Actual source code: dense.c

  1: /*
  2:      Defines the basic matrix operations for sequential dense.
  3:      Portions of this code are under:
  4:      Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
  5: */

  7: #include <../src/mat/impls/dense/seq/dense.h>
  8: #include <../src/mat/impls/dense/mpi/mpidense.h>
  9: #include <petscblaslapack.h>
 10: #include <../src/mat/impls/aij/seq/aij.h>
 11: #include <petsc/private/vecimpl.h>

 13: PetscErrorCode MatSeqDenseSymmetrize_Private(Mat A, PetscBool hermitian)
 14: {
 15:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
 16:   PetscInt      j, k, n = A->rmap->n;
 17:   PetscScalar  *v;

 19:   PetscFunctionBegin;
 20:   PetscCheck(A->rmap->n == A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Cannot symmetrize a rectangular matrix");
 21:   PetscCall(MatDenseGetArray(A, &v));
 22:   if (!hermitian) {
 23:     for (k = 0; k < n; k++) {
 24:       for (j = k; j < n; j++) v[j * mat->lda + k] = v[k * mat->lda + j];
 25:     }
 26:   } else {
 27:     for (k = 0; k < n; k++) {
 28:       for (j = k; j < n; j++) v[j * mat->lda + k] = PetscConj(v[k * mat->lda + j]);
 29:     }
 30:   }
 31:   PetscCall(MatDenseRestoreArray(A, &v));
 32:   PetscFunctionReturn(PETSC_SUCCESS);
 33: }

 35: PetscErrorCode MatSeqDenseInvertFactors_Private(Mat A)
 36: {
 37:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
 38:   PetscBLASInt  info, n;

 40:   PetscFunctionBegin;
 41:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
 42:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
 43:   if (A->factortype == MAT_FACTOR_LU) {
 44:     PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 45:     if (!mat->fwork) {
 46:       mat->lfwork = n;
 47:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
 48:     }
 49:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 50:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
 51:     PetscCall(PetscFPTrapPop());
 52:     PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
 53:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
 54:     if (A->spd == PETSC_BOOL3_TRUE) {
 55:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 56:       PetscCallBLAS("LAPACKpotri", LAPACKpotri_("L", &n, mat->v, &mat->lda, &info));
 57:       PetscCall(PetscFPTrapPop());
 58:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_TRUE));
 59: #if defined(PETSC_USE_COMPLEX)
 60:     } else if (A->hermitian == PETSC_BOOL3_TRUE) {
 61:       PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 62:       PetscCheck(mat->fwork, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fwork not present");
 63:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 64:       PetscCallBLAS("LAPACKhetri", LAPACKhetri_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &info));
 65:       PetscCall(PetscFPTrapPop());
 66:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_TRUE));
 67: #endif
 68:     } else { /* symmetric case */
 69:       PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 70:       PetscCheck(mat->fwork, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fwork not present");
 71:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 72:       PetscCallBLAS("LAPACKsytri", LAPACKsytri_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &info));
 73:       PetscCall(PetscFPTrapPop());
 74:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_FALSE));
 75:     }
 76:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT, "Bad Inversion: zero pivot in row %" PetscBLASInt_FMT, info - 1);
 77:     PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
 78:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix must be factored to solve");

 80:   A->ops->solve             = NULL;
 81:   A->ops->matsolve          = NULL;
 82:   A->ops->solvetranspose    = NULL;
 83:   A->ops->matsolvetranspose = NULL;
 84:   A->ops->solveadd          = NULL;
 85:   A->ops->solvetransposeadd = NULL;
 86:   A->factortype             = MAT_FACTOR_NONE;
 87:   PetscCall(PetscFree(A->solvertype));
 88:   PetscFunctionReturn(PETSC_SUCCESS);
 89: }

 91: static PetscErrorCode MatZeroRowsColumns_SeqDense(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
 92: {
 93:   Mat_SeqDense      *l = (Mat_SeqDense *)A->data;
 94:   PetscInt           m = l->lda, n = A->cmap->n, r = A->rmap->n, i, j;
 95:   PetscScalar       *slot, *bb, *v;
 96:   const PetscScalar *xx;

 98:   PetscFunctionBegin;
 99:   if (PetscDefined(USE_DEBUG)) {
100:     for (i = 0; i < N; i++) {
101:       PetscCheck(rows[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row requested to be zeroed");
102:       PetscCheck(rows[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested to be zeroed greater than or equal number of rows %" PetscInt_FMT, rows[i], A->rmap->n);
103:       PetscCheck(rows[i] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Col %" PetscInt_FMT " requested to be zeroed greater than or equal number of cols %" PetscInt_FMT, rows[i], A->cmap->n);
104:     }
105:   }
106:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);

108:   /* fix right-hand side if needed */
109:   if (x && b) {
110:     Vec xt;

112:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
113:     PetscCall(VecDuplicate(x, &xt));
114:     PetscCall(VecCopy(x, xt));
115:     PetscCall(VecScale(xt, -1.0));
116:     PetscCall(MatMultAdd(A, xt, b, b));
117:     PetscCall(VecDestroy(&xt));
118:     PetscCall(VecGetArrayRead(x, &xx));
119:     PetscCall(VecGetArray(b, &bb));
120:     for (i = 0; i < N; i++) bb[rows[i]] = diag * xx[rows[i]];
121:     PetscCall(VecRestoreArrayRead(x, &xx));
122:     PetscCall(VecRestoreArray(b, &bb));
123:   }

125:   PetscCall(MatDenseGetArray(A, &v));
126:   for (i = 0; i < N; i++) {
127:     slot = v + rows[i] * m;
128:     PetscCall(PetscArrayzero(slot, r));
129:   }
130:   for (i = 0; i < N; i++) {
131:     slot = v + rows[i];
132:     for (j = 0; j < n; j++) {
133:       *slot = 0.0;
134:       slot += m;
135:     }
136:   }
137:   if (diag != 0.0) {
138:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
139:     for (i = 0; i < N; i++) {
140:       slot  = v + (m + 1) * rows[i];
141:       *slot = diag;
142:     }
143:   }
144:   PetscCall(MatDenseRestoreArray(A, &v));
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqDense(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
149: {
150:   Mat              B = NULL;
151:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
152:   Mat_SeqDense    *b;
153:   PetscInt        *ai = a->i, *aj = a->j, m = A->rmap->N, n = A->cmap->N, i;
154:   const MatScalar *av;
155:   PetscBool        isseqdense;

157:   PetscFunctionBegin;
158:   if (reuse == MAT_REUSE_MATRIX) {
159:     PetscCall(PetscObjectTypeCompare((PetscObject)*newmat, MATSEQDENSE, &isseqdense));
160:     PetscCheck(isseqdense, PetscObjectComm((PetscObject)*newmat), PETSC_ERR_USER, "Cannot reuse matrix of type %s", ((PetscObject)*newmat)->type_name);
161:   }
162:   if (reuse != MAT_REUSE_MATRIX) {
163:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
164:     PetscCall(MatSetSizes(B, m, n, m, n));
165:     PetscCall(MatSetType(B, MATSEQDENSE));
166:     PetscCall(MatSeqDenseSetPreallocation(B, NULL));
167:     b = (Mat_SeqDense *)B->data;
168:   } else {
169:     b = (Mat_SeqDense *)((*newmat)->data);
170:     for (i = 0; i < n; i++) PetscCall(PetscArrayzero(b->v + i * b->lda, m));
171:   }
172:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
173:   for (i = 0; i < m; i++) {
174:     PetscInt j;
175:     for (j = 0; j < ai[1] - ai[0]; j++) {
176:       b->v[*aj * b->lda + i] = *av;
177:       aj++;
178:       av++;
179:     }
180:     ai++;
181:   }
182:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));

184:   if (reuse == MAT_INPLACE_MATRIX) {
185:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
186:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
187:     PetscCall(MatHeaderReplace(A, &B));
188:   } else {
189:     if (B) *newmat = B;
190:     PetscCall(MatAssemblyBegin(*newmat, MAT_FINAL_ASSEMBLY));
191:     PetscCall(MatAssemblyEnd(*newmat, MAT_FINAL_ASSEMBLY));
192:   }
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_SeqAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
197: {
198:   Mat           B = NULL;
199:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
200:   PetscInt      i, j;
201:   PetscInt     *rows, *nnz;
202:   MatScalar    *aa = a->v, *vals;

204:   PetscFunctionBegin;
205:   PetscCall(PetscCalloc3(A->rmap->n, &rows, A->rmap->n, &nnz, A->rmap->n, &vals));
206:   if (reuse != MAT_REUSE_MATRIX) {
207:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
208:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
209:     PetscCall(MatSetType(B, MATSEQAIJ));
210:     for (j = 0; j < A->cmap->n; j++) {
211:       for (i = 0; i < A->rmap->n; i++)
212:         if (aa[i] != 0.0 || (i == j && A->cmap->n == A->rmap->n)) ++nnz[i];
213:       aa += a->lda;
214:     }
215:     PetscCall(MatSeqAIJSetPreallocation(B, PETSC_DETERMINE, nnz));
216:   } else B = *newmat;
217:   aa = a->v;
218:   for (j = 0; j < A->cmap->n; j++) {
219:     PetscInt numRows = 0;
220:     for (i = 0; i < A->rmap->n; i++)
221:       if (aa[i] != 0.0 || (i == j && A->cmap->n == A->rmap->n)) {
222:         rows[numRows]   = i;
223:         vals[numRows++] = aa[i];
224:       }
225:     PetscCall(MatSetValues(B, numRows, rows, 1, &j, vals, INSERT_VALUES));
226:     aa += a->lda;
227:   }
228:   PetscCall(PetscFree3(rows, nnz, vals));
229:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
230:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

232:   if (reuse == MAT_INPLACE_MATRIX) {
233:     PetscCall(MatHeaderReplace(A, &B));
234:   } else if (reuse != MAT_REUSE_MATRIX) *newmat = B;
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatAXPY_SeqDense(Mat Y, PetscScalar alpha, Mat X, MatStructure str)
239: {
240:   Mat_SeqDense      *x = (Mat_SeqDense *)X->data, *y = (Mat_SeqDense *)Y->data;
241:   const PetscScalar *xv;
242:   PetscScalar       *yv;
243:   PetscBLASInt       N, m, ldax = 0, lday = 0, one = 1;

245:   PetscFunctionBegin;
246:   PetscCall(MatDenseGetArrayRead(X, &xv));
247:   PetscCall(MatDenseGetArray(Y, &yv));
248:   PetscCall(PetscBLASIntCast(X->rmap->n * X->cmap->n, &N));
249:   PetscCall(PetscBLASIntCast(X->rmap->n, &m));
250:   PetscCall(PetscBLASIntCast(x->lda, &ldax));
251:   PetscCall(PetscBLASIntCast(y->lda, &lday));
252:   if (ldax > m || lday > m) {
253:     for (PetscInt j = 0; j < X->cmap->n; j++) PetscCallBLAS("BLASaxpy", BLASaxpy_(&m, &alpha, PetscSafePointerPlusOffset(xv, j * ldax), &one, PetscSafePointerPlusOffset(yv, j * lday), &one));
254:   } else {
255:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&N, &alpha, xv, &one, yv, &one));
256:   }
257:   PetscCall(MatDenseRestoreArrayRead(X, &xv));
258:   PetscCall(MatDenseRestoreArray(Y, &yv));
259:   PetscCall(PetscLogFlops(PetscMax(2.0 * N - 1, 0)));
260:   PetscFunctionReturn(PETSC_SUCCESS);
261: }

263: static PetscErrorCode MatGetInfo_SeqDense(Mat A, MatInfoType flag, MatInfo *info)
264: {
265:   PetscLogDouble N = A->rmap->n * A->cmap->n;

267:   PetscFunctionBegin;
268:   info->block_size        = 1.0;
269:   info->nz_allocated      = N;
270:   info->nz_used           = N;
271:   info->nz_unneeded       = 0;
272:   info->assemblies        = A->num_ass;
273:   info->mallocs           = 0;
274:   info->memory            = 0; /* REVIEW ME */
275:   info->fill_ratio_given  = 0;
276:   info->fill_ratio_needed = 0;
277:   info->factor_mallocs    = 0;
278:   PetscFunctionReturn(PETSC_SUCCESS);
279: }

281: PetscErrorCode MatScale_SeqDense(Mat A, PetscScalar alpha)
282: {
283:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
284:   PetscScalar  *v;
285:   PetscBLASInt  one = 1, j, nz, lda = 0;

287:   PetscFunctionBegin;
288:   PetscCall(MatDenseGetArray(A, &v));
289:   PetscCall(PetscBLASIntCast(a->lda, &lda));
290:   if (lda > A->rmap->n) {
291:     PetscCall(PetscBLASIntCast(A->rmap->n, &nz));
292:     for (j = 0; j < A->cmap->n; j++) PetscCallBLAS("BLASscal", BLASscal_(&nz, &alpha, v + j * lda, &one));
293:   } else {
294:     PetscCall(PetscBLASIntCast(A->rmap->n * A->cmap->n, &nz));
295:     PetscCallBLAS("BLASscal", BLASscal_(&nz, &alpha, v, &one));
296:   }
297:   PetscCall(PetscLogFlops(A->rmap->n * A->cmap->n));
298:   PetscCall(MatDenseRestoreArray(A, &v));
299:   PetscFunctionReturn(PETSC_SUCCESS);
300: }

302: PetscErrorCode MatShift_SeqDense(Mat A, PetscScalar alpha)
303: {
304:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
305:   PetscScalar  *v;
306:   PetscInt      j, k;

308:   PetscFunctionBegin;
309:   PetscCall(MatDenseGetArray(A, &v));
310:   k = PetscMin(A->rmap->n, A->cmap->n);
311:   for (j = 0; j < k; j++) v[j + j * a->lda] += alpha;
312:   PetscCall(PetscLogFlops(k));
313:   PetscCall(MatDenseRestoreArray(A, &v));
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: static PetscErrorCode MatIsHermitian_SeqDense(Mat A, PetscReal rtol, PetscBool *fl)
318: {
319:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
320:   PetscInt           i, j, m = A->rmap->n, N = a->lda;
321:   const PetscScalar *v;

323:   PetscFunctionBegin;
324:   *fl = PETSC_FALSE;
325:   if (A->rmap->n != A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
326:   PetscCall(MatDenseGetArrayRead(A, &v));
327:   for (i = 0; i < m; i++) {
328:     for (j = i; j < m; j++) {
329:       if (PetscAbsScalar(v[i + j * N] - PetscConj(v[j + i * N])) > rtol) goto restore;
330:     }
331:   }
332:   *fl = PETSC_TRUE;
333: restore:
334:   PetscCall(MatDenseRestoreArrayRead(A, &v));
335:   PetscFunctionReturn(PETSC_SUCCESS);
336: }

338: static PetscErrorCode MatIsSymmetric_SeqDense(Mat A, PetscReal rtol, PetscBool *fl)
339: {
340:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
341:   PetscInt           i, j, m = A->rmap->n, N = a->lda;
342:   const PetscScalar *v;

344:   PetscFunctionBegin;
345:   *fl = PETSC_FALSE;
346:   if (A->rmap->n != A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
347:   PetscCall(MatDenseGetArrayRead(A, &v));
348:   for (i = 0; i < m; i++) {
349:     for (j = i; j < m; j++) {
350:       if (PetscAbsScalar(v[i + j * N] - v[j + i * N]) > rtol) goto restore;
351:     }
352:   }
353:   *fl = PETSC_TRUE;
354: restore:
355:   PetscCall(MatDenseRestoreArrayRead(A, &v));
356:   PetscFunctionReturn(PETSC_SUCCESS);
357: }

359: PetscErrorCode MatDuplicateNoCreate_SeqDense(Mat newi, Mat A, MatDuplicateOption cpvalues)
360: {
361:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
362:   PetscInt      lda = mat->lda, j, m, nlda = lda;
363:   PetscBool     isdensecpu;

365:   PetscFunctionBegin;
366:   PetscCall(PetscLayoutReference(A->rmap, &newi->rmap));
367:   PetscCall(PetscLayoutReference(A->cmap, &newi->cmap));
368:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) { /* propagate LDA */
369:     PetscCall(MatDenseSetLDA(newi, lda));
370:   }
371:   PetscCall(PetscObjectTypeCompare((PetscObject)newi, MATSEQDENSE, &isdensecpu));
372:   if (isdensecpu) PetscCall(MatSeqDenseSetPreallocation(newi, NULL));
373:   if (cpvalues == MAT_COPY_VALUES) {
374:     const PetscScalar *av;
375:     PetscScalar       *v;

377:     PetscCall(MatDenseGetArrayRead(A, &av));
378:     PetscCall(MatDenseGetArrayWrite(newi, &v));
379:     PetscCall(MatDenseGetLDA(newi, &nlda));
380:     m = A->rmap->n;
381:     if (lda > m || nlda > m) {
382:       for (j = 0; j < A->cmap->n; j++) PetscCall(PetscArraycpy(PetscSafePointerPlusOffset(v, j * nlda), PetscSafePointerPlusOffset(av, j * lda), m));
383:     } else {
384:       PetscCall(PetscArraycpy(v, av, A->rmap->n * A->cmap->n));
385:     }
386:     PetscCall(MatDenseRestoreArrayWrite(newi, &v));
387:     PetscCall(MatDenseRestoreArrayRead(A, &av));
388:     PetscCall(MatPropagateSymmetryOptions(A, newi));
389:   }
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }

393: PetscErrorCode MatDuplicate_SeqDense(Mat A, MatDuplicateOption cpvalues, Mat *newmat)
394: {
395:   PetscFunctionBegin;
396:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), newmat));
397:   PetscCall(MatSetSizes(*newmat, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
398:   PetscCall(MatSetType(*newmat, ((PetscObject)A)->type_name));
399:   PetscCall(MatDuplicateNoCreate_SeqDense(*newmat, A, cpvalues));
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: static PetscErrorCode MatSolve_SeqDense_Internal_LU(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k, PetscBool T)
404: {
405:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
406:   PetscBLASInt  info;

408:   PetscFunctionBegin;
409:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
410:   PetscCallBLAS("LAPACKgetrs", LAPACKgetrs_(T ? "T" : "N", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
411:   PetscCall(PetscFPTrapPop());
412:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "GETRS - Bad solve %" PetscBLASInt_FMT, info);
413:   PetscCall(PetscLogFlops(nrhs * (2.0 * m * m - m)));
414:   PetscFunctionReturn(PETSC_SUCCESS);
415: }

417: static PetscErrorCode MatConjugate_SeqDense(Mat);

419: static PetscErrorCode MatSolve_SeqDense_Internal_Cholesky(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k, PetscBool T)
420: {
421:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
422:   PetscBLASInt  info;

424:   PetscFunctionBegin;
425:   if (A->spd == PETSC_BOOL3_TRUE) {
426:     if (PetscDefined(USE_COMPLEX) && T) PetscCall(MatConjugate_SeqDense(A));
427:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
428:     PetscCallBLAS("LAPACKpotrs", LAPACKpotrs_("L", &m, &nrhs, mat->v, &mat->lda, x, &m, &info));
429:     PetscCall(PetscFPTrapPop());
430:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "POTRS Bad solve %" PetscBLASInt_FMT, info);
431:     if (PetscDefined(USE_COMPLEX) && T) PetscCall(MatConjugate_SeqDense(A));
432: #if defined(PETSC_USE_COMPLEX)
433:   } else if (A->hermitian == PETSC_BOOL3_TRUE) {
434:     if (T) PetscCall(MatConjugate_SeqDense(A));
435:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
436:     PetscCallBLAS("LAPACKhetrs", LAPACKhetrs_("L", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
437:     PetscCall(PetscFPTrapPop());
438:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "HETRS Bad solve %" PetscBLASInt_FMT, info);
439:     if (T) PetscCall(MatConjugate_SeqDense(A));
440: #endif
441:   } else { /* symmetric case */
442:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
443:     PetscCallBLAS("LAPACKsytrs", LAPACKsytrs_("L", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
444:     PetscCall(PetscFPTrapPop());
445:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "SYTRS Bad solve %" PetscBLASInt_FMT, info);
446:   }
447:   PetscCall(PetscLogFlops(nrhs * (2.0 * m * m - m)));
448:   PetscFunctionReturn(PETSC_SUCCESS);
449: }

451: static PetscErrorCode MatSolve_SeqDense_Internal_QR(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k)
452: {
453:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
454:   PetscBLASInt  info;
455:   char          trans;

457:   PetscFunctionBegin;
458:   if (PetscDefined(USE_COMPLEX)) {
459:     trans = 'C';
460:   } else {
461:     trans = 'T';
462:   }
463:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
464:   { /* lwork depends on the number of right-hand sides */
465:     PetscBLASInt nlfwork, lfwork = -1;
466:     PetscScalar  fwork;

468:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", &trans, &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, &fwork, &lfwork, &info));
469:     nlfwork = (PetscBLASInt)PetscRealPart(fwork);
470:     if (nlfwork > mat->lfwork) {
471:       mat->lfwork = nlfwork;
472:       PetscCall(PetscFree(mat->fwork));
473:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
474:     }
475:   }
476:   PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", &trans, &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, mat->fwork, &mat->lfwork, &info));
477:   PetscCall(PetscFPTrapPop());
478:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "ORMQR - Bad orthogonal transform %" PetscBLASInt_FMT, info);
479:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
480:   PetscCallBLAS("LAPACKtrtrs", LAPACKtrtrs_("U", "N", "N", &mat->rank, &nrhs, mat->v, &mat->lda, x, &ldx, &info));
481:   PetscCall(PetscFPTrapPop());
482:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "TRTRS - Bad triangular solve %" PetscBLASInt_FMT, info);
483:   for (PetscInt j = 0; j < nrhs; j++) {
484:     for (PetscInt i = mat->rank; i < k; i++) x[j * ldx + i] = 0.;
485:   }
486:   PetscCall(PetscLogFlops(nrhs * (4.0 * m * mat->rank - PetscSqr(mat->rank))));
487:   PetscFunctionReturn(PETSC_SUCCESS);
488: }

490: static PetscErrorCode MatSolveTranspose_SeqDense_Internal_QR(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k)
491: {
492:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
493:   PetscBLASInt  info;

495:   PetscFunctionBegin;
496:   if (A->rmap->n == A->cmap->n && mat->rank == A->rmap->n) {
497:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
498:     PetscCallBLAS("LAPACKtrtrs", LAPACKtrtrs_("U", "T", "N", &m, &nrhs, mat->v, &mat->lda, x, &ldx, &info));
499:     PetscCall(PetscFPTrapPop());
500:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "TRTRS - Bad triangular solve %" PetscBLASInt_FMT, info);
501:     if (PetscDefined(USE_COMPLEX)) PetscCall(MatConjugate_SeqDense(A));
502:     { /* lwork depends on the number of right-hand sides */
503:       PetscBLASInt nlfwork, lfwork = -1;
504:       PetscScalar  fwork;

506:       PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", "N", &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, &fwork, &lfwork, &info));
507:       nlfwork = (PetscBLASInt)PetscRealPart(fwork);
508:       if (nlfwork > mat->lfwork) {
509:         mat->lfwork = nlfwork;
510:         PetscCall(PetscFree(mat->fwork));
511:         PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
512:       }
513:     }
514:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
515:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", "N", &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, mat->fwork, &mat->lfwork, &info));
516:     PetscCall(PetscFPTrapPop());
517:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "ORMQR - Bad orthogonal transform %" PetscBLASInt_FMT, info);
518:     if (PetscDefined(USE_COMPLEX)) PetscCall(MatConjugate_SeqDense(A));
519:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "QR factored matrix cannot be used for transpose solve");
520:   PetscCall(PetscLogFlops(nrhs * (4.0 * m * mat->rank - PetscSqr(mat->rank))));
521:   PetscFunctionReturn(PETSC_SUCCESS);
522: }

524: static PetscErrorCode MatSolve_SeqDense_SetUp(Mat A, Vec xx, Vec yy, PetscScalar **_y, PetscBLASInt *_m, PetscBLASInt *_k)
525: {
526:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
527:   PetscScalar  *y;
528:   PetscBLASInt  m = 0, k = 0;

530:   PetscFunctionBegin;
531:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
532:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
533:   if (k < m) {
534:     PetscCall(VecCopy(xx, mat->qrrhs));
535:     PetscCall(VecGetArray(mat->qrrhs, &y));
536:   } else {
537:     PetscCall(VecCopy(xx, yy));
538:     PetscCall(VecGetArray(yy, &y));
539:   }
540:   *_y = y;
541:   *_k = k;
542:   *_m = m;
543:   PetscFunctionReturn(PETSC_SUCCESS);
544: }

546: static PetscErrorCode MatSolve_SeqDense_TearDown(Mat A, Vec xx, Vec yy, PetscScalar **_y, PetscBLASInt *_m, PetscBLASInt *_k)
547: {
548:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
549:   PetscScalar  *y   = NULL;
550:   PetscBLASInt  m, k;

552:   PetscFunctionBegin;
553:   y   = *_y;
554:   *_y = NULL;
555:   k   = *_k;
556:   m   = *_m;
557:   if (k < m) {
558:     PetscScalar *yv;
559:     PetscCall(VecGetArray(yy, &yv));
560:     PetscCall(PetscArraycpy(yv, y, k));
561:     PetscCall(VecRestoreArray(yy, &yv));
562:     PetscCall(VecRestoreArray(mat->qrrhs, &y));
563:   } else {
564:     PetscCall(VecRestoreArray(yy, &y));
565:   }
566:   PetscFunctionReturn(PETSC_SUCCESS);
567: }

569: static PetscErrorCode MatSolve_SeqDense_LU(Mat A, Vec xx, Vec yy)
570: {
571:   PetscScalar *y = NULL;
572:   PetscBLASInt m = 0, k = 0;

574:   PetscFunctionBegin;
575:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
576:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, m, m, 1, k, PETSC_FALSE));
577:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
578:   PetscFunctionReturn(PETSC_SUCCESS);
579: }

581: static PetscErrorCode MatSolveTranspose_SeqDense_LU(Mat A, Vec xx, Vec yy)
582: {
583:   PetscScalar *y = NULL;
584:   PetscBLASInt m = 0, k = 0;

586:   PetscFunctionBegin;
587:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
588:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, m, m, 1, k, PETSC_TRUE));
589:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatSolve_SeqDense_Cholesky(Mat A, Vec xx, Vec yy)
594: {
595:   PetscScalar *y = NULL;
596:   PetscBLASInt m = 0, k = 0;

598:   PetscFunctionBegin;
599:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
600:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, m, m, 1, k, PETSC_FALSE));
601:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
602:   PetscFunctionReturn(PETSC_SUCCESS);
603: }

605: static PetscErrorCode MatSolveTranspose_SeqDense_Cholesky(Mat A, Vec xx, Vec yy)
606: {
607:   PetscScalar *y = NULL;
608:   PetscBLASInt m = 0, k = 0;

610:   PetscFunctionBegin;
611:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
612:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, m, m, 1, k, PETSC_TRUE));
613:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
614:   PetscFunctionReturn(PETSC_SUCCESS);
615: }

617: static PetscErrorCode MatSolve_SeqDense_QR(Mat A, Vec xx, Vec yy)
618: {
619:   PetscScalar *y = NULL;
620:   PetscBLASInt m = 0, k = 0;

622:   PetscFunctionBegin;
623:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
624:   PetscCall(MatSolve_SeqDense_Internal_QR(A, y, PetscMax(m, k), m, 1, k));
625:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
626:   PetscFunctionReturn(PETSC_SUCCESS);
627: }

629: static PetscErrorCode MatSolveTranspose_SeqDense_QR(Mat A, Vec xx, Vec yy)
630: {
631:   PetscScalar *y = NULL;
632:   PetscBLASInt m = 0, k = 0;

634:   PetscFunctionBegin;
635:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
636:   PetscCall(MatSolveTranspose_SeqDense_Internal_QR(A, y, PetscMax(m, k), m, 1, k));
637:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatMatSolve_SeqDense_SetUp(Mat A, Mat B, Mat X, PetscScalar **_y, PetscBLASInt *_ldy, PetscBLASInt *_m, PetscBLASInt *_nrhs, PetscBLASInt *_k)
642: {
643:   const PetscScalar *b;
644:   PetscScalar       *y;
645:   PetscInt           n, _ldb, _ldx;
646:   PetscBLASInt       nrhs = 0, m = 0, k = 0, ldb = 0, ldx = 0, ldy = 0;

648:   PetscFunctionBegin;
649:   *_ldy  = 0;
650:   *_m    = 0;
651:   *_nrhs = 0;
652:   *_k    = 0;
653:   *_y    = NULL;
654:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
655:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
656:   PetscCall(MatGetSize(B, NULL, &n));
657:   PetscCall(PetscBLASIntCast(n, &nrhs));
658:   PetscCall(MatDenseGetLDA(B, &_ldb));
659:   PetscCall(PetscBLASIntCast(_ldb, &ldb));
660:   PetscCall(MatDenseGetLDA(X, &_ldx));
661:   PetscCall(PetscBLASIntCast(_ldx, &ldx));
662:   if (ldx < m) {
663:     PetscCall(MatDenseGetArrayRead(B, &b));
664:     PetscCall(PetscMalloc1(nrhs * m, &y));
665:     if (ldb == m) {
666:       PetscCall(PetscArraycpy(y, b, ldb * nrhs));
667:     } else {
668:       for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&y[j * m], &b[j * ldb], m));
669:     }
670:     ldy = m;
671:     PetscCall(MatDenseRestoreArrayRead(B, &b));
672:   } else {
673:     if (ldb == ldx) {
674:       PetscCall(MatCopy(B, X, SAME_NONZERO_PATTERN));
675:       PetscCall(MatDenseGetArray(X, &y));
676:     } else {
677:       PetscCall(MatDenseGetArray(X, &y));
678:       PetscCall(MatDenseGetArrayRead(B, &b));
679:       for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&y[j * ldx], &b[j * ldb], m));
680:       PetscCall(MatDenseRestoreArrayRead(B, &b));
681:     }
682:     ldy = ldx;
683:   }
684:   *_y    = y;
685:   *_ldy  = ldy;
686:   *_k    = k;
687:   *_m    = m;
688:   *_nrhs = nrhs;
689:   PetscFunctionReturn(PETSC_SUCCESS);
690: }

692: static PetscErrorCode MatMatSolve_SeqDense_TearDown(Mat A, Mat B, Mat X, PetscScalar **_y, PetscBLASInt *_ldy, PetscBLASInt *_m, PetscBLASInt *_nrhs, PetscBLASInt *_k)
693: {
694:   PetscScalar *y;
695:   PetscInt     _ldx;
696:   PetscBLASInt k, ldy, nrhs, ldx = 0;

698:   PetscFunctionBegin;
699:   y    = *_y;
700:   *_y  = NULL;
701:   k    = *_k;
702:   ldy  = *_ldy;
703:   nrhs = *_nrhs;
704:   PetscCall(MatDenseGetLDA(X, &_ldx));
705:   PetscCall(PetscBLASIntCast(_ldx, &ldx));
706:   if (ldx != ldy) {
707:     PetscScalar *xv;
708:     PetscCall(MatDenseGetArray(X, &xv));
709:     for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&xv[j * ldx], &y[j * ldy], k));
710:     PetscCall(MatDenseRestoreArray(X, &xv));
711:     PetscCall(PetscFree(y));
712:   } else {
713:     PetscCall(MatDenseRestoreArray(X, &y));
714:   }
715:   PetscFunctionReturn(PETSC_SUCCESS);
716: }

718: static PetscErrorCode MatMatSolve_SeqDense_LU(Mat A, Mat B, Mat X)
719: {
720:   PetscScalar *y;
721:   PetscBLASInt m, k, ldy, nrhs;

723:   PetscFunctionBegin;
724:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
725:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, ldy, m, nrhs, k, PETSC_FALSE));
726:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
727:   PetscFunctionReturn(PETSC_SUCCESS);
728: }

730: static PetscErrorCode MatMatSolveTranspose_SeqDense_LU(Mat A, Mat B, Mat X)
731: {
732:   PetscScalar *y;
733:   PetscBLASInt m, k, ldy, nrhs;

735:   PetscFunctionBegin;
736:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
737:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, ldy, m, nrhs, k, PETSC_TRUE));
738:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
739:   PetscFunctionReturn(PETSC_SUCCESS);
740: }

742: static PetscErrorCode MatMatSolve_SeqDense_Cholesky(Mat A, Mat B, Mat X)
743: {
744:   PetscScalar *y;
745:   PetscBLASInt m, k, ldy, nrhs;

747:   PetscFunctionBegin;
748:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
749:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, ldy, m, nrhs, k, PETSC_FALSE));
750:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
751:   PetscFunctionReturn(PETSC_SUCCESS);
752: }

754: static PetscErrorCode MatMatSolveTranspose_SeqDense_Cholesky(Mat A, Mat B, Mat X)
755: {
756:   PetscScalar *y;
757:   PetscBLASInt m, k, ldy, nrhs;

759:   PetscFunctionBegin;
760:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
761:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, ldy, m, nrhs, k, PETSC_TRUE));
762:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
763:   PetscFunctionReturn(PETSC_SUCCESS);
764: }

766: static PetscErrorCode MatMatSolve_SeqDense_QR(Mat A, Mat B, Mat X)
767: {
768:   PetscScalar *y;
769:   PetscBLASInt m, k, ldy, nrhs;

771:   PetscFunctionBegin;
772:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
773:   PetscCall(MatSolve_SeqDense_Internal_QR(A, y, ldy, m, nrhs, k));
774:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
775:   PetscFunctionReturn(PETSC_SUCCESS);
776: }

778: static PetscErrorCode MatMatSolveTranspose_SeqDense_QR(Mat A, Mat B, Mat X)
779: {
780:   PetscScalar *y;
781:   PetscBLASInt m, k, ldy, nrhs;

783:   PetscFunctionBegin;
784:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
785:   PetscCall(MatSolveTranspose_SeqDense_Internal_QR(A, y, ldy, m, nrhs, k));
786:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
787:   PetscFunctionReturn(PETSC_SUCCESS);
788: }

790: /* COMMENT: I have chosen to hide row permutation in the pivots,
791:    rather than put it in the Mat->row slot.*/
792: PetscErrorCode MatLUFactor_SeqDense(Mat A, IS row, IS col, const MatFactorInfo *minfo)
793: {
794:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
795:   PetscBLASInt  n, m, info;

797:   PetscFunctionBegin;
798:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
799:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
800:   if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
801:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
802:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
803:   PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&m, &n, mat->v, &mat->lda, mat->pivots, &info));
804:   PetscCall(PetscFPTrapPop());

806:   PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to LU factorization %" PetscBLASInt_FMT, info);
807:   PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Bad LU factorization %" PetscBLASInt_FMT, info);

809:   A->ops->solve             = MatSolve_SeqDense_LU;
810:   A->ops->matsolve          = MatMatSolve_SeqDense_LU;
811:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense_LU;
812:   A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_LU;
813:   A->factortype             = MAT_FACTOR_LU;

815:   PetscCall(PetscFree(A->solvertype));
816:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

818:   PetscCall(PetscLogFlops((2.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3));
819:   PetscFunctionReturn(PETSC_SUCCESS);
820: }

822: static PetscErrorCode MatLUFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
823: {
824:   MatFactorInfo info;

826:   PetscFunctionBegin;
827:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
828:   PetscUseTypeMethod(fact, lufactor, NULL, NULL, &info);
829:   PetscFunctionReturn(PETSC_SUCCESS);
830: }

832: PetscErrorCode MatLUFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, IS col, const MatFactorInfo *info)
833: {
834:   PetscFunctionBegin;
835:   fact->preallocated         = PETSC_TRUE;
836:   fact->assembled            = PETSC_TRUE;
837:   fact->ops->lufactornumeric = MatLUFactorNumeric_SeqDense;
838:   PetscFunctionReturn(PETSC_SUCCESS);
839: }

841: /* Cholesky as L*L^T or L*D*L^T and the symmetric/hermitian complex variants */
842: PetscErrorCode MatCholeskyFactor_SeqDense(Mat A, IS perm, const MatFactorInfo *factinfo)
843: {
844:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
845:   PetscBLASInt  info, n;

847:   PetscFunctionBegin;
848:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
849:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
850:   if (A->spd == PETSC_BOOL3_TRUE) {
851:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
852:     PetscCallBLAS("LAPACKpotrf", LAPACKpotrf_("L", &n, mat->v, &mat->lda, &info));
853:     PetscCall(PetscFPTrapPop());
854: #if defined(PETSC_USE_COMPLEX)
855:   } else if (A->hermitian == PETSC_BOOL3_TRUE) {
856:     if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
857:     if (!mat->fwork) {
858:       PetscScalar dummy;

860:       mat->lfwork = -1;
861:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
862:       PetscCallBLAS("LAPACKhetrf", LAPACKhetrf_("L", &n, mat->v, &mat->lda, mat->pivots, &dummy, &mat->lfwork, &info));
863:       PetscCall(PetscFPTrapPop());
864:       PetscCall(PetscBLASIntCast((PetscCount)(PetscRealPart(dummy)), &mat->lfwork));
865:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
866:     }
867:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
868:     PetscCallBLAS("LAPACKhetrf", LAPACKhetrf_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
869:     PetscCall(PetscFPTrapPop());
870: #endif
871:   } else { /* symmetric case */
872:     if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
873:     if (!mat->fwork) {
874:       PetscScalar dummy;

876:       mat->lfwork = -1;
877:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
878:       PetscCallBLAS("LAPACKsytrf", LAPACKsytrf_("L", &n, mat->v, &mat->lda, mat->pivots, &dummy, &mat->lfwork, &info));
879:       PetscCall(PetscFPTrapPop());
880:       PetscCall(PetscBLASIntCast((PetscCount)(PetscRealPart(dummy)), &mat->lfwork));
881:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
882:     }
883:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
884:     PetscCallBLAS("LAPACKsytrf", LAPACKsytrf_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
885:     PetscCall(PetscFPTrapPop());
886:   }
887:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT, "Bad factorization: zero pivot in row %" PetscBLASInt_FMT, info - 1);

889:   A->ops->solve             = MatSolve_SeqDense_Cholesky;
890:   A->ops->matsolve          = MatMatSolve_SeqDense_Cholesky;
891:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense_Cholesky;
892:   A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_Cholesky;
893:   A->factortype             = MAT_FACTOR_CHOLESKY;

895:   PetscCall(PetscFree(A->solvertype));
896:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

898:   PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
899:   PetscFunctionReturn(PETSC_SUCCESS);
900: }

902: static PetscErrorCode MatCholeskyFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
903: {
904:   MatFactorInfo info;

906:   PetscFunctionBegin;
907:   info.fill = 1.0;

909:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
910:   PetscUseTypeMethod(fact, choleskyfactor, NULL, &info);
911:   PetscFunctionReturn(PETSC_SUCCESS);
912: }

914: PetscErrorCode MatCholeskyFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, const MatFactorInfo *info)
915: {
916:   PetscFunctionBegin;
917:   fact->assembled                  = PETSC_TRUE;
918:   fact->preallocated               = PETSC_TRUE;
919:   fact->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqDense;
920:   PetscFunctionReturn(PETSC_SUCCESS);
921: }

923: PetscErrorCode MatQRFactor_SeqDense(Mat A, IS col, const MatFactorInfo *minfo)
924: {
925:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
926:   PetscBLASInt  n, m, info, min, max;

928:   PetscFunctionBegin;
929:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
930:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
931:   max = PetscMax(m, n);
932:   min = PetscMin(m, n);
933:   if (!mat->tau) { PetscCall(PetscMalloc1(min, &mat->tau)); }
934:   if (!mat->pivots) { PetscCall(PetscMalloc1(n, &mat->pivots)); }
935:   if (!mat->qrrhs) PetscCall(MatCreateVecs(A, NULL, &mat->qrrhs));
936:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
937:   if (!mat->fwork) {
938:     PetscScalar dummy;

940:     mat->lfwork = -1;
941:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
942:     PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&m, &n, mat->v, &mat->lda, mat->tau, &dummy, &mat->lfwork, &info));
943:     PetscCall(PetscFPTrapPop());
944:     PetscCall(PetscBLASIntCast((PetscCount)(PetscRealPart(dummy)), &mat->lfwork));
945:     PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
946:   }
947:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
948:   PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&m, &n, mat->v, &mat->lda, mat->tau, mat->fwork, &mat->lfwork, &info));
949:   PetscCall(PetscFPTrapPop());
950:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to QR factorization %" PetscBLASInt_FMT, info);
951:   // TODO: try to estimate rank or test for and use geqp3 for rank revealing QR.  For now just say rank is min of m and n
952:   mat->rank = min;

954:   A->ops->solve    = MatSolve_SeqDense_QR;
955:   A->ops->matsolve = MatMatSolve_SeqDense_QR;
956:   A->factortype    = MAT_FACTOR_QR;
957:   if (m == n) {
958:     A->ops->solvetranspose    = MatSolveTranspose_SeqDense_QR;
959:     A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_QR;
960:   }

962:   PetscCall(PetscFree(A->solvertype));
963:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

965:   PetscCall(PetscLogFlops(2.0 * min * min * (max - min / 3.0)));
966:   PetscFunctionReturn(PETSC_SUCCESS);
967: }

969: static PetscErrorCode MatQRFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
970: {
971:   MatFactorInfo info;

973:   PetscFunctionBegin;
974:   info.fill = 1.0;

976:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
977:   PetscUseMethod(fact, "MatQRFactor_C", (Mat, IS, const MatFactorInfo *), (fact, NULL, &info));
978:   PetscFunctionReturn(PETSC_SUCCESS);
979: }

981: PetscErrorCode MatQRFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, const MatFactorInfo *info)
982: {
983:   PetscFunctionBegin;
984:   fact->assembled    = PETSC_TRUE;
985:   fact->preallocated = PETSC_TRUE;
986:   PetscCall(PetscObjectComposeFunction((PetscObject)fact, "MatQRFactorNumeric_C", MatQRFactorNumeric_SeqDense));
987:   PetscFunctionReturn(PETSC_SUCCESS);
988: }

990: /* uses LAPACK */
991: PETSC_INTERN PetscErrorCode MatGetFactor_seqdense_petsc(Mat A, MatFactorType ftype, Mat *fact)
992: {
993:   PetscFunctionBegin;
994:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), fact));
995:   PetscCall(MatSetSizes(*fact, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
996:   PetscCall(MatSetType(*fact, MATDENSE));
997:   (*fact)->trivialsymbolic = PETSC_TRUE;
998:   if (ftype == MAT_FACTOR_LU || ftype == MAT_FACTOR_ILU) {
999:     (*fact)->ops->lufactorsymbolic  = MatLUFactorSymbolic_SeqDense;
1000:     (*fact)->ops->ilufactorsymbolic = MatLUFactorSymbolic_SeqDense;
1001:   } else if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
1002:     (*fact)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqDense;
1003:   } else if (ftype == MAT_FACTOR_QR) {
1004:     PetscCall(PetscObjectComposeFunction((PetscObject)*fact, "MatQRFactorSymbolic_C", MatQRFactorSymbolic_SeqDense));
1005:   }
1006:   (*fact)->factortype = ftype;

1008:   PetscCall(PetscFree((*fact)->solvertype));
1009:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*fact)->solvertype));
1010:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_LU]));
1011:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_ILU]));
1012:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_CHOLESKY]));
1013:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_ICC]));
1014:   PetscFunctionReturn(PETSC_SUCCESS);
1015: }

1017: static PetscErrorCode MatSOR_SeqDense(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal shift, PetscInt its, PetscInt lits, Vec xx)
1018: {
1019:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1020:   PetscScalar       *x, *v = mat->v, zero = 0.0, xt;
1021:   const PetscScalar *b;
1022:   PetscInt           m = A->rmap->n, i;
1023:   PetscBLASInt       o = 1, bm = 0;

1025:   PetscFunctionBegin;
1026: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1027:   PetscCheck(A->offloadmask != PETSC_OFFLOAD_GPU, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not implemented");
1028: #endif
1029:   if (shift == -1) shift = 0.0; /* negative shift indicates do not error on zero diagonal; this code never zeros on zero diagonal */
1030:   PetscCall(PetscBLASIntCast(m, &bm));
1031:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1032:     /* this is a hack fix, should have another version without the second BLASdotu */
1033:     PetscCall(VecSet(xx, zero));
1034:   }
1035:   PetscCall(VecGetArray(xx, &x));
1036:   PetscCall(VecGetArrayRead(bb, &b));
1037:   its = its * lits;
1038:   PetscCheck(its > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Relaxation requires global its %" PetscInt_FMT " and local its %" PetscInt_FMT " both positive", its, lits);
1039:   while (its--) {
1040:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1041:       for (i = 0; i < m; i++) {
1042:         PetscCallBLAS("BLASdotu", xt = b[i] - BLASdotu_(&bm, v + i, &bm, x, &o));
1043:         x[i] = (1. - omega) * x[i] + omega * (xt + v[i + i * m] * x[i]) / (v[i + i * m] + shift);
1044:       }
1045:     }
1046:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1047:       for (i = m - 1; i >= 0; i--) {
1048:         PetscCallBLAS("BLASdotu", xt = b[i] - BLASdotu_(&bm, v + i, &bm, x, &o));
1049:         x[i] = (1. - omega) * x[i] + omega * (xt + v[i + i * m] * x[i]) / (v[i + i * m] + shift);
1050:       }
1051:     }
1052:   }
1053:   PetscCall(VecRestoreArrayRead(bb, &b));
1054:   PetscCall(VecRestoreArray(xx, &x));
1055:   PetscFunctionReturn(PETSC_SUCCESS);
1056: }

1058: static PetscErrorCode MatMultColumnRangeKernel_SeqDense(Mat A, Vec xx, Vec yy, PetscInt c_start, PetscInt c_end, PetscBool trans, PetscBool herm)
1059: {
1060:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1061:   PetscScalar       *y, _DOne = 1.0, _DZero = 0.0;
1062:   PetscBLASInt       m, n, _One             = 1;
1063:   const PetscScalar *v = mat->v, *x;

1065:   PetscFunctionBegin;
1066:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1067:   PetscCall(PetscBLASIntCast(c_end - c_start, &n));
1068:   PetscCall(VecGetArrayRead(xx, &x));
1069:   PetscCall(VecGetArrayWrite(yy, &y));
1070:   if (!m || !n) {
1071:     PetscBLASInt i;
1072:     if (trans)
1073:       for (i = 0; i < n; i++) y[i] = 0.0;
1074:     else
1075:       for (i = 0; i < m; i++) y[i] = 0.0;
1076:   } else {
1077:     if (trans) {
1078:       if (herm) PetscCallBLAS("BLASgemv", BLASgemv_("C", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DZero, y + c_start, &_One));
1079:       else PetscCallBLAS("BLASgemv", BLASgemv_("T", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DZero, y + c_start, &_One));
1080:     } else {
1081:       PetscCallBLAS("BLASgemv", BLASgemv_("N", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x + c_start, &_One, &_DZero, y, &_One));
1082:     }
1083:     PetscCall(PetscLogFlops(2.0 * m * n - n));
1084:   }
1085:   PetscCall(VecRestoreArrayRead(xx, &x));
1086:   PetscCall(VecRestoreArrayWrite(yy, &y));
1087:   PetscFunctionReturn(PETSC_SUCCESS);
1088: }

1090: PetscErrorCode MatMultHermitianTransposeColumnRange_SeqDense(Mat A, Vec xx, Vec yy, PetscInt c_start, PetscInt c_end)
1091: {
1092:   PetscFunctionBegin;
1093:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, c_start, c_end, PETSC_TRUE, PETSC_TRUE));
1094:   PetscFunctionReturn(PETSC_SUCCESS);
1095: }

1097: PetscErrorCode MatMult_SeqDense(Mat A, Vec xx, Vec yy)
1098: {
1099:   PetscFunctionBegin;
1100:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, 0, A->cmap->n, PETSC_FALSE, PETSC_FALSE));
1101:   PetscFunctionReturn(PETSC_SUCCESS);
1102: }

1104: PetscErrorCode MatMultTranspose_SeqDense(Mat A, Vec xx, Vec yy)
1105: {
1106:   PetscFunctionBegin;
1107:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_FALSE));
1108:   PetscFunctionReturn(PETSC_SUCCESS);
1109: }

1111: PetscErrorCode MatMultHermitianTranspose_SeqDense(Mat A, Vec xx, Vec yy)
1112: {
1113:   PetscFunctionBegin;
1114:   PetscCall(MatMultColumnRangeKernel_SeqDense(A, xx, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_TRUE));
1115:   PetscFunctionReturn(PETSC_SUCCESS);
1116: }

1118: static PetscErrorCode MatMultAddColumnRangeKernel_SeqDense(Mat A, Vec xx, Vec zz, Vec yy, PetscInt c_start, PetscInt c_end, PetscBool trans, PetscBool herm)
1119: {
1120:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1121:   const PetscScalar *v   = mat->v, *x;
1122:   PetscScalar       *y, _DOne = 1.0;
1123:   PetscBLASInt       m, n, _One = 1;

1125:   PetscFunctionBegin;
1126:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1127:   PetscCall(PetscBLASIntCast(c_end - c_start, &n));
1128:   PetscCall(VecCopy(zz, yy));
1129:   if (!m || !n) PetscFunctionReturn(PETSC_SUCCESS);
1130:   PetscCall(VecGetArray(yy, &y));
1131:   PetscCall(VecGetArrayRead(xx, &x));
1132:   if (trans) {
1133:     if (herm) PetscCallBLAS("BLASgemv", BLASgemv_("C", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DOne, y + c_start, &_One));
1134:     else PetscCallBLAS("BLASgemv", BLASgemv_("T", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x, &_One, &_DOne, y + c_start, &_One));
1135:   } else {
1136:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &m, &n, &_DOne, v + c_start * mat->lda, &mat->lda, x + c_start, &_One, &_DOne, y, &_One));
1137:   }
1138:   PetscCall(VecRestoreArrayRead(xx, &x));
1139:   PetscCall(VecRestoreArray(yy, &y));
1140:   PetscCall(PetscLogFlops(2.0 * m * n));
1141:   PetscFunctionReturn(PETSC_SUCCESS);
1142: }

1144: PetscErrorCode MatMultAddColumnRange_SeqDense(Mat A, Vec xx, Vec zz, Vec yy, PetscInt c_start, PetscInt c_end)
1145: {
1146:   PetscFunctionBegin;
1147:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, c_start, c_end, PETSC_FALSE, PETSC_FALSE));
1148:   PetscFunctionReturn(PETSC_SUCCESS);
1149: }

1151: PetscErrorCode MatMultHermitianTransposeAddColumnRange_SeqDense(Mat A, Vec xx, Vec zz, Vec yy, PetscInt c_start, PetscInt c_end)
1152: {
1153:   PetscFunctionBegin;
1154:   PetscMPIInt rank;
1155:   PetscCallMPI(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
1156:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, c_start, c_end, PETSC_TRUE, PETSC_TRUE));
1157:   PetscFunctionReturn(PETSC_SUCCESS);
1158: }

1160: PetscErrorCode MatMultAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1161: {
1162:   PetscFunctionBegin;
1163:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, 0, A->cmap->n, PETSC_FALSE, PETSC_FALSE));
1164:   PetscFunctionReturn(PETSC_SUCCESS);
1165: }

1167: PetscErrorCode MatMultTransposeAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1168: {
1169:   PetscFunctionBegin;
1170:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_FALSE));
1171:   PetscFunctionReturn(PETSC_SUCCESS);
1172: }

1174: PetscErrorCode MatMultHermitianTransposeAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1175: {
1176:   PetscFunctionBegin;
1177:   PetscCall(MatMultAddColumnRangeKernel_SeqDense(A, xx, zz, yy, 0, A->cmap->n, PETSC_TRUE, PETSC_TRUE));
1178:   PetscFunctionReturn(PETSC_SUCCESS);
1179: }

1181: static PetscErrorCode MatGetRow_SeqDense(Mat A, PetscInt row, PetscInt *ncols, PetscInt **cols, PetscScalar **vals)
1182: {
1183:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1184:   PetscInt      i;

1186:   PetscFunctionBegin;
1187:   if (ncols) *ncols = A->cmap->n;
1188:   if (cols) {
1189:     PetscCall(PetscMalloc1(A->cmap->n, cols));
1190:     for (i = 0; i < A->cmap->n; i++) (*cols)[i] = i;
1191:   }
1192:   if (vals) {
1193:     const PetscScalar *v;

1195:     PetscCall(MatDenseGetArrayRead(A, &v));
1196:     PetscCall(PetscMalloc1(A->cmap->n, vals));
1197:     v += row;
1198:     for (i = 0; i < A->cmap->n; i++) {
1199:       (*vals)[i] = *v;
1200:       v += mat->lda;
1201:     }
1202:     PetscCall(MatDenseRestoreArrayRead(A, &v));
1203:   }
1204:   PetscFunctionReturn(PETSC_SUCCESS);
1205: }

1207: static PetscErrorCode MatRestoreRow_SeqDense(Mat A, PetscInt row, PetscInt *ncols, PetscInt **cols, PetscScalar **vals)
1208: {
1209:   PetscFunctionBegin;
1210:   if (cols) PetscCall(PetscFree(*cols));
1211:   if (vals) PetscCall(PetscFree(*vals));
1212:   PetscFunctionReturn(PETSC_SUCCESS);
1213: }

1215: static PetscErrorCode MatSetValues_SeqDense(Mat A, PetscInt m, const PetscInt indexm[], PetscInt n, const PetscInt indexn[], const PetscScalar v[], InsertMode addv)
1216: {
1217:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1218:   PetscScalar  *av;
1219:   PetscInt      i, j, idx = 0;
1220: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1221:   PetscOffloadMask oldf;
1222: #endif

1224:   PetscFunctionBegin;
1225:   PetscCall(MatDenseGetArray(A, &av));
1226:   if (!mat->roworiented) {
1227:     if (addv == INSERT_VALUES) {
1228:       for (j = 0; j < n; j++) {
1229:         if (indexn[j] < 0) {
1230:           idx += m;
1231:           continue;
1232:         }
1233:         PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1234:         for (i = 0; i < m; i++) {
1235:           if (indexm[i] < 0) {
1236:             idx++;
1237:             continue;
1238:           }
1239:           PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1240:           av[indexn[j] * mat->lda + indexm[i]] = v ? v[idx++] : (idx++, 0.0);
1241:         }
1242:       }
1243:     } else {
1244:       for (j = 0; j < n; j++) {
1245:         if (indexn[j] < 0) {
1246:           idx += m;
1247:           continue;
1248:         }
1249:         PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1250:         for (i = 0; i < m; i++) {
1251:           if (indexm[i] < 0) {
1252:             idx++;
1253:             continue;
1254:           }
1255:           PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1256:           av[indexn[j] * mat->lda + indexm[i]] += v ? v[idx++] : (idx++, 0.0);
1257:         }
1258:       }
1259:     }
1260:   } else {
1261:     if (addv == INSERT_VALUES) {
1262:       for (i = 0; i < m; i++) {
1263:         if (indexm[i] < 0) {
1264:           idx += n;
1265:           continue;
1266:         }
1267:         PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1268:         for (j = 0; j < n; j++) {
1269:           if (indexn[j] < 0) {
1270:             idx++;
1271:             continue;
1272:           }
1273:           PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1274:           av[indexn[j] * mat->lda + indexm[i]] = v ? v[idx++] : (idx++, 0.0);
1275:         }
1276:       }
1277:     } else {
1278:       for (i = 0; i < m; i++) {
1279:         if (indexm[i] < 0) {
1280:           idx += n;
1281:           continue;
1282:         }
1283:         PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1284:         for (j = 0; j < n; j++) {
1285:           if (indexn[j] < 0) {
1286:             idx++;
1287:             continue;
1288:           }
1289:           PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1290:           av[indexn[j] * mat->lda + indexm[i]] += v ? v[idx++] : (idx++, 0.0);
1291:         }
1292:       }
1293:     }
1294:   }
1295:   /* hack to prevent unneeded copy to the GPU while returning the array */
1296: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1297:   oldf           = A->offloadmask;
1298:   A->offloadmask = PETSC_OFFLOAD_GPU;
1299: #endif
1300:   PetscCall(MatDenseRestoreArray(A, &av));
1301: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1302:   A->offloadmask = (oldf == PETSC_OFFLOAD_UNALLOCATED ? PETSC_OFFLOAD_UNALLOCATED : PETSC_OFFLOAD_CPU);
1303: #endif
1304:   PetscFunctionReturn(PETSC_SUCCESS);
1305: }

1307: static PetscErrorCode MatGetValues_SeqDense(Mat A, PetscInt m, const PetscInt indexm[], PetscInt n, const PetscInt indexn[], PetscScalar v[])
1308: {
1309:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1310:   const PetscScalar *vv;
1311:   PetscInt           i, j;

1313:   PetscFunctionBegin;
1314:   PetscCall(MatDenseGetArrayRead(A, &vv));
1315:   /* row-oriented output */
1316:   for (i = 0; i < m; i++) {
1317:     if (indexm[i] < 0) {
1318:       v += n;
1319:       continue;
1320:     }
1321:     PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested larger than number rows %" PetscInt_FMT, indexm[i], A->rmap->n);
1322:     for (j = 0; j < n; j++) {
1323:       if (indexn[j] < 0) {
1324:         v++;
1325:         continue;
1326:       }
1327:       PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column %" PetscInt_FMT " requested larger than number columns %" PetscInt_FMT, indexn[j], A->cmap->n);
1328:       *v++ = vv[indexn[j] * mat->lda + indexm[i]];
1329:     }
1330:   }
1331:   PetscCall(MatDenseRestoreArrayRead(A, &vv));
1332:   PetscFunctionReturn(PETSC_SUCCESS);
1333: }

1335: PetscErrorCode MatView_Dense_Binary(Mat mat, PetscViewer viewer)
1336: {
1337:   PetscBool          skipHeader;
1338:   PetscViewerFormat  format;
1339:   PetscInt           header[4], M, N, m, lda, i, j;
1340:   PetscCount         k;
1341:   const PetscScalar *v;
1342:   PetscScalar       *vwork;

1344:   PetscFunctionBegin;
1345:   PetscCall(PetscViewerSetUp(viewer));
1346:   PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));
1347:   PetscCall(PetscViewerGetFormat(viewer, &format));
1348:   if (skipHeader) format = PETSC_VIEWER_NATIVE;

1350:   PetscCall(MatGetSize(mat, &M, &N));

1352:   /* write matrix header */
1353:   header[0] = MAT_FILE_CLASSID;
1354:   header[1] = M;
1355:   header[2] = N;
1356:   header[3] = (format == PETSC_VIEWER_NATIVE) ? MATRIX_BINARY_FORMAT_DENSE : M * N;
1357:   if (!skipHeader) PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1359:   PetscCall(MatGetLocalSize(mat, &m, NULL));
1360:   if (format != PETSC_VIEWER_NATIVE) {
1361:     PetscInt nnz = m * N, *iwork;
1362:     /* store row lengths for each row */
1363:     PetscCall(PetscMalloc1(nnz, &iwork));
1364:     for (i = 0; i < m; i++) iwork[i] = N;
1365:     PetscCall(PetscViewerBinaryWriteAll(viewer, iwork, m, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1366:     /* store column indices (zero start index) */
1367:     for (k = 0, i = 0; i < m; i++)
1368:       for (j = 0; j < N; j++, k++) iwork[k] = j;
1369:     PetscCall(PetscViewerBinaryWriteAll(viewer, iwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1370:     PetscCall(PetscFree(iwork));
1371:   }
1372:   /* store matrix values as a dense matrix in row major order */
1373:   PetscCall(PetscMalloc1(m * N, &vwork));
1374:   PetscCall(MatDenseGetArrayRead(mat, &v));
1375:   PetscCall(MatDenseGetLDA(mat, &lda));
1376:   for (k = 0, i = 0; i < m; i++)
1377:     for (j = 0; j < N; j++, k++) vwork[k] = v[i + (size_t)lda * j];
1378:   PetscCall(MatDenseRestoreArrayRead(mat, &v));
1379:   PetscCall(PetscViewerBinaryWriteAll(viewer, vwork, m * N, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1380:   PetscCall(PetscFree(vwork));
1381:   PetscFunctionReturn(PETSC_SUCCESS);
1382: }

1384: PetscErrorCode MatLoad_Dense_Binary(Mat mat, PetscViewer viewer)
1385: {
1386:   PetscBool    skipHeader;
1387:   PetscInt     header[4], M, N, m, nz, lda, i, j, k;
1388:   PetscInt     rows, cols;
1389:   PetscScalar *v, *vwork;

1391:   PetscFunctionBegin;
1392:   PetscCall(PetscViewerSetUp(viewer));
1393:   PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));

1395:   if (!skipHeader) {
1396:     PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
1397:     PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
1398:     M = header[1];
1399:     N = header[2];
1400:     PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
1401:     PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
1402:     nz = header[3];
1403:     PetscCheck(nz == MATRIX_BINARY_FORMAT_DENSE || nz >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Unknown matrix format %" PetscInt_FMT " in file", nz);
1404:   } else {
1405:     PetscCall(MatGetSize(mat, &M, &N));
1406:     PetscCheck(M >= 0 && N >= 0, PETSC_COMM_SELF, PETSC_ERR_USER, "Matrix binary file header was skipped, thus the user must specify the global sizes of input matrix");
1407:     nz = MATRIX_BINARY_FORMAT_DENSE;
1408:   }

1410:   /* setup global sizes if not set */
1411:   if (mat->rmap->N < 0) mat->rmap->N = M;
1412:   if (mat->cmap->N < 0) mat->cmap->N = N;
1413:   PetscCall(MatSetUp(mat));
1414:   /* check if global sizes are correct */
1415:   PetscCall(MatGetSize(mat, &rows, &cols));
1416:   PetscCheck(M == rows && N == cols, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

1418:   PetscCall(MatGetSize(mat, NULL, &N));
1419:   PetscCall(MatGetLocalSize(mat, &m, NULL));
1420:   PetscCall(MatDenseGetArray(mat, &v));
1421:   PetscCall(MatDenseGetLDA(mat, &lda));
1422:   if (nz == MATRIX_BINARY_FORMAT_DENSE) { /* matrix in file is dense format */
1423:     PetscCount nnz = (size_t)m * N;
1424:     /* read in matrix values */
1425:     PetscCall(PetscMalloc1(nnz, &vwork));
1426:     PetscCall(PetscViewerBinaryReadAll(viewer, vwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1427:     /* store values in column major order */
1428:     for (j = 0; j < N; j++)
1429:       for (i = 0; i < m; i++) v[i + (size_t)lda * j] = vwork[(size_t)i * N + j];
1430:     PetscCall(PetscFree(vwork));
1431:   } else { /* matrix in file is sparse format */
1432:     PetscInt nnz = 0, *rlens, *icols;
1433:     /* read in row lengths */
1434:     PetscCall(PetscMalloc1(m, &rlens));
1435:     PetscCall(PetscViewerBinaryReadAll(viewer, rlens, m, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1436:     for (i = 0; i < m; i++) nnz += rlens[i];
1437:     /* read in column indices and values */
1438:     PetscCall(PetscMalloc2(nnz, &icols, nnz, &vwork));
1439:     PetscCall(PetscViewerBinaryReadAll(viewer, icols, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1440:     PetscCall(PetscViewerBinaryReadAll(viewer, vwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1441:     /* store values in column major order */
1442:     for (k = 0, i = 0; i < m; i++)
1443:       for (j = 0; j < rlens[i]; j++, k++) v[i + lda * icols[k]] = vwork[k];
1444:     PetscCall(PetscFree(rlens));
1445:     PetscCall(PetscFree2(icols, vwork));
1446:   }
1447:   PetscCall(MatDenseRestoreArray(mat, &v));
1448:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
1449:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
1450:   PetscFunctionReturn(PETSC_SUCCESS);
1451: }

1453: static PetscErrorCode MatLoad_SeqDense(Mat newMat, PetscViewer viewer)
1454: {
1455:   PetscBool isbinary, ishdf5;

1457:   PetscFunctionBegin;
1460:   /* force binary viewer to load .info file if it has not yet done so */
1461:   PetscCall(PetscViewerSetUp(viewer));
1462:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1463:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
1464:   if (isbinary) {
1465:     PetscCall(MatLoad_Dense_Binary(newMat, viewer));
1466:   } else if (ishdf5) {
1467: #if defined(PETSC_HAVE_HDF5)
1468:     PetscCall(MatLoad_Dense_HDF5(newMat, viewer));
1469: #else
1470:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
1471: #endif
1472:   } else {
1473:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
1474:   }
1475:   PetscFunctionReturn(PETSC_SUCCESS);
1476: }

1478: static PetscErrorCode MatView_SeqDense_ASCII(Mat A, PetscViewer viewer)
1479: {
1480:   Mat_SeqDense     *a = (Mat_SeqDense *)A->data;
1481:   PetscInt          i, j;
1482:   const char       *name;
1483:   PetscScalar      *v, *av;
1484:   PetscViewerFormat format;
1485: #if defined(PETSC_USE_COMPLEX)
1486:   PetscBool allreal = PETSC_TRUE;
1487: #endif

1489:   PetscFunctionBegin;
1490:   PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&av));
1491:   PetscCall(PetscViewerGetFormat(viewer, &format));
1492:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1493:     PetscFunctionReturn(PETSC_SUCCESS); /* do nothing for now */
1494:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
1495:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1496:     for (i = 0; i < A->rmap->n; i++) {
1497:       v = av + i;
1498:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1499:       for (j = 0; j < A->cmap->n; j++) {
1500: #if defined(PETSC_USE_COMPLEX)
1501:         if (PetscRealPart(*v) != 0.0 && PetscImaginaryPart(*v) != 0.0) {
1502:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", j, (double)PetscRealPart(*v), (double)PetscImaginaryPart(*v)));
1503:         } else if (PetscRealPart(*v)) {
1504:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", j, (double)PetscRealPart(*v)));
1505:         }
1506: #else
1507:         if (*v) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", j, (double)*v));
1508: #endif
1509:         v += a->lda;
1510:       }
1511:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1512:     }
1513:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1514:   } else {
1515:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1516: #if defined(PETSC_USE_COMPLEX)
1517:     /* determine if matrix has all real values */
1518:     for (j = 0; j < A->cmap->n; j++) {
1519:       v = av + j * a->lda;
1520:       for (i = 0; i < A->rmap->n; i++) {
1521:         if (PetscImaginaryPart(v[i])) {
1522:           allreal = PETSC_FALSE;
1523:           break;
1524:         }
1525:       }
1526:     }
1527: #endif
1528:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
1529:       PetscCall(PetscObjectGetName((PetscObject)A, &name));
1530:       PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", A->rmap->n, A->cmap->n));
1531:       PetscCall(PetscViewerASCIIPrintf(viewer, "%s = zeros(%" PetscInt_FMT ",%" PetscInt_FMT ");\n", name, A->rmap->n, A->cmap->n));
1532:       PetscCall(PetscViewerASCIIPrintf(viewer, "%s = [\n", name));
1533:     }

1535:     for (i = 0; i < A->rmap->n; i++) {
1536:       v = av + i;
1537:       for (j = 0; j < A->cmap->n; j++) {
1538: #if defined(PETSC_USE_COMPLEX)
1539:         if (allreal) {
1540:           PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e ", (double)PetscRealPart(*v)));
1541:         } else {
1542:           PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e + %18.16ei ", (double)PetscRealPart(*v), (double)PetscImaginaryPart(*v)));
1543:         }
1544: #else
1545:         PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e ", (double)*v));
1546: #endif
1547:         v += a->lda;
1548:       }
1549:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1550:     }
1551:     if (format == PETSC_VIEWER_ASCII_MATLAB) PetscCall(PetscViewerASCIIPrintf(viewer, "];\n"));
1552:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1553:   }
1554:   PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&av));
1555:   PetscCall(PetscViewerFlush(viewer));
1556:   PetscFunctionReturn(PETSC_SUCCESS);
1557: }

1559: #include <petscdraw.h>
1560: static PetscErrorCode MatView_SeqDense_Draw_Zoom(PetscDraw draw, void *Aa)
1561: {
1562:   Mat                A = (Mat)Aa;
1563:   PetscInt           m = A->rmap->n, n = A->cmap->n, i, j;
1564:   int                color = PETSC_DRAW_WHITE;
1565:   const PetscScalar *v;
1566:   PetscViewer        viewer;
1567:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
1568:   PetscViewerFormat  format;

1570:   PetscFunctionBegin;
1571:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
1572:   PetscCall(PetscViewerGetFormat(viewer, &format));
1573:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

1575:   /* Loop over matrix elements drawing boxes */
1576:   PetscCall(MatDenseGetArrayRead(A, &v));
1577:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
1578:     PetscDrawCollectiveBegin(draw);
1579:     /* Blue for negative and Red for positive */
1580:     for (j = 0; j < n; j++) {
1581:       x_l = j;
1582:       x_r = x_l + 1.0;
1583:       for (i = 0; i < m; i++) {
1584:         y_l = m - i - 1.0;
1585:         y_r = y_l + 1.0;
1586:         if (PetscRealPart(v[j * m + i]) > 0.) color = PETSC_DRAW_RED;
1587:         else if (PetscRealPart(v[j * m + i]) < 0.) color = PETSC_DRAW_BLUE;
1588:         else continue;
1589:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1590:       }
1591:     }
1592:     PetscDrawCollectiveEnd(draw);
1593:   } else {
1594:     /* use contour shading to indicate magnitude of values */
1595:     /* first determine max of all nonzero values */
1596:     PetscReal minv = 0.0, maxv = 0.0;
1597:     PetscDraw popup;

1599:     for (i = 0; i < m * n; i++) {
1600:       if (PetscAbsScalar(v[i]) > maxv) maxv = PetscAbsScalar(v[i]);
1601:     }
1602:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1603:     PetscCall(PetscDrawGetPopup(draw, &popup));
1604:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1606:     PetscDrawCollectiveBegin(draw);
1607:     for (j = 0; j < n; j++) {
1608:       x_l = j;
1609:       x_r = x_l + 1.0;
1610:       for (i = 0; i < m; i++) {
1611:         y_l   = m - i - 1.0;
1612:         y_r   = y_l + 1.0;
1613:         color = PetscDrawRealToColor(PetscAbsScalar(v[j * m + i]), minv, maxv);
1614:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1615:       }
1616:     }
1617:     PetscDrawCollectiveEnd(draw);
1618:   }
1619:   PetscCall(MatDenseRestoreArrayRead(A, &v));
1620:   PetscFunctionReturn(PETSC_SUCCESS);
1621: }

1623: static PetscErrorCode MatView_SeqDense_Draw(Mat A, PetscViewer viewer)
1624: {
1625:   PetscDraw draw;
1626:   PetscBool isnull;
1627:   PetscReal xr, yr, xl, yl, h, w;

1629:   PetscFunctionBegin;
1630:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1631:   PetscCall(PetscDrawIsNull(draw, &isnull));
1632:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1634:   xr = A->cmap->n;
1635:   yr = A->rmap->n;
1636:   h  = yr / 10.0;
1637:   w  = xr / 10.0;
1638:   xr += w;
1639:   yr += h;
1640:   xl = -w;
1641:   yl = -h;
1642:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1643:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1644:   PetscCall(PetscDrawZoom(draw, MatView_SeqDense_Draw_Zoom, A));
1645:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1646:   PetscCall(PetscDrawSave(draw));
1647:   PetscFunctionReturn(PETSC_SUCCESS);
1648: }

1650: PetscErrorCode MatView_SeqDense(Mat A, PetscViewer viewer)
1651: {
1652:   PetscBool iascii, isbinary, isdraw;

1654:   PetscFunctionBegin;
1655:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1656:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1657:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1658:   if (iascii) PetscCall(MatView_SeqDense_ASCII(A, viewer));
1659:   else if (isbinary) PetscCall(MatView_Dense_Binary(A, viewer));
1660:   else if (isdraw) PetscCall(MatView_SeqDense_Draw(A, viewer));
1661:   PetscFunctionReturn(PETSC_SUCCESS);
1662: }

1664: static PetscErrorCode MatDensePlaceArray_SeqDense(Mat A, const PetscScalar *array)
1665: {
1666:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1668:   PetscFunctionBegin;
1669:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1670:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1671:   PetscCheck(!a->unplacedarray, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseResetArray() first");
1672:   a->unplacedarray       = a->v;
1673:   a->unplaced_user_alloc = a->user_alloc;
1674:   a->v                   = (PetscScalar *)array;
1675:   a->user_alloc          = PETSC_TRUE;
1676: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1677:   A->offloadmask = PETSC_OFFLOAD_CPU;
1678: #endif
1679:   PetscFunctionReturn(PETSC_SUCCESS);
1680: }

1682: static PetscErrorCode MatDenseResetArray_SeqDense(Mat A)
1683: {
1684:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1686:   PetscFunctionBegin;
1687:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1688:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1689:   a->v             = a->unplacedarray;
1690:   a->user_alloc    = a->unplaced_user_alloc;
1691:   a->unplacedarray = NULL;
1692: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1693:   A->offloadmask = PETSC_OFFLOAD_CPU;
1694: #endif
1695:   PetscFunctionReturn(PETSC_SUCCESS);
1696: }

1698: static PetscErrorCode MatDenseReplaceArray_SeqDense(Mat A, const PetscScalar *array)
1699: {
1700:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1702:   PetscFunctionBegin;
1703:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1704:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1705:   if (!a->user_alloc) PetscCall(PetscFree(a->v));
1706:   a->v          = (PetscScalar *)array;
1707:   a->user_alloc = PETSC_FALSE;
1708: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1709:   A->offloadmask = PETSC_OFFLOAD_CPU;
1710: #endif
1711:   PetscFunctionReturn(PETSC_SUCCESS);
1712: }

1714: PetscErrorCode MatDestroy_SeqDense(Mat mat)
1715: {
1716:   Mat_SeqDense *l = (Mat_SeqDense *)mat->data;

1718:   PetscFunctionBegin;
1719:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows %" PetscInt_FMT " Cols %" PetscInt_FMT, mat->rmap->n, mat->cmap->n));
1720:   PetscCall(VecDestroy(&l->qrrhs));
1721:   PetscCall(PetscFree(l->tau));
1722:   PetscCall(PetscFree(l->pivots));
1723:   PetscCall(PetscFree(l->fwork));
1724:   if (!l->user_alloc) PetscCall(PetscFree(l->v));
1725:   if (!l->unplaced_user_alloc) PetscCall(PetscFree(l->unplacedarray));
1726:   PetscCheck(!l->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1727:   PetscCheck(!l->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1728:   PetscCall(VecDestroy(&l->cvec));
1729:   PetscCall(MatDestroy(&l->cmat));
1730:   PetscCall(PetscFree(mat->data));

1732:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
1733:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactor_C", NULL));
1734:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactorSymbolic_C", NULL));
1735:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactorNumeric_C", NULL));
1736:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetLDA_C", NULL));
1737:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseSetLDA_C", NULL));
1738:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArray_C", NULL));
1739:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArray_C", NULL));
1740:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDensePlaceArray_C", NULL));
1741:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseResetArray_C", NULL));
1742:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseReplaceArray_C", NULL));
1743:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArrayRead_C", NULL));
1744:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArrayRead_C", NULL));
1745:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArrayWrite_C", NULL));
1746:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArrayWrite_C", NULL));
1747:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqaij_C", NULL));
1748: #if defined(PETSC_HAVE_ELEMENTAL)
1749:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_elemental_C", NULL));
1750: #endif
1751: #if defined(PETSC_HAVE_SCALAPACK)
1752:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_scalapack_C", NULL));
1753: #endif
1754: #if defined(PETSC_HAVE_CUDA)
1755:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqdensecuda_C", NULL));
1756:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensecuda_seqdensecuda_C", NULL));
1757:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensecuda_seqdense_C", NULL));
1758:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdensecuda_C", NULL));
1759: #endif
1760: #if defined(PETSC_HAVE_HIP)
1761:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqdensehip_C", NULL));
1762:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensehip_seqdensehip_C", NULL));
1763:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensehip_seqdense_C", NULL));
1764:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdensehip_C", NULL));
1765: #endif
1766:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSeqDenseSetPreallocation_C", NULL));
1767:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqaij_seqdense_C", NULL));
1768:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdense_C", NULL));
1769:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqbaij_seqdense_C", NULL));
1770:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqsbaij_seqdense_C", NULL));

1772:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumn_C", NULL));
1773:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumn_C", NULL));
1774:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVec_C", NULL));
1775:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVec_C", NULL));
1776:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVecRead_C", NULL));
1777:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVecRead_C", NULL));
1778:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVecWrite_C", NULL));
1779:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVecWrite_C", NULL));
1780:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetSubMatrix_C", NULL));
1781:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreSubMatrix_C", NULL));
1782:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultAddColumnRange_C", NULL));
1783:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultHermitianTransposeColumnRange_C", NULL));
1784:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMultHermitianTransposeAddColumnRange_C", NULL));
1785:   PetscFunctionReturn(PETSC_SUCCESS);
1786: }

1788: static PetscErrorCode MatTranspose_SeqDense(Mat A, MatReuse reuse, Mat *matout)
1789: {
1790:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1791:   PetscInt      k, j, m = A->rmap->n, M = mat->lda, n = A->cmap->n;
1792:   PetscScalar  *v, tmp;

1794:   PetscFunctionBegin;
1795:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1796:   if (reuse == MAT_INPLACE_MATRIX) {
1797:     if (m == n) { /* in place transpose */
1798:       PetscCall(MatDenseGetArray(A, &v));
1799:       for (j = 0; j < m; j++) {
1800:         for (k = 0; k < j; k++) {
1801:           tmp          = v[j + k * M];
1802:           v[j + k * M] = v[k + j * M];
1803:           v[k + j * M] = tmp;
1804:         }
1805:       }
1806:       PetscCall(MatDenseRestoreArray(A, &v));
1807:     } else { /* reuse memory, temporary allocates new memory */
1808:       PetscScalar *v2;
1809:       PetscLayout  tmplayout;

1811:       PetscCall(PetscMalloc1((size_t)m * n, &v2));
1812:       PetscCall(MatDenseGetArray(A, &v));
1813:       for (j = 0; j < n; j++) {
1814:         for (k = 0; k < m; k++) v2[j + (size_t)k * n] = v[k + (size_t)j * M];
1815:       }
1816:       PetscCall(PetscArraycpy(v, v2, (size_t)m * n));
1817:       PetscCall(PetscFree(v2));
1818:       PetscCall(MatDenseRestoreArray(A, &v));
1819:       /* cleanup size dependent quantities */
1820:       PetscCall(VecDestroy(&mat->cvec));
1821:       PetscCall(MatDestroy(&mat->cmat));
1822:       PetscCall(PetscFree(mat->pivots));
1823:       PetscCall(PetscFree(mat->fwork));
1824:       /* swap row/col layouts */
1825:       PetscCall(PetscBLASIntCast(n, &mat->lda));
1826:       tmplayout = A->rmap;
1827:       A->rmap   = A->cmap;
1828:       A->cmap   = tmplayout;
1829:     }
1830:   } else { /* out-of-place transpose */
1831:     Mat           tmat;
1832:     Mat_SeqDense *tmatd;
1833:     PetscScalar  *v2;
1834:     PetscInt      M2;

1836:     if (reuse == MAT_INITIAL_MATRIX) {
1837:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &tmat));
1838:       PetscCall(MatSetSizes(tmat, A->cmap->n, A->rmap->n, A->cmap->n, A->rmap->n));
1839:       PetscCall(MatSetType(tmat, ((PetscObject)A)->type_name));
1840:       PetscCall(MatSeqDenseSetPreallocation(tmat, NULL));
1841:     } else tmat = *matout;

1843:     PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&v));
1844:     PetscCall(MatDenseGetArray(tmat, &v2));
1845:     tmatd = (Mat_SeqDense *)tmat->data;
1846:     M2    = tmatd->lda;
1847:     for (j = 0; j < n; j++) {
1848:       for (k = 0; k < m; k++) v2[j + k * M2] = v[k + j * M];
1849:     }
1850:     PetscCall(MatDenseRestoreArray(tmat, &v2));
1851:     PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&v));
1852:     PetscCall(MatAssemblyBegin(tmat, MAT_FINAL_ASSEMBLY));
1853:     PetscCall(MatAssemblyEnd(tmat, MAT_FINAL_ASSEMBLY));
1854:     *matout = tmat;
1855:   }
1856:   PetscFunctionReturn(PETSC_SUCCESS);
1857: }

1859: static PetscErrorCode MatEqual_SeqDense(Mat A1, Mat A2, PetscBool *flg)
1860: {
1861:   Mat_SeqDense      *mat1 = (Mat_SeqDense *)A1->data;
1862:   Mat_SeqDense      *mat2 = (Mat_SeqDense *)A2->data;
1863:   PetscInt           i;
1864:   const PetscScalar *v1, *v2;

1866:   PetscFunctionBegin;
1867:   if (A1->rmap->n != A2->rmap->n) {
1868:     *flg = PETSC_FALSE;
1869:     PetscFunctionReturn(PETSC_SUCCESS);
1870:   }
1871:   if (A1->cmap->n != A2->cmap->n) {
1872:     *flg = PETSC_FALSE;
1873:     PetscFunctionReturn(PETSC_SUCCESS);
1874:   }
1875:   PetscCall(MatDenseGetArrayRead(A1, &v1));
1876:   PetscCall(MatDenseGetArrayRead(A2, &v2));
1877:   for (i = 0; i < A1->cmap->n; i++) {
1878:     PetscCall(PetscArraycmp(v1, v2, A1->rmap->n, flg));
1879:     if (*flg == PETSC_FALSE) PetscFunctionReturn(PETSC_SUCCESS);
1880:     v1 += mat1->lda;
1881:     v2 += mat2->lda;
1882:   }
1883:   PetscCall(MatDenseRestoreArrayRead(A1, &v1));
1884:   PetscCall(MatDenseRestoreArrayRead(A2, &v2));
1885:   *flg = PETSC_TRUE;
1886:   PetscFunctionReturn(PETSC_SUCCESS);
1887: }

1889: PetscErrorCode MatGetDiagonal_SeqDense(Mat A, Vec v)
1890: {
1891:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1892:   PetscInt           i, n, len;
1893:   PetscScalar       *x;
1894:   const PetscScalar *vv;

1896:   PetscFunctionBegin;
1897:   PetscCall(VecGetSize(v, &n));
1898:   PetscCall(VecGetArray(v, &x));
1899:   len = PetscMin(A->rmap->n, A->cmap->n);
1900:   PetscCall(MatDenseGetArrayRead(A, &vv));
1901:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming mat and vec");
1902:   for (i = 0; i < len; i++) x[i] = vv[i * mat->lda + i];
1903:   PetscCall(MatDenseRestoreArrayRead(A, &vv));
1904:   PetscCall(VecRestoreArray(v, &x));
1905:   PetscFunctionReturn(PETSC_SUCCESS);
1906: }

1908: static PetscErrorCode MatDiagonalScale_SeqDense(Mat A, Vec ll, Vec rr)
1909: {
1910:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1911:   const PetscScalar *l, *r;
1912:   PetscScalar        x, *v, *vv;
1913:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n;

1915:   PetscFunctionBegin;
1916:   PetscCall(MatDenseGetArray(A, &vv));
1917:   if (ll) {
1918:     PetscCall(VecGetSize(ll, &m));
1919:     PetscCall(VecGetArrayRead(ll, &l));
1920:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vec wrong size");
1921:     for (i = 0; i < m; i++) {
1922:       x = l[i];
1923:       v = vv + i;
1924:       for (j = 0; j < n; j++) {
1925:         (*v) *= x;
1926:         v += mat->lda;
1927:       }
1928:     }
1929:     PetscCall(VecRestoreArrayRead(ll, &l));
1930:     PetscCall(PetscLogFlops(1.0 * n * m));
1931:   }
1932:   if (rr) {
1933:     PetscCall(VecGetSize(rr, &n));
1934:     PetscCall(VecGetArrayRead(rr, &r));
1935:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vec wrong size");
1936:     for (i = 0; i < n; i++) {
1937:       x = r[i];
1938:       v = vv + i * mat->lda;
1939:       for (j = 0; j < m; j++) (*v++) *= x;
1940:     }
1941:     PetscCall(VecRestoreArrayRead(rr, &r));
1942:     PetscCall(PetscLogFlops(1.0 * n * m));
1943:   }
1944:   PetscCall(MatDenseRestoreArray(A, &vv));
1945:   PetscFunctionReturn(PETSC_SUCCESS);
1946: }

1948: PetscErrorCode MatNorm_SeqDense(Mat A, NormType type, PetscReal *nrm)
1949: {
1950:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1951:   PetscScalar  *v, *vv;
1952:   PetscReal     sum = 0.0;
1953:   PetscInt      lda, m = A->rmap->n, i, j;

1955:   PetscFunctionBegin;
1956:   PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&vv));
1957:   PetscCall(MatDenseGetLDA(A, &lda));
1958:   v = vv;
1959:   if (type == NORM_FROBENIUS) {
1960:     if (lda > m) {
1961:       for (j = 0; j < A->cmap->n; j++) {
1962:         v = vv + j * lda;
1963:         for (i = 0; i < m; i++) {
1964:           sum += PetscRealPart(PetscConj(*v) * (*v));
1965:           v++;
1966:         }
1967:       }
1968:     } else {
1969: #if defined(PETSC_USE_REAL___FP16)
1970:       PetscBLASInt one = 1, cnt = A->cmap->n * A->rmap->n;
1971:       PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&cnt, v, &one));
1972:     }
1973: #else
1974:       for (i = 0; i < A->cmap->n * A->rmap->n; i++) {
1975:         sum += PetscRealPart(PetscConj(*v) * (*v));
1976:         v++;
1977:       }
1978:     }
1979:     *nrm = PetscSqrtReal(sum);
1980: #endif
1981:     PetscCall(PetscLogFlops(2.0 * A->cmap->n * A->rmap->n));
1982:   } else if (type == NORM_1) {
1983:     *nrm = 0.0;
1984:     for (j = 0; j < A->cmap->n; j++) {
1985:       v   = vv + j * mat->lda;
1986:       sum = 0.0;
1987:       for (i = 0; i < A->rmap->n; i++) {
1988:         sum += PetscAbsScalar(*v);
1989:         v++;
1990:       }
1991:       if (sum > *nrm) *nrm = sum;
1992:     }
1993:     PetscCall(PetscLogFlops(1.0 * A->cmap->n * A->rmap->n));
1994:   } else if (type == NORM_INFINITY) {
1995:     *nrm = 0.0;
1996:     for (j = 0; j < A->rmap->n; j++) {
1997:       v   = vv + j;
1998:       sum = 0.0;
1999:       for (i = 0; i < A->cmap->n; i++) {
2000:         sum += PetscAbsScalar(*v);
2001:         v += mat->lda;
2002:       }
2003:       if (sum > *nrm) *nrm = sum;
2004:     }
2005:     PetscCall(PetscLogFlops(1.0 * A->cmap->n * A->rmap->n));
2006:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No two norm");
2007:   PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&vv));
2008:   PetscFunctionReturn(PETSC_SUCCESS);
2009: }

2011: static PetscErrorCode MatSetOption_SeqDense(Mat A, MatOption op, PetscBool flg)
2012: {
2013:   Mat_SeqDense *aij = (Mat_SeqDense *)A->data;

2015:   PetscFunctionBegin;
2016:   switch (op) {
2017:   case MAT_ROW_ORIENTED:
2018:     aij->roworiented = flg;
2019:     break;
2020:   case MAT_NEW_NONZERO_LOCATIONS:
2021:   case MAT_NEW_NONZERO_LOCATION_ERR:
2022:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
2023:   case MAT_FORCE_DIAGONAL_ENTRIES:
2024:   case MAT_KEEP_NONZERO_PATTERN:
2025:   case MAT_IGNORE_OFF_PROC_ENTRIES:
2026:   case MAT_USE_HASH_TABLE:
2027:   case MAT_IGNORE_ZERO_ENTRIES:
2028:   case MAT_IGNORE_LOWER_TRIANGULAR:
2029:   case MAT_SORTED_FULL:
2030:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
2031:     break;
2032:   case MAT_SPD:
2033:   case MAT_SYMMETRIC:
2034:   case MAT_STRUCTURALLY_SYMMETRIC:
2035:   case MAT_HERMITIAN:
2036:   case MAT_SYMMETRY_ETERNAL:
2037:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
2038:   case MAT_SPD_ETERNAL:
2039:     break;
2040:   default:
2041:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "unknown option %s", MatOptions[op]);
2042:   }
2043:   PetscFunctionReturn(PETSC_SUCCESS);
2044: }

2046: PetscErrorCode MatZeroEntries_SeqDense(Mat A)
2047: {
2048:   Mat_SeqDense *l   = (Mat_SeqDense *)A->data;
2049:   PetscInt      lda = l->lda, m = A->rmap->n, n = A->cmap->n, j;
2050:   PetscScalar  *v;

2052:   PetscFunctionBegin;
2053:   PetscCall(MatDenseGetArrayWrite(A, &v));
2054:   if (lda > m) {
2055:     for (j = 0; j < n; j++) PetscCall(PetscArrayzero(v + j * lda, m));
2056:   } else {
2057:     PetscCall(PetscArrayzero(v, PetscInt64Mult(m, n)));
2058:   }
2059:   PetscCall(MatDenseRestoreArrayWrite(A, &v));
2060:   PetscFunctionReturn(PETSC_SUCCESS);
2061: }

2063: static PetscErrorCode MatZeroRows_SeqDense(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2064: {
2065:   Mat_SeqDense      *l = (Mat_SeqDense *)A->data;
2066:   PetscInt           m = l->lda, n = A->cmap->n, i, j;
2067:   PetscScalar       *slot, *bb, *v;
2068:   const PetscScalar *xx;

2070:   PetscFunctionBegin;
2071:   if (PetscDefined(USE_DEBUG)) {
2072:     for (i = 0; i < N; i++) {
2073:       PetscCheck(rows[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row requested to be zeroed");
2074:       PetscCheck(rows[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested to be zeroed greater than or equal number of rows %" PetscInt_FMT, rows[i], A->rmap->n);
2075:     }
2076:   }
2077:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);

2079:   /* fix right-hand side if needed */
2080:   if (x && b) {
2081:     PetscCall(VecGetArrayRead(x, &xx));
2082:     PetscCall(VecGetArray(b, &bb));
2083:     for (i = 0; i < N; i++) bb[rows[i]] = diag * xx[rows[i]];
2084:     PetscCall(VecRestoreArrayRead(x, &xx));
2085:     PetscCall(VecRestoreArray(b, &bb));
2086:   }

2088:   PetscCall(MatDenseGetArray(A, &v));
2089:   for (i = 0; i < N; i++) {
2090:     slot = v + rows[i];
2091:     for (j = 0; j < n; j++) {
2092:       *slot = 0.0;
2093:       slot += m;
2094:     }
2095:   }
2096:   if (diag != 0.0) {
2097:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
2098:     for (i = 0; i < N; i++) {
2099:       slot  = v + (m + 1) * rows[i];
2100:       *slot = diag;
2101:     }
2102:   }
2103:   PetscCall(MatDenseRestoreArray(A, &v));
2104:   PetscFunctionReturn(PETSC_SUCCESS);
2105: }

2107: static PetscErrorCode MatDenseGetLDA_SeqDense(Mat A, PetscInt *lda)
2108: {
2109:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;

2111:   PetscFunctionBegin;
2112:   *lda = mat->lda;
2113:   PetscFunctionReturn(PETSC_SUCCESS);
2114: }

2116: PetscErrorCode MatDenseGetArray_SeqDense(Mat A, PetscScalar **array)
2117: {
2118:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;

2120:   PetscFunctionBegin;
2121:   PetscCheck(!mat->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
2122:   *array = mat->v;
2123:   PetscFunctionReturn(PETSC_SUCCESS);
2124: }

2126: PetscErrorCode MatDenseRestoreArray_SeqDense(Mat A, PetscScalar **array)
2127: {
2128:   PetscFunctionBegin;
2129:   if (array) *array = NULL;
2130:   PetscFunctionReturn(PETSC_SUCCESS);
2131: }

2133: /*@
2134:   MatDenseGetLDA - gets the leading dimension of the array returned from `MatDenseGetArray()`

2136:   Not Collective

2138:   Input Parameter:
2139: . A - a `MATDENSE` or `MATDENSECUDA` matrix

2141:   Output Parameter:
2142: . lda - the leading dimension

2144:   Level: intermediate

2146: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseSetLDA()`
2147: @*/
2148: PetscErrorCode MatDenseGetLDA(Mat A, PetscInt *lda)
2149: {
2150:   PetscFunctionBegin;
2152:   PetscAssertPointer(lda, 2);
2153:   MatCheckPreallocated(A, 1);
2154:   PetscUseMethod(A, "MatDenseGetLDA_C", (Mat, PetscInt *), (A, lda));
2155:   PetscFunctionReturn(PETSC_SUCCESS);
2156: }

2158: /*@
2159:   MatDenseSetLDA - Sets the leading dimension of the array used by the `MATDENSE` matrix

2161:   Collective if the matrix layouts have not yet been setup

2163:   Input Parameters:
2164: + A   - a `MATDENSE` or `MATDENSECUDA` matrix
2165: - lda - the leading dimension

2167:   Level: intermediate

2169: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetLDA()`
2170: @*/
2171: PetscErrorCode MatDenseSetLDA(Mat A, PetscInt lda)
2172: {
2173:   PetscFunctionBegin;
2175:   PetscTryMethod(A, "MatDenseSetLDA_C", (Mat, PetscInt), (A, lda));
2176:   PetscFunctionReturn(PETSC_SUCCESS);
2177: }

2179: /*@C
2180:   MatDenseGetArray - gives read-write access to the array where the data for a `MATDENSE` matrix is stored

2182:   Logically Collective

2184:   Input Parameter:
2185: . A - a dense matrix

2187:   Output Parameter:
2188: . array - pointer to the data

2190:   Level: intermediate

2192:   Fortran Notes:
2193:   `MatDenseGetArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatDenseGetArrayF90()`

2195: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2196: @*/
2197: PetscErrorCode MatDenseGetArray(Mat A, PetscScalar *array[])
2198: {
2199:   PetscFunctionBegin;
2201:   PetscAssertPointer(array, 2);
2202:   PetscUseMethod(A, "MatDenseGetArray_C", (Mat, PetscScalar **), (A, array));
2203:   PetscFunctionReturn(PETSC_SUCCESS);
2204: }

2206: /*@C
2207:   MatDenseRestoreArray - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArray()`

2209:   Logically Collective

2211:   Input Parameters:
2212: + A     - a dense matrix
2213: - array - pointer to the data (may be `NULL`)

2215:   Level: intermediate

2217:   Fortran Notes:
2218:   `MatDenseRestoreArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatDenseRestoreArrayF90()`

2220: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2221: @*/
2222: PetscErrorCode MatDenseRestoreArray(Mat A, PetscScalar *array[])
2223: {
2224:   PetscFunctionBegin;
2226:   if (array) PetscAssertPointer(array, 2);
2227:   PetscUseMethod(A, "MatDenseRestoreArray_C", (Mat, PetscScalar **), (A, array));
2228:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2229: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2230:   A->offloadmask = PETSC_OFFLOAD_CPU;
2231: #endif
2232:   PetscFunctionReturn(PETSC_SUCCESS);
2233: }

2235: /*@C
2236:   MatDenseGetArrayRead - gives read-only access to the array where the data for a `MATDENSE` matrix is stored

2238:   Not Collective

2240:   Input Parameter:
2241: . A - a dense matrix

2243:   Output Parameter:
2244: . array - pointer to the data

2246:   Level: intermediate

2248: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayRead()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2249: @*/
2250: PetscErrorCode MatDenseGetArrayRead(Mat A, const PetscScalar *array[])
2251: {
2252:   PetscFunctionBegin;
2254:   PetscAssertPointer(array, 2);
2255:   PetscUseMethod(A, "MatDenseGetArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2256:   PetscFunctionReturn(PETSC_SUCCESS);
2257: }

2259: /*@C
2260:   MatDenseRestoreArrayRead - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArrayRead()`

2262:   Not Collective

2264:   Input Parameters:
2265: + A     - a dense matrix
2266: - array - pointer to the data (may be `NULL`)

2268:   Level: intermediate

2270: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayRead()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2271: @*/
2272: PetscErrorCode MatDenseRestoreArrayRead(Mat A, const PetscScalar *array[])
2273: {
2274:   PetscFunctionBegin;
2276:   if (array) PetscAssertPointer(array, 2);
2277:   PetscUseMethod(A, "MatDenseRestoreArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2278:   PetscFunctionReturn(PETSC_SUCCESS);
2279: }

2281: /*@C
2282:   MatDenseGetArrayWrite - gives write-only access to the array where the data for a `MATDENSE` matrix is stored

2284:   Not Collective

2286:   Input Parameter:
2287: . A - a dense matrix

2289:   Output Parameter:
2290: . array - pointer to the data

2292:   Level: intermediate

2294: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayWrite()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`
2295: @*/
2296: PetscErrorCode MatDenseGetArrayWrite(Mat A, PetscScalar *array[])
2297: {
2298:   PetscFunctionBegin;
2300:   PetscAssertPointer(array, 2);
2301:   PetscUseMethod(A, "MatDenseGetArrayWrite_C", (Mat, PetscScalar **), (A, array));
2302:   PetscFunctionReturn(PETSC_SUCCESS);
2303: }

2305: /*@C
2306:   MatDenseRestoreArrayWrite - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArrayWrite()`

2308:   Not Collective

2310:   Input Parameters:
2311: + A     - a dense matrix
2312: - array - pointer to the data (may be `NULL`)

2314:   Level: intermediate

2316: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayWrite()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`
2317: @*/
2318: PetscErrorCode MatDenseRestoreArrayWrite(Mat A, PetscScalar *array[])
2319: {
2320:   PetscFunctionBegin;
2322:   if (array) PetscAssertPointer(array, 2);
2323:   PetscUseMethod(A, "MatDenseRestoreArrayWrite_C", (Mat, PetscScalar **), (A, array));
2324:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2325: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2326:   A->offloadmask = PETSC_OFFLOAD_CPU;
2327: #endif
2328:   PetscFunctionReturn(PETSC_SUCCESS);
2329: }

2331: /*@C
2332:   MatDenseGetArrayAndMemType - gives read-write access to the array where the data for a `MATDENSE` matrix is stored

2334:   Logically Collective

2336:   Input Parameter:
2337: . A - a dense matrix

2339:   Output Parameters:
2340: + array - pointer to the data
2341: - mtype - memory type of the returned pointer

2343:   Level: intermediate

2345:   Note:
2346:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2347:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2349: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayAndMemType()`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArrayWriteAndMemType()`, `MatDenseGetArrayRead()`,
2350:    `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2351: @*/
2352: PetscErrorCode MatDenseGetArrayAndMemType(Mat A, PetscScalar *array[], PetscMemType *mtype)
2353: {
2354:   PetscBool isMPI;

2356:   PetscFunctionBegin;
2358:   PetscAssertPointer(array, 2);
2359:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2360:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2361:   if (isMPI) {
2362:     /* Dispatch here so that the code can be reused for all subclasses of MATDENSE */
2363:     PetscCall(MatDenseGetArrayAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2364:   } else {
2365:     PetscErrorCode (*fptr)(Mat, PetscScalar **, PetscMemType *);

2367:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayAndMemType_C", &fptr));
2368:     if (fptr) {
2369:       PetscCall((*fptr)(A, array, mtype));
2370:     } else {
2371:       PetscUseMethod(A, "MatDenseGetArray_C", (Mat, PetscScalar **), (A, array));
2372:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2373:     }
2374:   }
2375:   PetscFunctionReturn(PETSC_SUCCESS);
2376: }

2378: /*@C
2379:   MatDenseRestoreArrayAndMemType - returns access to the array that is obtained by `MatDenseGetArrayAndMemType()`

2381:   Logically Collective

2383:   Input Parameters:
2384: + A     - a dense matrix
2385: - array - pointer to the data

2387:   Level: intermediate

2389: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2390: @*/
2391: PetscErrorCode MatDenseRestoreArrayAndMemType(Mat A, PetscScalar *array[])
2392: {
2393:   PetscBool isMPI;

2395:   PetscFunctionBegin;
2397:   PetscAssertPointer(array, 2);
2398:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2399:   if (isMPI) {
2400:     PetscCall(MatDenseRestoreArrayAndMemType(((Mat_MPIDense *)A->data)->A, array));
2401:   } else {
2402:     PetscErrorCode (*fptr)(Mat, PetscScalar **);

2404:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayAndMemType_C", &fptr));
2405:     if (fptr) {
2406:       PetscCall((*fptr)(A, array));
2407:     } else {
2408:       PetscUseMethod(A, "MatDenseRestoreArray_C", (Mat, PetscScalar **), (A, array));
2409:     }
2410:     *array = NULL;
2411:   }
2412:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2413:   PetscFunctionReturn(PETSC_SUCCESS);
2414: }

2416: /*@C
2417:   MatDenseGetArrayReadAndMemType - gives read-only access to the array where the data for a `MATDENSE` matrix is stored

2419:   Logically Collective

2421:   Input Parameter:
2422: . A - a dense matrix

2424:   Output Parameters:
2425: + array - pointer to the data
2426: - mtype - memory type of the returned pointer

2428:   Level: intermediate

2430:   Note:
2431:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2432:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2434: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayReadAndMemType()`, `MatDenseGetArrayWriteAndMemType()`,
2435:    `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2436: @*/
2437: PetscErrorCode MatDenseGetArrayReadAndMemType(Mat A, const PetscScalar *array[], PetscMemType *mtype)
2438: {
2439:   PetscBool isMPI;

2441:   PetscFunctionBegin;
2443:   PetscAssertPointer(array, 2);
2444:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2445:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2446:   if (isMPI) { /* Dispatch here so that the code can be reused for all subclasses of MATDENSE */
2447:     PetscCall(MatDenseGetArrayReadAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2448:   } else {
2449:     PetscErrorCode (*fptr)(Mat, const PetscScalar **, PetscMemType *);

2451:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayReadAndMemType_C", &fptr));
2452:     if (fptr) {
2453:       PetscCall((*fptr)(A, array, mtype));
2454:     } else {
2455:       PetscUseMethod(A, "MatDenseGetArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2456:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2457:     }
2458:   }
2459:   PetscFunctionReturn(PETSC_SUCCESS);
2460: }

2462: /*@C
2463:   MatDenseRestoreArrayReadAndMemType - returns access to the array that is obtained by `MatDenseGetArrayReadAndMemType()`

2465:   Logically Collective

2467:   Input Parameters:
2468: + A     - a dense matrix
2469: - array - pointer to the data

2471:   Level: intermediate

2473: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2474: @*/
2475: PetscErrorCode MatDenseRestoreArrayReadAndMemType(Mat A, const PetscScalar *array[])
2476: {
2477:   PetscBool isMPI;

2479:   PetscFunctionBegin;
2481:   PetscAssertPointer(array, 2);
2482:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2483:   if (isMPI) {
2484:     PetscCall(MatDenseRestoreArrayReadAndMemType(((Mat_MPIDense *)A->data)->A, array));
2485:   } else {
2486:     PetscErrorCode (*fptr)(Mat, const PetscScalar **);

2488:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayReadAndMemType_C", &fptr));
2489:     if (fptr) {
2490:       PetscCall((*fptr)(A, array));
2491:     } else {
2492:       PetscUseMethod(A, "MatDenseRestoreArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2493:     }
2494:     *array = NULL;
2495:   }
2496:   PetscFunctionReturn(PETSC_SUCCESS);
2497: }

2499: /*@C
2500:   MatDenseGetArrayWriteAndMemType - gives write-only access to the array where the data for a `MATDENSE` matrix is stored

2502:   Logically Collective

2504:   Input Parameter:
2505: . A - a dense matrix

2507:   Output Parameters:
2508: + array - pointer to the data
2509: - mtype - memory type of the returned pointer

2511:   Level: intermediate

2513:   Note:
2514:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2515:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2517: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayWriteAndMemType()`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArrayRead()`,
2518:   `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2519: @*/
2520: PetscErrorCode MatDenseGetArrayWriteAndMemType(Mat A, PetscScalar *array[], PetscMemType *mtype)
2521: {
2522:   PetscBool isMPI;

2524:   PetscFunctionBegin;
2526:   PetscAssertPointer(array, 2);
2527:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2528:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2529:   if (isMPI) {
2530:     PetscCall(MatDenseGetArrayWriteAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2531:   } else {
2532:     PetscErrorCode (*fptr)(Mat, PetscScalar **, PetscMemType *);

2534:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayWriteAndMemType_C", &fptr));
2535:     if (fptr) {
2536:       PetscCall((*fptr)(A, array, mtype));
2537:     } else {
2538:       PetscUseMethod(A, "MatDenseGetArrayWrite_C", (Mat, PetscScalar **), (A, array));
2539:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2540:     }
2541:   }
2542:   PetscFunctionReturn(PETSC_SUCCESS);
2543: }

2545: /*@C
2546:   MatDenseRestoreArrayWriteAndMemType - returns access to the array that is obtained by `MatDenseGetArrayReadAndMemType()`

2548:   Logically Collective

2550:   Input Parameters:
2551: + A     - a dense matrix
2552: - array - pointer to the data

2554:   Level: intermediate

2556: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayWriteAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2557: @*/
2558: PetscErrorCode MatDenseRestoreArrayWriteAndMemType(Mat A, PetscScalar *array[])
2559: {
2560:   PetscBool isMPI;

2562:   PetscFunctionBegin;
2564:   PetscAssertPointer(array, 2);
2565:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2566:   if (isMPI) {
2567:     PetscCall(MatDenseRestoreArrayWriteAndMemType(((Mat_MPIDense *)A->data)->A, array));
2568:   } else {
2569:     PetscErrorCode (*fptr)(Mat, PetscScalar **);

2571:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayWriteAndMemType_C", &fptr));
2572:     if (fptr) {
2573:       PetscCall((*fptr)(A, array));
2574:     } else {
2575:       PetscUseMethod(A, "MatDenseRestoreArrayWrite_C", (Mat, PetscScalar **), (A, array));
2576:     }
2577:     *array = NULL;
2578:   }
2579:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2580:   PetscFunctionReturn(PETSC_SUCCESS);
2581: }

2583: static PetscErrorCode MatCreateSubMatrix_SeqDense(Mat A, IS isrow, IS iscol, MatReuse scall, Mat *B)
2584: {
2585:   Mat_SeqDense   *mat = (Mat_SeqDense *)A->data;
2586:   PetscInt        i, j, nrows, ncols, ldb;
2587:   const PetscInt *irow, *icol;
2588:   PetscScalar    *av, *bv, *v = mat->v;
2589:   Mat             newmat;

2591:   PetscFunctionBegin;
2592:   PetscCall(ISGetIndices(isrow, &irow));
2593:   PetscCall(ISGetIndices(iscol, &icol));
2594:   PetscCall(ISGetLocalSize(isrow, &nrows));
2595:   PetscCall(ISGetLocalSize(iscol, &ncols));

2597:   /* Check submatrixcall */
2598:   if (scall == MAT_REUSE_MATRIX) {
2599:     PetscInt n_cols, n_rows;
2600:     PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2601:     if (n_rows != nrows || n_cols != ncols) {
2602:       /* resize the result matrix to match number of requested rows/columns */
2603:       PetscCall(MatSetSizes(*B, nrows, ncols, nrows, ncols));
2604:     }
2605:     newmat = *B;
2606:   } else {
2607:     /* Create and fill new matrix */
2608:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &newmat));
2609:     PetscCall(MatSetSizes(newmat, nrows, ncols, nrows, ncols));
2610:     PetscCall(MatSetType(newmat, ((PetscObject)A)->type_name));
2611:     PetscCall(MatSeqDenseSetPreallocation(newmat, NULL));
2612:   }

2614:   /* Now extract the data pointers and do the copy,column at a time */
2615:   PetscCall(MatDenseGetArray(newmat, &bv));
2616:   PetscCall(MatDenseGetLDA(newmat, &ldb));
2617:   for (i = 0; i < ncols; i++) {
2618:     av = v + mat->lda * icol[i];
2619:     for (j = 0; j < nrows; j++) bv[j] = av[irow[j]];
2620:     bv += ldb;
2621:   }
2622:   PetscCall(MatDenseRestoreArray(newmat, &bv));

2624:   /* Assemble the matrices so that the correct flags are set */
2625:   PetscCall(MatAssemblyBegin(newmat, MAT_FINAL_ASSEMBLY));
2626:   PetscCall(MatAssemblyEnd(newmat, MAT_FINAL_ASSEMBLY));

2628:   /* Free work space */
2629:   PetscCall(ISRestoreIndices(isrow, &irow));
2630:   PetscCall(ISRestoreIndices(iscol, &icol));
2631:   *B = newmat;
2632:   PetscFunctionReturn(PETSC_SUCCESS);
2633: }

2635: static PetscErrorCode MatCreateSubMatrices_SeqDense(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2636: {
2637:   PetscInt i;

2639:   PetscFunctionBegin;
2640:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n, B));

2642:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqDense(A, irow[i], icol[i], scall, &(*B)[i]));
2643:   PetscFunctionReturn(PETSC_SUCCESS);
2644: }

2646: static PetscErrorCode MatAssemblyBegin_SeqDense(Mat mat, MatAssemblyType mode)
2647: {
2648:   PetscFunctionBegin;
2649:   PetscFunctionReturn(PETSC_SUCCESS);
2650: }

2652: static PetscErrorCode MatAssemblyEnd_SeqDense(Mat mat, MatAssemblyType mode)
2653: {
2654:   PetscFunctionBegin;
2655:   PetscFunctionReturn(PETSC_SUCCESS);
2656: }

2658: PetscErrorCode MatCopy_SeqDense(Mat A, Mat B, MatStructure str)
2659: {
2660:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data, *b = (Mat_SeqDense *)B->data;
2661:   const PetscScalar *va;
2662:   PetscScalar       *vb;
2663:   PetscInt           lda1 = a->lda, lda2 = b->lda, m = A->rmap->n, n = A->cmap->n, j;

2665:   PetscFunctionBegin;
2666:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
2667:   if (A->ops->copy != B->ops->copy) {
2668:     PetscCall(MatCopy_Basic(A, B, str));
2669:     PetscFunctionReturn(PETSC_SUCCESS);
2670:   }
2671:   PetscCheck(m == B->rmap->n && n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "size(B) != size(A)");
2672:   PetscCall(MatDenseGetArrayRead(A, &va));
2673:   PetscCall(MatDenseGetArray(B, &vb));
2674:   if (lda1 > m || lda2 > m) {
2675:     for (j = 0; j < n; j++) PetscCall(PetscArraycpy(vb + j * lda2, va + j * lda1, m));
2676:   } else {
2677:     PetscCall(PetscArraycpy(vb, va, A->rmap->n * A->cmap->n));
2678:   }
2679:   PetscCall(MatDenseRestoreArray(B, &vb));
2680:   PetscCall(MatDenseRestoreArrayRead(A, &va));
2681:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2682:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2683:   PetscFunctionReturn(PETSC_SUCCESS);
2684: }

2686: PetscErrorCode MatSetUp_SeqDense(Mat A)
2687: {
2688:   PetscFunctionBegin;
2689:   PetscCall(PetscLayoutSetUp(A->rmap));
2690:   PetscCall(PetscLayoutSetUp(A->cmap));
2691:   if (!A->preallocated) PetscCall(MatSeqDenseSetPreallocation(A, NULL));
2692:   PetscFunctionReturn(PETSC_SUCCESS);
2693: }

2695: static PetscErrorCode MatConjugate_SeqDense(Mat A)
2696: {
2697:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2698:   PetscInt      i, j;
2699:   PetscInt      min = PetscMin(A->rmap->n, A->cmap->n);
2700:   PetscScalar  *aa;

2702:   PetscFunctionBegin;
2703:   PetscCall(MatDenseGetArray(A, &aa));
2704:   for (j = 0; j < A->cmap->n; j++) {
2705:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscConj(aa[i + j * mat->lda]);
2706:   }
2707:   PetscCall(MatDenseRestoreArray(A, &aa));
2708:   if (mat->tau)
2709:     for (i = 0; i < min; i++) mat->tau[i] = PetscConj(mat->tau[i]);
2710:   PetscFunctionReturn(PETSC_SUCCESS);
2711: }

2713: static PetscErrorCode MatRealPart_SeqDense(Mat A)
2714: {
2715:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2716:   PetscInt      i, j;
2717:   PetscScalar  *aa;

2719:   PetscFunctionBegin;
2720:   PetscCall(MatDenseGetArray(A, &aa));
2721:   for (j = 0; j < A->cmap->n; j++) {
2722:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscRealPart(aa[i + j * mat->lda]);
2723:   }
2724:   PetscCall(MatDenseRestoreArray(A, &aa));
2725:   PetscFunctionReturn(PETSC_SUCCESS);
2726: }

2728: static PetscErrorCode MatImaginaryPart_SeqDense(Mat A)
2729: {
2730:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2731:   PetscInt      i, j;
2732:   PetscScalar  *aa;

2734:   PetscFunctionBegin;
2735:   PetscCall(MatDenseGetArray(A, &aa));
2736:   for (j = 0; j < A->cmap->n; j++) {
2737:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscImaginaryPart(aa[i + j * mat->lda]);
2738:   }
2739:   PetscCall(MatDenseRestoreArray(A, &aa));
2740:   PetscFunctionReturn(PETSC_SUCCESS);
2741: }

2743: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2744: {
2745:   PetscInt  m = A->rmap->n, n = B->cmap->n;
2746:   PetscBool cisdense = PETSC_FALSE;

2748:   PetscFunctionBegin;
2749:   PetscCall(MatSetSizes(C, m, n, m, n));
2750: #if defined(PETSC_HAVE_CUDA)
2751:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2752: #endif
2753: #if defined(PETSC_HAVE_HIP)
2754:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2755: #endif
2756:   if (!cisdense) {
2757:     PetscBool flg;

2759:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2760:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2761:   }
2762:   PetscCall(MatSetUp(C));
2763:   PetscFunctionReturn(PETSC_SUCCESS);
2764: }

2766: PetscErrorCode MatMatMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2767: {
2768:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data, *b = (Mat_SeqDense *)B->data, *c = (Mat_SeqDense *)C->data;
2769:   PetscBLASInt       m, n, k;
2770:   const PetscScalar *av, *bv;
2771:   PetscScalar       *cv;
2772:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2774:   PetscFunctionBegin;
2775:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2776:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2777:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
2778:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2779:   PetscCall(MatDenseGetArrayRead(A, &av));
2780:   PetscCall(MatDenseGetArrayRead(B, &bv));
2781:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2782:   PetscCallBLAS("BLASgemm", BLASgemm_("N", "N", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2783:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2784:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2785:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2786:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2787:   PetscFunctionReturn(PETSC_SUCCESS);
2788: }

2790: PetscErrorCode MatMatTransposeMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2791: {
2792:   PetscInt  m = A->rmap->n, n = B->rmap->n;
2793:   PetscBool cisdense = PETSC_FALSE;

2795:   PetscFunctionBegin;
2796:   PetscCall(MatSetSizes(C, m, n, m, n));
2797: #if defined(PETSC_HAVE_CUDA)
2798:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2799: #endif
2800: #if defined(PETSC_HAVE_HIP)
2801:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2802: #endif
2803:   if (!cisdense) {
2804:     PetscBool flg;

2806:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2807:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2808:   }
2809:   PetscCall(MatSetUp(C));
2810:   PetscFunctionReturn(PETSC_SUCCESS);
2811: }

2813: PetscErrorCode MatMatTransposeMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2814: {
2815:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2816:   Mat_SeqDense      *b = (Mat_SeqDense *)B->data;
2817:   Mat_SeqDense      *c = (Mat_SeqDense *)C->data;
2818:   const PetscScalar *av, *bv;
2819:   PetscScalar       *cv;
2820:   PetscBLASInt       m, n, k;
2821:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2823:   PetscFunctionBegin;
2824:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2825:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2826:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
2827:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2828:   PetscCall(MatDenseGetArrayRead(A, &av));
2829:   PetscCall(MatDenseGetArrayRead(B, &bv));
2830:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2831:   PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2832:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2833:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2834:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2835:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2836:   PetscFunctionReturn(PETSC_SUCCESS);
2837: }

2839: PetscErrorCode MatTransposeMatMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2840: {
2841:   PetscInt  m = A->cmap->n, n = B->cmap->n;
2842:   PetscBool cisdense = PETSC_FALSE;

2844:   PetscFunctionBegin;
2845:   PetscCall(MatSetSizes(C, m, n, m, n));
2846: #if defined(PETSC_HAVE_CUDA)
2847:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2848: #endif
2849: #if defined(PETSC_HAVE_HIP)
2850:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2851: #endif
2852:   if (!cisdense) {
2853:     PetscBool flg;

2855:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2856:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2857:   }
2858:   PetscCall(MatSetUp(C));
2859:   PetscFunctionReturn(PETSC_SUCCESS);
2860: }

2862: PetscErrorCode MatTransposeMatMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2863: {
2864:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2865:   Mat_SeqDense      *b = (Mat_SeqDense *)B->data;
2866:   Mat_SeqDense      *c = (Mat_SeqDense *)C->data;
2867:   const PetscScalar *av, *bv;
2868:   PetscScalar       *cv;
2869:   PetscBLASInt       m, n, k;
2870:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2872:   PetscFunctionBegin;
2873:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2874:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2875:   PetscCall(PetscBLASIntCast(A->rmap->n, &k));
2876:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2877:   PetscCall(MatDenseGetArrayRead(A, &av));
2878:   PetscCall(MatDenseGetArrayRead(B, &bv));
2879:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2880:   PetscCallBLAS("BLASgemm", BLASgemm_("T", "N", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2881:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2882:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2883:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2884:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2885:   PetscFunctionReturn(PETSC_SUCCESS);
2886: }

2888: static PetscErrorCode MatProductSetFromOptions_SeqDense_AB(Mat C)
2889: {
2890:   PetscFunctionBegin;
2891:   C->ops->matmultsymbolic = MatMatMultSymbolic_SeqDense_SeqDense;
2892:   C->ops->productsymbolic = MatProductSymbolic_AB;
2893:   PetscFunctionReturn(PETSC_SUCCESS);
2894: }

2896: static PetscErrorCode MatProductSetFromOptions_SeqDense_AtB(Mat C)
2897: {
2898:   PetscFunctionBegin;
2899:   C->ops->transposematmultsymbolic = MatTransposeMatMultSymbolic_SeqDense_SeqDense;
2900:   C->ops->productsymbolic          = MatProductSymbolic_AtB;
2901:   PetscFunctionReturn(PETSC_SUCCESS);
2902: }

2904: static PetscErrorCode MatProductSetFromOptions_SeqDense_ABt(Mat C)
2905: {
2906:   PetscFunctionBegin;
2907:   C->ops->mattransposemultsymbolic = MatMatTransposeMultSymbolic_SeqDense_SeqDense;
2908:   C->ops->productsymbolic          = MatProductSymbolic_ABt;
2909:   PetscFunctionReturn(PETSC_SUCCESS);
2910: }

2912: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_SeqDense(Mat C)
2913: {
2914:   Mat_Product *product = C->product;

2916:   PetscFunctionBegin;
2917:   switch (product->type) {
2918:   case MATPRODUCT_AB:
2919:     PetscCall(MatProductSetFromOptions_SeqDense_AB(C));
2920:     break;
2921:   case MATPRODUCT_AtB:
2922:     PetscCall(MatProductSetFromOptions_SeqDense_AtB(C));
2923:     break;
2924:   case MATPRODUCT_ABt:
2925:     PetscCall(MatProductSetFromOptions_SeqDense_ABt(C));
2926:     break;
2927:   default:
2928:     break;
2929:   }
2930:   PetscFunctionReturn(PETSC_SUCCESS);
2931: }

2933: static PetscErrorCode MatGetRowMax_SeqDense(Mat A, Vec v, PetscInt idx[])
2934: {
2935:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2936:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2937:   PetscScalar       *x;
2938:   const PetscScalar *aa;

2940:   PetscFunctionBegin;
2941:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2942:   PetscCall(VecGetArray(v, &x));
2943:   PetscCall(VecGetLocalSize(v, &p));
2944:   PetscCall(MatDenseGetArrayRead(A, &aa));
2945:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2946:   for (i = 0; i < m; i++) {
2947:     x[i] = aa[i];
2948:     if (idx) idx[i] = 0;
2949:     for (j = 1; j < n; j++) {
2950:       if (PetscRealPart(x[i]) < PetscRealPart(aa[i + a->lda * j])) {
2951:         x[i] = aa[i + a->lda * j];
2952:         if (idx) idx[i] = j;
2953:       }
2954:     }
2955:   }
2956:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2957:   PetscCall(VecRestoreArray(v, &x));
2958:   PetscFunctionReturn(PETSC_SUCCESS);
2959: }

2961: static PetscErrorCode MatGetRowMaxAbs_SeqDense(Mat A, Vec v, PetscInt idx[])
2962: {
2963:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2964:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2965:   PetscScalar       *x;
2966:   PetscReal          atmp;
2967:   const PetscScalar *aa;

2969:   PetscFunctionBegin;
2970:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2971:   PetscCall(VecGetArray(v, &x));
2972:   PetscCall(VecGetLocalSize(v, &p));
2973:   PetscCall(MatDenseGetArrayRead(A, &aa));
2974:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2975:   for (i = 0; i < m; i++) {
2976:     x[i] = PetscAbsScalar(aa[i]);
2977:     for (j = 1; j < n; j++) {
2978:       atmp = PetscAbsScalar(aa[i + a->lda * j]);
2979:       if (PetscAbsScalar(x[i]) < atmp) {
2980:         x[i] = atmp;
2981:         if (idx) idx[i] = j;
2982:       }
2983:     }
2984:   }
2985:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2986:   PetscCall(VecRestoreArray(v, &x));
2987:   PetscFunctionReturn(PETSC_SUCCESS);
2988: }

2990: static PetscErrorCode MatGetRowMin_SeqDense(Mat A, Vec v, PetscInt idx[])
2991: {
2992:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2993:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2994:   PetscScalar       *x;
2995:   const PetscScalar *aa;

2997:   PetscFunctionBegin;
2998:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2999:   PetscCall(MatDenseGetArrayRead(A, &aa));
3000:   PetscCall(VecGetArray(v, &x));
3001:   PetscCall(VecGetLocalSize(v, &p));
3002:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3003:   for (i = 0; i < m; i++) {
3004:     x[i] = aa[i];
3005:     if (idx) idx[i] = 0;
3006:     for (j = 1; j < n; j++) {
3007:       if (PetscRealPart(x[i]) > PetscRealPart(aa[i + a->lda * j])) {
3008:         x[i] = aa[i + a->lda * j];
3009:         if (idx) idx[i] = j;
3010:       }
3011:     }
3012:   }
3013:   PetscCall(VecRestoreArray(v, &x));
3014:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
3015:   PetscFunctionReturn(PETSC_SUCCESS);
3016: }

3018: PetscErrorCode MatGetColumnVector_SeqDense(Mat A, Vec v, PetscInt col)
3019: {
3020:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
3021:   PetscScalar       *x;
3022:   const PetscScalar *aa;

3024:   PetscFunctionBegin;
3025:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3026:   PetscCall(MatDenseGetArrayRead(A, &aa));
3027:   PetscCall(VecGetArray(v, &x));
3028:   PetscCall(PetscArraycpy(x, aa + col * a->lda, A->rmap->n));
3029:   PetscCall(VecRestoreArray(v, &x));
3030:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
3031:   PetscFunctionReturn(PETSC_SUCCESS);
3032: }

3034: PETSC_INTERN PetscErrorCode MatGetColumnReductions_SeqDense(Mat A, PetscInt type, PetscReal *reductions)
3035: {
3036:   PetscInt           i, j, m, n;
3037:   const PetscScalar *a;

3039:   PetscFunctionBegin;
3040:   PetscCall(MatGetSize(A, &m, &n));
3041:   PetscCall(PetscArrayzero(reductions, n));
3042:   PetscCall(MatDenseGetArrayRead(A, &a));
3043:   if (type == NORM_2) {
3044:     for (i = 0; i < n; i++) {
3045:       for (j = 0; j < m; j++) reductions[i] += PetscAbsScalar(a[j] * a[j]);
3046:       a = PetscSafePointerPlusOffset(a, m);
3047:     }
3048:   } else if (type == NORM_1) {
3049:     for (i = 0; i < n; i++) {
3050:       for (j = 0; j < m; j++) reductions[i] += PetscAbsScalar(a[j]);
3051:       a = PetscSafePointerPlusOffset(a, m);
3052:     }
3053:   } else if (type == NORM_INFINITY) {
3054:     for (i = 0; i < n; i++) {
3055:       for (j = 0; j < m; j++) reductions[i] = PetscMax(PetscAbsScalar(a[j]), reductions[i]);
3056:       a = PetscSafePointerPlusOffset(a, m);
3057:     }
3058:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
3059:     for (i = 0; i < n; i++) {
3060:       for (j = 0; j < m; j++) reductions[i] += PetscRealPart(a[j]);
3061:       a = PetscSafePointerPlusOffset(a, m);
3062:     }
3063:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
3064:     for (i = 0; i < n; i++) {
3065:       for (j = 0; j < m; j++) reductions[i] += PetscImaginaryPart(a[j]);
3066:       a = PetscSafePointerPlusOffset(a, m);
3067:     }
3068:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
3069:   PetscCall(MatDenseRestoreArrayRead(A, &a));
3070:   if (type == NORM_2) {
3071:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
3072:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
3073:     for (i = 0; i < n; i++) reductions[i] /= m;
3074:   }
3075:   PetscFunctionReturn(PETSC_SUCCESS);
3076: }

3078: PetscErrorCode MatSetRandom_SeqDense(Mat x, PetscRandom rctx)
3079: {
3080:   PetscScalar *a;
3081:   PetscInt     lda, m, n, i, j;

3083:   PetscFunctionBegin;
3084:   PetscCall(MatGetSize(x, &m, &n));
3085:   PetscCall(MatDenseGetLDA(x, &lda));
3086:   PetscCall(MatDenseGetArrayWrite(x, &a));
3087:   for (j = 0; j < n; j++) {
3088:     for (i = 0; i < m; i++) PetscCall(PetscRandomGetValue(rctx, a + j * lda + i));
3089:   }
3090:   PetscCall(MatDenseRestoreArrayWrite(x, &a));
3091:   PetscFunctionReturn(PETSC_SUCCESS);
3092: }

3094: static PetscErrorCode MatMissingDiagonal_SeqDense(Mat A, PetscBool *missing, PetscInt *d)
3095: {
3096:   PetscFunctionBegin;
3097:   *missing = PETSC_FALSE;
3098:   PetscFunctionReturn(PETSC_SUCCESS);
3099: }

3101: /* vals is not const */
3102: static PetscErrorCode MatDenseGetColumn_SeqDense(Mat A, PetscInt col, PetscScalar **vals)
3103: {
3104:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
3105:   PetscScalar  *v;

3107:   PetscFunctionBegin;
3108:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3109:   PetscCall(MatDenseGetArray(A, &v));
3110:   *vals = v + col * a->lda;
3111:   PetscCall(MatDenseRestoreArray(A, &v));
3112:   PetscFunctionReturn(PETSC_SUCCESS);
3113: }

3115: static PetscErrorCode MatDenseRestoreColumn_SeqDense(Mat A, PetscScalar **vals)
3116: {
3117:   PetscFunctionBegin;
3118:   if (vals) *vals = NULL; /* user cannot accidentally use the array later */
3119:   PetscFunctionReturn(PETSC_SUCCESS);
3120: }

3122: static struct _MatOps MatOps_Values = {MatSetValues_SeqDense,
3123:                                        MatGetRow_SeqDense,
3124:                                        MatRestoreRow_SeqDense,
3125:                                        MatMult_SeqDense,
3126:                                        /*  4*/ MatMultAdd_SeqDense,
3127:                                        MatMultTranspose_SeqDense,
3128:                                        MatMultTransposeAdd_SeqDense,
3129:                                        NULL,
3130:                                        NULL,
3131:                                        NULL,
3132:                                        /* 10*/ NULL,
3133:                                        MatLUFactor_SeqDense,
3134:                                        MatCholeskyFactor_SeqDense,
3135:                                        MatSOR_SeqDense,
3136:                                        MatTranspose_SeqDense,
3137:                                        /* 15*/ MatGetInfo_SeqDense,
3138:                                        MatEqual_SeqDense,
3139:                                        MatGetDiagonal_SeqDense,
3140:                                        MatDiagonalScale_SeqDense,
3141:                                        MatNorm_SeqDense,
3142:                                        /* 20*/ MatAssemblyBegin_SeqDense,
3143:                                        MatAssemblyEnd_SeqDense,
3144:                                        MatSetOption_SeqDense,
3145:                                        MatZeroEntries_SeqDense,
3146:                                        /* 24*/ MatZeroRows_SeqDense,
3147:                                        NULL,
3148:                                        NULL,
3149:                                        NULL,
3150:                                        NULL,
3151:                                        /* 29*/ MatSetUp_SeqDense,
3152:                                        NULL,
3153:                                        NULL,
3154:                                        NULL,
3155:                                        NULL,
3156:                                        /* 34*/ MatDuplicate_SeqDense,
3157:                                        NULL,
3158:                                        NULL,
3159:                                        NULL,
3160:                                        NULL,
3161:                                        /* 39*/ MatAXPY_SeqDense,
3162:                                        MatCreateSubMatrices_SeqDense,
3163:                                        NULL,
3164:                                        MatGetValues_SeqDense,
3165:                                        MatCopy_SeqDense,
3166:                                        /* 44*/ MatGetRowMax_SeqDense,
3167:                                        MatScale_SeqDense,
3168:                                        MatShift_SeqDense,
3169:                                        NULL,
3170:                                        MatZeroRowsColumns_SeqDense,
3171:                                        /* 49*/ MatSetRandom_SeqDense,
3172:                                        NULL,
3173:                                        NULL,
3174:                                        NULL,
3175:                                        NULL,
3176:                                        /* 54*/ NULL,
3177:                                        NULL,
3178:                                        NULL,
3179:                                        NULL,
3180:                                        NULL,
3181:                                        /* 59*/ MatCreateSubMatrix_SeqDense,
3182:                                        MatDestroy_SeqDense,
3183:                                        MatView_SeqDense,
3184:                                        NULL,
3185:                                        NULL,
3186:                                        /* 64*/ NULL,
3187:                                        NULL,
3188:                                        NULL,
3189:                                        NULL,
3190:                                        NULL,
3191:                                        /* 69*/ MatGetRowMaxAbs_SeqDense,
3192:                                        NULL,
3193:                                        NULL,
3194:                                        NULL,
3195:                                        NULL,
3196:                                        /* 74*/ NULL,
3197:                                        NULL,
3198:                                        NULL,
3199:                                        NULL,
3200:                                        NULL,
3201:                                        /* 79*/ NULL,
3202:                                        NULL,
3203:                                        NULL,
3204:                                        NULL,
3205:                                        /* 83*/ MatLoad_SeqDense,
3206:                                        MatIsSymmetric_SeqDense,
3207:                                        MatIsHermitian_SeqDense,
3208:                                        NULL,
3209:                                        NULL,
3210:                                        NULL,
3211:                                        /* 89*/ NULL,
3212:                                        NULL,
3213:                                        MatMatMultNumeric_SeqDense_SeqDense,
3214:                                        NULL,
3215:                                        NULL,
3216:                                        /* 94*/ NULL,
3217:                                        NULL,
3218:                                        NULL,
3219:                                        MatMatTransposeMultNumeric_SeqDense_SeqDense,
3220:                                        NULL,
3221:                                        /* 99*/ MatProductSetFromOptions_SeqDense,
3222:                                        NULL,
3223:                                        NULL,
3224:                                        MatConjugate_SeqDense,
3225:                                        NULL,
3226:                                        /*104*/ NULL,
3227:                                        MatRealPart_SeqDense,
3228:                                        MatImaginaryPart_SeqDense,
3229:                                        NULL,
3230:                                        NULL,
3231:                                        /*109*/ NULL,
3232:                                        NULL,
3233:                                        MatGetRowMin_SeqDense,
3234:                                        MatGetColumnVector_SeqDense,
3235:                                        MatMissingDiagonal_SeqDense,
3236:                                        /*114*/ NULL,
3237:                                        NULL,
3238:                                        NULL,
3239:                                        NULL,
3240:                                        NULL,
3241:                                        /*119*/ NULL,
3242:                                        NULL,
3243:                                        MatMultHermitianTranspose_SeqDense,
3244:                                        MatMultHermitianTransposeAdd_SeqDense,
3245:                                        NULL,
3246:                                        /*124*/ NULL,
3247:                                        MatGetColumnReductions_SeqDense,
3248:                                        NULL,
3249:                                        NULL,
3250:                                        NULL,
3251:                                        /*129*/ NULL,
3252:                                        NULL,
3253:                                        NULL,
3254:                                        MatTransposeMatMultNumeric_SeqDense_SeqDense,
3255:                                        NULL,
3256:                                        /*134*/ NULL,
3257:                                        NULL,
3258:                                        NULL,
3259:                                        NULL,
3260:                                        NULL,
3261:                                        /*139*/ NULL,
3262:                                        NULL,
3263:                                        NULL,
3264:                                        NULL,
3265:                                        NULL,
3266:                                        MatCreateMPIMatConcatenateSeqMat_SeqDense,
3267:                                        /*145*/ NULL,
3268:                                        NULL,
3269:                                        NULL,
3270:                                        NULL,
3271:                                        NULL,
3272:                                        /*150*/ NULL,
3273:                                        NULL,
3274:                                        NULL,
3275:                                        NULL,
3276:                                        NULL,
3277:                                        /*155*/ NULL,
3278:                                        NULL};

3280: /*@
3281:   MatCreateSeqDense - Creates a `MATSEQDENSE` that
3282:   is stored in column major order (the usual Fortran format).

3284:   Collective

3286:   Input Parameters:
3287: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3288: . m    - number of rows
3289: . n    - number of columns
3290: - data - optional location of matrix data in column major order.  Use `NULL` for PETSc
3291:          to control all matrix memory allocation.

3293:   Output Parameter:
3294: . A - the matrix

3296:   Level: intermediate

3298:   Note:
3299:   The data input variable is intended primarily for Fortran programmers
3300:   who wish to allocate their own matrix memory space.  Most users should
3301:   set `data` = `NULL`.

3303:   Developer Note:
3304:   Many of the matrix operations for this variant use the BLAS and LAPACK routines.

3306: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`
3307: @*/
3308: PetscErrorCode MatCreateSeqDense(MPI_Comm comm, PetscInt m, PetscInt n, PetscScalar data[], Mat *A)
3309: {
3310:   PetscFunctionBegin;
3311:   PetscCall(MatCreate(comm, A));
3312:   PetscCall(MatSetSizes(*A, m, n, m, n));
3313:   PetscCall(MatSetType(*A, MATSEQDENSE));
3314:   PetscCall(MatSeqDenseSetPreallocation(*A, data));
3315:   PetscFunctionReturn(PETSC_SUCCESS);
3316: }

3318: /*@
3319:   MatSeqDenseSetPreallocation - Sets the array used for storing the matrix elements of a `MATSEQDENSE` matrix

3321:   Collective

3323:   Input Parameters:
3324: + B    - the matrix
3325: - data - the array (or `NULL`)

3327:   Level: intermediate

3329:   Note:
3330:   The data input variable is intended primarily for Fortran programmers
3331:   who wish to allocate their own matrix memory space.  Most users should
3332:   need not call this routine.

3334: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`, `MatDenseSetLDA()`
3335: @*/
3336: PetscErrorCode MatSeqDenseSetPreallocation(Mat B, PetscScalar data[])
3337: {
3338:   PetscFunctionBegin;
3340:   PetscTryMethod(B, "MatSeqDenseSetPreallocation_C", (Mat, PetscScalar[]), (B, data));
3341:   PetscFunctionReturn(PETSC_SUCCESS);
3342: }

3344: PetscErrorCode MatSeqDenseSetPreallocation_SeqDense(Mat B, PetscScalar *data)
3345: {
3346:   Mat_SeqDense *b = (Mat_SeqDense *)B->data;

3348:   PetscFunctionBegin;
3349:   PetscCheck(!b->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3350:   B->preallocated = PETSC_TRUE;

3352:   PetscCall(PetscLayoutSetUp(B->rmap));
3353:   PetscCall(PetscLayoutSetUp(B->cmap));

3355:   if (b->lda <= 0) PetscCall(PetscBLASIntCast(B->rmap->n, &b->lda));

3357:   if (!data) { /* petsc-allocated storage */
3358:     if (!b->user_alloc) PetscCall(PetscFree(b->v));
3359:     PetscCall(PetscCalloc1((size_t)b->lda * B->cmap->n, &b->v));

3361:     b->user_alloc = PETSC_FALSE;
3362:   } else { /* user-allocated storage */
3363:     if (!b->user_alloc) PetscCall(PetscFree(b->v));
3364:     b->v          = data;
3365:     b->user_alloc = PETSC_TRUE;
3366:   }
3367:   B->assembled = PETSC_TRUE;
3368:   PetscFunctionReturn(PETSC_SUCCESS);
3369: }

3371: #if defined(PETSC_HAVE_ELEMENTAL)
3372: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_Elemental(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
3373: {
3374:   Mat                mat_elemental;
3375:   const PetscScalar *array;
3376:   PetscScalar       *v_colwise;
3377:   PetscInt           M = A->rmap->N, N = A->cmap->N, i, j, k, *rows, *cols;

3379:   PetscFunctionBegin;
3380:   PetscCall(PetscMalloc3(M * N, &v_colwise, M, &rows, N, &cols));
3381:   PetscCall(MatDenseGetArrayRead(A, &array));
3382:   /* convert column-wise array into row-wise v_colwise, see MatSetValues_Elemental() */
3383:   k = 0;
3384:   for (j = 0; j < N; j++) {
3385:     cols[j] = j;
3386:     for (i = 0; i < M; i++) v_colwise[j * M + i] = array[k++];
3387:   }
3388:   for (i = 0; i < M; i++) rows[i] = i;
3389:   PetscCall(MatDenseRestoreArrayRead(A, &array));

3391:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &mat_elemental));
3392:   PetscCall(MatSetSizes(mat_elemental, PETSC_DECIDE, PETSC_DECIDE, M, N));
3393:   PetscCall(MatSetType(mat_elemental, MATELEMENTAL));
3394:   PetscCall(MatSetUp(mat_elemental));

3396:   /* PETSc-Elemental interaface uses axpy for setting off-processor entries, only ADD_VALUES is allowed */
3397:   PetscCall(MatSetValues(mat_elemental, M, rows, N, cols, v_colwise, ADD_VALUES));
3398:   PetscCall(MatAssemblyBegin(mat_elemental, MAT_FINAL_ASSEMBLY));
3399:   PetscCall(MatAssemblyEnd(mat_elemental, MAT_FINAL_ASSEMBLY));
3400:   PetscCall(PetscFree3(v_colwise, rows, cols));

3402:   if (reuse == MAT_INPLACE_MATRIX) {
3403:     PetscCall(MatHeaderReplace(A, &mat_elemental));
3404:   } else {
3405:     *newmat = mat_elemental;
3406:   }
3407:   PetscFunctionReturn(PETSC_SUCCESS);
3408: }
3409: #endif

3411: PetscErrorCode MatDenseSetLDA_SeqDense(Mat B, PetscInt lda)
3412: {
3413:   Mat_SeqDense *b = (Mat_SeqDense *)B->data;
3414:   PetscBool     data;

3416:   PetscFunctionBegin;
3417:   data = (B->rmap->n > 0 && B->cmap->n > 0) ? (b->v ? PETSC_TRUE : PETSC_FALSE) : PETSC_FALSE;
3418:   PetscCheck(b->user_alloc || !data || b->lda == lda, PETSC_COMM_SELF, PETSC_ERR_ORDER, "LDA cannot be changed after allocation of internal storage");
3419:   PetscCheck(lda >= B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "LDA %" PetscInt_FMT " must be at least matrix dimension %" PetscInt_FMT, lda, B->rmap->n);
3420:   PetscCall(PetscBLASIntCast(lda, &b->lda));
3421:   PetscFunctionReturn(PETSC_SUCCESS);
3422: }

3424: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqDense(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
3425: {
3426:   PetscFunctionBegin;
3427:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIDense(comm, inmat, n, scall, outmat));
3428:   PetscFunctionReturn(PETSC_SUCCESS);
3429: }

3431: PetscErrorCode MatDenseCreateColumnVec_Private(Mat A, Vec *v)
3432: {
3433:   PetscBool   isstd, iskok, iscuda, iship;
3434:   PetscMPIInt size;
3435: #if PetscDefined(HAVE_CUDA) || PetscDefined(HAVE_HIP)
3436:   /* we pass the data of A, to prevent allocating needless GPU memory the first time VecCUPMPlaceArray is called. */
3437:   const PetscScalar *a;
3438: #endif

3440:   PetscFunctionBegin;
3441:   *v = NULL;
3442:   PetscCall(PetscStrcmpAny(A->defaultvectype, &isstd, VECSTANDARD, VECSEQ, VECMPI, ""));
3443:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iskok, VECKOKKOS, VECSEQKOKKOS, VECMPIKOKKOS, ""));
3444:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iscuda, VECCUDA, VECSEQCUDA, VECMPICUDA, ""));
3445:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iship, VECHIP, VECSEQHIP, VECMPIHIP, ""));
3446:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
3447:   if (isstd) {
3448:     if (size > 1) PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, v));
3449:     else PetscCall(VecCreateSeqWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, v));
3450:   } else if (iskok) {
3451:     PetscCheck(PetscDefined(HAVE_KOKKOS_KERNELS), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using KOKKOS kernels support");
3452: #if PetscDefined(HAVE_KOKKOS_KERNELS)
3453:     if (size > 1) PetscCall(VecCreateMPIKokkosWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, v));
3454:     else PetscCall(VecCreateSeqKokkosWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, v));
3455: #endif
3456:   } else if (iscuda) {
3457:     PetscCheck(PetscDefined(HAVE_CUDA), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using CUDA support");
3458: #if PetscDefined(HAVE_CUDA)
3459:     PetscCall(MatDenseCUDAGetArrayRead(A, &a));
3460:     if (size > 1) PetscCall(VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, a, v));
3461:     else PetscCall(VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, a, v));
3462: #endif
3463:   } else if (iship) {
3464:     PetscCheck(PetscDefined(HAVE_HIP), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using HIP support");
3465: #if PetscDefined(HAVE_HIP)
3466:     PetscCall(MatDenseHIPGetArrayRead(A, &a));
3467:     if (size > 1) PetscCall(VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, a, v));
3468:     else PetscCall(VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, a, v));
3469: #endif
3470:   }
3471:   PetscCheck(*v, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Not coded for type %s", A->defaultvectype);
3472:   PetscFunctionReturn(PETSC_SUCCESS);
3473: }

3475: PetscErrorCode MatDenseGetColumnVec_SeqDense(Mat A, PetscInt col, Vec *v)
3476: {
3477:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3479:   PetscFunctionBegin;
3480:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3481:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3482:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3483:   a->vecinuse = col + 1;
3484:   PetscCall(MatDenseGetArray(A, (PetscScalar **)&a->ptrinuse));
3485:   PetscCall(VecPlaceArray(a->cvec, a->ptrinuse + (size_t)col * (size_t)a->lda));
3486:   *v = a->cvec;
3487:   PetscFunctionReturn(PETSC_SUCCESS);
3488: }

3490: PetscErrorCode MatDenseRestoreColumnVec_SeqDense(Mat A, PetscInt col, Vec *v)
3491: {
3492:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3494:   PetscFunctionBegin;
3495:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3496:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3497:   VecCheckAssembled(a->cvec);
3498:   a->vecinuse = 0;
3499:   PetscCall(MatDenseRestoreArray(A, (PetscScalar **)&a->ptrinuse));
3500:   PetscCall(VecResetArray(a->cvec));
3501:   if (v) *v = NULL;
3502:   PetscFunctionReturn(PETSC_SUCCESS);
3503: }

3505: PetscErrorCode MatDenseGetColumnVecRead_SeqDense(Mat A, PetscInt col, Vec *v)
3506: {
3507:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3509:   PetscFunctionBegin;
3510:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3511:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3512:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3513:   a->vecinuse = col + 1;
3514:   PetscCall(MatDenseGetArrayRead(A, &a->ptrinuse));
3515:   PetscCall(VecPlaceArray(a->cvec, PetscSafePointerPlusOffset(a->ptrinuse, (size_t)col * (size_t)a->lda)));
3516:   PetscCall(VecLockReadPush(a->cvec));
3517:   *v = a->cvec;
3518:   PetscFunctionReturn(PETSC_SUCCESS);
3519: }

3521: PetscErrorCode MatDenseRestoreColumnVecRead_SeqDense(Mat A, PetscInt col, Vec *v)
3522: {
3523:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3525:   PetscFunctionBegin;
3526:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3527:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3528:   VecCheckAssembled(a->cvec);
3529:   a->vecinuse = 0;
3530:   PetscCall(MatDenseRestoreArrayRead(A, &a->ptrinuse));
3531:   PetscCall(VecLockReadPop(a->cvec));
3532:   PetscCall(VecResetArray(a->cvec));
3533:   if (v) *v = NULL;
3534:   PetscFunctionReturn(PETSC_SUCCESS);
3535: }

3537: PetscErrorCode MatDenseGetColumnVecWrite_SeqDense(Mat A, PetscInt col, Vec *v)
3538: {
3539:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3541:   PetscFunctionBegin;
3542:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3543:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3544:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3545:   a->vecinuse = col + 1;
3546:   PetscCall(MatDenseGetArrayWrite(A, (PetscScalar **)&a->ptrinuse));
3547:   PetscCall(VecPlaceArray(a->cvec, PetscSafePointerPlusOffset(a->ptrinuse, (size_t)col * (size_t)a->lda)));
3548:   *v = a->cvec;
3549:   PetscFunctionReturn(PETSC_SUCCESS);
3550: }

3552: PetscErrorCode MatDenseRestoreColumnVecWrite_SeqDense(Mat A, PetscInt col, Vec *v)
3553: {
3554:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3556:   PetscFunctionBegin;
3557:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3558:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3559:   VecCheckAssembled(a->cvec);
3560:   a->vecinuse = 0;
3561:   PetscCall(MatDenseRestoreArrayWrite(A, (PetscScalar **)&a->ptrinuse));
3562:   PetscCall(VecResetArray(a->cvec));
3563:   if (v) *v = NULL;
3564:   PetscFunctionReturn(PETSC_SUCCESS);
3565: }

3567: PetscErrorCode MatDenseGetSubMatrix_SeqDense(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *v)
3568: {
3569:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3571:   PetscFunctionBegin;
3572:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3573:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3574:   if (a->cmat && (cend - cbegin != a->cmat->cmap->N || rend - rbegin != a->cmat->rmap->N)) PetscCall(MatDestroy(&a->cmat));
3575:   if (!a->cmat) {
3576:     PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), rend - rbegin, PETSC_DECIDE, rend - rbegin, cend - cbegin, PetscSafePointerPlusOffset(a->v, rbegin + (size_t)cbegin * a->lda), &a->cmat));
3577:   } else {
3578:     PetscCall(MatDensePlaceArray(a->cmat, PetscSafePointerPlusOffset(a->v, rbegin + (size_t)cbegin * a->lda)));
3579:   }
3580:   PetscCall(MatDenseSetLDA(a->cmat, a->lda));
3581:   a->matinuse = cbegin + 1;
3582:   *v          = a->cmat;
3583: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
3584:   A->offloadmask = PETSC_OFFLOAD_CPU;
3585: #endif
3586:   PetscFunctionReturn(PETSC_SUCCESS);
3587: }

3589: PetscErrorCode MatDenseRestoreSubMatrix_SeqDense(Mat A, Mat *v)
3590: {
3591:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3593:   PetscFunctionBegin;
3594:   PetscCheck(a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetSubMatrix() first");
3595:   PetscCheck(a->cmat, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column matrix");
3596:   PetscCheck(*v == a->cmat, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Not the matrix obtained from MatDenseGetSubMatrix()");
3597:   a->matinuse = 0;
3598:   PetscCall(MatDenseResetArray(a->cmat));
3599:   if (v) *v = NULL;
3600: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
3601:   A->offloadmask = PETSC_OFFLOAD_CPU;
3602: #endif
3603:   PetscFunctionReturn(PETSC_SUCCESS);
3604: }

3606: /*MC
3607:    MATSEQDENSE - MATSEQDENSE = "seqdense" - A matrix type to be used for sequential dense matrices.

3609:    Options Database Key:
3610: . -mat_type seqdense - sets the matrix type to `MATSEQDENSE` during a call to `MatSetFromOptions()`

3612:   Level: beginner

3614: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreateSeqDense()`
3615: M*/
3616: PetscErrorCode MatCreate_SeqDense(Mat B)
3617: {
3618:   Mat_SeqDense *b;
3619:   PetscMPIInt   size;

3621:   PetscFunctionBegin;
3622:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
3623:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Comm must be of size 1");

3625:   PetscCall(PetscNew(&b));
3626:   B->data   = (void *)b;
3627:   B->ops[0] = MatOps_Values;

3629:   b->roworiented = PETSC_TRUE;

3631:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatQRFactor_C", MatQRFactor_SeqDense));
3632:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetLDA_C", MatDenseGetLDA_SeqDense));
3633:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseSetLDA_C", MatDenseSetLDA_SeqDense));
3634:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArray_C", MatDenseGetArray_SeqDense));
3635:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArray_C", MatDenseRestoreArray_SeqDense));
3636:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDensePlaceArray_C", MatDensePlaceArray_SeqDense));
3637:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseResetArray_C", MatDenseResetArray_SeqDense));
3638:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseReplaceArray_C", MatDenseReplaceArray_SeqDense));
3639:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArrayRead_C", MatDenseGetArray_SeqDense));
3640:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArrayRead_C", MatDenseRestoreArray_SeqDense));
3641:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArrayWrite_C", MatDenseGetArray_SeqDense));
3642:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArrayWrite_C", MatDenseRestoreArray_SeqDense));
3643:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqaij_C", MatConvert_SeqDense_SeqAIJ));
3644: #if defined(PETSC_HAVE_ELEMENTAL)
3645:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_elemental_C", MatConvert_SeqDense_Elemental));
3646: #endif
3647: #if defined(PETSC_HAVE_SCALAPACK)
3648:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_scalapack_C", MatConvert_Dense_ScaLAPACK));
3649: #endif
3650: #if defined(PETSC_HAVE_CUDA)
3651:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqdensecuda_C", MatConvert_SeqDense_SeqDenseCUDA));
3652:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensecuda_seqdensecuda_C", MatProductSetFromOptions_SeqDense));
3653:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensecuda_seqdense_C", MatProductSetFromOptions_SeqDense));
3654:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdensecuda_C", MatProductSetFromOptions_SeqDense));
3655: #endif
3656: #if defined(PETSC_HAVE_HIP)
3657:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqdensehip_C", MatConvert_SeqDense_SeqDenseHIP));
3658:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensehip_seqdensehip_C", MatProductSetFromOptions_SeqDense));
3659:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensehip_seqdense_C", MatProductSetFromOptions_SeqDense));
3660:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdensehip_C", MatProductSetFromOptions_SeqDense));
3661: #endif
3662:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqDenseSetPreallocation_C", MatSeqDenseSetPreallocation_SeqDense));
3663:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqdense_C", MatProductSetFromOptions_SeqAIJ_SeqDense));
3664:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdense_C", MatProductSetFromOptions_SeqDense));
3665:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqbaij_seqdense_C", MatProductSetFromOptions_SeqXBAIJ_SeqDense));
3666:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqsbaij_seqdense_C", MatProductSetFromOptions_SeqXBAIJ_SeqDense));

3668:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumn_C", MatDenseGetColumn_SeqDense));
3669:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumn_C", MatDenseRestoreColumn_SeqDense));
3670:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVec_C", MatDenseGetColumnVec_SeqDense));
3671:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVec_C", MatDenseRestoreColumnVec_SeqDense));
3672:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVecRead_C", MatDenseGetColumnVecRead_SeqDense));
3673:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVecRead_C", MatDenseRestoreColumnVecRead_SeqDense));
3674:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVecWrite_C", MatDenseGetColumnVecWrite_SeqDense));
3675:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVecWrite_C", MatDenseRestoreColumnVecWrite_SeqDense));
3676:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetSubMatrix_C", MatDenseGetSubMatrix_SeqDense));
3677:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreSubMatrix_C", MatDenseRestoreSubMatrix_SeqDense));
3678:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultAddColumnRange_C", MatMultAddColumnRange_SeqDense));
3679:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultHermitianTransposeColumnRange_C", MatMultHermitianTransposeColumnRange_SeqDense));
3680:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMultHermitianTransposeAddColumnRange_C", MatMultHermitianTransposeAddColumnRange_SeqDense));
3681:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQDENSE));
3682:   PetscFunctionReturn(PETSC_SUCCESS);
3683: }

3685: /*@C
3686:   MatDenseGetColumn - gives access to a column of a dense matrix. This is only the local part of the column. You MUST call `MatDenseRestoreColumn()` to avoid memory bleeding.

3688:   Not Collective

3690:   Input Parameters:
3691: + A   - a `MATSEQDENSE` or `MATMPIDENSE` matrix
3692: - col - column index

3694:   Output Parameter:
3695: . vals - pointer to the data

3697:   Level: intermediate

3699:   Note:
3700:   Use `MatDenseGetColumnVec()` to get access to a column of a `MATDENSE` treated as a `Vec`

3702: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreColumn()`, `MatDenseGetColumnVec()`
3703: @*/
3704: PetscErrorCode MatDenseGetColumn(Mat A, PetscInt col, PetscScalar *vals[])
3705: {
3706:   PetscFunctionBegin;
3709:   PetscAssertPointer(vals, 3);
3710:   PetscUseMethod(A, "MatDenseGetColumn_C", (Mat, PetscInt, PetscScalar **), (A, col, vals));
3711:   PetscFunctionReturn(PETSC_SUCCESS);
3712: }

3714: /*@C
3715:   MatDenseRestoreColumn - returns access to a column of a `MATDENSE` matrix which is returned by `MatDenseGetColumn()`.

3717:   Not Collective

3719:   Input Parameters:
3720: + A    - a `MATSEQDENSE` or `MATMPIDENSE` matrix
3721: - vals - pointer to the data (may be `NULL`)

3723:   Level: intermediate

3725: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetColumn()`
3726: @*/
3727: PetscErrorCode MatDenseRestoreColumn(Mat A, PetscScalar *vals[])
3728: {
3729:   PetscFunctionBegin;
3731:   PetscAssertPointer(vals, 2);
3732:   PetscUseMethod(A, "MatDenseRestoreColumn_C", (Mat, PetscScalar **), (A, vals));
3733:   PetscFunctionReturn(PETSC_SUCCESS);
3734: }

3736: /*@
3737:   MatDenseGetColumnVec - Gives read-write access to a column of a `MATDENSE` matrix, represented as a `Vec`.

3739:   Collective

3741:   Input Parameters:
3742: + A   - the `Mat` object
3743: - col - the column index

3745:   Output Parameter:
3746: . v - the vector

3748:   Level: intermediate

3750:   Notes:
3751:   The vector is owned by PETSc. Users need to call `MatDenseRestoreColumnVec()` when the vector is no longer needed.

3753:   Use `MatDenseGetColumnVecRead()` to obtain read-only access or `MatDenseGetColumnVecWrite()` for write-only access.

3755: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`, `MatDenseGetColumn()`
3756: @*/
3757: PetscErrorCode MatDenseGetColumnVec(Mat A, PetscInt col, Vec *v)
3758: {
3759:   PetscFunctionBegin;
3763:   PetscAssertPointer(v, 3);
3764:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3765:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3766:   PetscUseMethod(A, "MatDenseGetColumnVec_C", (Mat, PetscInt, Vec *), (A, col, v));
3767:   PetscFunctionReturn(PETSC_SUCCESS);
3768: }

3770: /*@
3771:   MatDenseRestoreColumnVec - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVec()`.

3773:   Collective

3775:   Input Parameters:
3776: + A   - the `Mat` object
3777: . col - the column index
3778: - v   - the `Vec` object (may be `NULL`)

3780:   Level: intermediate

3782: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3783: @*/
3784: PetscErrorCode MatDenseRestoreColumnVec(Mat A, PetscInt col, Vec *v)
3785: {
3786:   PetscFunctionBegin;
3790:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3791:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3792:   PetscUseMethod(A, "MatDenseRestoreColumnVec_C", (Mat, PetscInt, Vec *), (A, col, v));
3793:   PetscFunctionReturn(PETSC_SUCCESS);
3794: }

3796: /*@
3797:   MatDenseGetColumnVecRead - Gives read-only access to a column of a dense matrix, represented as a `Vec`.

3799:   Collective

3801:   Input Parameters:
3802: + A   - the `Mat` object
3803: - col - the column index

3805:   Output Parameter:
3806: . v - the vector

3808:   Level: intermediate

3810:   Notes:
3811:   The vector is owned by PETSc and users cannot modify it.

3813:   Users need to call `MatDenseRestoreColumnVecRead()` when the vector is no longer needed.

3815:   Use `MatDenseGetColumnVec()` to obtain read-write access or `MatDenseGetColumnVecWrite()` for write-only access.

3817: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3818: @*/
3819: PetscErrorCode MatDenseGetColumnVecRead(Mat A, PetscInt col, Vec *v)
3820: {
3821:   PetscFunctionBegin;
3825:   PetscAssertPointer(v, 3);
3826:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3827:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3828:   PetscUseMethod(A, "MatDenseGetColumnVecRead_C", (Mat, PetscInt, Vec *), (A, col, v));
3829:   PetscFunctionReturn(PETSC_SUCCESS);
3830: }

3832: /*@
3833:   MatDenseRestoreColumnVecRead - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVecRead()`.

3835:   Collective

3837:   Input Parameters:
3838: + A   - the `Mat` object
3839: . col - the column index
3840: - v   - the `Vec` object (may be `NULL`)

3842:   Level: intermediate

3844: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecWrite()`
3845: @*/
3846: PetscErrorCode MatDenseRestoreColumnVecRead(Mat A, PetscInt col, Vec *v)
3847: {
3848:   PetscFunctionBegin;
3852:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3853:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3854:   PetscUseMethod(A, "MatDenseRestoreColumnVecRead_C", (Mat, PetscInt, Vec *), (A, col, v));
3855:   PetscFunctionReturn(PETSC_SUCCESS);
3856: }

3858: /*@
3859:   MatDenseGetColumnVecWrite - Gives write-only access to a column of a dense matrix, represented as a `Vec`.

3861:   Collective

3863:   Input Parameters:
3864: + A   - the `Mat` object
3865: - col - the column index

3867:   Output Parameter:
3868: . v - the vector

3870:   Level: intermediate

3872:   Notes:
3873:   The vector is owned by PETSc. Users need to call `MatDenseRestoreColumnVecWrite()` when the vector is no longer needed.

3875:   Use `MatDenseGetColumnVec()` to obtain read-write access or `MatDenseGetColumnVecRead()` for read-only access.

3877: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3878: @*/
3879: PetscErrorCode MatDenseGetColumnVecWrite(Mat A, PetscInt col, Vec *v)
3880: {
3881:   PetscFunctionBegin;
3885:   PetscAssertPointer(v, 3);
3886:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3887:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3888:   PetscUseMethod(A, "MatDenseGetColumnVecWrite_C", (Mat, PetscInt, Vec *), (A, col, v));
3889:   PetscFunctionReturn(PETSC_SUCCESS);
3890: }

3892: /*@
3893:   MatDenseRestoreColumnVecWrite - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVecWrite()`.

3895:   Collective

3897:   Input Parameters:
3898: + A   - the `Mat` object
3899: . col - the column index
3900: - v   - the `Vec` object (may be `NULL`)

3902:   Level: intermediate

3904: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`
3905: @*/
3906: PetscErrorCode MatDenseRestoreColumnVecWrite(Mat A, PetscInt col, Vec *v)
3907: {
3908:   PetscFunctionBegin;
3912:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3913:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3914:   PetscUseMethod(A, "MatDenseRestoreColumnVecWrite_C", (Mat, PetscInt, Vec *), (A, col, v));
3915:   PetscFunctionReturn(PETSC_SUCCESS);
3916: }

3918: /*@
3919:   MatDenseGetSubMatrix - Gives access to a block of rows and columns of a dense matrix, represented as a `Mat`.

3921:   Collective

3923:   Input Parameters:
3924: + A      - the `Mat` object
3925: . rbegin - the first global row index in the block (if `PETSC_DECIDE`, is 0)
3926: . rend   - the global row index past the last one in the block (if `PETSC_DECIDE`, is `M`)
3927: . cbegin - the first global column index in the block (if `PETSC_DECIDE`, is 0)
3928: - cend   - the global column index past the last one in the block (if `PETSC_DECIDE`, is `N`)

3930:   Output Parameter:
3931: . v - the matrix

3933:   Level: intermediate

3935:   Notes:
3936:   The matrix is owned by PETSc. Users need to call `MatDenseRestoreSubMatrix()` when the matrix is no longer needed.

3938:   The output matrix is not redistributed by PETSc, so depending on the values of `rbegin` and `rend`, some processes may have no local rows.

3940: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreSubMatrix()`
3941: @*/
3942: PetscErrorCode MatDenseGetSubMatrix(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *v)
3943: {
3944:   PetscFunctionBegin;
3951:   PetscAssertPointer(v, 6);
3952:   if (rbegin == PETSC_DECIDE) rbegin = 0;
3953:   if (rend == PETSC_DECIDE) rend = A->rmap->N;
3954:   if (cbegin == PETSC_DECIDE) cbegin = 0;
3955:   if (cend == PETSC_DECIDE) cend = A->cmap->N;
3956:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3957:   PetscCheck(rbegin >= 0 && rbegin <= A->rmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid rbegin %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT "]", rbegin, A->rmap->N);
3958:   PetscCheck(rend >= rbegin && rend <= A->rmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid rend %" PetscInt_FMT ", should be in [%" PetscInt_FMT ",%" PetscInt_FMT "]", rend, rbegin, A->rmap->N);
3959:   PetscCheck(cbegin >= 0 && cbegin <= A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid cbegin %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT "]", cbegin, A->cmap->N);
3960:   PetscCheck(cend >= cbegin && cend <= A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid cend %" PetscInt_FMT ", should be in [%" PetscInt_FMT ",%" PetscInt_FMT "]", cend, cbegin, A->cmap->N);
3961:   PetscUseMethod(A, "MatDenseGetSubMatrix_C", (Mat, PetscInt, PetscInt, PetscInt, PetscInt, Mat *), (A, rbegin, rend, cbegin, cend, v));
3962:   PetscFunctionReturn(PETSC_SUCCESS);
3963: }

3965: /*@
3966:   MatDenseRestoreSubMatrix - Returns access to a block of columns of a dense matrix obtained from `MatDenseGetSubMatrix()`.

3968:   Collective

3970:   Input Parameters:
3971: + A - the `Mat` object
3972: - v - the `Mat` object (may be `NULL`)

3974:   Level: intermediate

3976: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseRestoreColumnVec()`, `MatDenseGetSubMatrix()`
3977: @*/
3978: PetscErrorCode MatDenseRestoreSubMatrix(Mat A, Mat *v)
3979: {
3980:   PetscFunctionBegin;
3983:   PetscAssertPointer(v, 2);
3984:   PetscUseMethod(A, "MatDenseRestoreSubMatrix_C", (Mat, Mat *), (A, v));
3985:   PetscFunctionReturn(PETSC_SUCCESS);
3986: }

3988: #include <petscblaslapack.h>
3989: #include <petsc/private/kernels/blockinvert.h>

3991: PetscErrorCode MatSeqDenseInvert(Mat A)
3992: {
3993:   PetscInt        m;
3994:   const PetscReal shift = 0.0;
3995:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
3996:   PetscScalar    *values;

3998:   PetscFunctionBegin;
4000:   PetscCall(MatDenseGetArray(A, &values));
4001:   PetscCall(MatGetLocalSize(A, &m, NULL));
4002:   allowzeropivot = PetscNot(A->erroriffailure);
4003:   /* factor and invert each block */
4004:   switch (m) {
4005:   case 1:
4006:     values[0] = (PetscScalar)1.0 / (values[0] + shift);
4007:     break;
4008:   case 2:
4009:     PetscCall(PetscKernel_A_gets_inverse_A_2(values, shift, allowzeropivot, &zeropivotdetected));
4010:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4011:     break;
4012:   case 3:
4013:     PetscCall(PetscKernel_A_gets_inverse_A_3(values, shift, allowzeropivot, &zeropivotdetected));
4014:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4015:     break;
4016:   case 4:
4017:     PetscCall(PetscKernel_A_gets_inverse_A_4(values, shift, allowzeropivot, &zeropivotdetected));
4018:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4019:     break;
4020:   case 5: {
4021:     PetscScalar work[25];
4022:     PetscInt    ipvt[5];

4024:     PetscCall(PetscKernel_A_gets_inverse_A_5(values, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
4025:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4026:   } break;
4027:   case 6:
4028:     PetscCall(PetscKernel_A_gets_inverse_A_6(values, shift, allowzeropivot, &zeropivotdetected));
4029:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4030:     break;
4031:   case 7:
4032:     PetscCall(PetscKernel_A_gets_inverse_A_7(values, shift, allowzeropivot, &zeropivotdetected));
4033:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4034:     break;
4035:   default: {
4036:     PetscInt    *v_pivots, *IJ, j;
4037:     PetscScalar *v_work;

4039:     PetscCall(PetscMalloc3(m, &v_work, m, &v_pivots, m, &IJ));
4040:     for (j = 0; j < m; j++) IJ[j] = j;
4041:     PetscCall(PetscKernel_A_gets_inverse_A(m, values, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
4042:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
4043:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
4044:   }
4045:   }
4046:   PetscCall(MatDenseRestoreArray(A, &values));
4047:   PetscFunctionReturn(PETSC_SUCCESS);
4048: }