscCall(MatView_SeqBAIJ(((Mat_MPIBAIJ *)A->data)->A, sviewer));
1122:     }
1123:     PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1124:     PetscCall(MatDestroy(&A));
1125:   }
1126:   PetscFunctionReturn(PETSC_SUCCESS);
1127: }

1129: /* Used for both MPIBAIJ and MPISBAIJ matrices */
1130: PetscErrorCode MatView_MPIBAIJ_Binary(Mat mat, PetscViewer viewer)
1131: {
1132:   Mat_MPIBAIJ    *aij    = (Mat_MPIBAIJ *)mat->data;
1133:   Mat_SeqBAIJ    *A      = (Mat_SeqBAIJ *)aij->A->data;
1134:   Mat_SeqBAIJ    *B      = (Mat_SeqBAIJ *)aij->B->data;
1135:   const PetscInt *garray = aij->garray;
1136:   PetscInt        header[4], M, N, m, rs, cs, bs, cnt, i, j, ja, jb, k, l;
1137:   PetscCount      nz, hnz;
1138:   PetscInt       *rowlens, *colidxs;
1139:   PetscScalar    *matvals;
1140:   PetscMPIInt     rank;

1142:   PetscFunctionBegin;
1143:   PetscCall(PetscViewerSetUp(viewer));

1145:   M  = mat->rmap->N;
1146:   N  = mat->cmap->N;
1147:   m  = mat->rmap->n;
1148:   rs = mat->rmap->rstart;
1149:   cs = mat->cmap->rstart;
1150:   bs = mat->rmap->bs;
1151:   nz = bs * bs * (A->nz + B->nz);

1153:   /* write matrix header */
1154:   header[0] = MAT_FILE_CLASSID;
1155:   header[1] = M;
1156:   header[2] = N;
1157:   PetscCallMPI(MPI_Reduce(&nz, &hnz, 1, MPIU_COUNT, MPI_SUM, 0, PetscObjectComm((PetscObject)mat)));
1158:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1159:   if (rank == 0) PetscCall(PetscIntCast(hnz, &header[3]));
1160:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1162:   /* fill in and store row lengths */
1163:   PetscCall(PetscMalloc1(m, &rowlens));
1164:   for (cnt = 0, i = 0; i < A->mbs; i++)
1165:     for (j = 0; j < bs; j++) rowlens[cnt++] = bs * (A->i[i + 1] - A->i[i] + B->i[i + 1] - B->i[i]);
1166:   PetscCall(PetscViewerBinaryWriteAll(viewer, rowlens, m, rs, M, PETSC_INT));
1167:   PetscCall(PetscFree(rowlens));

1169:   /* fill in and store column indices */
1170:   PetscCall(PetscMalloc1(nz, &colidxs));
1171:   for (cnt = 0, i = 0; i < A->mbs; i++) {
1172:     for (k = 0; k < bs; k++) {
1173:       for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1174:         if (garray[B->j[jb]] > cs / bs) break;
1175:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * garray[B->j[jb]] + l;
1176:       }
1177:       for (ja = A->i[i]; ja < A->i[i + 1]; ja++)
1178:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * A->j[ja] + l + cs;
1179:       for (; jb < B->i[i + 1]; jb++)
1180:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * garray[B->j[jb]] + l;
1181:     }
1182:   }
1183:   PetscCheck(cnt == nz, PETSC_COMM_SELF, PETSC_ERR_LIB, "Internal PETSc error: cnt = %" PetscInt_FMT " nz = %" PetscCount_FMT, cnt, nz);
1184:   PetscCall(PetscViewerBinaryWriteAll(viewer, colidxs, nz, PETSC_DECIDE, PETSC_DECIDE, PETSC_INT));
1185:   PetscCall(PetscFree(colidxs));

1187:   /* fill in and store nonzero values */
1188:   PetscCall(PetscMalloc1(nz, &matvals));
1189:   for (cnt = 0, i = 0; i < A->mbs; i++) {
1190:     for (k = 0; k < bs; k++) {
1191:       for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1192:         if (garray[B->j[jb]] > cs / bs) break;
1193:         for (l = 0; l < bs; l++) matvals[cnt++] = B->a[bs * (bs * jb + l) + k];
1194:       }
1195:       for (ja = A->i[i]; ja < A->i[i + 1]; ja++)
1196:         for (l = 0; l < bs; l++) matvals[cnt++] = A->a[bs * (bs * ja + l) + k];
1197:       for (; jb < B->i[i + 1]; jb++)
1198:         for (l = 0; l < bs; l++) matvals[cnt++] = B->a[bs * (bs * jb + l) + k];
1199:     }
1200:   }
1201:   PetscCall(PetscViewerBinaryWriteAll(viewer, matvals, nz, PETSC_DECIDE, PETSC_DECIDE, PETSC_SCALAR));
1202:   PetscCall(PetscFree(matvals));

1204:   /* write block size option to the viewer's .info file */
1205:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
1206:   PetscFunctionReturn(PETSC_SUCCESS);
1207: }

1209: PetscErrorCode MatView_MPIBAIJ(Mat mat, PetscViewer viewer)
1210: {
1211:   PetscBool isascii, isdraw, issocket, isbinary;

1213:   PetscFunctionBegin;
1214:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1215:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1216:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSOCKET, &issocket));
1217:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1218:   if (isascii || isdraw || issocket) PetscCall(MatView_MPIBAIJ_ASCIIorDraworSocket(mat, viewer));
1219:   else if (isbinary) PetscCall(MatView_MPIBAIJ_Binary(mat, viewer));
1220:   PetscFunctionReturn(PETSC_SUCCESS);
1221: }

1223: static PetscErrorCode MatMult_MPIBAIJ(Mat A, Vec xx, Vec yy)
1224: {
1225:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
1226:   PetscInt     nt;

1228:   PetscFunctionBegin;
1229:   PetscCall(VecGetLocalSize(xx, &nt));
1230:   PetscCheck(nt == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A and xx");
1231:   PetscCall(VecGetLocalSize(yy, &nt));
1232:   PetscCheck(nt == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A and yy");
1233:   PetscCall(VecScatterBegin(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1234:   PetscCall((*a->A->ops->mult)(a->A, xx, yy));
1235:   PetscCall(VecScatterEnd(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1236:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, yy, yy));
1237:   PetscFunctionReturn(PETSC_SUCCESS);
1238: }

1240: static PetscErrorCode MatMultAdd_MPIBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1241: {
1242:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1244:   PetscFunctionBegin;
1245:   PetscCall(VecScatterBegin(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1246:   PetscCall((*a->A->ops->multadd)(a->A, xx, yy, zz));
1247:   PetscCall(VecScatterEnd(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1248:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, zz, zz));
1249:   PetscFunctionReturn(PETSC_SUCCESS);
1250: }

1252: static PetscErrorCode MatMultTranspose_MPIBAIJ(Mat A, Vec xx, Vec yy)
1253: {
1254:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1256:   PetscFunctionBegin;
1257:   /* do nondiagonal part */
1258:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1259:   /* do local part */
1260:   PetscCall((*a->A->ops->multtranspose)(a->A, xx, yy));
1261:   /* add partial results together */
1262:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1263:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1264:   PetscFunctionReturn(PETSC_SUCCESS);
1265: }

1267: static PetscErrorCode MatMultTransposeAdd_MPIBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1268: {
1269:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1271:   PetscFunctionBegin;
1272:   /* do nondiagonal part */
1273:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1274:   /* do local part */
1275:   PetscCall((*a->A->ops->multtransposeadd)(a->A, xx, yy, zz));
1276:   /* add partial results together */
1277:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1278:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1279:   PetscFunctionReturn(PETSC_SUCCESS);
1280: }

1282: /*
1283:   This only works correctly for square matrices where the subblock A->A is the
1284:    diagonal block
1285: */
1286: static PetscErrorCode MatGetDiagonal_MPIBAIJ(Mat A, Vec v)
1287: {
1288:   PetscFunctionBegin;
1289:   PetscCheck(A->rmap->N == A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_SUP, "Supports only square matrix where A->A is diag block");
1290:   PetscCall(MatGetDiagonal(((Mat_MPIBAIJ *)A->data)->A, v));
1291:   PetscFunctionReturn(PETSC_SUCCESS);
1292: }

1294: static PetscErrorCode MatScale_MPIBAIJ(Mat A, PetscScalar aa)
1295: {
1296:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1298:   PetscFunctionBegin;
1299:   PetscCall(MatScale(a->A, aa));
1300:   PetscCall(MatScale(a->B, aa));
1301:   PetscFunctionReturn(PETSC_SUCCESS);
1302: }

1304: static PetscErrorCode MatGetRow_MPIBAIJ(Mat matin, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1305: {
1306:   Mat_MPIBAIJ *mat = (Mat_MPIBAIJ *)matin->data;
1307:   PetscScalar *vworkA, *vworkB, **pvA, **pvB, *v_p;
1308:   PetscInt     bs = matin->rmap->bs, bs2 = mat->bs2, i, *cworkA, *cworkB, **pcA, **pcB;
1309:   PetscInt     nztot, nzA, nzB, lrow, brstart = matin->rmap->rstart, brend = matin->rmap->rend;
1310:   PetscInt    *cmap, *idx_p, cstart = mat->cstartbs;

1312:   PetscFunctionBegin;
1313:   PetscCheck(row >= brstart && row < brend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local rows");
1314:   PetscCheck(!mat->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Already active");
1315:   mat->getrowactive = PETSC_TRUE;

1317:   if (!mat->rowvalues && (idx || v)) {
1318:     /*
1319:         allocate enough space to hold information from the longest row.
1320:     */
1321:     Mat_SeqBAIJ *Aa = (Mat_SeqBAIJ *)mat->A->data, *Ba = (Mat_SeqBAIJ *)mat->B->data;
1322:     PetscInt     max = 1, mbs = mat->mbs, tmp;
1323:     for (i = 0; i < mbs; i++) {
1324:       tmp = Aa->i[i + 1] - Aa->i[i] + Ba->i[i + 1] - Ba->i[i];
1325:       if (max < tmp) max = tmp;
1326:     }
1327:     PetscCall(PetscMalloc2(max * bs2, &mat->rowvalues, max * bs2, &mat->rowindices));
1328:   }
1329:   lrow = row - brstart;

1331:   pvA = &vworkA;
1332:   pcA = &cworkA;
1333:   pvB = &vworkB;
1334:   pcB = &cworkB;
1335:   if (!v) {
1336:     pvA = NULL;
1337:     pvB = NULL;
1338:   }
1339:   if (!idx) {
1340:     pcA = NULL;
1341:     if (!v) pcB = NULL;
1342:   }
1343:   PetscCall((*mat->A->ops->getrow)(mat->A, lrow, &nzA, pcA, pvA));
1344:   PetscCall((*mat->B->ops->getrow)(mat->B, lrow, &nzB, pcB, pvB));
1345:   nztot = nzA + nzB;

1347:   cmap = mat->garray;
1348:   if (v || idx) {
1349:     if (nztot) {
1350:       /* Sort by increasing column numbers, assuming A and B already sorted */
1351:       PetscInt imark = -1;
1352:       if (v) {
1353:         *v = v_p = mat->rowvalues;
1354:         for (i = 0; i < nzB; i++) {
1355:           if (cmap[cworkB[i] / bs] < cstart) v_p[i] = vworkB[i];
1356:           else break;
1357:         }
1358:         imark = i;
1359:         for (i = 0; i < nzA; i++) v_p[imark + i] = vworkA[i];
1360:         for (i = imark; i < nzB; i++) v_p[nzA + i] = vworkB[i];
1361:       }
1362:       if (idx) {
1363:         *idx = idx_p = mat->rowindices;
1364:         if (imark > -1) {
1365:           for (i = 0; i < imark; i++) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1366:         } else {
1367:           for (i = 0; i < nzB; i++) {
1368:             if (cmap[cworkB[i] / bs] < cstart) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1369:             else break;
1370:           }
1371:           imark = i;
1372:         }
1373:         for (i = 0; i < nzA; i++) idx_p[imark + i] = cstart * bs + cworkA[i];
1374:         for (i = imark; i < nzB; i++) idx_p[nzA + i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1375:       }
1376:     } else {
1377:       if (idx) *idx = NULL;
1378:       if (v) *v = NULL;
1379:     }
1380:   }
1381:   *nz = nztot;
1382:   PetscCall((*mat->A->ops->restorerow)(mat->A, lrow, &nzA, pcA, pvA));
1383:   PetscCall((*mat->B->ops->restorerow)(mat->B, lrow, &nzB, pcB, pvB));
1384:   PetscFunctionReturn(PETSC_SUCCESS);
1385: }

1387: static PetscErrorCode MatRestoreRow_MPIBAIJ(Mat mat, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1388: {
1389:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;

1391:   PetscFunctionBegin;
1392:   PetscCheck(baij->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "MatGetRow not called");
1393:   baij->getrowactive = PETSC_FALSE;
1394:   PetscFunctionReturn(PETSC_SUCCESS);
1395: }

1397: static PetscErrorCode MatZeroEntries_MPIBAIJ(Mat A)
1398: {
1399:   Mat_MPIBAIJ *l = (Mat_MPIBAIJ *)A->data;

1401:   PetscFunctionBegin;
1402:   PetscCall(MatZeroEntries(l->A));
1403:   PetscCall(MatZeroEntries(l->B));
1404:   PetscFunctionReturn(PETSC_SUCCESS);
1405: }

1407: static PetscErrorCode MatGetInfo_MPIBAIJ(Mat matin, MatInfoType flag, MatInfo *info)
1408: {
1409:   Mat_MPIBAIJ   *a = (Mat_MPIBAIJ *)matin->data;
1410:   Mat            A = a->A, B = a->B;
1411:   PetscLogDouble isend[5], irecv[5];

1413:   PetscFunctionBegin;
1414:   info->block_size = (PetscReal)matin->rmap->bs;

1416:   PetscCall(MatGetInfo(A, MAT_LOCAL, info));

1418:   isend[0] = info->nz_used;
1419:   isend[1] = info->nz_allocated;
1420:   isend[2] = info->nz_unneeded;
1421:   isend[3] = info->memory;
1422:   isend[4] = info->mallocs;

1424:   PetscCall(MatGetInfo(B, MAT_LOCAL, info));

1426:   isend[0] += info->nz_used;
1427:   isend[1] += info->nz_allocated;
1428:   isend[2] += info->nz_unneeded;
1429:   isend[3] += info->memory;
1430:   isend[4] += info->mallocs;

1432:   if (flag == MAT_LOCAL) {
1433:     info->nz_used      = isend[0];
1434:     info->nz_allocated = isend[1];
1435:     info->nz_unneeded  = isend[2];
1436:     info->memory       = isend[3];
1437:     info->mallocs      = isend[4];
1438:   } else if (flag == MAT_GLOBAL_MAX) {
1439:     PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)matin)));

1441:     info->nz_used      = irecv[0];
1442:     info->nz_allocated = irecv[1];
1443:     info->nz_unneeded  = irecv[2];
1444:     info->memory       = irecv[3];
1445:     info->mallocs      = irecv[4];
1446:   } else if (flag == MAT_GLOBAL_SUM) {
1447:     PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)matin)));

1449:     info->nz_used      = irecv[0];
1450:     info->nz_allocated = irecv[1];
1451:     info->nz_unneeded  = irecv[2];
1452:     info->memory       = irecv[3];
1453:     info->mallocs      = irecv[4];
1454:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_ARG_WRONG, "Unknown MatInfoType argument %d", (int)flag);
1455:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
1456:   info->fill_ratio_needed = 0;
1457:   info->factor_mallocs    = 0;
1458:   PetscFunctionReturn(PETSC_SUCCESS);
1459: }

1461: static PetscErrorCode MatSetOption_MPIBAIJ(Mat A, MatOption op, PetscBool flg)
1462: {
1463:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1465:   PetscFunctionBegin;
1466:   switch (op) {
1467:   case MAT_NEW_NONZERO_LOCATIONS:
1468:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1469:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1470:   case MAT_KEEP_NONZERO_PATTERN:
1471:   case MAT_NEW_NONZERO_LOCATION_ERR:
1472:     MatCheckPreallocated(A, 1);
1473:     PetscCall(MatSetOption(a->A, op, flg));
1474:     PetscCall(MatSetOption(a->B, op, flg));
1475:     break;
1476:   case MAT_ROW_ORIENTED:
1477:     MatCheckPreallocated(A, 1);
1478:     a->roworiented = flg;

1480:     PetscCall(MatSetOption(a->A, op, flg));
1481:     PetscCall(MatSetOption(a->B, op, flg));
1482:     break;
1483:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1484:     a->donotstash = flg;
1485:     break;
1486:   case MAT_USE_HASH_TABLE:
1487:     a->ht_flag = flg;
1488:     a->ht_fact = 1.39;
1489:     break;
1490:   case MAT_SYMMETRIC:
1491:   case MAT_STRUCTURALLY_SYMMETRIC:
1492:   case MAT_HERMITIAN:
1493:   case MAT_SYMMETRY_ETERNAL:
1494:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
1495:   case MAT_SPD_ETERNAL:
1496:     /* if the diagonal matrix is square it inherits some of the properties above */
1497:     if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1498:     break;
1499:   default:
1500:     break;
1501:   }
1502:   PetscFunctionReturn(PETSC_SUCCESS);
1503: }

1505: static PetscErrorCode MatTranspose_MPIBAIJ(Mat A, MatReuse reuse, Mat *matout)
1506: {
1507:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)A->data;
1508:   Mat_SeqBAIJ *Aloc;
1509:   Mat          B;
1510:   PetscInt     M = A->rmap->N, N = A->cmap->N, *ai, *aj, i, *rvals, j, k, col;
1511:   PetscInt     bs = A->rmap->bs, mbs = baij->mbs;
1512:   MatScalar   *a;

1514:   PetscFunctionBegin;
1515:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1516:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
1517:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
1518:     PetscCall(MatSetSizes(B, A->cmap->n, A->rmap->n, N, M));
1519:     PetscCall(MatSetType(B, ((PetscObject)A)->type_name));
1520:     /* Do not know preallocation information, but must set block size */
1521:     PetscCall(MatMPIBAIJSetPreallocation(B, A->rmap->bs, PETSC_DECIDE, NULL, PETSC_DECIDE, NULL));
1522:   } else {
1523:     B = *matout;
1524:   }

1526:   /* copy over the A part */
1527:   Aloc = (Mat_SeqBAIJ *)baij->A->data;
1528:   ai   = Aloc->i;
1529:   aj   = Aloc->j;
1530:   a    = Aloc->a;
1531:   PetscCall(PetscMalloc1(bs, &rvals));

1533:   for (i = 0; i < mbs; i++) {
1534:     rvals[0] = bs * (baij->rstartbs + i);
1535:     for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1536:     for (j = ai[i]; j < ai[i + 1]; j++) {
1537:       col = (baij->cstartbs + aj[j]) * bs;
1538:       for (k = 0; k < bs; k++) {
1539:         PetscCall(MatSetValues_MPIBAIJ(B, 1, &col, bs, rvals, a, INSERT_VALUES));

1541:         col++;
1542:         a += bs;
1543:       }
1544:     }
1545:   }
1546:   /* copy over the B part */
1547:   Aloc = (Mat_SeqBAIJ *)baij->B->data;
1548:   ai   = Aloc->i;
1549:   aj   = Aloc->j;
1550:   a    = Aloc->a;
1551:   for (i = 0; i < mbs; i++) {
1552:     rvals[0] = bs * (baij->rstartbs + i);
1553:     for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1554:     for (j = ai[i]; j < ai[i + 1]; j++) {
1555:       col = baij->garray[aj[j]] * bs;
1556:       for (k = 0; k < bs; k++) {
1557:         PetscCall(MatSetValues_MPIBAIJ(B, 1, &col, bs, rvals, a, INSERT_VALUES));
1558:         col++;
1559:         a += bs;
1560:       }
1561:     }
1562:   }
1563:   PetscCall(PetscFree(rvals));
1564:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
1565:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

1567:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) *matout = B;
1568:   else PetscCall(MatHeaderMerge(A, &B));
1569:   PetscFunctionReturn(PETSC_SUCCESS);
1570: }

1572: static PetscErrorCode MatDiagonalScale_MPIBAIJ(Mat mat, Vec ll, Vec rr)
1573: {
1574:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
1575:   Mat          a = baij->A, b = baij->B;
1576:   PetscInt     s1, s2, s3;

1578:   PetscFunctionBegin;
1579:   PetscCall(MatGetLocalSize(mat, &s2, &s3));
1580:   if (rr) {
1581:     PetscCall(VecGetLocalSize(rr, &s1));
1582:     PetscCheck(s1 == s3, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "right vector non-conforming local size");
1583:     /* Overlap communication with computation. */
1584:     PetscCall(VecScatterBegin(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1585:   }
1586:   if (ll) {
1587:     PetscCall(VecGetLocalSize(ll, &s1));
1588:     PetscCheck(s1 == s2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "left vector non-conforming local size");
1589:     PetscUseTypeMethod(b, diagonalscale, ll, NULL);
1590:   }
1591:   /* scale  the diagonal block */
1592:   PetscUseTypeMethod(a, diagonalscale, ll, rr);

1594:   if (rr) {
1595:     /* Do a scatter end and then right scale the off-diagonal block */
1596:     PetscCall(VecScatterEnd(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1597:     PetscUseTypeMethod(b, diagonalscale, NULL, baij->lvec);
1598:   }
1599:   PetscFunctionReturn(PETSC_SUCCESS);
1600: }

1602: static PetscErrorCode MatZeroRows_MPIBAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
1603: {
1604:   Mat_MPIBAIJ *l = (Mat_MPIBAIJ *)A->data;
1605:   PetscInt    *lrows;
1606:   PetscInt     r, len;
1607:   PetscBool    cong;

1609:   PetscFunctionBegin;
1610:   /* get locally owned rows */
1611:   PetscCall(MatZeroRowsMapLocal_Private(A, N, rows, &len, &lrows));
1612:   /* fix right-hand side if needed */
1613:   if (x && b) {
1614:     const PetscScalar *xx;
1615:     PetscScalar       *bb;

1617:     PetscCall(VecGetArrayRead(x, &xx));
1618:     PetscCall(VecGetArray(b, &bb));
1619:     for (r = 0; r < len; ++r) bb[lrows[r]] = diag * xx[lrows[r]];
1620:     PetscCall(VecRestoreArrayRead(x, &xx));
1621:     PetscCall(VecRestoreArray(b, &bb));
1622:   }

1624:   /* actually zap the local rows */
1625:   /*
1626:         Zero the required rows. If the "diagonal block" of the matrix
1627:      is square and the user wishes to set the diagonal we use separate
1628:      code so that MatSetValues() is not called for each diagonal allocating
1629:      new memory, thus calling lots of mallocs and slowing things down.

1631:   */
1632:   /* must zero l->B before l->A because the (diag) case below may put values into l->B*/
1633:   PetscCall(MatZeroRows_SeqBAIJ(l->B, len, lrows, 0.0, NULL, NULL));
1634:   PetscCall(MatHasCongruentLayouts(A, &cong));
1635:   if ((diag != 0.0) && cong) {
1636:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, diag, NULL, NULL));
1637:   } else if (diag != 0.0) {
1638:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, 0.0, NULL, NULL));
1639:     PetscCheck(!((Mat_SeqBAIJ *)l->A->data)->nonew, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatZeroRows() on rectangular matrices cannot be used with the Mat options MAT_NEW_NONZERO_LOCATIONS, MAT_NEW_NONZERO_LOCATION_ERR, and MAT_NEW_NONZERO_ALLOCATION_ERR");
1640:     for (r = 0; r < len; ++r) {
1641:       const PetscInt row = lrows[r] + A->rmap->rstart;
1642:       PetscCall(MatSetValues(A, 1, &row, 1, &row, &diag, INSERT_VALUES));
1643:     }
1644:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1645:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1646:   } else {
1647:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, 0.0, NULL, NULL));
1648:   }
1649:   PetscCall(PetscFree(lrows));

1651:   /* only change matrix nonzero state if pattern was allowed to be changed */
1652:   if (!((Mat_SeqBAIJ *)l->A->data)->keepnonzeropattern || !((Mat_SeqBAIJ *)l->A->data)->nonew) {
1653:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1654:     PetscCallMPI(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1655:   }
1656:   PetscFunctionReturn(PETSC_SUCCESS);
1657: }

1659: static PetscErrorCode MatZeroRowsColumns_MPIBAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
1660: {
1661:   Mat_MPIBAIJ       *l = (Mat_MPIBAIJ *)A->data;
1662:   PetscMPIInt        n, p = 0;
1663:   PetscInt           i, j, k, r, len = 0, row, col, count;
1664:   PetscInt          *lrows, *owners = A->rmap->range;
1665:   PetscSFNode       *rrows;
1666:   PetscSF            sf;
1667:   const PetscScalar *xx;
1668:   PetscScalar       *bb, *mask;
1669:   Vec                xmask, lmask;
1670:   Mat_SeqBAIJ       *baij = (Mat_SeqBAIJ *)l->B->data;
1671:   PetscInt           bs = A->rmap->bs, bs2 = baij->bs2;
1672:   PetscScalar       *aa;

1674:   PetscFunctionBegin;
1675:   PetscCall(PetscMPIIntCast(A->rmap->n, &n));
1676:   /* Create SF where leaves are input rows and roots are owned rows */
1677:   PetscCall(PetscMalloc1(n, &lrows));
1678:   for (r = 0; r < n; ++r) lrows[r] = -1;
1679:   PetscCall(PetscMalloc1(N, &rrows));
1680:   for (r = 0; r < N; ++r) {
1681:     const PetscInt idx = rows[r];
1682:     PetscCheck(idx >= 0 && A->rmap->N > idx, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " out of range [0,%" PetscInt_FMT ")", idx, A->rmap->N);
1683:     if (idx < owners[p] || owners[p + 1] <= idx) { /* short-circuit the search if the last p owns this row too */
1684:       PetscCall(PetscLayoutFindOwner(A->rmap, idx, &p));
1685:     }
1686:     rrows[r].rank  = p;
1687:     rrows[r].index = rows[r] - owners[p];
1688:   }
1689:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1690:   PetscCall(PetscSFSetGraph(sf, n, N, NULL, PETSC_OWN_POINTER, rrows, PETSC_OWN_POINTER));
1691:   /* Collect flags for rows to be zeroed */
1692:   PetscCall(PetscSFReduceBegin(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
1693:   PetscCall(PetscSFReduceEnd(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
1694:   PetscCall(PetscSFDestroy(&sf));
1695:   /* Compress and put in row numbers */
1696:   for (r = 0; r < n; ++r)
1697:     if (lrows[r] >= 0) lrows[len++] = r;
1698:   /* zero diagonal part of matrix */
1699:   PetscCall(MatZeroRowsColumns(l->A, len, lrows, diag, x, b));
1700:   /* handle off-diagonal part of matrix */
1701:   PetscCall(MatCreateVecs(A, &xmask, NULL));
1702:   PetscCall(VecDuplicate(l->lvec, &lmask));
1703:   PetscCall(VecGetArray(xmask, &bb));
1704:   for (i = 0; i < len; i++) bb[lrows[i]] = 1;
1705:   PetscCall(VecRestoreArray(xmask, &bb));
1706:   PetscCall(VecScatterBegin(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
1707:   PetscCall(VecScatterEnd(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
1708:   PetscCall(VecDestroy(&xmask));
1709:   if (x) {
1710:     PetscCall(VecScatterBegin(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
1711:     PetscCall(VecScatterEnd(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
1712:     PetscCall(VecGetArrayRead(l->lvec, &xx));
1713:     PetscCall(VecGetArray(b, &bb));
1714:   }
1715:   PetscCall(VecGetArray(lmask, &mask));
1716:   /* remove zeroed rows of off-diagonal matrix */
1717:   for (i = 0; i < len; ++i) {
1718:     row   = lrows[i];
1719:     count = (baij->i[row / bs + 1] - baij->i[row / bs]) * bs;
1720:     aa    = baij->a + baij->i[row / bs] * bs2 + (row % bs);
1721:     for (k = 0; k < count; ++k) {
1722:       aa[0] = 0.0;
1723:       aa += bs;
1724:     }
1725:   }
1726:   /* loop over all elements of off process part of matrix zeroing removed columns*/
1727:   for (i = 0; i < l->B->rmap->N; ++i) {
1728:     row = i / bs;
1729:     for (j = baij->i[row]; j < baij->i[row + 1]; ++j) {
1730:       for (k = 0; k < bs; ++k) {
1731:         col = bs * baij->j[j] + k;
1732:         if (PetscAbsScalar(mask[col])) {
1733:           aa = baij->a + j * bs2 + (i % bs) + bs * k;
1734:           if (x) bb[i] -= aa[0] * xx[col];
1735:           aa[0] = 0.0;
1736:         }
1737:       }
1738:     }
1739:   }
1740:   if (x) {
1741:     PetscCall(VecRestoreArray(b, &bb));
1742:     PetscCall(VecRestoreArrayRead(l->lvec, &xx));
1743:   }
1744:   PetscCall(VecRestoreArray(lmask, &mask));
1745:   PetscCall(VecDestroy(&lmask));
1746:   PetscCall(PetscFree(lrows));

1748:   /* only change matrix nonzero state if pattern was allowed to be changed */
1749:   if (!((Mat_SeqBAIJ *)l->A->data)->nonew) {
1750:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1751:     PetscCallMPI(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1752:   }
1753:   PetscFunctionReturn(PETSC_SUCCESS);
1754: }

1756: static PetscErrorCode MatSetUnfactored_MPIBAIJ(Mat A)
1757: {
1758:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1760:   PetscFunctionBegin;
1761:   PetscCall(MatSetUnfactored(a->A));
1762:   PetscFunctionReturn(PETSC_SUCCESS);
1763: }

1765: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat, MatDuplicateOption, Mat *);

1767: static PetscErrorCode MatEqual_MPIBAIJ(Mat A, Mat B, PetscBool *flag)
1768: {
1769:   Mat_MPIBAIJ *matB = (Mat_MPIBAIJ *)B->data, *matA = (Mat_MPIBAIJ *)A->data;
1770:   Mat          a, b, c, d;
1771:   PetscBool    flg;

1773:   PetscFunctionBegin;
1774:   a = matA->A;
1775:   b = matA->B;
1776:   c = matB->A;
1777:   d = matB->B;

1779:   PetscCall(MatEqual(a, c, &flg));
1780:   if (flg) PetscCall(MatEqual(b, d, &flg));
1781:   PetscCallMPI(MPIU_Allreduce(&flg, flag, 1, MPI_C_BOOL, MPI_LAND, PetscObjectComm((PetscObject)A)));
1782:   PetscFunctionReturn(PETSC_SUCCESS);
1783: }

1785: static PetscErrorCode MatCopy_MPIBAIJ(Mat A, Mat B, MatStructure str)
1786: {
1787:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
1788:   Mat_MPIBAIJ *b = (Mat_MPIBAIJ *)B->data;

1790:   PetscFunctionBegin;
1791:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
1792:   if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
1793:     PetscCall(MatCopy_Basic(A, B, str));
1794:   } else {
1795:     PetscCall(MatCopy(a->A, b->A, str));
1796:     PetscCall(MatCopy(a->B, b->B, str));
1797:   }
1798:   PetscCall(PetscObjectStateIncrease((PetscObject)B));
1799:   PetscFunctionReturn(PETSC_SUCCESS);
1800: }

1802: PetscErrorCode MatAXPYGetPreallocation_MPIBAIJ(Mat Y, const PetscInt *yltog, Mat X, const PetscInt *xltog, PetscInt *nnz)
1803: {
1804:   PetscInt     bs = Y->rmap->bs, m = Y->rmap->N / bs;
1805:   Mat_SeqBAIJ *x = (Mat_SeqBAIJ *)X->data;
1806:   Mat_SeqBAIJ *y = (Mat_SeqBAIJ *)Y->data;

1808:   PetscFunctionBegin;
1809:   PetscCall(MatAXPYGetPreallocation_MPIX_private(m, x->i, x->j, xltog, y->i, y->j, yltog, nnz));
1810:   PetscFunctionReturn(PETSC_SUCCESS);
1811: }

1813: static PetscErrorCode MatAXPY_MPIBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1814: {
1815:   Mat_MPIBAIJ *xx = (Mat_MPIBAIJ *)X->data, *yy = (Mat_MPIBAIJ *)Y->data;
1816:   PetscBLASInt bnz, one                         = 1;
1817:   Mat_SeqBAIJ *x, *y;
1818:   PetscInt     bs2 = Y->rmap->bs * Y->rmap->bs;

1820:   PetscFunctionBegin;
1821:   if (str == SAME_NONZERO_PATTERN) {
1822:     PetscScalar alpha = a;
1823:     x                 = (Mat_SeqBAIJ *)xx->A->data;
1824:     y                 = (Mat_SeqBAIJ *)yy->A->data;
1825:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1826:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1827:     x = (Mat_SeqBAIJ *)xx->B->data;
1828:     y = (Mat_SeqBAIJ *)yy->B->data;
1829:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1830:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1831:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1832:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1833:     PetscCall(MatAXPY_Basic(Y, a, X, str));
1834:   } else {
1835:     Mat       B;
1836:     PetscInt *nnz_d, *nnz_o, bs = Y->rmap->bs;
1837:     PetscCall(PetscMalloc1(yy->A->rmap->N, &nnz_d));
1838:     PetscCall(PetscMalloc1(yy->B->rmap->N, &nnz_o));
1839:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1840:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1841:     PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1842:     PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1843:     PetscCall(MatSetType(B, MATMPIBAIJ));
1844:     PetscCall(MatAXPYGetPreallocation_SeqBAIJ(yy->A, xx->A, nnz_d));
1845:     PetscCall(MatAXPYGetPreallocation_MPIBAIJ(yy->B, yy->garray, xx->B, xx->garray, nnz_o));
1846:     PetscCall(MatMPIBAIJSetPreallocation(B, bs, 0, nnz_d, 0, nnz_o));
1847:     /* MatAXPY_BasicWithPreallocation() for BAIJ matrix is much slower than AIJ, even for bs=1 ! */
1848:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
1849:     PetscCall(MatHeaderMerge(Y, &B));
1850:     PetscCall(PetscFree(nnz_d));
1851:     PetscCall(PetscFree(nnz_o));
1852:   }
1853:   PetscFunctionReturn(PETSC_SUCCESS);
1854: }

1856: static PetscErrorCode MatConjugate_MPIBAIJ(Mat mat)
1857: {
1858:   PetscFunctionBegin;
1859:   if (PetscDefined(USE_COMPLEX)) {
1860:     Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)mat->data;

1862:     PetscCall(MatConjugate_SeqBAIJ(a->A));
1863:     PetscCall(MatConjugate_SeqBAIJ(a->B));
1864:   }
1865:   PetscFunctionReturn(PETSC_SUCCESS);
1866: }

1868: static PetscErrorCode MatRealPart_MPIBAIJ(Mat A)
1869: {
1870:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1872:   PetscFunctionBegin;
1873:   PetscCall(MatRealPart(a->A));
1874:   PetscCall(MatRealPart(a->B));
1875:   PetscFunctionReturn(PETSC_SUCCESS);
1876: }

1878: static PetscErrorCode MatImaginaryPart_MPIBAIJ(Mat A)
1879: {
1880:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1882:   PetscFunctionBegin;
1883:   PetscCall(MatImaginaryPart(a->A));
1884:   PetscCall(MatImaginaryPart(a->B));
1885:   PetscFunctionReturn(PETSC_SUCCESS);
1886: }

1888: static PetscErrorCode MatCreateSubMatrix_MPIBAIJ(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *newmat)
1889: {
1890:   IS       iscol_local;
1891:   PetscInt csize;

1893:   PetscFunctionBegin;
1894:   PetscCall(ISGetLocalSize(iscol, &csize));
1895:   if (call == MAT_REUSE_MATRIX) {
1896:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather", (PetscObject *)&iscol_local));
1897:     PetscCheck(iscol_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1898:   } else {
1899:     PetscCall(ISAllGather(iscol, &iscol_local));
1900:   }
1901:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, isrow, iscol_local, csize, call, newmat, PETSC_FALSE));
1902:   if (call == MAT_INITIAL_MATRIX) {
1903:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
1904:     PetscCall(ISDestroy(&iscol_local));
1905:   }
1906:   PetscFunctionReturn(PETSC_SUCCESS);
1907: }

1909: /*
1910:   Not great since it makes two copies of the submatrix, first an SeqBAIJ
1911:   in local and then by concatenating the local matrices the end result.
1912:   Writing it directly would be much like MatCreateSubMatrices_MPIBAIJ().
1913:   This routine is used for BAIJ and SBAIJ matrices (unfortunate dependency).
1914: */
1915: PetscErrorCode MatCreateSubMatrix_MPIBAIJ_Private(Mat mat, IS isrow, IS iscol, PetscInt csize, MatReuse call, Mat *newmat, PetscBool sym)
1916: {
1917:   PetscMPIInt  rank, size;
1918:   PetscInt     i, m, n, rstart, row, rend, nz, *cwork, j, bs;
1919:   PetscInt    *ii, *jj, nlocal, *dlens, *olens, dlen, olen, jend, mglobal;
1920:   Mat          M, Mreuse;
1921:   MatScalar   *vwork, *aa;
1922:   MPI_Comm     comm;
1923:   IS           isrow_new, iscol_new;
1924:   Mat_SeqBAIJ *aij;

1926:   PetscFunctionBegin;
1927:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
1928:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
1929:   PetscCallMPI(MPI_Comm_size(comm, &size));
1930:   /* The compression and expansion should be avoided. Doesn't point
1931:      out errors, might change the indices, hence buggey */
1932:   PetscCall(ISCompressIndicesGeneral(mat->rmap->N, mat->rmap->n, mat->rmap->bs, 1, &isrow, &isrow_new));
1933:   if (isrow == iscol) {
1934:     iscol_new = isrow_new;
1935:     PetscCall(PetscObjectReference((PetscObject)iscol_new));
1936:   } else PetscCall(ISCompressIndicesGeneral(mat->cmap->N, mat->cmap->n, mat->cmap->bs, 1, &iscol, &iscol_new));

1938:   if (call == MAT_REUSE_MATRIX) {
1939:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubMatrix", (PetscObject *)&Mreuse));
1940:     PetscCheck(Mreuse, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1941:     PetscCall(MatCreateSubMatrices_MPIBAIJ_local(mat, 1, &isrow_new, &iscol_new, MAT_REUSE_MATRIX, &Mreuse, sym));
1942:   } else {
1943:     PetscCall(MatCreateSubMatrices_MPIBAIJ_local(mat, 1, &isrow_new, &iscol_new, MAT_INITIAL_MATRIX, &Mreuse, sym));
1944:   }
1945:   PetscCall(ISDestroy(&isrow_new));
1946:   PetscCall(ISDestroy(&iscol_new));
1947:   /*
1948:       m - number of local rows
1949:       n - number of columns (same on all processors)
1950:       rstart - first row in new global matrix generated
1951:   */
1952:   PetscCall(MatGetBlockSize(mat, &bs));
1953:   PetscCall(MatGetSize(Mreuse, &m, &n));
1954:   m = m / bs;
1955:   n = n / bs;

1957:   if (call == MAT_INITIAL_MATRIX) {
1958:     aij = (Mat_SeqBAIJ *)Mreuse->data;
1959:     ii  = aij->i;
1960:     jj  = aij->j;

1962:     /*
1963:         Determine the number of non-zeros in the diagonal and off-diagonal
1964:         portions of the matrix in order to do correct preallocation
1965:     */

1967:     /* first get start and end of "diagonal" columns */
1968:     if (csize == PETSC_DECIDE) {
1969:       PetscCall(ISGetSize(isrow, &mglobal));
1970:       if (mglobal == n * bs) { /* square matrix */
1971:         nlocal = m;
1972:       } else {
1973:         nlocal = n / size + ((n % size) > rank);
1974:       }
1975:     } else {
1976:       nlocal = csize / bs;
1977:     }
1978:     PetscCallMPI(MPI_Scan(&nlocal, &rend, 1, MPIU_INT, MPI_SUM, comm));
1979:     rstart = rend - nlocal;
1980:     PetscCheck(rank != size - 1 || rend == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Local column sizes %" PetscInt_FMT " do not add up to total number of columns %" PetscInt_FMT, rend, n);

1982:     /* next, compute all the lengths */
1983:     PetscCall(PetscMalloc2(m + 1, &dlens, m + 1, &olens));
1984:     for (i = 0; i < m; i++) {
1985:       jend = ii[i + 1] - ii[i];
1986:       olen = 0;
1987:       dlen = 0;
1988:       for (j = 0; j < jend; j++) {
1989:         if (*jj < rstart || *jj >= rend) olen++;
1990:         else dlen++;
1991:         jj++;
1992:       }
1993:       olens[i] = olen;
1994:       dlens[i] = dlen;
1995:     }
1996:     PetscCall(MatCreate(comm, &M));
1997:     PetscCall(MatSetSizes(M, bs * m, bs * nlocal, PETSC_DECIDE, bs * n));
1998:     PetscCall(MatSetType(M, sym ? ((PetscObject)mat)->type_name : MATMPIBAIJ));
1999:     PetscCall(MatMPIBAIJSetPreallocation(M, bs, 0, dlens, 0, olens));
2000:     PetscCall(MatMPISBAIJSetPreallocation(M, bs, 0, dlens, 0, olens));
2001:     PetscCall(PetscFree2(dlens, olens));
2002:   } else {
2003:     PetscInt ml, nl;

2005:     M = *newmat;
2006:     PetscCall(MatGetLocalSize(M, &ml, &nl));
2007:     PetscCheck(ml == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Previous matrix must be same size/layout as request");
2008:     PetscCall(MatZeroEntries(M));
2009:     /*
2010:          The next two lines are needed so we may call MatSetValues_MPIAIJ() below directly,
2011:        rather than the slower MatSetValues().
2012:     */
2013:     M->was_assembled = PETSC_TRUE;
2014:     M->assembled     = PETSC_FALSE;
2015:   }
2016:   PetscCall(MatSetOption(M, MAT_ROW_ORIENTED, PETSC_FALSE));
2017:   PetscCall(MatGetOwnershipRange(M, &rstart, &rend));
2018:   aij = (Mat_SeqBAIJ *)Mreuse->data;
2019:   ii  = aij->i;
2020:   jj  = aij->j;
2021:   aa  = aij->a;
2022:   for (i = 0; i < m; i++) {
2023:     row   = rstart / bs + i;
2024:     nz    = ii[i + 1] - ii[i];
2025:     cwork = jj;
2026:     jj    = PetscSafePointerPlusOffset(jj, nz);
2027:     vwork = aa;
2028:     aa    = PetscSafePointerPlusOffset(aa, nz * bs * bs);
2029:     PetscCall(MatSetValuesBlocked_MPIBAIJ(M, 1, &row, nz, cwork, vwork, INSERT_VALUES));
2030:   }

2032:   PetscCall(MatAssemblyBegin(M, MAT_FINAL_ASSEMBLY));
2033:   PetscCall(MatAssemblyEnd(M, MAT_FINAL_ASSEMBLY));
2034:   *newmat = M;

2036:   /* save submatrix used in processor for next request */
2037:   if (call == MAT_INITIAL_MATRIX) {
2038:     PetscCall(PetscObjectCompose((PetscObject)M, "SubMatrix", (PetscObject)Mreuse));
2039:     PetscCall(PetscObjectDereference((PetscObject)Mreuse));
2040:   }
2041:   PetscFunctionReturn(PETSC_SUCCESS);
2042: }

2044: static PetscErrorCode MatPermute_MPIBAIJ(Mat A, IS rowp, IS colp, Mat *B)
2045: {
2046:   MPI_Comm        comm, pcomm;
2047:   PetscInt        clocal_size, nrows;
2048:   const PetscInt *rows;
2049:   PetscMPIInt     size;
2050:   IS              crowp, lcolp;

2052:   PetscFunctionBegin;
2053:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
2054:   /* make a collective version of 'rowp' */
2055:   PetscCall(PetscObjectGetComm((PetscObject)rowp, &pcomm));
2056:   if (pcomm == comm) {
2057:     crowp = rowp;
2058:   } else {
2059:     PetscCall(ISGetSize(rowp, &nrows));
2060:     PetscCall(ISGetIndices(rowp, &rows));
2061:     PetscCall(ISCreateGeneral(comm, nrows, rows, PETSC_COPY_VALUES, &crowp));
2062:     PetscCall(ISRestoreIndices(rowp, &rows));
2063:   }
2064:   PetscCall(ISSetPermutation(crowp));
2065:   /* make a local version of 'colp' */
2066:   PetscCall(PetscObjectGetComm((PetscObject)colp, &pcomm));
2067:   PetscCallMPI(MPI_Comm_size(pcomm, &size));
2068:   if (size == 1) {
2069:     lcolp = colp;
2070:   } else {
2071:     PetscCall(ISAllGather(colp, &lcolp));
2072:   }
2073:   PetscCall(ISSetPermutation(lcolp));
2074:   /* now we just get the submatrix */
2075:   PetscCall(MatGetLocalSize(A, NULL, &clocal_size));
2076:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(A, crowp, lcolp, clocal_size, MAT_INITIAL_MATRIX, B, PETSC_FALSE));
2077:   /* clean up */
2078:   if (pcomm != comm) PetscCall(ISDestroy(&crowp));
2079:   if (size > 1) PetscCall(ISDestroy(&lcolp));
2080:   PetscFunctionReturn(PETSC_SUCCESS);
2081: }

2083: static PetscErrorCode MatGetGhosts_MPIBAIJ(Mat mat, PetscInt *nghosts, const PetscInt *ghosts[])
2084: {
2085:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
2086:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ *)baij->B->data;

2088:   PetscFunctionBegin;
2089:   if (nghosts) *nghosts = B->nbs;
2090:   if (ghosts) *ghosts = baij->garray;
2091:   PetscFunctionReturn(PETSC_SUCCESS);
2092: }

2094: static PetscErrorCode MatGetSeqNonzeroStructure_MPIBAIJ(Mat A, Mat *newmat)
2095: {
2096:   Mat          B;
2097:   Mat_MPIBAIJ *a  = (Mat_MPIBAIJ *)A->data;
2098:   Mat_SeqBAIJ *ad = (Mat_SeqBAIJ *)a->A->data, *bd = (Mat_SeqBAIJ *)a->B->data;
2099:   Mat_SeqAIJ  *b;
2100:   PetscMPIInt  size, rank, *recvcounts = NULL, *displs = NULL;
2101:   PetscInt     sendcount, i, *rstarts = A->rmap->range, n, cnt, j, bs = A->rmap->bs;
2102:   PetscInt     m, *garray = a->garray, *lens, *jsendbuf, *a_jsendbuf, *b_jsendbuf;

2104:   PetscFunctionBegin;
2105:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2106:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));

2108:   /*   Tell every processor the number of nonzeros per row  */
2109:   PetscCall(PetscMalloc1(A->rmap->N / bs, &lens));
2110:   for (i = A->rmap->rstart / bs; i < A->rmap->rend / bs; i++) lens[i] = ad->i[i - A->rmap->rstart / bs + 1] - ad->i[i - A->rmap->rstart / bs] + bd->i[i - A->rmap->rstart / bs + 1] - bd->i[i - A->rmap->rstart / bs];
2111:   PetscCall(PetscMalloc1(2 * size, &recvcounts));
2112:   displs = recvcounts + size;
2113:   for (i = 0; i < size; i++) {
2114:     PetscCall(PetscMPIIntCast(A->rmap->range[i + 1] / bs - A->rmap->range[i] / bs, &recvcounts[i]));
2115:     PetscCall(PetscMPIIntCast(A->rmap->range[i] / bs, &displs[i]));
2116:   }
2117:   PetscCallMPI(MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, lens, recvcounts, displs, MPIU_INT, PetscObjectComm((PetscObject)A)));
2118:   /* Create the sequential matrix of the same type as the local block diagonal  */
2119:   PetscCall(MatCreate(PETSC_COMM_SELF, &B));
2120:   PetscCall(MatSetSizes(B, A->rmap->N / bs, A->cmap->N / bs, PETSC_DETERMINE, PETSC_DETERMINE));
2121:   PetscCall(MatSetType(B, MATSEQAIJ));
2122:   PetscCall(MatSeqAIJSetPreallocation(B, 0, lens));
2123:   b = (Mat_SeqAIJ *)B->data;

2125:   /*     Copy my part of matrix column indices over  */
2126:   sendcount  = ad->nz + bd->nz;
2127:   jsendbuf   = b->j + b->i[rstarts[rank] / bs];
2128:   a_jsendbuf = ad->j;
2129:   b_jsendbuf = bd->j;
2130:   n          = A->rmap->rend / bs - A->rmap->rstart / bs;
2131:   cnt        = 0;
2132:   for (i = 0; i < n; i++) {
2133:     /* put in lower diagonal portion */
2134:     m = bd->i[i + 1] - bd->i[i];
2135:     while (m > 0) {
2136:       /* is it above diagonal (in bd (compressed) numbering) */
2137:       if (garray[*b_jsendbuf] > A->rmap->rstart / bs + i) break;
2138:       jsendbuf[cnt++] = garray[*b_jsendbuf++];
2139:       m--;
2140:     }

2142:     /* put in diagonal portion */
2143:     for (j = ad->i[i]; j < ad->i[i + 1]; j++) jsendbuf[cnt++] = A->rmap->rstart / bs + *a_jsendbuf++;

2145:     /* put in upper diagonal portion */
2146:     while (m-- > 0) jsendbuf[cnt++] = garray[*b_jsendbuf++];
2147:   }
2148:   PetscCheck(cnt == sendcount, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Corrupted PETSc matrix: nz given %" PetscInt_FMT " actual nz %" PetscInt_FMT, sendcount, cnt);

2150:   /*  Gather all column indices to all processors  */
2151:   for (i = 0; i < size; i++) {
2152:     recvcounts[i] = 0;
2153:     for (j = A->rmap->range[i] / bs; j < A->rmap->range[i + 1] / bs; j++) recvcounts[i] += lens[j];
2154:   }
2155:   displs[0] = 0;
2156:   for (i = 1; i < size; i++) displs[i] = displs[i - 1] + recvcounts[i - 1];
2157:   PetscCallMPI(MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, b->j, recvcounts, displs, MPIU_INT, PetscObjectComm((PetscObject)A)));
2158:   /*  Assemble the matrix into usable form (note numerical values not yet set)  */
2159:   /* set the b->ilen (length of each row) values */
2160:   PetscCall(PetscArraycpy(b->ilen, lens, A->rmap->N / bs));
2161:   /* set the b->i indices */
2162:   b->i[0] = 0;
2163:   for (i = 1; i <= A->rmap->N / bs; i++) b->i[i] = b->i[i - 1] + lens[i - 1];
2164:   PetscCall(PetscFree(lens));
2165:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2166:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2167:   PetscCall(PetscFree(recvcounts));

2169:   PetscCall(MatPropagateSymmetryOptions(A, B));
2170:   *newmat = B;
2171:   PetscFunctionReturn(PETSC_SUCCESS);
2172: }

2174: static PetscErrorCode MatSOR_MPIBAIJ(Mat matin, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
2175: {
2176:   Mat_MPIBAIJ *mat = (Mat_MPIBAIJ *)matin->data;
2177:   Vec          bb1 = NULL;

2179:   PetscFunctionBegin;
2180:   if (flag == SOR_APPLY_UPPER) {
2181:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2182:     PetscFunctionReturn(PETSC_SUCCESS);
2183:   }

2185:   if (its > 1 || ~flag & SOR_ZERO_INITIAL_GUESS) PetscCall(VecDuplicate(bb, &bb1));

2187:   if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
2188:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2189:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2190:       its--;
2191:     }

2193:     while (its--) {
2194:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2195:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2197:       /* update rhs: bb1 = bb - B*x */
2198:       PetscCall(VecScale(mat->lvec, -1.0));
2199:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2201:       /* local sweep */
2202:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_SYMMETRIC_SWEEP, fshift, lits, 1, xx));
2203:     }
2204:   } else if (flag & SOR_LOCAL_FORWARD_SWEEP) {
2205:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2206:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2207:       its--;
2208:     }
2209:     while (its--) {
2210:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2211:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2213:       /* update rhs: bb1 = bb - B*x */
2214:       PetscCall(VecScale(mat->lvec, -1.0));
2215:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2217:       /* local sweep */
2218:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_FORWARD_SWEEP, fshift, lits, 1, xx));
2219:     }
2220:   } else if (flag & SOR_LOCAL_BACKWARD_SWEEP) {
2221:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2222:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2223:       its--;
2224:     }
2225:     while (its--) {
2226:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2227:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2229:       /* update rhs: bb1 = bb - B*x */
2230:       PetscCall(VecScale(mat->lvec, -1.0));
2231:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2233:       /* local sweep */
2234:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_BACKWARD_SWEEP, fshift, lits, 1, xx));
2235:     }
2236:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_SUP, "Parallel version of SOR requested not supported");

2238:   PetscCall(VecDestroy(&bb1));
2239:   PetscFunctionReturn(PETSC_SUCCESS);
2240: }

2242: static PetscErrorCode MatGetColumnReductions_MPIBAIJ(Mat A, PetscInt type, PetscReal *reductions)
2243: {
2244:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)A->data;
2245:   PetscInt     m, N, i, *garray = aij->garray;
2246:   PetscInt     ib, jb, bs = A->rmap->bs;
2247:   Mat_SeqBAIJ *a_aij = (Mat_SeqBAIJ *)aij->A->data;
2248:   MatScalar   *a_val = a_aij->a;
2249:   Mat_SeqBAIJ *b_aij = (Mat_SeqBAIJ *)aij->B->data;
2250:   MatScalar   *b_val = b_aij->a;
2251:   PetscReal   *work;

2253:   PetscFunctionBegin;
2254:   PetscCall(MatGetSize(A, &m, &N));
2255:   PetscCall(PetscCalloc1(N, &work));
2256:   if (type == NORM_2) {
2257:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2258:       for (jb = 0; jb < bs; jb++) {
2259:         for (ib = 0; ib < bs; ib++) {
2260:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val * *a_val);
2261:           a_val++;
2262:         }
2263:       }
2264:     }
2265:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2266:       for (jb = 0; jb < bs; jb++) {
2267:         for (ib = 0; ib < bs; ib++) {
2268:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val * *b_val);
2269:           b_val++;
2270:         }
2271:       }
2272:     }
2273:   } else if (type == NORM_1) {
2274:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2275:       for (jb = 0; jb < bs; jb++) {
2276:         for (ib = 0; ib < bs; ib++) {
2277:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val);
2278:           a_val++;
2279:         }
2280:       }
2281:     }
2282:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2283:       for (jb = 0; jb < bs; jb++) {
2284:         for (ib = 0; ib < bs; ib++) {
2285:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val);
2286:           b_val++;
2287:         }
2288:       }
2289:     }
2290:   } else if (type == NORM_INFINITY) {
2291:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2292:       for (jb = 0; jb < bs; jb++) {
2293:         for (ib = 0; ib < bs; ib++) {
2294:           PetscInt col = A->cmap->rstart + a_aij->j[i] * bs + jb;
2295:           work[col]    = PetscMax(PetscAbsScalar(*a_val), work[col]);
2296:           a_val++;
2297:         }
2298:       }
2299:     }
2300:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2301:       for (jb = 0; jb < bs; jb++) {
2302:         for (ib = 0; ib < bs; ib++) {
2303:           PetscInt col = garray[b_aij->j[i]] * bs + jb;
2304:           work[col]    = PetscMax(PetscAbsScalar(*b_val), work[col]);
2305:           b_val++;
2306:         }
2307:       }
2308:     }
2309:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
2310:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2311:       for (jb = 0; jb < bs; jb++) {
2312:         for (ib = 0; ib < bs; ib++) {
2313:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscRealPart(*a_val);
2314:           a_val++;
2315:         }
2316:       }
2317:     }
2318:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2319:       for (jb = 0; jb < bs; jb++) {
2320:         for (ib = 0; ib < bs; ib++) {
2321:           work[garray[b_aij->j[i]] * bs + jb] += PetscRealPart(*b_val);
2322:           b_val++;
2323:         }
2324:       }
2325:     }
2326:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2327:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2328:       for (jb = 0; jb < bs; jb++) {
2329:         for (ib = 0; ib < bs; ib++) {
2330:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscImaginaryPart(*a_val);
2331:           a_val++;
2332:         }
2333:       }
2334:     }
2335:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2336:       for (jb = 0; jb < bs; jb++) {
2337:         for (ib = 0; ib < bs; ib++) {
2338:           work[garray[b_aij->j[i]] * bs + jb] += PetscImaginaryPart(*b_val);
2339:           b_val++;
2340:         }
2341:       }
2342:     }
2343:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
2344:   if (type == NORM_INFINITY) {
2345:     PetscCallMPI(MPIU_Allreduce(work, reductions, N, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)A)));
2346:   } else {
2347:     PetscCallMPI(MPIU_Allreduce(work, reductions, N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)A)));
2348:   }
2349:   PetscCall(PetscFree(work));
2350:   if (type == NORM_2) {
2351:     for (i = 0; i < N; i++) reductions[i] = PetscSqrtReal(reductions[i]);
2352:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2353:     for (i = 0; i < N; i++) reductions[i] /= m;
2354:   }
2355:   PetscFunctionReturn(PETSC_SUCCESS);
2356: }

2358: static PetscErrorCode MatInvertBlockDiagonal_MPIBAIJ(Mat A, const PetscScalar **values)
2359: {
2360:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2362:   PetscFunctionBegin;
2363:   PetscCall(MatInvertBlockDiagonal(a->A, values));
2364:   A->factorerrortype             = a->A->factorerrortype;
2365:   A->factorerror_zeropivot_value = a->A->factorerror_zeropivot_value;
2366:   A->factorerror_zeropivot_row   = a->A->factorerror_zeropivot_row;
2367:   PetscFunctionReturn(PETSC_SUCCESS);
2368: }

2370: static PetscErrorCode MatShift_MPIBAIJ(Mat Y, PetscScalar a)
2371: {
2372:   Mat_MPIBAIJ *maij = (Mat_MPIBAIJ *)Y->data;
2373:   Mat_SeqBAIJ *aij  = (Mat_SeqBAIJ *)maij->A->data;

2375:   PetscFunctionBegin;
2376:   if (!Y->preallocated) {
2377:     PetscCall(MatMPIBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL, 0, NULL));
2378:   } else if (!aij->nz) {
2379:     PetscInt nonew = aij->nonew;
2380:     PetscCall(MatSeqBAIJSetPreallocation(maij->A, Y->rmap->bs, 1, NULL));
2381:     aij->nonew = nonew;
2382:   }
2383:   PetscCall(MatShift_Basic(Y, a));
2384:   PetscFunctionReturn(PETSC_SUCCESS);
2385: }

2387: static PetscErrorCode MatGetDiagonalBlock_MPIBAIJ(Mat A, Mat *a)
2388: {
2389:   PetscFunctionBegin;
2390:   *a = ((Mat_MPIBAIJ *)A->data)->A;
2391:   PetscFunctionReturn(PETSC_SUCCESS);
2392: }

2394: static PetscErrorCode MatEliminateZeros_MPIBAIJ(Mat A, PetscBool keep)
2395: {
2396:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2398:   PetscFunctionBegin;
2399:   PetscCall(MatEliminateZeros_SeqBAIJ(a->A, keep));        // possibly keep zero diagonal coefficients
2400:   PetscCall(MatEliminateZeros_SeqBAIJ(a->B, PETSC_FALSE)); // never keep zero diagonal coefficients
2401:   PetscFunctionReturn(PETSC_SUCCESS);
2402: }

2404: static struct _MatOps MatOps_Values = {MatSetValues_MPIBAIJ,
2405:                                        MatGetRow_MPIBAIJ,
2406:                                        MatRestoreRow_MPIBAIJ,
2407:                                        MatMult_MPIBAIJ,
2408:                                        /* 4*/ MatMultAdd_MPIBAIJ,
2409:                                        MatMultTranspose_MPIBAIJ,
2410:                                        MatMultTransposeAdd_MPIBAIJ,
2411:                                        NULL,
2412:                                        NULL,
2413:                                        NULL,
2414:                                        /*10*/ NULL,
2415:                                        NULL,
2416:                                        NULL,
2417:                                        MatSOR_MPIBAIJ,
2418:                                        MatTranspose_MPIBAIJ,
2419:                                        /*15*/ MatGetInfo_MPIBAIJ,
2420:                                        MatEqual_MPIBAIJ,
2421:                                        MatGetDiagonal_MPIBAIJ,
2422:                                        MatDiagonalScale_MPIBAIJ,
2423:                                        MatNorm_MPIBAIJ,
2424:                                        /*20*/ MatAssemblyBegin_MPIBAIJ,
2425:                                        MatAssemblyEnd_MPIBAIJ,
2426:                                        MatSetOption_MPIBAIJ,
2427:                                        MatZeroEntries_MPIBAIJ,
2428:                                        /*24*/ MatZeroRows_MPIBAIJ,
2429:                                        NULL,
2430:                                        NULL,
2431:                                        NULL,
2432:                                        NULL,
2433:                                        /*29*/ MatSetUp_MPI_Hash,
2434:                                        NULL,
2435:                                        NULL,
2436:                                        MatGetDiagonalBlock_MPIBAIJ,
2437:                                        NULL,
2438:                                        /*34*/ MatDuplicate_MPIBAIJ,
2439:                                        NULL,
2440:                                        NULL,
2441:                                        NULL,
2442:                                        NULL,
2443:                                        /*39*/ MatAXPY_MPIBAIJ,
2444:                                        MatCreateSubMatrices_MPIBAIJ,
2445:                                        MatIncreaseOverlap_MPIBAIJ,
2446:                                        MatGetValues_MPIBAIJ,
2447:                                        MatCopy_MPIBAIJ,
2448:                                        /*44*/ NULL,
2449:                                        MatScale_MPIBAIJ,
2450:                                        MatShift_MPIBAIJ,
2451:                                        NULL,
2452:                                        MatZeroRowsColumns_MPIBAIJ,
2453:                                        /*49*/ NULL,
2454:                                        NULL,
2455:                                        NULL,
2456:                                        NULL,
2457:                                        NULL,
2458:                                        /*54*/ MatFDColoringCreate_MPIXAIJ,
2459:                                        NULL,
2460:                                        MatSetUnfactored_MPIBAIJ,
2461:                                        MatPermute_MPIBAIJ,
2462:                                        MatSetValuesBlocked_MPIBAIJ,
2463:                                        /*59*/ MatCreateSubMatrix_MPIBAIJ,
2464:                                        MatDestroy_MPIBAIJ,
2465:                                        MatView_MPIBAIJ,
2466:                                        NULL,
2467:                                        NULL,
2468:                                        /*64*/ NULL,
2469:                                        NULL,
2470:                                        NULL,
2471:                                        NULL,
2472:                                        MatGetRowMaxAbs_MPIBAIJ,
2473:                                        /*69*/ NULL,
2474:                                        NULL,
2475:                                        NULL,
2476:                                        MatFDColoringApply_BAIJ,
2477:                                        NULL,
2478:                                        /*74*/ NULL,
2479:                                        NULL,
2480:                                        NULL,
2481:                                        NULL,
2482:                                        MatLoad_MPIBAIJ,
2483:                                        /*79*/ NULL,
2484:                                        NULL,
2485:                                        NULL,
2486:                                        NULL,
2487:                                        NULL,
2488:                                        /*84*/ NULL,
2489:                                        NULL,
2490:                                        NULL,
2491:                                        NULL,
2492:                                        NULL,
2493:                                        /*89*/ NULL,
2494:                                        NULL,
2495:                                        NULL,
2496:                                        NULL,
2497:                                        MatConjugate_MPIBAIJ,
2498:                                        /*94*/ NULL,
2499:                                        NULL,
2500:                                        MatRealPart_MPIBAIJ,
2501:                                        MatImaginaryPart_MPIBAIJ,
2502:                                        NULL,
2503:                                        /*99*/ NULL,
2504:                                        NULL,
2505:                                        NULL,
2506:                                        NULL,
2507:                                        NULL,
2508:                                        /*104*/ MatGetSeqNonzeroStructure_MPIBAIJ,
2509:                                        NULL,
2510:                                        MatGetGhosts_MPIBAIJ,
2511:                                        NULL,
2512:                                        NULL,
2513:                                        /*109*/ NULL,
2514:                                        NULL,
2515:                                        NULL,
2516:                                        NULL,
2517:                                        MatGetMultiProcBlock_MPIBAIJ,
2518:                                        /*114*/ NULL,
2519:                                        MatGetColumnReductions_MPIBAIJ,
2520:                                        MatInvertBlockDiagonal_MPIBAIJ,
2521:                                        NULL,
2522:                                        NULL,
2523:                                        /*119*/ NULL,
2524:                                        NULL,
2525:                                        NULL,
2526:                                        NULL,
2527:                                        NULL,
2528:                                        /*124*/ NULL,
2529:                                        NULL,
2530:                                        MatSetBlockSizes_Default,
2531:                                        NULL,
2532:                                        MatFDColoringSetUp_MPIXAIJ,
2533:                                        /*129*/ NULL,
2534:                                        MatCreateMPIMatConcatenateSeqMat_MPIBAIJ,
2535:                                        NULL,
2536:                                        NULL,
2537:                                        NULL,
2538:                                        /*134*/ NULL,
2539:                                        NULL,
2540:                                        MatEliminateZeros_MPIBAIJ,
2541:                                        MatGetRowSumAbs_MPIBAIJ,
2542:                                        NULL,
2543:                                        /*139*/ NULL,
2544:                                        NULL,
2545:                                        MatCopyHashToXAIJ_MPI_Hash,
2546:                                        NULL,
2547:                                        NULL};

2549: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPISBAIJ(Mat, MatType, MatReuse, Mat *);
2550: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);

2552: static PetscErrorCode MatMPIBAIJSetPreallocationCSR_MPIBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
2553: {
2554:   PetscInt        m, rstart, cstart, cend;
2555:   PetscInt        i, j, dlen, olen, nz, nz_max = 0, *d_nnz = NULL, *o_nnz = NULL;
2556:   const PetscInt *JJ          = NULL;
2557:   PetscScalar    *values      = NULL;
2558:   PetscBool       roworiented = ((Mat_MPIBAIJ *)B->data)->roworiented;
2559:   PetscBool       nooffprocentries;

2561:   PetscFunctionBegin;
2562:   PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
2563:   PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
2564:   PetscCall(PetscLayoutSetUp(B->rmap));
2565:   PetscCall(PetscLayoutSetUp(B->cmap));
2566:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
2567:   m      = B->rmap->n / bs;
2568:   rstart = B->rmap->rstart / bs;
2569:   cstart = B->cmap->rstart / bs;
2570:   cend   = B->cmap->rend / bs;

2572:   PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
2573:   PetscCall(PetscMalloc2(m, &d_nnz, m, &o_nnz));
2574:   for (i = 0; i < m; i++) {
2575:     nz = ii[i + 1] - ii[i];
2576:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
2577:     nz_max = PetscMax(nz_max, nz);
2578:     dlen   = 0;
2579:     olen   = 0;
2580:     JJ     = jj + ii[i];
2581:     for (j = 0; j < nz; j++) {
2582:       if (*JJ < cstart || *JJ >= cend) olen++;
2583:       else dlen++;
2584:       JJ++;
2585:     }
2586:     d_nnz[i] = dlen;
2587:     o_nnz[i] = olen;
2588:   }
2589:   PetscCall(MatMPIBAIJSetPreallocation(B, bs, 0, d_nnz, 0, o_nnz));
2590:   PetscCall(PetscFree2(d_nnz, o_nnz));

2592:   values = (PetscScalar *)V;
2593:   if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
2594:   for (i = 0; i < m; i++) {
2595:     PetscInt        row   = i + rstart;
2596:     PetscInt        ncols = ii[i + 1] - ii[i];
2597:     const PetscInt *icols = jj + ii[i];
2598:     if (bs == 1 || !roworiented) { /* block ordering matches the non-nested layout of MatSetValues so we can insert entire rows */
2599:       const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
2600:       PetscCall(MatSetValuesBlocked_MPIBAIJ(B, 1, &row, ncols, icols, svals, INSERT_VALUES));
2601:     } else { /* block ordering does not match so we can only insert one block at a time. */
2602:       PetscInt j;
2603:       for (j = 0; j < ncols; j++) {
2604:         const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
2605:         PetscCall(MatSetValuesBlocked_MPIBAIJ(B, 1, &row, 1, &icols[j], svals, INSERT_VALUES));
2606:       }
2607:     }
2608:   }

2610:   if (!V) PetscCall(PetscFree(values));
2611:   nooffprocentries    = B->nooffprocentries;
2612:   B->nooffprocentries = PETSC_TRUE;
2613:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2614:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2615:   B->nooffprocentries = nooffprocentries;

2617:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2618:   PetscFunctionReturn(PETSC_SUCCESS);
2619: }

2621: /*@C
2622:   MatMPIBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATBAIJ` format using the given nonzero structure and (optional) numerical values

2624:   Collective

2626:   Input Parameters:
2627: + B  - the matrix
2628: . bs - the block size
2629: . i  - the indices into `j` for the start of each local row (starts with zero)
2630: . j  - the column indices for each local row (starts with zero) these must be sorted for each row
2631: - v  - optional values in the matrix, use `NULL` if not provided

2633:   Level: advanced

2635:   Notes:
2636:   The `i`, `j`, and `v` arrays ARE copied by this routine into the internal format used by PETSc;
2637:   thus you CANNOT change the matrix entries by changing the values of `v` after you have
2638:   called this routine.

2640:   The order of the entries in values is specified by the `MatOption` `MAT_ROW_ORIENTED`.  For example, C programs
2641:   may want to use the default `MAT_ROW_ORIENTED` with value `PETSC_TRUE` and use an array v[nnz][bs][bs] where the second index is
2642:   over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
2643:   `MAT_ROW_ORIENTED` with value `PETSC_FALSE` and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
2644:   block column and the second index is over columns within a block.

2646:   Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries and usually the numerical values as well

2648: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatCreateAIJ()`, `MATMPIAIJ`, `MatCreateMPIBAIJWithArrays()`, `MATMPIBAIJ`
2649: @*/
2650: PetscErrorCode MatMPIBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2651: {
2652:   PetscFunctionBegin;
2656:   PetscTryMethod(B, "MatMPIBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2657:   PetscFunctionReturn(PETSC_SUCCESS);
2658: }

2660: PetscErrorCode MatMPIBAIJSetPreallocation_MPIBAIJ(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt *d_nnz, PetscInt o_nz, const PetscInt *o_nnz)
2661: {
2662:   Mat_MPIBAIJ *b = (Mat_MPIBAIJ *)B->data;
2663:   PetscInt     i;
2664:   PetscMPIInt  size;

2666:   PetscFunctionBegin;
2667:   if (B->hash_active) {
2668:     B->ops[0]      = b->cops;
2669:     B->hash_active = PETSC_FALSE;
2670:   }
2671:   if (!B->preallocated) PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), bs, &B->bstash));
2672:   PetscCall(MatSetBlockSize(B, bs));
2673:   PetscCall(PetscLayoutSetUp(B->rmap));
2674:   PetscCall(PetscLayoutSetUp(B->cmap));
2675:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));

2677:   if (d_nnz) {
2678:     for (i = 0; i < B->rmap->n / bs; i++) PetscCheck(d_nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "d_nnz cannot be less than -1: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, d_nnz[i]);
2679:   }
2680:   if (o_nnz) {
2681:     for (i = 0; i < B->rmap->n / bs; i++) PetscCheck(o_nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "o_nnz cannot be less than -1: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, o_nnz[i]);
2682:   }

2684:   b->bs2 = bs * bs;
2685:   b->mbs = B->rmap->n / bs;
2686:   b->nbs = B->cmap->n / bs;
2687:   b->Mbs = B->rmap->N / bs;
2688:   b->Nbs = B->cmap->N / bs;

2690:   for (i = 0; i <= b->size; i++) b->rangebs[i] = B->rmap->range[i] / bs;
2691:   b->rstartbs = B->rmap->rstart / bs;
2692:   b->rendbs   = B->rmap->rend / bs;
2693:   b->cstartbs = B->cmap->rstart / bs;
2694:   b->cendbs   = B->cmap->rend / bs;

2696: #if defined(PETSC_USE_CTABLE)
2697:   PetscCall(PetscHMapIDestroy(&b->colmap));
2698: #else
2699:   PetscCall(PetscFree(b->colmap));
2700: #endif
2701:   PetscCall(PetscFree(b->garray));
2702:   PetscCall(VecDestroy(&b->lvec));
2703:   PetscCall(VecScatterDestroy(&b->Mvctx));

2705:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));

2707:   MatSeqXAIJGetOptions_Private(b->B);
2708:   PetscCall(MatDestroy(&b->B));
2709:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->B));
2710:   PetscCall(MatSetSizes(b->B, B->rmap->n, size > 1 ? B->cmap->N : 0, B->rmap->n, size > 1 ? B->cmap->N : 0));
2711:   PetscCall(MatSetType(b->B, MATSEQBAIJ));
2712:   MatSeqXAIJRestoreOptions_Private(b->B);

2714:   MatSeqXAIJGetOptions_Private(b->A);
2715:   PetscCall(MatDestroy(&b->A));
2716:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->A));
2717:   PetscCall(MatSetSizes(b->A, B->rmap->n, B->cmap->n, B->rmap->n, B->cmap->n));
2718:   PetscCall(MatSetType(b->A, MATSEQBAIJ));
2719:   MatSeqXAIJRestoreOptions_Private(b->A);

2721:   PetscCall(MatSeqBAIJSetPreallocation(b->A, bs, d_nz, d_nnz));
2722:   PetscCall(MatSeqBAIJSetPreallocation(b->B, bs, o_nz, o_nnz));
2723:   B->preallocated  = PETSC_TRUE;
2724:   B->was_assembled = PETSC_FALSE;
2725:   B->assembled     = PETSC_FALSE;
2726:   PetscFunctionReturn(PETSC_SUCCESS);
2727: }

2729: extern PetscErrorCode MatDiagonalScaleLocal_MPIBAIJ(Mat, Vec);
2730: extern PetscErrorCode MatSetHashTableFactor_MPIBAIJ(Mat, PetscReal);

2732: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAdj(Mat B, MatType newtype, MatReuse reuse, Mat *adj)
2733: {
2734:   Mat_MPIBAIJ    *b = (Mat_MPIBAIJ *)B->data;
2735:   Mat_SeqBAIJ    *d = (Mat_SeqBAIJ *)b->A->data, *o = (Mat_SeqBAIJ *)b->B->data;
2736:   PetscInt        M = B->rmap->n / B->rmap->bs, i, *ii, *jj, cnt, j, k, rstart = B->rmap->rstart / B->rmap->bs;
2737:   const PetscInt *id = d->i, *jd = d->j, *io = o->i, *jo = o->j, *garray = b->garray;

2739:   PetscFunctionBegin;
2740:   PetscCall(PetscMalloc1(M + 1, &ii));
2741:   ii[0] = 0;
2742:   for (i = 0; i < M; i++) {
2743:     PetscCheck((id[i + 1] - id[i]) >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Indices wrong %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, i, id[i], id[i + 1]);
2744:     PetscCheck((io[i + 1] - io[i]) >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Indices wrong %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, i, io[i], io[i + 1]);
2745:     ii[i + 1] = ii[i] + id[i + 1] - id[i] + io[i + 1] - io[i];
2746:     /* remove one from count of matrix has diagonal */
2747:     for (j = id[i]; j < id[i + 1]; j++) {
2748:       if (jd[j] == i) {
2749:         ii[i + 1]--;
2750:         break;
2751:       }
2752:     }
2753:   }
2754:   PetscCall(PetscMalloc1(ii[M], &jj));
2755:   cnt = 0;
2756:   for (i = 0; i < M; i++) {
2757:     for (j = io[i]; j < io[i + 1]; j++) {
2758:       if (garray[jo[j]] > rstart) break;
2759:       jj[cnt++] = garray[jo[j]];
2760:     }
2761:     for (k = id[i]; k < id[i + 1]; k++) {
2762:       if (jd[k] != i) jj[cnt++] = rstart + jd[k];
2763:     }
2764:     for (; j < io[i + 1]; j++) jj[cnt++] = garray[jo[j]];
2765:   }
2766:   PetscCall(MatCreateMPIAdj(PetscObjectComm((PetscObject)B), M, B->cmap->N / B->rmap->bs, ii, jj, NULL, adj));
2767:   PetscFunctionReturn(PETSC_SUCCESS);
2768: }

2770: #include <../src/mat/impls/aij/mpi/mpiaij.h>

2772: PETSC_INTERN PetscErrorCode MatConvert_SeqBAIJ_SeqAIJ(Mat, MatType, MatReuse, Mat *);

2774: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2775: {
2776:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
2777:   Mat_MPIAIJ  *b;
2778:   Mat          B;

2780:   PetscFunctionBegin;
2781:   PetscCheck(A->assembled, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Matrix must be assembled");

2783:   if (reuse == MAT_REUSE_MATRIX) {
2784:     B = *newmat;
2785:   } else {
2786:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
2787:     PetscCall(MatSetType(B, MATMPIAIJ));
2788:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
2789:     PetscCall(MatSetBlockSizes(B, A->rmap->bs, A->cmap->bs));
2790:     PetscCall(MatSeqAIJSetPreallocation(B, 0, NULL));
2791:     PetscCall(MatMPIAIJSetPreallocation(B, 0, NULL, 0, NULL));
2792:   }
2793:   b = (Mat_MPIAIJ *)B->data;

2795:   if (reuse == MAT_REUSE_MATRIX) {
2796:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_REUSE_MATRIX, &b->A));
2797:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_REUSE_MATRIX, &b->B));
2798:   } else {
2799:     PetscInt   *garray = a->garray;
2800:     Mat_SeqAIJ *bB;
2801:     PetscInt    bs, nnz;
2802:     PetscCall(MatDestroy(&b->A));
2803:     PetscCall(MatDestroy(&b->B));
2804:     /* just clear out the data structure */
2805:     PetscCall(MatDisAssemble_MPIAIJ(B, PETSC_FALSE));
2806:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->A));
2807:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->B));

2809:     /* Global numbering for b->B columns */
2810:     bB  = (Mat_SeqAIJ *)b->B->data;
2811:     bs  = A->rmap->bs;
2812:     nnz = bB->i[A->rmap->n];
2813:     for (PetscInt k = 0; k < nnz; k++) {
2814:       PetscInt bj = bB->j[k] / bs;
2815:       PetscInt br = bB->j[k] % bs;
2816:       bB->j[k]    = garray[bj] * bs + br;
2817:     }
2818:   }
2819:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2820:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

2822:   if (reuse == MAT_INPLACE_MATRIX) {
2823:     PetscCall(MatHeaderReplace(A, &B));
2824:   } else {
2825:     *newmat = B;
2826:   }
2827:   PetscFunctionReturn(PETSC_SUCCESS);
2828: }

2830: /*MC
2831:    MATMPIBAIJ - MATMPIBAIJ = "mpibaij" - A matrix type to be used for distributed block sparse matrices.

2833:    Options Database Keys:
2834: + -mat_type mpibaij - sets the matrix type to `MATMPIBAIJ` during a call to `MatSetFromOptions()`
2835: . -mat_block_size <bs> - set the blocksize used to store the matrix
2836: . -mat_baij_mult_version version - indicate the version of the matrix-vector product to use  (0 often indicates using BLAS)
2837: - -mat_use_hash_table <fact> - set hash table factor

2839:    Level: beginner

2841:    Note:
2842:     `MatSetOption(A, MAT_STRUCTURE_ONLY, PETSC_TRUE)` may be called for this matrix type. In this no
2843:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

2845: .seealso: `Mat`, `MATBAIJ`, `MATSEQBAIJ`, `MatCreateBAIJ`
2846: M*/

2848: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIBSTRM(Mat, MatType, MatReuse, Mat *);

2850: PETSC_EXTERN PetscErrorCode MatCreate_MPIBAIJ(Mat B)
2851: {
2852:   Mat_MPIBAIJ *b;
2853:   PetscBool    flg = PETSC_FALSE;

2855:   PetscFunctionBegin;
2856:   PetscCall(PetscNew(&b));
2857:   B->data      = (void *)b;
2858:   B->ops[0]    = MatOps_Values;
2859:   B->assembled = PETSC_FALSE;

2861:   B->insertmode = NOT_SET_VALUES;
2862:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)B), &b->rank));
2863:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &b->size));

2865:   /* build local table of row and column ownerships */
2866:   PetscCall(PetscMalloc1(b->size + 1, &b->rangebs));

2868:   /* build cache for off array entries formed */
2869:   PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), 1, &B->stash));

2871:   b->donotstash  = PETSC_FALSE;
2872:   b->colmap      = NULL;
2873:   b->garray      = NULL;
2874:   b->roworiented = PETSC_TRUE;

2876:   /* stuff used in block assembly */
2877:   b->barray = NULL;

2879:   /* stuff used for matrix vector multiply */
2880:   b->lvec  = NULL;
2881:   b->Mvctx = NULL;

2883:   /* stuff for MatGetRow() */
2884:   b->rowindices   = NULL;
2885:   b->rowvalues    = NULL;
2886:   b->getrowactive = PETSC_FALSE;

2888:   /* hash table stuff */
2889:   b->ht           = NULL;
2890:   b->hd           = NULL;
2891:   b->ht_size      = 0;
2892:   b->ht_flag      = PETSC_FALSE;
2893:   b->ht_fact      = 0;
2894:   b->ht_total_ct  = 0;
2895:   b->ht_insert_ct = 0;

2897:   /* stuff for MatCreateSubMatrices_MPIBAIJ_local() */
2898:   b->ijonly = PETSC_FALSE;

2900:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpiadj_C", MatConvert_MPIBAIJ_MPIAdj));
2901:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpiaij_C", MatConvert_MPIBAIJ_MPIAIJ));
2902:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpisbaij_C", MatConvert_MPIBAIJ_MPISBAIJ));
2903: #if defined(PETSC_HAVE_HYPRE)
2904:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_hypre_C", MatConvert_AIJ_HYPRE));
2905: #endif
2906:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_MPIBAIJ));
2907:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_MPIBAIJ));
2908:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIBAIJSetPreallocation_C", MatMPIBAIJSetPreallocation_MPIBAIJ));
2909:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIBAIJSetPreallocationCSR_C", MatMPIBAIJSetPreallocationCSR_MPIBAIJ));
2910:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDiagonalScaleLocal_C", MatDiagonalScaleLocal_MPIBAIJ));
2911:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetHashTableFactor_C", MatSetHashTableFactor_MPIBAIJ));
2912:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_is_C", MatConvert_XAIJ_IS));
2913:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPIBAIJ));

2915:   PetscOptionsBegin(PetscObjectComm((PetscObject)B), NULL, "Options for loading MPIBAIJ matrix 1", "Mat");
2916:   PetscCall(PetscOptionsName("-mat_use_hash_table", "Use hash table to save time in constructing matrix", "MatSetOption", &flg));
2917:   if (flg) {
2918:     PetscReal fact = 1.39;
2919:     PetscCall(MatSetOption(B, MAT_USE_HASH_TABLE, PETSC_TRUE));
2920:     PetscCall(PetscOptionsReal("-mat_use_hash_table", "Use hash table factor", "MatMPIBAIJSetHashTableFactor", fact, &fact, NULL));
2921:     if (fact <= 1.0) fact = 1.39;
2922:     PetscCall(MatMPIBAIJSetHashTableFactor(B, fact));
2923:     PetscCall(PetscInfo(B, "Hash table Factor used %5.2g\n", (double)fact));
2924:   }
2925:   PetscOptionsEnd();
2926:   PetscFunctionReturn(PETSC_SUCCESS);
2927: }

2929: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2930: /*MC
2931:    MATBAIJ - MATBAIJ = "baij" - A matrix type to be used for block sparse matrices.

2933:    This matrix type is identical to `MATSEQBAIJ` when constructed with a single process communicator,
2934:    and `MATMPIBAIJ` otherwise.

2936:    Options Database Keys:
2937: . -mat_type baij - sets the matrix type to `MATBAIJ` during a call to `MatSetFromOptions()`

2939:   Level: beginner

2941: .seealso: `Mat`, `MatCreateBAIJ()`, `MATSEQBAIJ`, `MATMPIBAIJ`, `MatMPIBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocationCSR()`
2942: M*/

2944: /*@
2945:   MatMPIBAIJSetPreallocation - Allocates memory for a sparse parallel matrix in `MATMPIBAIJ` format
2946:   (block compressed row).

2948:   Collective

2950:   Input Parameters:
2951: + B     - the matrix
2952: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2953:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
2954: . d_nz  - number of block nonzeros per block row in diagonal portion of local
2955:            submatrix  (same for all local rows)
2956: . d_nnz - array containing the number of block nonzeros in the various block rows
2957:            of the in diagonal portion of the local (possibly different for each block
2958:            row) or `NULL`.  If you plan to factor the matrix you must leave room for the diagonal entry and
2959:            set it even if it is zero.
2960: . o_nz  - number of block nonzeros per block row in the off-diagonal portion of local
2961:            submatrix (same for all local rows).
2962: - o_nnz - array containing the number of nonzeros in the various block rows of the
2963:            off-diagonal portion of the local submatrix (possibly different for
2964:            each block row) or `NULL`.

2966:    If the *_nnz parameter is given then the *_nz parameter is ignored

2968:   Options Database Keys:
2969: + -mat_block_size            - size of the blocks to use
2970: - -mat_use_hash_table <fact> - set hash table factor

2972:   Level: intermediate

2974:   Notes:
2975:   For good matrix assembly performance
2976:   the user should preallocate the matrix storage by setting the parameters
2977:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).  By setting these parameters accurately,
2978:   performance can be increased by more than a factor of 50.

2980:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one processor
2981:   than it must be used on all processors that share the object for that argument.

2983:   Storage Information:
2984:   For a square global matrix we define each processor's diagonal portion
2985:   to be its local rows and the corresponding columns (a square submatrix);
2986:   each processor's off-diagonal portion encompasses the remainder of the
2987:   local matrix (a rectangular submatrix).

2989:   The user can specify preallocated storage for the diagonal part of
2990:   the local submatrix with either `d_nz` or `d_nnz` (not both).  Set
2991:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
2992:   memory allocation.  Likewise, specify preallocated storage for the
2993:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

2995:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
2996:   the figure below we depict these three local rows and all columns (0-11).

2998: .vb
2999:            0 1 2 3 4 5 6 7 8 9 10 11
3000:           --------------------------
3001:    row 3  |o o o d d d o o o o  o  o
3002:    row 4  |o o o d d d o o o o  o  o
3003:    row 5  |o o o d d d o o o o  o  o
3004:           --------------------------
3005: .ve

3007:   Thus, any entries in the d locations are stored in the d (diagonal)
3008:   submatrix, and any entries in the o locations are stored in the
3009:   o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3010:   stored simply in the `MATSEQBAIJ` format for compressed row storage.

3012:   Now `d_nz` should indicate the number of block nonzeros per row in the d matrix,
3013:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
3014:   In general, for PDE problems in which most nonzeros are near the diagonal,
3015:   one expects `d_nz` >> `o_nz`.

3017:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3018:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3019:   You can also run with the option `-info` and look for messages with the string
3020:   malloc in them to see if additional memory allocation was needed.

3022: .seealso: `Mat`, `MATMPIBAIJ`, `MatCreate()`, `MatCreateSeqBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`, `MatMPIBAIJSetPreallocationCSR()`, `PetscSplitOwnership()`
3023: @*/
3024: PetscErrorCode MatMPIBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
3025: {
3026:   PetscFunctionBegin;
3030:   PetscTryMethod(B, "MatMPIBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[], PetscInt, const PetscInt[]), (B, bs, d_nz, d_nnz, o_nz, o_nnz));
3031:   PetscFunctionReturn(PETSC_SUCCESS);
3032: }

3034: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
3035: /*@
3036:   MatCreateBAIJ - Creates a sparse parallel matrix in `MATBAIJ` format
3037:   (block compressed row).

3039:   Collective

3041:   Input Parameters:
3042: + comm  - MPI communicator
3043: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
3044:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
3045: . m     - number of local rows (or `PETSC_DECIDE` to have calculated if M is given)
3046:           This value should be the same as the local size used in creating the
3047:           y vector for the matrix-vector product y = Ax.
3048: . n     - number of local columns (or `PETSC_DECIDE` to have calculated if N is given)
3049:           This value should be the same as the local size used in creating the
3050:           x vector for the matrix-vector product y = Ax.
3051: . M     - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
3052: . N     - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
3053: . d_nz  - number of nonzero blocks per block row in diagonal portion of local
3054:           submatrix  (same for all local rows)
3055: . d_nnz - array containing the number of nonzero blocks in the various block rows
3056:           of the in diagonal portion of the local (possibly different for each block
3057:           row) or NULL.  If you plan to factor the matrix you must leave room for the diagonal entry
3058:           and set it even if it is zero.
3059: . o_nz  - number of nonzero blocks per block row in the off-diagonal portion of local
3060:           submatrix (same for all local rows).
3061: - o_nnz - array containing the number of nonzero blocks in the various block rows of the
3062:           off-diagonal portion of the local submatrix (possibly different for
3063:           each block row) or NULL.

3065:   Output Parameter:
3066: . A - the matrix

3068:   Options Database Keys:
3069: + -mat_block_size            - size of the blocks to use
3070: - -mat_use_hash_table <fact> - set hash table factor

3072:   Level: intermediate

3074:   Notes:
3075:   It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
3076:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
3077:   [MatXXXXSetPreallocation() is, for example, `MatSeqBAIJSetPreallocation()`]

3079:   For good matrix assembly performance
3080:   the user should preallocate the matrix storage by setting the parameters
3081:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).  By setting these parameters accurately,
3082:   performance can be increased by more than a factor of 50.

3084:   If the *_nnz parameter is given then the *_nz parameter is ignored

3086:   A nonzero block is any block that as 1 or more nonzeros in it

3088:   The user MUST specify either the local or global matrix dimensions
3089:   (possibly both).

3091:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one processor
3092:   than it must be used on all processors that share the object for that argument.

3094:   If `m` and `n` are not `PETSC_DECIDE`, then the values determine the `PetscLayout` of the matrix and the ranges returned by
3095:   `MatGetOwnershipRange()`,  `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.

3097:   Storage Information:
3098:   For a square global matrix we define each processor's diagonal portion
3099:   to be its local rows and the corresponding columns (a square submatrix);
3100:   each processor's off-diagonal portion encompasses the remainder of the
3101:   local matrix (a rectangular submatrix).

3103:   The user can specify preallocated storage for the diagonal part of
3104:   the local submatrix with either d_nz or d_nnz (not both).  Set
3105:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
3106:   memory allocation.  Likewise, specify preallocated storage for the
3107:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

3109:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3110:   the figure below we depict these three local rows and all columns (0-11).

3112: .vb
3113:            0 1 2 3 4 5 6 7 8 9 10 11
3114:           --------------------------
3115:    row 3  |o o o d d d o o o o  o  o
3116:    row 4  |o o o d d d o o o o  o  o
3117:    row 5  |o o o d d d o o o o  o  o
3118:           --------------------------
3119: .ve

3121:   Thus, any entries in the d locations are stored in the d (diagonal)
3122:   submatrix, and any entries in the o locations are stored in the
3123:   o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3124:   stored simply in the `MATSEQBAIJ` format for compressed row storage.

3126:   Now `d_nz` should indicate the number of block nonzeros per row in the d matrix,
3127:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
3128:   In general, for PDE problems in which most nonzeros are near the diagonal,
3129:   one expects `d_nz` >> `o_nz`.

3131: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqBAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocationCSR()`,
3132:           `MatGetOwnershipRange()`,  `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, `MatGetOwnershipRangesColumn()`, `PetscLayout`
3133: @*/
3134: PetscErrorCode MatCreateBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
3135: {
3136:   PetscMPIInt size;

3138:   PetscFunctionBegin;
3139:   PetscCall(MatCreate(comm, A));
3140:   PetscCall(MatSetSizes(*A, m, n, M, N));
3141:   PetscCallMPI(MPI_Comm_size(comm, &size));
3142:   if (size > 1) {
3143:     PetscCall(MatSetType(*A, MATMPIBAIJ));
3144:     PetscCall(MatMPIBAIJSetPreallocation(*A, bs, d_nz, d_nnz, o_nz, o_nnz));
3145:   } else {
3146:     PetscCall(MatSetType(*A, MATSEQBAIJ));
3147:     PetscCall(MatSeqBAIJSetPreallocation(*A, bs, d_nz, d_nnz));
3148:   }
3149:   PetscFunctionReturn(PETSC_SUCCESS);
3150: }

3152: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat matin, MatDuplicateOption cpvalues, Mat *newmat)
3153: {
3154:   Mat          mat;
3155:   Mat_MPIBAIJ *a, *oldmat = (Mat_MPIBAIJ *)matin->data;
3156:   PetscInt     len = 0;

3158:   PetscFunctionBegin;
3159:   *newmat = NULL;
3160:   PetscCall(MatCreate(PetscObjectComm((PetscObject)matin), &mat));
3161:   PetscCall(MatSetSizes(mat, matin->rmap->n, matin->cmap->n, matin->rmap->N, matin->cmap->N));
3162:   PetscCall(MatSetType(mat, ((PetscObject)matin)->type_name));

3164:   PetscCall(PetscLayoutReference(matin->rmap, &mat->rmap));
3165:   PetscCall(PetscLayoutReference(matin->cmap, &mat->cmap));
3166:   if (matin->hash_active) {
3167:     PetscCall(MatSetUp(mat));
3168:   } else {
3169:     mat->factortype   = matin->factortype;
3170:     mat->preallocated = PETSC_TRUE;
3171:     mat->assembled    = PETSC_TRUE;
3172:     mat->insertmode   = NOT_SET_VALUES;

3174:     a             = (Mat_MPIBAIJ *)mat->data;
3175:     mat->rmap->bs = matin->rmap->bs;
3176:     a->bs2        = oldmat->bs2;
3177:     a->mbs        = oldmat->mbs;
3178:     a->nbs        = oldmat->nbs;
3179:     a->Mbs        = oldmat->Mbs;
3180:     a->Nbs        = oldmat->Nbs;

3182:     a->size         = oldmat->size;
3183:     a->rank         = oldmat->rank;
3184:     a->donotstash   = oldmat->donotstash;
3185:     a->roworiented  = oldmat->roworiented;
3186:     a->rowindices   = NULL;
3187:     a->rowvalues    = NULL;
3188:     a->getrowactive = PETSC_FALSE;
3189:     a->barray       = NULL;
3190:     a->rstartbs     = oldmat->rstartbs;
3191:     a->rendbs       = oldmat->rendbs;
3192:     a->cstartbs     = oldmat->cstartbs;
3193:     a->cendbs       = oldmat->cendbs;

3195:     /* hash table stuff */
3196:     a->ht           = NULL;
3197:     a->hd           = NULL;
3198:     a->ht_size      = 0;
3199:     a->ht_flag      = oldmat->ht_flag;
3200:     a->ht_fact      = oldmat->ht_fact;
3201:     a->ht_total_ct  = 0;
3202:     a->ht_insert_ct = 0;

3204:     PetscCall(PetscArraycpy(a->rangebs, oldmat->rangebs, a->size + 1));
3205:     if (oldmat->colmap) {
3206: #if defined(PETSC_USE_CTABLE)
3207:       PetscCall(PetscHMapIDuplicate(oldmat->colmap, &a->colmap));
3208: #else
3209:       PetscCall(PetscMalloc1(a->Nbs, &a->colmap));
3210:       PetscCall(PetscArraycpy(a->colmap, oldmat->colmap, a->Nbs));
3211: #endif
3212:     } else a->colmap = NULL;

3214:     if (oldmat->garray && (len = ((Mat_SeqBAIJ *)oldmat->B->data)->nbs)) {
3215:       PetscCall(PetscMalloc1(len, &a->garray));
3216:       PetscCall(PetscArraycpy(a->garray, oldmat->garray, len));
3217:     } else a->garray = NULL;

3219:     PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)matin), matin->rmap->bs, &mat->bstash));
3220:     PetscCall(VecDuplicate(oldmat->lvec, &a->lvec));
3221:     PetscCall(VecScatterCopy(oldmat->Mvctx, &a->Mvctx));

3223:     PetscCall(MatDuplicate(oldmat->A, cpvalues, &a->A));
3224:     PetscCall(MatDuplicate(oldmat->B, cpvalues, &a->B));
3225:   }
3226:   PetscCall(PetscFunctionListDuplicate(((PetscObject)matin)->qlist, &((PetscObject)mat)->qlist));
3227:   *newmat = mat;
3228:   PetscFunctionReturn(PETSC_SUCCESS);
3229: }

3231: /* Used for both MPIBAIJ and MPISBAIJ matrices */
3232: PetscErrorCode MatLoad_MPIBAIJ_Binary(Mat mat, PetscViewer viewer)
3233: {
3234:   PetscInt     header[4], M, N, nz, bs, m, n, mbs, nbs, rows, cols, sum, i, j, k;
3235:   PetscInt    *rowidxs, *colidxs, rs, cs, ce;
3236:   PetscScalar *matvals;

3238:   PetscFunctionBegin;
3239:   PetscCall(PetscViewerSetUp(viewer));

3241:   /* read in matrix header */
3242:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
3243:   PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
3244:   M  = header[1];
3245:   N  = header[2];
3246:   nz = header[3];
3247:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
3248:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
3249:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as MPIBAIJ");

3251:   /* set block sizes from the viewer's .info file */
3252:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
3253:   /* set local sizes if not set already */
3254:   if (mat->rmap->n < 0 && M == N) mat->rmap->n = mat->cmap->n;
3255:   if (mat->cmap->n < 0 && M == N) mat->cmap->n = mat->rmap->n;
3256:   /* set global sizes if not set already */
3257:   if (mat->rmap->N < 0) mat->rmap->N = M;
3258:   if (mat->cmap->N < 0) mat->cmap->N = N;
3259:   PetscCall(PetscLayoutSetUp(mat->rmap));
3260:   PetscCall(PetscLayoutSetUp(mat->cmap));

3262:   /* check if the matrix sizes are correct */
3263:   PetscCall(MatGetSize(mat, &rows, &cols));
3264:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
3265:   PetscCall(MatGetBlockSize(mat, &bs));
3266:   PetscCall(MatGetLocalSize(mat, &m, &n));
3267:   PetscCall(PetscLayoutGetRange(mat->rmap, &rs, NULL));
3268:   PetscCall(PetscLayoutGetRange(mat->cmap, &cs, &ce));
3269:   mbs = m / bs;
3270:   nbs = n / bs;

3272:   /* read in row lengths and build row indices */
3273:   PetscCall(PetscMalloc1(m + 1, &rowidxs));
3274:   PetscCall(PetscViewerBinaryReadAll(viewer, rowidxs + 1, m, PETSC_DECIDE, M, PETSC_INT));
3275:   rowidxs[0] = 0;
3276:   for (i = 0; i < m; i++) rowidxs[i + 1] += rowidxs[i];
3277:   PetscCallMPI(MPIU_Allreduce(&rowidxs[m], &sum, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)viewer)));
3278:   PetscCheck(sum == nz, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);

3280:   /* read in column indices and matrix values */
3281:   PetscCall(PetscMalloc2(rowidxs[m], &colidxs, rowidxs[m], &matvals));
3282:   PetscCall(PetscViewerBinaryReadAll(viewer, colidxs, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
3283:   PetscCall(PetscViewerBinaryReadAll(viewer, matvals, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));

3285:   {                /* preallocate matrix storage */
3286:     PetscBT    bt; /* helper bit set to count diagonal nonzeros */
3287:     PetscHSetI ht; /* helper hash set to count off-diagonal nonzeros */
3288:     PetscBool  sbaij, done;
3289:     PetscInt  *d_nnz, *o_nnz;

3291:     PetscCall(PetscBTCreate(nbs, &bt));
3292:     PetscCall(PetscHSetICreate(&ht));
3293:     PetscCall(PetscCalloc2(mbs, &d_nnz, mbs, &o_nnz));
3294:     PetscCall(PetscObjectTypeCompare((PetscObject)mat, MATMPISBAIJ, &sbaij));
3295:     for (i = 0; i < mbs; i++) {
3296:       PetscCall(PetscBTMemzero(nbs, bt));
3297:       PetscCall(PetscHSetIClear(ht));
3298:       for (k = 0; k < bs; k++) {
3299:         PetscInt row = bs * i + k;
3300:         for (j = rowidxs[row]; j < rowidxs[row + 1]; j++) {
3301:           PetscInt col = colidxs[j];
3302:           if (!sbaij || col >= row) {
3303:             if (col >= cs && col < ce) {
3304:               if (!PetscBTLookupSet(bt, (col - cs) / bs)) d_nnz[i]++;
3305:             } else {
3306:               PetscCall(PetscHSetIQueryAdd(ht, col / bs, &done));
3307:               if (done) o_nnz[i]++;
3308:             }
3309:           }
3310:         }
3311:       }
3312:     }
3313:     PetscCall(PetscBTDestroy(&bt));
3314:     PetscCall(PetscHSetIDestroy(&ht));
3315:     PetscCall(MatMPIBAIJSetPreallocation(mat, bs, 0, d_nnz, 0, o_nnz));
3316:     PetscCall(MatMPISBAIJSetPreallocation(mat, bs, 0, d_nnz, 0, o_nnz));
3317:     PetscCall(PetscFree2(d_nnz, o_nnz));
3318:   }

3320:   /* store matrix values */
3321:   for (i = 0; i < m; i++) {
3322:     PetscInt row = rs + i, s = rowidxs[i], e = rowidxs[i + 1];
3323:     PetscUseTypeMethod(mat, setvalues, 1, &row, e - s, colidxs + s, matvals + s, INSERT_VALUES);
3324:   }

3326:   PetscCall(PetscFree(rowidxs));
3327:   PetscCall(PetscFree2(colidxs, matvals));
3328:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
3329:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
3330:   PetscFunctionReturn(PETSC_SUCCESS);
3331: }

3333: PetscErrorCode MatLoad_MPIBAIJ(Mat mat, PetscViewer viewer)
3334: {
3335:   PetscBool isbinary;

3337:   PetscFunctionBegin;
3338:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
3339:   PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
3340:   PetscCall(MatLoad_MPIBAIJ_Binary(mat, viewer));
3341:   PetscFunctionReturn(PETSC_SUCCESS);
3342: }

3344: /*@
3345:   MatMPIBAIJSetHashTableFactor - Sets the factor required to compute the size of the matrices hash table

3347:   Input Parameters:
3348: + mat  - the matrix
3349: - fact - factor

3351:   Options Database Key:
3352: . -mat_use_hash_table <fact> - provide the factor

3354:   Level: advanced

3356: .seealso: `Mat`, `MATMPIBAIJ`, `MatSetOption()`
3357: @*/
3358: PetscErrorCode MatMPIBAIJSetHashTableFactor(Mat mat, PetscReal fact)
3359: {
3360:   PetscFunctionBegin;
3361:   PetscTryMethod(mat, "MatSetHashTableFactor_C", (Mat, PetscReal), (mat, fact));
3362:   PetscFunctionReturn(PETSC_SUCCESS);
3363: }

3365: PetscErrorCode MatSetHashTableFactor_MPIBAIJ(Mat mat, PetscReal fact)
3366: {
3367:   Mat_MPIBAIJ *baij;

3369:   PetscFunctionBegin;
3370:   baij          = (Mat_MPIBAIJ *)mat->data;
3371:   baij->ht_fact = fact;
3372:   PetscFunctionReturn(PETSC_SUCCESS);
3373: }

3375: PetscErrorCode MatMPIBAIJGetSeqBAIJ(Mat A, Mat *Ad, Mat *Ao, const PetscInt *colmap[])
3376: {
3377:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
3378:   PetscBool    flg;

3380:   PetscFunctionBegin;
3381:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIBAIJ, &flg));
3382:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "This function requires a MATMPIBAIJ matrix as input");
3383:   if (Ad) *Ad = a->A;
3384:   if (Ao) *Ao = a->B;
3385:   if (colmap) *colmap = a->garray;
3386:   PetscFunctionReturn(PETSC_SUCCESS);
3387: }

3389: /*
3390:     Special version for direct calls from Fortran (to eliminate two function call overheads
3391: */
3392: #if defined(PETSC_HAVE_FORTRAN_CAPS)
3393:   #define matmpibaijsetvaluesblocked_ MATMPIBAIJSETVALUESBLOCKED
3394: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
3395:   #define matmpibaijsetvaluesblocked_ matmpibaijsetvaluesblocked
3396: #endif

3398: // PetscClangLinter pragma disable: -fdoc-synopsis-matching-symbol-name
3399: /*@C
3400:   MatMPIBAIJSetValuesBlocked - Direct Fortran call to replace call to `MatSetValuesBlocked()`

3402:   Collective

3404:   Input Parameters:
3405: + matin  - the matrix
3406: . min    - number of input rows
3407: . im     - input rows
3408: . nin    - number of input columns
3409: . in     - input columns
3410: . v      - numerical values input
3411: - addvin - `INSERT_VALUES` or `ADD_VALUES`

3413:   Level: advanced

3415:   Developer Notes:
3416:   This has a complete copy of `MatSetValuesBlocked_MPIBAIJ()` which is terrible code un-reuse.

3418: .seealso: `Mat`, `MatSetValuesBlocked()`
3419: @*/
3420: PETSC_EXTERN PetscErrorCode matmpibaijsetvaluesblocked_(Mat *matin, PetscInt *min, const PetscInt im[], PetscInt *nin, const PetscInt in[], const MatScalar v[], InsertMode *addvin)
3421: {
3422:   /* convert input arguments to C version */
3423:   Mat        mat = *matin;
3424:   PetscInt   m = *min, n = *nin;
3425:   InsertMode addv = *addvin;

3427:   Mat_MPIBAIJ     *baij = (Mat_MPIBAIJ *)mat->data;
3428:   const MatScalar *value;
3429:   MatScalar       *barray      = baij->barray;
3430:   PetscBool        roworiented = baij->roworiented;
3431:   PetscInt         i, j, ii, jj, row, col, rstart = baij->rstartbs;
3432:   PetscInt         rend = baij->rendbs, cstart = baij->cstartbs, stepval;
3433:   PetscInt         cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

3435:   PetscFunctionBegin;
3436:   /* tasks normally handled by MatSetValuesBlocked() */
3437:   if (mat->insertmode == NOT_SET_VALUES) mat->insertmode = addv;
3438:   else PetscCheck(mat->insertmode == addv, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot mix add values and insert values");
3439:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3440:   if (mat->assembled) {
3441:     mat->was_assembled = PETSC_TRUE;
3442:     mat->assembled     = PETSC_FALSE;
3443:   }
3444:   PetscCall(PetscLogEventBegin(MAT_SetValues, mat, 0, 0, 0));

3446:   if (!barray) {
3447:     PetscCall(PetscMalloc1(bs2, &barray));
3448:     baij->barray = barray;
3449:   }

3451:   if (roworiented) stepval = (n - 1) * bs;
3452:   else stepval = (m - 1) * bs;

3454:   for (i = 0; i < m; i++) {
3455:     if (im[i] < 0) continue;
3456:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large, row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
3457:     if (im[i] >= rstart && im[i] < rend) {
3458:       row = im[i] - rstart;
3459:       for (j = 0; j < n; j++) {
3460:         /* If NumCol = 1 then a copy is not required */
3461:         if ((roworiented) && (n == 1)) {
3462:           barray = (MatScalar *)v + i * bs2;
3463:         } else if ((!roworiented) && (m == 1)) {
3464:           barray = (MatScalar *)v + j * bs2;
3465:         } else { /* Here a copy is required */
3466:           if (roworiented) {
3467:             value = v + i * (stepval + bs) * bs + j * bs;
3468:           } else {
3469:             value = v + j * (stepval + bs) * bs + i * bs;
3470:           }
3471:           for (ii = 0; ii < bs; ii++, value += stepval) {
3472:             for (jj = 0; jj < bs; jj++) *barray++ = *value++;
3473:           }
3474:           barray -= bs2;
3475:         }

3477:         if (in[j] >= cstart && in[j] < cend) {
3478:           col = in[j] - cstart;
3479:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
3480:         } else if (in[j] < 0) {
3481:           continue;
3482:         } else {
3483:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large, col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
3484:           if (mat->was_assembled) {
3485:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

3487: #if defined(PETSC_USE_DEBUG)
3488:   #if defined(PETSC_USE_CTABLE)
3489:             {
3490:               PetscInt data;
3491:               PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &data));
3492:               PetscCheck((data - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
3493:             }
3494:   #else
3495:             PetscCheck((baij->colmap[in[j]] - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
3496:   #endif
3497: #endif
3498: #if defined(PETSC_USE_CTABLE)
3499:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
3500:             col = (col - 1) / bs;
3501: #else
3502:             col = (baij->colmap[in[j]] - 1) / bs;
3503: #endif
3504:             if (col < 0 && !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
3505:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
3506:               col = in[j];
3507:             }
3508:           } else col = in[j];
3509:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
3510:         }
3511:       }
3512:     } else {
3513:       if (!baij->donotstash) {
3514:         if (roworiented) {
3515:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
3516:         } else {
3517:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
3518:         }
3519:       }
3520:     }
3521:   }

3523:   /* task normally handled by MatSetValuesBlocked() */
3524:   PetscCall(PetscLogEventEnd(MAT_SetValues, mat, 0, 0, 0));
3525:   PetscFunctionReturn(PETSC_SUCCESS);
3526: }

3528: /*@
3529:   MatCreateMPIBAIJWithArrays - creates a `MATMPIBAIJ` matrix using arrays that contain in standard block CSR format for the local rows.

3531:   Collective

3533:   Input Parameters:
3534: + comm - MPI communicator
3535: . bs   - the block size, only a block size of 1 is supported
3536: . m    - number of local rows (Cannot be `PETSC_DECIDE`)
3537: . n    - This value should be the same as the local size used in creating the
3538:          x vector for the matrix-vector product $ y = Ax $. (or `PETSC_DECIDE` to have
3539:          calculated if `N` is given) For square matrices `n` is almost always `m`.
3540: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
3541: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
3542: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that rowth block row of the matrix
3543: . j    - column indices
3544: - a    - matrix values

3546:   Output Parameter:
3547: . mat - the matrix

3549:   Level: intermediate

3551:   Notes:
3552:   The `i`, `j`, and `a` arrays ARE copied by this routine into the internal format used by PETSc;
3553:   thus you CANNOT change the matrix entries by changing the values of a[] after you have
3554:   called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.

3556:   The order of the entries in values is the same as the block compressed sparse row storage format; that is, it is
3557:   the same as a three dimensional array in Fortran values(bs,bs,nnz) that contains the first column of the first
3558:   block, followed by the second column of the first block etc etc.  That is, the blocks are contiguous in memory
3559:   with column-major ordering within blocks.

3561:   The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.

3563: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
3564:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`
3565: @*/
3566: PetscErrorCode MatCreateMPIBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt i[], const PetscInt j[], const PetscScalar a[], Mat *mat)
3567: {
3568:   PetscFunctionBegin;
3569:   PetscCheck(!i[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
3570:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
3571:   PetscCall(MatCreate(comm, mat));
3572:   PetscCall(MatSetSizes(*mat, m, n, M, N));
3573:   PetscCall(MatSetType(*mat, MATMPIBAIJ));
3574:   PetscCall(MatSetBlockSize(*mat, bs));
3575:   PetscCall(MatSetUp(*mat));
3576:   PetscCall(MatSetOption(*mat, MAT_ROW_ORIENTED, PETSC_FALSE));
3577:   PetscCall(MatMPIBAIJSetPreallocationCSR(*mat, bs, i, j, a));
3578:   PetscCall(MatSetOption(*mat, MAT_ROW_ORIENTED, PETSC_TRUE));
3579:   PetscFunctionReturn(PETSC_SUCCESS);
3580: }

3582: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPIBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
3583: {
3584:   PetscInt     m, N, i, rstart, nnz, Ii, bs, cbs;
3585:   PetscInt    *indx;
3586:   PetscScalar *values;

3588:   PetscFunctionBegin;
3589:   PetscCall(MatGetSize(inmat, &m, &N));
3590:   if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
3591:     Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)inmat->data;
3592:     PetscInt    *dnz, *onz, mbs, Nbs, nbs;
3593:     PetscInt    *bindx, rmax = a->rmax, j;
3594:     PetscMPIInt  rank, size;

3596:     PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
3597:     mbs = m / bs;
3598:     Nbs = N / cbs;
3599:     if (n == PETSC_DECIDE) PetscCall(PetscSplitOwnershipBlock(comm, cbs, &n, &N));
3600:     nbs = n / cbs;

3602:     PetscCall(PetscMalloc1(rmax, &bindx));
3603:     MatPreallocateBegin(comm, mbs, nbs, dnz, onz); /* inline function, output __end and __rstart are used below */

3605:     PetscCallMPI(MPI_Comm_rank(comm, &rank));
3606:     PetscCallMPI(MPI_Comm_rank(comm, &size));
3607:     if (rank == size - 1) {
3608:       /* Check sum(nbs) = Nbs */
3609:       PetscCheck(__end == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Sum of local block columns %" PetscInt_FMT " != global block columns %" PetscInt_FMT, __end, Nbs);
3610:     }

3612:     rstart = __rstart; /* block rstart of *outmat; see inline function MatPreallocateBegin */
3613:     for (i = 0; i < mbs; i++) {
3614:       PetscCall(MatGetRow_SeqBAIJ(inmat, i * bs, &nnz, &indx, NULL)); /* non-blocked nnz and indx */
3615:       nnz = nnz / bs;
3616:       for (j = 0; j < nnz; j++) bindx[j] = indx[j * bs] / bs;
3617:       PetscCall(MatPreallocateSet(i + rstart, nnz, bindx, dnz, onz));
3618:       PetscCall(MatRestoreRow_SeqBAIJ(inmat, i * bs, &nnz, &indx, NULL));
3619:     }
3620:     PetscCall(PetscFree(bindx));

3622:     PetscCall(MatCreate(comm, outmat));
3623:     PetscCall(MatSetSizes(*outmat, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
3624:     PetscCall(MatSetBlockSizes(*outmat, bs, cbs));
3625:     PetscCall(MatSetType(*outmat, MATBAIJ));
3626:     PetscCall(MatSeqBAIJSetPreallocation(*outmat, bs, 0, dnz));
3627:     PetscCall(MatMPIBAIJSetPreallocation(*outmat, bs, 0, dnz, 0, onz));
3628:     MatPreallocateEnd(dnz, onz);
3629:     PetscCall(MatSetOption(*outmat, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
3630:   }

3632:   /* numeric phase */
3633:   PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
3634:   PetscCall(MatGetOwnershipRange(*outmat, &rstart, NULL));

3636:   for (i = 0; i < m; i++) {
3637:     PetscCall(MatGetRow_SeqBAIJ(inmat, i, &nnz, &indx, &values));
3638:     Ii = i + rstart;
3639:     PetscCall(MatSetValues(*outmat, 1, &Ii, nnz, indx, values, INSERT_VALUES));
3640:     PetscCall(MatRestoreRow_SeqBAIJ(inmat, i, &nnz, &indx, &values));
3641:   }
3642:   PetscCall(MatAssemblyBegin(*outmat, MAT_FINAL_ASSEMBLY));
3643:   PetscCall(MatAssemblyEnd(*outmat, MAT_FINAL_ASSEMBLY));
3644:   PetscFunctionReturn(PETSC_SUCCESS);
3645: }