Actual source code: dense.c

  1: /*
  2:      Defines the basic matrix operations for sequential dense.
  3:      Portions of this code are under:
  4:      Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
  5: */

  7: #include <../src/mat/impls/dense/seq/dense.h>
  8: #include <../src/mat/impls/dense/mpi/mpidense.h>
  9: #include <petscblaslapack.h>
 10: #include <../src/mat/impls/aij/seq/aij.h>
 11: #include <petsc/private/vecimpl.h>

 13: PetscErrorCode MatSeqDenseSymmetrize_Private(Mat A, PetscBool hermitian)
 14: {
 15:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
 16:   PetscInt      j, k, n = A->rmap->n;
 17:   PetscScalar  *v;

 19:   PetscFunctionBegin;
 20:   PetscCheck(A->rmap->n == A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Cannot symmetrize a rectangular matrix");
 21:   PetscCall(MatDenseGetArray(A, &v));
 22:   if (!hermitian) {
 23:     for (k = 0; k < n; k++) {
 24:       for (j = k; j < n; j++) v[j * mat->lda + k] = v[k * mat->lda + j];
 25:     }
 26:   } else {
 27:     for (k = 0; k < n; k++) {
 28:       for (j = k; j < n; j++) v[j * mat->lda + k] = PetscConj(v[k * mat->lda + j]);
 29:     }
 30:   }
 31:   PetscCall(MatDenseRestoreArray(A, &v));
 32:   PetscFunctionReturn(PETSC_SUCCESS);
 33: }

 35: PetscErrorCode MatSeqDenseInvertFactors_Private(Mat A)
 36: {
 37:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
 38:   PetscBLASInt  info, n;

 40:   PetscFunctionBegin;
 41:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
 42:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
 43:   if (A->factortype == MAT_FACTOR_LU) {
 44:     PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 45:     if (!mat->fwork) {
 46:       mat->lfwork = n;
 47:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
 48:     }
 49:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 50:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
 51:     PetscCall(PetscFPTrapPop());
 52:     PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
 53:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
 54:     if (A->spd == PETSC_BOOL3_TRUE) {
 55:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 56:       PetscCallBLAS("LAPACKpotri", LAPACKpotri_("L", &n, mat->v, &mat->lda, &info));
 57:       PetscCall(PetscFPTrapPop());
 58:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_TRUE));
 59: #if defined(PETSC_USE_COMPLEX)
 60:     } else if (A->hermitian == PETSC_BOOL3_TRUE) {
 61:       PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 62:       PetscCheck(mat->fwork, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fwork not present");
 63:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 64:       PetscCallBLAS("LAPACKhetri", LAPACKhetri_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &info));
 65:       PetscCall(PetscFPTrapPop());
 66:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_TRUE));
 67: #endif
 68:     } else { /* symmetric case */
 69:       PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 70:       PetscCheck(mat->fwork, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fwork not present");
 71:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 72:       PetscCallBLAS("LAPACKsytri", LAPACKsytri_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &info));
 73:       PetscCall(PetscFPTrapPop());
 74:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_FALSE));
 75:     }
 76:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT, "Bad Inversion: zero pivot in row %" PetscBLASInt_FMT, info - 1);
 77:     PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
 78:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix must be factored to solve");

 80:   A->ops->solve             = NULL;
 81:   A->ops->matsolve          = NULL;
 82:   A->ops->solvetranspose    = NULL;
 83:   A->ops->matsolvetranspose = NULL;
 84:   A->ops->solveadd          = NULL;
 85:   A->ops->solvetransposeadd = NULL;
 86:   A->factortype             = MAT_FACTOR_NONE;
 87:   PetscCall(PetscFree(A->solvertype));
 88:   PetscFunctionReturn(PETSC_SUCCESS);
 89: }

 91: static PetscErrorCode MatZeroRowsColumns_SeqDense(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
 92: {
 93:   Mat_SeqDense      *l = (Mat_SeqDense *)A->data;
 94:   PetscInt           m = l->lda, n = A->cmap->n, r = A->rmap->n, i, j;
 95:   PetscScalar       *slot, *bb, *v;
 96:   const PetscScalar *xx;

 98:   PetscFunctionBegin;
 99:   if (PetscDefined(USE_DEBUG)) {
100:     for (i = 0; i < N; i++) {
101:       PetscCheck(rows[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row requested to be zeroed");
102:       PetscCheck(rows[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested to be zeroed greater than or equal number of rows %" PetscInt_FMT, rows[i], A->rmap->n);
103:       PetscCheck(rows[i] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Col %" PetscInt_FMT " requested to be zeroed greater than or equal number of cols %" PetscInt_FMT, rows[i], A->cmap->n);
104:     }
105:   }
106:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);

108:   /* fix right-hand side if needed */
109:   if (x && b) {
110:     Vec xt;

112:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
113:     PetscCall(VecDuplicate(x, &xt));
114:     PetscCall(VecCopy(x, xt));
115:     PetscCall(VecScale(xt, -1.0));
116:     PetscCall(MatMultAdd(A, xt, b, b));
117:     PetscCall(VecDestroy(&xt));
118:     PetscCall(VecGetArrayRead(x, &xx));
119:     PetscCall(VecGetArray(b, &bb));
120:     for (i = 0; i < N; i++) bb[rows[i]] = diag * xx[rows[i]];
121:     PetscCall(VecRestoreArrayRead(x, &xx));
122:     PetscCall(VecRestoreArray(b, &bb));
123:   }

125:   PetscCall(MatDenseGetArray(A, &v));
126:   for (i = 0; i < N; i++) {
127:     slot = v + rows[i] * m;
128:     PetscCall(PetscArrayzero(slot, r));
129:   }
130:   for (i = 0; i < N; i++) {
131:     slot = v + rows[i];
132:     for (j = 0; j < n; j++) {
133:       *slot = 0.0;
134:       slot += m;
135:     }
136:   }
137:   if (diag != 0.0) {
138:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
139:     for (i = 0; i < N; i++) {
140:       slot  = v + (m + 1) * rows[i];
141:       *slot = diag;
142:     }
143:   }
144:   PetscCall(MatDenseRestoreArray(A, &v));
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqDense(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
149: {
150:   Mat              B = NULL;
151:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
152:   Mat_SeqDense    *b;
153:   PetscInt        *ai = a->i, *aj = a->j, m = A->rmap->N, n = A->cmap->N, i;
154:   const MatScalar *av;
155:   PetscBool        isseqdense;

157:   PetscFunctionBegin;
158:   if (reuse == MAT_REUSE_MATRIX) {
159:     PetscCall(PetscObjectTypeCompare((PetscObject)*newmat, MATSEQDENSE, &isseqdense));
160:     PetscCheck(isseqdense, PetscObjectComm((PetscObject)*newmat), PETSC_ERR_USER, "Cannot reuse matrix of type %s", ((PetscObject)*newmat)->type_name);
161:   }
162:   if (reuse != MAT_REUSE_MATRIX) {
163:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
164:     PetscCall(MatSetSizes(B, m, n, m, n));
165:     PetscCall(MatSetType(B, MATSEQDENSE));
166:     PetscCall(MatSeqDenseSetPreallocation(B, NULL));
167:     b = (Mat_SeqDense *)B->data;
168:   } else {
169:     b = (Mat_SeqDense *)((*newmat)->data);
170:     for (i = 0; i < n; i++) PetscCall(PetscArrayzero(b->v + i * b->lda, m));
171:   }
172:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
173:   for (i = 0; i < m; i++) {
174:     PetscInt j;
175:     for (j = 0; j < ai[1] - ai[0]; j++) {
176:       b->v[*aj * b->lda + i] = *av;
177:       aj++;
178:       av++;
179:     }
180:     ai++;
181:   }
182:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));

184:   if (reuse == MAT_INPLACE_MATRIX) {
185:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
186:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
187:     PetscCall(MatHeaderReplace(A, &B));
188:   } else {
189:     if (B) *newmat = B;
190:     PetscCall(MatAssemblyBegin(*newmat, MAT_FINAL_ASSEMBLY));
191:     PetscCall(MatAssemblyEnd(*newmat, MAT_FINAL_ASSEMBLY));
192:   }
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_SeqAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
197: {
198:   Mat           B = NULL;
199:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
200:   PetscInt      i, j;
201:   PetscInt     *rows, *nnz;
202:   MatScalar    *aa = a->v, *vals;

204:   PetscFunctionBegin;
205:   PetscCall(PetscCalloc3(A->rmap->n, &rows, A->rmap->n, &nnz, A->rmap->n, &vals));
206:   if (reuse != MAT_REUSE_MATRIX) {
207:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
208:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
209:     PetscCall(MatSetType(B, MATSEQAIJ));
210:     for (j = 0; j < A->cmap->n; j++) {
211:       for (i = 0; i < A->rmap->n; i++)
212:         if (aa[i] != 0.0 || (i == j && A->cmap->n == A->rmap->n)) ++nnz[i];
213:       aa += a->lda;
214:     }
215:     PetscCall(MatSeqAIJSetPreallocation(B, PETSC_DETERMINE, nnz));
216:   } else B = *newmat;
217:   aa = a->v;
218:   for (j = 0; j < A->cmap->n; j++) {
219:     PetscInt numRows = 0;
220:     for (i = 0; i < A->rmap->n; i++)
221:       if (aa[i] != 0.0 || (i == j && A->cmap->n == A->rmap->n)) {
222:         rows[numRows]   = i;
223:         vals[numRows++] = aa[i];
224:       }
225:     PetscCall(MatSetValues(B, numRows, rows, 1, &j, vals, INSERT_VALUES));
226:     aa += a->lda;
227:   }
228:   PetscCall(PetscFree3(rows, nnz, vals));
229:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
230:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

232:   if (reuse == MAT_INPLACE_MATRIX) {
233:     PetscCall(MatHeaderReplace(A, &B));
234:   } else if (reuse != MAT_REUSE_MATRIX) *newmat = B;
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatAXPY_SeqDense(Mat Y, PetscScalar alpha, Mat X, MatStructure str)
239: {
240:   Mat_SeqDense      *x = (Mat_SeqDense *)X->data, *y = (Mat_SeqDense *)Y->data;
241:   const PetscScalar *xv;
242:   PetscScalar       *yv;
243:   PetscBLASInt       N, m, ldax = 0, lday = 0, one = 1;

245:   PetscFunctionBegin;
246:   PetscCall(MatDenseGetArrayRead(X, &xv));
247:   PetscCall(MatDenseGetArray(Y, &yv));
248:   PetscCall(PetscBLASIntCast(X->rmap->n * X->cmap->n, &N));
249:   PetscCall(PetscBLASIntCast(X->rmap->n, &m));
250:   PetscCall(PetscBLASIntCast(x->lda, &ldax));
251:   PetscCall(PetscBLASIntCast(y->lda, &lday));
252:   if (ldax > m || lday > m) {
253:     for (PetscInt j = 0; j < X->cmap->n; j++) PetscCallBLAS("BLASaxpy", BLASaxpy_(&m, &alpha, PetscSafePointerPlusOffset(xv, j * ldax), &one, PetscSafePointerPlusOffset(yv, j * lday), &one));
254:   } else {
255:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&N, &alpha, xv, &one, yv, &one));
256:   }
257:   PetscCall(MatDenseRestoreArrayRead(X, &xv));
258:   PetscCall(MatDenseRestoreArray(Y, &yv));
259:   PetscCall(PetscLogFlops(PetscMax(2.0 * N - 1, 0)));
260:   PetscFunctionReturn(PETSC_SUCCESS);
261: }

263: static PetscErrorCode MatGetInfo_SeqDense(Mat A, MatInfoType flag, MatInfo *info)
264: {
265:   PetscLogDouble N = A->rmap->n * A->cmap->n;

267:   PetscFunctionBegin;
268:   info->block_size        = 1.0;
269:   info->nz_allocated      = N;
270:   info->nz_used           = N;
271:   info->nz_unneeded       = 0;
272:   info->assemblies        = A->num_ass;
273:   info->mallocs           = 0;
274:   info->memory            = 0; /* REVIEW ME */
275:   info->fill_ratio_given  = 0;
276:   info->fill_ratio_needed = 0;
277:   info->factor_mallocs    = 0;
278:   PetscFunctionReturn(PETSC_SUCCESS);
279: }

281: PetscErrorCode MatScale_SeqDense(Mat A, PetscScalar alpha)
282: {
283:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
284:   PetscScalar  *v;
285:   PetscBLASInt  one = 1, j, nz, lda = 0;

287:   PetscFunctionBegin;
288:   PetscCall(MatDenseGetArray(A, &v));
289:   PetscCall(PetscBLASIntCast(a->lda, &lda));
290:   if (lda > A->rmap->n) {
291:     PetscCall(PetscBLASIntCast(A->rmap->n, &nz));
292:     for (j = 0; j < A->cmap->n; j++) PetscCallBLAS("BLASscal", BLASscal_(&nz, &alpha, v + j * lda, &one));
293:   } else {
294:     PetscCall(PetscBLASIntCast(A->rmap->n * A->cmap->n, &nz));
295:     PetscCallBLAS("BLASscal", BLASscal_(&nz, &alpha, v, &one));
296:   }
297:   PetscCall(PetscLogFlops(A->rmap->n * A->cmap->n));
298:   PetscCall(MatDenseRestoreArray(A, &v));
299:   PetscFunctionReturn(PETSC_SUCCESS);
300: }

302: PetscErrorCode MatShift_SeqDense(Mat A, PetscScalar alpha)
303: {
304:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
305:   PetscScalar  *v;
306:   PetscInt      j, k;

308:   PetscFunctionBegin;
309:   PetscCall(MatDenseGetArray(A, &v));
310:   k = PetscMin(A->rmap->n, A->cmap->n);
311:   for (j = 0; j < k; j++) v[j + j * a->lda] += alpha;
312:   PetscCall(PetscLogFlops(k));
313:   PetscCall(MatDenseRestoreArray(A, &v));
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: static PetscErrorCode MatIsHermitian_SeqDense(Mat A, PetscReal rtol, PetscBool *fl)
318: {
319:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
320:   PetscInt           i, j, m = A->rmap->n, N = a->lda;
321:   const PetscScalar *v;

323:   PetscFunctionBegin;
324:   *fl = PETSC_FALSE;
325:   if (A->rmap->n != A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
326:   PetscCall(MatDenseGetArrayRead(A, &v));
327:   for (i = 0; i < m; i++) {
328:     for (j = i; j < m; j++) {
329:       if (PetscAbsScalar(v[i + j * N] - PetscConj(v[j + i * N])) > rtol) goto restore;
330:     }
331:   }
332:   *fl = PETSC_TRUE;
333: restore:
334:   PetscCall(MatDenseRestoreArrayRead(A, &v));
335:   PetscFunctionReturn(PETSC_SUCCESS);
336: }

338: static PetscErrorCode MatIsSymmetric_SeqDense(Mat A, PetscReal rtol, PetscBool *fl)
339: {
340:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
341:   PetscInt           i, j, m = A->rmap->n, N = a->lda;
342:   const PetscScalar *v;

344:   PetscFunctionBegin;
345:   *fl = PETSC_FALSE;
346:   if (A->rmap->n != A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
347:   PetscCall(MatDenseGetArrayRead(A, &v));
348:   for (i = 0; i < m; i++) {
349:     for (j = i; j < m; j++) {
350:       if (PetscAbsScalar(v[i + j * N] - v[j + i * N]) > rtol) goto restore;
351:     }
352:   }
353:   *fl = PETSC_TRUE;
354: restore:
355:   PetscCall(MatDenseRestoreArrayRead(A, &v));
356:   PetscFunctionReturn(PETSC_SUCCESS);
357: }

359: PetscErrorCode MatDuplicateNoCreate_SeqDense(Mat newi, Mat A, MatDuplicateOption cpvalues)
360: {
361:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
362:   PetscInt      lda = mat->lda, j, m, nlda = lda;
363:   PetscBool     isdensecpu;

365:   PetscFunctionBegin;
366:   PetscCall(PetscLayoutReference(A->rmap, &newi->rmap));
367:   PetscCall(PetscLayoutReference(A->cmap, &newi->cmap));
368:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) { /* propagate LDA */
369:     PetscCall(MatDenseSetLDA(newi, lda));
370:   }
371:   PetscCall(PetscObjectTypeCompare((PetscObject)newi, MATSEQDENSE, &isdensecpu));
372:   if (isdensecpu) PetscCall(MatSeqDenseSetPreallocation(newi, NULL));
373:   if (cpvalues == MAT_COPY_VALUES) {
374:     const PetscScalar *av;
375:     PetscScalar       *v;

377:     PetscCall(MatDenseGetArrayRead(A, &av));
378:     PetscCall(MatDenseGetArrayWrite(newi, &v));
379:     PetscCall(MatDenseGetLDA(newi, &nlda));
380:     m = A->rmap->n;
381:     if (lda > m || nlda > m) {
382:       for (j = 0; j < A->cmap->n; j++) PetscCall(PetscArraycpy(PetscSafePointerPlusOffset(v, j * nlda), PetscSafePointerPlusOffset(av, j * lda), m));
383:     } else {
384:       PetscCall(PetscArraycpy(v, av, A->rmap->n * A->cmap->n));
385:     }
386:     PetscCall(MatDenseRestoreArrayWrite(newi, &v));
387:     PetscCall(MatDenseRestoreArrayRead(A, &av));
388:     PetscCall(MatPropagateSymmetryOptions(A, newi));
389:   }
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }

393: PetscErrorCode MatDuplicate_SeqDense(Mat A, MatDuplicateOption cpvalues, Mat *newmat)
394: {
395:   PetscFunctionBegin;
396:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), newmat));
397:   PetscCall(MatSetSizes(*newmat, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
398:   PetscCall(MatSetType(*newmat, ((PetscObject)A)->type_name));
399:   PetscCall(MatDuplicateNoCreate_SeqDense(*newmat, A, cpvalues));
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: static PetscErrorCode MatSolve_SeqDense_Internal_LU(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k, PetscBool T)
404: {
405:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
406:   PetscBLASInt  info;

408:   PetscFunctionBegin;
409:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
410:   PetscCallBLAS("LAPACKgetrs", LAPACKgetrs_(T ? "T" : "N", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
411:   PetscCall(PetscFPTrapPop());
412:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "GETRS - Bad solve %" PetscBLASInt_FMT, info);
413:   PetscCall(PetscLogFlops(nrhs * (2.0 * m * m - m)));
414:   PetscFunctionReturn(PETSC_SUCCESS);
415: }

417: static PetscErrorCode MatSolve_SeqDense_Internal_Cholesky(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k, PetscBool T)
418: {
419:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
420:   PetscBLASInt  info;

422:   PetscFunctionBegin;
423:   if (A->spd == PETSC_BOOL3_TRUE) {
424:     if (PetscDefined(USE_COMPLEX) && T) PetscCall(MatConjugate_SeqDense(A));
425:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
426:     PetscCallBLAS("LAPACKpotrs", LAPACKpotrs_("L", &m, &nrhs, mat->v, &mat->lda, x, &m, &info));
427:     PetscCall(PetscFPTrapPop());
428:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "POTRS Bad solve %" PetscBLASInt_FMT, info);
429:     if (PetscDefined(USE_COMPLEX) && T) PetscCall(MatConjugate_SeqDense(A));
430: #if defined(PETSC_USE_COMPLEX)
431:   } else if (A->hermitian == PETSC_BOOL3_TRUE) {
432:     if (T) PetscCall(MatConjugate_SeqDense(A));
433:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
434:     PetscCallBLAS("LAPACKhetrs", LAPACKhetrs_("L", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
435:     PetscCall(PetscFPTrapPop());
436:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "HETRS Bad solve %" PetscBLASInt_FMT, info);
437:     if (T) PetscCall(MatConjugate_SeqDense(A));
438: #endif
439:   } else { /* symmetric case */
440:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
441:     PetscCallBLAS("LAPACKsytrs", LAPACKsytrs_("L", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
442:     PetscCall(PetscFPTrapPop());
443:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "SYTRS Bad solve %" PetscBLASInt_FMT, info);
444:   }
445:   PetscCall(PetscLogFlops(nrhs * (2.0 * m * m - m)));
446:   PetscFunctionReturn(PETSC_SUCCESS);
447: }

449: static PetscErrorCode MatSolve_SeqDense_Internal_QR(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k)
450: {
451:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
452:   PetscBLASInt  info;
453:   char          trans;

455:   PetscFunctionBegin;
456:   if (PetscDefined(USE_COMPLEX)) {
457:     trans = 'C';
458:   } else {
459:     trans = 'T';
460:   }
461:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
462:   { /* lwork depends on the number of right-hand sides */
463:     PetscBLASInt nlfwork, lfwork = -1;
464:     PetscScalar  fwork;

466:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", &trans, &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, &fwork, &lfwork, &info));
467:     nlfwork = (PetscBLASInt)PetscRealPart(fwork);
468:     if (nlfwork > mat->lfwork) {
469:       mat->lfwork = nlfwork;
470:       PetscCall(PetscFree(mat->fwork));
471:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
472:     }
473:   }
474:   PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", &trans, &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, mat->fwork, &mat->lfwork, &info));
475:   PetscCall(PetscFPTrapPop());
476:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "ORMQR - Bad orthogonal transform %" PetscBLASInt_FMT, info);
477:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
478:   PetscCallBLAS("LAPACKtrtrs", LAPACKtrtrs_("U", "N", "N", &mat->rank, &nrhs, mat->v, &mat->lda, x, &ldx, &info));
479:   PetscCall(PetscFPTrapPop());
480:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "TRTRS - Bad triangular solve %" PetscBLASInt_FMT, info);
481:   for (PetscInt j = 0; j < nrhs; j++) {
482:     for (PetscInt i = mat->rank; i < k; i++) x[j * ldx + i] = 0.;
483:   }
484:   PetscCall(PetscLogFlops(nrhs * (4.0 * m * mat->rank - PetscSqr(mat->rank))));
485:   PetscFunctionReturn(PETSC_SUCCESS);
486: }

488: static PetscErrorCode MatSolveTranspose_SeqDense_Internal_QR(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k)
489: {
490:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
491:   PetscBLASInt  info;

493:   PetscFunctionBegin;
494:   if (A->rmap->n == A->cmap->n && mat->rank == A->rmap->n) {
495:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
496:     PetscCallBLAS("LAPACKtrtrs", LAPACKtrtrs_("U", "T", "N", &m, &nrhs, mat->v, &mat->lda, x, &ldx, &info));
497:     PetscCall(PetscFPTrapPop());
498:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "TRTRS - Bad triangular solve %" PetscBLASInt_FMT, info);
499:     if (PetscDefined(USE_COMPLEX)) PetscCall(MatConjugate_SeqDense(A));
500:     { /* lwork depends on the number of right-hand sides */
501:       PetscBLASInt nlfwork, lfwork = -1;
502:       PetscScalar  fwork;

504:       PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", "N", &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, &fwork, &lfwork, &info));
505:       nlfwork = (PetscBLASInt)PetscRealPart(fwork);
506:       if (nlfwork > mat->lfwork) {
507:         mat->lfwork = nlfwork;
508:         PetscCall(PetscFree(mat->fwork));
509:         PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
510:       }
511:     }
512:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
513:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", "N", &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, mat->fwork, &mat->lfwork, &info));
514:     PetscCall(PetscFPTrapPop());
515:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "ORMQR - Bad orthogonal transform %" PetscBLASInt_FMT, info);
516:     if (PetscDefined(USE_COMPLEX)) PetscCall(MatConjugate_SeqDense(A));
517:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "QR factored matrix cannot be used for transpose solve");
518:   PetscCall(PetscLogFlops(nrhs * (4.0 * m * mat->rank - PetscSqr(mat->rank))));
519:   PetscFunctionReturn(PETSC_SUCCESS);
520: }

522: static PetscErrorCode MatSolve_SeqDense_SetUp(Mat A, Vec xx, Vec yy, PetscScalar **_y, PetscBLASInt *_m, PetscBLASInt *_k)
523: {
524:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
525:   PetscScalar  *y;
526:   PetscBLASInt  m = 0, k = 0;

528:   PetscFunctionBegin;
529:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
530:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
531:   if (k < m) {
532:     PetscCall(VecCopy(xx, mat->qrrhs));
533:     PetscCall(VecGetArray(mat->qrrhs, &y));
534:   } else {
535:     PetscCall(VecCopy(xx, yy));
536:     PetscCall(VecGetArray(yy, &y));
537:   }
538:   *_y = y;
539:   *_k = k;
540:   *_m = m;
541:   PetscFunctionReturn(PETSC_SUCCESS);
542: }

544: static PetscErrorCode MatSolve_SeqDense_TearDown(Mat A, Vec xx, Vec yy, PetscScalar **_y, PetscBLASInt *_m, PetscBLASInt *_k)
545: {
546:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
547:   PetscScalar  *y   = NULL;
548:   PetscBLASInt  m, k;

550:   PetscFunctionBegin;
551:   y   = *_y;
552:   *_y = NULL;
553:   k   = *_k;
554:   m   = *_m;
555:   if (k < m) {
556:     PetscScalar *yv;
557:     PetscCall(VecGetArray(yy, &yv));
558:     PetscCall(PetscArraycpy(yv, y, k));
559:     PetscCall(VecRestoreArray(yy, &yv));
560:     PetscCall(VecRestoreArray(mat->qrrhs, &y));
561:   } else {
562:     PetscCall(VecRestoreArray(yy, &y));
563:   }
564:   PetscFunctionReturn(PETSC_SUCCESS);
565: }

567: static PetscErrorCode MatSolve_SeqDense_LU(Mat A, Vec xx, Vec yy)
568: {
569:   PetscScalar *y = NULL;
570:   PetscBLASInt m = 0, k = 0;

572:   PetscFunctionBegin;
573:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
574:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, m, m, 1, k, PETSC_FALSE));
575:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
576:   PetscFunctionReturn(PETSC_SUCCESS);
577: }

579: static PetscErrorCode MatSolveTranspose_SeqDense_LU(Mat A, Vec xx, Vec yy)
580: {
581:   PetscScalar *y = NULL;
582:   PetscBLASInt m = 0, k = 0;

584:   PetscFunctionBegin;
585:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
586:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, m, m, 1, k, PETSC_TRUE));
587:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
588:   PetscFunctionReturn(PETSC_SUCCESS);
589: }

591: static PetscErrorCode MatSolve_SeqDense_Cholesky(Mat A, Vec xx, Vec yy)
592: {
593:   PetscScalar *y = NULL;
594:   PetscBLASInt m = 0, k = 0;

596:   PetscFunctionBegin;
597:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
598:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, m, m, 1, k, PETSC_FALSE));
599:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
600:   PetscFunctionReturn(PETSC_SUCCESS);
601: }

603: static PetscErrorCode MatSolveTranspose_SeqDense_Cholesky(Mat A, Vec xx, Vec yy)
604: {
605:   PetscScalar *y = NULL;
606:   PetscBLASInt m = 0, k = 0;

608:   PetscFunctionBegin;
609:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
610:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, m, m, 1, k, PETSC_TRUE));
611:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
612:   PetscFunctionReturn(PETSC_SUCCESS);
613: }

615: static PetscErrorCode MatSolve_SeqDense_QR(Mat A, Vec xx, Vec yy)
616: {
617:   PetscScalar *y = NULL;
618:   PetscBLASInt m = 0, k = 0;

620:   PetscFunctionBegin;
621:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
622:   PetscCall(MatSolve_SeqDense_Internal_QR(A, y, PetscMax(m, k), m, 1, k));
623:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
624:   PetscFunctionReturn(PETSC_SUCCESS);
625: }

627: static PetscErrorCode MatSolveTranspose_SeqDense_QR(Mat A, Vec xx, Vec yy)
628: {
629:   PetscScalar *y = NULL;
630:   PetscBLASInt m = 0, k = 0;

632:   PetscFunctionBegin;
633:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
634:   PetscCall(MatSolveTranspose_SeqDense_Internal_QR(A, y, PetscMax(m, k), m, 1, k));
635:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
636:   PetscFunctionReturn(PETSC_SUCCESS);
637: }

639: static PetscErrorCode MatMatSolve_SeqDense_SetUp(Mat A, Mat B, Mat X, PetscScalar **_y, PetscBLASInt *_ldy, PetscBLASInt *_m, PetscBLASInt *_nrhs, PetscBLASInt *_k)
640: {
641:   const PetscScalar *b;
642:   PetscScalar       *y;
643:   PetscInt           n, _ldb, _ldx;
644:   PetscBLASInt       nrhs = 0, m = 0, k = 0, ldb = 0, ldx = 0, ldy = 0;

646:   PetscFunctionBegin;
647:   *_ldy  = 0;
648:   *_m    = 0;
649:   *_nrhs = 0;
650:   *_k    = 0;
651:   *_y    = NULL;
652:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
653:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
654:   PetscCall(MatGetSize(B, NULL, &n));
655:   PetscCall(PetscBLASIntCast(n, &nrhs));
656:   PetscCall(MatDenseGetLDA(B, &_ldb));
657:   PetscCall(PetscBLASIntCast(_ldb, &ldb));
658:   PetscCall(MatDenseGetLDA(X, &_ldx));
659:   PetscCall(PetscBLASIntCast(_ldx, &ldx));
660:   if (ldx < m) {
661:     PetscCall(MatDenseGetArrayRead(B, &b));
662:     PetscCall(PetscMalloc1(nrhs * m, &y));
663:     if (ldb == m) {
664:       PetscCall(PetscArraycpy(y, b, ldb * nrhs));
665:     } else {
666:       for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&y[j * m], &b[j * ldb], m));
667:     }
668:     ldy = m;
669:     PetscCall(MatDenseRestoreArrayRead(B, &b));
670:   } else {
671:     if (ldb == ldx) {
672:       PetscCall(MatCopy(B, X, SAME_NONZERO_PATTERN));
673:       PetscCall(MatDenseGetArray(X, &y));
674:     } else {
675:       PetscCall(MatDenseGetArray(X, &y));
676:       PetscCall(MatDenseGetArrayRead(B, &b));
677:       for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&y[j * ldx], &b[j * ldb], m));
678:       PetscCall(MatDenseRestoreArrayRead(B, &b));
679:     }
680:     ldy = ldx;
681:   }
682:   *_y    = y;
683:   *_ldy  = ldy;
684:   *_k    = k;
685:   *_m    = m;
686:   *_nrhs = nrhs;
687:   PetscFunctionReturn(PETSC_SUCCESS);
688: }

690: static PetscErrorCode MatMatSolve_SeqDense_TearDown(Mat A, Mat B, Mat X, PetscScalar **_y, PetscBLASInt *_ldy, PetscBLASInt *_m, PetscBLASInt *_nrhs, PetscBLASInt *_k)
691: {
692:   PetscScalar *y;
693:   PetscInt     _ldx;
694:   PetscBLASInt k, ldy, nrhs, ldx = 0;

696:   PetscFunctionBegin;
697:   y    = *_y;
698:   *_y  = NULL;
699:   k    = *_k;
700:   ldy  = *_ldy;
701:   nrhs = *_nrhs;
702:   PetscCall(MatDenseGetLDA(X, &_ldx));
703:   PetscCall(PetscBLASIntCast(_ldx, &ldx));
704:   if (ldx != ldy) {
705:     PetscScalar *xv;
706:     PetscCall(MatDenseGetArray(X, &xv));
707:     for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&xv[j * ldx], &y[j * ldy], k));
708:     PetscCall(MatDenseRestoreArray(X, &xv));
709:     PetscCall(PetscFree(y));
710:   } else {
711:     PetscCall(MatDenseRestoreArray(X, &y));
712:   }
713:   PetscFunctionReturn(PETSC_SUCCESS);
714: }

716: static PetscErrorCode MatMatSolve_SeqDense_LU(Mat A, Mat B, Mat X)
717: {
718:   PetscScalar *y;
719:   PetscBLASInt m, k, ldy, nrhs;

721:   PetscFunctionBegin;
722:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
723:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, ldy, m, nrhs, k, PETSC_FALSE));
724:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
725:   PetscFunctionReturn(PETSC_SUCCESS);
726: }

728: static PetscErrorCode MatMatSolveTranspose_SeqDense_LU(Mat A, Mat B, Mat X)
729: {
730:   PetscScalar *y;
731:   PetscBLASInt m, k, ldy, nrhs;

733:   PetscFunctionBegin;
734:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
735:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, ldy, m, nrhs, k, PETSC_TRUE));
736:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
737:   PetscFunctionReturn(PETSC_SUCCESS);
738: }

740: static PetscErrorCode MatMatSolve_SeqDense_Cholesky(Mat A, Mat B, Mat X)
741: {
742:   PetscScalar *y;
743:   PetscBLASInt m, k, ldy, nrhs;

745:   PetscFunctionBegin;
746:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
747:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, ldy, m, nrhs, k, PETSC_FALSE));
748:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
749:   PetscFunctionReturn(PETSC_SUCCESS);
750: }

752: static PetscErrorCode MatMatSolveTranspose_SeqDense_Cholesky(Mat A, Mat B, Mat X)
753: {
754:   PetscScalar *y;
755:   PetscBLASInt m, k, ldy, nrhs;

757:   PetscFunctionBegin;
758:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
759:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, ldy, m, nrhs, k, PETSC_TRUE));
760:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
761:   PetscFunctionReturn(PETSC_SUCCESS);
762: }

764: static PetscErrorCode MatMatSolve_SeqDense_QR(Mat A, Mat B, Mat X)
765: {
766:   PetscScalar *y;
767:   PetscBLASInt m, k, ldy, nrhs;

769:   PetscFunctionBegin;
770:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
771:   PetscCall(MatSolve_SeqDense_Internal_QR(A, y, ldy, m, nrhs, k));
772:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
773:   PetscFunctionReturn(PETSC_SUCCESS);
774: }

776: static PetscErrorCode MatMatSolveTranspose_SeqDense_QR(Mat A, Mat B, Mat X)
777: {
778:   PetscScalar *y;
779:   PetscBLASInt m, k, ldy, nrhs;

781:   PetscFunctionBegin;
782:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
783:   PetscCall(MatSolveTranspose_SeqDense_Internal_QR(A, y, ldy, m, nrhs, k));
784:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
785:   PetscFunctionReturn(PETSC_SUCCESS);
786: }

788: /* COMMENT: I have chosen to hide row permutation in the pivots,
789:    rather than put it in the Mat->row slot.*/
790: PetscErrorCode MatLUFactor_SeqDense(Mat A, IS row, IS col, const MatFactorInfo *minfo)
791: {
792:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
793:   PetscBLASInt  n, m, info;

795:   PetscFunctionBegin;
796:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
797:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
798:   if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
799:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
800:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
801:   PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&m, &n, mat->v, &mat->lda, mat->pivots, &info));
802:   PetscCall(PetscFPTrapPop());

804:   PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to LU factorization %" PetscBLASInt_FMT, info);
805:   PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Bad LU factorization %" PetscBLASInt_FMT, info);

807:   A->ops->solve             = MatSolve_SeqDense_LU;
808:   A->ops->matsolve          = MatMatSolve_SeqDense_LU;
809:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense_LU;
810:   A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_LU;
811:   A->factortype             = MAT_FACTOR_LU;

813:   PetscCall(PetscFree(A->solvertype));
814:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

816:   PetscCall(PetscLogFlops((2.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3));
817:   PetscFunctionReturn(PETSC_SUCCESS);
818: }

820: static PetscErrorCode MatLUFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
821: {
822:   MatFactorInfo info;

824:   PetscFunctionBegin;
825:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
826:   PetscUseTypeMethod(fact, lufactor, NULL, NULL, &info);
827:   PetscFunctionReturn(PETSC_SUCCESS);
828: }

830: PetscErrorCode MatLUFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, IS col, const MatFactorInfo *info)
831: {
832:   PetscFunctionBegin;
833:   fact->preallocated         = PETSC_TRUE;
834:   fact->assembled            = PETSC_TRUE;
835:   fact->ops->lufactornumeric = MatLUFactorNumeric_SeqDense;
836:   PetscFunctionReturn(PETSC_SUCCESS);
837: }

839: /* Cholesky as L*L^T or L*D*L^T and the symmetric/hermitian complex variants */
840: PetscErrorCode MatCholeskyFactor_SeqDense(Mat A, IS perm, const MatFactorInfo *factinfo)
841: {
842:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
843:   PetscBLASInt  info, n;

845:   PetscFunctionBegin;
846:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
847:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
848:   if (A->spd == PETSC_BOOL3_TRUE) {
849:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
850:     PetscCallBLAS("LAPACKpotrf", LAPACKpotrf_("L", &n, mat->v, &mat->lda, &info));
851:     PetscCall(PetscFPTrapPop());
852: #if defined(PETSC_USE_COMPLEX)
853:   } else if (A->hermitian == PETSC_BOOL3_TRUE) {
854:     if (!mat->pivots) PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots));
855:     if (!mat->fwork) {
856:       PetscScalar dummy;

858:       mat->lfwork = -1;
859:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
860:       PetscCallBLAS("LAPACKhetrf", LAPACKhetrf_("L", &n, mat->v, &mat->lda, mat->pivots, &dummy, &mat->lfwork, &info));
861:       PetscCall(PetscFPTrapPop());
862:       PetscCall(PetscBLASIntCast((PetscCount)(PetscRealPart(dummy)), &mat->lfwork));
863:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
864:     }
865:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
866:     PetscCallBLAS("LAPACKhetrf", LAPACKhetrf_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
867:     PetscCall(PetscFPTrapPop());
868: #endif
869:   } else { /* symmetric case */
870:     if (!mat->pivots) PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots));
871:     if (!mat->fwork) {
872:       PetscScalar dummy;

874:       mat->lfwork = -1;
875:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
876:       PetscCallBLAS("LAPACKsytrf", LAPACKsytrf_("L", &n, mat->v, &mat->lda, mat->pivots, &dummy, &mat->lfwork, &info));
877:       PetscCall(PetscFPTrapPop());
878:       PetscCall(PetscBLASIntCast((PetscCount)(PetscRealPart(dummy)), &mat->lfwork));
879:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
880:     }
881:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
882:     PetscCallBLAS("LAPACKsytrf", LAPACKsytrf_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
883:     PetscCall(PetscFPTrapPop());
884:   }
885:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT, "Bad factorization: zero pivot in row %" PetscBLASInt_FMT, info - 1);

887:   A->ops->solve             = MatSolve_SeqDense_Cholesky;
888:   A->ops->matsolve          = MatMatSolve_SeqDense_Cholesky;
889:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense_Cholesky;
890:   A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_Cholesky;
891:   A->factortype             = MAT_FACTOR_CHOLESKY;

893:   PetscCall(PetscFree(A->solvertype));
894:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

896:   PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
897:   PetscFunctionReturn(PETSC_SUCCESS);
898: }

900: static PetscErrorCode MatCholeskyFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
901: {
902:   MatFactorInfo info;

904:   PetscFunctionBegin;
905:   info.fill = 1.0;

907:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
908:   PetscUseTypeMethod(fact, choleskyfactor, NULL, &info);
909:   PetscFunctionReturn(PETSC_SUCCESS);
910: }

912: PetscErrorCode MatCholeskyFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, const MatFactorInfo *info)
913: {
914:   PetscFunctionBegin;
915:   fact->assembled                  = PETSC_TRUE;
916:   fact->preallocated               = PETSC_TRUE;
917:   fact->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqDense;
918:   PetscFunctionReturn(PETSC_SUCCESS);
919: }

921: PetscErrorCode MatQRFactor_SeqDense(Mat A, IS col, const MatFactorInfo *minfo)
922: {
923:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
924:   PetscBLASInt  n, m, info, min, max;

926:   PetscFunctionBegin;
927:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
928:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
929:   max = PetscMax(m, n);
930:   min = PetscMin(m, n);
931:   if (!mat->tau) PetscCall(PetscMalloc1(min, &mat->tau));
932:   if (!mat->pivots) PetscCall(PetscMalloc1(n, &mat->pivots));
933:   if (!mat->qrrhs) PetscCall(MatCreateVecs(A, NULL, &mat->qrrhs));
934:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
935:   if (!mat->fwork) {
936:     PetscScalar dummy;

938:     mat->lfwork = -1;
939:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
940:     PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&m, &n, mat->v, &mat->lda, mat->tau, &dummy, &mat->lfwork, &info));
941:     PetscCall(PetscFPTrapPop());
942:     PetscCall(PetscBLASIntCast((PetscCount)(PetscRealPart(dummy)), &mat->lfwork));
943:     PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
944:   }
945:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
946:   PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&m, &n, mat->v, &mat->lda, mat->tau, mat->fwork, &mat->lfwork, &info));
947:   PetscCall(PetscFPTrapPop());
948:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to QR factorization %" PetscBLASInt_FMT, info);
949:   // TODO: try to estimate rank or test for and use geqp3 for rank revealing QR.  For now just say rank is min of m and n
950:   mat->rank = min;

952:   A->ops->solve    = MatSolve_SeqDense_QR;
953:   A->ops->matsolve = MatMatSolve_SeqDense_QR;
954:   A->factortype    = MAT_FACTOR_QR;
955:   if (m == n) {
956:     A->ops->solvetranspose    = MatSolveTranspose_SeqDense_QR;
957:     A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_QR;
958:   }

960:   PetscCall(PetscFree(A->solvertype));
961:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

963:   PetscCall(PetscLogFlops(2.0 * min * min * (max - min / 3.0)));
964:   PetscFunctionReturn(PETSC_SUCCESS);
965: }

967: static PetscErrorCode MatQRFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
968: {
969:   MatFactorInfo info;

971:   PetscFunctionBegin;
972:   info.fill = 1.0;

974:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
975:   PetscUseMethod(fact, "MatQRFactor_C", (Mat, IS, const MatFactorInfo *), (fact, NULL, &info));
976:   PetscFunctionReturn(PETSC_SUCCESS);
977: }

979: PetscErrorCode MatQRFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, const MatFactorInfo *info)
980: {
981:   PetscFunctionBegin;
982:   fact->assembled    = PETSC_TRUE;
983:   fact->preallocated = PETSC_TRUE;
984:   PetscCall(PetscObjectComposeFunction((PetscObject)fact, "MatQRFactorNumeric_C", MatQRFactorNumeric_SeqDense));
985:   PetscFunctionReturn(PETSC_SUCCESS);
986: }

988: /* uses LAPACK */
989: PETSC_INTERN PetscErrorCode MatGetFactor_seqdense_petsc(Mat A, MatFactorType ftype, Mat *fact)
990: {
991:   PetscFunctionBegin;
992:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), fact));
993:   PetscCall(MatSetSizes(*fact, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
994:   PetscCall(MatSetType(*fact, MATDENSE));
995:   (*fact)->trivialsymbolic = PETSC_TRUE;
996:   if (ftype == MAT_FACTOR_LU || ftype == MAT_FACTOR_ILU) {
997:     (*fact)->ops->lufactorsymbolic  = MatLUFactorSymbolic_SeqDense;
998:     (*fact)->ops->ilufactorsymbolic = MatLUFactorSymbolic_SeqDense;
999:   } else if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
1000:     (*fact)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqDense;
1001:   } else if (ftype == MAT_FACTOR_QR) {
1002:     PetscCall(PetscObjectComposeFunction((PetscObject)*fact, "MatQRFactorSymbolic_C", MatQRFactorSymbolic_SeqDense));
1003:   }
1004:   (*fact)->factortype = ftype;

1006:   PetscCall(PetscFree((*fact)->solvertype));
1007:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*fact)->solvertype));
1008:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_LU]));
1009:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_ILU]));
1010:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_CHOLESKY]));
1011:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_ICC]));
1012:   PetscFunctionReturn(PETSC_SUCCESS);
1013: }

1015: static PetscErrorCode MatSOR_SeqDense(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal shift, PetscInt its, PetscInt lits, Vec xx)
1016: {
1017:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1018:   PetscScalar       *x, *v = mat->v, zero = 0.0, xt;
1019:   const PetscScalar *b;
1020:   PetscInt           m = A->rmap->n, i;
1021:   PetscBLASInt       o = 1, bm = 0;

1023:   PetscFunctionBegin;
1024: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1025:   PetscCheck(A->offloadmask != PETSC_OFFLOAD_GPU, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not implemented");
1026: #endif
1027:   if (shift == -1) shift = 0.0; /* negative shift indicates do not error on zero diagonal; this code never zeros on zero diagonal */
1028:   PetscCall(PetscBLASIntCast(m, &bm));
1029:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1030:     /* this is a hack fix, should have another version without the second BLASdotu */
1031:     PetscCall(VecSet(xx, zero));
1032:   }
1033:   PetscCall(VecGetArray(xx, &x));
1034:   PetscCall(VecGetArrayRead(bb, &b));
1035:   its = its * lits;
1036:   PetscCheck(its > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Relaxation requires global its %" PetscInt_FMT " and local its %" PetscInt_FMT " both positive", its, lits);
1037:   while (its--) {
1038:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1039:       for (i = 0; i < m; i++) {
1040:         PetscCallBLAS("BLASdotu", xt = b[i] - BLASdotu_(&bm, v + i, &bm, x, &o));
1041:         x[i] = (1. - omega) * x[i] + (xt + v[i + i * m] * x[i]) * omega / (v[i + i * m] + shift);
1042:       }
1043:     }
1044:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1045:       for (i = m - 1; i >= 0; i--) {
1046:         PetscCallBLAS("BLASdotu", xt = b[i] - BLASdotu_(&bm, v + i, &bm, x, &o));
1047:         x[i] = (1. - omega) * x[i] + (xt + v[i + i * m] * x[i]) * omega / (v[i + i * m] + shift);
1048:       }
1049:     }
1050:   }
1051:   PetscCall(VecRestoreArrayRead(bb, &b));
1052:   PetscCall(VecRestoreArray(xx, &x));
1053:   PetscFunctionReturn(PETSC_SUCCESS);
1054: }

1056: PETSC_INTERN PetscErrorCode MatMultColumnRangeKernel_SeqDense(Mat A, Vec xx, Vec yy, PetscInt c_start, PetscInt c_end, PetscBool trans, PetscBool herm)
1057: {
1058:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1059:   PetscScalar       *y, _DOne = 1.0, _DZero = 0.0;
1060:   PetscBLASInt       m, n, _One             = 1;
1061:   const PetscScalar *v = mat->v, *x;

1063:   PetscFunctionBegin;
1064:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1065:   PetscCall(PetscBLASIntCast(c_end - c_start, &n));
1066:   PetscCall(VecGetArrayRead(xx, &x));
1067:   PetscCall(VecGetArrayWrite(yy, &y));
1068:   if (!m || !n) {
1069:     PetscBLASInt i;
1070:     if (trans)
1071:       for (i = 0; i < n; i++) y[i] = 0.0;
1072:     else
1073:       for (i = 0; i < m; i++) y[i] = 0.0;
1074:   } else {
1075:     if (trans) {
1076:       if (herm) PetscCallBLAS("BLASgemv", BLASgemv_("C", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DZero, y + c_start, &_One));
1077:       else PetscCallBLAS("BLASgemv", BLASgemv_("T", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DZero, y + c_start, &_One));
1078:     } else {
1079:       PetscCallBLAS("BLASgemv", BLASgemv_("N", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x + c_start, &_One, &_DZero, y, &_One));
1080:     }
1081:     PetscCall(PetscLogFlops(2.0 * m * n - n));
1082:   }
1083:   PetscCall(VecRestoreArrayRead(xx, &x));
1084:   PetscCall(VecRestoreArrayWrite(yy, &y));
1085:   PetscFunctionReturn(PETSC_SUCCESS);
1086: }

1088: PetscErrorCode MatMultHermitianTransposeColumnRange_SeqDense(Mat A, Vec xx, Vec yy, PetscInt c_start, PetscInt c_end)
1089: {
1090:   PetscFunctionBegin;
1091:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, c_start, c_end, PETSC_TRUE, PETSC_TRUE));
1092:   PetscFunctionReturn(PETSC_SUCCESS);
1093: }

1095: PetscErrorCode MatMult_SeqDense(Mat A, Vec xx, Vec yy)
1096: {
1097:   PetscFunctionBegin;
1098:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, 0, A->cmap->n, PETSC_FALSE, PETSC_FALSE));
1099:   PetscFunctionReturn(PETSC_SUCCESS);
1100: }

1102: PetscErrorCode MatMultTranspose_SeqDense(Mat A, Vec xx, Vec yy)
1103: {
1104:   PetscFunctionBegin;
1105:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_FALSE));
1106:   PetscFunctionReturn(PETSC_SUCCESS);
1107: }

1109: PetscErrorCode MatMultHermitianTranspose_SeqDense(Mat A, Vec xx, Vec yy)
1110: {
1111:   PetscFunctionBegin;
1112:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_TRUE));
1113:   PetscFunctionReturn(PETSC_SUCCESS);
1114: }

1116: PETSC_INTERN PetscErrorCode MatMultAddColumnRangeKernel_SeqDense(Mat A, Vec xx, Vec zz, Vec yy, PetscInt c_start, PetscInt c_end, PetscBool trans, PetscBool herm)
1117: {
1118:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1119:   const PetscScalar *v   = mat->v, *x;
1120:   PetscScalar       *y, _DOne = 1.0;
1121:   PetscBLASInt       m, n, _One = 1;

1123:   PetscFunctionBegin;
1124:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1125:   PetscCall(PetscBLASIntCast(c_end - c_start, &n));
1126:   PetscCall(VecCopy(zz, yy));
1127:   if (!m || !n) PetscFunctionReturn(PETSC_SUCCESS);
1128:   PetscCall(VecGetArray(yy, &y));
1129:   PetscCall(VecGetArrayRead(xx, &x));
1130:   if (trans) {
1131:     if (herm) PetscCallBLAS("BLASgemv", BLASgemv_("C", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DOne, y + c_start, &_One));
1132:     else PetscCallBLAS("BLASgemv", BLASgemv_("T", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DOne, y + c_start, &_One));
1133:   } else {
1134:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x + c_start, &_One, &_DOne, y, &_One));
1135:   }
1136:   PetscCall(VecRestoreArrayRead(xx, &x));
1137:   PetscCall(VecRestoreArray(yy, &y));
1138:   PetscCall(PetscLogFlops(2.0 * m * n));
1139:   PetscFunctionReturn(PETSC_SUCCESS);
1140: }

1142: PetscErrorCode MatMultColumnRange_SeqDense(Mat A, Vec xx, Vec yy, PetscInt c_start, PetscInt c_end)
1143: {
1144:   PetscFunctionBegin;
1145:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, c_start, c_end, PETSC_FALSE, PETSC_FALSE));
1146:   PetscFunctionReturn(PETSC_SUCCESS);
1147: }

1149: PetscErrorCode MatMultAddColumnRange_SeqDense(Mat A, Vec xx, Vec zz, Vec yy, PetscInt c_start, PetscInt c_end)
1150: {
1151:   PetscFunctionBegin;
1152:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, c_start, c_end, PETSC_FALSE, PETSC_FALSE));
1153:   PetscFunctionReturn(PETSC_SUCCESS);
1154: }

1156: PetscErrorCode MatMultHermitianTransposeAddColumnRange_SeqDense(Mat A, Vec xx, Vec zz, Vec yy, PetscInt c_start, PetscInt c_end)
1157: {
1158:   PetscFunctionBegin;
1159:   PetscMPIInt rank;
1160:   PetscCallMPI(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
1161:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, c_start, c_end, PETSC_TRUE, PETSC_TRUE));
1162:   PetscFunctionReturn(PETSC_SUCCESS);
1163: }

1165: PetscErrorCode MatMultAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1166: {
1167:   PetscFunctionBegin;
1168:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, 0, A->cmap->n, PETSC_FALSE, PETSC_FALSE));
1169:   PetscFunctionReturn(PETSC_SUCCESS);
1170: }

1172: PetscErrorCode MatMultTransposeAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1173: {
1174:   PetscFunctionBegin;
1175:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_FALSE));
1176:   PetscFunctionReturn(PETSC_SUCCESS);
1177: }

1179: PetscErrorCode MatMultHermitianTransposeAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1180: {
1181:   PetscFunctionBegin;
1182:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_TRUE));
1183:   PetscFunctionReturn(PETSC_SUCCESS);
1184: }

1186: static PetscErrorCode MatGetRow_SeqDense(Mat A, PetscInt row, PetscInt *ncols, PetscInt **cols, PetscScalar **vals)
1187: {
1188:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1189:   PetscInt      i;

1191:   PetscFunctionBegin;
1192:   if (ncols) *ncols = A->cmap->n;
1193:   if (cols) {
1194:     PetscCall(PetscMalloc1(A->cmap->n, cols));
1195:     for (i = 0; i < A->cmap->n; i++) (*cols)[i] = i;
1196:   }
1197:   if (vals) {
1198:     const PetscScalar *v;

1200:     PetscCall(MatDenseGetArrayRead(A, &v));
1201:     PetscCall(PetscMalloc1(A->cmap->n, vals));
1202:     v += row;
1203:     for (i = 0; i < A->cmap->n; i++) {
1204:       (*vals)[i] = *v;
1205:       v += mat->lda;
1206:     }
1207:     PetscCall(MatDenseRestoreArrayRead(A, &v));
1208:   }
1209:   PetscFunctionReturn(PETSC_SUCCESS);
1210: }

1212: static PetscErrorCode MatRestoreRow_SeqDense(Mat A, PetscInt row, PetscInt *ncols, PetscInt **cols, PetscScalar **vals)
1213: {
1214:   PetscFunctionBegin;
1215:   if (cols) PetscCall(PetscFree(*cols));
1216:   if (vals) PetscCall(PetscFree(*vals));
1217:   PetscFunctionReturn(PETSC_SUCCESS);
1218: }

1220: static PetscErrorCode MatSetValues_SeqDense(Mat A, PetscInt m, const PetscInt indexm[], PetscInt n, const PetscInt indexn[], const PetscScalar v[], InsertMode addv)
1221: {
1222:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1223:   PetscScalar  *av;
1224:   PetscInt      i, j, idx = 0;
1225: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1226:   PetscOffloadMask oldf;
1227: #endif

1229:   PetscFunctionBegin;
1230:   PetscCall(MatDenseGetArray(A, &av));
1231:   if (!mat->roworiented) {
1232:     if (addv == INSERT_VALUES) {
1233:       for (j = 0; j < n; j++) {
1234:         if (indexn[j] < 0) {
1235:           idx += m;
1236:           continue;
1237:         }
1238:         PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1239:         for (i = 0; i < m; i++) {
1240:           if (indexm[i] < 0) {
1241:             idx++;
1242:             continue;
1243:           }
1244:           PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1245:           av[indexn[j] * mat->lda + indexm[i]] = v ? v[idx++] : (idx++, 0.0);
1246:         }
1247:       }
1248:     } else {
1249:       for (j = 0; j < n; j++) {
1250:         if (indexn[j] < 0) {
1251:           idx += m;
1252:           continue;
1253:         }
1254:         PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1255:         for (i = 0; i < m; i++) {
1256:           if (indexm[i] < 0) {
1257:             idx++;
1258:             continue;
1259:           }
1260:           PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1261:           av[indexn[j] * mat->lda + indexm[i]] += v ? v[idx++] : (idx++, 0.0);
1262:         }
1263:       }
1264:     }
1265:   } else {
1266:     if (addv == INSERT_VALUES) {
1267:       for (i = 0; i < m; i++) {
1268:         if (indexm[i] < 0) {
1269:           idx += n;
1270:           continue;
1271:         }
1272:         PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1273:         for (j = 0; j < n; j++) {
1274:           if (indexn[j] < 0) {
1275:             idx++;
1276:             continue;
1277:           }
1278:           PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1279:           av[indexn[j] * mat->lda + indexm[i]] = v ? v[idx++] : (idx++, 0.0);
1280:         }
1281:       }
1282:     } else {
1283:       for (i = 0; i < m; i++) {
1284:         if (indexm[i] < 0) {
1285:           idx += n;
1286:           continue;
1287:         }
1288:         PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1289:         for (j = 0; j < n; j++) {
1290:           if (indexn[j] < 0) {
1291:             idx++;
1292:             continue;
1293:           }
1294:           PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1295:           av[indexn[j] * mat->lda + indexm[i]] += v ? v[idx++] : (idx++, 0.0);
1296:         }
1297:       }
1298:     }
1299:   }
1300:   /* hack to prevent unneeded copy to the GPU while returning the array */
1301: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1302:   oldf           = A->offloadmask;
1303:   A->offloadmask = PETSC_OFFLOAD_GPU;
1304: #endif
1305:   PetscCall(MatDenseRestoreArray(A, &av));
1306: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1307:   A->offloadmask = (oldf == PETSC_OFFLOAD_UNALLOCATED ? PETSC_OFFLOAD_UNALLOCATED : PETSC_OFFLOAD_CPU);
1308: #endif
1309:   PetscFunctionReturn(PETSC_SUCCESS);
1310: }

1312: static PetscErrorCode MatGetValues_SeqDense(Mat A, PetscInt m, const PetscInt indexm[], PetscInt n, const PetscInt indexn[], PetscScalar v[])
1313: {
1314:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1315:   const PetscScalar *vv;
1316:   PetscInt           i, j;

1318:   PetscFunctionBegin;
1319:   PetscCall(MatDenseGetArrayRead(A, &vv));
1320:   /* row-oriented output */
1321:   for (i = 0; i < m; i++) {
1322:     if (indexm[i] < 0) {
1323:       v += n;
1324:       continue;
1325:     }
1326:     PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested larger than number rows %" PetscInt_FMT, indexm[i], A->rmap->n);
1327:     for (j = 0; j < n; j++) {
1328:       if (indexn[j] < 0) {
1329:         v++;
1330:         continue;
1331:       }
1332:       PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column %" PetscInt_FMT " requested larger than number columns %" PetscInt_FMT, indexn[j], A->cmap->n);
1333:       *v++ = vv[indexn[j] * mat->lda + indexm[i]];
1334:     }
1335:   }
1336:   PetscCall(MatDenseRestoreArrayRead(A, &vv));
1337:   PetscFunctionReturn(PETSC_SUCCESS);
1338: }

1340: PetscErrorCode MatView_Dense_Binary(Mat mat, PetscViewer viewer)
1341: {
1342:   PetscBool          skipHeader;
1343:   PetscViewerFormat  format;
1344:   PetscInt           header[4], M, N, m, lda, i, j;
1345:   PetscCount         k;
1346:   const PetscScalar *v;
1347:   PetscScalar       *vwork;

1349:   PetscFunctionBegin;
1350:   PetscCall(PetscViewerSetUp(viewer));
1351:   PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));
1352:   PetscCall(PetscViewerGetFormat(viewer, &format));
1353:   if (skipHeader) format = PETSC_VIEWER_NATIVE;

1355:   PetscCall(MatGetSize(mat, &M, &N));

1357:   /* write matrix header */
1358:   header[0] = MAT_FILE_CLASSID;
1359:   header[1] = M;
1360:   header[2] = N;
1361:   header[3] = (format == PETSC_VIEWER_NATIVE) ? MATRIX_BINARY_FORMAT_DENSE : M * N;
1362:   if (!skipHeader) PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1364:   PetscCall(MatGetLocalSize(mat, &m, NULL));
1365:   if (format != PETSC_VIEWER_NATIVE) {
1366:     PetscInt nnz = m * N, *iwork;
1367:     /* store row lengths for each row */
1368:     PetscCall(PetscMalloc1(nnz, &iwork));
1369:     for (i = 0; i < m; i++) iwork[i] = N;
1370:     PetscCall(PetscViewerBinaryWriteAll(viewer, iwork, m, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1371:     /* store column indices (zero start index) */
1372:     for (k = 0, i = 0; i < m; i++)
1373:       for (j = 0; j < N; j++, k++) iwork[k] = j;
1374:     PetscCall(PetscViewerBinaryWriteAll(viewer, iwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1375:     PetscCall(PetscFree(iwork));
1376:   }
1377:   /* store matrix values as a dense matrix in row major order */
1378:   PetscCall(PetscMalloc1(m * N, &vwork));
1379:   PetscCall(MatDenseGetArrayRead(mat, &v));
1380:   PetscCall(MatDenseGetLDA(mat, &lda));
1381:   for (k = 0, i = 0; i < m; i++)
1382:     for (j = 0; j < N; j++, k++) vwork[k] = v[i + (size_t)lda * j];
1383:   PetscCall(MatDenseRestoreArrayRead(mat, &v));
1384:   PetscCall(PetscViewerBinaryWriteAll(viewer, vwork, m * N, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1385:   PetscCall(PetscFree(vwork));
1386:   PetscFunctionReturn(PETSC_SUCCESS);
1387: }

1389: PetscErrorCode MatLoad_Dense_Binary(Mat mat, PetscViewer viewer)
1390: {
1391:   PetscBool    skipHeader;
1392:   PetscInt     header[4], M, N, m, nz, lda, i, j, k;
1393:   PetscInt     rows, cols;
1394:   PetscScalar *v, *vwork;

1396:   PetscFunctionBegin;
1397:   PetscCall(PetscViewerSetUp(viewer));
1398:   PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));

1400:   if (!skipHeader) {
1401:     PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
1402:     PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
1403:     M = header[1];
1404:     N = header[2];
1405:     PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
1406:     PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
1407:     nz = header[3];
1408:     PetscCheck(nz == MATRIX_BINARY_FORMAT_DENSE || nz >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Unknown matrix format %" PetscInt_FMT " in file", nz);
1409:   } else {
1410:     PetscCall(MatGetSize(mat, &M, &N));
1411:     PetscCheck(M >= 0 && N >= 0, PETSC_COMM_SELF, PETSC_ERR_USER, "Matrix binary file header was skipped, thus the user must specify the global sizes of input matrix");
1412:     nz = MATRIX_BINARY_FORMAT_DENSE;
1413:   }

1415:   /* setup global sizes if not set */
1416:   if (mat->rmap->N < 0) mat->rmap->N = M;
1417:   if (mat->cmap->N < 0) mat->cmap->N = N;
1418:   PetscCall(MatSetUp(mat));
1419:   /* check if global sizes are correct */
1420:   PetscCall(MatGetSize(mat, &rows, &cols));
1421:   PetscCheck(M == rows && N == cols, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

1423:   PetscCall(MatGetSize(mat, NULL, &N));
1424:   PetscCall(MatGetLocalSize(mat, &m, NULL));
1425:   PetscCall(MatDenseGetArray(mat, &v));
1426:   PetscCall(MatDenseGetLDA(mat, &lda));
1427:   if (nz == MATRIX_BINARY_FORMAT_DENSE) { /* matrix in file is dense format */
1428:     PetscCount nnz = (size_t)m * N;
1429:     /* read in matrix values */
1430:     PetscCall(PetscMalloc1(nnz, &vwork));
1431:     PetscCall(PetscViewerBinaryReadAll(viewer, vwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1432:     /* store values in column major order */
1433:     for (j = 0; j < N; j++)
1434:       for (i = 0; i < m; i++) v[i + (size_t)lda * j] = vwork[(size_t)i * N + j];
1435:     PetscCall(PetscFree(vwork));
1436:   } else { /* matrix in file is sparse format */
1437:     PetscInt nnz = 0, *rlens, *icols;
1438:     /* read in row lengths */
1439:     PetscCall(PetscMalloc1(m, &rlens));
1440:     PetscCall(PetscViewerBinaryReadAll(viewer, rlens, m, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1441:     for (i = 0; i < m; i++) nnz += rlens[i];
1442:     /* read in column indices and values */
1443:     PetscCall(PetscMalloc2(nnz, &icols, nnz, &vwork));
1444:     PetscCall(PetscViewerBinaryReadAll(viewer, icols, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1445:     PetscCall(PetscViewerBinaryReadAll(viewer, vwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1446:     /* store values in column major order */
1447:     for (k = 0, i = 0; i < m; i++)
1448:       for (j = 0; j < rlens[i]; j++, k++) v[i + lda * icols[k]] = vwork[k];
1449:     PetscCall(PetscFree(rlens));
1450:     PetscCall(PetscFree2(icols, vwork));
1451:   }
1452:   PetscCall(MatDenseRestoreArray(mat, &v));
1453:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
1454:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
1455:   PetscFunctionReturn(PETSC_SUCCESS);
1456: }

1458: static PetscErrorCode MatLoad_SeqDense(Mat newMat, PetscViewer viewer)
1459: {
1460:   PetscBool isbinary, ishdf5;

1462:   PetscFunctionBegin;
1465:   /* force binary viewer to load .info file if it has not yet done so */
1466:   PetscCall(PetscViewerSetUp(viewer));
1467:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1468:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
1469:   if (isbinary) {
1470:     PetscCall(MatLoad_Dense_Binary(newMat, viewer));
1471:   } else if (ishdf5) {
1472: #if defined(PETSC_HAVE_HDF5)
1473:     PetscCall(MatLoad_Dense_HDF5(newMat, viewer));
1474: #else
1475:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
1476: #endif
1477:   } else {
1478:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
1479:   }
1480:   PetscFunctionReturn(PETSC_SUCCESS);
1481: }

1483: static PetscErrorCode MatView_SeqDense_ASCII(Mat A, PetscViewer viewer)
1484: {
1485:   Mat_SeqDense     *a = (Mat_SeqDense *)A->data;
1486:   PetscInt          i, j;
1487:   const char       *name;
1488:   PetscScalar      *v, *av;
1489:   PetscViewerFormat format;
1490: #if defined(PETSC_USE_COMPLEX)
1491:   PetscBool allreal = PETSC_TRUE;
1492: #endif

1494:   PetscFunctionBegin;
1495:   PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&av));
1496:   PetscCall(PetscViewerGetFormat(viewer, &format));
1497:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1498:     PetscFunctionReturn(PETSC_SUCCESS); /* do nothing for now */
1499:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
1500:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1501:     for (i = 0; i < A->rmap->n; i++) {
1502:       v = av + i;
1503:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1504:       for (j = 0; j < A->cmap->n; j++) {
1505: #if defined(PETSC_USE_COMPLEX)
1506:         if (PetscRealPart(*v) != 0.0 && PetscImaginaryPart(*v) != 0.0) {
1507:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", j, (double)PetscRealPart(*v), (double)PetscImaginaryPart(*v)));
1508:         } else if (PetscRealPart(*v)) {
1509:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", j, (double)PetscRealPart(*v)));
1510:         }
1511: #else
1512:         if (*v) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", j, (double)*v));
1513: #endif
1514:         v += a->lda;
1515:       }
1516:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1517:     }
1518:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1519:   } else {
1520:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1521: #if defined(PETSC_USE_COMPLEX)
1522:     /* determine if matrix has all real values */
1523:     for (j = 0; j < A->cmap->n; j++) {
1524:       v = av + j * a->lda;
1525:       for (i = 0; i < A->rmap->n; i++) {
1526:         if (PetscImaginaryPart(v[i])) {
1527:           allreal = PETSC_FALSE;
1528:           break;
1529:         }
1530:       }
1531:     }
1532: #endif
1533:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
1534:       PetscCall(PetscObjectGetName((PetscObject)A, &name));
1535:       PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", A->rmap->n, A->cmap->n));
1536:       PetscCall(PetscViewerASCIIPrintf(viewer, "%s = zeros(%" PetscInt_FMT ",%" PetscInt_FMT ");\n", name, A->rmap->n, A->cmap->n));
1537:       PetscCall(PetscViewerASCIIPrintf(viewer, "%s = [\n", name));
1538:     }

1540:     for (i = 0; i < A->rmap->n; i++) {
1541:       v = av + i;
1542:       for (j = 0; j < A->cmap->n; j++) {
1543: #if defined(PETSC_USE_COMPLEX)
1544:         if (allreal) {
1545:           PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e ", (double)PetscRealPart(*v)));
1546:         } else {
1547:           PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e + %18.16ei ", (double)PetscRealPart(*v), (double)PetscImaginaryPart(*v)));
1548:         }
1549: #else
1550:         PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e ", (double)*v));
1551: #endif
1552:         v += a->lda;
1553:       }
1554:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1555:     }
1556:     if (format == PETSC_VIEWER_ASCII_MATLAB) PetscCall(PetscViewerASCIIPrintf(viewer, "];\n"));
1557:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1558:   }
1559:   PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&av));
1560:   PetscCall(PetscViewerFlush(viewer));
1561:   PetscFunctionReturn(PETSC_SUCCESS);
1562: }

1564: #include <petscdraw.h>
1565: static PetscErrorCode MatView_SeqDense_Draw_Zoom(PetscDraw draw, void *Aa)
1566: {
1567:   Mat                A = (Mat)Aa;
1568:   PetscInt           m = A->rmap->n, n = A->cmap->n, i, j;
1569:   int                color = PETSC_DRAW_WHITE;
1570:   const PetscScalar *v;
1571:   PetscViewer        viewer;
1572:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
1573:   PetscViewerFormat  format;

1575:   PetscFunctionBegin;
1576:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
1577:   PetscCall(PetscViewerGetFormat(viewer, &format));
1578:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

1580:   /* Loop over matrix elements drawing boxes */
1581:   PetscCall(MatDenseGetArrayRead(A, &v));
1582:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
1583:     PetscDrawCollectiveBegin(draw);
1584:     /* Blue for negative and Red for positive */
1585:     for (j = 0; j < n; j++) {
1586:       x_l = j;
1587:       x_r = x_l + 1.0;
1588:       for (i = 0; i < m; i++) {
1589:         y_l = m - i - 1.0;
1590:         y_r = y_l + 1.0;
1591:         if (PetscRealPart(v[j * m + i]) > 0.) color = PETSC_DRAW_RED;
1592:         else if (PetscRealPart(v[j * m + i]) < 0.) color = PETSC_DRAW_BLUE;
1593:         else continue;
1594:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1595:       }
1596:     }
1597:     PetscDrawCollectiveEnd(draw);
1598:   } else {
1599:     /* use contour shading to indicate magnitude of values */
1600:     /* first determine max of all nonzero values */
1601:     PetscReal minv = 0.0, maxv = 0.0;
1602:     PetscDraw popup;

1604:     for (i = 0; i < m * n; i++) {
1605:       if (PetscAbsScalar(v[i]) > maxv) maxv = PetscAbsScalar(v[i]);
1606:     }
1607:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1608:     PetscCall(PetscDrawGetPopup(draw, &popup));
1609:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1611:     PetscDrawCollectiveBegin(draw);
1612:     for (j = 0; j < n; j++) {
1613:       x_l = j;
1614:       x_r = x_l + 1.0;
1615:       for (i = 0; i < m; i++) {
1616:         y_l   = m - i - 1.0;
1617:         y_r   = y_l + 1.0;
1618:         color = PetscDrawRealToColor(PetscAbsScalar(v[j * m + i]), minv, maxv);
1619:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1620:       }
1621:     }
1622:     PetscDrawCollectiveEnd(draw);
1623:   }
1624:   PetscCall(MatDenseRestoreArrayRead(A, &v));
1625:   PetscFunctionReturn(PETSC_SUCCESS);
1626: }

1628: static PetscErrorCode MatView_SeqDense_Draw(Mat A, PetscViewer viewer)
1629: {
1630:   PetscDraw draw;
1631:   PetscBool isnull;
1632:   PetscReal xr, yr, xl, yl, h, w;

1634:   PetscFunctionBegin;
1635:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1636:   PetscCall(PetscDrawIsNull(draw, &isnull));
1637:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1639:   xr = A->cmap->n;
1640:   yr = A->rmap->n;
1641:   h  = yr / 10.0;
1642:   w  = xr / 10.0;
1643:   xr += w;
1644:   yr += h;
1645:   xl = -w;
1646:   yl = -h;
1647:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1648:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1649:   PetscCall(PetscDrawZoom(draw, MatView_SeqDense_Draw_Zoom, A));
1650:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1651:   PetscCall(PetscDrawSave(draw));
1652:   PetscFunctionReturn(PETSC_SUCCESS);
1653: }

1655: PetscErrorCode MatView_SeqDense(Mat A, PetscViewer viewer)
1656: {
1657:   PetscBool iascii, isbinary, isdraw;

1659:   PetscFunctionBegin;
1660:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1661:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1662:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1663:   if (iascii) PetscCall(MatView_SeqDense_ASCII(A, viewer));
1664:   else if (isbinary) PetscCall(MatView_Dense_Binary(A, viewer));
1665:   else if (isdraw) PetscCall(MatView_SeqDense_Draw(A, viewer));
1666:   PetscFunctionReturn(PETSC_SUCCESS);
1667: }

1669: static PetscErrorCode MatDensePlaceArray_SeqDense(Mat A, const PetscScalar *array)
1670: {
1671:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1673:   PetscFunctionBegin;
1674:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1675:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1676:   PetscCheck(!a->unplacedarray, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseResetArray() first");
1677:   a->unplacedarray       = a->v;
1678:   a->unplaced_user_alloc = a->user_alloc;
1679:   a->v                   = (PetscScalar *)array;
1680:   a->user_alloc          = PETSC_TRUE;
1681: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1682:   A->offloadmask = PETSC_OFFLOAD_CPU;
1683: #endif
1684:   PetscFunctionReturn(PETSC_SUCCESS);
1685: }

1687: static PetscErrorCode MatDenseResetArray_SeqDense(Mat A)
1688: {
1689:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1691:   PetscFunctionBegin;
1692:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1693:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1694:   a->v             = a->unplacedarray;
1695:   a->user_alloc    = a->unplaced_user_alloc;
1696:   a->unplacedarray = NULL;
1697: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1698:   A->offloadmask = PETSC_OFFLOAD_CPU;
1699: #endif
1700:   PetscFunctionReturn(PETSC_SUCCESS);
1701: }

1703: static PetscErrorCode MatDenseReplaceArray_SeqDense(Mat A, const PetscScalar *array)
1704: {
1705:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1707:   PetscFunctionBegin;
1708:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1709:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1710:   if (!a->user_alloc) PetscCall(PetscFree(a->v));
1711:   a->v          = (PetscScalar *)array;
1712:   a->user_alloc = PETSC_FALSE;
1713: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1714:   A->offloadmask = PETSC_OFFLOAD_CPU;
1715: #endif
1716:   PetscFunctionReturn(PETSC_SUCCESS);
1717: }

1719: PetscErrorCode MatDestroy_SeqDense(Mat mat)
1720: {
1721:   Mat_SeqDense *l = (Mat_SeqDense *)mat->data;

1723:   PetscFunctionBegin;
1724:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows %" PetscInt_FMT " Cols %" PetscInt_FMT, mat->rmap->n, mat->cmap->n));
1725:   PetscCall(VecDestroy(&l->qrrhs));
1726:   PetscCall(PetscFree(l->tau));
1727:   PetscCall(PetscFree(l->pivots));
1728:   PetscCall(PetscFree(l->fwork));
1729:   if (!l->user_alloc) PetscCall(PetscFree(l->v));
1730:   if (!l->unplaced_user_alloc) PetscCall(PetscFree(l->unplacedarray));
1731:   PetscCheck(!l->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1732:   PetscCheck(!l->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1733:   PetscCall(VecDestroy(&l->cvec));
1734:   PetscCall(MatDestroy(&l->cmat));
1735:   PetscCall(PetscFree(mat->data));

1737:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
1738:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactor_C", NULL));
1739:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactorSymbolic_C", NULL));
1740:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactorNumeric_C", NULL));
1741:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetLDA_C", NULL));
1742:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseSetLDA_C", NULL));
1743:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArray_C", NULL));
1744:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArray_C", NULL));
1745:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDensePlaceArray_C", NULL));
1746:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseResetArray_C", NULL));
1747:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseReplaceArray_C", NULL));
1748:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArrayRead_C", NULL));
1749:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArrayRead_C", NULL));
1750:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArrayWrite_C", NULL));
1751:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArrayWrite_C", NULL));
1752:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqaij_C", NULL));
1753: #if defined(PETSC_HAVE_ELEMENTAL)
1754:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_elemental_C", NULL));
1755: #endif
1756: #if defined(PETSC_HAVE_SCALAPACK)
1757:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_scalapack_C", NULL));
1758: #endif
1759: #if defined(PETSC_HAVE_CUDA)
1760:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqdensecuda_C", NULL));
1761:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensecuda_seqdensecuda_C", NULL));
1762:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensecuda_seqdense_C", NULL));
1763:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdensecuda_C", NULL));
1764: #endif
1765: #if defined(PETSC_HAVE_HIP)
1766:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqdensehip_C", NULL));
1767:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensehip_seqdensehip_C", NULL));
1768:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensehip_seqdense_C", NULL));
1769:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdensehip_C", NULL));
1770: #endif
1771:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSeqDenseSetPreallocation_C", NULL));
1772:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqaij_seqdense_C", NULL));
1773:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdense_C", NULL));
1774:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqbaij_seqdense_C", NULL));
1775:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqsbaij_seqdense_C", NULL));

1777:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumn_C", NULL));
1778:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumn_C", NULL));
1779:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVec_C", NULL));
1780:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVec_C", NULL));
1781:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVecRead_C", NULL));
1782:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVecRead_C", NULL));
1783:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVecWrite_C", NULL));
1784:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVecWrite_C", NULL));
1785:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetSubMatrix_C", NULL));
1786:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreSubMatrix_C", NULL));
1787:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultColumnRange_C", NULL));
1788:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultAddColumnRange_C", NULL));
1789:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultHermitianTransposeColumnRange_C", NULL));
1790:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultHermitianTransposeAddColumnRange_C", NULL));
1791:   PetscFunctionReturn(PETSC_SUCCESS);
1792: }

1794: static PetscErrorCode MatTranspose_SeqDense(Mat A, MatReuse reuse, Mat *matout)
1795: {
1796:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1797:   PetscInt      k, j, m = A->rmap->n, M = mat->lda, n = A->cmap->n;
1798:   PetscScalar  *v, tmp;

1800:   PetscFunctionBegin;
1801:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1802:   if (reuse == MAT_INPLACE_MATRIX) {
1803:     if (m == n) { /* in place transpose */
1804:       PetscCall(MatDenseGetArray(A, &v));
1805:       for (j = 0; j < m; j++) {
1806:         for (k = 0; k < j; k++) {
1807:           tmp          = v[j + k * M];
1808:           v[j + k * M] = v[k + j * M];
1809:           v[k + j * M] = tmp;
1810:         }
1811:       }
1812:       PetscCall(MatDenseRestoreArray(A, &v));
1813:     } else { /* reuse memory, temporary allocates new memory */
1814:       PetscScalar *v2;
1815:       PetscLayout  tmplayout;

1817:       PetscCall(PetscMalloc1((size_t)m * n, &v2));
1818:       PetscCall(MatDenseGetArray(A, &v));
1819:       for (j = 0; j < n; j++) {
1820:         for (k = 0; k < m; k++) v2[j + (size_t)k * n] = v[k + (size_t)j * M];
1821:       }
1822:       PetscCall(PetscArraycpy(v, v2, (size_t)m * n));
1823:       PetscCall(PetscFree(v2));
1824:       PetscCall(MatDenseRestoreArray(A, &v));
1825:       /* cleanup size dependent quantities */
1826:       PetscCall(VecDestroy(&mat->cvec));
1827:       PetscCall(MatDestroy(&mat->cmat));
1828:       PetscCall(PetscFree(mat->pivots));
1829:       PetscCall(PetscFree(mat->fwork));
1830:       /* swap row/col layouts */
1831:       PetscCall(PetscBLASIntCast(n, &mat->lda));
1832:       tmplayout = A->rmap;
1833:       A->rmap   = A->cmap;
1834:       A->cmap   = tmplayout;
1835:     }
1836:   } else { /* out-of-place transpose */
1837:     Mat           tmat;
1838:     Mat_SeqDense *tmatd;
1839:     PetscScalar  *v2;
1840:     PetscInt      M2;

1842:     if (reuse == MAT_INITIAL_MATRIX) {
1843:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &tmat));
1844:       PetscCall(MatSetSizes(tmat, A->cmap->n, A->rmap->n, A->cmap->n, A->rmap->n));
1845:       PetscCall(MatSetType(tmat, ((PetscObject)A)->type_name));
1846:       PetscCall(MatSeqDenseSetPreallocation(tmat, NULL));
1847:     } else tmat = *matout;

1849:     PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&v));
1850:     PetscCall(MatDenseGetArray(tmat, &v2));
1851:     tmatd = (Mat_SeqDense *)tmat->data;
1852:     M2    = tmatd->lda;
1853:     for (j = 0; j < n; j++) {
1854:       for (k = 0; k < m; k++) v2[j + k * M2] = v[k + j * M];
1855:     }
1856:     PetscCall(MatDenseRestoreArray(tmat, &v2));
1857:     PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&v));
1858:     PetscCall(MatAssemblyBegin(tmat, MAT_FINAL_ASSEMBLY));
1859:     PetscCall(MatAssemblyEnd(tmat, MAT_FINAL_ASSEMBLY));
1860:     *matout = tmat;
1861:   }
1862:   PetscFunctionReturn(PETSC_SUCCESS);
1863: }

1865: static PetscErrorCode MatEqual_SeqDense(Mat A1, Mat A2, PetscBool *flg)
1866: {
1867:   Mat_SeqDense      *mat1 = (Mat_SeqDense *)A1->data;
1868:   Mat_SeqDense      *mat2 = (Mat_SeqDense *)A2->data;
1869:   PetscInt           i;
1870:   const PetscScalar *v1, *v2;

1872:   PetscFunctionBegin;
1873:   if (A1->rmap->n != A2->rmap->n) {
1874:     *flg = PETSC_FALSE;
1875:     PetscFunctionReturn(PETSC_SUCCESS);
1876:   }
1877:   if (A1->cmap->n != A2->cmap->n) {
1878:     *flg = PETSC_FALSE;
1879:     PetscFunctionReturn(PETSC_SUCCESS);
1880:   }
1881:   PetscCall(MatDenseGetArrayRead(A1, &v1));
1882:   PetscCall(MatDenseGetArrayRead(A2, &v2));
1883:   for (i = 0; i < A1->cmap->n; i++) {
1884:     PetscCall(PetscArraycmp(v1, v2, A1->rmap->n, flg));
1885:     if (*flg == PETSC_FALSE) PetscFunctionReturn(PETSC_SUCCESS);
1886:     v1 += mat1->lda;
1887:     v2 += mat2->lda;
1888:   }
1889:   PetscCall(MatDenseRestoreArrayRead(A1, &v1));
1890:   PetscCall(MatDenseRestoreArrayRead(A2, &v2));
1891:   *flg = PETSC_TRUE;
1892:   PetscFunctionReturn(PETSC_SUCCESS);
1893: }

1895: PetscErrorCode MatGetDiagonal_SeqDense(Mat A, Vec v)
1896: {
1897:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1898:   PetscInt           i, n, len;
1899:   PetscScalar       *x;
1900:   const PetscScalar *vv;

1902:   PetscFunctionBegin;
1903:   PetscCall(VecGetSize(v, &n));
1904:   PetscCall(VecGetArray(v, &x));
1905:   len = PetscMin(A->rmap->n, A->cmap->n);
1906:   PetscCall(MatDenseGetArrayRead(A, &vv));
1907:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming mat and vec");
1908:   for (i = 0; i < len; i++) x[i] = vv[i * mat->lda + i];
1909:   PetscCall(MatDenseRestoreArrayRead(A, &vv));
1910:   PetscCall(VecRestoreArray(v, &x));
1911:   PetscFunctionReturn(PETSC_SUCCESS);
1912: }

1914: static PetscErrorCode MatDiagonalScale_SeqDense(Mat A, Vec ll, Vec rr)
1915: {
1916:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1917:   const PetscScalar *l, *r;
1918:   PetscScalar        x, *v, *vv;
1919:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n;

1921:   PetscFunctionBegin;
1922:   PetscCall(MatDenseGetArray(A, &vv));
1923:   if (ll) {
1924:     PetscCall(VecGetSize(ll, &m));
1925:     PetscCall(VecGetArrayRead(ll, &l));
1926:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vec wrong size");
1927:     for (i = 0; i < m; i++) {
1928:       x = l[i];
1929:       v = vv + i;
1930:       for (j = 0; j < n; j++) {
1931:         (*v) *= x;
1932:         v += mat->lda;
1933:       }
1934:     }
1935:     PetscCall(VecRestoreArrayRead(ll, &l));
1936:     PetscCall(PetscLogFlops(1.0 * n * m));
1937:   }
1938:   if (rr) {
1939:     PetscCall(VecGetSize(rr, &n));
1940:     PetscCall(VecGetArrayRead(rr, &r));
1941:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vec wrong size");
1942:     for (i = 0; i < n; i++) {
1943:       x = r[i];
1944:       v = vv + i * mat->lda;
1945:       for (j = 0; j < m; j++) (*v++) *= x;
1946:     }
1947:     PetscCall(VecRestoreArrayRead(rr, &r));
1948:     PetscCall(PetscLogFlops(1.0 * n * m));
1949:   }
1950:   PetscCall(MatDenseRestoreArray(A, &vv));
1951:   PetscFunctionReturn(PETSC_SUCCESS);
1952: }

1954: PetscErrorCode MatNorm_SeqDense(Mat A, NormType type, PetscReal *nrm)
1955: {
1956:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1957:   PetscScalar  *v, *vv;
1958:   PetscReal     sum = 0.0;
1959:   PetscInt      lda, m = A->rmap->n, i, j;

1961:   PetscFunctionBegin;
1962:   PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&vv));
1963:   PetscCall(MatDenseGetLDA(A, &lda));
1964:   v = vv;
1965:   if (type == NORM_FROBENIUS) {
1966:     if (lda > m) {
1967:       for (j = 0; j < A->cmap->n; j++) {
1968:         v = vv + j * lda;
1969:         for (i = 0; i < m; i++) {
1970:           sum += PetscRealPart(PetscConj(*v) * (*v));
1971:           v++;
1972:         }
1973:       }
1974:     } else {
1975: #if defined(PETSC_USE_REAL___FP16)
1976:       PetscBLASInt one = 1, cnt = A->cmap->n * A->rmap->n;
1977:       PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&cnt, v, &one));
1978:     }
1979: #else
1980:       for (i = 0; i < A->cmap->n * A->rmap->n; i++) {
1981:         sum += PetscRealPart(PetscConj(*v) * (*v));
1982:         v++;
1983:       }
1984:     }
1985:     *nrm = PetscSqrtReal(sum);
1986: #endif
1987:     PetscCall(PetscLogFlops(2.0 * A->cmap->n * A->rmap->n));
1988:   } else if (type == NORM_1) {
1989:     *nrm = 0.0;
1990:     for (j = 0; j < A->cmap->n; j++) {
1991:       v   = vv + j * mat->lda;
1992:       sum = 0.0;
1993:       for (i = 0; i < A->rmap->n; i++) {
1994:         sum += PetscAbsScalar(*v);
1995:         v++;
1996:       }
1997:       if (sum > *nrm) *nrm = sum;
1998:     }
1999:     PetscCall(PetscLogFlops(1.0 * A->cmap->n * A->rmap->n));
2000:   } else if (type == NORM_INFINITY) {
2001:     *nrm = 0.0;
2002:     for (j = 0; j < A->rmap->n; j++) {
2003:       v   = vv + j;
2004:       sum = 0.0;
2005:       for (i = 0; i < A->cmap->n; i++) {
2006:         sum += PetscAbsScalar(*v);
2007:         v += mat->lda;
2008:       }
2009:       if (sum > *nrm) *nrm = sum;
2010:     }
2011:     PetscCall(PetscLogFlops(1.0 * A->cmap->n * A->rmap->n));
2012:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No two norm");
2013:   PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&vv));
2014:   PetscFunctionReturn(PETSC_SUCCESS);
2015: }

2017: static PetscErrorCode MatSetOption_SeqDense(Mat A, MatOption op, PetscBool flg)
2018: {
2019:   Mat_SeqDense *aij = (Mat_SeqDense *)A->data;

2021:   PetscFunctionBegin;
2022:   switch (op) {
2023:   case MAT_ROW_ORIENTED:
2024:     aij->roworiented = flg;
2025:     break;
2026:   default:
2027:     break;
2028:   }
2029:   PetscFunctionReturn(PETSC_SUCCESS);
2030: }

2032: PetscErrorCode MatZeroEntries_SeqDense(Mat A)
2033: {
2034:   Mat_SeqDense *l   = (Mat_SeqDense *)A->data;
2035:   PetscInt      lda = l->lda, m = A->rmap->n, n = A->cmap->n, j;
2036:   PetscScalar  *v;

2038:   PetscFunctionBegin;
2039:   PetscCall(MatDenseGetArrayWrite(A, &v));
2040:   if (lda > m) {
2041:     for (j = 0; j < n; j++) PetscCall(PetscArrayzero(v + j * lda, m));
2042:   } else {
2043:     PetscCall(PetscArrayzero(v, PetscInt64Mult(m, n)));
2044:   }
2045:   PetscCall(MatDenseRestoreArrayWrite(A, &v));
2046:   PetscFunctionReturn(PETSC_SUCCESS);
2047: }

2049: static PetscErrorCode MatZeroRows_SeqDense(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2050: {
2051:   Mat_SeqDense      *l = (Mat_SeqDense *)A->data;
2052:   PetscInt           m = l->lda, n = A->cmap->n, i, j;
2053:   PetscScalar       *slot, *bb, *v;
2054:   const PetscScalar *xx;

2056:   PetscFunctionBegin;
2057:   if (PetscDefined(USE_DEBUG)) {
2058:     for (i = 0; i < N; i++) {
2059:       PetscCheck(rows[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row requested to be zeroed");
2060:       PetscCheck(rows[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested to be zeroed greater than or equal number of rows %" PetscInt_FMT, rows[i], A->rmap->n);
2061:     }
2062:   }
2063:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);

2065:   /* fix right-hand side if needed */
2066:   if (x && b) {
2067:     PetscCall(VecGetArrayRead(x, &xx));
2068:     PetscCall(VecGetArray(b, &bb));
2069:     for (i = 0; i < N; i++) bb[rows[i]] = diag * xx[rows[i]];
2070:     PetscCall(VecRestoreArrayRead(x, &xx));
2071:     PetscCall(VecRestoreArray(b, &bb));
2072:   }

2074:   PetscCall(MatDenseGetArray(A, &v));
2075:   for (i = 0; i < N; i++) {
2076:     slot = v + rows[i];
2077:     for (j = 0; j < n; j++) {
2078:       *slot = 0.0;
2079:       slot += m;
2080:     }
2081:   }
2082:   if (diag != 0.0) {
2083:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
2084:     for (i = 0; i < N; i++) {
2085:       slot  = v + (m + 1) * rows[i];
2086:       *slot = diag;
2087:     }
2088:   }
2089:   PetscCall(MatDenseRestoreArray(A, &v));
2090:   PetscFunctionReturn(PETSC_SUCCESS);
2091: }

2093: static PetscErrorCode MatDenseGetLDA_SeqDense(Mat A, PetscInt *lda)
2094: {
2095:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;

2097:   PetscFunctionBegin;
2098:   *lda = mat->lda;
2099:   PetscFunctionReturn(PETSC_SUCCESS);
2100: }

2102: PetscErrorCode MatDenseGetArray_SeqDense(Mat A, PetscScalar **array)
2103: {
2104:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;

2106:   PetscFunctionBegin;
2107:   PetscCheck(!mat->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
2108:   *array = mat->v;
2109:   PetscFunctionReturn(PETSC_SUCCESS);
2110: }

2112: PetscErrorCode MatDenseRestoreArray_SeqDense(Mat A, PetscScalar **array)
2113: {
2114:   PetscFunctionBegin;
2115:   if (array) *array = NULL;
2116:   PetscFunctionReturn(PETSC_SUCCESS);
2117: }

2119: /*@
2120:   MatDenseGetLDA - gets the leading dimension of the array returned from `MatDenseGetArray()`

2122:   Not Collective

2124:   Input Parameter:
2125: . A - a `MATDENSE` or `MATDENSECUDA` matrix

2127:   Output Parameter:
2128: . lda - the leading dimension

2130:   Level: intermediate

2132: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseSetLDA()`
2133: @*/
2134: PetscErrorCode MatDenseGetLDA(Mat A, PetscInt *lda)
2135: {
2136:   PetscFunctionBegin;
2138:   PetscAssertPointer(lda, 2);
2139:   MatCheckPreallocated(A, 1);
2140:   PetscUseMethod(A, "MatDenseGetLDA_C", (Mat, PetscInt *), (A, lda));
2141:   PetscFunctionReturn(PETSC_SUCCESS);
2142: }

2144: /*@
2145:   MatDenseSetLDA - Sets the leading dimension of the array used by the `MATDENSE` matrix

2147:   Collective if the matrix layouts have not yet been setup

2149:   Input Parameters:
2150: + A   - a `MATDENSE` or `MATDENSECUDA` matrix
2151: - lda - the leading dimension

2153:   Level: intermediate

2155: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetLDA()`
2156: @*/
2157: PetscErrorCode MatDenseSetLDA(Mat A, PetscInt lda)
2158: {
2159:   PetscFunctionBegin;
2161:   PetscTryMethod(A, "MatDenseSetLDA_C", (Mat, PetscInt), (A, lda));
2162:   PetscFunctionReturn(PETSC_SUCCESS);
2163: }

2165: /*@C
2166:   MatDenseGetArray - gives read-write access to the array where the data for a `MATDENSE` matrix is stored

2168:   Logically Collective

2170:   Input Parameter:
2171: . A - a dense matrix

2173:   Output Parameter:
2174: . array - pointer to the data

2176:   Level: intermediate

2178: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2179: @*/
2180: PetscErrorCode MatDenseGetArray(Mat A, PetscScalar *array[]) PeNS
2181: {
2182:   PetscFunctionBegin;
2184:   PetscAssertPointer(array, 2);
2185:   PetscUseMethod(A, "MatDenseGetArray_C", (Mat, PetscScalar **), (A, array));
2186:   PetscFunctionReturn(PETSC_SUCCESS);
2187: }

2189: /*@C
2190:   MatDenseRestoreArray - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArray()`

2192:   Logically Collective

2194:   Input Parameters:
2195: + A     - a dense matrix
2196: - array - pointer to the data (may be `NULL`)

2198:   Level: intermediate

2200: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2201: @*/
2202: PetscErrorCode MatDenseRestoreArray(Mat A, PetscScalar *array[]) PeNS
2203: {
2204:   PetscFunctionBegin;
2206:   if (array) PetscAssertPointer(array, 2);
2207:   PetscUseMethod(A, "MatDenseRestoreArray_C", (Mat, PetscScalar **), (A, array));
2208:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2209: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2210:   A->offloadmask = PETSC_OFFLOAD_CPU;
2211: #endif
2212:   PetscFunctionReturn(PETSC_SUCCESS);
2213: }

2215: /*@C
2216:   MatDenseGetArrayRead - gives read-only access to the array where the data for a `MATDENSE` matrix is stored

2218:   Not Collective

2220:   Input Parameter:
2221: . A - a dense matrix

2223:   Output Parameter:
2224: . array - pointer to the data

2226:   Level: intermediate

2228: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayRead()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2229: @*/
2230: PetscErrorCode MatDenseGetArrayRead(Mat A, const PetscScalar *array[]) PeNS
2231: {
2232:   PetscFunctionBegin;
2234:   PetscAssertPointer(array, 2);
2235:   PetscUseMethod(A, "MatDenseGetArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2236:   PetscFunctionReturn(PETSC_SUCCESS);
2237: }

2239: /*@C
2240:   MatDenseRestoreArrayRead - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArrayRead()`

2242:   Not Collective

2244:   Input Parameters:
2245: + A     - a dense matrix
2246: - array - pointer to the data (may be `NULL`)

2248:   Level: intermediate

2250: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayRead()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2251: @*/
2252: PetscErrorCode MatDenseRestoreArrayRead(Mat A, const PetscScalar *array[]) PeNS
2253: {
2254:   PetscFunctionBegin;
2256:   if (array) PetscAssertPointer(array, 2);
2257:   PetscUseMethod(A, "MatDenseRestoreArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2258:   PetscFunctionReturn(PETSC_SUCCESS);
2259: }

2261: /*@C
2262:   MatDenseGetArrayWrite - gives write-only access to the array where the data for a `MATDENSE` matrix is stored

2264:   Not Collective

2266:   Input Parameter:
2267: . A - a dense matrix

2269:   Output Parameter:
2270: . array - pointer to the data

2272:   Level: intermediate

2274: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayWrite()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`
2275: @*/
2276: PetscErrorCode MatDenseGetArrayWrite(Mat A, PetscScalar *array[]) PeNS
2277: {
2278:   PetscFunctionBegin;
2280:   PetscAssertPointer(array, 2);
2281:   PetscUseMethod(A, "MatDenseGetArrayWrite_C", (Mat, PetscScalar **), (A, array));
2282:   PetscFunctionReturn(PETSC_SUCCESS);
2283: }

2285: /*@C
2286:   MatDenseRestoreArrayWrite - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArrayWrite()`

2288:   Not Collective

2290:   Input Parameters:
2291: + A     - a dense matrix
2292: - array - pointer to the data (may be `NULL`)

2294:   Level: intermediate

2296: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayWrite()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`
2297: @*/
2298: PetscErrorCode MatDenseRestoreArrayWrite(Mat A, PetscScalar *array[]) PeNS
2299: {
2300:   PetscFunctionBegin;
2302:   if (array) PetscAssertPointer(array, 2);
2303:   PetscUseMethod(A, "MatDenseRestoreArrayWrite_C", (Mat, PetscScalar **), (A, array));
2304:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2305: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2306:   A->offloadmask = PETSC_OFFLOAD_CPU;
2307: #endif
2308:   PetscFunctionReturn(PETSC_SUCCESS);
2309: }

2311: /*@C
2312:   MatDenseGetArrayAndMemType - gives read-write access to the array where the data for a `MATDENSE` matrix is stored

2314:   Logically Collective

2316:   Input Parameter:
2317: . A - a dense matrix

2319:   Output Parameters:
2320: + array - pointer to the data
2321: - mtype - memory type of the returned pointer

2323:   Level: intermediate

2325:   Note:
2326:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2327:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2329: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayAndMemType()`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArrayWriteAndMemType()`, `MatDenseGetArrayRead()`,
2330:    `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2331: @*/
2332: PetscErrorCode MatDenseGetArrayAndMemType(Mat A, PetscScalar *array[], PetscMemType *mtype)
2333: {
2334:   PetscBool isMPI;

2336:   PetscFunctionBegin;
2338:   PetscAssertPointer(array, 2);
2339:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2340:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2341:   if (isMPI) {
2342:     /* Dispatch here so that the code can be reused for all subclasses of MATDENSE */
2343:     PetscCall(MatDenseGetArrayAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2344:   } else {
2345:     PetscErrorCode (*fptr)(Mat, PetscScalar **, PetscMemType *);

2347:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayAndMemType_C", &fptr));
2348:     if (fptr) {
2349:       PetscCall((*fptr)(A, array, mtype));
2350:     } else {
2351:       PetscUseMethod(A, "MatDenseGetArray_C", (Mat, PetscScalar **), (A, array));
2352:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2353:     }
2354:   }
2355:   PetscFunctionReturn(PETSC_SUCCESS);
2356: }

2358: /*@C
2359:   MatDenseRestoreArrayAndMemType - returns access to the array that is obtained by `MatDenseGetArrayAndMemType()`

2361:   Logically Collective

2363:   Input Parameters:
2364: + A     - a dense matrix
2365: - array - pointer to the data

2367:   Level: intermediate

2369: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2370: @*/
2371: PetscErrorCode MatDenseRestoreArrayAndMemType(Mat A, PetscScalar *array[])
2372: {
2373:   PetscBool isMPI;

2375:   PetscFunctionBegin;
2377:   if (array) PetscAssertPointer(array, 2);
2378:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2379:   if (isMPI) {
2380:     PetscCall(MatDenseRestoreArrayAndMemType(((Mat_MPIDense *)A->data)->A, array));
2381:   } else {
2382:     PetscErrorCode (*fptr)(Mat, PetscScalar **);

2384:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayAndMemType_C", &fptr));
2385:     if (fptr) {
2386:       PetscCall((*fptr)(A, array));
2387:     } else {
2388:       PetscUseMethod(A, "MatDenseRestoreArray_C", (Mat, PetscScalar **), (A, array));
2389:     }
2390:     if (array) *array = NULL;
2391:   }
2392:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2393:   PetscFunctionReturn(PETSC_SUCCESS);
2394: }

2396: /*@C
2397:   MatDenseGetArrayReadAndMemType - gives read-only access to the array where the data for a `MATDENSE` matrix is stored

2399:   Logically Collective

2401:   Input Parameter:
2402: . A - a dense matrix

2404:   Output Parameters:
2405: + array - pointer to the data
2406: - mtype - memory type of the returned pointer

2408:   Level: intermediate

2410:   Note:
2411:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2412:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2414: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayReadAndMemType()`, `MatDenseGetArrayWriteAndMemType()`,
2415:    `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2416: @*/
2417: PetscErrorCode MatDenseGetArrayReadAndMemType(Mat A, const PetscScalar *array[], PetscMemType *mtype)
2418: {
2419:   PetscBool isMPI;

2421:   PetscFunctionBegin;
2423:   PetscAssertPointer(array, 2);
2424:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2425:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2426:   if (isMPI) { /* Dispatch here so that the code can be reused for all subclasses of MATDENSE */
2427:     PetscCall(MatDenseGetArrayReadAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2428:   } else {
2429:     PetscErrorCode (*fptr)(Mat, const PetscScalar **, PetscMemType *);

2431:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayReadAndMemType_C", &fptr));
2432:     if (fptr) {
2433:       PetscCall((*fptr)(A, array, mtype));
2434:     } else {
2435:       PetscUseMethod(A, "MatDenseGetArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2436:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2437:     }
2438:   }
2439:   PetscFunctionReturn(PETSC_SUCCESS);
2440: }

2442: /*@C
2443:   MatDenseRestoreArrayReadAndMemType - returns access to the array that is obtained by `MatDenseGetArrayReadAndMemType()`

2445:   Logically Collective

2447:   Input Parameters:
2448: + A     - a dense matrix
2449: - array - pointer to the data

2451:   Level: intermediate

2453: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2454: @*/
2455: PetscErrorCode MatDenseRestoreArrayReadAndMemType(Mat A, const PetscScalar *array[])
2456: {
2457:   PetscBool isMPI;

2459:   PetscFunctionBegin;
2461:   if (array) PetscAssertPointer(array, 2);
2462:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2463:   if (isMPI) {
2464:     PetscCall(MatDenseRestoreArrayReadAndMemType(((Mat_MPIDense *)A->data)->A, array));
2465:   } else {
2466:     PetscErrorCode (*fptr)(Mat, const PetscScalar **);

2468:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayReadAndMemType_C", &fptr));
2469:     if (fptr) {
2470:       PetscCall((*fptr)(A, array));
2471:     } else {
2472:       PetscUseMethod(A, "MatDenseRestoreArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2473:     }
2474:     if (array) *array = NULL;
2475:   }
2476:   PetscFunctionReturn(PETSC_SUCCESS);
2477: }

2479: /*@C
2480:   MatDenseGetArrayWriteAndMemType - gives write-only access to the array where the data for a `MATDENSE` matrix is stored

2482:   Logically Collective

2484:   Input Parameter:
2485: . A - a dense matrix

2487:   Output Parameters:
2488: + array - pointer to the data
2489: - mtype - memory type of the returned pointer

2491:   Level: intermediate

2493:   Note:
2494:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2495:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2497: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayWriteAndMemType()`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArrayRead()`,
2498:   `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2499: @*/
2500: PetscErrorCode MatDenseGetArrayWriteAndMemType(Mat A, PetscScalar *array[], PetscMemType *mtype)
2501: {
2502:   PetscBool isMPI;

2504:   PetscFunctionBegin;
2506:   PetscAssertPointer(array, 2);
2507:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2508:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2509:   if (isMPI) {
2510:     PetscCall(MatDenseGetArrayWriteAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2511:   } else {
2512:     PetscErrorCode (*fptr)(Mat, PetscScalar **, PetscMemType *);

2514:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayWriteAndMemType_C", &fptr));
2515:     if (fptr) {
2516:       PetscCall((*fptr)(A, array, mtype));
2517:     } else {
2518:       PetscUseMethod(A, "MatDenseGetArrayWrite_C", (Mat, PetscScalar **), (A, array));
2519:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2520:     }
2521:   }
2522:   PetscFunctionReturn(PETSC_SUCCESS);
2523: }

2525: /*@C
2526:   MatDenseRestoreArrayWriteAndMemType - returns access to the array that is obtained by `MatDenseGetArrayReadAndMemType()`

2528:   Logically Collective

2530:   Input Parameters:
2531: + A     - a dense matrix
2532: - array - pointer to the data

2534:   Level: intermediate

2536: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayWriteAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2537: @*/
2538: PetscErrorCode MatDenseRestoreArrayWriteAndMemType(Mat A, PetscScalar *array[])
2539: {
2540:   PetscBool isMPI;

2542:   PetscFunctionBegin;
2544:   if (array) PetscAssertPointer(array, 2);
2545:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2546:   if (isMPI) {
2547:     PetscCall(MatDenseRestoreArrayWriteAndMemType(((Mat_MPIDense *)A->data)->A, array));
2548:   } else {
2549:     PetscErrorCode (*fptr)(Mat, PetscScalar **);

2551:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayWriteAndMemType_C", &fptr));
2552:     if (fptr) {
2553:       PetscCall((*fptr)(A, array));
2554:     } else {
2555:       PetscUseMethod(A, "MatDenseRestoreArrayWrite_C", (Mat, PetscScalar **), (A, array));
2556:     }
2557:     if (array) *array = NULL;
2558:   }
2559:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2560:   PetscFunctionReturn(PETSC_SUCCESS);
2561: }

2563: static PetscErrorCode MatCreateSubMatrix_SeqDense(Mat A, IS isrow, IS iscol, MatReuse scall, Mat *B)
2564: {
2565:   Mat_SeqDense   *mat = (Mat_SeqDense *)A->data;
2566:   PetscInt        i, j, nrows, ncols, ldb;
2567:   const PetscInt *irow, *icol;
2568:   PetscScalar    *av, *bv, *v = mat->v;
2569:   Mat             newmat;

2571:   PetscFunctionBegin;
2572:   PetscCall(ISGetIndices(isrow, &irow));
2573:   PetscCall(ISGetIndices(iscol, &icol));
2574:   PetscCall(ISGetLocalSize(isrow, &nrows));
2575:   PetscCall(ISGetLocalSize(iscol, &ncols));

2577:   /* Check submatrixcall */
2578:   if (scall == MAT_REUSE_MATRIX) {
2579:     PetscInt n_cols, n_rows;
2580:     PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2581:     if (n_rows != nrows || n_cols != ncols) {
2582:       /* resize the result matrix to match number of requested rows/columns */
2583:       PetscCall(MatSetSizes(*B, nrows, ncols, nrows, ncols));
2584:     }
2585:     newmat = *B;
2586:   } else {
2587:     /* Create and fill new matrix */
2588:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &newmat));
2589:     PetscCall(MatSetSizes(newmat, nrows, ncols, nrows, ncols));
2590:     PetscCall(MatSetType(newmat, ((PetscObject)A)->type_name));
2591:     PetscCall(MatSeqDenseSetPreallocation(newmat, NULL));
2592:   }

2594:   /* Now extract the data pointers and do the copy,column at a time */
2595:   PetscCall(MatDenseGetArray(newmat, &bv));
2596:   PetscCall(MatDenseGetLDA(newmat, &ldb));
2597:   for (i = 0; i < ncols; i++) {
2598:     av = v + mat->lda * icol[i];
2599:     for (j = 0; j < nrows; j++) bv[j] = av[irow[j]];
2600:     bv += ldb;
2601:   }
2602:   PetscCall(MatDenseRestoreArray(newmat, &bv));

2604:   /* Assemble the matrices so that the correct flags are set */
2605:   PetscCall(MatAssemblyBegin(newmat, MAT_FINAL_ASSEMBLY));
2606:   PetscCall(MatAssemblyEnd(newmat, MAT_FINAL_ASSEMBLY));

2608:   /* Free work space */
2609:   PetscCall(ISRestoreIndices(isrow, &irow));
2610:   PetscCall(ISRestoreIndices(iscol, &icol));
2611:   *B = newmat;
2612:   PetscFunctionReturn(PETSC_SUCCESS);
2613: }

2615: static PetscErrorCode MatCreateSubMatrices_SeqDense(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2616: {
2617:   PetscInt i;

2619:   PetscFunctionBegin;
2620:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n, B));

2622:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqDense(A, irow[i], icol[i], scall, &(*B)[i]));
2623:   PetscFunctionReturn(PETSC_SUCCESS);
2624: }

2626: PetscErrorCode MatCopy_SeqDense(Mat A, Mat B, MatStructure str)
2627: {
2628:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data, *b = (Mat_SeqDense *)B->data;
2629:   const PetscScalar *va;
2630:   PetscScalar       *vb;
2631:   PetscInt           lda1 = a->lda, lda2 = b->lda, m = A->rmap->n, n = A->cmap->n, j;

2633:   PetscFunctionBegin;
2634:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
2635:   if (A->ops->copy != B->ops->copy) {
2636:     PetscCall(MatCopy_Basic(A, B, str));
2637:     PetscFunctionReturn(PETSC_SUCCESS);
2638:   }
2639:   PetscCheck(m == B->rmap->n && n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "size(B) != size(A)");
2640:   PetscCall(MatDenseGetArrayRead(A, &va));
2641:   PetscCall(MatDenseGetArray(B, &vb));
2642:   if (lda1 > m || lda2 > m) {
2643:     for (j = 0; j < n; j++) PetscCall(PetscArraycpy(vb + j * lda2, va + j * lda1, m));
2644:   } else {
2645:     PetscCall(PetscArraycpy(vb, va, A->rmap->n * A->cmap->n));
2646:   }
2647:   PetscCall(MatDenseRestoreArray(B, &vb));
2648:   PetscCall(MatDenseRestoreArrayRead(A, &va));
2649:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2650:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2651:   PetscFunctionReturn(PETSC_SUCCESS);
2652: }

2654: PetscErrorCode MatSetUp_SeqDense(Mat A)
2655: {
2656:   PetscFunctionBegin;
2657:   PetscCall(PetscLayoutSetUp(A->rmap));
2658:   PetscCall(PetscLayoutSetUp(A->cmap));
2659:   if (!A->preallocated) PetscCall(MatSeqDenseSetPreallocation(A, NULL));
2660:   PetscFunctionReturn(PETSC_SUCCESS);
2661: }

2663: PetscErrorCode MatConjugate_SeqDense(Mat A)
2664: {
2665:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2666:   PetscInt      i, j;
2667:   PetscInt      min = PetscMin(A->rmap->n, A->cmap->n);
2668:   PetscScalar  *aa;

2670:   PetscFunctionBegin;
2671:   PetscCall(MatDenseGetArray(A, &aa));
2672:   for (j = 0; j < A->cmap->n; j++) {
2673:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscConj(aa[i + j * mat->lda]);
2674:   }
2675:   PetscCall(MatDenseRestoreArray(A, &aa));
2676:   if (mat->tau)
2677:     for (i = 0; i < min; i++) mat->tau[i] = PetscConj(mat->tau[i]);
2678:   PetscFunctionReturn(PETSC_SUCCESS);
2679: }

2681: static PetscErrorCode MatRealPart_SeqDense(Mat A)
2682: {
2683:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2684:   PetscInt      i, j;
2685:   PetscScalar  *aa;

2687:   PetscFunctionBegin;
2688:   PetscCall(MatDenseGetArray(A, &aa));
2689:   for (j = 0; j < A->cmap->n; j++) {
2690:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscRealPart(aa[i + j * mat->lda]);
2691:   }
2692:   PetscCall(MatDenseRestoreArray(A, &aa));
2693:   PetscFunctionReturn(PETSC_SUCCESS);
2694: }

2696: static PetscErrorCode MatImaginaryPart_SeqDense(Mat A)
2697: {
2698:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2699:   PetscInt      i, j;
2700:   PetscScalar  *aa;

2702:   PetscFunctionBegin;
2703:   PetscCall(MatDenseGetArray(A, &aa));
2704:   for (j = 0; j < A->cmap->n; j++) {
2705:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscImaginaryPart(aa[i + j * mat->lda]);
2706:   }
2707:   PetscCall(MatDenseRestoreArray(A, &aa));
2708:   PetscFunctionReturn(PETSC_SUCCESS);
2709: }

2711: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2712: {
2713:   PetscInt  m = A->rmap->n, n = B->cmap->n;
2714:   PetscBool cisdense = PETSC_FALSE;

2716:   PetscFunctionBegin;
2717:   PetscCall(MatSetSizes(C, m, n, m, n));
2718: #if defined(PETSC_HAVE_CUDA)
2719:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2720: #endif
2721: #if defined(PETSC_HAVE_HIP)
2722:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2723: #endif
2724:   if (!cisdense) {
2725:     PetscBool flg;

2727:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2728:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2729:   }
2730:   PetscCall(MatSetUp(C));
2731:   PetscFunctionReturn(PETSC_SUCCESS);
2732: }

2734: PetscErrorCode MatMatMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2735: {
2736:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data, *b = (Mat_SeqDense *)B->data, *c = (Mat_SeqDense *)C->data;
2737:   PetscBLASInt       m, n, k;
2738:   const PetscScalar *av, *bv;
2739:   PetscScalar       *cv;
2740:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2742:   PetscFunctionBegin;
2743:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2744:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2745:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
2746:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2747:   PetscCall(MatDenseGetArrayRead(A, &av));
2748:   PetscCall(MatDenseGetArrayRead(B, &bv));
2749:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2750:   PetscCallBLAS("BLASgemm", BLASgemm_("N", "N", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2751:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2752:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2753:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2754:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2755:   PetscFunctionReturn(PETSC_SUCCESS);
2756: }

2758: PetscErrorCode MatMatTransposeMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2759: {
2760:   PetscInt  m = A->rmap->n, n = B->rmap->n;
2761:   PetscBool cisdense = PETSC_FALSE;

2763:   PetscFunctionBegin;
2764:   PetscCall(MatSetSizes(C, m, n, m, n));
2765: #if defined(PETSC_HAVE_CUDA)
2766:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2767: #endif
2768: #if defined(PETSC_HAVE_HIP)
2769:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2770: #endif
2771:   if (!cisdense) {
2772:     PetscBool flg;

2774:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2775:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2776:   }
2777:   PetscCall(MatSetUp(C));
2778:   PetscFunctionReturn(PETSC_SUCCESS);
2779: }

2781: PetscErrorCode MatMatTransposeMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2782: {
2783:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2784:   Mat_SeqDense      *b = (Mat_SeqDense *)B->data;
2785:   Mat_SeqDense      *c = (Mat_SeqDense *)C->data;
2786:   const PetscScalar *av, *bv;
2787:   PetscScalar       *cv;
2788:   PetscBLASInt       m, n, k;
2789:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2791:   PetscFunctionBegin;
2792:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2793:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2794:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
2795:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2796:   PetscCall(MatDenseGetArrayRead(A, &av));
2797:   PetscCall(MatDenseGetArrayRead(B, &bv));
2798:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2799:   PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2800:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2801:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2802:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2803:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2804:   PetscFunctionReturn(PETSC_SUCCESS);
2805: }

2807: PetscErrorCode MatTransposeMatMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2808: {
2809:   PetscInt  m = A->cmap->n, n = B->cmap->n;
2810:   PetscBool cisdense = PETSC_FALSE;

2812:   PetscFunctionBegin;
2813:   PetscCall(MatSetSizes(C, m, n, m, n));
2814: #if defined(PETSC_HAVE_CUDA)
2815:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2816: #endif
2817: #if defined(PETSC_HAVE_HIP)
2818:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2819: #endif
2820:   if (!cisdense) {
2821:     PetscBool flg;

2823:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2824:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2825:   }
2826:   PetscCall(MatSetUp(C));
2827:   PetscFunctionReturn(PETSC_SUCCESS);
2828: }

2830: PetscErrorCode MatTransposeMatMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2831: {
2832:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2833:   Mat_SeqDense      *b = (Mat_SeqDense *)B->data;
2834:   Mat_SeqDense      *c = (Mat_SeqDense *)C->data;
2835:   const PetscScalar *av, *bv;
2836:   PetscScalar       *cv;
2837:   PetscBLASInt       m, n, k;
2838:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2840:   PetscFunctionBegin;
2841:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2842:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2843:   PetscCall(PetscBLASIntCast(A->rmap->n, &k));
2844:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2845:   PetscCall(MatDenseGetArrayRead(A, &av));
2846:   PetscCall(MatDenseGetArrayRead(B, &bv));
2847:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2848:   PetscCallBLAS("BLASgemm", BLASgemm_("T", "N", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2849:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2850:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2851:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2852:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2853:   PetscFunctionReturn(PETSC_SUCCESS);
2854: }

2856: static PetscErrorCode MatProductSetFromOptions_SeqDense_AB(Mat C)
2857: {
2858:   PetscFunctionBegin;
2859:   C->ops->matmultsymbolic = MatMatMultSymbolic_SeqDense_SeqDense;
2860:   C->ops->productsymbolic = MatProductSymbolic_AB;
2861:   PetscFunctionReturn(PETSC_SUCCESS);
2862: }

2864: static PetscErrorCode MatProductSetFromOptions_SeqDense_AtB(Mat C)
2865: {
2866:   PetscFunctionBegin;
2867:   C->ops->transposematmultsymbolic = MatTransposeMatMultSymbolic_SeqDense_SeqDense;
2868:   C->ops->productsymbolic          = MatProductSymbolic_AtB;
2869:   PetscFunctionReturn(PETSC_SUCCESS);
2870: }

2872: static PetscErrorCode MatProductSetFromOptions_SeqDense_ABt(Mat C)
2873: {
2874:   PetscFunctionBegin;
2875:   C->ops->mattransposemultsymbolic = MatMatTransposeMultSymbolic_SeqDense_SeqDense;
2876:   C->ops->productsymbolic          = MatProductSymbolic_ABt;
2877:   PetscFunctionReturn(PETSC_SUCCESS);
2878: }

2880: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_SeqDense(Mat C)
2881: {
2882:   Mat_Product *product = C->product;

2884:   PetscFunctionBegin;
2885:   switch (product->type) {
2886:   case MATPRODUCT_AB:
2887:     PetscCall(MatProductSetFromOptions_SeqDense_AB(C));
2888:     break;
2889:   case MATPRODUCT_AtB:
2890:     PetscCall(MatProductSetFromOptions_SeqDense_AtB(C));
2891:     break;
2892:   case MATPRODUCT_ABt:
2893:     PetscCall(MatProductSetFromOptions_SeqDense_ABt(C));
2894:     break;
2895:   default:
2896:     break;
2897:   }
2898:   PetscFunctionReturn(PETSC_SUCCESS);
2899: }

2901: static PetscErrorCode MatGetRowMax_SeqDense(Mat A, Vec v, PetscInt idx[])
2902: {
2903:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2904:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2905:   PetscScalar       *x;
2906:   const PetscScalar *aa;

2908:   PetscFunctionBegin;
2909:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2910:   PetscCall(VecGetArray(v, &x));
2911:   PetscCall(VecGetLocalSize(v, &p));
2912:   PetscCall(MatDenseGetArrayRead(A, &aa));
2913:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2914:   for (i = 0; i < m; i++) {
2915:     x[i] = aa[i];
2916:     if (idx) idx[i] = 0;
2917:     for (j = 1; j < n; j++) {
2918:       if (PetscRealPart(x[i]) < PetscRealPart(aa[i + a->lda * j])) {
2919:         x[i] = aa[i + a->lda * j];
2920:         if (idx) idx[i] = j;
2921:       }
2922:     }
2923:   }
2924:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2925:   PetscCall(VecRestoreArray(v, &x));
2926:   PetscFunctionReturn(PETSC_SUCCESS);
2927: }

2929: static PetscErrorCode MatGetRowMaxAbs_SeqDense(Mat A, Vec v, PetscInt idx[])
2930: {
2931:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2932:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2933:   PetscScalar       *x;
2934:   PetscReal          atmp;
2935:   const PetscScalar *aa;

2937:   PetscFunctionBegin;
2938:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2939:   PetscCall(VecGetArray(v, &x));
2940:   PetscCall(VecGetLocalSize(v, &p));
2941:   PetscCall(MatDenseGetArrayRead(A, &aa));
2942:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2943:   for (i = 0; i < m; i++) {
2944:     x[i] = PetscAbsScalar(aa[i]);
2945:     for (j = 1; j < n; j++) {
2946:       atmp = PetscAbsScalar(aa[i + a->lda * j]);
2947:       if (PetscAbsScalar(x[i]) < atmp) {
2948:         x[i] = atmp;
2949:         if (idx) idx[i] = j;
2950:       }
2951:     }
2952:   }
2953:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2954:   PetscCall(VecRestoreArray(v, &x));
2955:   PetscFunctionReturn(PETSC_SUCCESS);
2956: }

2958: static PetscErrorCode MatGetRowMin_SeqDense(Mat A, Vec v, PetscInt idx[])
2959: {
2960:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2961:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2962:   PetscScalar       *x;
2963:   const PetscScalar *aa;

2965:   PetscFunctionBegin;
2966:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2967:   PetscCall(MatDenseGetArrayRead(A, &aa));
2968:   PetscCall(VecGetArray(v, &x));
2969:   PetscCall(VecGetLocalSize(v, &p));
2970:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2971:   for (i = 0; i < m; i++) {
2972:     x[i] = aa[i];
2973:     if (idx) idx[i] = 0;
2974:     for (j = 1; j < n; j++) {
2975:       if (PetscRealPart(x[i]) > PetscRealPart(aa[i + a->lda * j])) {
2976:         x[i] = aa[i + a->lda * j];
2977:         if (idx) idx[i] = j;
2978:       }
2979:     }
2980:   }
2981:   PetscCall(VecRestoreArray(v, &x));
2982:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2983:   PetscFunctionReturn(PETSC_SUCCESS);
2984: }

2986: PetscErrorCode MatGetColumnVector_SeqDense(Mat A, Vec v, PetscInt col)
2987: {
2988:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2989:   PetscScalar       *x;
2990:   const PetscScalar *aa;

2992:   PetscFunctionBegin;
2993:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2994:   PetscCall(MatDenseGetArrayRead(A, &aa));
2995:   PetscCall(VecGetArray(v, &x));
2996:   PetscCall(PetscArraycpy(x, aa + col * a->lda, A->rmap->n));
2997:   PetscCall(VecRestoreArray(v, &x));
2998:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2999:   PetscFunctionReturn(PETSC_SUCCESS);
3000: }

3002: PETSC_INTERN PetscErrorCode MatGetColumnReductions_SeqDense(Mat A, PetscInt type, PetscReal *reductions)
3003: {
3004:   PetscInt           i, j, m, n;
3005:   const PetscScalar *a;

3007:   PetscFunctionBegin;
3008:   PetscCall(MatGetSize(A, &m, &n));
3009:   PetscCall(PetscArrayzero(reductions, n));
3010:   PetscCall(MatDenseGetArrayRead(A, &a));
3011:   if (type == NORM_2) {
3012:     for (i = 0; i < n; i++) {
3013:       for (j = 0; j < m; j++) reductions[i] += PetscAbsScalar(a[j] * a[j]);
3014:       a = PetscSafePointerPlusOffset(a, m);
3015:     }
3016:   } else if (type == NORM_1) {
3017:     for (i = 0; i < n; i++) {
3018:       for (j = 0; j < m; j++) reductions[i] += PetscAbsScalar(a[j]);
3019:       a = PetscSafePointerPlusOffset(a, m);
3020:     }
3021:   } else if (type == NORM_INFINITY) {
3022:     for (i = 0; i < n; i++) {
3023:       for (j = 0; j < m; j++) reductions[i] = PetscMax(PetscAbsScalar(a[j]), reductions[i]);
3024:       a = PetscSafePointerPlusOffset(a, m);
3025:     }
3026:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
3027:     for (i = 0; i < n; i++) {
3028:       for (j = 0; j < m; j++) reductions[i] += PetscRealPart(a[j]);
3029:       a = PetscSafePointerPlusOffset(a, m);
3030:     }
3031:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
3032:     for (i = 0; i < n; i++) {
3033:       for (j = 0; j < m; j++) reductions[i] += PetscImaginaryPart(a[j]);
3034:       a = PetscSafePointerPlusOffset(a, m);
3035:     }
3036:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
3037:   PetscCall(MatDenseRestoreArrayRead(A, &a));
3038:   if (type == NORM_2) {
3039:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
3040:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
3041:     for (i = 0; i < n; i++) reductions[i] /= m;
3042:   }
3043:   PetscFunctionReturn(PETSC_SUCCESS);
3044: }

3046: PetscErrorCode MatSetRandom_SeqDense(Mat x, PetscRandom rctx)
3047: {
3048:   PetscScalar *a;
3049:   PetscInt     lda, m, n, i, j;

3051:   PetscFunctionBegin;
3052:   PetscCall(MatGetSize(x, &m, &n));
3053:   PetscCall(MatDenseGetLDA(x, &lda));
3054:   PetscCall(MatDenseGetArrayWrite(x, &a));
3055:   for (j = 0; j < n; j++) {
3056:     for (i = 0; i < m; i++) PetscCall(PetscRandomGetValue(rctx, a + j * lda + i));
3057:   }
3058:   PetscCall(MatDenseRestoreArrayWrite(x, &a));
3059:   PetscFunctionReturn(PETSC_SUCCESS);
3060: }

3062: static PetscErrorCode MatMissingDiagonal_SeqDense(Mat A, PetscBool *missing, PetscInt *d)
3063: {
3064:   PetscFunctionBegin;
3065:   *missing = PETSC_FALSE;
3066:   PetscFunctionReturn(PETSC_SUCCESS);
3067: }

3069: /* vals is not const */
3070: static PetscErrorCode MatDenseGetColumn_SeqDense(Mat A, PetscInt col, PetscScalar **vals)
3071: {
3072:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
3073:   PetscScalar  *v;

3075:   PetscFunctionBegin;
3076:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3077:   PetscCall(MatDenseGetArray(A, &v));
3078:   *vals = v + col * a->lda;
3079:   PetscCall(MatDenseRestoreArray(A, &v));
3080:   PetscFunctionReturn(PETSC_SUCCESS);
3081: }

3083: static PetscErrorCode MatDenseRestoreColumn_SeqDense(Mat A, PetscScalar **vals)
3084: {
3085:   PetscFunctionBegin;
3086:   if (vals) *vals = NULL; /* user cannot accidentally use the array later */
3087:   PetscFunctionReturn(PETSC_SUCCESS);
3088: }

3090: static struct _MatOps MatOps_Values = {MatSetValues_SeqDense,
3091:                                        MatGetRow_SeqDense,
3092:                                        MatRestoreRow_SeqDense,
3093:                                        MatMult_SeqDense,
3094:                                        /*  4*/ MatMultAdd_SeqDense,
3095:                                        MatMultTranspose_SeqDense,
3096:                                        MatMultTransposeAdd_SeqDense,
3097:                                        NULL,
3098:                                        NULL,
3099:                                        NULL,
3100:                                        /* 10*/ NULL,
3101:                                        MatLUFactor_SeqDense,
3102:                                        MatCholeskyFactor_SeqDense,
3103:                                        MatSOR_SeqDense,
3104:                                        MatTranspose_SeqDense,
3105:                                        /* 15*/ MatGetInfo_SeqDense,
3106:                                        MatEqual_SeqDense,
3107:                                        MatGetDiagonal_SeqDense,
3108:                                        MatDiagonalScale_SeqDense,
3109:                                        MatNorm_SeqDense,
3110:                                        /* 20*/ NULL,
3111:                                        NULL,
3112:                                        MatSetOption_SeqDense,
3113:                                        MatZeroEntries_SeqDense,
3114:                                        /* 24*/ MatZeroRows_SeqDense,
3115:                                        NULL,
3116:                                        NULL,
3117:                                        NULL,
3118:                                        NULL,
3119:                                        /* 29*/ MatSetUp_SeqDense,
3120:                                        NULL,
3121:                                        NULL,
3122:                                        NULL,
3123:                                        NULL,
3124:                                        /* 34*/ MatDuplicate_SeqDense,
3125:                                        NULL,
3126:                                        NULL,
3127:                                        NULL,
3128:                                        NULL,
3129:                                        /* 39*/ MatAXPY_SeqDense,
3130:                                        MatCreateSubMatrices_SeqDense,
3131:                                        NULL,
3132:                                        MatGetValues_SeqDense,
3133:                                        MatCopy_SeqDense,
3134:                                        /* 44*/ MatGetRowMax_SeqDense,
3135:                                        MatScale_SeqDense,
3136:                                        MatShift_SeqDense,
3137:                                        NULL,
3138:                                        MatZeroRowsColumns_SeqDense,
3139:                                        /* 49*/ MatSetRandom_SeqDense,
3140:                                        NULL,
3141:                                        NULL,
3142:                                        NULL,
3143:                                        NULL,
3144:                                        /* 54*/ NULL,
3145:                                        NULL,
3146:                                        NULL,
3147:                                        NULL,
3148:                                        NULL,
3149:                                        /* 59*/ MatCreateSubMatrix_SeqDense,
3150:                                        MatDestroy_SeqDense,
3151:                                        MatView_SeqDense,
3152:                                        NULL,
3153:                                        NULL,
3154:                                        /* 64*/ NULL,
3155:                                        NULL,
3156:                                        NULL,
3157:                                        NULL,
3158:                                        MatGetRowMaxAbs_SeqDense,
3159:                                        /* 69*/ NULL,
3160:                                        NULL,
3161:                                        NULL,
3162:                                        NULL,
3163:                                        NULL,
3164:                                        /* 74*/ NULL,
3165:                                        NULL,
3166:                                        NULL,
3167:                                        NULL,
3168:                                        MatLoad_SeqDense,
3169:                                        /* 79*/ MatIsSymmetric_SeqDense,
3170:                                        MatIsHermitian_SeqDense,
3171:                                        NULL,
3172:                                        NULL,
3173:                                        NULL,
3174:                                        /* 84*/ NULL,
3175:                                        MatMatMultNumeric_SeqDense_SeqDense,
3176:                                        NULL,
3177:                                        NULL,
3178:                                        MatMatTransposeMultNumeric_SeqDense_SeqDense,
3179:                                        /* 89*/ NULL,
3180:                                        MatProductSetFromOptions_SeqDense,
3181:                                        NULL,
3182:                                        NULL,
3183:                                        MatConjugate_SeqDense,
3184:                                        /* 94*/ NULL,
3185:                                        NULL,
3186:                                        MatRealPart_SeqDense,
3187:                                        MatImaginaryPart_SeqDense,
3188:                                        NULL,
3189:                                        /* 99*/ NULL,
3190:                                        NULL,
3191:                                        NULL,
3192:                                        MatGetRowMin_SeqDense,
3193:                                        MatGetColumnVector_SeqDense,
3194:                                        /*104*/ MatMissingDiagonal_SeqDense,
3195:                                        NULL,
3196:                                        NULL,
3197:                                        NULL,
3198:                                        NULL,
3199:                                        /*109*/ NULL,
3200:                                        NULL,
3201:                                        NULL,
3202:                                        MatMultHermitianTranspose_SeqDense,
3203:                                        MatMultHermitianTransposeAdd_SeqDense,
3204:                                        /*114*/ NULL,
3205:                                        NULL,
3206:                                        MatGetColumnReductions_SeqDense,
3207:                                        NULL,
3208:                                        NULL,
3209:                                        /*119*/ NULL,
3210:                                        NULL,
3211:                                        NULL,
3212:                                        MatTransposeMatMultNumeric_SeqDense_SeqDense,
3213:                                        NULL,
3214:                                        /*124*/ NULL,
3215:                                        NULL,
3216:                                        NULL,
3217:                                        NULL,
3218:                                        NULL,
3219:                                        /*129*/ NULL,
3220:                                        NULL,
3221:                                        MatCreateMPIMatConcatenateSeqMat_SeqDense,
3222:                                        NULL,
3223:                                        NULL,
3224:                                        /*134*/ NULL,
3225:                                        NULL,
3226:                                        NULL,
3227:                                        NULL,
3228:                                        NULL,
3229:                                        /*139*/ NULL,
3230:                                        NULL,
3231:                                        NULL,
3232:                                        NULL};

3234: /*@
3235:   MatCreateSeqDense - Creates a `MATSEQDENSE` that
3236:   is stored in column major order (the usual Fortran format).

3238:   Collective

3240:   Input Parameters:
3241: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3242: . m    - number of rows
3243: . n    - number of columns
3244: - data - optional location of matrix data in column major order.  Use `NULL` for PETSc
3245:          to control all matrix memory allocation.

3247:   Output Parameter:
3248: . A - the matrix

3250:   Level: intermediate

3252:   Note:
3253:   The data input variable is intended primarily for Fortran programmers
3254:   who wish to allocate their own matrix memory space.  Most users should
3255:   set `data` = `NULL`.

3257:   Developer Note:
3258:   Many of the matrix operations for this variant use the BLAS and LAPACK routines.

3260: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`
3261: @*/
3262: PetscErrorCode MatCreateSeqDense(MPI_Comm comm, PetscInt m, PetscInt n, PetscScalar data[], Mat *A)
3263: {
3264:   PetscFunctionBegin;
3265:   PetscCall(MatCreate(comm, A));
3266:   PetscCall(MatSetSizes(*A, m, n, m, n));
3267:   PetscCall(MatSetType(*A, MATSEQDENSE));
3268:   PetscCall(MatSeqDenseSetPreallocation(*A, data));
3269:   PetscFunctionReturn(PETSC_SUCCESS);
3270: }

3272: /*@
3273:   MatSeqDenseSetPreallocation - Sets the array used for storing the matrix elements of a `MATSEQDENSE` matrix

3275:   Collective

3277:   Input Parameters:
3278: + B    - the matrix
3279: - data - the array (or `NULL`)

3281:   Level: intermediate

3283:   Note:
3284:   The data input variable is intended primarily for Fortran programmers
3285:   who wish to allocate their own matrix memory space.  Most users should
3286:   need not call this routine.

3288: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`, `MatDenseSetLDA()`
3289: @*/
3290: PetscErrorCode MatSeqDenseSetPreallocation(Mat B, PetscScalar data[])
3291: {
3292:   PetscFunctionBegin;
3294:   PetscTryMethod(B, "MatSeqDenseSetPreallocation_C", (Mat, PetscScalar[]), (B, data));
3295:   PetscFunctionReturn(PETSC_SUCCESS);
3296: }

3298: PetscErrorCode MatSeqDenseSetPreallocation_SeqDense(Mat B, PetscScalar *data)
3299: {
3300:   Mat_SeqDense *b = (Mat_SeqDense *)B->data;

3302:   PetscFunctionBegin;
3303:   PetscCheck(!b->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3304:   B->preallocated = PETSC_TRUE;

3306:   PetscCall(PetscLayoutSetUp(B->rmap));
3307:   PetscCall(PetscLayoutSetUp(B->cmap));

3309:   if (b->lda <= 0) PetscCall(PetscBLASIntCast(B->rmap->n, &b->lda));

3311:   if (!data) { /* petsc-allocated storage */
3312:     if (!b->user_alloc) PetscCall(PetscFree(b->v));
3313:     PetscCall(PetscCalloc1((size_t)b->lda * B->cmap->n, &b->v));

3315:     b->user_alloc = PETSC_FALSE;
3316:   } else { /* user-allocated storage */
3317:     if (!b->user_alloc) PetscCall(PetscFree(b->v));
3318:     b->v          = data;
3319:     b->user_alloc = PETSC_TRUE;
3320:   }
3321:   B->assembled = PETSC_TRUE;
3322:   PetscFunctionReturn(PETSC_SUCCESS);
3323: }

3325: #if defined(PETSC_HAVE_ELEMENTAL)
3326: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_Elemental(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
3327: {
3328:   Mat                mat_elemental;
3329:   const PetscScalar *array;
3330:   PetscScalar       *v_colwise;
3331:   PetscInt           M = A->rmap->N, N = A->cmap->N, i, j, k, *rows, *cols;

3333:   PetscFunctionBegin;
3334:   PetscCall(PetscMalloc3(M * N, &v_colwise, M, &rows, N, &cols));
3335:   PetscCall(MatDenseGetArrayRead(A, &array));
3336:   /* convert column-wise array into row-wise v_colwise, see MatSetValues_Elemental() */
3337:   k = 0;
3338:   for (j = 0; j < N; j++) {
3339:     cols[j] = j;
3340:     for (i = 0; i < M; i++) v_colwise[j * M + i] = array[k++];
3341:   }
3342:   for (i = 0; i < M; i++) rows[i] = i;
3343:   PetscCall(MatDenseRestoreArrayRead(A, &array));

3345:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &mat_elemental));
3346:   PetscCall(MatSetSizes(mat_elemental, PETSC_DECIDE, PETSC_DECIDE, M, N));
3347:   PetscCall(MatSetType(mat_elemental, MATELEMENTAL));
3348:   PetscCall(MatSetUp(mat_elemental));

3350:   /* PETSc-Elemental interaface uses axpy for setting off-processor entries, only ADD_VALUES is allowed */
3351:   PetscCall(MatSetValues(mat_elemental, M, rows, N, cols, v_colwise, ADD_VALUES));
3352:   PetscCall(MatAssemblyBegin(mat_elemental, MAT_FINAL_ASSEMBLY));
3353:   PetscCall(MatAssemblyEnd(mat_elemental, MAT_FINAL_ASSEMBLY));
3354:   PetscCall(PetscFree3(v_colwise, rows, cols));

3356:   if (reuse == MAT_INPLACE_MATRIX) {
3357:     PetscCall(MatHeaderReplace(A, &mat_elemental));
3358:   } else {
3359:     *newmat = mat_elemental;
3360:   }
3361:   PetscFunctionReturn(PETSC_SUCCESS);
3362: }
3363: #endif

3365: PetscErrorCode MatDenseSetLDA_SeqDense(Mat B, PetscInt lda)
3366: {
3367:   Mat_SeqDense *b = (Mat_SeqDense *)B->data;
3368:   PetscBool     data;

3370:   PetscFunctionBegin;
3371:   data = (B->rmap->n > 0 && B->cmap->n > 0) ? (b->v ? PETSC_TRUE : PETSC_FALSE) : PETSC_FALSE;
3372:   PetscCheck(b->user_alloc || !data || b->lda == lda, PETSC_COMM_SELF, PETSC_ERR_ORDER, "LDA cannot be changed after allocation of internal storage");
3373:   PetscCheck(lda >= B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "LDA %" PetscInt_FMT " must be at least matrix dimension %" PetscInt_FMT, lda, B->rmap->n);
3374:   PetscCall(PetscBLASIntCast(lda, &b->lda));
3375:   PetscFunctionReturn(PETSC_SUCCESS);
3376: }

3378: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqDense(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
3379: {
3380:   PetscFunctionBegin;
3381:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIDense(comm, inmat, n, scall, outmat));
3382:   PetscFunctionReturn(PETSC_SUCCESS);
3383: }

3385: PetscErrorCode MatDenseCreateColumnVec_Private(Mat A, Vec *v)
3386: {
3387:   PetscBool   isstd, iskok, iscuda, iship;
3388:   PetscMPIInt size;
3389: #if PetscDefined(HAVE_CUDA) || PetscDefined(HAVE_HIP)
3390:   /* we pass the data of A, to prevent allocating needless GPU memory the first time VecCUPMPlaceArray is called. */
3391:   const PetscScalar *a;
3392: #endif

3394:   PetscFunctionBegin;
3395:   *v = NULL;
3396:   PetscCall(PetscStrcmpAny(A->defaultvectype, &isstd, VECSTANDARD, VECSEQ, VECMPI, ""));
3397:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iskok, VECKOKKOS, VECSEQKOKKOS, VECMPIKOKKOS, ""));
3398:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iscuda, VECCUDA, VECSEQCUDA, VECMPICUDA, ""));
3399:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iship, VECHIP, VECSEQHIP, VECMPIHIP, ""));
3400:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
3401:   if (isstd) {
3402:     if (size > 1) PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, v));
3403:     else PetscCall(VecCreateSeqWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, v));
3404:   } else if (iskok) {
3405:     PetscCheck(PetscDefined(HAVE_KOKKOS_KERNELS), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using KOKKOS kernels support");
3406: #if PetscDefined(HAVE_KOKKOS_KERNELS)
3407:     if (size > 1) PetscCall(VecCreateMPIKokkosWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, v));
3408:     else PetscCall(VecCreateSeqKokkosWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, v));
3409: #endif
3410:   } else if (iscuda) {
3411:     PetscCheck(PetscDefined(HAVE_CUDA), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using CUDA support");
3412: #if PetscDefined(HAVE_CUDA)
3413:     PetscCall(MatDenseCUDAGetArrayRead(A, &a));
3414:     if (size > 1) PetscCall(VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, a, v));
3415:     else PetscCall(VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, a, v));
3416: #endif
3417:   } else if (iship) {
3418:     PetscCheck(PetscDefined(HAVE_HIP), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using HIP support");
3419: #if PetscDefined(HAVE_HIP)
3420:     PetscCall(MatDenseHIPGetArrayRead(A, &a));
3421:     if (size > 1) PetscCall(VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, a, v));
3422:     else PetscCall(VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, a, v));
3423: #endif
3424:   }
3425:   PetscCheck(*v, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Not coded for type %s", A->defaultvectype);
3426:   PetscFunctionReturn(PETSC_SUCCESS);
3427: }

3429: PetscErrorCode MatDenseGetColumnVec_SeqDense(Mat A, PetscInt col, Vec *v)
3430: {
3431:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3433:   PetscFunctionBegin;
3434:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3435:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3436:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3437:   a->vecinuse = col + 1;
3438:   PetscCall(MatDenseGetArray(A, (PetscScalar **)&a->ptrinuse));
3439:   PetscCall(VecPlaceArray(a->cvec, a->ptrinuse + (size_t)col * (size_t)a->lda));
3440:   *v = a->cvec;
3441:   PetscFunctionReturn(PETSC_SUCCESS);
3442: }

3444: PetscErrorCode MatDenseRestoreColumnVec_SeqDense(Mat A, PetscInt col, Vec *v)
3445: {
3446:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3448:   PetscFunctionBegin;
3449:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3450:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3451:   VecCheckAssembled(a->cvec);
3452:   a->vecinuse = 0;
3453:   PetscCall(MatDenseRestoreArray(A, (PetscScalar **)&a->ptrinuse));
3454:   PetscCall(VecResetArray(a->cvec));
3455:   if (v) *v = NULL;
3456:   PetscFunctionReturn(PETSC_SUCCESS);
3457: }

3459: PetscErrorCode MatDenseGetColumnVecRead_SeqDense(Mat A, PetscInt col, Vec *v)
3460: {
3461:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3463:   PetscFunctionBegin;
3464:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3465:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3466:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3467:   a->vecinuse = col + 1;
3468:   PetscCall(MatDenseGetArrayRead(A, &a->ptrinuse));
3469:   PetscCall(VecPlaceArray(a->cvec, PetscSafePointerPlusOffset(a->ptrinuse, (size_t)col * (size_t)a->lda)));
3470:   PetscCall(VecLockReadPush(a->cvec));
3471:   *v = a->cvec;
3472:   PetscFunctionReturn(PETSC_SUCCESS);
3473: }

3475: PetscErrorCode MatDenseRestoreColumnVecRead_SeqDense(Mat A, PetscInt col, Vec *v)
3476: {
3477:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3479:   PetscFunctionBegin;
3480:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3481:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3482:   VecCheckAssembled(a->cvec);
3483:   a->vecinuse = 0;
3484:   PetscCall(MatDenseRestoreArrayRead(A, &a->ptrinuse));
3485:   PetscCall(VecLockReadPop(a->cvec));
3486:   PetscCall(VecResetArray(a->cvec));
3487:   if (v) *v = NULL;
3488:   PetscFunctionReturn(PETSC_SUCCESS);
3489: }

3491: PetscErrorCode MatDenseGetColumnVecWrite_SeqDense(Mat A, PetscInt col, Vec *v)
3492: {
3493:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3495:   PetscFunctionBegin;
3496:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3497:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3498:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3499:   a->vecinuse = col + 1;
3500:   PetscCall(MatDenseGetArrayWrite(A, (PetscScalar **)&a->ptrinuse));
3501:   PetscCall(VecPlaceArray(a->cvec, PetscSafePointerPlusOffset(a->ptrinuse, (size_t)col * (size_t)a->lda)));
3502:   *v = a->cvec;
3503:   PetscFunctionReturn(PETSC_SUCCESS);
3504: }

3506: PetscErrorCode MatDenseRestoreColumnVecWrite_SeqDense(Mat A, PetscInt col, Vec *v)
3507: {
3508:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3510:   PetscFunctionBegin;
3511:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3512:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3513:   VecCheckAssembled(a->cvec);
3514:   a->vecinuse = 0;
3515:   PetscCall(MatDenseRestoreArrayWrite(A, (PetscScalar **)&a->ptrinuse));
3516:   PetscCall(VecResetArray(a->cvec));
3517:   if (v) *v = NULL;
3518:   PetscFunctionReturn(PETSC_SUCCESS);
3519: }

3521: PetscErrorCode MatDenseGetSubMatrix_SeqDense(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *v)
3522: {
3523:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3525:   PetscFunctionBegin;
3526:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3527:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3528:   if (a->cmat && (cend - cbegin != a->cmat->cmap->N || rend - rbegin != a->cmat->rmap->N)) PetscCall(MatDestroy(&a->cmat));
3529:   if (!a->cmat) {
3530:     PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), rend - rbegin, PETSC_DECIDE, rend - rbegin, cend - cbegin, PetscSafePointerPlusOffset(a->v, rbegin + (size_t)cbegin * a->lda), &a->cmat));
3531:   } else {
3532:     PetscCall(MatDensePlaceArray(a->cmat, PetscSafePointerPlusOffset(a->v, rbegin + (size_t)cbegin * a->lda)));
3533:   }
3534:   PetscCall(MatDenseSetLDA(a->cmat, a->lda));
3535:   a->matinuse = cbegin + 1;
3536:   *v          = a->cmat;
3537: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
3538:   A->offloadmask = PETSC_OFFLOAD_CPU;
3539: #endif
3540:   PetscFunctionReturn(PETSC_SUCCESS);
3541: }

3543: PetscErrorCode MatDenseRestoreSubMatrix_SeqDense(Mat A, Mat *v)
3544: {
3545:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3547:   PetscFunctionBegin;
3548:   PetscCheck(a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetSubMatrix() first");
3549:   PetscCheck(a->cmat, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column matrix");
3550:   PetscCheck(*v == a->cmat, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Not the matrix obtained from MatDenseGetSubMatrix()");
3551:   a->matinuse = 0;
3552:   PetscCall(MatDenseResetArray(a->cmat));
3553:   if (v) *v = NULL;
3554: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
3555:   A->offloadmask = PETSC_OFFLOAD_CPU;
3556: #endif
3557:   PetscFunctionReturn(PETSC_SUCCESS);
3558: }

3560: /*MC
3561:    MATSEQDENSE - MATSEQDENSE = "seqdense" - A matrix type to be used for sequential dense matrices.

3563:    Options Database Key:
3564: . -mat_type seqdense - sets the matrix type to `MATSEQDENSE` during a call to `MatSetFromOptions()`

3566:   Level: beginner

3568: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreateSeqDense()`
3569: M*/
3570: PetscErrorCode MatCreate_SeqDense(Mat B)
3571: {
3572:   Mat_SeqDense *b;
3573:   PetscMPIInt   size;

3575:   PetscFunctionBegin;
3576:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
3577:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Comm must be of size 1");

3579:   PetscCall(PetscNew(&b));
3580:   B->data   = (void *)b;
3581:   B->ops[0] = MatOps_Values;

3583:   b->roworiented = PETSC_TRUE;

3585:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatQRFactor_C", MatQRFactor_SeqDense));
3586:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetLDA_C", MatDenseGetLDA_SeqDense));
3587:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseSetLDA_C", MatDenseSetLDA_SeqDense));
3588:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArray_C", MatDenseGetArray_SeqDense));
3589:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArray_C", MatDenseRestoreArray_SeqDense));
3590:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDensePlaceArray_C", MatDensePlaceArray_SeqDense));
3591:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseResetArray_C", MatDenseResetArray_SeqDense));
3592:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseReplaceArray_C", MatDenseReplaceArray_SeqDense));
3593:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArrayRead_C", MatDenseGetArray_SeqDense));
3594:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArrayRead_C", MatDenseRestoreArray_SeqDense));
3595:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArrayWrite_C", MatDenseGetArray_SeqDense));
3596:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArrayWrite_C", MatDenseRestoreArray_SeqDense));
3597:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqaij_C", MatConvert_SeqDense_SeqAIJ));
3598: #if defined(PETSC_HAVE_ELEMENTAL)
3599:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_elemental_C", MatConvert_SeqDense_Elemental));
3600: #endif
3601: #if defined(PETSC_HAVE_SCALAPACK)
3602:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_scalapack_C", MatConvert_Dense_ScaLAPACK));
3603: #endif
3604: #if defined(PETSC_HAVE_CUDA)
3605:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqdensecuda_C", MatConvert_SeqDense_SeqDenseCUDA));
3606:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensecuda_seqdensecuda_C", MatProductSetFromOptions_SeqDense));
3607:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensecuda_seqdense_C", MatProductSetFromOptions_SeqDense));
3608:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdensecuda_C", MatProductSetFromOptions_SeqDense));
3609: #endif
3610: #if defined(PETSC_HAVE_HIP)
3611:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqdensehip_C", MatConvert_SeqDense_SeqDenseHIP));
3612:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensehip_seqdensehip_C", MatProductSetFromOptions_SeqDense));
3613:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensehip_seqdense_C", MatProductSetFromOptions_SeqDense));
3614:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdensehip_C", MatProductSetFromOptions_SeqDense));
3615: #endif
3616:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqDenseSetPreallocation_C", MatSeqDenseSetPreallocation_SeqDense));
3617:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqdense_C", MatProductSetFromOptions_SeqAIJ_SeqDense));
3618:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdense_C", MatProductSetFromOptions_SeqDense));
3619:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqbaij_seqdense_C", MatProductSetFromOptions_SeqXBAIJ_SeqDense));
3620:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqsbaij_seqdense_C", MatProductSetFromOptions_SeqXBAIJ_SeqDense));

3622:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumn_C", MatDenseGetColumn_SeqDense));
3623:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumn_C", MatDenseRestoreColumn_SeqDense));
3624:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVec_C", MatDenseGetColumnVec_SeqDense));
3625:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVec_C", MatDenseRestoreColumnVec_SeqDense));
3626:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVecRead_C", MatDenseGetColumnVecRead_SeqDense));
3627:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVecRead_C", MatDenseRestoreColumnVecRead_SeqDense));
3628:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVecWrite_C", MatDenseGetColumnVecWrite_SeqDense));
3629:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVecWrite_C", MatDenseRestoreColumnVecWrite_SeqDense));
3630:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetSubMatrix_C", MatDenseGetSubMatrix_SeqDense));
3631:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreSubMatrix_C", MatDenseRestoreSubMatrix_SeqDense));
3632:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultColumnRange_C", MatMultColumnRange_SeqDense));
3633:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultAddColumnRange_C", MatMultAddColumnRange_SeqDense));
3634:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultHermitianTransposeColumnRange_C", MatMultHermitianTransposeColumnRange_SeqDense));
3635:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultHermitianTransposeAddColumnRange_C", MatMultHermitianTransposeAddColumnRange_SeqDense));
3636:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQDENSE));
3637:   PetscFunctionReturn(PETSC_SUCCESS);
3638: }

3640: /*@C
3641:   MatDenseGetColumn - gives access to a column of a dense matrix. This is only the local part of the column. You MUST call `MatDenseRestoreColumn()` to avoid memory bleeding.

3643:   Not Collective

3645:   Input Parameters:
3646: + A   - a `MATSEQDENSE` or `MATMPIDENSE` matrix
3647: - col - column index

3649:   Output Parameter:
3650: . vals - pointer to the data

3652:   Level: intermediate

3654:   Note:
3655:   Use `MatDenseGetColumnVec()` to get access to a column of a `MATDENSE` treated as a `Vec`

3657: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreColumn()`, `MatDenseGetColumnVec()`
3658: @*/
3659: PetscErrorCode MatDenseGetColumn(Mat A, PetscInt col, PetscScalar *vals[])
3660: {
3661:   PetscFunctionBegin;
3664:   PetscAssertPointer(vals, 3);
3665:   PetscUseMethod(A, "MatDenseGetColumn_C", (Mat, PetscInt, PetscScalar **), (A, col, vals));
3666:   PetscFunctionReturn(PETSC_SUCCESS);
3667: }

3669: /*@C
3670:   MatDenseRestoreColumn - returns access to a column of a `MATDENSE` matrix which is returned by `MatDenseGetColumn()`.

3672:   Not Collective

3674:   Input Parameters:
3675: + A    - a `MATSEQDENSE` or `MATMPIDENSE` matrix
3676: - vals - pointer to the data (may be `NULL`)

3678:   Level: intermediate

3680: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetColumn()`
3681: @*/
3682: PetscErrorCode MatDenseRestoreColumn(Mat A, PetscScalar *vals[])
3683: {
3684:   PetscFunctionBegin;
3686:   PetscAssertPointer(vals, 2);
3687:   PetscUseMethod(A, "MatDenseRestoreColumn_C", (Mat, PetscScalar **), (A, vals));
3688:   PetscFunctionReturn(PETSC_SUCCESS);
3689: }

3691: /*@
3692:   MatDenseGetColumnVec - Gives read-write access to a column of a `MATDENSE` matrix, represented as a `Vec`.

3694:   Collective

3696:   Input Parameters:
3697: + A   - the `Mat` object
3698: - col - the column index

3700:   Output Parameter:
3701: . v - the vector

3703:   Level: intermediate

3705:   Notes:
3706:   The vector is owned by PETSc. Users need to call `MatDenseRestoreColumnVec()` when the vector is no longer needed.

3708:   Use `MatDenseGetColumnVecRead()` to obtain read-only access or `MatDenseGetColumnVecWrite()` for write-only access.

3710: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`, `MatDenseGetColumn()`
3711: @*/
3712: PetscErrorCode MatDenseGetColumnVec(Mat A, PetscInt col, Vec *v)
3713: {
3714:   PetscFunctionBegin;
3718:   PetscAssertPointer(v, 3);
3719:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3720:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3721:   PetscUseMethod(A, "MatDenseGetColumnVec_C", (Mat, PetscInt, Vec *), (A, col, v));
3722:   PetscFunctionReturn(PETSC_SUCCESS);
3723: }

3725: /*@
3726:   MatDenseRestoreColumnVec - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVec()`.

3728:   Collective

3730:   Input Parameters:
3731: + A   - the `Mat` object
3732: . col - the column index
3733: - v   - the `Vec` object (may be `NULL`)

3735:   Level: intermediate

3737: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3738: @*/
3739: PetscErrorCode MatDenseRestoreColumnVec(Mat A, PetscInt col, Vec *v)
3740: {
3741:   PetscFunctionBegin;
3745:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3746:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3747:   PetscUseMethod(A, "MatDenseRestoreColumnVec_C", (Mat, PetscInt, Vec *), (A, col, v));
3748:   PetscFunctionReturn(PETSC_SUCCESS);
3749: }

3751: /*@
3752:   MatDenseGetColumnVecRead - Gives read-only access to a column of a dense matrix, represented as a `Vec`.

3754:   Collective

3756:   Input Parameters:
3757: + A   - the `Mat` object
3758: - col - the column index

3760:   Output Parameter:
3761: . v - the vector

3763:   Level: intermediate

3765:   Notes:
3766:   The vector is owned by PETSc and users cannot modify it.

3768:   Users need to call `MatDenseRestoreColumnVecRead()` when the vector is no longer needed.

3770:   Use `MatDenseGetColumnVec()` to obtain read-write access or `MatDenseGetColumnVecWrite()` for write-only access.

3772: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3773: @*/
3774: PetscErrorCode MatDenseGetColumnVecRead(Mat A, PetscInt col, Vec *v)
3775: {
3776:   PetscFunctionBegin;
3780:   PetscAssertPointer(v, 3);
3781:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3782:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3783:   PetscUseMethod(A, "MatDenseGetColumnVecRead_C", (Mat, PetscInt, Vec *), (A, col, v));
3784:   PetscFunctionReturn(PETSC_SUCCESS);
3785: }

3787: /*@
3788:   MatDenseRestoreColumnVecRead - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVecRead()`.

3790:   Collective

3792:   Input Parameters:
3793: + A   - the `Mat` object
3794: . col - the column index
3795: - v   - the `Vec` object (may be `NULL`)

3797:   Level: intermediate

3799: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecWrite()`
3800: @*/
3801: PetscErrorCode MatDenseRestoreColumnVecRead(Mat A, PetscInt col, Vec *v)
3802: {
3803:   PetscFunctionBegin;
3807:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3808:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3809:   PetscUseMethod(A, "MatDenseRestoreColumnVecRead_C", (Mat, PetscInt, Vec *), (A, col, v));
3810:   PetscFunctionReturn(PETSC_SUCCESS);
3811: }

3813: /*@
3814:   MatDenseGetColumnVecWrite - Gives write-only access to a column of a dense matrix, represented as a `Vec`.

3816:   Collective

3818:   Input Parameters:
3819: + A   - the `Mat` object
3820: - col - the column index

3822:   Output Parameter:
3823: . v - the vector

3825:   Level: intermediate

3827:   Notes:
3828:   The vector is owned by PETSc. Users need to call `MatDenseRestoreColumnVecWrite()` when the vector is no longer needed.

3830:   Use `MatDenseGetColumnVec()` to obtain read-write access or `MatDenseGetColumnVecRead()` for read-only access.

3832: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3833: @*/
3834: PetscErrorCode MatDenseGetColumnVecWrite(Mat A, PetscInt col, Vec *v)
3835: {
3836:   PetscFunctionBegin;
3840:   PetscAssertPointer(v, 3);
3841:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3842:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3843:   PetscUseMethod(A, "MatDenseGetColumnVecWrite_C", (Mat, PetscInt, Vec *), (A, col, v));
3844:   PetscFunctionReturn(PETSC_SUCCESS);
3845: }

3847: /*@
3848:   MatDenseRestoreColumnVecWrite - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVecWrite()`.

3850:   Collective

3852:   Input Parameters:
3853: + A   - the `Mat` object
3854: . col - the column index
3855: - v   - the `Vec` object (may be `NULL`)

3857:   Level: intermediate

3859: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`
3860: @*/
3861: PetscErrorCode MatDenseRestoreColumnVecWrite(Mat A, PetscInt col, Vec *v)
3862: {
3863:   PetscFunctionBegin;
3867:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3868:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3869:   PetscUseMethod(A, "MatDenseRestoreColumnVecWrite_C", (Mat, PetscInt, Vec *), (A, col, v));
3870:   PetscFunctionReturn(PETSC_SUCCESS);
3871: }

3873: /*@
3874:   MatDenseGetSubMatrix - Gives access to a block of rows and columns of a dense matrix, represented as a `Mat`.

3876:   Collective

3878:   Input Parameters:
3879: + A      - the `Mat` object
3880: . rbegin - the first global row index in the block (if `PETSC_DECIDE`, is 0)
3881: . rend   - the global row index past the last one in the block (if `PETSC_DECIDE`, is `M`)
3882: . cbegin - the first global column index in the block (if `PETSC_DECIDE`, is 0)
3883: - cend   - the global column index past the last one in the block (if `PETSC_DECIDE`, is `N`)

3885:   Output Parameter:
3886: . v - the matrix

3888:   Level: intermediate

3890:   Notes:
3891:   The matrix is owned by PETSc. Users need to call `MatDenseRestoreSubMatrix()` when the matrix is no longer needed.

3893:   The output matrix is not redistributed by PETSc, so depending on the values of `rbegin` and `rend`, some processes may have no local rows.

3895: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreSubMatrix()`
3896: @*/
3897: PetscErrorCode MatDenseGetSubMatrix(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *v)
3898: {
3899:   PetscFunctionBegin;
3906:   PetscAssertPointer(v, 6);
3907:   if (rbegin == PETSC_DECIDE) rbegin = 0;
3908:   if (rend == PETSC_DECIDE) rend = A->rmap->N;
3909:   if (cbegin == PETSC_DECIDE) cbegin = 0;
3910:   if (cend == PETSC_DECIDE) cend = A->cmap->N;
3911:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3912:   PetscCheck(rbegin >= 0 && rbegin <= A->rmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid rbegin %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT "]", rbegin, A->rmap->N);
3913:   PetscCheck(rend >= rbegin && rend <= A->rmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid rend %" PetscInt_FMT ", should be in [%" PetscInt_FMT ",%" PetscInt_FMT "]", rend, rbegin, A->rmap->N);
3914:   PetscCheck(cbegin >= 0 && cbegin <= A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid cbegin %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT "]", cbegin, A->cmap->N);
3915:   PetscCheck(cend >= cbegin && cend <= A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid cend %" PetscInt_FMT ", should be in [%" PetscInt_FMT ",%" PetscInt_FMT "]", cend, cbegin, A->cmap->N);
3916:   PetscUseMethod(A, "MatDenseGetSubMatrix_C", (Mat, PetscInt, PetscInt, PetscInt, PetscInt, Mat *), (A, rbegin, rend, cbegin, cend, v));
3917:   PetscFunctionReturn(PETSC_SUCCESS);
3918: }

3920: /*@
3921:   MatDenseRestoreSubMatrix - Returns access to a block of columns of a dense matrix obtained from `MatDenseGetSubMatrix()`.

3923:   Collective

3925:   Input Parameters:
3926: + A - the `Mat` object
3927: - v - the `Mat` object (may be `NULL`)

3929:   Level: intermediate

3931: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseRestoreColumnVec()`, `MatDenseGetSubMatrix()`
3932: @*/
3933: PetscErrorCode MatDenseRestoreSubMatrix(Mat A, Mat *v)
3934: {
3935:   PetscFunctionBegin;
3938:   PetscAssertPointer(v, 2);
3939:   PetscUseMethod(A, "MatDenseRestoreSubMatrix_C", (Mat, Mat *), (A, v));
3940:   PetscFunctionReturn(PETSC_SUCCESS);
3941: }

3943: #include <petscblaslapack.h>
3944: #include <petsc/private/kernels/blockinvert.h>

3946: PetscErrorCode MatSeqDenseInvert(Mat A)
3947: {
3948:   PetscInt        m;
3949:   const PetscReal shift = 0.0;
3950:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
3951:   PetscScalar    *values;

3953:   PetscFunctionBegin;
3955:   PetscCall(MatDenseGetArray(A, &values));
3956:   PetscCall(MatGetLocalSize(A, &m, NULL));
3957:   allowzeropivot = PetscNot(A->erroriffailure);
3958:   /* factor and invert each block */
3959:   switch (m) {
3960:   case 1:
3961:     values[0] = (PetscScalar)1.0 / (values[0] + shift);
3962:     break;
3963:   case 2:
3964:     PetscCall(PetscKernel_A_gets_inverse_A_2(values, shift, allowzeropivot, &zeropivotdetected));
3965:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3966:     break;
3967:   case 3:
3968:     PetscCall(PetscKernel_A_gets_inverse_A_3(values, shift, allowzeropivot, &zeropivotdetected));
3969:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3970:     break;
3971:   case 4:
3972:     PetscCall(PetscKernel_A_gets_inverse_A_4(values, shift, allowzeropivot, &zeropivotdetected));
3973:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3974:     break;
3975:   case 5: {
3976:     PetscScalar work[25];
3977:     PetscInt    ipvt[5];

3979:     PetscCall(PetscKernel_A_gets_inverse_A_5(values, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3980:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3981:   } break;
3982:   case 6:
3983:     PetscCall(PetscKernel_A_gets_inverse_A_6(values, shift, allowzeropivot, &zeropivotdetected));
3984:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3985:     break;
3986:   case 7:
3987:     PetscCall(PetscKernel_A_gets_inverse_A_7(values, shift, allowzeropivot, &zeropivotdetected));
3988:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3989:     break;
3990:   default: {
3991:     PetscInt    *v_pivots, *IJ, j;
3992:     PetscScalar *v_work;

3994:     PetscCall(PetscMalloc3(m, &v_work, m, &v_pivots, m, &IJ));
3995:     for (j = 0; j < m; j++) IJ[j] = j;
3996:     PetscCall(PetscKernel_A_gets_inverse_A(m, values, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3997:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3998:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3999:   }
4000:   }
4001:   PetscCall(MatDenseRestoreArray(A, &values));
4002:   PetscFunctionReturn(PETSC_SUCCESS);
4003: }