Actual source code: sell.c

  1: /*
  2:   Defines the basic matrix operations for the SELL matrix storage format.
  3: */
  4: #include <../src/mat/impls/sell/seq/sell.h>
  5: #include <petscblaslapack.h>
  6: #include <petsc/private/kernels/blocktranspose.h>

  8: static PetscBool  cited      = PETSC_FALSE;
  9: static const char citation[] = "@inproceedings{ZhangELLPACK2018,\n"
 10:                                " author = {Hong Zhang and Richard T. Mills and Karl Rupp and Barry F. Smith},\n"
 11:                                " title = {Vectorized Parallel Sparse Matrix-Vector Multiplication in {PETSc} Using {AVX-512}},\n"
 12:                                " booktitle = {Proceedings of the 47th International Conference on Parallel Processing},\n"
 13:                                " year = 2018\n"
 14:                                "}\n";

 16: #if defined(PETSC_HAVE_IMMINTRIN_H) && (defined(__AVX512F__) || (defined(__AVX2__) && defined(__FMA__)) || defined(__AVX__)) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)

 18:   #include <immintrin.h>

 20:   #if !defined(_MM_SCALE_8)
 21:     #define _MM_SCALE_8 8
 22:   #endif

 24:   #if defined(__AVX512F__)
 25:     /* these do not work
 26:    vec_idx  = _mm512_loadunpackhi_epi32(vec_idx,acolidx);
 27:    vec_vals = _mm512_loadunpackhi_pd(vec_vals,aval);
 28:   */
 29:     #define AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y) \
 30:       /* if the mask bit is set, copy from acolidx, otherwise from vec_idx */ \
 31:       vec_idx  = _mm256_loadu_si256((__m256i const *)acolidx); \
 32:       vec_vals = _mm512_loadu_pd(aval); \
 33:       vec_x    = _mm512_i32gather_pd(vec_idx, x, _MM_SCALE_8); \
 34:       vec_y    = _mm512_fmadd_pd(vec_x, vec_vals, vec_y)
 35:   #elif defined(__AVX2__) && defined(__FMA__)
 36:     #define AVX2_Mult_Private(vec_idx, vec_x, vec_vals, vec_y) \
 37:       vec_vals = _mm256_loadu_pd(aval); \
 38:       vec_idx  = _mm_loadu_si128((__m128i const *)acolidx); /* SSE2 */ \
 39:       vec_x    = _mm256_i32gather_pd(x, vec_idx, _MM_SCALE_8); \
 40:       vec_y    = _mm256_fmadd_pd(vec_x, vec_vals, vec_y)
 41:   #endif
 42: #endif /* PETSC_HAVE_IMMINTRIN_H */

 44: /*@
 45:   MatSeqSELLSetPreallocation - For good matrix assembly performance
 46:   the user should preallocate the matrix storage by setting the parameter `nz`
 47:   (or the array `nnz`).

 49:   Collective

 51:   Input Parameters:
 52: + B       - The `MATSEQSELL` matrix
 53: . rlenmax - number of nonzeros per row (same for all rows), ignored if `rlen` is provided
 54: - rlen    - array containing the number of nonzeros in the various rows (possibly different for each row) or `NULL`

 56:   Level: intermediate

 58:   Notes:
 59:   Specify the preallocated storage with either `rlenmax` or `rlen` (not both).
 60:   Set `rlenmax` = `PETSC_DEFAULT` and `rlen` = `NULL` for PETSc to control dynamic memory
 61:   allocation.

 63:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
 64:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
 65:   You can also run with the option `-info` and look for messages with the string
 66:   malloc in them to see if additional memory allocation was needed.

 68:   Developer Notes:
 69:   Use `rlenmax` of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
 70:   entries or columns indices.

 72:   The maximum number of nonzeos in any row should be as accurate as possible.
 73:   If it is underestimated, you will get bad performance due to reallocation
 74:   (`MatSeqXSELLReallocateSELL()`).

 76: .seealso: `Mat`, `MATSEQSELL`, `MATSELL`, `MatCreate()`, `MatCreateSELL()`, `MatSetValues()`, `MatGetInfo()`
 77:  @*/
 78: PetscErrorCode MatSeqSELLSetPreallocation(Mat B, PetscInt rlenmax, const PetscInt rlen[])
 79: {
 80:   PetscFunctionBegin;
 83:   PetscTryMethod(B, "MatSeqSELLSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, rlenmax, rlen));
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: PetscErrorCode MatSeqSELLSetPreallocation_SeqSELL(Mat B, PetscInt maxallocrow, const PetscInt rlen[])
 88: {
 89:   Mat_SeqSELL *b;
 90:   PetscInt     i, j, totalslices;
 91: #if defined(PETSC_HAVE_CUPM)
 92:   PetscInt rlenmax = 0;
 93: #endif
 94:   PetscBool skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;

 96:   PetscFunctionBegin;
 97:   if (maxallocrow >= 0 || rlen) realalloc = PETSC_TRUE;
 98:   if (maxallocrow == MAT_SKIP_ALLOCATION) {
 99:     skipallocation = PETSC_TRUE;
100:     maxallocrow    = 0;
101:   }

103:   PetscCall(PetscLayoutSetUp(B->rmap));
104:   PetscCall(PetscLayoutSetUp(B->cmap));

106:   /* FIXME: if one preallocates more space than needed, the matrix does not shrink automatically, but for best performance it should */
107:   if (maxallocrow == PETSC_DEFAULT || maxallocrow == PETSC_DECIDE) maxallocrow = 5;
108:   PetscCheck(maxallocrow >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "maxallocrow cannot be less than 0: value %" PetscInt_FMT, maxallocrow);
109:   if (rlen) {
110:     for (i = 0; i < B->rmap->n; i++) {
111:       PetscCheck(rlen[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "rlen cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, rlen[i]);
112:       PetscCheck(rlen[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "rlen cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, rlen[i], B->cmap->n);
113:     }
114:   }

116:   B->preallocated = PETSC_TRUE;

118:   b = (Mat_SeqSELL *)B->data;

120:   if (!b->sliceheight) { /* not set yet */
121: #if defined(PETSC_HAVE_CUPM)
122:     b->sliceheight = 16;
123: #else
124:     b->sliceheight = 8;
125: #endif
126:   }
127:   totalslices    = PetscCeilInt(B->rmap->n, b->sliceheight);
128:   b->totalslices = totalslices;
129:   if (!skipallocation) {
130:     if (B->rmap->n % b->sliceheight) PetscCall(PetscInfo(B, "Padding rows to the SEQSELL matrix because the number of rows is not the multiple of the slice height (value %" PetscInt_FMT ")\n", B->rmap->n));

132:     if (!b->sliidx) { /* sliidx gives the starting index of each slice, the last element is the total space allocated */
133:       PetscCall(PetscMalloc1(totalslices + 1, &b->sliidx));
134:     }
135:     if (!rlen) { /* if rlen is not provided, allocate same space for all the slices */
136:       if (maxallocrow == PETSC_DEFAULT || maxallocrow == PETSC_DECIDE) maxallocrow = 10;
137:       else if (maxallocrow < 0) maxallocrow = 1;
138: #if defined(PETSC_HAVE_CUPM)
139:       rlenmax = maxallocrow;
140:       /* Pad the slice to DEVICE_MEM_ALIGN */
141:       while (b->sliceheight * maxallocrow % DEVICE_MEM_ALIGN) maxallocrow++;
142: #endif
143:       for (i = 0; i <= totalslices; i++) b->sliidx[i] = b->sliceheight * i * maxallocrow;
144:     } else {
145: #if defined(PETSC_HAVE_CUPM)
146:       PetscInt mul = DEVICE_MEM_ALIGN / b->sliceheight;
147: #endif
148:       maxallocrow  = 0;
149:       b->sliidx[0] = 0;
150:       for (i = 1; i < totalslices; i++) {
151:         b->sliidx[i] = 0;
152:         for (j = 0; j < b->sliceheight; j++) b->sliidx[i] = PetscMax(b->sliidx[i], rlen[b->sliceheight * (i - 1) + j]);
153: #if defined(PETSC_HAVE_CUPM)
154:         if (mul != 0) { /* Pad the slice to DEVICE_MEM_ALIGN if sliceheight < DEVICE_MEM_ALIGN */
155:           rlenmax      = PetscMax(b->sliidx[i], rlenmax);
156:           b->sliidx[i] = ((b->sliidx[i] - 1) / mul + 1) * mul;
157:         }
158: #endif
159:         maxallocrow = PetscMax(b->sliidx[i], maxallocrow);
160:         PetscCall(PetscIntSumError(b->sliidx[i - 1], b->sliceheight * b->sliidx[i], &b->sliidx[i]));
161:       }
162:       /* last slice */
163:       b->sliidx[totalslices] = 0;
164:       for (j = b->sliceheight * (totalslices - 1); j < B->rmap->n; j++) b->sliidx[totalslices] = PetscMax(b->sliidx[totalslices], rlen[j]);
165: #if defined(PETSC_HAVE_CUPM)
166:       if (mul != 0) {
167:         rlenmax                = PetscMax(b->sliidx[i], rlenmax);
168:         b->sliidx[totalslices] = ((b->sliidx[totalslices] - 1) / mul + 1) * mul;
169:       }
170: #endif
171:       maxallocrow            = PetscMax(b->sliidx[totalslices], maxallocrow);
172:       b->sliidx[totalslices] = b->sliidx[totalslices - 1] + b->sliceheight * b->sliidx[totalslices];
173:     }

175:     /* allocate space for val, colidx, rlen */
176:     /* FIXME: should B's old memory be unlogged? */
177:     PetscCall(MatSeqXSELLFreeSELL(B, &b->val, &b->colidx));
178:     /* FIXME: assuming an element of the bit array takes 8 bits */
179:     PetscCall(PetscMalloc2(b->sliidx[totalslices], &b->val, b->sliidx[totalslices], &b->colidx));
180:     /* b->rlen will count nonzeros in each row so far. We dont copy rlen to b->rlen because the matrix has not been set. */
181:     PetscCall(PetscCalloc1(b->sliceheight * totalslices, &b->rlen));

183:     b->singlemalloc = PETSC_TRUE;
184:     b->free_val     = PETSC_TRUE;
185:     b->free_colidx  = PETSC_TRUE;
186:   } else {
187:     b->free_val    = PETSC_FALSE;
188:     b->free_colidx = PETSC_FALSE;
189:   }

191:   b->nz          = 0;
192:   b->maxallocrow = maxallocrow;
193: #if defined(PETSC_HAVE_CUPM)
194:   b->rlenmax = rlenmax;
195: #else
196:   b->rlenmax = maxallocrow;
197: #endif
198:   b->maxallocmat      = b->sliidx[totalslices];
199:   B->info.nz_unneeded = (double)b->maxallocmat;
200:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
201:   PetscFunctionReturn(PETSC_SUCCESS);
202: }

204: static PetscErrorCode MatGetRow_SeqSELL(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
205: {
206:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
207:   PetscInt     shift;

209:   PetscFunctionBegin;
210:   PetscCheck(row >= 0 && row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " out of range", row);
211:   if (nz) *nz = a->rlen[row];
212:   shift = a->sliidx[row / a->sliceheight] + (row % a->sliceheight);
213:   if (!a->getrowcols) PetscCall(PetscMalloc2(a->rlenmax, &a->getrowcols, a->rlenmax, &a->getrowvals));
214:   if (idx) {
215:     PetscInt j;
216:     for (j = 0; j < a->rlen[row]; j++) a->getrowcols[j] = a->colidx[shift + a->sliceheight * j];
217:     *idx = a->getrowcols;
218:   }
219:   if (v) {
220:     PetscInt j;
221:     for (j = 0; j < a->rlen[row]; j++) a->getrowvals[j] = a->val[shift + a->sliceheight * j];
222:     *v = a->getrowvals;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: static PetscErrorCode MatRestoreRow_SeqSELL(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
228: {
229:   PetscFunctionBegin;
230:   PetscFunctionReturn(PETSC_SUCCESS);
231: }

233: PetscErrorCode MatConvert_SeqSELL_SeqAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
234: {
235:   Mat          B;
236:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
237:   PetscInt     i;

239:   PetscFunctionBegin;
240:   if (reuse == MAT_REUSE_MATRIX) {
241:     B = *newmat;
242:     PetscCall(MatZeroEntries(B));
243:   } else {
244:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
245:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
246:     PetscCall(MatSetType(B, MATSEQAIJ));
247:     PetscCall(MatSeqAIJSetPreallocation(B, 0, a->rlen));
248:   }

250:   for (i = 0; i < A->rmap->n; i++) {
251:     PetscInt     nz = 0, *cols = NULL;
252:     PetscScalar *vals = NULL;

254:     PetscCall(MatGetRow_SeqSELL(A, i, &nz, &cols, &vals));
255:     PetscCall(MatSetValues(B, 1, &i, nz, cols, vals, INSERT_VALUES));
256:     PetscCall(MatRestoreRow_SeqSELL(A, i, &nz, &cols, &vals));
257:   }

259:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
260:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
261:   B->rmap->bs = A->rmap->bs;

263:   if (reuse == MAT_INPLACE_MATRIX) {
264:     PetscCall(MatHeaderReplace(A, &B));
265:   } else {
266:     *newmat = B;
267:   }
268:   PetscFunctionReturn(PETSC_SUCCESS);
269: }

271: #include <../src/mat/impls/aij/seq/aij.h>

273: PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
274: {
275:   Mat                B;
276:   Mat_SeqAIJ        *a  = (Mat_SeqAIJ *)A->data;
277:   PetscInt          *ai = a->i, m = A->rmap->N, n = A->cmap->N, i, *rowlengths, row, ncols;
278:   const PetscInt    *cols;
279:   const PetscScalar *vals;

281:   PetscFunctionBegin;
282:   if (reuse == MAT_REUSE_MATRIX) {
283:     B = *newmat;
284:   } else {
285:     if (PetscDefined(USE_DEBUG) || !a->ilen) {
286:       PetscCall(PetscMalloc1(m, &rowlengths));
287:       for (i = 0; i < m; i++) rowlengths[i] = ai[i + 1] - ai[i];
288:     }
289:     if (PetscDefined(USE_DEBUG) && a->ilen) {
290:       PetscBool eq;
291:       PetscCall(PetscMemcmp(rowlengths, a->ilen, m * sizeof(PetscInt), &eq));
292:       PetscCheck(eq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "SeqAIJ ilen array incorrect");
293:       PetscCall(PetscFree(rowlengths));
294:       rowlengths = a->ilen;
295:     } else if (a->ilen) rowlengths = a->ilen;
296:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
297:     PetscCall(MatSetSizes(B, m, n, m, n));
298:     PetscCall(MatSetType(B, MATSEQSELL));
299:     PetscCall(MatSeqSELLSetPreallocation(B, 0, rowlengths));
300:     if (rowlengths != a->ilen) PetscCall(PetscFree(rowlengths));
301:   }

303:   for (row = 0; row < m; row++) {
304:     PetscCall(MatGetRow_SeqAIJ(A, row, &ncols, (PetscInt **)&cols, (PetscScalar **)&vals));
305:     PetscCall(MatSetValues_SeqSELL(B, 1, &row, ncols, cols, vals, INSERT_VALUES));
306:     PetscCall(MatRestoreRow_SeqAIJ(A, row, &ncols, (PetscInt **)&cols, (PetscScalar **)&vals));
307:   }
308:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
309:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
310:   B->rmap->bs = A->rmap->bs;

312:   if (reuse == MAT_INPLACE_MATRIX) {
313:     PetscCall(MatHeaderReplace(A, &B));
314:   } else {
315:     *newmat = B;
316:   }
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: PetscErrorCode MatMult_SeqSELL(Mat A, Vec xx, Vec yy)
321: {
322:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
323:   PetscScalar       *y;
324:   const PetscScalar *x;
325:   const MatScalar   *aval        = a->val;
326:   PetscInt           totalslices = a->totalslices;
327:   const PetscInt    *acolidx     = a->colidx;
328:   PetscInt           i, j;
329: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
330:   __m512d  vec_x, vec_y, vec_vals;
331:   __m256i  vec_idx;
332:   __mmask8 mask;
333:   __m512d  vec_x2, vec_y2, vec_vals2, vec_x3, vec_y3, vec_vals3, vec_x4, vec_y4, vec_vals4;
334:   __m256i  vec_idx2, vec_idx3, vec_idx4;
335: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX2__) && defined(__FMA__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
336:   __m128i   vec_idx;
337:   __m256d   vec_x, vec_y, vec_y2, vec_vals;
338:   MatScalar yval;
339:   PetscInt  r, rows_left, row, nnz_in_row;
340: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
341:   __m128d   vec_x_tmp;
342:   __m256d   vec_x, vec_y, vec_y2, vec_vals;
343:   MatScalar yval;
344:   PetscInt  r, rows_left, row, nnz_in_row;
345: #else
346:   PetscInt     k, sliceheight = a->sliceheight;
347:   PetscScalar *sum;
348: #endif

350: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
351:   #pragma disjoint(*x, *y, *aval)
352: #endif

354:   PetscFunctionBegin;
355:   PetscCall(VecGetArrayRead(xx, &x));
356:   PetscCall(VecGetArray(yy, &y));
357: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
358:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
359:   for (i = 0; i < totalslices; i++) { /* loop over slices */
360:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
361:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

363:     vec_y  = _mm512_setzero_pd();
364:     vec_y2 = _mm512_setzero_pd();
365:     vec_y3 = _mm512_setzero_pd();
366:     vec_y4 = _mm512_setzero_pd();

368:     j = a->sliidx[i] >> 3; /* 8 bytes are read at each time, corresponding to a slice column */
369:     switch ((a->sliidx[i + 1] - a->sliidx[i]) / 8 & 3) {
370:     case 3:
371:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
372:       acolidx += 8;
373:       aval += 8;
374:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
375:       acolidx += 8;
376:       aval += 8;
377:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
378:       acolidx += 8;
379:       aval += 8;
380:       j += 3;
381:       break;
382:     case 2:
383:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
384:       acolidx += 8;
385:       aval += 8;
386:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
387:       acolidx += 8;
388:       aval += 8;
389:       j += 2;
390:       break;
391:     case 1:
392:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
393:       acolidx += 8;
394:       aval += 8;
395:       j += 1;
396:       break;
397:     }
398:   #pragma novector
399:     for (; j < (a->sliidx[i + 1] >> 3); j += 4) {
400:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
401:       acolidx += 8;
402:       aval += 8;
403:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
404:       acolidx += 8;
405:       aval += 8;
406:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
407:       acolidx += 8;
408:       aval += 8;
409:       AVX512_Mult_Private(vec_idx4, vec_x4, vec_vals4, vec_y4);
410:       acolidx += 8;
411:       aval += 8;
412:     }

414:     vec_y = _mm512_add_pd(vec_y, vec_y2);
415:     vec_y = _mm512_add_pd(vec_y, vec_y3);
416:     vec_y = _mm512_add_pd(vec_y, vec_y4);
417:     if (i == totalslices - 1 && A->rmap->n & 0x07) { /* if last slice has padding rows */
418:       mask = (__mmask8)(0xff >> (8 - (A->rmap->n & 0x07)));
419:       _mm512_mask_storeu_pd(&y[8 * i], mask, vec_y);
420:     } else {
421:       _mm512_storeu_pd(&y[8 * i], vec_y);
422:     }
423:   }
424: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX2__) && defined(__FMA__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
425:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
426:   for (i = 0; i < totalslices; i++) { /* loop over full slices */
427:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
428:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

430:     /* last slice may have padding rows. Don't use vectorization. */
431:     if (i == totalslices - 1 && (A->rmap->n & 0x07)) {
432:       rows_left = A->rmap->n - 8 * i;
433:       for (r = 0; r < rows_left; ++r) {
434:         yval       = (MatScalar)0;
435:         row        = 8 * i + r;
436:         nnz_in_row = a->rlen[row];
437:         for (j = 0; j < nnz_in_row; ++j) yval += aval[8 * j + r] * x[acolidx[8 * j + r]];
438:         y[row] = yval;
439:       }
440:       break;
441:     }

443:     vec_y  = _mm256_setzero_pd();
444:     vec_y2 = _mm256_setzero_pd();

446:   /* Process slice of height 8 (512 bits) via two subslices of height 4 (256 bits) via AVX */
447:   #pragma novector
448:   #pragma unroll(2)
449:     for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j += 8) {
450:       AVX2_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
451:       aval += 4;
452:       acolidx += 4;
453:       AVX2_Mult_Private(vec_idx, vec_x, vec_vals, vec_y2);
454:       aval += 4;
455:       acolidx += 4;
456:     }

458:     _mm256_storeu_pd(y + i * 8, vec_y);
459:     _mm256_storeu_pd(y + i * 8 + 4, vec_y2);
460:   }
461: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
462:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
463:   for (i = 0; i < totalslices; i++) { /* loop over full slices */
464:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
465:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

467:     vec_y  = _mm256_setzero_pd();
468:     vec_y2 = _mm256_setzero_pd();

470:     /* last slice may have padding rows. Don't use vectorization. */
471:     if (i == totalslices - 1 && (A->rmap->n & 0x07)) {
472:       rows_left = A->rmap->n - 8 * i;
473:       for (r = 0; r < rows_left; ++r) {
474:         yval       = (MatScalar)0;
475:         row        = 8 * i + r;
476:         nnz_in_row = a->rlen[row];
477:         for (j = 0; j < nnz_in_row; ++j) yval += aval[8 * j + r] * x[acolidx[8 * j + r]];
478:         y[row] = yval;
479:       }
480:       break;
481:     }

483:   /* Process slice of height 8 (512 bits) via two subslices of height 4 (256 bits) via AVX */
484:   #pragma novector
485:   #pragma unroll(2)
486:     for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j += 8) {
487:       vec_vals  = _mm256_loadu_pd(aval);
488:       vec_x_tmp = _mm_setzero_pd();
489:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
490:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
491:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
492:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
493:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
494:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
495:       vec_y     = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y);
496:       aval += 4;

498:       vec_vals  = _mm256_loadu_pd(aval);
499:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
500:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
501:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
502:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
503:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
504:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
505:       vec_y2    = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y2);
506:       aval += 4;
507:     }

509:     _mm256_storeu_pd(y + i * 8, vec_y);
510:     _mm256_storeu_pd(y + i * 8 + 4, vec_y2);
511:   }
512: #else
513:   PetscCall(PetscMalloc1(sliceheight, &sum));
514:   for (i = 0; i < totalslices; i++) { /* loop over slices */
515:     for (j = 0; j < sliceheight; j++) {
516:       sum[j] = 0.0;
517:       for (k = a->sliidx[i] + j; k < a->sliidx[i + 1]; k += sliceheight) sum[j] += aval[k] * x[acolidx[k]];
518:     }
519:     if (i == totalslices - 1 && (A->rmap->n % sliceheight)) { /* if last slice has padding rows */
520:       for (j = 0; j < (A->rmap->n % sliceheight); j++) y[sliceheight * i + j] = sum[j];
521:     } else {
522:       for (j = 0; j < sliceheight; j++) y[sliceheight * i + j] = sum[j];
523:     }
524:   }
525:   PetscCall(PetscFree(sum));
526: #endif

528:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt)); /* theoretical minimal FLOPs */
529:   PetscCall(VecRestoreArrayRead(xx, &x));
530:   PetscCall(VecRestoreArray(yy, &y));
531:   PetscFunctionReturn(PETSC_SUCCESS);
532: }

534: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
535: PetscErrorCode MatMultAdd_SeqSELL(Mat A, Vec xx, Vec yy, Vec zz)
536: {
537:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
538:   PetscScalar       *y, *z;
539:   const PetscScalar *x;
540:   const MatScalar   *aval        = a->val;
541:   PetscInt           totalslices = a->totalslices;
542:   const PetscInt    *acolidx     = a->colidx;
543:   PetscInt           i, j;
544: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
545:   __m512d  vec_x, vec_y, vec_vals;
546:   __m256i  vec_idx;
547:   __mmask8 mask = 0;
548:   __m512d  vec_x2, vec_y2, vec_vals2, vec_x3, vec_y3, vec_vals3, vec_x4, vec_y4, vec_vals4;
549:   __m256i  vec_idx2, vec_idx3, vec_idx4;
550: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
551:   __m128d   vec_x_tmp;
552:   __m256d   vec_x, vec_y, vec_y2, vec_vals;
553:   MatScalar yval;
554:   PetscInt  r, row, nnz_in_row;
555: #else
556:   PetscInt     k, sliceheight = a->sliceheight;
557:   PetscScalar *sum;
558: #endif

560: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
561:   #pragma disjoint(*x, *y, *aval)
562: #endif

564:   PetscFunctionBegin;
565:   if (!a->nz) {
566:     PetscCall(VecCopy(yy, zz));
567:     PetscFunctionReturn(PETSC_SUCCESS);
568:   }
569:   PetscCall(VecGetArrayRead(xx, &x));
570:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
571: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
572:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
573:   for (i = 0; i < totalslices; i++) { /* loop over slices */
574:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
575:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

577:     if (i == totalslices - 1 && A->rmap->n & 0x07) { /* if last slice has padding rows */
578:       mask  = (__mmask8)(0xff >> (8 - (A->rmap->n & 0x07)));
579:       vec_y = _mm512_mask_loadu_pd(vec_y, mask, &y[8 * i]);
580:     } else {
581:       vec_y = _mm512_loadu_pd(&y[8 * i]);
582:     }
583:     vec_y2 = _mm512_setzero_pd();
584:     vec_y3 = _mm512_setzero_pd();
585:     vec_y4 = _mm512_setzero_pd();

587:     j = a->sliidx[i] >> 3; /* 8 bytes are read at each time, corresponding to a slice column */
588:     switch ((a->sliidx[i + 1] - a->sliidx[i]) / 8 & 3) {
589:     case 3:
590:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
591:       acolidx += 8;
592:       aval += 8;
593:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
594:       acolidx += 8;
595:       aval += 8;
596:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
597:       acolidx += 8;
598:       aval += 8;
599:       j += 3;
600:       break;
601:     case 2:
602:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
603:       acolidx += 8;
604:       aval += 8;
605:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
606:       acolidx += 8;
607:       aval += 8;
608:       j += 2;
609:       break;
610:     case 1:
611:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
612:       acolidx += 8;
613:       aval += 8;
614:       j += 1;
615:       break;
616:     }
617:   #pragma novector
618:     for (; j < (a->sliidx[i + 1] >> 3); j += 4) {
619:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
620:       acolidx += 8;
621:       aval += 8;
622:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
623:       acolidx += 8;
624:       aval += 8;
625:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
626:       acolidx += 8;
627:       aval += 8;
628:       AVX512_Mult_Private(vec_idx4, vec_x4, vec_vals4, vec_y4);
629:       acolidx += 8;
630:       aval += 8;
631:     }

633:     vec_y = _mm512_add_pd(vec_y, vec_y2);
634:     vec_y = _mm512_add_pd(vec_y, vec_y3);
635:     vec_y = _mm512_add_pd(vec_y, vec_y4);
636:     if (i == totalslices - 1 && A->rmap->n & 0x07) { /* if last slice has padding rows */
637:       _mm512_mask_storeu_pd(&z[8 * i], mask, vec_y);
638:     } else {
639:       _mm512_storeu_pd(&z[8 * i], vec_y);
640:     }
641:   }
642: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
643:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
644:   for (i = 0; i < totalslices; i++) { /* loop over full slices */
645:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
646:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

648:     /* last slice may have padding rows. Don't use vectorization. */
649:     if (i == totalslices - 1 && (A->rmap->n & 0x07)) {
650:       for (r = 0; r < (A->rmap->n & 0x07); ++r) {
651:         row        = 8 * i + r;
652:         yval       = (MatScalar)0.0;
653:         nnz_in_row = a->rlen[row];
654:         for (j = 0; j < nnz_in_row; ++j) yval += aval[8 * j + r] * x[acolidx[8 * j + r]];
655:         z[row] = y[row] + yval;
656:       }
657:       break;
658:     }

660:     vec_y  = _mm256_loadu_pd(y + 8 * i);
661:     vec_y2 = _mm256_loadu_pd(y + 8 * i + 4);

663:     /* Process slice of height 8 (512 bits) via two subslices of height 4 (256 bits) via AVX */
664:     for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j += 8) {
665:       vec_vals  = _mm256_loadu_pd(aval);
666:       vec_x_tmp = _mm_setzero_pd();
667:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
668:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
669:       vec_x     = _mm256_setzero_pd();
670:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
671:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
672:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
673:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
674:       vec_y     = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y);
675:       aval += 4;

677:       vec_vals  = _mm256_loadu_pd(aval);
678:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
679:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
680:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
681:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
682:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
683:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
684:       vec_y2    = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y2);
685:       aval += 4;
686:     }

688:     _mm256_storeu_pd(z + i * 8, vec_y);
689:     _mm256_storeu_pd(z + i * 8 + 4, vec_y2);
690:   }
691: #else
692:   PetscCall(PetscMalloc1(sliceheight, &sum));
693:   for (i = 0; i < totalslices; i++) { /* loop over slices */
694:     for (j = 0; j < sliceheight; j++) {
695:       sum[j] = 0.0;
696:       for (k = a->sliidx[i] + j; k < a->sliidx[i + 1]; k += sliceheight) sum[j] += aval[k] * x[acolidx[k]];
697:     }
698:     if (i == totalslices - 1 && (A->rmap->n % sliceheight)) {
699:       for (j = 0; j < (A->rmap->n % sliceheight); j++) z[sliceheight * i + j] = y[sliceheight * i + j] + sum[j];
700:     } else {
701:       for (j = 0; j < sliceheight; j++) z[sliceheight * i + j] = y[sliceheight * i + j] + sum[j];
702:     }
703:   }
704:   PetscCall(PetscFree(sum));
705: #endif

707:   PetscCall(PetscLogFlops(2.0 * a->nz));
708:   PetscCall(VecRestoreArrayRead(xx, &x));
709:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
710:   PetscFunctionReturn(PETSC_SUCCESS);
711: }

713: PetscErrorCode MatMultTransposeAdd_SeqSELL(Mat A, Vec xx, Vec zz, Vec yy)
714: {
715:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
716:   PetscScalar       *y;
717:   const PetscScalar *x;
718:   const MatScalar   *aval    = a->val;
719:   const PetscInt    *acolidx = a->colidx;
720:   PetscInt           i, j, r, row, nnz_in_row, totalslices = a->totalslices, sliceheight = a->sliceheight;

722: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
723:   #pragma disjoint(*x, *y, *aval)
724: #endif

726:   PetscFunctionBegin;
727:   if (A->symmetric == PETSC_BOOL3_TRUE) {
728:     PetscCall(MatMultAdd_SeqSELL(A, xx, zz, yy));
729:     PetscFunctionReturn(PETSC_SUCCESS);
730:   }
731:   if (zz != yy) PetscCall(VecCopy(zz, yy));

733:   if (a->nz) {
734:     PetscCall(VecGetArrayRead(xx, &x));
735:     PetscCall(VecGetArray(yy, &y));
736:     for (i = 0; i < a->totalslices; i++) { /* loop over slices */
737:       if (i == totalslices - 1 && (A->rmap->n % sliceheight)) {
738:         for (r = 0; r < (A->rmap->n % sliceheight); ++r) {
739:           row        = sliceheight * i + r;
740:           nnz_in_row = a->rlen[row];
741:           for (j = 0; j < nnz_in_row; ++j) y[acolidx[sliceheight * j + r]] += aval[sliceheight * j + r] * x[row];
742:         }
743:         break;
744:       }
745:       for (r = 0; r < sliceheight; ++r)
746:         for (j = a->sliidx[i] + r; j < a->sliidx[i + 1]; j += sliceheight) y[acolidx[j]] += aval[j] * x[sliceheight * i + r];
747:     }
748:     PetscCall(PetscLogFlops(2.0 * a->nz));
749:     PetscCall(VecRestoreArrayRead(xx, &x));
750:     PetscCall(VecRestoreArray(yy, &y));
751:   }
752:   PetscFunctionReturn(PETSC_SUCCESS);
753: }

755: PetscErrorCode MatMultTranspose_SeqSELL(Mat A, Vec xx, Vec yy)
756: {
757:   PetscFunctionBegin;
758:   if (A->symmetric == PETSC_BOOL3_TRUE) {
759:     PetscCall(MatMult_SeqSELL(A, xx, yy));
760:   } else {
761:     PetscCall(VecSet(yy, 0.0));
762:     PetscCall(MatMultTransposeAdd_SeqSELL(A, xx, yy, yy));
763:   }
764:   PetscFunctionReturn(PETSC_SUCCESS);
765: }

767: /*
768:      Checks for missing diagonals
769: */
770: PetscErrorCode MatMissingDiagonal_SeqSELL(Mat A, PetscBool *missing, PetscInt *d)
771: {
772:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
773:   PetscInt    *diag, i;

775:   PetscFunctionBegin;
776:   *missing = PETSC_FALSE;
777:   if (A->rmap->n > 0 && !a->colidx) {
778:     *missing = PETSC_TRUE;
779:     if (d) *d = 0;
780:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
781:   } else {
782:     diag = a->diag;
783:     for (i = 0; i < A->rmap->n; i++) {
784:       if (diag[i] == -1) {
785:         *missing = PETSC_TRUE;
786:         if (d) *d = i;
787:         PetscCall(PetscInfo(A, "Matrix is missing diagonal number %" PetscInt_FMT "\n", i));
788:         break;
789:       }
790:     }
791:   }
792:   PetscFunctionReturn(PETSC_SUCCESS);
793: }

795: PetscErrorCode MatMarkDiagonal_SeqSELL(Mat A)
796: {
797:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
798:   PetscInt     i, j, m = A->rmap->n, shift;

800:   PetscFunctionBegin;
801:   if (!a->diag) {
802:     PetscCall(PetscMalloc1(m, &a->diag));
803:     a->free_diag = PETSC_TRUE;
804:   }
805:   for (i = 0; i < m; i++) {                                          /* loop over rows */
806:     shift      = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
807:     a->diag[i] = -1;
808:     for (j = 0; j < a->rlen[i]; j++) {
809:       if (a->colidx[shift + a->sliceheight * j] == i) {
810:         a->diag[i] = shift + a->sliceheight * j;
811:         break;
812:       }
813:     }
814:   }
815:   PetscFunctionReturn(PETSC_SUCCESS);
816: }

818: /*
819:   Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
820: */
821: PetscErrorCode MatInvertDiagonal_SeqSELL(Mat A, PetscScalar omega, PetscScalar fshift)
822: {
823:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
824:   PetscInt     i, *diag, m = A->rmap->n;
825:   MatScalar   *val = a->val;
826:   PetscScalar *idiag, *mdiag;

828:   PetscFunctionBegin;
829:   if (a->idiagvalid) PetscFunctionReturn(PETSC_SUCCESS);
830:   PetscCall(MatMarkDiagonal_SeqSELL(A));
831:   diag = a->diag;
832:   if (!a->idiag) {
833:     PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work));
834:     val = a->val;
835:   }
836:   mdiag = a->mdiag;
837:   idiag = a->idiag;

839:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
840:     for (i = 0; i < m; i++) {
841:       mdiag[i] = val[diag[i]];
842:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
843:         PetscCheck(PetscRealPart(fshift), PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
844:         PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
845:         A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
846:         A->factorerror_zeropivot_value = 0.0;
847:         A->factorerror_zeropivot_row   = i;
848:       }
849:       idiag[i] = 1.0 / val[diag[i]];
850:     }
851:     PetscCall(PetscLogFlops(m));
852:   } else {
853:     for (i = 0; i < m; i++) {
854:       mdiag[i] = val[diag[i]];
855:       idiag[i] = omega / (fshift + val[diag[i]]);
856:     }
857:     PetscCall(PetscLogFlops(2.0 * m));
858:   }
859:   a->idiagvalid = PETSC_TRUE;
860:   PetscFunctionReturn(PETSC_SUCCESS);
861: }

863: PetscErrorCode MatZeroEntries_SeqSELL(Mat A)
864: {
865:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

867:   PetscFunctionBegin;
868:   PetscCall(PetscArrayzero(a->val, a->sliidx[a->totalslices]));
869:   PetscCall(MatSeqSELLInvalidateDiagonal(A));
870:   PetscFunctionReturn(PETSC_SUCCESS);
871: }

873: PetscErrorCode MatDestroy_SeqSELL(Mat A)
874: {
875:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

877:   PetscFunctionBegin;
878:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
879:   PetscCall(MatSeqXSELLFreeSELL(A, &a->val, &a->colidx));
880:   PetscCall(ISDestroy(&a->row));
881:   PetscCall(ISDestroy(&a->col));
882:   PetscCall(PetscFree(a->diag));
883:   PetscCall(PetscFree(a->rlen));
884:   PetscCall(PetscFree(a->sliidx));
885:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
886:   PetscCall(PetscFree(a->solve_work));
887:   PetscCall(ISDestroy(&a->icol));
888:   PetscCall(PetscFree(a->saved_values));
889:   PetscCall(PetscFree2(a->getrowcols, a->getrowvals));
890:   PetscCall(PetscFree(A->data));
891: #if defined(PETSC_HAVE_CUPM)
892:   PetscCall(PetscFree(a->chunk_slice_map));
893: #endif

895:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
896:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
897:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
898:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLSetPreallocation_C", NULL));
899:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetArray_C", NULL));
900:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLRestoreArray_C", NULL));
901:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsell_seqaij_C", NULL));
902: #if defined(PETSC_HAVE_CUDA)
903:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsell_seqsellcuda_C", NULL));
904: #endif
905: #if defined(PETSC_HAVE_HIP)
906:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsell_seqsellhip_C", NULL));
907: #endif
908:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetFillRatio_C", NULL));
909:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetMaxSliceWidth_C", NULL));
910:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetAvgSliceWidth_C", NULL));
911:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetVarSliceSize_C", NULL));
912:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLSetSliceHeight_C", NULL));
913:   PetscFunctionReturn(PETSC_SUCCESS);
914: }

916: PetscErrorCode MatSetOption_SeqSELL(Mat A, MatOption op, PetscBool flg)
917: {
918:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

920:   PetscFunctionBegin;
921:   switch (op) {
922:   case MAT_ROW_ORIENTED:
923:     a->roworiented = flg;
924:     break;
925:   case MAT_KEEP_NONZERO_PATTERN:
926:     a->keepnonzeropattern = flg;
927:     break;
928:   case MAT_NEW_NONZERO_LOCATIONS:
929:     a->nonew = (flg ? 0 : 1);
930:     break;
931:   case MAT_NEW_NONZERO_LOCATION_ERR:
932:     a->nonew = (flg ? -1 : 0);
933:     break;
934:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
935:     a->nonew = (flg ? -2 : 0);
936:     break;
937:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
938:     a->nounused = (flg ? -1 : 0);
939:     break;
940:   default:
941:     break;
942:   }
943:   PetscFunctionReturn(PETSC_SUCCESS);
944: }

946: PetscErrorCode MatGetDiagonal_SeqSELL(Mat A, Vec v)
947: {
948:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
949:   PetscInt     i, j, n, shift;
950:   PetscScalar *x, zero = 0.0;

952:   PetscFunctionBegin;
953:   PetscCall(VecGetLocalSize(v, &n));
954:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");

956:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
957:     PetscInt *diag = a->diag;
958:     PetscCall(VecGetArray(v, &x));
959:     for (i = 0; i < n; i++) x[i] = 1.0 / a->val[diag[i]];
960:     PetscCall(VecRestoreArray(v, &x));
961:     PetscFunctionReturn(PETSC_SUCCESS);
962:   }

964:   PetscCall(VecSet(v, zero));
965:   PetscCall(VecGetArray(v, &x));
966:   for (i = 0; i < n; i++) {                                     /* loop over rows */
967:     shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
968:     x[i]  = 0;
969:     for (j = 0; j < a->rlen[i]; j++) {
970:       if (a->colidx[shift + a->sliceheight * j] == i) {
971:         x[i] = a->val[shift + a->sliceheight * j];
972:         break;
973:       }
974:     }
975:   }
976:   PetscCall(VecRestoreArray(v, &x));
977:   PetscFunctionReturn(PETSC_SUCCESS);
978: }

980: PetscErrorCode MatDiagonalScale_SeqSELL(Mat A, Vec ll, Vec rr)
981: {
982:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
983:   const PetscScalar *l, *r;
984:   PetscInt           i, j, m, n, row;

986:   PetscFunctionBegin;
987:   if (ll) {
988:     /* The local size is used so that VecMPI can be passed to this routine
989:        by MatDiagonalScale_MPISELL */
990:     PetscCall(VecGetLocalSize(ll, &m));
991:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
992:     PetscCall(VecGetArrayRead(ll, &l));
993:     for (i = 0; i < a->totalslices; i++) {                            /* loop over slices */
994:       if (i == a->totalslices - 1 && (A->rmap->n % a->sliceheight)) { /* if last slice has padding rows */
995:         for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = (row + 1) % a->sliceheight) {
996:           if (row < (A->rmap->n % a->sliceheight)) a->val[j] *= l[a->sliceheight * i + row];
997:         }
998:       } else {
999:         for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = (row + 1) % a->sliceheight) a->val[j] *= l[a->sliceheight * i + row];
1000:       }
1001:     }
1002:     PetscCall(VecRestoreArrayRead(ll, &l));
1003:     PetscCall(PetscLogFlops(a->nz));
1004:   }
1005:   if (rr) {
1006:     PetscCall(VecGetLocalSize(rr, &n));
1007:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
1008:     PetscCall(VecGetArrayRead(rr, &r));
1009:     for (i = 0; i < a->totalslices; i++) {                            /* loop over slices */
1010:       if (i == a->totalslices - 1 && (A->rmap->n % a->sliceheight)) { /* if last slice has padding rows */
1011:         for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = ((row + 1) % a->sliceheight)) {
1012:           if (row < (A->rmap->n % a->sliceheight)) a->val[j] *= r[a->colidx[j]];
1013:         }
1014:       } else {
1015:         for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j++) a->val[j] *= r[a->colidx[j]];
1016:       }
1017:     }
1018:     PetscCall(VecRestoreArrayRead(rr, &r));
1019:     PetscCall(PetscLogFlops(a->nz));
1020:   }
1021:   PetscCall(MatSeqSELLInvalidateDiagonal(A));
1022: #if defined(PETSC_HAVE_CUPM)
1023:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
1024: #endif
1025:   PetscFunctionReturn(PETSC_SUCCESS);
1026: }

1028: PetscErrorCode MatGetValues_SeqSELL(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
1029: {
1030:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1031:   PetscInt    *cp, i, k, low, high, t, row, col, l;
1032:   PetscInt     shift;
1033:   MatScalar   *vp;

1035:   PetscFunctionBegin;
1036:   for (k = 0; k < m; k++) { /* loop over requested rows */
1037:     row = im[k];
1038:     if (row < 0) continue;
1039:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
1040:     shift = a->sliidx[row / a->sliceheight] + (row % a->sliceheight); /* starting index of the row */
1041:     cp    = a->colidx + shift;                                        /* pointer to the row */
1042:     vp    = a->val + shift;                                           /* pointer to the row */
1043:     for (l = 0; l < n; l++) {                                         /* loop over requested columns */
1044:       col = in[l];
1045:       if (col < 0) continue;
1046:       PetscCheck(col < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: row %" PetscInt_FMT " max %" PetscInt_FMT, col, A->cmap->n - 1);
1047:       high = a->rlen[row];
1048:       low  = 0; /* assume unsorted */
1049:       while (high - low > 5) {
1050:         t = (low + high) / 2;
1051:         if (*(cp + a->sliceheight * t) > col) high = t;
1052:         else low = t;
1053:       }
1054:       for (i = low; i < high; i++) {
1055:         if (*(cp + a->sliceheight * i) > col) break;
1056:         if (*(cp + a->sliceheight * i) == col) {
1057:           *v++ = *(vp + a->sliceheight * i);
1058:           goto finished;
1059:         }
1060:       }
1061:       *v++ = 0.0;
1062:     finished:;
1063:     }
1064:   }
1065:   PetscFunctionReturn(PETSC_SUCCESS);
1066: }

1068: static PetscErrorCode MatView_SeqSELL_ASCII(Mat A, PetscViewer viewer)
1069: {
1070:   Mat_SeqSELL      *a = (Mat_SeqSELL *)A->data;
1071:   PetscInt          i, j, m = A->rmap->n, shift;
1072:   const char       *name;
1073:   PetscViewerFormat format;

1075:   PetscFunctionBegin;
1076:   PetscCall(PetscViewerGetFormat(viewer, &format));
1077:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
1078:     PetscInt nofinalvalue = 0;
1079:     /*
1080:     if (m && ((a->i[m] == a->i[m-1]) || (a->j[a->nz-1] != A->cmap->n-1))) nofinalvalue = 1;
1081:     */
1082:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1083:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
1084:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
1085: #if defined(PETSC_USE_COMPLEX)
1086:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
1087: #else
1088:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
1089: #endif
1090:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

1092:     for (i = 0; i < m; i++) {
1093:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1094:       for (j = 0; j < a->rlen[i]; j++) {
1095: #if defined(PETSC_USE_COMPLEX)
1096:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->colidx[shift + a->sliceheight * j] + 1, (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1097: #else
1098:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->colidx[shift + a->sliceheight * j] + 1, (double)a->val[shift + a->sliceheight * j]));
1099: #endif
1100:       }
1101:     }
1102:     /*
1103:     if (nofinalvalue) {
1104: #if defined(PETSC_USE_COMPLEX)
1105:       PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n",m,A->cmap->n,0.,0.));
1106: #else
1107:       PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",m,A->cmap->n,0.0));
1108: #endif
1109:     }
1110:     */
1111:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
1112:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
1113:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1114:   } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO) {
1115:     PetscFunctionReturn(PETSC_SUCCESS);
1116:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
1117:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1118:     for (i = 0; i < m; i++) {
1119:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1120:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1121:       for (j = 0; j < a->rlen[i]; j++) {
1122: #if defined(PETSC_USE_COMPLEX)
1123:         if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) > 0.0 && PetscRealPart(a->val[shift + a->sliceheight * j]) != 0.0) {
1124:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1125:         } else if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) < 0.0 && PetscRealPart(a->val[shift + a->sliceheight * j]) != 0.0) {
1126:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)-PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1127:         } else if (PetscRealPart(a->val[shift + a->sliceheight * j]) != 0.0) {
1128:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j])));
1129:         }
1130: #else
1131:         if (a->val[shift + a->sliceheight * j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)a->val[shift + a->sliceheight * j]));
1132: #endif
1133:       }
1134:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1135:     }
1136:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1137:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
1138:     PetscInt    cnt = 0, jcnt;
1139:     PetscScalar value;
1140: #if defined(PETSC_USE_COMPLEX)
1141:     PetscBool realonly = PETSC_TRUE;
1142:     for (i = 0; i < a->sliidx[a->totalslices]; i++) {
1143:       if (PetscImaginaryPart(a->val[i]) != 0.0) {
1144:         realonly = PETSC_FALSE;
1145:         break;
1146:       }
1147:     }
1148: #endif

1150:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1151:     for (i = 0; i < m; i++) {
1152:       jcnt  = 0;
1153:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1154:       for (j = 0; j < A->cmap->n; j++) {
1155:         if (jcnt < a->rlen[i] && j == a->colidx[shift + a->sliceheight * j]) {
1156:           value = a->val[cnt++];
1157:           jcnt++;
1158:         } else {
1159:           value = 0.0;
1160:         }
1161: #if defined(PETSC_USE_COMPLEX)
1162:         if (realonly) {
1163:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
1164:         } else {
1165:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
1166:         }
1167: #else
1168:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
1169: #endif
1170:       }
1171:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1172:     }
1173:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1174:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
1175:     PetscInt fshift = 1;
1176:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1177: #if defined(PETSC_USE_COMPLEX)
1178:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
1179: #else
1180:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
1181: #endif
1182:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
1183:     for (i = 0; i < m; i++) {
1184:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1185:       for (j = 0; j < a->rlen[i]; j++) {
1186: #if defined(PETSC_USE_COMPLEX)
1187:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->colidx[shift + a->sliceheight * j] + fshift, (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1188: #else
1189:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->colidx[shift + a->sliceheight * j] + fshift, (double)a->val[shift + a->sliceheight * j]));
1190: #endif
1191:       }
1192:     }
1193:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1194:   } else if (format == PETSC_VIEWER_NATIVE) {
1195:     for (i = 0; i < a->totalslices; i++) { /* loop over slices */
1196:       PetscInt row;
1197:       PetscCall(PetscViewerASCIIPrintf(viewer, "slice %" PetscInt_FMT ": %" PetscInt_FMT " %" PetscInt_FMT "\n", i, a->sliidx[i], a->sliidx[i + 1]));
1198:       for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = (row + 1) % a->sliceheight) {
1199: #if defined(PETSC_USE_COMPLEX)
1200:         if (PetscImaginaryPart(a->val[j]) > 0.0) {
1201:           PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g + %g i\n", a->sliceheight * i + row, a->colidx[j], (double)PetscRealPart(a->val[j]), (double)PetscImaginaryPart(a->val[j])));
1202:         } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1203:           PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g - %g i\n", a->sliceheight * i + row, a->colidx[j], (double)PetscRealPart(a->val[j]), -(double)PetscImaginaryPart(a->val[j])));
1204:         } else {
1205:           PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g\n", a->sliceheight * i + row, a->colidx[j], (double)PetscRealPart(a->val[j])));
1206:         }
1207: #else
1208:         PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g\n", a->sliceheight * i + row, a->colidx[j], (double)a->val[j]));
1209: #endif
1210:       }
1211:     }
1212:   } else {
1213:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1214:     if (A->factortype) {
1215:       for (i = 0; i < m; i++) {
1216:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1217:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1218:         /* L part */
1219:         for (j = shift; j < a->diag[i]; j += a->sliceheight) {
1220: #if defined(PETSC_USE_COMPLEX)
1221:           if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) > 0.0) {
1222:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)PetscImaginaryPart(a->val[j])));
1223:           } else if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) < 0.0) {
1224:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)(-PetscImaginaryPart(a->val[j]))));
1225:           } else {
1226:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)PetscRealPart(a->val[j])));
1227:           }
1228: #else
1229:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)a->val[j]));
1230: #endif
1231:         }
1232:         /* diagonal */
1233:         j = a->diag[i];
1234: #if defined(PETSC_USE_COMPLEX)
1235:         if (PetscImaginaryPart(a->val[j]) > 0.0) {
1236:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[j], (double)PetscRealPart(1.0 / a->val[j]), (double)PetscImaginaryPart(1.0 / a->val[j])));
1237:         } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1238:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[j], (double)PetscRealPart(1.0 / a->val[j]), (double)(-PetscImaginaryPart(1.0 / a->val[j]))));
1239:         } else {
1240:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)PetscRealPart(1.0 / a->val[j])));
1241:         }
1242: #else
1243:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)(1 / a->val[j])));
1244: #endif

1246:         /* U part */
1247:         for (j = a->diag[i] + 1; j < shift + a->sliceheight * a->rlen[i]; j += a->sliceheight) {
1248: #if defined(PETSC_USE_COMPLEX)
1249:           if (PetscImaginaryPart(a->val[j]) > 0.0) {
1250:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)PetscImaginaryPart(a->val[j])));
1251:           } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1252:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)(-PetscImaginaryPart(a->val[j]))));
1253:           } else {
1254:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)PetscRealPart(a->val[j])));
1255:           }
1256: #else
1257:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)a->val[j]));
1258: #endif
1259:         }
1260:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1261:       }
1262:     } else {
1263:       for (i = 0; i < m; i++) {
1264:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1265:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1266:         for (j = 0; j < a->rlen[i]; j++) {
1267: #if defined(PETSC_USE_COMPLEX)
1268:           if (PetscImaginaryPart(a->val[j]) > 0.0) {
1269:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1270:           } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1271:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)-PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1272:           } else {
1273:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j])));
1274:           }
1275: #else
1276:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)a->val[shift + a->sliceheight * j]));
1277: #endif
1278:         }
1279:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1280:       }
1281:     }
1282:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1283:   }
1284:   PetscCall(PetscViewerFlush(viewer));
1285:   PetscFunctionReturn(PETSC_SUCCESS);
1286: }

1288: #include <petscdraw.h>
1289: static PetscErrorCode MatView_SeqSELL_Draw_Zoom(PetscDraw draw, void *Aa)
1290: {
1291:   Mat               A = (Mat)Aa;
1292:   Mat_SeqSELL      *a = (Mat_SeqSELL *)A->data;
1293:   PetscInt          i, j, m = A->rmap->n, shift;
1294:   int               color;
1295:   PetscReal         xl, yl, xr, yr, x_l, x_r, y_l, y_r;
1296:   PetscViewer       viewer;
1297:   PetscViewerFormat format;

1299:   PetscFunctionBegin;
1300:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
1301:   PetscCall(PetscViewerGetFormat(viewer, &format));
1302:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

1304:   /* loop over matrix elements drawing boxes */

1306:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
1307:     PetscDrawCollectiveBegin(draw);
1308:     /* Blue for negative, Cyan for zero and  Red for positive */
1309:     color = PETSC_DRAW_BLUE;
1310:     for (i = 0; i < m; i++) {
1311:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1312:       y_l   = m - i - 1.0;
1313:       y_r   = y_l + 1.0;
1314:       for (j = 0; j < a->rlen[i]; j++) {
1315:         x_l = a->colidx[shift + a->sliceheight * j];
1316:         x_r = x_l + 1.0;
1317:         if (PetscRealPart(a->val[shift + a->sliceheight * j]) >= 0.) continue;
1318:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1319:       }
1320:     }
1321:     color = PETSC_DRAW_CYAN;
1322:     for (i = 0; i < m; i++) {
1323:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1324:       y_l   = m - i - 1.0;
1325:       y_r   = y_l + 1.0;
1326:       for (j = 0; j < a->rlen[i]; j++) {
1327:         x_l = a->colidx[shift + a->sliceheight * j];
1328:         x_r = x_l + 1.0;
1329:         if (a->val[shift + a->sliceheight * j] != 0.) continue;
1330:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1331:       }
1332:     }
1333:     color = PETSC_DRAW_RED;
1334:     for (i = 0; i < m; i++) {
1335:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1336:       y_l   = m - i - 1.0;
1337:       y_r   = y_l + 1.0;
1338:       for (j = 0; j < a->rlen[i]; j++) {
1339:         x_l = a->colidx[shift + a->sliceheight * j];
1340:         x_r = x_l + 1.0;
1341:         if (PetscRealPart(a->val[shift + a->sliceheight * j]) <= 0.) continue;
1342:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1343:       }
1344:     }
1345:     PetscDrawCollectiveEnd(draw);
1346:   } else {
1347:     /* use contour shading to indicate magnitude of values */
1348:     /* first determine max of all nonzero values */
1349:     PetscReal minv = 0.0, maxv = 0.0;
1350:     PetscInt  count = 0;
1351:     PetscDraw popup;
1352:     for (i = 0; i < a->sliidx[a->totalslices]; i++) {
1353:       if (PetscAbsScalar(a->val[i]) > maxv) maxv = PetscAbsScalar(a->val[i]);
1354:     }
1355:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1356:     PetscCall(PetscDrawGetPopup(draw, &popup));
1357:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1359:     PetscDrawCollectiveBegin(draw);
1360:     for (i = 0; i < m; i++) {
1361:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1362:       y_l   = m - i - 1.0;
1363:       y_r   = y_l + 1.0;
1364:       for (j = 0; j < a->rlen[i]; j++) {
1365:         x_l   = a->colidx[shift + a->sliceheight * j];
1366:         x_r   = x_l + 1.0;
1367:         color = PetscDrawRealToColor(PetscAbsScalar(a->val[count]), minv, maxv);
1368:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1369:         count++;
1370:       }
1371:     }
1372:     PetscDrawCollectiveEnd(draw);
1373:   }
1374:   PetscFunctionReturn(PETSC_SUCCESS);
1375: }

1377: #include <petscdraw.h>
1378: static PetscErrorCode MatView_SeqSELL_Draw(Mat A, PetscViewer viewer)
1379: {
1380:   PetscDraw draw;
1381:   PetscReal xr, yr, xl, yl, h, w;
1382:   PetscBool isnull;

1384:   PetscFunctionBegin;
1385:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1386:   PetscCall(PetscDrawIsNull(draw, &isnull));
1387:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1389:   xr = A->cmap->n;
1390:   yr = A->rmap->n;
1391:   h  = yr / 10.0;
1392:   w  = xr / 10.0;
1393:   xr += w;
1394:   yr += h;
1395:   xl = -w;
1396:   yl = -h;
1397:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1398:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1399:   PetscCall(PetscDrawZoom(draw, MatView_SeqSELL_Draw_Zoom, A));
1400:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1401:   PetscCall(PetscDrawSave(draw));
1402:   PetscFunctionReturn(PETSC_SUCCESS);
1403: }

1405: PetscErrorCode MatView_SeqSELL(Mat A, PetscViewer viewer)
1406: {
1407:   PetscBool isascii, isbinary, isdraw;

1409:   PetscFunctionBegin;
1410:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1411:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1412:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1413:   if (isascii) {
1414:     PetscCall(MatView_SeqSELL_ASCII(A, viewer));
1415:   } else if (isbinary) {
1416:     /* PetscCall(MatView_SeqSELL_Binary(A,viewer)); */
1417:   } else if (isdraw) PetscCall(MatView_SeqSELL_Draw(A, viewer));
1418:   PetscFunctionReturn(PETSC_SUCCESS);
1419: }

1421: PetscErrorCode MatAssemblyEnd_SeqSELL(Mat A, MatAssemblyType mode)
1422: {
1423:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1424:   PetscInt     i, shift, row_in_slice, row, nrow, *cp, lastcol, j, k;
1425:   MatScalar   *vp;
1426: #if defined(PETSC_HAVE_CUPM)
1427:   PetscInt totalchunks = 0;
1428: #endif

1430:   PetscFunctionBegin;
1431:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1432:   /* To do: compress out the unused elements */
1433:   PetscCall(MatMarkDiagonal_SeqSELL(A));
1434:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " allocated %" PetscInt_FMT " used (%" PetscInt_FMT " nonzeros+%" PetscInt_FMT " paddedzeros)\n", A->rmap->n, A->cmap->n, a->maxallocmat, a->sliidx[a->totalslices], a->nz, a->sliidx[a->totalslices] - a->nz));
1435:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1436:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", a->rlenmax));
1437:   a->nonzerorowcnt = 0;
1438:   /* Set unused slots for column indices to last valid column index. Set unused slots for values to zero. This allows for a use of unmasked intrinsics -> higher performance */
1439:   for (i = 0; i < a->totalslices; ++i) {
1440:     shift = a->sliidx[i];                                                   /* starting index of the slice */
1441:     cp    = PetscSafePointerPlusOffset(a->colidx, shift);                   /* pointer to the column indices of the slice */
1442:     vp    = PetscSafePointerPlusOffset(a->val, shift);                      /* pointer to the nonzero values of the slice */
1443:     for (row_in_slice = 0; row_in_slice < a->sliceheight; ++row_in_slice) { /* loop over rows in the slice */
1444:       row  = a->sliceheight * i + row_in_slice;
1445:       nrow = a->rlen[row]; /* number of nonzeros in row */
1446:       /*
1447:         Search for the nearest nonzero. Normally setting the index to zero may cause extra communication.
1448:         But if the entire slice are empty, it is fine to use 0 since the index will not be loaded.
1449:       */
1450:       lastcol = 0;
1451:       if (nrow > 0) { /* nonempty row */
1452:         a->nonzerorowcnt++;
1453:         lastcol = cp[a->sliceheight * (nrow - 1) + row_in_slice]; /* use the index from the last nonzero at current row */
1454:       } else if (!row_in_slice) {                                 /* first row of the correct slice is empty */
1455:         for (j = 1; j < a->sliceheight; j++) {
1456:           if (a->rlen[a->sliceheight * i + j]) {
1457:             lastcol = cp[j];
1458:             break;
1459:           }
1460:         }
1461:       } else {
1462:         if (a->sliidx[i + 1] != shift) lastcol = cp[row_in_slice - 1]; /* use the index from the previous row */
1463:       }

1465:       for (k = nrow; k < (a->sliidx[i + 1] - shift) / a->sliceheight; ++k) {
1466:         cp[a->sliceheight * k + row_in_slice] = lastcol;
1467:         vp[a->sliceheight * k + row_in_slice] = (MatScalar)0;
1468:       }
1469:     }
1470:   }

1472:   A->info.mallocs += a->reallocs;
1473:   a->reallocs = 0;

1475:   PetscCall(MatSeqSELLInvalidateDiagonal(A));
1476: #if defined(PETSC_HAVE_CUPM)
1477:   if (!a->chunksize && a->totalslices) {
1478:     a->chunksize = 64;
1479:     while (a->chunksize < 1024 && 2 * a->chunksize <= a->sliidx[a->totalslices] / a->totalslices) a->chunksize *= 2;
1480:     totalchunks = 1 + (a->sliidx[a->totalslices] - 1) / a->chunksize;
1481:   }
1482:   if (totalchunks != a->totalchunks) {
1483:     PetscCall(PetscFree(a->chunk_slice_map));
1484:     PetscCall(PetscMalloc1(totalchunks, &a->chunk_slice_map));
1485:     a->totalchunks = totalchunks;
1486:   }
1487:   j = 0;
1488:   for (i = 0; i < totalchunks; i++) {
1489:     while (a->sliidx[j + 1] <= i * a->chunksize && j < a->totalslices) j++;
1490:     a->chunk_slice_map[i] = j;
1491:   }
1492: #endif
1493:   PetscFunctionReturn(PETSC_SUCCESS);
1494: }

1496: PetscErrorCode MatGetInfo_SeqSELL(Mat A, MatInfoType flag, MatInfo *info)
1497: {
1498:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

1500:   PetscFunctionBegin;
1501:   info->block_size   = 1.0;
1502:   info->nz_allocated = a->maxallocmat;
1503:   info->nz_used      = a->sliidx[a->totalslices]; /* include padding zeros */
1504:   info->nz_unneeded  = (a->maxallocmat - a->sliidx[a->totalslices]);
1505:   info->assemblies   = A->num_ass;
1506:   info->mallocs      = A->info.mallocs;
1507:   info->memory       = 0; /* REVIEW ME */
1508:   if (A->factortype) {
1509:     info->fill_ratio_given  = A->info.fill_ratio_given;
1510:     info->fill_ratio_needed = A->info.fill_ratio_needed;
1511:     info->factor_mallocs    = A->info.factor_mallocs;
1512:   } else {
1513:     info->fill_ratio_given  = 0;
1514:     info->fill_ratio_needed = 0;
1515:     info->factor_mallocs    = 0;
1516:   }
1517:   PetscFunctionReturn(PETSC_SUCCESS);
1518: }

1520: PetscErrorCode MatSetValues_SeqSELL(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
1521: {
1522:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1523:   PetscInt     shift, i, k, l, low, high, t, ii, row, col, nrow;
1524:   PetscInt    *cp, nonew = a->nonew, lastcol = -1;
1525:   MatScalar   *vp, value;
1526: #if defined(PETSC_HAVE_CUPM)
1527:   PetscBool inserted = PETSC_FALSE;
1528:   PetscInt  mul      = DEVICE_MEM_ALIGN / a->sliceheight;
1529: #endif

1531:   PetscFunctionBegin;
1532:   for (k = 0; k < m; k++) { /* loop over added rows */
1533:     row = im[k];
1534:     if (row < 0) continue;
1535:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
1536:     shift = a->sliidx[row / a->sliceheight] + row % a->sliceheight; /* starting index of the row */
1537:     cp    = a->colidx + shift;                                      /* pointer to the row */
1538:     vp    = a->val + shift;                                         /* pointer to the row */
1539:     nrow  = a->rlen[row];
1540:     low   = 0;
1541:     high  = nrow;

1543:     for (l = 0; l < n; l++) { /* loop over added columns */
1544:       col = in[l];
1545:       if (col < 0) continue;
1546:       PetscCheck(col < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Col too large: row %" PetscInt_FMT " max %" PetscInt_FMT, col, A->cmap->n - 1);
1547:       if (a->roworiented) {
1548:         value = v[l + k * n];
1549:       } else {
1550:         value = v[k + l * m];
1551:       }
1552:       if ((value == 0.0 && a->ignorezeroentries) && (is == ADD_VALUES)) continue;

1554:       /* search in this row for the specified column, i indicates the column to be set */
1555:       if (col <= lastcol) low = 0;
1556:       else high = nrow;
1557:       lastcol = col;
1558:       while (high - low > 5) {
1559:         t = (low + high) / 2;
1560:         if (*(cp + a->sliceheight * t) > col) high = t;
1561:         else low = t;
1562:       }
1563:       for (i = low; i < high; i++) {
1564:         if (*(cp + a->sliceheight * i) > col) break;
1565:         if (*(cp + a->sliceheight * i) == col) {
1566:           if (is == ADD_VALUES) *(vp + a->sliceheight * i) += value;
1567:           else *(vp + a->sliceheight * i) = value;
1568: #if defined(PETSC_HAVE_CUPM)
1569:           inserted = PETSC_TRUE;
1570: #endif
1571:           low = i + 1;
1572:           goto noinsert;
1573:         }
1574:       }
1575:       if (value == 0.0 && a->ignorezeroentries) goto noinsert;
1576:       if (nonew == 1) goto noinsert;
1577:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", row, col);
1578: #if defined(PETSC_HAVE_CUPM)
1579:       MatSeqXSELLReallocateSELL(A, A->rmap->n, 1, nrow, a->sliidx, a->sliceheight, row / a->sliceheight, row, col, a->colidx, a->val, cp, vp, nonew, MatScalar, mul);
1580: #else
1581:       /* If the current row length exceeds the slice width (e.g. nrow==slice_width), allocate a new space, otherwise do nothing */
1582:       MatSeqXSELLReallocateSELL(A, A->rmap->n, 1, nrow, a->sliidx, a->sliceheight, row / a->sliceheight, row, col, a->colidx, a->val, cp, vp, nonew, MatScalar, 1);
1583: #endif
1584:       /* add the new nonzero to the high position, shift the remaining elements in current row to the right by one slot */
1585:       for (ii = nrow - 1; ii >= i; ii--) {
1586:         *(cp + a->sliceheight * (ii + 1)) = *(cp + a->sliceheight * ii);
1587:         *(vp + a->sliceheight * (ii + 1)) = *(vp + a->sliceheight * ii);
1588:       }
1589:       a->rlen[row]++;
1590:       *(cp + a->sliceheight * i) = col;
1591:       *(vp + a->sliceheight * i) = value;
1592:       a->nz++;
1593: #if defined(PETSC_HAVE_CUPM)
1594:       inserted = PETSC_TRUE;
1595: #endif
1596:       low = i + 1;
1597:       high++;
1598:       nrow++;
1599:     noinsert:;
1600:     }
1601:     a->rlen[row] = nrow;
1602:   }
1603: #if defined(PETSC_HAVE_CUPM)
1604:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED && inserted) A->offloadmask = PETSC_OFFLOAD_CPU;
1605: #endif
1606:   PetscFunctionReturn(PETSC_SUCCESS);
1607: }

1609: PetscErrorCode MatCopy_SeqSELL(Mat A, Mat B, MatStructure str)
1610: {
1611:   PetscFunctionBegin;
1612:   /* If the two matrices have the same copy implementation, use fast copy. */
1613:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
1614:     Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1615:     Mat_SeqSELL *b = (Mat_SeqSELL *)B->data;

1617:     PetscCheck(a->sliidx[a->totalslices] == b->sliidx[b->totalslices], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different");
1618:     PetscCall(PetscArraycpy(b->val, a->val, a->sliidx[a->totalslices]));
1619:   } else {
1620:     PetscCall(MatCopy_Basic(A, B, str));
1621:   }
1622:   PetscFunctionReturn(PETSC_SUCCESS);
1623: }

1625: PetscErrorCode MatSetUp_SeqSELL(Mat A)
1626: {
1627:   PetscFunctionBegin;
1628:   PetscCall(MatSeqSELLSetPreallocation(A, PETSC_DEFAULT, NULL));
1629:   PetscFunctionReturn(PETSC_SUCCESS);
1630: }

1632: PetscErrorCode MatSeqSELLGetArray_SeqSELL(Mat A, PetscScalar *array[])
1633: {
1634:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

1636:   PetscFunctionBegin;
1637:   *array = a->val;
1638:   PetscFunctionReturn(PETSC_SUCCESS);
1639: }

1641: PetscErrorCode MatSeqSELLRestoreArray_SeqSELL(Mat A, PetscScalar *array[])
1642: {
1643:   PetscFunctionBegin;
1644:   PetscFunctionReturn(PETSC_SUCCESS);
1645: }

1647: PetscErrorCode MatScale_SeqSELL(Mat inA, PetscScalar alpha)
1648: {
1649:   Mat_SeqSELL *a      = (Mat_SeqSELL *)inA->data;
1650:   MatScalar   *aval   = a->val;
1651:   PetscScalar  oalpha = alpha;
1652:   PetscBLASInt one    = 1, size;

1654:   PetscFunctionBegin;
1655:   PetscCall(PetscBLASIntCast(a->sliidx[a->totalslices], &size));
1656:   PetscCallBLAS("BLASscal", BLASscal_(&size, &oalpha, aval, &one));
1657:   PetscCall(PetscLogFlops(a->nz));
1658:   PetscCall(MatSeqSELLInvalidateDiagonal(inA));
1659: #if defined(PETSC_HAVE_CUPM)
1660:   if (inA->offloadmask != PETSC_OFFLOAD_UNALLOCATED) inA->offloadmask = PETSC_OFFLOAD_CPU;
1661: #endif
1662:   PetscFunctionReturn(PETSC_SUCCESS);
1663: }

1665: PetscErrorCode MatShift_SeqSELL(Mat Y, PetscScalar a)
1666: {
1667:   Mat_SeqSELL *y = (Mat_SeqSELL *)Y->data;

1669:   PetscFunctionBegin;
1670:   if (!Y->preallocated || !y->nz) PetscCall(MatSeqSELLSetPreallocation(Y, 1, NULL));
1671:   PetscCall(MatShift_Basic(Y, a));
1672:   PetscFunctionReturn(PETSC_SUCCESS);
1673: }

1675: PetscErrorCode MatSOR_SeqSELL(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1676: {
1677:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
1678:   PetscScalar       *x, sum, *t;
1679:   const MatScalar   *idiag = NULL, *mdiag;
1680:   const PetscScalar *b, *xb;
1681:   PetscInt           n, m = A->rmap->n, i, j, shift;
1682:   const PetscInt    *diag;

1684:   PetscFunctionBegin;
1685:   its = its * lits;

1687:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1688:   if (!a->idiagvalid) PetscCall(MatInvertDiagonal_SeqSELL(A, omega, fshift));
1689:   a->fshift = fshift;
1690:   a->omega  = omega;

1692:   diag  = a->diag;
1693:   t     = a->ssor_work;
1694:   idiag = a->idiag;
1695:   mdiag = a->mdiag;

1697:   PetscCall(VecGetArray(xx, &x));
1698:   PetscCall(VecGetArrayRead(bb, &b));
1699:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1700:   PetscCheck(flag != SOR_APPLY_UPPER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_UPPER is not implemented");
1701:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1702:   PetscCheck(!(flag & SOR_EISENSTAT), PETSC_COMM_SELF, PETSC_ERR_SUP, "No support yet for Eisenstat");

1704:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1705:     if ((flag & SOR_FORWARD_SWEEP) || (flag & SOR_LOCAL_FORWARD_SWEEP)) {
1706:       for (i = 0; i < m; i++) {
1707:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1708:         sum   = b[i];
1709:         n     = (diag[i] - shift) / a->sliceheight;
1710:         for (j = 0; j < n; j++) sum -= a->val[shift + a->sliceheight * j] * x[a->colidx[shift + a->sliceheight * j]];
1711:         t[i] = sum;
1712:         x[i] = sum * idiag[i];
1713:       }
1714:       xb = t;
1715:       PetscCall(PetscLogFlops(a->nz));
1716:     } else xb = b;
1717:     if ((flag & SOR_BACKWARD_SWEEP) || (flag & SOR_LOCAL_BACKWARD_SWEEP)) {
1718:       for (i = m - 1; i >= 0; i--) {
1719:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1720:         sum   = xb[i];
1721:         n     = a->rlen[i] - (diag[i] - shift) / a->sliceheight - 1;
1722:         for (j = 1; j <= n; j++) sum -= a->val[diag[i] + a->sliceheight * j] * x[a->colidx[diag[i] + a->sliceheight * j]];
1723:         if (xb == b) {
1724:           x[i] = sum * idiag[i];
1725:         } else {
1726:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1727:         }
1728:       }
1729:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
1730:     }
1731:     its--;
1732:   }
1733:   while (its--) {
1734:     if ((flag & SOR_FORWARD_SWEEP) || (flag & SOR_LOCAL_FORWARD_SWEEP)) {
1735:       for (i = 0; i < m; i++) {
1736:         /* lower */
1737:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1738:         sum   = b[i];
1739:         n     = (diag[i] - shift) / a->sliceheight;
1740:         for (j = 0; j < n; j++) sum -= a->val[shift + a->sliceheight * j] * x[a->colidx[shift + a->sliceheight * j]];
1741:         t[i] = sum; /* save application of the lower-triangular part */
1742:         /* upper */
1743:         n = a->rlen[i] - (diag[i] - shift) / a->sliceheight - 1;
1744:         for (j = 1; j <= n; j++) sum -= a->val[diag[i] + a->sliceheight * j] * x[a->colidx[diag[i] + a->sliceheight * j]];
1745:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1746:       }
1747:       xb = t;
1748:       PetscCall(PetscLogFlops(2.0 * a->nz));
1749:     } else xb = b;
1750:     if ((flag & SOR_BACKWARD_SWEEP) || (flag & SOR_LOCAL_BACKWARD_SWEEP)) {
1751:       for (i = m - 1; i >= 0; i--) {
1752:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1753:         sum   = xb[i];
1754:         if (xb == b) {
1755:           /* whole matrix (no checkpointing available) */
1756:           n = a->rlen[i];
1757:           for (j = 0; j < n; j++) sum -= a->val[shift + a->sliceheight * j] * x[a->colidx[shift + a->sliceheight * j]];
1758:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
1759:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
1760:           n = a->rlen[i] - (diag[i] - shift) / a->sliceheight - 1;
1761:           for (j = 1; j <= n; j++) sum -= a->val[diag[i] + a->sliceheight * j] * x[a->colidx[diag[i] + a->sliceheight * j]];
1762:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1763:         }
1764:       }
1765:       if (xb == b) {
1766:         PetscCall(PetscLogFlops(2.0 * a->nz));
1767:       } else {
1768:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
1769:       }
1770:     }
1771:   }
1772:   PetscCall(VecRestoreArray(xx, &x));
1773:   PetscCall(VecRestoreArrayRead(bb, &b));
1774:   PetscFunctionReturn(PETSC_SUCCESS);
1775: }

1777: static struct _MatOps MatOps_Values = {MatSetValues_SeqSELL,
1778:                                        MatGetRow_SeqSELL,
1779:                                        MatRestoreRow_SeqSELL,
1780:                                        MatMult_SeqSELL,
1781:                                        /* 4*/ MatMultAdd_SeqSELL,
1782:                                        MatMultTranspose_SeqSELL,
1783:                                        MatMultTransposeAdd_SeqSELL,
1784:                                        NULL,
1785:                                        NULL,
1786:                                        NULL,
1787:                                        /* 10*/ NULL,
1788:                                        NULL,
1789:                                        NULL,
1790:                                        MatSOR_SeqSELL,
1791:                                        NULL,
1792:                                        /* 15*/ MatGetInfo_SeqSELL,
1793:                                        MatEqual_SeqSELL,
1794:                                        MatGetDiagonal_SeqSELL,
1795:                                        MatDiagonalScale_SeqSELL,
1796:                                        NULL,
1797:                                        /* 20*/ NULL,
1798:                                        MatAssemblyEnd_SeqSELL,
1799:                                        MatSetOption_SeqSELL,
1800:                                        MatZeroEntries_SeqSELL,
1801:                                        /* 24*/ NULL,
1802:                                        NULL,
1803:                                        NULL,
1804:                                        NULL,
1805:                                        NULL,
1806:                                        /* 29*/ MatSetUp_SeqSELL,
1807:                                        NULL,
1808:                                        NULL,
1809:                                        NULL,
1810:                                        NULL,
1811:                                        /* 34*/ MatDuplicate_SeqSELL,
1812:                                        NULL,
1813:                                        NULL,
1814:                                        NULL,
1815:                                        NULL,
1816:                                        /* 39*/ NULL,
1817:                                        NULL,
1818:                                        NULL,
1819:                                        MatGetValues_SeqSELL,
1820:                                        MatCopy_SeqSELL,
1821:                                        /* 44*/ NULL,
1822:                                        MatScale_SeqSELL,
1823:                                        MatShift_SeqSELL,
1824:                                        NULL,
1825:                                        NULL,
1826:                                        /* 49*/ NULL,
1827:                                        NULL,
1828:                                        NULL,
1829:                                        NULL,
1830:                                        NULL,
1831:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
1832:                                        NULL,
1833:                                        NULL,
1834:                                        NULL,
1835:                                        NULL,
1836:                                        /* 59*/ NULL,
1837:                                        MatDestroy_SeqSELL,
1838:                                        MatView_SeqSELL,
1839:                                        NULL,
1840:                                        NULL,
1841:                                        /* 64*/ NULL,
1842:                                        NULL,
1843:                                        NULL,
1844:                                        NULL,
1845:                                        NULL,
1846:                                        /* 69*/ NULL,
1847:                                        NULL,
1848:                                        NULL,
1849:                                        MatFDColoringApply_AIJ, /* reuse the FDColoring function for AIJ */
1850:                                        NULL,
1851:                                        /* 74*/ NULL,
1852:                                        NULL,
1853:                                        NULL,
1854:                                        NULL,
1855:                                        NULL,
1856:                                        /* 79*/ NULL,
1857:                                        NULL,
1858:                                        NULL,
1859:                                        NULL,
1860:                                        NULL,
1861:                                        /* 84*/ NULL,
1862:                                        NULL,
1863:                                        NULL,
1864:                                        NULL,
1865:                                        NULL,
1866:                                        /* 89*/ NULL,
1867:                                        NULL,
1868:                                        NULL,
1869:                                        NULL,
1870:                                        MatConjugate_SeqSELL,
1871:                                        /* 94*/ NULL,
1872:                                        NULL,
1873:                                        NULL,
1874:                                        NULL,
1875:                                        NULL,
1876:                                        /* 99*/ NULL,
1877:                                        NULL,
1878:                                        NULL,
1879:                                        NULL,
1880:                                        NULL,
1881:                                        /*104*/ MatMissingDiagonal_SeqSELL,
1882:                                        NULL,
1883:                                        NULL,
1884:                                        NULL,
1885:                                        NULL,
1886:                                        /*109*/ NULL,
1887:                                        NULL,
1888:                                        NULL,
1889:                                        NULL,
1890:                                        NULL,
1891:                                        /*114*/ NULL,
1892:                                        NULL,
1893:                                        NULL,
1894:                                        NULL,
1895:                                        NULL,
1896:                                        /*119*/ NULL,
1897:                                        NULL,
1898:                                        NULL,
1899:                                        NULL,
1900:                                        NULL,
1901:                                        /*124*/ NULL,
1902:                                        NULL,
1903:                                        NULL,
1904:                                        NULL,
1905:                                        NULL,
1906:                                        /*129*/ MatFDColoringSetUp_SeqXAIJ,
1907:                                        NULL,
1908:                                        NULL,
1909:                                        NULL,
1910:                                        NULL,
1911:                                        /*134*/ NULL,
1912:                                        NULL,
1913:                                        NULL,
1914:                                        NULL,
1915:                                        NULL,
1916:                                        /*139*/ NULL,
1917:                                        NULL,
1918:                                        NULL,
1919:                                        NULL,
1920:                                        NULL};

1922: static PetscErrorCode MatStoreValues_SeqSELL(Mat mat)
1923: {
1924:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1926:   PetscFunctionBegin;
1927:   PetscCheck(a->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

1929:   /* allocate space for values if not already there */
1930:   if (!a->saved_values) PetscCall(PetscMalloc1(a->sliidx[a->totalslices] + 1, &a->saved_values));

1932:   /* copy values over */
1933:   PetscCall(PetscArraycpy(a->saved_values, a->val, a->sliidx[a->totalslices]));
1934:   PetscFunctionReturn(PETSC_SUCCESS);
1935: }

1937: static PetscErrorCode MatRetrieveValues_SeqSELL(Mat mat)
1938: {
1939:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1941:   PetscFunctionBegin;
1942:   PetscCheck(a->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
1943:   PetscCheck(a->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
1944:   PetscCall(PetscArraycpy(a->val, a->saved_values, a->sliidx[a->totalslices]));
1945:   PetscFunctionReturn(PETSC_SUCCESS);
1946: }

1948: static PetscErrorCode MatSeqSELLGetFillRatio_SeqSELL(Mat mat, PetscReal *ratio)
1949: {
1950:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1952:   PetscFunctionBegin;
1953:   if (a->totalslices && a->sliidx[a->totalslices]) {
1954:     *ratio = (PetscReal)(a->sliidx[a->totalslices] - a->nz) / a->sliidx[a->totalslices];
1955:   } else {
1956:     *ratio = 0.0;
1957:   }
1958:   PetscFunctionReturn(PETSC_SUCCESS);
1959: }

1961: static PetscErrorCode MatSeqSELLGetMaxSliceWidth_SeqSELL(Mat mat, PetscInt *slicewidth)
1962: {
1963:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;
1964:   PetscInt     i, current_slicewidth;

1966:   PetscFunctionBegin;
1967:   *slicewidth = 0;
1968:   for (i = 0; i < a->totalslices; i++) {
1969:     current_slicewidth = (a->sliidx[i + 1] - a->sliidx[i]) / a->sliceheight;
1970:     if (current_slicewidth > *slicewidth) *slicewidth = current_slicewidth;
1971:   }
1972:   PetscFunctionReturn(PETSC_SUCCESS);
1973: }

1975: static PetscErrorCode MatSeqSELLGetAvgSliceWidth_SeqSELL(Mat mat, PetscReal *slicewidth)
1976: {
1977:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1979:   PetscFunctionBegin;
1980:   *slicewidth = 0;
1981:   if (a->totalslices) *slicewidth = (PetscReal)a->sliidx[a->totalslices] / a->sliceheight / a->totalslices;
1982:   PetscFunctionReturn(PETSC_SUCCESS);
1983: }

1985: static PetscErrorCode MatSeqSELLGetVarSliceSize_SeqSELL(Mat mat, PetscReal *variance)
1986: {
1987:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;
1988:   PetscReal    mean;
1989:   PetscInt     i, totalslices = a->totalslices, *sliidx = a->sliidx;

1991:   PetscFunctionBegin;
1992:   *variance = 0;
1993:   if (totalslices) {
1994:     mean = (PetscReal)sliidx[totalslices] / totalslices;
1995:     for (i = 1; i <= totalslices; i++) *variance += ((PetscReal)(sliidx[i] - sliidx[i - 1]) - mean) * ((PetscReal)(sliidx[i] - sliidx[i - 1]) - mean) / totalslices;
1996:   }
1997:   PetscFunctionReturn(PETSC_SUCCESS);
1998: }

2000: static PetscErrorCode MatSeqSELLSetSliceHeight_SeqSELL(Mat A, PetscInt sliceheight)
2001: {
2002:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

2004:   PetscFunctionBegin;
2005:   if (A->preallocated) PetscFunctionReturn(PETSC_SUCCESS);
2006:   PetscCheck(a->sliceheight <= 0 || a->sliceheight == sliceheight, PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change slice height %" PetscInt_FMT " to %" PetscInt_FMT, a->sliceheight, sliceheight);
2007:   a->sliceheight = sliceheight;
2008: #if defined(PETSC_HAVE_CUPM)
2009:   PetscCheck(PetscMax(DEVICE_MEM_ALIGN, sliceheight) % PetscMin(DEVICE_MEM_ALIGN, sliceheight) == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "The slice height is not compatible with DEVICE_MEM_ALIGN (one must be divisible by the other) %" PetscInt_FMT, sliceheight);
2010: #endif
2011:   PetscFunctionReturn(PETSC_SUCCESS);
2012: }

2014: /*@
2015:   MatSeqSELLGetFillRatio - returns a ratio that indicates the irregularity of the matrix.

2017:   Not Collective

2019:   Input Parameter:
2020: . A - a MATSEQSELL matrix

2022:   Output Parameter:
2023: . ratio - ratio of number of padded zeros to number of allocated elements

2025:   Level: intermediate

2027: .seealso: `MATSEQSELL`, `MatSeqSELLGetAvgSliceWidth()`
2028: @*/
2029: PetscErrorCode MatSeqSELLGetFillRatio(Mat A, PetscReal *ratio)
2030: {
2031:   PetscFunctionBegin;
2032:   PetscUseMethod(A, "MatSeqSELLGetFillRatio_C", (Mat, PetscReal *), (A, ratio));
2033:   PetscFunctionReturn(PETSC_SUCCESS);
2034: }

2036: /*@
2037:   MatSeqSELLGetMaxSliceWidth - returns the maximum slice width.

2039:   Not Collective

2041:   Input Parameter:
2042: . A - a MATSEQSELL matrix

2044:   Output Parameter:
2045: . slicewidth - maximum slice width

2047:   Level: intermediate

2049: .seealso: `MATSEQSELL`, `MatSeqSELLGetAvgSliceWidth()`
2050: @*/
2051: PetscErrorCode MatSeqSELLGetMaxSliceWidth(Mat A, PetscInt *slicewidth)
2052: {
2053:   PetscFunctionBegin;
2054:   PetscUseMethod(A, "MatSeqSELLGetMaxSliceWidth_C", (Mat, PetscInt *), (A, slicewidth));
2055:   PetscFunctionReturn(PETSC_SUCCESS);
2056: }

2058: /*@
2059:   MatSeqSELLGetAvgSliceWidth - returns the average slice width.

2061:   Not Collective

2063:   Input Parameter:
2064: . A - a MATSEQSELL matrix

2066:   Output Parameter:
2067: . slicewidth - average slice width

2069:   Level: intermediate

2071: .seealso: `MATSEQSELL`, `MatSeqSELLGetMaxSliceWidth()`
2072: @*/
2073: PetscErrorCode MatSeqSELLGetAvgSliceWidth(Mat A, PetscReal *slicewidth)
2074: {
2075:   PetscFunctionBegin;
2076:   PetscUseMethod(A, "MatSeqSELLGetAvgSliceWidth_C", (Mat, PetscReal *), (A, slicewidth));
2077:   PetscFunctionReturn(PETSC_SUCCESS);
2078: }

2080: /*@
2081:   MatSeqSELLSetSliceHeight - sets the slice height.

2083:   Not Collective

2085:   Input Parameters:
2086: + A           - a MATSEQSELL matrix
2087: - sliceheight - slice height

2089:   Notes:
2090:   You cannot change the slice height once it have been set.

2092:   The slice height must be set before MatSetUp() or MatXXXSetPreallocation() is called.

2094:   Level: intermediate

2096: .seealso: `MATSEQSELL`, `MatSeqSELLGetVarSliceSize()`
2097: @*/
2098: PetscErrorCode MatSeqSELLSetSliceHeight(Mat A, PetscInt sliceheight)
2099: {
2100:   PetscFunctionBegin;
2101:   PetscUseMethod(A, "MatSeqSELLSetSliceHeight_C", (Mat, PetscInt), (A, sliceheight));
2102:   PetscFunctionReturn(PETSC_SUCCESS);
2103: }

2105: /*@
2106:   MatSeqSELLGetVarSliceSize - returns the variance of the slice size.

2108:   Not Collective

2110:   Input Parameter:
2111: . A - a MATSEQSELL matrix

2113:   Output Parameter:
2114: . variance - variance of the slice size

2116:   Level: intermediate

2118: .seealso: `MATSEQSELL`, `MatSeqSELLSetSliceHeight()`
2119: @*/
2120: PetscErrorCode MatSeqSELLGetVarSliceSize(Mat A, PetscReal *variance)
2121: {
2122:   PetscFunctionBegin;
2123:   PetscUseMethod(A, "MatSeqSELLGetVarSliceSize_C", (Mat, PetscReal *), (A, variance));
2124:   PetscFunctionReturn(PETSC_SUCCESS);
2125: }

2127: #if defined(PETSC_HAVE_CUDA)
2128: PETSC_EXTERN PetscErrorCode MatConvert_SeqSELL_SeqSELLCUDA(Mat);
2129: #endif
2130: #if defined(PETSC_HAVE_HIP)
2131: PETSC_EXTERN PetscErrorCode MatConvert_SeqSELL_SeqSELLHIP(Mat);
2132: #endif

2134: PETSC_EXTERN PetscErrorCode MatCreate_SeqSELL(Mat B)
2135: {
2136:   Mat_SeqSELL *b;
2137:   PetscMPIInt  size;

2139:   PetscFunctionBegin;
2140:   PetscCall(PetscCitationsRegister(citation, &cited));
2141:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
2142:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

2144:   PetscCall(PetscNew(&b));

2146:   B->data   = (void *)b;
2147:   B->ops[0] = MatOps_Values;

2149:   b->row                = NULL;
2150:   b->col                = NULL;
2151:   b->icol               = NULL;
2152:   b->reallocs           = 0;
2153:   b->ignorezeroentries  = PETSC_FALSE;
2154:   b->roworiented        = PETSC_TRUE;
2155:   b->nonew              = 0;
2156:   b->diag               = NULL;
2157:   b->solve_work         = NULL;
2158:   B->spptr              = NULL;
2159:   b->saved_values       = NULL;
2160:   b->idiag              = NULL;
2161:   b->mdiag              = NULL;
2162:   b->ssor_work          = NULL;
2163:   b->omega              = 1.0;
2164:   b->fshift             = 0.0;
2165:   b->idiagvalid         = PETSC_FALSE;
2166:   b->keepnonzeropattern = PETSC_FALSE;
2167:   b->sliceheight        = 0;

2169:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQSELL));
2170:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetArray_C", MatSeqSELLGetArray_SeqSELL));
2171:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLRestoreArray_C", MatSeqSELLRestoreArray_SeqSELL));
2172:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqSELL));
2173:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqSELL));
2174:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLSetPreallocation_C", MatSeqSELLSetPreallocation_SeqSELL));
2175:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsell_seqaij_C", MatConvert_SeqSELL_SeqAIJ));
2176: #if defined(PETSC_HAVE_CUDA)
2177:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsell_seqsellcuda_C", MatConvert_SeqSELL_SeqSELLCUDA));
2178: #endif
2179: #if defined(PETSC_HAVE_HIP)
2180:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsell_seqsellhip_C", MatConvert_SeqSELL_SeqSELLHIP));
2181: #endif
2182:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetFillRatio_C", MatSeqSELLGetFillRatio_SeqSELL));
2183:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetMaxSliceWidth_C", MatSeqSELLGetMaxSliceWidth_SeqSELL));
2184:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetAvgSliceWidth_C", MatSeqSELLGetAvgSliceWidth_SeqSELL));
2185:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetVarSliceSize_C", MatSeqSELLGetVarSliceSize_SeqSELL));
2186:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLSetSliceHeight_C", MatSeqSELLSetSliceHeight_SeqSELL));

2188:   PetscObjectOptionsBegin((PetscObject)B);
2189:   {
2190:     PetscInt  newsh = -1;
2191:     PetscBool flg;
2192: #if defined(PETSC_HAVE_CUPM)
2193:     PetscInt chunksize = 0;
2194: #endif

2196:     PetscCall(PetscOptionsInt("-mat_sell_slice_height", "Set the slice height used to store SELL matrix", "MatSELLSetSliceHeight", newsh, &newsh, &flg));
2197:     if (flg) PetscCall(MatSeqSELLSetSliceHeight(B, newsh));
2198: #if defined(PETSC_HAVE_CUPM)
2199:     PetscCall(PetscOptionsInt("-mat_sell_chunk_size", "Set the chunksize for load-balanced CUDA/HIP kernels. Choices include 64,128,256,512,1024", NULL, chunksize, &chunksize, &flg));
2200:     if (flg) {
2201:       PetscCheck(chunksize >= 64 && chunksize <= 1024 && chunksize % 64 == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "chunksize must be a number in {64,128,256,512,1024}: value %" PetscInt_FMT, chunksize);
2202:       b->chunksize = chunksize;
2203:     }
2204: #endif
2205:   }
2206:   PetscOptionsEnd();
2207:   PetscFunctionReturn(PETSC_SUCCESS);
2208: }

2210: /*
2211:  Given a matrix generated with MatGetFactor() duplicates all the information in A into B
2212:  */
2213: static PetscErrorCode MatDuplicateNoCreate_SeqSELL(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
2214: {
2215:   Mat_SeqSELL *c = (Mat_SeqSELL *)C->data, *a = (Mat_SeqSELL *)A->data;
2216:   PetscInt     i, m                           = A->rmap->n;
2217:   PetscInt     totalslices = a->totalslices;

2219:   PetscFunctionBegin;
2220:   C->factortype = A->factortype;
2221:   c->row        = NULL;
2222:   c->col        = NULL;
2223:   c->icol       = NULL;
2224:   c->reallocs   = 0;
2225:   C->assembled  = PETSC_TRUE;

2227:   PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
2228:   PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

2230:   c->sliceheight = a->sliceheight;
2231:   PetscCall(PetscMalloc1(c->sliceheight * totalslices, &c->rlen));
2232:   PetscCall(PetscMalloc1(totalslices + 1, &c->sliidx));

2234:   for (i = 0; i < m; i++) c->rlen[i] = a->rlen[i];
2235:   for (i = 0; i < totalslices + 1; i++) c->sliidx[i] = a->sliidx[i];

2237:   /* allocate the matrix space */
2238:   if (mallocmatspace) {
2239:     PetscCall(PetscMalloc2(a->maxallocmat, &c->val, a->maxallocmat, &c->colidx));

2241:     c->singlemalloc = PETSC_TRUE;

2243:     if (m > 0) {
2244:       PetscCall(PetscArraycpy(c->colidx, a->colidx, a->maxallocmat));
2245:       if (cpvalues == MAT_COPY_VALUES) {
2246:         PetscCall(PetscArraycpy(c->val, a->val, a->maxallocmat));
2247:       } else {
2248:         PetscCall(PetscArrayzero(c->val, a->maxallocmat));
2249:       }
2250:     }
2251:   }

2253:   c->ignorezeroentries = a->ignorezeroentries;
2254:   c->roworiented       = a->roworiented;
2255:   c->nonew             = a->nonew;
2256:   if (a->diag) {
2257:     PetscCall(PetscMalloc1(m, &c->diag));
2258:     for (i = 0; i < m; i++) c->diag[i] = a->diag[i];
2259:   } else c->diag = NULL;

2261:   c->solve_work         = NULL;
2262:   c->saved_values       = NULL;
2263:   c->idiag              = NULL;
2264:   c->ssor_work          = NULL;
2265:   c->keepnonzeropattern = a->keepnonzeropattern;
2266:   c->free_val           = PETSC_TRUE;
2267:   c->free_colidx        = PETSC_TRUE;

2269:   c->maxallocmat  = a->maxallocmat;
2270:   c->maxallocrow  = a->maxallocrow;
2271:   c->rlenmax      = a->rlenmax;
2272:   c->nz           = a->nz;
2273:   C->preallocated = PETSC_TRUE;

2275:   c->nonzerorowcnt = a->nonzerorowcnt;
2276:   C->nonzerostate  = A->nonzerostate;

2278:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
2279:   PetscFunctionReturn(PETSC_SUCCESS);
2280: }

2282: PetscErrorCode MatDuplicate_SeqSELL(Mat A, MatDuplicateOption cpvalues, Mat *B)
2283: {
2284:   PetscFunctionBegin;
2285:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2286:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
2287:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2288:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2289:   PetscCall(MatDuplicateNoCreate_SeqSELL(*B, A, cpvalues, PETSC_TRUE));
2290:   PetscFunctionReturn(PETSC_SUCCESS);
2291: }

2293: /*MC
2294:    MATSEQSELL - MATSEQSELL = "seqsell" - A matrix type to be used for sequential sparse matrices,
2295:    based on the sliced Ellpack format, {cite}`zhangellpack2018`

2297:    Options Database Key:
2298: . -mat_type seqsell - sets the matrix type to "`MATSEQELL` during a call to `MatSetFromOptions()`

2300:    Level: beginner

2302: .seealso: `Mat`, `MatCreateSeqSELL()`, `MATSELL`, `MATMPISELL`, `MATSEQAIJ`, `MATAIJ`, `MATMPIAIJ`
2303: M*/

2305: /*MC
2306:    MATSELL - MATSELL = "sell" - A matrix type to be used for sparse matrices, {cite}`zhangellpack2018`

2308:    This matrix type is identical to `MATSEQSELL` when constructed with a single process communicator,
2309:    and `MATMPISELL` otherwise.  As a result, for single process communicators,
2310:   `MatSeqSELLSetPreallocation()` is supported, and similarly `MatMPISELLSetPreallocation()` is supported
2311:   for communicators controlling multiple processes.  It is recommended that you call both of
2312:   the above preallocation routines for simplicity.

2314:    Options Database Key:
2315: . -mat_type sell - sets the matrix type to "sell" during a call to MatSetFromOptions()

2317:   Level: beginner

2319:   Notes:
2320:   This format is only supported for real scalars, double precision, and 32-bit indices (the defaults).

2322:   It can provide better performance on Intel and AMD processes with AVX2 or AVX512 support for matrices that have a similar number of
2323:   non-zeros in contiguous groups of rows. However if the computation is memory bandwidth limited it may not provide much improvement.

2325:   Developer Notes:
2326:   On Intel (and AMD) systems some of the matrix operations use SIMD (AVX) instructions to achieve higher performance.

2328:   The sparse matrix format is as follows. For simplicity we assume a slice size of 2, it is actually 8
2329: .vb
2330:                             (2 0  3 4)
2331:    Consider the matrix A =  (5 0  6 0)
2332:                             (0 0  7 8)
2333:                             (0 0  9 9)

2335:    symbolically the Ellpack format can be written as

2337:         (2 3 4 |)           (0 2 3 |)
2338:    v =  (5 6 0 |)  colidx = (0 2 2 |)
2339:         --------            ---------
2340:         (7 8 |)             (2 3 |)
2341:         (9 9 |)             (2 3 |)

2343:     The data for 2 contiguous rows of the matrix are stored together (in column-major format) (with any left-over rows handled as a special case).
2344:     Any of the rows in a slice fewer columns than the rest of the slice (row 1 above) are padded with a previous valid column in their "extra" colidx[] locations and
2345:     zeros in their "extra" v locations so that the matrix operations do not need special code to handle different length rows within the 2 rows in a slice.

2347:     The one-dimensional representation of v used in the code is (2 5 3 6 4 0 7 9 8 9)  and for colidx is (0 0 2 2 3 2 2 2 3 3)

2349: .ve

2351:     See `MatMult_SeqSELL()` for how this format is used with the SIMD operations to achieve high performance.

2353: .seealso: `Mat`, `MatCreateSeqSELL()`, `MatCreateSeqAIJ()`, `MatCreateSELL()`, `MATSEQSELL`, `MATMPISELL`, `MATSEQAIJ`, `MATMPIAIJ`, `MATAIJ`
2354: M*/

2356: /*@
2357:   MatCreateSeqSELL - Creates a sparse matrix in `MATSEQSELL` format.

2359:   Collective

2361:   Input Parameters:
2362: + comm    - MPI communicator, set to `PETSC_COMM_SELF`
2363: . m       - number of rows
2364: . n       - number of columns
2365: . rlenmax - maximum number of nonzeros in a row, ignored if `rlen` is provided
2366: - rlen    - array containing the number of nonzeros in the various rows (possibly different for each row) or NULL

2368:   Output Parameter:
2369: . A - the matrix

2371:   Level: intermediate

2373:   Notes:
2374:   It is recommended that one use the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
2375:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
2376:   [MatXXXXSetPreallocation() is, for example, `MatSeqSELLSetPreallocation()`]

2378:   Specify the preallocated storage with either `rlenmax` or `rlen` (not both).
2379:   Set `rlenmax` = `PETSC_DEFAULT` and `rlen` = `NULL` for PETSc to control dynamic memory
2380:   allocation.

2382: .seealso: `Mat`, `MATSEQSELL`, `MatCreate()`, `MatCreateSELL()`, `MatSetValues()`, `MatSeqSELLSetPreallocation()`, `MATSELL`, `MATMPISELL`
2383:  @*/
2384: PetscErrorCode MatCreateSeqSELL(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt rlenmax, const PetscInt rlen[], Mat *A)
2385: {
2386:   PetscFunctionBegin;
2387:   PetscCall(MatCreate(comm, A));
2388:   PetscCall(MatSetSizes(*A, m, n, m, n));
2389:   PetscCall(MatSetType(*A, MATSEQSELL));
2390:   PetscCall(MatSeqSELLSetPreallocation_SeqSELL(*A, rlenmax, rlen));
2391:   PetscFunctionReturn(PETSC_SUCCESS);
2392: }

2394: PetscErrorCode MatEqual_SeqSELL(Mat A, Mat B, PetscBool *flg)
2395: {
2396:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data, *b = (Mat_SeqSELL *)B->data;
2397:   PetscInt     totalslices = a->totalslices;

2399:   PetscFunctionBegin;
2400:   /* If the  matrix dimensions are not equal,or no of nonzeros */
2401:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz) || (a->rlenmax != b->rlenmax)) {
2402:     *flg = PETSC_FALSE;
2403:     PetscFunctionReturn(PETSC_SUCCESS);
2404:   }
2405:   /* if the a->colidx are the same */
2406:   PetscCall(PetscArraycmp(a->colidx, b->colidx, a->sliidx[totalslices], flg));
2407:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);
2408:   /* if a->val are the same */
2409:   PetscCall(PetscArraycmp(a->val, b->val, a->sliidx[totalslices], flg));
2410:   PetscFunctionReturn(PETSC_SUCCESS);
2411: }

2413: PetscErrorCode MatSeqSELLInvalidateDiagonal(Mat A)
2414: {
2415:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

2417:   PetscFunctionBegin;
2418:   a->idiagvalid = PETSC_FALSE;
2419:   PetscFunctionReturn(PETSC_SUCCESS);
2420: }

2422: PetscErrorCode MatConjugate_SeqSELL(Mat A)
2423: {
2424: #if defined(PETSC_USE_COMPLEX)
2425:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
2426:   PetscInt     i;
2427:   PetscScalar *val = a->val;

2429:   PetscFunctionBegin;
2430:   for (i = 0; i < a->sliidx[a->totalslices]; i++) val[i] = PetscConj(val[i]);
2431:   #if defined(PETSC_HAVE_CUPM)
2432:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
2433:   #endif
2434: #else
2435:   PetscFunctionBegin;
2436: #endif
2437:   PetscFunctionReturn(PETSC_SUCCESS);
2438: }