Actual source code: htool.cxx

  1: #include <../src/mat/impls/htool/htool.hpp>
  2: #include <petscblaslapack.h>
  3: #include <set>

  5: const char *const MatHtoolCompressorTypes[] = {"sympartialACA", "fullACA", "SVD"};
  6: const char *const MatHtoolClusteringTypes[] = {"PCARegular", "PCAGeometric", "BoundingBox1Regular", "BoundingBox1Geometric"};
  7: const char        HtoolCitation[]           = "@article{marchand2020two,\n"
  8:                                               "  Author = {Marchand, Pierre and Claeys, Xavier and Jolivet, Pierre and Nataf, Fr\\'ed\\'eric and Tournier, Pierre-Henri},\n"
  9:                                               "  Title = {Two-level preconditioning for $h$-version boundary element approximation of hypersingular operator with {GenEO}},\n"
 10:                                               "  Year = {2020},\n"
 11:                                               "  Publisher = {Elsevier},\n"
 12:                                               "  Journal = {Numerische Mathematik},\n"
 13:                                               "  Volume = {146},\n"
 14:                                               "  Pages = {597--628},\n"
 15:                                               "  Url = {https://github.com/htool-ddm/htool}\n"
 16:                                               "}\n";
 17: static PetscBool  HtoolCite                 = PETSC_FALSE;

 19: static PetscErrorCode MatGetDiagonal_Htool(Mat A, Vec v)
 20: {
 21:   Mat_Htool   *a;
 22:   PetscScalar *x;
 23:   PetscBool    flg;

 25:   PetscFunctionBegin;
 26:   PetscCall(MatHasCongruentLayouts(A, &flg));
 27:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Only congruent layouts supported");
 28:   PetscCall(MatShellGetContext(A, &a));
 29:   PetscCall(VecGetArrayWrite(v, &x));
 30:   PetscStackCallExternalVoid("copy_diagonal_in_user_numbering", htool::copy_diagonal_in_user_numbering(a->distributed_operator_holder->hmatrix, x));
 31:   PetscCall(VecRestoreArrayWrite(v, &x));
 32:   PetscFunctionReturn(PETSC_SUCCESS);
 33: }

 35: static PetscErrorCode MatGetDiagonalBlock_Htool(Mat A, Mat *b)
 36: {
 37:   Mat_Htool                 *a;
 38:   Mat                        B;
 39:   PetscScalar               *ptr, shift, scale;
 40:   PetscBool                  flg;
 41:   PetscMPIInt                rank;
 42:   htool::Cluster<PetscReal> *source_cluster = nullptr;

 44:   PetscFunctionBegin;
 45:   PetscCall(MatHasCongruentLayouts(A, &flg));
 46:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Only congruent layouts supported");
 47:   PetscCall(MatShellGetContext(A, &a));
 48:   PetscCall(PetscObjectQuery((PetscObject)A, "DiagonalBlock", (PetscObject *)&B)); /* same logic as in MatGetDiagonalBlock_MPIDense() */
 49:   if (!B) {
 50:     PetscCall(MatShellGetScalingShifts(A, &shift, &scale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
 51:     PetscCall(MatCreateDense(PETSC_COMM_SELF, A->rmap->n, A->rmap->n, A->rmap->n, A->rmap->n, nullptr, &B));
 52:     PetscCall(MatDenseGetArrayWrite(B, &ptr));
 53:     PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));
 54:     source_cluster = a->source_cluster ? a->source_cluster.get() : a->target_cluster.get();
 55:     PetscStackCallExternalVoid("copy_to_dense_in_user_numbering", htool::copy_to_dense_in_user_numbering(*a->distributed_operator_holder->hmatrix.get_sub_hmatrix(a->target_cluster->get_cluster_on_partition(rank), source_cluster->get_cluster_on_partition(rank)), ptr));
 56:     PetscCall(MatDenseRestoreArrayWrite(B, &ptr));
 57:     PetscCall(MatPropagateSymmetryOptions(A, B));
 58:     PetscCall(PetscObjectCompose((PetscObject)A, "DiagonalBlock", (PetscObject)B));
 59:     *b = B;
 60:     PetscCall(MatDestroy(&B));
 61:     PetscCall(MatShift(*b, shift));
 62:     PetscCall(MatScale(*b, scale));
 63:   } else {
 64:     PetscCall(MatShellGetScalingShifts(A, (PetscScalar *)MAT_SHELL_NOT_ALLOWED, (PetscScalar *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
 65:     *b = B;
 66:   }
 67:   PetscFunctionReturn(PETSC_SUCCESS);
 68: }

 70: static PetscErrorCode MatMult_Htool(Mat A, Vec x, Vec y)
 71: {
 72:   Mat_Htool         *a;
 73:   const PetscScalar *in;
 74:   PetscScalar       *out;

 76:   PetscFunctionBegin;
 77:   PetscCall(MatShellGetContext(A, &a));
 78:   PetscCall(VecGetArrayRead(x, &in));
 79:   PetscCall(VecGetArrayWrite(y, &out));
 80:   a->distributed_operator_holder->distributed_operator.vector_product_local_to_local(in, out, nullptr);
 81:   PetscCall(VecRestoreArrayRead(x, &in));
 82:   PetscCall(VecRestoreArrayWrite(y, &out));
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: static PetscErrorCode MatMultTranspose_Htool(Mat A, Vec x, Vec y)
 87: {
 88:   Mat_Htool         *a;
 89:   const PetscScalar *in;
 90:   PetscScalar       *out;

 92:   PetscFunctionBegin;
 93:   PetscCall(MatShellGetContext(A, &a));
 94:   PetscCall(VecGetArrayRead(x, &in));
 95:   PetscCall(VecGetArrayWrite(y, &out));
 96:   a->distributed_operator_holder->distributed_operator.vector_product_transp_local_to_local(in, out, nullptr);
 97:   PetscCall(VecRestoreArrayRead(x, &in));
 98:   PetscCall(VecRestoreArrayWrite(y, &out));
 99:   PetscFunctionReturn(PETSC_SUCCESS);
100: }

102: static PetscErrorCode MatIncreaseOverlap_Htool(Mat A, PetscInt is_max, IS is[], PetscInt ov)
103: {
104:   std::set<PetscInt> set;
105:   const PetscInt    *idx;
106:   PetscInt          *oidx, size, bs[2];
107:   PetscMPIInt        csize;

109:   PetscFunctionBegin;
110:   PetscCall(MatGetBlockSizes(A, bs, bs + 1));
111:   if (bs[0] != bs[1]) bs[0] = 1;
112:   for (PetscInt i = 0; i < is_max; ++i) {
113:     /* basic implementation that adds indices by shifting an IS by -ov, -ov+1..., -1, 1..., ov-1, ov */
114:     /* needed to avoid subdomain matrices to replicate A since it is dense                           */
115:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)is[i]), &csize));
116:     PetscCheck(csize == 1, PETSC_COMM_SELF, PETSC_ERR_WRONG_MPI_SIZE, "Unsupported parallel IS");
117:     PetscCall(ISGetSize(is[i], &size));
118:     PetscCall(ISGetIndices(is[i], &idx));
119:     for (PetscInt j = 0; j < size; ++j) {
120:       set.insert(idx[j]);
121:       for (PetscInt k = 1; k <= ov; ++k) {                                              /* for each layer of overlap      */
122:         if (idx[j] - k >= 0) set.insert(idx[j] - k);                                    /* do not insert negative indices */
123:         if (idx[j] + k < A->rmap->N && idx[j] + k < A->cmap->N) set.insert(idx[j] + k); /* do not insert indices greater than the dimension of A */
124:       }
125:     }
126:     PetscCall(ISRestoreIndices(is[i], &idx));
127:     PetscCall(ISDestroy(is + i));
128:     if (bs[0] > 1) {
129:       for (std::set<PetscInt>::iterator it = set.cbegin(); it != set.cend(); it++) {
130:         std::vector<PetscInt> block(bs[0]);
131:         std::iota(block.begin(), block.end(), (*it / bs[0]) * bs[0]);
132:         set.insert(block.cbegin(), block.cend());
133:       }
134:     }
135:     size = set.size(); /* size with overlap */
136:     PetscCall(PetscMalloc1(size, &oidx));
137:     for (const PetscInt j : set) *oidx++ = j;
138:     oidx -= size;
139:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, size, oidx, PETSC_OWN_POINTER, is + i));
140:   }
141:   PetscFunctionReturn(PETSC_SUCCESS);
142: }

144: static PetscErrorCode MatCreateSubMatrices_Htool(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *submat[])
145: {
146:   Mat_Htool         *a;
147:   Mat                D, B, BT;
148:   const PetscScalar *copy;
149:   PetscScalar       *ptr, shift, scale;
150:   const PetscInt    *idxr, *idxc, *it;
151:   PetscInt           nrow, m, i;
152:   PetscBool          flg;

154:   PetscFunctionBegin;
155:   PetscCall(MatShellGetScalingShifts(A, &shift, &scale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
156:   PetscCall(MatShellGetContext(A, &a));
157:   if (scall != MAT_REUSE_MATRIX) PetscCall(PetscCalloc1(n, submat));
158:   for (i = 0; i < n; ++i) {
159:     PetscCall(ISGetLocalSize(irow[i], &nrow));
160:     PetscCall(ISGetLocalSize(icol[i], &m));
161:     PetscCall(ISGetIndices(irow[i], &idxr));
162:     PetscCall(ISGetIndices(icol[i], &idxc));
163:     if (scall != MAT_REUSE_MATRIX) PetscCall(MatCreateDense(PETSC_COMM_SELF, nrow, m, nrow, m, nullptr, (*submat) + i));
164:     PetscCall(MatDenseGetArrayWrite((*submat)[i], &ptr));
165:     if (irow[i] == icol[i]) { /* same row and column IS? */
166:       PetscCall(MatHasCongruentLayouts(A, &flg));
167:       if (flg) {
168:         PetscCall(ISSorted(irow[i], &flg));
169:         if (flg) { /* sorted IS? */
170:           it = std::lower_bound(idxr, idxr + nrow, A->rmap->rstart);
171:           if (it != idxr + nrow && *it == A->rmap->rstart) {    /* rmap->rstart in IS? */
172:             if (std::distance(idxr, it) + A->rmap->n <= nrow) { /* long enough IS to store the local diagonal block? */
173:               for (PetscInt j = 0; j < A->rmap->n && flg; ++j)
174:                 if (PetscUnlikely(it[j] != A->rmap->rstart + j)) flg = PETSC_FALSE;
175:               if (flg) { /* complete local diagonal block in IS? */
176:                 /* fast extraction when the local diagonal block is part of the submatrix, e.g., for PCASM or PCHPDDM
177:                  *      [   B   C   E   ]
178:                  *  A = [   B   D   E   ]
179:                  *      [   B   F   E   ]
180:                  */
181:                 m = std::distance(idxr, it); /* shift of the coefficient (0,0) of block D from above */
182:                 PetscCall(MatGetDiagonalBlock(A, &D));
183:                 PetscCall(MatDenseGetArrayRead(D, &copy));
184:                 for (PetscInt k = 0; k < A->rmap->n; ++k) { PetscCall(PetscArraycpy(ptr + (m + k) * nrow + m, copy + k * A->rmap->n, A->rmap->n)); /* block D from above */ }
185:                 PetscCall(MatDenseRestoreArrayRead(D, &copy));
186:                 if (m) {
187:                   a->wrapper->copy_submatrix(nrow, m, idxr, idxc, ptr); /* vertical block B from above */
188:                   /* entry-wise assembly may be costly, so transpose already-computed entries when possible */
189:                   if (A->symmetric == PETSC_BOOL3_TRUE || A->hermitian == PETSC_BOOL3_TRUE) {
190:                     PetscCall(MatCreateDense(PETSC_COMM_SELF, A->rmap->n, m, A->rmap->n, m, ptr + m, &B));
191:                     PetscCall(MatDenseSetLDA(B, nrow));
192:                     PetscCall(MatCreateDense(PETSC_COMM_SELF, m, A->rmap->n, m, A->rmap->n, ptr + m * nrow, &BT));
193:                     PetscCall(MatDenseSetLDA(BT, nrow));
194:                     if (A->hermitian == PETSC_BOOL3_TRUE && PetscDefined(USE_COMPLEX)) {
195:                       PetscCall(MatHermitianTranspose(B, MAT_REUSE_MATRIX, &BT));
196:                     } else {
197:                       PetscCall(MatTransposeSetPrecursor(B, BT));
198:                       PetscCall(MatTranspose(B, MAT_REUSE_MATRIX, &BT));
199:                     }
200:                     PetscCall(MatDestroy(&B));
201:                     PetscCall(MatDestroy(&BT));
202:                   } else {
203:                     for (PetscInt k = 0; k < A->rmap->n; ++k) { /* block C from above */
204:                       a->wrapper->copy_submatrix(m, 1, idxr, idxc + m + k, ptr + (m + k) * nrow);
205:                     }
206:                   }
207:                 }
208:                 if (m + A->rmap->n != nrow) {
209:                   a->wrapper->copy_submatrix(nrow, std::distance(it + A->rmap->n, idxr + nrow), idxr, idxc + m + A->rmap->n, ptr + (m + A->rmap->n) * nrow); /* vertical block E from above */
210:                   /* entry-wise assembly may be costly, so transpose already-computed entries when possible */
211:                   if (A->symmetric == PETSC_BOOL3_TRUE || A->hermitian == PETSC_BOOL3_TRUE) {
212:                     PetscCall(MatCreateDense(PETSC_COMM_SELF, A->rmap->n, nrow - (m + A->rmap->n), A->rmap->n, nrow - (m + A->rmap->n), ptr + (m + A->rmap->n) * nrow + m, &B));
213:                     PetscCall(MatDenseSetLDA(B, nrow));
214:                     PetscCall(MatCreateDense(PETSC_COMM_SELF, nrow - (m + A->rmap->n), A->rmap->n, nrow - (m + A->rmap->n), A->rmap->n, ptr + m * nrow + m + A->rmap->n, &BT));
215:                     PetscCall(MatDenseSetLDA(BT, nrow));
216:                     if (A->hermitian == PETSC_BOOL3_TRUE && PetscDefined(USE_COMPLEX)) {
217:                       PetscCall(MatHermitianTranspose(B, MAT_REUSE_MATRIX, &BT));
218:                     } else {
219:                       PetscCall(MatTransposeSetPrecursor(B, BT));
220:                       PetscCall(MatTranspose(B, MAT_REUSE_MATRIX, &BT));
221:                     }
222:                     PetscCall(MatDestroy(&B));
223:                     PetscCall(MatDestroy(&BT));
224:                   } else {
225:                     for (PetscInt k = 0; k < A->rmap->n; ++k) { /* block F from above */
226:                       a->wrapper->copy_submatrix(std::distance(it + A->rmap->n, idxr + nrow), 1, it + A->rmap->n, idxc + m + k, ptr + (m + k) * nrow + m + A->rmap->n);
227:                     }
228:                   }
229:                 }
230:               } /* complete local diagonal block not in IS */
231:             } else flg = PETSC_FALSE; /* IS not long enough to store the local diagonal block */
232:           } else flg = PETSC_FALSE;   /* rmap->rstart not in IS */
233:         } /* unsorted IS */
234:       }
235:     } else flg = PETSC_FALSE;                                       /* different row and column IS */
236:     if (!flg) a->wrapper->copy_submatrix(nrow, m, idxr, idxc, ptr); /* reassemble everything */
237:     PetscCall(ISRestoreIndices(irow[i], &idxr));
238:     PetscCall(ISRestoreIndices(icol[i], &idxc));
239:     PetscCall(MatDenseRestoreArrayWrite((*submat)[i], &ptr));
240:     PetscCall(MatShift((*submat)[i], shift));
241:     PetscCall(MatScale((*submat)[i], scale));
242:   }
243:   PetscFunctionReturn(PETSC_SUCCESS);
244: }

246: static PetscErrorCode MatDestroy_Htool(Mat A)
247: {
248:   Mat_Htool               *a;
249:   PetscContainer           container;
250:   MatHtoolKernelTranspose *kernelt;

252:   PetscFunctionBegin;
253:   PetscCall(MatShellGetContext(A, &a));
254:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_htool_seqdense_C", nullptr));
255:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_htool_mpidense_C", nullptr));
256:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_htool_seqdense_C", nullptr));
257:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_htool_mpidense_C", nullptr));
258:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolGetHierarchicalMat_C", nullptr));
259:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolSetKernel_C", nullptr));
260:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolGetPermutationSource_C", nullptr));
261:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolGetPermutationTarget_C", nullptr));
262:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolUsePermutation_C", nullptr));
263:   PetscCall(PetscObjectQuery((PetscObject)A, "KernelTranspose", (PetscObject *)&container));
264:   if (container) { /* created in MatTranspose_Htool() */
265:     PetscCall(PetscContainerGetPointer(container, (void **)&kernelt));
266:     PetscCall(MatDestroy(&kernelt->A));
267:     PetscCall(PetscObjectCompose((PetscObject)A, "KernelTranspose", nullptr));
268:   }
269:   if (a->gcoords_source != a->gcoords_target) PetscCall(PetscFree(a->gcoords_source));
270:   PetscCall(PetscFree(a->gcoords_target));
271:   PetscCall(PetscFree2(a->work_source, a->work_target));
272:   delete a->wrapper;
273:   a->target_cluster.reset();
274:   a->source_cluster.reset();
275:   a->distributed_operator_holder.reset();
276:   PetscCall(PetscFree(a));
277:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatShellSetContext_C", nullptr)); // needed to avoid a call to MatShellSetContext_Immutable()
278:   PetscFunctionReturn(PETSC_SUCCESS);
279: }

281: static PetscErrorCode MatView_Htool(Mat A, PetscViewer pv)
282: {
283:   Mat_Htool                         *a;
284:   PetscScalar                        shift, scale;
285:   PetscBool                          flg;
286:   std::map<std::string, std::string> hmatrix_information;

288:   PetscFunctionBegin;
289:   PetscCall(MatShellGetContext(A, &a));
290:   hmatrix_information = htool::get_distributed_hmatrix_information(a->distributed_operator_holder->hmatrix, PetscObjectComm((PetscObject)A));
291:   PetscCall(PetscObjectTypeCompare((PetscObject)pv, PETSCVIEWERASCII, &flg));
292:   if (flg) {
293:     PetscCall(MatShellGetScalingShifts(A, &shift, &scale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
294:     PetscCall(PetscViewerASCIIPrintf(pv, "symmetry: %c\n", a->distributed_operator_holder->distributed_operator.get_symmetry_type()));
295:     if (PetscAbsScalar(scale - 1.0) > PETSC_MACHINE_EPSILON) {
296: #if defined(PETSC_USE_COMPLEX)
297:       PetscCall(PetscViewerASCIIPrintf(pv, "scaling: %g+%gi\n", (double)PetscRealPart(scale), (double)PetscImaginaryPart(scale)));
298: #else
299:       PetscCall(PetscViewerASCIIPrintf(pv, "scaling: %g\n", (double)scale));
300: #endif
301:     }
302:     if (PetscAbsScalar(shift) > PETSC_MACHINE_EPSILON) {
303: #if defined(PETSC_USE_COMPLEX)
304:       PetscCall(PetscViewerASCIIPrintf(pv, "shift: %g+%gi\n", (double)PetscRealPart(shift), (double)PetscImaginaryPart(shift)));
305: #else
306:       PetscCall(PetscViewerASCIIPrintf(pv, "shift: %g\n", (double)shift));
307: #endif
308:     }
309:     PetscCall(PetscViewerASCIIPrintf(pv, "minimum cluster size: %" PetscInt_FMT "\n", a->min_cluster_size));
310:     PetscCall(PetscViewerASCIIPrintf(pv, "epsilon: %g\n", (double)a->epsilon));
311:     PetscCall(PetscViewerASCIIPrintf(pv, "eta: %g\n", (double)a->eta));
312:     PetscCall(PetscViewerASCIIPrintf(pv, "minimum target depth: %" PetscInt_FMT "\n", a->depth[0]));
313:     PetscCall(PetscViewerASCIIPrintf(pv, "minimum source depth: %" PetscInt_FMT "\n", a->depth[1]));
314:     PetscCall(PetscViewerASCIIPrintf(pv, "compressor: %s\n", MatHtoolCompressorTypes[a->compressor]));
315:     PetscCall(PetscViewerASCIIPrintf(pv, "clustering: %s\n", MatHtoolClusteringTypes[a->clustering]));
316:     PetscCall(PetscViewerASCIIPrintf(pv, "compression ratio: %s\n", hmatrix_information["Compression_ratio"].c_str()));
317:     PetscCall(PetscViewerASCIIPrintf(pv, "space saving: %s\n", hmatrix_information["Space_saving"].c_str()));
318:     PetscCall(PetscViewerASCIIPrintf(pv, "block tree consistency: %s\n", PetscBools[a->distributed_operator_holder->hmatrix.is_block_tree_consistent()]));
319:     PetscCall(PetscViewerASCIIPrintf(pv, "number of dense (resp. low rank) matrices: %s (resp. %s)\n", hmatrix_information["Number_of_dense_blocks"].c_str(), hmatrix_information["Number_of_low_rank_blocks"].c_str()));
320:     PetscCall(
321:       PetscViewerASCIIPrintf(pv, "(minimum, mean, maximum) dense block sizes: (%s, %s, %s)\n", hmatrix_information["Dense_block_size_min"].c_str(), hmatrix_information["Dense_block_size_mean"].c_str(), hmatrix_information["Dense_block_size_max"].c_str()));
322:     PetscCall(PetscViewerASCIIPrintf(pv, "(minimum, mean, maximum) low rank block sizes: (%s, %s, %s)\n", hmatrix_information["Low_rank_block_size_min"].c_str(), hmatrix_information["Low_rank_block_size_mean"].c_str(),
323:                                      hmatrix_information["Low_rank_block_size_max"].c_str()));
324:     PetscCall(PetscViewerASCIIPrintf(pv, "(minimum, mean, maximum) ranks: (%s, %s, %s)\n", hmatrix_information["Rank_min"].c_str(), hmatrix_information["Rank_mean"].c_str(), hmatrix_information["Rank_max"].c_str()));
325:   }
326:   PetscFunctionReturn(PETSC_SUCCESS);
327: }

329: /* naive implementation of MatGetRow() needed for MatConvert_Nest_AIJ() */
330: static PetscErrorCode MatGetRow_Htool(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
331: {
332:   Mat_Htool   *a;
333:   PetscScalar  shift, scale;
334:   PetscInt    *idxc;
335:   PetscBLASInt one = 1, bn;

337:   PetscFunctionBegin;
338:   PetscCall(MatShellGetScalingShifts(A, &shift, &scale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
339:   PetscCall(MatShellGetContext(A, &a));
340:   if (nz) *nz = A->cmap->N;
341:   if (idx || v) { /* even if !idx, need to set idxc for htool::copy_submatrix() */
342:     PetscCall(PetscMalloc1(A->cmap->N, &idxc));
343:     for (PetscInt i = 0; i < A->cmap->N; ++i) idxc[i] = i;
344:   }
345:   if (idx) *idx = idxc;
346:   if (v) {
347:     PetscCall(PetscMalloc1(A->cmap->N, v));
348:     if (a->wrapper) a->wrapper->copy_submatrix(1, A->cmap->N, &row, idxc, *v);
349:     else reinterpret_cast<htool::VirtualGenerator<PetscScalar> *>(a->kernelctx)->copy_submatrix(1, A->cmap->N, &row, idxc, *v);
350:     PetscCall(PetscBLASIntCast(A->cmap->N, &bn));
351:     PetscCallBLAS("BLASscal", BLASscal_(&bn, &scale, *v, &one));
352:     if (row < A->cmap->N) (*v)[row] += shift;
353:   }
354:   if (!idx) PetscCall(PetscFree(idxc));
355:   PetscFunctionReturn(PETSC_SUCCESS);
356: }

358: static PetscErrorCode MatRestoreRow_Htool(Mat, PetscInt, PetscInt *, PetscInt **idx, PetscScalar **v)
359: {
360:   PetscFunctionBegin;
361:   if (idx) PetscCall(PetscFree(*idx));
362:   if (v) PetscCall(PetscFree(*v));
363:   PetscFunctionReturn(PETSC_SUCCESS);
364: }

366: static PetscErrorCode MatSetFromOptions_Htool(Mat A, PetscOptionItems *PetscOptionsObject)
367: {
368:   Mat_Htool *a;
369:   PetscInt   n;
370:   PetscBool  flg;

372:   PetscFunctionBegin;
373:   PetscCall(MatShellGetContext(A, &a));
374:   PetscOptionsHeadBegin(PetscOptionsObject, "Htool options");
375:   PetscCall(PetscOptionsBoundedInt("-mat_htool_min_cluster_size", "Minimal leaf size in cluster tree", nullptr, a->min_cluster_size, &a->min_cluster_size, nullptr, 0));
376:   PetscCall(PetscOptionsBoundedReal("-mat_htool_epsilon", "Relative error in Frobenius norm when approximating a block", nullptr, a->epsilon, &a->epsilon, nullptr, 0.0));
377:   PetscCall(PetscOptionsReal("-mat_htool_eta", "Admissibility condition tolerance", nullptr, a->eta, &a->eta, nullptr));
378:   PetscCall(PetscOptionsBoundedInt("-mat_htool_min_target_depth", "Minimal cluster tree depth associated with the rows", nullptr, a->depth[0], a->depth, nullptr, 0));
379:   PetscCall(PetscOptionsBoundedInt("-mat_htool_min_source_depth", "Minimal cluster tree depth associated with the columns", nullptr, a->depth[1], a->depth + 1, nullptr, 0));
380:   PetscCall(PetscOptionsBool("-mat_htool_block_tree_consistency", "Block tree consistency", nullptr, a->block_tree_consistency, &a->block_tree_consistency, nullptr));

382:   n = 0;
383:   PetscCall(PetscOptionsEList("-mat_htool_compressor", "Type of compression", "MatHtoolCompressorType", MatHtoolCompressorTypes, PETSC_STATIC_ARRAY_LENGTH(MatHtoolCompressorTypes), MatHtoolCompressorTypes[MAT_HTOOL_COMPRESSOR_SYMPARTIAL_ACA], &n, &flg));
384:   if (flg) a->compressor = MatHtoolCompressorType(n);
385:   n = 0;
386:   PetscCall(PetscOptionsEList("-mat_htool_clustering", "Type of clustering", "MatHtoolClusteringType", MatHtoolClusteringTypes, PETSC_STATIC_ARRAY_LENGTH(MatHtoolClusteringTypes), MatHtoolClusteringTypes[MAT_HTOOL_CLUSTERING_PCA_REGULAR], &n, &flg));
387:   if (flg) a->clustering = MatHtoolClusteringType(n);
388:   PetscOptionsHeadEnd();
389:   PetscFunctionReturn(PETSC_SUCCESS);
390: }

392: static PetscErrorCode MatAssemblyEnd_Htool(Mat A, MatAssemblyType)
393: {
394:   Mat_Htool                                                   *a;
395:   const PetscInt                                              *ranges;
396:   PetscInt                                                    *offset;
397:   PetscMPIInt                                                  size, rank;
398:   char                                                         S = PetscDefined(USE_COMPLEX) && A->hermitian == PETSC_BOOL3_TRUE ? 'H' : (A->symmetric == PETSC_BOOL3_TRUE ? 'S' : 'N'), uplo = S == 'N' ? 'N' : 'U';
399:   htool::VirtualGenerator<PetscScalar>                        *generator = nullptr;
400:   htool::ClusterTreeBuilder<PetscReal>                         recursive_build_strategy;
401:   htool::Cluster<PetscReal>                                   *source_cluster;
402:   std::shared_ptr<htool::VirtualLowRankGenerator<PetscScalar>> compressor;

404:   PetscFunctionBegin;
405:   PetscCall(PetscCitationsRegister(HtoolCitation, &HtoolCite));
406:   PetscCall(MatShellGetContext(A, &a));
407:   delete a->wrapper;
408:   a->target_cluster.reset();
409:   a->source_cluster.reset();
410:   a->distributed_operator_holder.reset();
411:   // clustering
412:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
413:   PetscCall(PetscMalloc1(2 * size, &offset));
414:   PetscCall(MatGetOwnershipRanges(A, &ranges));
415:   for (PetscInt i = 0; i < size; ++i) {
416:     offset[2 * i]     = ranges[i];
417:     offset[2 * i + 1] = ranges[i + 1] - ranges[i];
418:   }
419:   switch (a->clustering) {
420:   case MAT_HTOOL_CLUSTERING_PCA_GEOMETRIC:
421:     recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeLargestExtent<PetscReal>>());
422:     recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::GeometricSplitting<PetscReal>>());
423:     break;
424:   case MAT_HTOOL_CLUSTERING_BOUNDING_BOX_1_GEOMETRIC:
425:     recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeBoundingBox<PetscReal>>());
426:     recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::GeometricSplitting<PetscReal>>());
427:     break;
428:   case MAT_HTOOL_CLUSTERING_BOUNDING_BOX_1_REGULAR:
429:     recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeBoundingBox<PetscReal>>());
430:     recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::RegularSplitting<PetscReal>>());
431:     break;
432:   default:
433:     recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeLargestExtent<PetscReal>>());
434:     recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::RegularSplitting<PetscReal>>());
435:   }
436:   recursive_build_strategy.set_minclustersize(a->min_cluster_size);
437:   a->target_cluster = std::make_unique<htool::Cluster<PetscReal>>(recursive_build_strategy.create_cluster_tree(A->rmap->N, a->dim, a->gcoords_target, 2, size, offset));
438:   if (a->gcoords_target != a->gcoords_source) {
439:     PetscCall(MatGetOwnershipRangesColumn(A, &ranges));
440:     for (PetscInt i = 0; i < size; ++i) {
441:       offset[2 * i]     = ranges[i];
442:       offset[2 * i + 1] = ranges[i + 1] - ranges[i];
443:     }
444:     switch (a->clustering) {
445:     case MAT_HTOOL_CLUSTERING_PCA_GEOMETRIC:
446:       recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeLargestExtent<PetscReal>>());
447:       recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::GeometricSplitting<PetscReal>>());
448:       break;
449:     case MAT_HTOOL_CLUSTERING_BOUNDING_BOX_1_GEOMETRIC:
450:       recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeBoundingBox<PetscReal>>());
451:       recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::GeometricSplitting<PetscReal>>());
452:       break;
453:     case MAT_HTOOL_CLUSTERING_BOUNDING_BOX_1_REGULAR:
454:       recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeBoundingBox<PetscReal>>());
455:       recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::RegularSplitting<PetscReal>>());
456:       break;
457:     default:
458:       recursive_build_strategy.set_direction_computation_strategy(std::make_shared<htool::ComputeLargestExtent<PetscReal>>());
459:       recursive_build_strategy.set_splitting_strategy(std::make_shared<htool::RegularSplitting<PetscReal>>());
460:     }
461:     recursive_build_strategy.set_minclustersize(a->min_cluster_size);
462:     a->source_cluster = std::make_unique<htool::Cluster<PetscReal>>(recursive_build_strategy.create_cluster_tree(A->cmap->N, a->dim, a->gcoords_source, 2, size, offset));
463:     S = uplo       = 'N';
464:     source_cluster = a->source_cluster.get();
465:   } else source_cluster = a->target_cluster.get();
466:   PetscCall(PetscFree(offset));
467:   // generator
468:   if (a->kernel) a->wrapper = new WrapperHtool(a->dim, a->kernel, a->kernelctx);
469:   else {
470:     a->wrapper = nullptr;
471:     generator  = reinterpret_cast<htool::VirtualGenerator<PetscScalar> *>(a->kernelctx);
472:   }
473:   // compressor
474:   switch (a->compressor) {
475:   case MAT_HTOOL_COMPRESSOR_FULL_ACA:
476:     compressor = std::make_shared<htool::fullACA<PetscScalar>>();
477:     break;
478:   case MAT_HTOOL_COMPRESSOR_SVD:
479:     compressor = std::make_shared<htool::SVD<PetscScalar>>();
480:     break;
481:   default:
482:     compressor = std::make_shared<htool::sympartialACA<PetscScalar>>();
483:   }
484:   // local hierarchical matrix
485:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));
486:   auto hmatrix_builder = htool::HMatrixTreeBuilder<PetscScalar>(*a->target_cluster, *source_cluster, a->epsilon, a->eta, S, uplo, -1, rank, rank);
487:   hmatrix_builder.set_low_rank_generator(compressor);
488:   hmatrix_builder.set_minimal_target_depth(a->depth[0]);
489:   hmatrix_builder.set_minimal_source_depth(a->depth[1]);
490:   PetscCheck(a->block_tree_consistency || (!a->block_tree_consistency && !(A->symmetric == PETSC_BOOL3_TRUE || A->hermitian == PETSC_BOOL3_TRUE)), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Cannot have a MatHtool with inconsistent block tree which is either symmetric or Hermitian");
491:   hmatrix_builder.set_block_tree_consistency(a->block_tree_consistency);
492:   a->distributed_operator_holder = std::make_unique<htool::DistributedOperatorFromHMatrix<PetscScalar>>(a->wrapper ? *a->wrapper : *generator, *a->target_cluster, *source_cluster, hmatrix_builder, PetscObjectComm((PetscObject)A));
493:   PetscFunctionReturn(PETSC_SUCCESS);
494: }

496: static PetscErrorCode MatProductNumeric_Htool(Mat C)
497: {
498:   Mat_Product       *product = C->product;
499:   Mat_Htool         *a;
500:   const PetscScalar *in;
501:   PetscScalar       *out;
502:   PetscInt           N, lda;

504:   PetscFunctionBegin;
505:   MatCheckProduct(C, 1);
506:   PetscCall(MatGetSize(C, nullptr, &N));
507:   PetscCall(MatDenseGetLDA(C, &lda));
508:   PetscCheck(lda == C->rmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Unsupported leading dimension (%" PetscInt_FMT " != %" PetscInt_FMT ")", lda, C->rmap->n);
509:   PetscCall(MatDenseGetArrayRead(product->B, &in));
510:   PetscCall(MatDenseGetArrayWrite(C, &out));
511:   PetscCall(MatShellGetContext(product->A, &a));
512:   switch (product->type) {
513:   case MATPRODUCT_AB:
514:     a->distributed_operator_holder->distributed_operator.matrix_product_local_to_local(in, out, N, nullptr);
515:     break;
516:   case MATPRODUCT_AtB:
517:     a->distributed_operator_holder->distributed_operator.matrix_product_transp_local_to_local(in, out, N, nullptr);
518:     break;
519:   default:
520:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "MatProductType %s is not supported", MatProductTypes[product->type]);
521:   }
522:   PetscCall(MatDenseRestoreArrayWrite(C, &out));
523:   PetscCall(MatDenseRestoreArrayRead(product->B, &in));
524:   PetscFunctionReturn(PETSC_SUCCESS);
525: }

527: static PetscErrorCode MatProductSymbolic_Htool(Mat C)
528: {
529:   Mat_Product *product = C->product;
530:   Mat          A, B;
531:   PetscBool    flg;

533:   PetscFunctionBegin;
534:   MatCheckProduct(C, 1);
535:   A = product->A;
536:   B = product->B;
537:   PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATSEQDENSE, MATMPIDENSE, ""));
538:   PetscCheck(flg && (product->type == MATPRODUCT_AB || product->type == MATPRODUCT_AtB), PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "ProductType %s not supported for %s", MatProductTypes[product->type], ((PetscObject)product->B)->type_name);
539:   if (C->rmap->n == PETSC_DECIDE || C->cmap->n == PETSC_DECIDE || C->rmap->N == PETSC_DECIDE || C->cmap->N == PETSC_DECIDE) {
540:     if (product->type == MATPRODUCT_AB) PetscCall(MatSetSizes(C, A->rmap->n, B->cmap->n, A->rmap->N, B->cmap->N));
541:     else PetscCall(MatSetSizes(C, A->cmap->n, B->cmap->n, A->cmap->N, B->cmap->N));
542:   }
543:   PetscCall(MatSetType(C, MATDENSE));
544:   PetscCall(MatSetUp(C));
545:   PetscCall(MatSetOption(C, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
546:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
547:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
548:   C->ops->productsymbolic = nullptr;
549:   C->ops->productnumeric  = MatProductNumeric_Htool;
550:   PetscFunctionReturn(PETSC_SUCCESS);
551: }

553: static PetscErrorCode MatProductSetFromOptions_Htool(Mat C)
554: {
555:   PetscFunctionBegin;
556:   MatCheckProduct(C, 1);
557:   if (C->product->type == MATPRODUCT_AB || C->product->type == MATPRODUCT_AtB) C->ops->productsymbolic = MatProductSymbolic_Htool;
558:   PetscFunctionReturn(PETSC_SUCCESS);
559: }

561: static PetscErrorCode MatHtoolGetHierarchicalMat_Htool(Mat A, const htool::DistributedOperator<PetscScalar> **distributed_operator)
562: {
563:   Mat_Htool *a;

565:   PetscFunctionBegin;
566:   PetscCall(MatShellGetContext(A, &a));
567:   *distributed_operator = &a->distributed_operator_holder->distributed_operator;
568:   PetscFunctionReturn(PETSC_SUCCESS);
569: }

571: /*@C
572:   MatHtoolGetHierarchicalMat - Retrieves the opaque pointer to a Htool virtual matrix stored in a `MATHTOOL`.

574:   No Fortran Support, No C Support

576:   Input Parameter:
577: . A - hierarchical matrix

579:   Output Parameter:
580: . distributed_operator - opaque pointer to a Htool virtual matrix

582:   Level: advanced

584: .seealso: [](ch_matrices), `Mat`, `MATHTOOL`
585: @*/
586: PETSC_EXTERN PetscErrorCode MatHtoolGetHierarchicalMat(Mat A, const htool::DistributedOperator<PetscScalar> **distributed_operator)
587: {
588:   PetscFunctionBegin;
590:   PetscAssertPointer(distributed_operator, 2);
591:   PetscTryMethod(A, "MatHtoolGetHierarchicalMat_C", (Mat, const htool::DistributedOperator<PetscScalar> **), (A, distributed_operator));
592:   PetscFunctionReturn(PETSC_SUCCESS);
593: }

595: static PetscErrorCode MatHtoolSetKernel_Htool(Mat A, MatHtoolKernelFn *kernel, void *kernelctx)
596: {
597:   Mat_Htool *a;

599:   PetscFunctionBegin;
600:   PetscCall(MatShellGetContext(A, &a));
601:   a->kernel    = kernel;
602:   a->kernelctx = kernelctx;
603:   delete a->wrapper;
604:   if (a->kernel) a->wrapper = new WrapperHtool(a->dim, a->kernel, a->kernelctx);
605:   PetscFunctionReturn(PETSC_SUCCESS);
606: }

608: /*@C
609:   MatHtoolSetKernel - Sets the kernel and context used for the assembly of a `MATHTOOL`.

611:   Collective, No Fortran Support

613:   Input Parameters:
614: + A         - hierarchical matrix
615: . kernel    - computational kernel (or `NULL`)
616: - kernelctx - kernel context (if kernel is `NULL`, the pointer must be of type htool::VirtualGenerator<PetscScalar>*)

618:   Level: advanced

620: .seealso: [](ch_matrices), `Mat`, `MATHTOOL`, `MatCreateHtoolFromKernel()`
621: @*/
622: PetscErrorCode MatHtoolSetKernel(Mat A, MatHtoolKernelFn *kernel, void *kernelctx)
623: {
624:   PetscFunctionBegin;
627:   if (!kernel) PetscAssertPointer(kernelctx, 3);
628:   PetscTryMethod(A, "MatHtoolSetKernel_C", (Mat, MatHtoolKernelFn *, void *), (A, kernel, kernelctx));
629:   PetscFunctionReturn(PETSC_SUCCESS);
630: }

632: static PetscErrorCode MatHtoolGetPermutationSource_Htool(Mat A, IS *is)
633: {
634:   Mat_Htool                       *a;
635:   PetscMPIInt                      rank;
636:   const std::vector<PetscInt>     *source;
637:   const htool::Cluster<PetscReal> *local_source_cluster;

639:   PetscFunctionBegin;
640:   PetscCall(MatShellGetContext(A, &a));
641:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));
642:   local_source_cluster = a->source_cluster ? &a->source_cluster->get_cluster_on_partition(rank) : &a->target_cluster->get_cluster_on_partition(rank);
643:   source               = &local_source_cluster->get_permutation();
644:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), local_source_cluster->get_size(), source->data() + local_source_cluster->get_offset(), PETSC_COPY_VALUES, is));
645:   PetscCall(ISSetPermutation(*is));
646:   PetscFunctionReturn(PETSC_SUCCESS);
647: }

649: /*@
650:   MatHtoolGetPermutationSource - Gets the permutation associated to the source cluster for a `MATHTOOL` matrix.

652:   Input Parameter:
653: . A - hierarchical matrix

655:   Output Parameter:
656: . is - permutation

658:   Level: advanced

660: .seealso: [](ch_matrices), `Mat`, `MATHTOOL`, `MatHtoolGetPermutationTarget()`, `MatHtoolUsePermutation()`
661: @*/
662: PetscErrorCode MatHtoolGetPermutationSource(Mat A, IS *is)
663: {
664:   PetscFunctionBegin;
666:   if (!is) PetscAssertPointer(is, 2);
667:   PetscTryMethod(A, "MatHtoolGetPermutationSource_C", (Mat, IS *), (A, is));
668:   PetscFunctionReturn(PETSC_SUCCESS);
669: }

671: static PetscErrorCode MatHtoolGetPermutationTarget_Htool(Mat A, IS *is)
672: {
673:   Mat_Htool                   *a;
674:   const std::vector<PetscInt> *target;
675:   PetscMPIInt                  rank;

677:   PetscFunctionBegin;
678:   PetscCall(MatShellGetContext(A, &a));
679:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));
680:   target = &a->target_cluster->get_permutation();
681:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), a->target_cluster->get_cluster_on_partition(rank).get_size(), target->data() + a->target_cluster->get_cluster_on_partition(rank).get_offset(), PETSC_COPY_VALUES, is));
682:   PetscCall(ISSetPermutation(*is));
683:   PetscFunctionReturn(PETSC_SUCCESS);
684: }

686: /*@
687:   MatHtoolGetPermutationTarget - Gets the permutation associated to the target cluster for a `MATHTOOL` matrix.

689:   Input Parameter:
690: . A - hierarchical matrix

692:   Output Parameter:
693: . is - permutation

695:   Level: advanced

697: .seealso: [](ch_matrices), `Mat`, `MATHTOOL`, `MatHtoolGetPermutationSource()`, `MatHtoolUsePermutation()`
698: @*/
699: PetscErrorCode MatHtoolGetPermutationTarget(Mat A, IS *is)
700: {
701:   PetscFunctionBegin;
703:   if (!is) PetscAssertPointer(is, 2);
704:   PetscTryMethod(A, "MatHtoolGetPermutationTarget_C", (Mat, IS *), (A, is));
705:   PetscFunctionReturn(PETSC_SUCCESS);
706: }

708: static PetscErrorCode MatHtoolUsePermutation_Htool(Mat A, PetscBool use)
709: {
710:   Mat_Htool *a;

712:   PetscFunctionBegin;
713:   PetscCall(MatShellGetContext(A, &a));
714:   a->distributed_operator_holder->distributed_operator.use_permutation() = use;
715:   PetscFunctionReturn(PETSC_SUCCESS);
716: }

718: /*@
719:   MatHtoolUsePermutation - Sets whether a `MATHTOOL` matrix should permute input (resp. output) vectors following its internal source (resp. target) permutation.

721:   Input Parameters:
722: + A   - hierarchical matrix
723: - use - Boolean value

725:   Level: advanced

727: .seealso: [](ch_matrices), `Mat`, `MATHTOOL`, `MatHtoolGetPermutationSource()`, `MatHtoolGetPermutationTarget()`
728: @*/
729: PetscErrorCode MatHtoolUsePermutation(Mat A, PetscBool use)
730: {
731:   PetscFunctionBegin;
734:   PetscTryMethod(A, "MatHtoolUsePermutation_C", (Mat, PetscBool), (A, use));
735:   PetscFunctionReturn(PETSC_SUCCESS);
736: }

738: static PetscErrorCode MatConvert_Htool_Dense(Mat A, MatType, MatReuse reuse, Mat *B)
739: {
740:   Mat          C;
741:   Mat_Htool   *a;
742:   PetscScalar *array, shift, scale;
743:   PetscInt     lda;

745:   PetscFunctionBegin;
746:   PetscCall(MatShellGetScalingShifts(A, &shift, &scale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
747:   PetscCall(MatShellGetContext(A, &a));
748:   if (reuse == MAT_REUSE_MATRIX) {
749:     C = *B;
750:     PetscCheck(C->rmap->n == A->rmap->n && C->cmap->N == A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible dimensions");
751:     PetscCall(MatDenseGetLDA(C, &lda));
752:     PetscCheck(lda == C->rmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Unsupported leading dimension (%" PetscInt_FMT " != %" PetscInt_FMT ")", lda, C->rmap->n);
753:   } else {
754:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
755:     PetscCall(MatSetSizes(C, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
756:     PetscCall(MatSetType(C, MATDENSE));
757:     PetscCall(MatSetUp(C));
758:     PetscCall(MatSetOption(C, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
759:   }
760:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
761:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
762:   PetscCall(MatDenseGetArrayWrite(C, &array));
763:   htool::copy_to_dense_in_user_numbering(a->distributed_operator_holder->hmatrix, array);
764:   PetscCall(MatDenseRestoreArrayWrite(C, &array));
765:   PetscCall(MatShift(C, shift));
766:   PetscCall(MatScale(C, scale));
767:   if (reuse == MAT_INPLACE_MATRIX) {
768:     PetscCall(MatHeaderReplace(A, &C));
769:   } else *B = C;
770:   PetscFunctionReturn(PETSC_SUCCESS);
771: }

773: static PetscErrorCode GenEntriesTranspose(PetscInt sdim, PetscInt M, PetscInt N, const PetscInt *rows, const PetscInt *cols, PetscScalar *ptr, void *ctx)
774: {
775:   MatHtoolKernelTranspose *generator = (MatHtoolKernelTranspose *)ctx;
776:   PetscScalar             *tmp;

778:   PetscFunctionBegin;
779:   PetscCall(generator->kernel(sdim, N, M, cols, rows, ptr, generator->kernelctx));
780:   PetscCall(PetscMalloc1(M * N, &tmp));
781:   PetscCall(PetscArraycpy(tmp, ptr, M * N));
782:   for (PetscInt i = 0; i < M; ++i) {
783:     for (PetscInt j = 0; j < N; ++j) ptr[i + j * M] = tmp[j + i * N];
784:   }
785:   PetscCall(PetscFree(tmp));
786:   PetscFunctionReturn(PETSC_SUCCESS);
787: }

789: /* naive implementation which keeps a reference to the original Mat */
790: static PetscErrorCode MatTranspose_Htool(Mat A, MatReuse reuse, Mat *B)
791: {
792:   Mat                      C;
793:   Mat_Htool               *a, *c;
794:   PetscScalar              shift, scale;
795:   PetscInt                 M = A->rmap->N, N = A->cmap->N, m = A->rmap->n, n = A->cmap->n;
796:   PetscContainer           container;
797:   MatHtoolKernelTranspose *kernelt;

799:   PetscFunctionBegin;
800:   PetscCall(MatShellGetScalingShifts(A, &shift, &scale, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Vec *)MAT_SHELL_NOT_ALLOWED, (Mat *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED, (IS *)MAT_SHELL_NOT_ALLOWED));
801:   PetscCall(MatShellGetContext(A, &a));
802:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
803:   PetscCheck(reuse != MAT_INPLACE_MATRIX, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "MatTranspose() with MAT_INPLACE_MATRIX not supported");
804:   if (reuse == MAT_INITIAL_MATRIX) {
805:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
806:     PetscCall(MatSetSizes(C, n, m, N, M));
807:     PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
808:     PetscCall(MatSetUp(C));
809:     PetscCall(PetscNew(&kernelt));
810:     PetscCall(PetscObjectContainerCompose((PetscObject)C, "KernelTranspose", kernelt, PetscCtxDestroyDefault));
811:   } else {
812:     C = *B;
813:     PetscCall(PetscObjectQuery((PetscObject)C, "KernelTranspose", (PetscObject *)&container));
814:     PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call MatTranspose() with MAT_INITIAL_MATRIX first");
815:     PetscCall(PetscContainerGetPointer(container, (void **)&kernelt));
816:   }
817:   PetscCall(MatShellGetContext(C, &c));
818:   c->dim = a->dim;
819:   PetscCall(MatShift(C, shift));
820:   PetscCall(MatScale(C, scale));
821:   c->kernel = GenEntriesTranspose;
822:   if (kernelt->A != A) {
823:     PetscCall(MatDestroy(&kernelt->A));
824:     kernelt->A = A;
825:     PetscCall(PetscObjectReference((PetscObject)A));
826:   }
827:   kernelt->kernel    = a->kernel;
828:   kernelt->kernelctx = a->kernelctx;
829:   c->kernelctx       = kernelt;
830:   if (reuse == MAT_INITIAL_MATRIX) {
831:     PetscCall(PetscMalloc1(N * c->dim, &c->gcoords_target));
832:     PetscCall(PetscArraycpy(c->gcoords_target, a->gcoords_source, N * c->dim));
833:     if (a->gcoords_target != a->gcoords_source) {
834:       PetscCall(PetscMalloc1(M * c->dim, &c->gcoords_source));
835:       PetscCall(PetscArraycpy(c->gcoords_source, a->gcoords_target, M * c->dim));
836:     } else c->gcoords_source = c->gcoords_target;
837:     PetscCall(PetscCalloc2(M, &c->work_source, N, &c->work_target));
838:   }
839:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
840:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
841:   if (reuse == MAT_INITIAL_MATRIX) *B = C;
842:   PetscFunctionReturn(PETSC_SUCCESS);
843: }

845: static PetscErrorCode MatDestroy_Factor(Mat F)
846: {
847:   PetscContainer               container;
848:   htool::HMatrix<PetscScalar> *A;

850:   PetscFunctionBegin;
851:   PetscCall(PetscObjectQuery((PetscObject)F, "HMatrix", (PetscObject *)&container));
852:   if (container) {
853:     PetscCall(PetscContainerGetPointer(container, (void **)&A));
854:     delete A;
855:     PetscCall(PetscObjectCompose((PetscObject)F, "HMatrix", nullptr));
856:   }
857:   PetscCall(PetscObjectComposeFunction((PetscObject)F, "MatFactorGetSolverType_C", nullptr));
858:   PetscFunctionReturn(PETSC_SUCCESS);
859: }

861: static PetscErrorCode MatFactorGetSolverType_Htool(Mat, MatSolverType *type)
862: {
863:   PetscFunctionBegin;
864:   *type = MATSOLVERHTOOL;
865:   PetscFunctionReturn(PETSC_SUCCESS);
866: }

868: template <char trans>
869: static inline PetscErrorCode MatSolve_Private(Mat A, htool::Matrix<PetscScalar> &X)
870: {
871:   PetscContainer               container;
872:   htool::HMatrix<PetscScalar> *B;

874:   PetscFunctionBegin;
875:   PetscCheck(A->factortype == MAT_FACTOR_LU || A->factortype == MAT_FACTOR_CHOLESKY, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_UNKNOWN_TYPE, "Only MAT_LU_FACTOR and MAT_CHOLESKY_FACTOR are supported");
876:   PetscCall(PetscObjectQuery((PetscObject)A, "HMatrix", (PetscObject *)&container));
877:   PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call Mat%sFactorNumeric() before Mat%sSolve%s()", A->factortype == MAT_FACTOR_LU ? "LU" : "Cholesky", X.nb_cols() == 1 ? "" : "Mat", trans == 'N' ? "" : "Transpose");
878:   PetscCall(PetscContainerGetPointer(container, (void **)&B));
879:   if (A->factortype == MAT_FACTOR_LU) htool::lu_solve(trans, *B, X);
880:   else htool::cholesky_solve('L', *B, X);
881:   PetscFunctionReturn(PETSC_SUCCESS);
882: }

884: template <char trans, class Type, typename std::enable_if<std::is_same<Type, Vec>::value>::type * = nullptr>
885: static PetscErrorCode MatSolve_Htool(Mat A, Type b, Type x)
886: {
887:   PetscInt                   n;
888:   htool::Matrix<PetscScalar> v;
889:   PetscScalar               *array;

891:   PetscFunctionBegin;
892:   PetscCall(VecGetLocalSize(b, &n));
893:   PetscCall(VecCopy(b, x));
894:   PetscCall(VecGetArrayWrite(x, &array));
895:   v.assign(n, 1, array, false);
896:   PetscCall(VecRestoreArrayWrite(x, &array));
897:   PetscCall(MatSolve_Private<trans>(A, v));
898:   PetscFunctionReturn(PETSC_SUCCESS);
899: }

901: template <char trans, class Type, typename std::enable_if<std::is_same<Type, Mat>::value>::type * = nullptr>
902: static PetscErrorCode MatSolve_Htool(Mat A, Type B, Type X)
903: {
904:   PetscInt                   m, N;
905:   htool::Matrix<PetscScalar> v;
906:   PetscScalar               *array;

908:   PetscFunctionBegin;
909:   PetscCall(MatGetLocalSize(B, &m, nullptr));
910:   PetscCall(MatGetLocalSize(B, nullptr, &N));
911:   PetscCall(MatCopy(B, X, SAME_NONZERO_PATTERN));
912:   PetscCall(MatDenseGetArrayWrite(X, &array));
913:   v.assign(m, N, array, false);
914:   PetscCall(MatDenseRestoreArrayWrite(X, &array));
915:   PetscCall(MatSolve_Private<trans>(A, v));
916:   PetscFunctionReturn(PETSC_SUCCESS);
917: }

919: template <MatFactorType ftype>
920: static PetscErrorCode MatFactorNumeric_Htool(Mat F, Mat A, const MatFactorInfo *)
921: {
922:   Mat_Htool                   *a;
923:   htool::HMatrix<PetscScalar> *B;

925:   PetscFunctionBegin;
926:   PetscCall(MatShellGetContext(A, &a));
927:   B = new htool::HMatrix<PetscScalar>(a->distributed_operator_holder->hmatrix);
928:   if (ftype == MAT_FACTOR_LU) htool::lu_factorization(*B);
929:   else htool::cholesky_factorization('L', *B);
930:   PetscCall(PetscObjectContainerCompose((PetscObject)F, "HMatrix", B, nullptr));
931:   PetscFunctionReturn(PETSC_SUCCESS);
932: }

934: template <MatFactorType ftype>
935: PetscErrorCode MatFactorSymbolic_Htool(Mat F, Mat)
936: {
937:   PetscFunctionBegin;
938:   F->preallocated  = PETSC_TRUE;
939:   F->assembled     = PETSC_TRUE;
940:   F->ops->solve    = MatSolve_Htool<'N', Vec>;
941:   F->ops->matsolve = MatSolve_Htool<'N', Mat>;
942:   if (!PetscDefined(USE_COMPLEX) || ftype == MAT_FACTOR_LU) {
943:     F->ops->solvetranspose    = MatSolve_Htool<'T', Vec>;
944:     F->ops->matsolvetranspose = MatSolve_Htool<'T', Mat>;
945:   }
946:   F->ops->destroy = MatDestroy_Factor;
947:   if (ftype == MAT_FACTOR_LU) F->ops->lufactornumeric = MatFactorNumeric_Htool<MAT_FACTOR_LU>;
948:   else F->ops->choleskyfactornumeric = MatFactorNumeric_Htool<MAT_FACTOR_CHOLESKY>;
949:   PetscFunctionReturn(PETSC_SUCCESS);
950: }

952: static PetscErrorCode MatLUFactorSymbolic_Htool(Mat F, Mat A, IS, IS, const MatFactorInfo *)
953: {
954:   PetscFunctionBegin;
955:   PetscCall(MatFactorSymbolic_Htool<MAT_FACTOR_LU>(F, A));
956:   PetscFunctionReturn(PETSC_SUCCESS);
957: }

959: static PetscErrorCode MatCholeskyFactorSymbolic_Htool(Mat F, Mat A, IS, const MatFactorInfo *)
960: {
961:   PetscFunctionBegin;
962:   PetscCall(MatFactorSymbolic_Htool<MAT_FACTOR_CHOLESKY>(F, A));
963:   PetscFunctionReturn(PETSC_SUCCESS);
964: }

966: static PetscErrorCode MatGetFactor_htool_htool(Mat A, MatFactorType ftype, Mat *F)
967: {
968:   Mat         B;
969:   Mat_Htool  *a;
970:   PetscMPIInt size;

972:   PetscFunctionBegin;
973:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
974:   PetscCall(MatShellGetContext(A, &a));
975:   PetscCheck(size == 1, PetscObjectComm((PetscObject)A), PETSC_ERR_WRONG_MPI_SIZE, "Unsupported parallel MatGetFactor()");
976:   PetscCheck(a->block_tree_consistency, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Cannot factor a MatHtool with inconsistent block tree");
977:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
978:   PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
979:   PetscCall(PetscStrallocpy(MATSOLVERHTOOL, &((PetscObject)B)->type_name));
980:   PetscCall(MatSetUp(B));

982:   B->ops->getinfo    = MatGetInfo_External;
983:   B->factortype      = ftype;
984:   B->trivialsymbolic = PETSC_TRUE;

986:   if (ftype == MAT_FACTOR_LU) B->ops->lufactorsymbolic = MatLUFactorSymbolic_Htool;
987:   else if (ftype == MAT_FACTOR_CHOLESKY) B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_Htool;

989:   PetscCall(PetscFree(B->solvertype));
990:   PetscCall(PetscStrallocpy(MATSOLVERHTOOL, &B->solvertype));

992:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorGetSolverType_C", MatFactorGetSolverType_Htool));
993:   *F = B;
994:   PetscFunctionReturn(PETSC_SUCCESS);
995: }

997: PETSC_INTERN PetscErrorCode MatSolverTypeRegister_Htool(void)
998: {
999:   PetscFunctionBegin;
1000:   PetscCall(MatSolverTypeRegister(MATSOLVERHTOOL, MATHTOOL, MAT_FACTOR_LU, MatGetFactor_htool_htool));
1001:   PetscCall(MatSolverTypeRegister(MATSOLVERHTOOL, MATHTOOL, MAT_FACTOR_CHOLESKY, MatGetFactor_htool_htool));
1002:   PetscFunctionReturn(PETSC_SUCCESS);
1003: }

1005: /*@C
1006:   MatCreateHtoolFromKernel - Creates a `MATHTOOL` from a user-supplied kernel.

1008:   Collective, No Fortran Support

1010:   Input Parameters:
1011: + comm          - MPI communicator
1012: . m             - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
1013: . n             - number of local columns (or `PETSC_DECIDE` to have calculated if `N` is given)
1014: . M             - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
1015: . N             - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
1016: . spacedim      - dimension of the space coordinates
1017: . coords_target - coordinates of the target
1018: . coords_source - coordinates of the source
1019: . kernel        - computational kernel (or `NULL`)
1020: - kernelctx     - kernel context (if kernel is `NULL`, the pointer must be of type htool::VirtualGenerator<PetscScalar>*)

1022:   Output Parameter:
1023: . B - matrix

1025:   Options Database Keys:
1026: + -mat_htool_min_cluster_size <`PetscInt`>                                                     - minimal leaf size in cluster tree
1027: . -mat_htool_epsilon <`PetscReal`>                                                             - relative error in Frobenius norm when approximating a block
1028: . -mat_htool_eta <`PetscReal`>                                                                 - admissibility condition tolerance
1029: . -mat_htool_min_target_depth <`PetscInt`>                                                     - minimal cluster tree depth associated with the rows
1030: . -mat_htool_min_source_depth <`PetscInt`>                                                     - minimal cluster tree depth associated with the columns
1031: . -mat_htool_block_tree_consistency <`PetscBool`>                                              - block tree consistency
1032: . -mat_htool_compressor <sympartialACA, fullACA, SVD>                                          - type of compression
1033: - -mat_htool_clustering <PCARegular, PCAGeometric, BounbingBox1Regular, BoundingBox1Geometric> - type of clustering

1035:   Level: intermediate

1037: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MATHTOOL`, `PCSetCoordinates()`, `MatHtoolSetKernel()`, `MatHtoolCompressorType`, `MATH2OPUS`, `MatCreateH2OpusFromKernel()`
1038: @*/
1039: PetscErrorCode MatCreateHtoolFromKernel(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt spacedim, const PetscReal coords_target[], const PetscReal coords_source[], MatHtoolKernelFn *kernel, void *kernelctx, Mat *B)
1040: {
1041:   Mat        A;
1042:   Mat_Htool *a;

1044:   PetscFunctionBegin;
1045:   PetscCall(MatCreate(comm, &A));
1047:   PetscAssertPointer(coords_target, 7);
1048:   PetscAssertPointer(coords_source, 8);
1050:   if (!kernel) PetscAssertPointer(kernelctx, 10);
1051:   PetscCall(MatSetSizes(A, m, n, M, N));
1052:   PetscCall(MatSetType(A, MATHTOOL));
1053:   PetscCall(MatSetUp(A));
1054:   PetscCall(MatShellGetContext(A, &a));
1055:   a->dim       = spacedim;
1056:   a->kernel    = kernel;
1057:   a->kernelctx = kernelctx;
1058:   PetscCall(PetscCalloc1(A->rmap->N * spacedim, &a->gcoords_target));
1059:   PetscCall(PetscArraycpy(a->gcoords_target + A->rmap->rstart * spacedim, coords_target, A->rmap->n * spacedim));
1060:   PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, a->gcoords_target, A->rmap->N * spacedim, MPIU_REAL, MPI_SUM, PetscObjectComm((PetscObject)A))); /* global target coordinates */
1061:   if (coords_target != coords_source) {
1062:     PetscCall(PetscCalloc1(A->cmap->N * spacedim, &a->gcoords_source));
1063:     PetscCall(PetscArraycpy(a->gcoords_source + A->cmap->rstart * spacedim, coords_source, A->cmap->n * spacedim));
1064:     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, a->gcoords_source, A->cmap->N * spacedim, MPIU_REAL, MPI_SUM, PetscObjectComm((PetscObject)A))); /* global source coordinates */
1065:   } else a->gcoords_source = a->gcoords_target;
1066:   PetscCall(PetscCalloc2(A->cmap->N, &a->work_source, A->rmap->N, &a->work_target));
1067:   *B = A;
1068:   PetscFunctionReturn(PETSC_SUCCESS);
1069: }

1071: /*MC
1072:      MATHTOOL = "htool" - A matrix type for hierarchical matrices using the Htool package.

1074:   Use `./configure --download-htool` to install PETSc to use Htool.

1076:    Options Database Key:
1077: .     -mat_type htool - matrix type to `MATHTOOL`

1079:    Level: beginner

1081: .seealso: [](ch_matrices), `Mat`, `MATH2OPUS`, `MATDENSE`, `MatCreateHtoolFromKernel()`, `MatHtoolSetKernel()`
1082: M*/
1083: PETSC_EXTERN PetscErrorCode MatCreate_Htool(Mat A)
1084: {
1085:   Mat_Htool *a;

1087:   PetscFunctionBegin;
1088:   PetscCall(MatSetType(A, MATSHELL));
1089:   PetscCall(PetscNew(&a));
1090:   PetscCall(MatShellSetContext(A, a));
1091:   PetscCall(MatShellSetOperation(A, MATOP_GET_DIAGONAL, (void (*)(void))MatGetDiagonal_Htool));
1092:   PetscCall(MatShellSetOperation(A, MATOP_GET_DIAGONAL_BLOCK, (void (*)(void))MatGetDiagonalBlock_Htool));
1093:   PetscCall(MatShellSetOperation(A, MATOP_MULT, (void (*)(void))MatMult_Htool));
1094:   PetscCall(MatShellSetOperation(A, MATOP_MULT_TRANSPOSE, (void (*)(void))MatMultTranspose_Htool));
1095:   if (!PetscDefined(USE_COMPLEX)) PetscCall(MatShellSetOperation(A, MATOP_MULT_HERMITIAN_TRANSPOSE, (void (*)(void))MatMultTranspose_Htool));
1096:   A->ops->increaseoverlap   = MatIncreaseOverlap_Htool;
1097:   A->ops->createsubmatrices = MatCreateSubMatrices_Htool;
1098:   PetscCall(MatShellSetOperation(A, MATOP_VIEW, (void (*)(void))MatView_Htool));
1099:   PetscCall(MatShellSetOperation(A, MATOP_SET_FROM_OPTIONS, (void (*)(void))MatSetFromOptions_Htool));
1100:   PetscCall(MatShellSetOperation(A, MATOP_GET_ROW, (void (*)(void))MatGetRow_Htool));
1101:   PetscCall(MatShellSetOperation(A, MATOP_RESTORE_ROW, (void (*)(void))MatRestoreRow_Htool));
1102:   PetscCall(MatShellSetOperation(A, MATOP_ASSEMBLY_END, (void (*)(void))MatAssemblyEnd_Htool));
1103:   PetscCall(MatShellSetOperation(A, MATOP_TRANSPOSE, (void (*)(void))MatTranspose_Htool));
1104:   PetscCall(MatShellSetOperation(A, MATOP_DESTROY, (void (*)(void))MatDestroy_Htool));
1105:   a->dim                    = 0;
1106:   a->gcoords_target         = nullptr;
1107:   a->gcoords_source         = nullptr;
1108:   a->min_cluster_size       = 10;
1109:   a->epsilon                = PetscSqrtReal(PETSC_SMALL);
1110:   a->eta                    = 10.0;
1111:   a->depth[0]               = 0;
1112:   a->depth[1]               = 0;
1113:   a->block_tree_consistency = PETSC_TRUE;
1114:   a->compressor             = MAT_HTOOL_COMPRESSOR_SYMPARTIAL_ACA;
1115:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_htool_seqdense_C", MatProductSetFromOptions_Htool));
1116:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_htool_mpidense_C", MatProductSetFromOptions_Htool));
1117:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_htool_seqdense_C", MatConvert_Htool_Dense));
1118:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_htool_mpidense_C", MatConvert_Htool_Dense));
1119:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolGetHierarchicalMat_C", MatHtoolGetHierarchicalMat_Htool));
1120:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolSetKernel_C", MatHtoolSetKernel_Htool));
1121:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolGetPermutationSource_C", MatHtoolGetPermutationSource_Htool));
1122:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolGetPermutationTarget_C", MatHtoolGetPermutationTarget_Htool));
1123:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatHtoolUsePermutation_C", MatHtoolUsePermutation_Htool));
1124:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatShellSetContext_C", MatShellSetContext_Immutable));
1125:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatShellSetContextDestroy_C", MatShellSetContextDestroy_Immutable));
1126:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatShellSetManageScalingShifts_C", MatShellSetManageScalingShifts_Immutable));
1127:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATHTOOL));
1128:   PetscFunctionReturn(PETSC_SUCCESS);
1129: }