Actual source code: sell.c

  1: /*
  2:   Defines the basic matrix operations for the SELL matrix storage format.
  3: */
  4: #include <../src/mat/impls/sell/seq/sell.h>
  5: #include <petscblaslapack.h>
  6: #include <petsc/private/kernels/blocktranspose.h>

  8: static PetscBool  cited      = PETSC_FALSE;
  9: static const char citation[] = "@inproceedings{ZhangELLPACK2018,\n"
 10:                                " author = {Hong Zhang and Richard T. Mills and Karl Rupp and Barry F. Smith},\n"
 11:                                " title = {Vectorized Parallel Sparse Matrix-Vector Multiplication in {PETSc} Using {AVX-512}},\n"
 12:                                " booktitle = {Proceedings of the 47th International Conference on Parallel Processing},\n"
 13:                                " year = 2018\n"
 14:                                "}\n";

 16: #if defined(PETSC_HAVE_IMMINTRIN_H) && (defined(__AVX512F__) || (defined(__AVX2__) && defined(__FMA__)) || defined(__AVX__)) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)

 18:   #include <immintrin.h>

 20:   #if !defined(_MM_SCALE_8)
 21:     #define _MM_SCALE_8 8
 22:   #endif

 24:   #if defined(__AVX512F__)
 25:     /* these do not work
 26:    vec_idx  = _mm512_loadunpackhi_epi32(vec_idx,acolidx);
 27:    vec_vals = _mm512_loadunpackhi_pd(vec_vals,aval);
 28:   */
 29:     #define AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y) \
 30:       /* if the mask bit is set, copy from acolidx, otherwise from vec_idx */ \
 31:       vec_idx  = _mm256_loadu_si256((__m256i const *)acolidx); \
 32:       vec_vals = _mm512_loadu_pd(aval); \
 33:       vec_x    = _mm512_i32gather_pd(vec_idx, x, _MM_SCALE_8); \
 34:       vec_y    = _mm512_fmadd_pd(vec_x, vec_vals, vec_y)
 35:   #elif defined(__AVX2__) && defined(__FMA__)
 36:     #define AVX2_Mult_Private(vec_idx, vec_x, vec_vals, vec_y) \
 37:       vec_vals = _mm256_loadu_pd(aval); \
 38:       vec_idx  = _mm_loadu_si128((__m128i const *)acolidx); /* SSE2 */ \
 39:       vec_x    = _mm256_i32gather_pd(x, vec_idx, _MM_SCALE_8); \
 40:       vec_y    = _mm256_fmadd_pd(vec_x, vec_vals, vec_y)
 41:   #endif
 42: #endif /* PETSC_HAVE_IMMINTRIN_H */

 44: /*@
 45:   MatSeqSELLSetPreallocation - For good matrix assembly performance
 46:   the user should preallocate the matrix storage by setting the parameter `nz`
 47:   (or the array `nnz`).

 49:   Collective

 51:   Input Parameters:
 52: + B       - The `MATSEQSELL` matrix
 53: . rlenmax - number of nonzeros per row (same for all rows), ignored if `rlen` is provided
 54: - rlen    - array containing the number of nonzeros in the various rows (possibly different for each row) or `NULL`

 56:   Level: intermediate

 58:   Notes:
 59:   Specify the preallocated storage with either `rlenmax` or `rlen` (not both).
 60:   Set `rlenmax` = `PETSC_DEFAULT` and `rlen` = `NULL` for PETSc to control dynamic memory
 61:   allocation.

 63:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
 64:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
 65:   You can also run with the option `-info` and look for messages with the string
 66:   malloc in them to see if additional memory allocation was needed.

 68:   Developer Notes:
 69:   Use `rlenmax` of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
 70:   entries or columns indices.

 72:   The maximum number of nonzeos in any row should be as accurate as possible.
 73:   If it is underestimated, you will get bad performance due to reallocation
 74:   (`MatSeqXSELLReallocateSELL()`).

 76: .seealso: `Mat`, `MATSEQSELL`, `MATSELL`, `MatCreate()`, `MatCreateSELL()`, `MatSetValues()`, `MatGetInfo()`
 77:  @*/
 78: PetscErrorCode MatSeqSELLSetPreallocation(Mat B, PetscInt rlenmax, const PetscInt rlen[])
 79: {
 80:   PetscFunctionBegin;
 83:   PetscTryMethod(B, "MatSeqSELLSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, rlenmax, rlen));
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: PetscErrorCode MatSeqSELLSetPreallocation_SeqSELL(Mat B, PetscInt maxallocrow, const PetscInt rlen[])
 88: {
 89:   Mat_SeqSELL *b;
 90:   PetscInt     i, j, totalslices;
 91: #if defined(PETSC_HAVE_CUPM)
 92:   PetscInt rlenmax = 0;
 93: #endif
 94:   PetscBool skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;

 96:   PetscFunctionBegin;
 97:   if (maxallocrow >= 0 || rlen) realalloc = PETSC_TRUE;
 98:   if (maxallocrow == MAT_SKIP_ALLOCATION) {
 99:     skipallocation = PETSC_TRUE;
100:     maxallocrow    = 0;
101:   }

103:   PetscCall(PetscLayoutSetUp(B->rmap));
104:   PetscCall(PetscLayoutSetUp(B->cmap));

106:   /* FIXME: if one preallocates more space than needed, the matrix does not shrink automatically, but for best performance it should */
107:   if (maxallocrow == PETSC_DEFAULT || maxallocrow == PETSC_DECIDE) maxallocrow = 5;
108:   PetscCheck(maxallocrow >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "maxallocrow cannot be less than 0: value %" PetscInt_FMT, maxallocrow);
109:   if (rlen) {
110:     for (i = 0; i < B->rmap->n; i++) {
111:       PetscCheck(rlen[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "rlen cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, rlen[i]);
112:       PetscCheck(rlen[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "rlen cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, rlen[i], B->cmap->n);
113:     }
114:   }

116:   B->preallocated = PETSC_TRUE;

118:   b = (Mat_SeqSELL *)B->data;

120:   if (!b->sliceheight) { /* not set yet */
121: #if defined(PETSC_HAVE_CUPM)
122:     b->sliceheight = 16;
123: #else
124:     b->sliceheight = 8;
125: #endif
126:   }
127:   totalslices    = PetscCeilInt(B->rmap->n, b->sliceheight);
128:   b->totalslices = totalslices;
129:   if (!skipallocation) {
130:     if (B->rmap->n % b->sliceheight) PetscCall(PetscInfo(B, "Padding rows to the SEQSELL matrix because the number of rows is not the multiple of the slice height (value %" PetscInt_FMT ")\n", B->rmap->n));

132:     if (!b->sliidx) { /* sliidx gives the starting index of each slice, the last element is the total space allocated */
133:       PetscCall(PetscMalloc1(totalslices + 1, &b->sliidx));
134:     }
135:     if (!rlen) { /* if rlen is not provided, allocate same space for all the slices */
136:       if (maxallocrow == PETSC_DEFAULT || maxallocrow == PETSC_DECIDE) maxallocrow = 10;
137:       else if (maxallocrow < 0) maxallocrow = 1;
138: #if defined(PETSC_HAVE_CUPM)
139:       rlenmax = maxallocrow;
140:       /* Pad the slice to DEVICE_MEM_ALIGN */
141:       while (b->sliceheight * maxallocrow % DEVICE_MEM_ALIGN) maxallocrow++;
142: #endif
143:       for (i = 0; i <= totalslices; i++) b->sliidx[i] = b->sliceheight * i * maxallocrow;
144:     } else {
145: #if defined(PETSC_HAVE_CUPM)
146:       PetscInt mul = DEVICE_MEM_ALIGN / b->sliceheight;
147: #endif
148:       maxallocrow  = 0;
149:       b->sliidx[0] = 0;
150:       for (i = 1; i < totalslices; i++) {
151:         b->sliidx[i] = 0;
152:         for (j = 0; j < b->sliceheight; j++) { b->sliidx[i] = PetscMax(b->sliidx[i], rlen[b->sliceheight * (i - 1) + j]); }
153: #if defined(PETSC_HAVE_CUPM)
154:         if (mul != 0) { /* Pad the slice to DEVICE_MEM_ALIGN if sliceheight < DEVICE_MEM_ALIGN */
155:           rlenmax      = PetscMax(b->sliidx[i], rlenmax);
156:           b->sliidx[i] = ((b->sliidx[i] - 1) / mul + 1) * mul;
157:         }
158: #endif
159:         maxallocrow = PetscMax(b->sliidx[i], maxallocrow);
160:         PetscCall(PetscIntSumError(b->sliidx[i - 1], b->sliceheight * b->sliidx[i], &b->sliidx[i]));
161:       }
162:       /* last slice */
163:       b->sliidx[totalslices] = 0;
164:       for (j = b->sliceheight * (totalslices - 1); j < B->rmap->n; j++) b->sliidx[totalslices] = PetscMax(b->sliidx[totalslices], rlen[j]);
165: #if defined(PETSC_HAVE_CUPM)
166:       if (mul != 0) {
167:         rlenmax                = PetscMax(b->sliidx[i], rlenmax);
168:         b->sliidx[totalslices] = ((b->sliidx[totalslices] - 1) / mul + 1) * mul;
169:       }
170: #endif
171:       maxallocrow            = PetscMax(b->sliidx[totalslices], maxallocrow);
172:       b->sliidx[totalslices] = b->sliidx[totalslices - 1] + b->sliceheight * b->sliidx[totalslices];
173:     }

175:     /* allocate space for val, colidx, rlen */
176:     /* FIXME: should B's old memory be unlogged? */
177:     PetscCall(MatSeqXSELLFreeSELL(B, &b->val, &b->colidx));
178:     /* FIXME: assuming an element of the bit array takes 8 bits */
179:     PetscCall(PetscMalloc2(b->sliidx[totalslices], &b->val, b->sliidx[totalslices], &b->colidx));
180:     /* b->rlen will count nonzeros in each row so far. We dont copy rlen to b->rlen because the matrix has not been set. */
181:     PetscCall(PetscCalloc1(b->sliceheight * totalslices, &b->rlen));

183:     b->singlemalloc = PETSC_TRUE;
184:     b->free_val     = PETSC_TRUE;
185:     b->free_colidx  = PETSC_TRUE;
186:   } else {
187:     b->free_val    = PETSC_FALSE;
188:     b->free_colidx = PETSC_FALSE;
189:   }

191:   b->nz          = 0;
192:   b->maxallocrow = maxallocrow;
193: #if defined(PETSC_HAVE_CUPM)
194:   b->rlenmax = rlenmax;
195: #else
196:   b->rlenmax = maxallocrow;
197: #endif
198:   b->maxallocmat      = b->sliidx[totalslices];
199:   B->info.nz_unneeded = (double)b->maxallocmat;
200:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
201:   PetscFunctionReturn(PETSC_SUCCESS);
202: }

204: static PetscErrorCode MatGetRow_SeqSELL(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
205: {
206:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
207:   PetscInt     shift;

209:   PetscFunctionBegin;
210:   PetscCheck(row >= 0 && row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " out of range", row);
211:   if (nz) *nz = a->rlen[row];
212:   shift = a->sliidx[row / a->sliceheight] + (row % a->sliceheight);
213:   if (!a->getrowcols) { PetscCall(PetscMalloc2(a->rlenmax, &a->getrowcols, a->rlenmax, &a->getrowvals)); }
214:   if (idx) {
215:     PetscInt j;
216:     for (j = 0; j < a->rlen[row]; j++) a->getrowcols[j] = a->colidx[shift + a->sliceheight * j];
217:     *idx = a->getrowcols;
218:   }
219:   if (v) {
220:     PetscInt j;
221:     for (j = 0; j < a->rlen[row]; j++) a->getrowvals[j] = a->val[shift + a->sliceheight * j];
222:     *v = a->getrowvals;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: static PetscErrorCode MatRestoreRow_SeqSELL(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
228: {
229:   PetscFunctionBegin;
230:   PetscFunctionReturn(PETSC_SUCCESS);
231: }

233: PetscErrorCode MatConvert_SeqSELL_SeqAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
234: {
235:   Mat          B;
236:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
237:   PetscInt     i;

239:   PetscFunctionBegin;
240:   if (reuse == MAT_REUSE_MATRIX) {
241:     B = *newmat;
242:     PetscCall(MatZeroEntries(B));
243:   } else {
244:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
245:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
246:     PetscCall(MatSetType(B, MATSEQAIJ));
247:     PetscCall(MatSeqAIJSetPreallocation(B, 0, a->rlen));
248:   }

250:   for (i = 0; i < A->rmap->n; i++) {
251:     PetscInt     nz = 0, *cols = NULL;
252:     PetscScalar *vals = NULL;

254:     PetscCall(MatGetRow_SeqSELL(A, i, &nz, &cols, &vals));
255:     PetscCall(MatSetValues(B, 1, &i, nz, cols, vals, INSERT_VALUES));
256:     PetscCall(MatRestoreRow_SeqSELL(A, i, &nz, &cols, &vals));
257:   }

259:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
260:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
261:   B->rmap->bs = A->rmap->bs;

263:   if (reuse == MAT_INPLACE_MATRIX) {
264:     PetscCall(MatHeaderReplace(A, &B));
265:   } else {
266:     *newmat = B;
267:   }
268:   PetscFunctionReturn(PETSC_SUCCESS);
269: }

271: #include <../src/mat/impls/aij/seq/aij.h>

273: PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
274: {
275:   Mat                B;
276:   Mat_SeqAIJ        *a  = (Mat_SeqAIJ *)A->data;
277:   PetscInt          *ai = a->i, m = A->rmap->N, n = A->cmap->N, i, *rowlengths, row, ncols;
278:   const PetscInt    *cols;
279:   const PetscScalar *vals;

281:   PetscFunctionBegin;
282:   if (reuse == MAT_REUSE_MATRIX) {
283:     B = *newmat;
284:   } else {
285:     if (PetscDefined(USE_DEBUG) || !a->ilen) {
286:       PetscCall(PetscMalloc1(m, &rowlengths));
287:       for (i = 0; i < m; i++) rowlengths[i] = ai[i + 1] - ai[i];
288:     }
289:     if (PetscDefined(USE_DEBUG) && a->ilen) {
290:       PetscBool eq;
291:       PetscCall(PetscMemcmp(rowlengths, a->ilen, m * sizeof(PetscInt), &eq));
292:       PetscCheck(eq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "SeqAIJ ilen array incorrect");
293:       PetscCall(PetscFree(rowlengths));
294:       rowlengths = a->ilen;
295:     } else if (a->ilen) rowlengths = a->ilen;
296:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
297:     PetscCall(MatSetSizes(B, m, n, m, n));
298:     PetscCall(MatSetType(B, MATSEQSELL));
299:     PetscCall(MatSeqSELLSetPreallocation(B, 0, rowlengths));
300:     if (rowlengths != a->ilen) PetscCall(PetscFree(rowlengths));
301:   }

303:   for (row = 0; row < m; row++) {
304:     PetscCall(MatGetRow_SeqAIJ(A, row, &ncols, (PetscInt **)&cols, (PetscScalar **)&vals));
305:     PetscCall(MatSetValues_SeqSELL(B, 1, &row, ncols, cols, vals, INSERT_VALUES));
306:     PetscCall(MatRestoreRow_SeqAIJ(A, row, &ncols, (PetscInt **)&cols, (PetscScalar **)&vals));
307:   }
308:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
309:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
310:   B->rmap->bs = A->rmap->bs;

312:   if (reuse == MAT_INPLACE_MATRIX) {
313:     PetscCall(MatHeaderReplace(A, &B));
314:   } else {
315:     *newmat = B;
316:   }
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: PetscErrorCode MatMult_SeqSELL(Mat A, Vec xx, Vec yy)
321: {
322:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
323:   PetscScalar       *y;
324:   const PetscScalar *x;
325:   const MatScalar   *aval        = a->val;
326:   PetscInt           totalslices = a->totalslices;
327:   const PetscInt    *acolidx     = a->colidx;
328:   PetscInt           i, j;
329: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
330:   __m512d  vec_x, vec_y, vec_vals;
331:   __m256i  vec_idx;
332:   __mmask8 mask;
333:   __m512d  vec_x2, vec_y2, vec_vals2, vec_x3, vec_y3, vec_vals3, vec_x4, vec_y4, vec_vals4;
334:   __m256i  vec_idx2, vec_idx3, vec_idx4;
335: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX2__) && defined(__FMA__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
336:   __m128i   vec_idx;
337:   __m256d   vec_x, vec_y, vec_y2, vec_vals;
338:   MatScalar yval;
339:   PetscInt  r, rows_left, row, nnz_in_row;
340: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
341:   __m128d   vec_x_tmp;
342:   __m256d   vec_x, vec_y, vec_y2, vec_vals;
343:   MatScalar yval;
344:   PetscInt  r, rows_left, row, nnz_in_row;
345: #else
346:   PetscInt     k, sliceheight = a->sliceheight;
347:   PetscScalar *sum;
348: #endif

350: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
351:   #pragma disjoint(*x, *y, *aval)
352: #endif

354:   PetscFunctionBegin;
355:   PetscCall(VecGetArrayRead(xx, &x));
356:   PetscCall(VecGetArray(yy, &y));
357: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
358:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
359:   for (i = 0; i < totalslices; i++) { /* loop over slices */
360:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
361:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

363:     vec_y  = _mm512_setzero_pd();
364:     vec_y2 = _mm512_setzero_pd();
365:     vec_y3 = _mm512_setzero_pd();
366:     vec_y4 = _mm512_setzero_pd();

368:     j = a->sliidx[i] >> 3; /* 8 bytes are read at each time, corresponding to a slice column */
369:     switch ((a->sliidx[i + 1] - a->sliidx[i]) / 8 & 3) {
370:     case 3:
371:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
372:       acolidx += 8;
373:       aval += 8;
374:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
375:       acolidx += 8;
376:       aval += 8;
377:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
378:       acolidx += 8;
379:       aval += 8;
380:       j += 3;
381:       break;
382:     case 2:
383:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
384:       acolidx += 8;
385:       aval += 8;
386:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
387:       acolidx += 8;
388:       aval += 8;
389:       j += 2;
390:       break;
391:     case 1:
392:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
393:       acolidx += 8;
394:       aval += 8;
395:       j += 1;
396:       break;
397:     }
398:   #pragma novector
399:     for (; j < (a->sliidx[i + 1] >> 3); j += 4) {
400:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
401:       acolidx += 8;
402:       aval += 8;
403:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
404:       acolidx += 8;
405:       aval += 8;
406:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
407:       acolidx += 8;
408:       aval += 8;
409:       AVX512_Mult_Private(vec_idx4, vec_x4, vec_vals4, vec_y4);
410:       acolidx += 8;
411:       aval += 8;
412:     }

414:     vec_y = _mm512_add_pd(vec_y, vec_y2);
415:     vec_y = _mm512_add_pd(vec_y, vec_y3);
416:     vec_y = _mm512_add_pd(vec_y, vec_y4);
417:     if (i == totalslices - 1 && A->rmap->n & 0x07) { /* if last slice has padding rows */
418:       mask = (__mmask8)(0xff >> (8 - (A->rmap->n & 0x07)));
419:       _mm512_mask_storeu_pd(&y[8 * i], mask, vec_y);
420:     } else {
421:       _mm512_storeu_pd(&y[8 * i], vec_y);
422:     }
423:   }
424: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX2__) && defined(__FMA__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
425:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
426:   for (i = 0; i < totalslices; i++) { /* loop over full slices */
427:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
428:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

430:     /* last slice may have padding rows. Don't use vectorization. */
431:     if (i == totalslices - 1 && (A->rmap->n & 0x07)) {
432:       rows_left = A->rmap->n - 8 * i;
433:       for (r = 0; r < rows_left; ++r) {
434:         yval       = (MatScalar)0;
435:         row        = 8 * i + r;
436:         nnz_in_row = a->rlen[row];
437:         for (j = 0; j < nnz_in_row; ++j) yval += aval[8 * j + r] * x[acolidx[8 * j + r]];
438:         y[row] = yval;
439:       }
440:       break;
441:     }

443:     vec_y  = _mm256_setzero_pd();
444:     vec_y2 = _mm256_setzero_pd();

446:   /* Process slice of height 8 (512 bits) via two subslices of height 4 (256 bits) via AVX */
447:   #pragma novector
448:   #pragma unroll(2)
449:     for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j += 8) {
450:       AVX2_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
451:       aval += 4;
452:       acolidx += 4;
453:       AVX2_Mult_Private(vec_idx, vec_x, vec_vals, vec_y2);
454:       aval += 4;
455:       acolidx += 4;
456:     }

458:     _mm256_storeu_pd(y + i * 8, vec_y);
459:     _mm256_storeu_pd(y + i * 8 + 4, vec_y2);
460:   }
461: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
462:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
463:   for (i = 0; i < totalslices; i++) { /* loop over full slices */
464:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
465:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

467:     vec_y  = _mm256_setzero_pd();
468:     vec_y2 = _mm256_setzero_pd();

470:     /* last slice may have padding rows. Don't use vectorization. */
471:     if (i == totalslices - 1 && (A->rmap->n & 0x07)) {
472:       rows_left = A->rmap->n - 8 * i;
473:       for (r = 0; r < rows_left; ++r) {
474:         yval       = (MatScalar)0;
475:         row        = 8 * i + r;
476:         nnz_in_row = a->rlen[row];
477:         for (j = 0; j < nnz_in_row; ++j) yval += aval[8 * j + r] * x[acolidx[8 * j + r]];
478:         y[row] = yval;
479:       }
480:       break;
481:     }

483:   /* Process slice of height 8 (512 bits) via two subslices of height 4 (256 bits) via AVX */
484:   #pragma novector
485:   #pragma unroll(2)
486:     for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j += 8) {
487:       vec_vals  = _mm256_loadu_pd(aval);
488:       vec_x_tmp = _mm_setzero_pd();
489:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
490:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
491:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
492:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
493:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
494:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
495:       vec_y     = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y);
496:       aval += 4;

498:       vec_vals  = _mm256_loadu_pd(aval);
499:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
500:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
501:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
502:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
503:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
504:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
505:       vec_y2    = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y2);
506:       aval += 4;
507:     }

509:     _mm256_storeu_pd(y + i * 8, vec_y);
510:     _mm256_storeu_pd(y + i * 8 + 4, vec_y2);
511:   }
512: #else
513:   PetscCall(PetscMalloc1(sliceheight, &sum));
514:   for (i = 0; i < totalslices; i++) { /* loop over slices */
515:     for (j = 0; j < sliceheight; j++) {
516:       sum[j] = 0.0;
517:       for (k = a->sliidx[i] + j; k < a->sliidx[i + 1]; k += sliceheight) sum[j] += aval[k] * x[acolidx[k]];
518:     }
519:     if (i == totalslices - 1 && (A->rmap->n % sliceheight)) { /* if last slice has padding rows */
520:       for (j = 0; j < (A->rmap->n % sliceheight); j++) y[sliceheight * i + j] = sum[j];
521:     } else {
522:       for (j = 0; j < sliceheight; j++) y[sliceheight * i + j] = sum[j];
523:     }
524:   }
525:   PetscCall(PetscFree(sum));
526: #endif

528:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt)); /* theoretical minimal FLOPs */
529:   PetscCall(VecRestoreArrayRead(xx, &x));
530:   PetscCall(VecRestoreArray(yy, &y));
531:   PetscFunctionReturn(PETSC_SUCCESS);
532: }

534: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
535: PetscErrorCode MatMultAdd_SeqSELL(Mat A, Vec xx, Vec yy, Vec zz)
536: {
537:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
538:   PetscScalar       *y, *z;
539:   const PetscScalar *x;
540:   const MatScalar   *aval        = a->val;
541:   PetscInt           totalslices = a->totalslices;
542:   const PetscInt    *acolidx     = a->colidx;
543:   PetscInt           i, j;
544: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
545:   __m512d  vec_x, vec_y, vec_vals;
546:   __m256i  vec_idx;
547:   __mmask8 mask = 0;
548:   __m512d  vec_x2, vec_y2, vec_vals2, vec_x3, vec_y3, vec_vals3, vec_x4, vec_y4, vec_vals4;
549:   __m256i  vec_idx2, vec_idx3, vec_idx4;
550: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
551:   __m128d   vec_x_tmp;
552:   __m256d   vec_x, vec_y, vec_y2, vec_vals;
553:   MatScalar yval;
554:   PetscInt  r, row, nnz_in_row;
555: #else
556:   PetscInt     k, sliceheight = a->sliceheight;
557:   PetscScalar *sum;
558: #endif

560: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
561:   #pragma disjoint(*x, *y, *aval)
562: #endif

564:   PetscFunctionBegin;
565:   if (!a->nz) {
566:     PetscCall(VecCopy(yy, zz));
567:     PetscFunctionReturn(PETSC_SUCCESS);
568:   }
569:   PetscCall(VecGetArrayRead(xx, &x));
570:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
571: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
572:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
573:   for (i = 0; i < totalslices; i++) { /* loop over slices */
574:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
575:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

577:     if (i == totalslices - 1 && A->rmap->n & 0x07) { /* if last slice has padding rows */
578:       mask  = (__mmask8)(0xff >> (8 - (A->rmap->n & 0x07)));
579:       vec_y = _mm512_mask_loadu_pd(vec_y, mask, &y[8 * i]);
580:     } else {
581:       vec_y = _mm512_loadu_pd(&y[8 * i]);
582:     }
583:     vec_y2 = _mm512_setzero_pd();
584:     vec_y3 = _mm512_setzero_pd();
585:     vec_y4 = _mm512_setzero_pd();

587:     j = a->sliidx[i] >> 3; /* 8 bytes are read at each time, corresponding to a slice column */
588:     switch ((a->sliidx[i + 1] - a->sliidx[i]) / 8 & 3) {
589:     case 3:
590:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
591:       acolidx += 8;
592:       aval += 8;
593:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
594:       acolidx += 8;
595:       aval += 8;
596:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
597:       acolidx += 8;
598:       aval += 8;
599:       j += 3;
600:       break;
601:     case 2:
602:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
603:       acolidx += 8;
604:       aval += 8;
605:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
606:       acolidx += 8;
607:       aval += 8;
608:       j += 2;
609:       break;
610:     case 1:
611:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
612:       acolidx += 8;
613:       aval += 8;
614:       j += 1;
615:       break;
616:     }
617:   #pragma novector
618:     for (; j < (a->sliidx[i + 1] >> 3); j += 4) {
619:       AVX512_Mult_Private(vec_idx, vec_x, vec_vals, vec_y);
620:       acolidx += 8;
621:       aval += 8;
622:       AVX512_Mult_Private(vec_idx2, vec_x2, vec_vals2, vec_y2);
623:       acolidx += 8;
624:       aval += 8;
625:       AVX512_Mult_Private(vec_idx3, vec_x3, vec_vals3, vec_y3);
626:       acolidx += 8;
627:       aval += 8;
628:       AVX512_Mult_Private(vec_idx4, vec_x4, vec_vals4, vec_y4);
629:       acolidx += 8;
630:       aval += 8;
631:     }

633:     vec_y = _mm512_add_pd(vec_y, vec_y2);
634:     vec_y = _mm512_add_pd(vec_y, vec_y3);
635:     vec_y = _mm512_add_pd(vec_y, vec_y4);
636:     if (i == totalslices - 1 && A->rmap->n & 0x07) { /* if last slice has padding rows */
637:       _mm512_mask_storeu_pd(&z[8 * i], mask, vec_y);
638:     } else {
639:       _mm512_storeu_pd(&z[8 * i], vec_y);
640:     }
641:   }
642: #elif defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
643:   PetscCheck(a->sliceheight == 8, PETSC_COMM_SELF, PETSC_ERR_SUP, "The kernel requires a slice height of 8, but the input matrix has a slice height of %" PetscInt_FMT, a->sliceheight);
644:   for (i = 0; i < totalslices; i++) { /* loop over full slices */
645:     PetscPrefetchBlock(acolidx, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);
646:     PetscPrefetchBlock(aval, a->sliidx[i + 1] - a->sliidx[i], 0, PETSC_PREFETCH_HINT_T0);

648:     /* last slice may have padding rows. Don't use vectorization. */
649:     if (i == totalslices - 1 && (A->rmap->n & 0x07)) {
650:       for (r = 0; r < (A->rmap->n & 0x07); ++r) {
651:         row        = 8 * i + r;
652:         yval       = (MatScalar)0.0;
653:         nnz_in_row = a->rlen[row];
654:         for (j = 0; j < nnz_in_row; ++j) yval += aval[8 * j + r] * x[acolidx[8 * j + r]];
655:         z[row] = y[row] + yval;
656:       }
657:       break;
658:     }

660:     vec_y  = _mm256_loadu_pd(y + 8 * i);
661:     vec_y2 = _mm256_loadu_pd(y + 8 * i + 4);

663:     /* Process slice of height 8 (512 bits) via two subslices of height 4 (256 bits) via AVX */
664:     for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j += 8) {
665:       vec_vals  = _mm256_loadu_pd(aval);
666:       vec_x_tmp = _mm_setzero_pd();
667:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
668:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
669:       vec_x     = _mm256_setzero_pd();
670:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
671:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
672:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
673:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
674:       vec_y     = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y);
675:       aval += 4;

677:       vec_vals  = _mm256_loadu_pd(aval);
678:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
679:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
680:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 0);
681:       vec_x_tmp = _mm_loadl_pd(vec_x_tmp, x + *acolidx++);
682:       vec_x_tmp = _mm_loadh_pd(vec_x_tmp, x + *acolidx++);
683:       vec_x     = _mm256_insertf128_pd(vec_x, vec_x_tmp, 1);
684:       vec_y2    = _mm256_add_pd(_mm256_mul_pd(vec_x, vec_vals), vec_y2);
685:       aval += 4;
686:     }

688:     _mm256_storeu_pd(z + i * 8, vec_y);
689:     _mm256_storeu_pd(z + i * 8 + 4, vec_y2);
690:   }
691: #else
692:   PetscCall(PetscMalloc1(sliceheight, &sum));
693:   for (i = 0; i < totalslices; i++) { /* loop over slices */
694:     for (j = 0; j < sliceheight; j++) {
695:       sum[j] = 0.0;
696:       for (k = a->sliidx[i] + j; k < a->sliidx[i + 1]; k += sliceheight) sum[j] += aval[k] * x[acolidx[k]];
697:     }
698:     if (i == totalslices - 1 && (A->rmap->n % sliceheight)) {
699:       for (j = 0; j < (A->rmap->n % sliceheight); j++) z[sliceheight * i + j] = y[sliceheight * i + j] + sum[j];
700:     } else {
701:       for (j = 0; j < sliceheight; j++) z[sliceheight * i + j] = y[sliceheight * i + j] + sum[j];
702:     }
703:   }
704:   PetscCall(PetscFree(sum));
705: #endif

707:   PetscCall(PetscLogFlops(2.0 * a->nz));
708:   PetscCall(VecRestoreArrayRead(xx, &x));
709:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
710:   PetscFunctionReturn(PETSC_SUCCESS);
711: }

713: PetscErrorCode MatMultTransposeAdd_SeqSELL(Mat A, Vec xx, Vec zz, Vec yy)
714: {
715:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
716:   PetscScalar       *y;
717:   const PetscScalar *x;
718:   const MatScalar   *aval    = a->val;
719:   const PetscInt    *acolidx = a->colidx;
720:   PetscInt           i, j, r, row, nnz_in_row, totalslices = a->totalslices, sliceheight = a->sliceheight;

722: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
723:   #pragma disjoint(*x, *y, *aval)
724: #endif

726:   PetscFunctionBegin;
727:   if (A->symmetric == PETSC_BOOL3_TRUE) {
728:     PetscCall(MatMultAdd_SeqSELL(A, xx, zz, yy));
729:     PetscFunctionReturn(PETSC_SUCCESS);
730:   }
731:   if (zz != yy) PetscCall(VecCopy(zz, yy));

733:   if (a->nz) {
734:     PetscCall(VecGetArrayRead(xx, &x));
735:     PetscCall(VecGetArray(yy, &y));
736:     for (i = 0; i < a->totalslices; i++) { /* loop over slices */
737:       if (i == totalslices - 1 && (A->rmap->n % sliceheight)) {
738:         for (r = 0; r < (A->rmap->n % sliceheight); ++r) {
739:           row        = sliceheight * i + r;
740:           nnz_in_row = a->rlen[row];
741:           for (j = 0; j < nnz_in_row; ++j) y[acolidx[sliceheight * j + r]] += aval[sliceheight * j + r] * x[row];
742:         }
743:         break;
744:       }
745:       for (r = 0; r < sliceheight; ++r)
746:         for (j = a->sliidx[i] + r; j < a->sliidx[i + 1]; j += sliceheight) y[acolidx[j]] += aval[j] * x[sliceheight * i + r];
747:     }
748:     PetscCall(PetscLogFlops(2.0 * a->nz));
749:     PetscCall(VecRestoreArrayRead(xx, &x));
750:     PetscCall(VecRestoreArray(yy, &y));
751:   }
752:   PetscFunctionReturn(PETSC_SUCCESS);
753: }

755: PetscErrorCode MatMultTranspose_SeqSELL(Mat A, Vec xx, Vec yy)
756: {
757:   PetscFunctionBegin;
758:   if (A->symmetric == PETSC_BOOL3_TRUE) {
759:     PetscCall(MatMult_SeqSELL(A, xx, yy));
760:   } else {
761:     PetscCall(VecSet(yy, 0.0));
762:     PetscCall(MatMultTransposeAdd_SeqSELL(A, xx, yy, yy));
763:   }
764:   PetscFunctionReturn(PETSC_SUCCESS);
765: }

767: /*
768:      Checks for missing diagonals
769: */
770: PetscErrorCode MatMissingDiagonal_SeqSELL(Mat A, PetscBool *missing, PetscInt *d)
771: {
772:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
773:   PetscInt    *diag, i;

775:   PetscFunctionBegin;
776:   *missing = PETSC_FALSE;
777:   if (A->rmap->n > 0 && !a->colidx) {
778:     *missing = PETSC_TRUE;
779:     if (d) *d = 0;
780:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
781:   } else {
782:     diag = a->diag;
783:     for (i = 0; i < A->rmap->n; i++) {
784:       if (diag[i] == -1) {
785:         *missing = PETSC_TRUE;
786:         if (d) *d = i;
787:         PetscCall(PetscInfo(A, "Matrix is missing diagonal number %" PetscInt_FMT "\n", i));
788:         break;
789:       }
790:     }
791:   }
792:   PetscFunctionReturn(PETSC_SUCCESS);
793: }

795: PetscErrorCode MatMarkDiagonal_SeqSELL(Mat A)
796: {
797:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
798:   PetscInt     i, j, m = A->rmap->n, shift;

800:   PetscFunctionBegin;
801:   if (!a->diag) {
802:     PetscCall(PetscMalloc1(m, &a->diag));
803:     a->free_diag = PETSC_TRUE;
804:   }
805:   for (i = 0; i < m; i++) {                                          /* loop over rows */
806:     shift      = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
807:     a->diag[i] = -1;
808:     for (j = 0; j < a->rlen[i]; j++) {
809:       if (a->colidx[shift + a->sliceheight * j] == i) {
810:         a->diag[i] = shift + a->sliceheight * j;
811:         break;
812:       }
813:     }
814:   }
815:   PetscFunctionReturn(PETSC_SUCCESS);
816: }

818: /*
819:   Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
820: */
821: PetscErrorCode MatInvertDiagonal_SeqSELL(Mat A, PetscScalar omega, PetscScalar fshift)
822: {
823:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
824:   PetscInt     i, *diag, m = A->rmap->n;
825:   MatScalar   *val = a->val;
826:   PetscScalar *idiag, *mdiag;

828:   PetscFunctionBegin;
829:   if (a->idiagvalid) PetscFunctionReturn(PETSC_SUCCESS);
830:   PetscCall(MatMarkDiagonal_SeqSELL(A));
831:   diag = a->diag;
832:   if (!a->idiag) {
833:     PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work));
834:     val = a->val;
835:   }
836:   mdiag = a->mdiag;
837:   idiag = a->idiag;

839:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
840:     for (i = 0; i < m; i++) {
841:       mdiag[i] = val[diag[i]];
842:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
843:         PetscCheck(PetscRealPart(fshift), PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
844:         PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
845:         A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
846:         A->factorerror_zeropivot_value = 0.0;
847:         A->factorerror_zeropivot_row   = i;
848:       }
849:       idiag[i] = 1.0 / val[diag[i]];
850:     }
851:     PetscCall(PetscLogFlops(m));
852:   } else {
853:     for (i = 0; i < m; i++) {
854:       mdiag[i] = val[diag[i]];
855:       idiag[i] = omega / (fshift + val[diag[i]]);
856:     }
857:     PetscCall(PetscLogFlops(2.0 * m));
858:   }
859:   a->idiagvalid = PETSC_TRUE;
860:   PetscFunctionReturn(PETSC_SUCCESS);
861: }

863: PetscErrorCode MatZeroEntries_SeqSELL(Mat A)
864: {
865:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

867:   PetscFunctionBegin;
868:   PetscCall(PetscArrayzero(a->val, a->sliidx[a->totalslices]));
869:   PetscCall(MatSeqSELLInvalidateDiagonal(A));
870:   PetscFunctionReturn(PETSC_SUCCESS);
871: }

873: PetscErrorCode MatDestroy_SeqSELL(Mat A)
874: {
875:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

877:   PetscFunctionBegin;
878:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
879:   PetscCall(MatSeqXSELLFreeSELL(A, &a->val, &a->colidx));
880:   PetscCall(ISDestroy(&a->row));
881:   PetscCall(ISDestroy(&a->col));
882:   PetscCall(PetscFree(a->diag));
883:   PetscCall(PetscFree(a->rlen));
884:   PetscCall(PetscFree(a->sliidx));
885:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
886:   PetscCall(PetscFree(a->solve_work));
887:   PetscCall(ISDestroy(&a->icol));
888:   PetscCall(PetscFree(a->saved_values));
889:   PetscCall(PetscFree2(a->getrowcols, a->getrowvals));
890:   PetscCall(PetscFree(A->data));
891: #if defined(PETSC_HAVE_CUPM)
892:   PetscCall(PetscFree(a->chunk_slice_map));
893: #endif

895:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
896:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
897:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
898:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLSetPreallocation_C", NULL));
899:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetArray_C", NULL));
900:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLRestoreArray_C", NULL));
901:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsell_seqaij_C", NULL));
902: #if defined(PETSC_HAVE_CUDA)
903:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsell_seqsellcuda_C", NULL));
904: #endif
905: #if defined(PETSC_HAVE_HIP)
906:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqsell_seqsellhip_C", NULL));
907: #endif
908:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetFillRatio_C", NULL));
909:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetMaxSliceWidth_C", NULL));
910:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetAvgSliceWidth_C", NULL));
911:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLGetVarSliceSize_C", NULL));
912:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqSELLSetSliceHeight_C", NULL));
913:   PetscFunctionReturn(PETSC_SUCCESS);
914: }

916: PetscErrorCode MatSetOption_SeqSELL(Mat A, MatOption op, PetscBool flg)
917: {
918:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

920:   PetscFunctionBegin;
921:   switch (op) {
922:   case MAT_ROW_ORIENTED:
923:     a->roworiented = flg;
924:     break;
925:   case MAT_KEEP_NONZERO_PATTERN:
926:     a->keepnonzeropattern = flg;
927:     break;
928:   case MAT_NEW_NONZERO_LOCATIONS:
929:     a->nonew = (flg ? 0 : 1);
930:     break;
931:   case MAT_NEW_NONZERO_LOCATION_ERR:
932:     a->nonew = (flg ? -1 : 0);
933:     break;
934:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
935:     a->nonew = (flg ? -2 : 0);
936:     break;
937:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
938:     a->nounused = (flg ? -1 : 0);
939:     break;
940:   default:
941:     break;
942:   }
943:   PetscFunctionReturn(PETSC_SUCCESS);
944: }

946: PetscErrorCode MatGetDiagonal_SeqSELL(Mat A, Vec v)
947: {
948:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
949:   PetscInt     i, j, n, shift;
950:   PetscScalar *x, zero = 0.0;

952:   PetscFunctionBegin;
953:   PetscCall(VecGetLocalSize(v, &n));
954:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");

956:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
957:     PetscInt *diag = a->diag;
958:     PetscCall(VecGetArray(v, &x));
959:     for (i = 0; i < n; i++) x[i] = 1.0 / a->val[diag[i]];
960:     PetscCall(VecRestoreArray(v, &x));
961:     PetscFunctionReturn(PETSC_SUCCESS);
962:   }

964:   PetscCall(VecSet(v, zero));
965:   PetscCall(VecGetArray(v, &x));
966:   for (i = 0; i < n; i++) {                                     /* loop over rows */
967:     shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
968:     x[i]  = 0;
969:     for (j = 0; j < a->rlen[i]; j++) {
970:       if (a->colidx[shift + a->sliceheight * j] == i) {
971:         x[i] = a->val[shift + a->sliceheight * j];
972:         break;
973:       }
974:     }
975:   }
976:   PetscCall(VecRestoreArray(v, &x));
977:   PetscFunctionReturn(PETSC_SUCCESS);
978: }

980: PetscErrorCode MatDiagonalScale_SeqSELL(Mat A, Vec ll, Vec rr)
981: {
982:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
983:   const PetscScalar *l, *r;
984:   PetscInt           i, j, m, n, row;

986:   PetscFunctionBegin;
987:   if (ll) {
988:     /* The local size is used so that VecMPI can be passed to this routine
989:        by MatDiagonalScale_MPISELL */
990:     PetscCall(VecGetLocalSize(ll, &m));
991:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
992:     PetscCall(VecGetArrayRead(ll, &l));
993:     for (i = 0; i < a->totalslices; i++) {                            /* loop over slices */
994:       if (i == a->totalslices - 1 && (A->rmap->n % a->sliceheight)) { /* if last slice has padding rows */
995:         for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = (row + 1) % a->sliceheight) {
996:           if (row < (A->rmap->n % a->sliceheight)) a->val[j] *= l[a->sliceheight * i + row];
997:         }
998:       } else {
999:         for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = (row + 1) % a->sliceheight) { a->val[j] *= l[a->sliceheight * i + row]; }
1000:       }
1001:     }
1002:     PetscCall(VecRestoreArrayRead(ll, &l));
1003:     PetscCall(PetscLogFlops(a->nz));
1004:   }
1005:   if (rr) {
1006:     PetscCall(VecGetLocalSize(rr, &n));
1007:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
1008:     PetscCall(VecGetArrayRead(rr, &r));
1009:     for (i = 0; i < a->totalslices; i++) {                            /* loop over slices */
1010:       if (i == a->totalslices - 1 && (A->rmap->n % a->sliceheight)) { /* if last slice has padding rows */
1011:         for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = ((row + 1) % a->sliceheight)) {
1012:           if (row < (A->rmap->n % a->sliceheight)) a->val[j] *= r[a->colidx[j]];
1013:         }
1014:       } else {
1015:         for (j = a->sliidx[i]; j < a->sliidx[i + 1]; j++) a->val[j] *= r[a->colidx[j]];
1016:       }
1017:     }
1018:     PetscCall(VecRestoreArrayRead(rr, &r));
1019:     PetscCall(PetscLogFlops(a->nz));
1020:   }
1021:   PetscCall(MatSeqSELLInvalidateDiagonal(A));
1022: #if defined(PETSC_HAVE_CUPM)
1023:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
1024: #endif
1025:   PetscFunctionReturn(PETSC_SUCCESS);
1026: }

1028: PetscErrorCode MatGetValues_SeqSELL(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
1029: {
1030:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1031:   PetscInt    *cp, i, k, low, high, t, row, col, l;
1032:   PetscInt     shift;
1033:   MatScalar   *vp;

1035:   PetscFunctionBegin;
1036:   for (k = 0; k < m; k++) { /* loop over requested rows */
1037:     row = im[k];
1038:     if (row < 0) continue;
1039:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
1040:     shift = a->sliidx[row / a->sliceheight] + (row % a->sliceheight); /* starting index of the row */
1041:     cp    = a->colidx + shift;                                        /* pointer to the row */
1042:     vp    = a->val + shift;                                           /* pointer to the row */
1043:     for (l = 0; l < n; l++) {                                         /* loop over requested columns */
1044:       col = in[l];
1045:       if (col < 0) continue;
1046:       PetscCheck(col < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: row %" PetscInt_FMT " max %" PetscInt_FMT, col, A->cmap->n - 1);
1047:       high = a->rlen[row];
1048:       low  = 0; /* assume unsorted */
1049:       while (high - low > 5) {
1050:         t = (low + high) / 2;
1051:         if (*(cp + a->sliceheight * t) > col) high = t;
1052:         else low = t;
1053:       }
1054:       for (i = low; i < high; i++) {
1055:         if (*(cp + a->sliceheight * i) > col) break;
1056:         if (*(cp + a->sliceheight * i) == col) {
1057:           *v++ = *(vp + a->sliceheight * i);
1058:           goto finished;
1059:         }
1060:       }
1061:       *v++ = 0.0;
1062:     finished:;
1063:     }
1064:   }
1065:   PetscFunctionReturn(PETSC_SUCCESS);
1066: }

1068: static PetscErrorCode MatView_SeqSELL_ASCII(Mat A, PetscViewer viewer)
1069: {
1070:   Mat_SeqSELL      *a = (Mat_SeqSELL *)A->data;
1071:   PetscInt          i, j, m = A->rmap->n, shift;
1072:   const char       *name;
1073:   PetscViewerFormat format;

1075:   PetscFunctionBegin;
1076:   PetscCall(PetscViewerGetFormat(viewer, &format));
1077:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
1078:     PetscInt nofinalvalue = 0;
1079:     /*
1080:     if (m && ((a->i[m] == a->i[m-1]) || (a->j[a->nz-1] != A->cmap->n-1))) {
1081:       nofinalvalue = 1;
1082:     }
1083:     */
1084:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1085:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
1086:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
1087: #if defined(PETSC_USE_COMPLEX)
1088:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
1089: #else
1090:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
1091: #endif
1092:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

1094:     for (i = 0; i < m; i++) {
1095:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1096:       for (j = 0; j < a->rlen[i]; j++) {
1097: #if defined(PETSC_USE_COMPLEX)
1098:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->colidx[shift + a->sliceheight * j] + 1, (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1099: #else
1100:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->colidx[shift + a->sliceheight * j] + 1, (double)a->val[shift + a->sliceheight * j]));
1101: #endif
1102:       }
1103:     }
1104:     /*
1105:     if (nofinalvalue) {
1106: #if defined(PETSC_USE_COMPLEX)
1107:       PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n",m,A->cmap->n,0.,0.));
1108: #else
1109:       PetscCall(PetscViewerASCIIPrintf(viewer,"%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n",m,A->cmap->n,0.0));
1110: #endif
1111:     }
1112:     */
1113:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
1114:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
1115:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1116:   } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO) {
1117:     PetscFunctionReturn(PETSC_SUCCESS);
1118:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
1119:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1120:     for (i = 0; i < m; i++) {
1121:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1122:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1123:       for (j = 0; j < a->rlen[i]; j++) {
1124: #if defined(PETSC_USE_COMPLEX)
1125:         if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) > 0.0 && PetscRealPart(a->val[shift + a->sliceheight * j]) != 0.0) {
1126:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1127:         } else if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) < 0.0 && PetscRealPart(a->val[shift + a->sliceheight * j]) != 0.0) {
1128:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)-PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1129:         } else if (PetscRealPart(a->val[shift + a->sliceheight * j]) != 0.0) {
1130:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j])));
1131:         }
1132: #else
1133:         if (a->val[shift + a->sliceheight * j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)a->val[shift + a->sliceheight * j]));
1134: #endif
1135:       }
1136:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1137:     }
1138:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1139:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
1140:     PetscInt    cnt = 0, jcnt;
1141:     PetscScalar value;
1142: #if defined(PETSC_USE_COMPLEX)
1143:     PetscBool realonly = PETSC_TRUE;
1144:     for (i = 0; i < a->sliidx[a->totalslices]; i++) {
1145:       if (PetscImaginaryPart(a->val[i]) != 0.0) {
1146:         realonly = PETSC_FALSE;
1147:         break;
1148:       }
1149:     }
1150: #endif

1152:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1153:     for (i = 0; i < m; i++) {
1154:       jcnt  = 0;
1155:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1156:       for (j = 0; j < A->cmap->n; j++) {
1157:         if (jcnt < a->rlen[i] && j == a->colidx[shift + a->sliceheight * j]) {
1158:           value = a->val[cnt++];
1159:           jcnt++;
1160:         } else {
1161:           value = 0.0;
1162:         }
1163: #if defined(PETSC_USE_COMPLEX)
1164:         if (realonly) {
1165:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
1166:         } else {
1167:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
1168:         }
1169: #else
1170:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
1171: #endif
1172:       }
1173:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1174:     }
1175:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1176:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
1177:     PetscInt fshift = 1;
1178:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1179: #if defined(PETSC_USE_COMPLEX)
1180:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
1181: #else
1182:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
1183: #endif
1184:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
1185:     for (i = 0; i < m; i++) {
1186:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1187:       for (j = 0; j < a->rlen[i]; j++) {
1188: #if defined(PETSC_USE_COMPLEX)
1189:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->colidx[shift + a->sliceheight * j] + fshift, (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1190: #else
1191:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->colidx[shift + a->sliceheight * j] + fshift, (double)a->val[shift + a->sliceheight * j]));
1192: #endif
1193:       }
1194:     }
1195:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1196:   } else if (format == PETSC_VIEWER_NATIVE) {
1197:     for (i = 0; i < a->totalslices; i++) { /* loop over slices */
1198:       PetscInt row;
1199:       PetscCall(PetscViewerASCIIPrintf(viewer, "slice %" PetscInt_FMT ": %" PetscInt_FMT " %" PetscInt_FMT "\n", i, a->sliidx[i], a->sliidx[i + 1]));
1200:       for (j = a->sliidx[i], row = 0; j < a->sliidx[i + 1]; j++, row = (row + 1) % a->sliceheight) {
1201: #if defined(PETSC_USE_COMPLEX)
1202:         if (PetscImaginaryPart(a->val[j]) > 0.0) {
1203:           PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g + %g i\n", a->sliceheight * i + row, a->colidx[j], (double)PetscRealPart(a->val[j]), (double)PetscImaginaryPart(a->val[j])));
1204:         } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1205:           PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g - %g i\n", a->sliceheight * i + row, a->colidx[j], (double)PetscRealPart(a->val[j]), -(double)PetscImaginaryPart(a->val[j])));
1206:         } else {
1207:           PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g\n", a->sliceheight * i + row, a->colidx[j], (double)PetscRealPart(a->val[j])));
1208:         }
1209: #else
1210:         PetscCall(PetscViewerASCIIPrintf(viewer, "  %" PetscInt_FMT " %" PetscInt_FMT " %g\n", a->sliceheight * i + row, a->colidx[j], (double)a->val[j]));
1211: #endif
1212:       }
1213:     }
1214:   } else {
1215:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1216:     if (A->factortype) {
1217:       for (i = 0; i < m; i++) {
1218:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1219:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1220:         /* L part */
1221:         for (j = shift; j < a->diag[i]; j += a->sliceheight) {
1222: #if defined(PETSC_USE_COMPLEX)
1223:           if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) > 0.0) {
1224:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)PetscImaginaryPart(a->val[j])));
1225:           } else if (PetscImaginaryPart(a->val[shift + a->sliceheight * j]) < 0.0) {
1226:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)(-PetscImaginaryPart(a->val[j]))));
1227:           } else {
1228:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)PetscRealPart(a->val[j])));
1229:           }
1230: #else
1231:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)a->val[j]));
1232: #endif
1233:         }
1234:         /* diagonal */
1235:         j = a->diag[i];
1236: #if defined(PETSC_USE_COMPLEX)
1237:         if (PetscImaginaryPart(a->val[j]) > 0.0) {
1238:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[j], (double)PetscRealPart(1.0 / a->val[j]), (double)PetscImaginaryPart(1.0 / a->val[j])));
1239:         } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1240:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[j], (double)PetscRealPart(1.0 / a->val[j]), (double)(-PetscImaginaryPart(1.0 / a->val[j]))));
1241:         } else {
1242:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)PetscRealPart(1.0 / a->val[j])));
1243:         }
1244: #else
1245:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)(1 / a->val[j])));
1246: #endif

1248:         /* U part */
1249:         for (j = a->diag[i] + 1; j < shift + a->sliceheight * a->rlen[i]; j += a->sliceheight) {
1250: #if defined(PETSC_USE_COMPLEX)
1251:           if (PetscImaginaryPart(a->val[j]) > 0.0) {
1252:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)PetscImaginaryPart(a->val[j])));
1253:           } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1254:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[j], (double)PetscRealPart(a->val[j]), (double)(-PetscImaginaryPart(a->val[j]))));
1255:           } else {
1256:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)PetscRealPart(a->val[j])));
1257:           }
1258: #else
1259:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[j], (double)a->val[j]));
1260: #endif
1261:         }
1262:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1263:       }
1264:     } else {
1265:       for (i = 0; i < m; i++) {
1266:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1267:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1268:         for (j = 0; j < a->rlen[i]; j++) {
1269: #if defined(PETSC_USE_COMPLEX)
1270:           if (PetscImaginaryPart(a->val[j]) > 0.0) {
1271:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1272:           } else if (PetscImaginaryPart(a->val[j]) < 0.0) {
1273:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j]), (double)-PetscImaginaryPart(a->val[shift + a->sliceheight * j])));
1274:           } else {
1275:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)PetscRealPart(a->val[shift + a->sliceheight * j])));
1276:           }
1277: #else
1278:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->colidx[shift + a->sliceheight * j], (double)a->val[shift + a->sliceheight * j]));
1279: #endif
1280:         }
1281:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1282:       }
1283:     }
1284:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1285:   }
1286:   PetscCall(PetscViewerFlush(viewer));
1287:   PetscFunctionReturn(PETSC_SUCCESS);
1288: }

1290: #include <petscdraw.h>
1291: static PetscErrorCode MatView_SeqSELL_Draw_Zoom(PetscDraw draw, void *Aa)
1292: {
1293:   Mat               A = (Mat)Aa;
1294:   Mat_SeqSELL      *a = (Mat_SeqSELL *)A->data;
1295:   PetscInt          i, j, m = A->rmap->n, shift;
1296:   int               color;
1297:   PetscReal         xl, yl, xr, yr, x_l, x_r, y_l, y_r;
1298:   PetscViewer       viewer;
1299:   PetscViewerFormat format;

1301:   PetscFunctionBegin;
1302:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
1303:   PetscCall(PetscViewerGetFormat(viewer, &format));
1304:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

1306:   /* loop over matrix elements drawing boxes */

1308:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
1309:     PetscDrawCollectiveBegin(draw);
1310:     /* Blue for negative, Cyan for zero and  Red for positive */
1311:     color = PETSC_DRAW_BLUE;
1312:     for (i = 0; i < m; i++) {
1313:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1314:       y_l   = m - i - 1.0;
1315:       y_r   = y_l + 1.0;
1316:       for (j = 0; j < a->rlen[i]; j++) {
1317:         x_l = a->colidx[shift + a->sliceheight * j];
1318:         x_r = x_l + 1.0;
1319:         if (PetscRealPart(a->val[shift + a->sliceheight * j]) >= 0.) continue;
1320:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1321:       }
1322:     }
1323:     color = PETSC_DRAW_CYAN;
1324:     for (i = 0; i < m; i++) {
1325:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1326:       y_l   = m - i - 1.0;
1327:       y_r   = y_l + 1.0;
1328:       for (j = 0; j < a->rlen[i]; j++) {
1329:         x_l = a->colidx[shift + a->sliceheight * j];
1330:         x_r = x_l + 1.0;
1331:         if (a->val[shift + a->sliceheight * j] != 0.) continue;
1332:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1333:       }
1334:     }
1335:     color = PETSC_DRAW_RED;
1336:     for (i = 0; i < m; i++) {
1337:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1338:       y_l   = m - i - 1.0;
1339:       y_r   = y_l + 1.0;
1340:       for (j = 0; j < a->rlen[i]; j++) {
1341:         x_l = a->colidx[shift + a->sliceheight * j];
1342:         x_r = x_l + 1.0;
1343:         if (PetscRealPart(a->val[shift + a->sliceheight * j]) <= 0.) continue;
1344:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1345:       }
1346:     }
1347:     PetscDrawCollectiveEnd(draw);
1348:   } else {
1349:     /* use contour shading to indicate magnitude of values */
1350:     /* first determine max of all nonzero values */
1351:     PetscReal minv = 0.0, maxv = 0.0;
1352:     PetscInt  count = 0;
1353:     PetscDraw popup;
1354:     for (i = 0; i < a->sliidx[a->totalslices]; i++) {
1355:       if (PetscAbsScalar(a->val[i]) > maxv) maxv = PetscAbsScalar(a->val[i]);
1356:     }
1357:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1358:     PetscCall(PetscDrawGetPopup(draw, &popup));
1359:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1361:     PetscDrawCollectiveBegin(draw);
1362:     for (i = 0; i < m; i++) {
1363:       shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight;
1364:       y_l   = m - i - 1.0;
1365:       y_r   = y_l + 1.0;
1366:       for (j = 0; j < a->rlen[i]; j++) {
1367:         x_l   = a->colidx[shift + a->sliceheight * j];
1368:         x_r   = x_l + 1.0;
1369:         color = PetscDrawRealToColor(PetscAbsScalar(a->val[count]), minv, maxv);
1370:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1371:         count++;
1372:       }
1373:     }
1374:     PetscDrawCollectiveEnd(draw);
1375:   }
1376:   PetscFunctionReturn(PETSC_SUCCESS);
1377: }

1379: #include <petscdraw.h>
1380: static PetscErrorCode MatView_SeqSELL_Draw(Mat A, PetscViewer viewer)
1381: {
1382:   PetscDraw draw;
1383:   PetscReal xr, yr, xl, yl, h, w;
1384:   PetscBool isnull;

1386:   PetscFunctionBegin;
1387:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1388:   PetscCall(PetscDrawIsNull(draw, &isnull));
1389:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1391:   xr = A->cmap->n;
1392:   yr = A->rmap->n;
1393:   h  = yr / 10.0;
1394:   w  = xr / 10.0;
1395:   xr += w;
1396:   yr += h;
1397:   xl = -w;
1398:   yl = -h;
1399:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1400:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1401:   PetscCall(PetscDrawZoom(draw, MatView_SeqSELL_Draw_Zoom, A));
1402:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1403:   PetscCall(PetscDrawSave(draw));
1404:   PetscFunctionReturn(PETSC_SUCCESS);
1405: }

1407: PetscErrorCode MatView_SeqSELL(Mat A, PetscViewer viewer)
1408: {
1409:   PetscBool iascii, isbinary, isdraw;

1411:   PetscFunctionBegin;
1412:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1413:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1414:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1415:   if (iascii) {
1416:     PetscCall(MatView_SeqSELL_ASCII(A, viewer));
1417:   } else if (isbinary) {
1418:     /* PetscCall(MatView_SeqSELL_Binary(A,viewer)); */
1419:   } else if (isdraw) PetscCall(MatView_SeqSELL_Draw(A, viewer));
1420:   PetscFunctionReturn(PETSC_SUCCESS);
1421: }

1423: PetscErrorCode MatAssemblyEnd_SeqSELL(Mat A, MatAssemblyType mode)
1424: {
1425:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1426:   PetscInt     i, shift, row_in_slice, row, nrow, *cp, lastcol, j, k;
1427:   MatScalar   *vp;
1428: #if defined(PETSC_HAVE_CUPM)
1429:   PetscInt totalchunks = 0;
1430: #endif

1432:   PetscFunctionBegin;
1433:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1434:   /* To do: compress out the unused elements */
1435:   PetscCall(MatMarkDiagonal_SeqSELL(A));
1436:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " allocated %" PetscInt_FMT " used (%" PetscInt_FMT " nonzeros+%" PetscInt_FMT " paddedzeros)\n", A->rmap->n, A->cmap->n, a->maxallocmat, a->sliidx[a->totalslices], a->nz, a->sliidx[a->totalslices] - a->nz));
1437:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1438:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", a->rlenmax));
1439:   a->nonzerorowcnt = 0;
1440:   /* Set unused slots for column indices to last valid column index. Set unused slots for values to zero. This allows for a use of unmasked intrinsics -> higher performance */
1441:   for (i = 0; i < a->totalslices; ++i) {
1442:     shift = a->sliidx[i];                                                   /* starting index of the slice */
1443:     cp    = PetscSafePointerPlusOffset(a->colidx, shift);                   /* pointer to the column indices of the slice */
1444:     vp    = PetscSafePointerPlusOffset(a->val, shift);                      /* pointer to the nonzero values of the slice */
1445:     for (row_in_slice = 0; row_in_slice < a->sliceheight; ++row_in_slice) { /* loop over rows in the slice */
1446:       row  = a->sliceheight * i + row_in_slice;
1447:       nrow = a->rlen[row]; /* number of nonzeros in row */
1448:       /*
1449:         Search for the nearest nonzero. Normally setting the index to zero may cause extra communication.
1450:         But if the entire slice are empty, it is fine to use 0 since the index will not be loaded.
1451:       */
1452:       lastcol = 0;
1453:       if (nrow > 0) { /* nonempty row */
1454:         a->nonzerorowcnt++;
1455:         lastcol = cp[a->sliceheight * (nrow - 1) + row_in_slice]; /* use the index from the last nonzero at current row */
1456:       } else if (!row_in_slice) {                                 /* first row of the correct slice is empty */
1457:         for (j = 1; j < a->sliceheight; j++) {
1458:           if (a->rlen[a->sliceheight * i + j]) {
1459:             lastcol = cp[j];
1460:             break;
1461:           }
1462:         }
1463:       } else {
1464:         if (a->sliidx[i + 1] != shift) lastcol = cp[row_in_slice - 1]; /* use the index from the previous row */
1465:       }

1467:       for (k = nrow; k < (a->sliidx[i + 1] - shift) / a->sliceheight; ++k) {
1468:         cp[a->sliceheight * k + row_in_slice] = lastcol;
1469:         vp[a->sliceheight * k + row_in_slice] = (MatScalar)0;
1470:       }
1471:     }
1472:   }

1474:   A->info.mallocs += a->reallocs;
1475:   a->reallocs = 0;

1477:   PetscCall(MatSeqSELLInvalidateDiagonal(A));
1478: #if defined(PETSC_HAVE_CUPM)
1479:   if (!a->chunksize && a->totalslices) {
1480:     a->chunksize = 64;
1481:     while (a->chunksize < 1024 && 2 * a->chunksize <= a->sliidx[a->totalslices] / a->totalslices) a->chunksize *= 2;
1482:     totalchunks = 1 + (a->sliidx[a->totalslices] - 1) / a->chunksize;
1483:   }
1484:   if (totalchunks != a->totalchunks) {
1485:     PetscCall(PetscFree(a->chunk_slice_map));
1486:     PetscCall(PetscMalloc1(totalchunks, &a->chunk_slice_map));
1487:     a->totalchunks = totalchunks;
1488:   }
1489:   j = 0;
1490:   for (i = 0; i < totalchunks; i++) {
1491:     while (a->sliidx[j + 1] <= i * a->chunksize && j < a->totalslices) j++;
1492:     a->chunk_slice_map[i] = j;
1493:   }
1494: #endif
1495:   PetscFunctionReturn(PETSC_SUCCESS);
1496: }

1498: PetscErrorCode MatGetInfo_SeqSELL(Mat A, MatInfoType flag, MatInfo *info)
1499: {
1500:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

1502:   PetscFunctionBegin;
1503:   info->block_size   = 1.0;
1504:   info->nz_allocated = a->maxallocmat;
1505:   info->nz_used      = a->sliidx[a->totalslices]; /* include padding zeros */
1506:   info->nz_unneeded  = (a->maxallocmat - a->sliidx[a->totalslices]);
1507:   info->assemblies   = A->num_ass;
1508:   info->mallocs      = A->info.mallocs;
1509:   info->memory       = 0; /* REVIEW ME */
1510:   if (A->factortype) {
1511:     info->fill_ratio_given  = A->info.fill_ratio_given;
1512:     info->fill_ratio_needed = A->info.fill_ratio_needed;
1513:     info->factor_mallocs    = A->info.factor_mallocs;
1514:   } else {
1515:     info->fill_ratio_given  = 0;
1516:     info->fill_ratio_needed = 0;
1517:     info->factor_mallocs    = 0;
1518:   }
1519:   PetscFunctionReturn(PETSC_SUCCESS);
1520: }

1522: PetscErrorCode MatSetValues_SeqSELL(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
1523: {
1524:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1525:   PetscInt     shift, i, k, l, low, high, t, ii, row, col, nrow;
1526:   PetscInt    *cp, nonew = a->nonew, lastcol = -1;
1527:   MatScalar   *vp, value;
1528: #if defined(PETSC_HAVE_CUPM)
1529:   PetscBool inserted = PETSC_FALSE;
1530:   PetscInt  mul      = DEVICE_MEM_ALIGN / a->sliceheight;
1531: #endif

1533:   PetscFunctionBegin;
1534:   for (k = 0; k < m; k++) { /* loop over added rows */
1535:     row = im[k];
1536:     if (row < 0) continue;
1537:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
1538:     shift = a->sliidx[row / a->sliceheight] + row % a->sliceheight; /* starting index of the row */
1539:     cp    = a->colidx + shift;                                      /* pointer to the row */
1540:     vp    = a->val + shift;                                         /* pointer to the row */
1541:     nrow  = a->rlen[row];
1542:     low   = 0;
1543:     high  = nrow;

1545:     for (l = 0; l < n; l++) { /* loop over added columns */
1546:       col = in[l];
1547:       if (col < 0) continue;
1548:       PetscCheck(col < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Col too large: row %" PetscInt_FMT " max %" PetscInt_FMT, col, A->cmap->n - 1);
1549:       if (a->roworiented) {
1550:         value = v[l + k * n];
1551:       } else {
1552:         value = v[k + l * m];
1553:       }
1554:       if ((value == 0.0 && a->ignorezeroentries) && (is == ADD_VALUES)) continue;

1556:       /* search in this row for the specified column, i indicates the column to be set */
1557:       if (col <= lastcol) low = 0;
1558:       else high = nrow;
1559:       lastcol = col;
1560:       while (high - low > 5) {
1561:         t = (low + high) / 2;
1562:         if (*(cp + a->sliceheight * t) > col) high = t;
1563:         else low = t;
1564:       }
1565:       for (i = low; i < high; i++) {
1566:         if (*(cp + a->sliceheight * i) > col) break;
1567:         if (*(cp + a->sliceheight * i) == col) {
1568:           if (is == ADD_VALUES) *(vp + a->sliceheight * i) += value;
1569:           else *(vp + a->sliceheight * i) = value;
1570: #if defined(PETSC_HAVE_CUPM)
1571:           inserted = PETSC_TRUE;
1572: #endif
1573:           low = i + 1;
1574:           goto noinsert;
1575:         }
1576:       }
1577:       if (value == 0.0 && a->ignorezeroentries) goto noinsert;
1578:       if (nonew == 1) goto noinsert;
1579:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", row, col);
1580: #if defined(PETSC_HAVE_CUPM)
1581:       MatSeqXSELLReallocateSELL(A, A->rmap->n, 1, nrow, a->sliidx, a->sliceheight, row / a->sliceheight, row, col, a->colidx, a->val, cp, vp, nonew, MatScalar, mul);
1582: #else
1583:       /* If the current row length exceeds the slice width (e.g. nrow==slice_width), allocate a new space, otherwise do nothing */
1584:       MatSeqXSELLReallocateSELL(A, A->rmap->n, 1, nrow, a->sliidx, a->sliceheight, row / a->sliceheight, row, col, a->colidx, a->val, cp, vp, nonew, MatScalar, 1);
1585: #endif
1586:       /* add the new nonzero to the high position, shift the remaining elements in current row to the right by one slot */
1587:       for (ii = nrow - 1; ii >= i; ii--) {
1588:         *(cp + a->sliceheight * (ii + 1)) = *(cp + a->sliceheight * ii);
1589:         *(vp + a->sliceheight * (ii + 1)) = *(vp + a->sliceheight * ii);
1590:       }
1591:       a->rlen[row]++;
1592:       *(cp + a->sliceheight * i) = col;
1593:       *(vp + a->sliceheight * i) = value;
1594:       a->nz++;
1595: #if defined(PETSC_HAVE_CUPM)
1596:       inserted = PETSC_TRUE;
1597: #endif
1598:       low = i + 1;
1599:       high++;
1600:       nrow++;
1601:     noinsert:;
1602:     }
1603:     a->rlen[row] = nrow;
1604:   }
1605: #if defined(PETSC_HAVE_CUPM)
1606:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED && inserted) A->offloadmask = PETSC_OFFLOAD_CPU;
1607: #endif
1608:   PetscFunctionReturn(PETSC_SUCCESS);
1609: }

1611: PetscErrorCode MatCopy_SeqSELL(Mat A, Mat B, MatStructure str)
1612: {
1613:   PetscFunctionBegin;
1614:   /* If the two matrices have the same copy implementation, use fast copy. */
1615:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
1616:     Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
1617:     Mat_SeqSELL *b = (Mat_SeqSELL *)B->data;

1619:     PetscCheck(a->sliidx[a->totalslices] == b->sliidx[b->totalslices], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different");
1620:     PetscCall(PetscArraycpy(b->val, a->val, a->sliidx[a->totalslices]));
1621:   } else {
1622:     PetscCall(MatCopy_Basic(A, B, str));
1623:   }
1624:   PetscFunctionReturn(PETSC_SUCCESS);
1625: }

1627: PetscErrorCode MatSetUp_SeqSELL(Mat A)
1628: {
1629:   PetscFunctionBegin;
1630:   PetscCall(MatSeqSELLSetPreallocation(A, PETSC_DEFAULT, NULL));
1631:   PetscFunctionReturn(PETSC_SUCCESS);
1632: }

1634: PetscErrorCode MatSeqSELLGetArray_SeqSELL(Mat A, PetscScalar *array[])
1635: {
1636:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

1638:   PetscFunctionBegin;
1639:   *array = a->val;
1640:   PetscFunctionReturn(PETSC_SUCCESS);
1641: }

1643: PetscErrorCode MatSeqSELLRestoreArray_SeqSELL(Mat A, PetscScalar *array[])
1644: {
1645:   PetscFunctionBegin;
1646:   PetscFunctionReturn(PETSC_SUCCESS);
1647: }

1649: PetscErrorCode MatScale_SeqSELL(Mat inA, PetscScalar alpha)
1650: {
1651:   Mat_SeqSELL *a      = (Mat_SeqSELL *)inA->data;
1652:   MatScalar   *aval   = a->val;
1653:   PetscScalar  oalpha = alpha;
1654:   PetscBLASInt one    = 1, size;

1656:   PetscFunctionBegin;
1657:   PetscCall(PetscBLASIntCast(a->sliidx[a->totalslices], &size));
1658:   PetscCallBLAS("BLASscal", BLASscal_(&size, &oalpha, aval, &one));
1659:   PetscCall(PetscLogFlops(a->nz));
1660:   PetscCall(MatSeqSELLInvalidateDiagonal(inA));
1661: #if defined(PETSC_HAVE_CUPM)
1662:   if (inA->offloadmask != PETSC_OFFLOAD_UNALLOCATED) inA->offloadmask = PETSC_OFFLOAD_CPU;
1663: #endif
1664:   PetscFunctionReturn(PETSC_SUCCESS);
1665: }

1667: PetscErrorCode MatShift_SeqSELL(Mat Y, PetscScalar a)
1668: {
1669:   Mat_SeqSELL *y = (Mat_SeqSELL *)Y->data;

1671:   PetscFunctionBegin;
1672:   if (!Y->preallocated || !y->nz) PetscCall(MatSeqSELLSetPreallocation(Y, 1, NULL));
1673:   PetscCall(MatShift_Basic(Y, a));
1674:   PetscFunctionReturn(PETSC_SUCCESS);
1675: }

1677: PetscErrorCode MatSOR_SeqSELL(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1678: {
1679:   Mat_SeqSELL       *a = (Mat_SeqSELL *)A->data;
1680:   PetscScalar       *x, sum, *t;
1681:   const MatScalar   *idiag = NULL, *mdiag;
1682:   const PetscScalar *b, *xb;
1683:   PetscInt           n, m = A->rmap->n, i, j, shift;
1684:   const PetscInt    *diag;

1686:   PetscFunctionBegin;
1687:   its = its * lits;

1689:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1690:   if (!a->idiagvalid) PetscCall(MatInvertDiagonal_SeqSELL(A, omega, fshift));
1691:   a->fshift = fshift;
1692:   a->omega  = omega;

1694:   diag  = a->diag;
1695:   t     = a->ssor_work;
1696:   idiag = a->idiag;
1697:   mdiag = a->mdiag;

1699:   PetscCall(VecGetArray(xx, &x));
1700:   PetscCall(VecGetArrayRead(bb, &b));
1701:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1702:   PetscCheck(flag != SOR_APPLY_UPPER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_UPPER is not implemented");
1703:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1704:   PetscCheck(!(flag & SOR_EISENSTAT), PETSC_COMM_SELF, PETSC_ERR_SUP, "No support yet for Eisenstat");

1706:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1707:     if ((flag & SOR_FORWARD_SWEEP) || (flag & SOR_LOCAL_FORWARD_SWEEP)) {
1708:       for (i = 0; i < m; i++) {
1709:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1710:         sum   = b[i];
1711:         n     = (diag[i] - shift) / a->sliceheight;
1712:         for (j = 0; j < n; j++) sum -= a->val[shift + a->sliceheight * j] * x[a->colidx[shift + a->sliceheight * j]];
1713:         t[i] = sum;
1714:         x[i] = sum * idiag[i];
1715:       }
1716:       xb = t;
1717:       PetscCall(PetscLogFlops(a->nz));
1718:     } else xb = b;
1719:     if ((flag & SOR_BACKWARD_SWEEP) || (flag & SOR_LOCAL_BACKWARD_SWEEP)) {
1720:       for (i = m - 1; i >= 0; i--) {
1721:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1722:         sum   = xb[i];
1723:         n     = a->rlen[i] - (diag[i] - shift) / a->sliceheight - 1;
1724:         for (j = 1; j <= n; j++) sum -= a->val[diag[i] + a->sliceheight * j] * x[a->colidx[diag[i] + a->sliceheight * j]];
1725:         if (xb == b) {
1726:           x[i] = sum * idiag[i];
1727:         } else {
1728:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1729:         }
1730:       }
1731:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
1732:     }
1733:     its--;
1734:   }
1735:   while (its--) {
1736:     if ((flag & SOR_FORWARD_SWEEP) || (flag & SOR_LOCAL_FORWARD_SWEEP)) {
1737:       for (i = 0; i < m; i++) {
1738:         /* lower */
1739:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1740:         sum   = b[i];
1741:         n     = (diag[i] - shift) / a->sliceheight;
1742:         for (j = 0; j < n; j++) sum -= a->val[shift + a->sliceheight * j] * x[a->colidx[shift + a->sliceheight * j]];
1743:         t[i] = sum; /* save application of the lower-triangular part */
1744:         /* upper */
1745:         n = a->rlen[i] - (diag[i] - shift) / a->sliceheight - 1;
1746:         for (j = 1; j <= n; j++) sum -= a->val[diag[i] + a->sliceheight * j] * x[a->colidx[diag[i] + a->sliceheight * j]];
1747:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1748:       }
1749:       xb = t;
1750:       PetscCall(PetscLogFlops(2.0 * a->nz));
1751:     } else xb = b;
1752:     if ((flag & SOR_BACKWARD_SWEEP) || (flag & SOR_LOCAL_BACKWARD_SWEEP)) {
1753:       for (i = m - 1; i >= 0; i--) {
1754:         shift = a->sliidx[i / a->sliceheight] + i % a->sliceheight; /* starting index of the row i */
1755:         sum   = xb[i];
1756:         if (xb == b) {
1757:           /* whole matrix (no checkpointing available) */
1758:           n = a->rlen[i];
1759:           for (j = 0; j < n; j++) sum -= a->val[shift + a->sliceheight * j] * x[a->colidx[shift + a->sliceheight * j]];
1760:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
1761:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
1762:           n = a->rlen[i] - (diag[i] - shift) / a->sliceheight - 1;
1763:           for (j = 1; j <= n; j++) sum -= a->val[diag[i] + a->sliceheight * j] * x[a->colidx[diag[i] + a->sliceheight * j]];
1764:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
1765:         }
1766:       }
1767:       if (xb == b) {
1768:         PetscCall(PetscLogFlops(2.0 * a->nz));
1769:       } else {
1770:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
1771:       }
1772:     }
1773:   }
1774:   PetscCall(VecRestoreArray(xx, &x));
1775:   PetscCall(VecRestoreArrayRead(bb, &b));
1776:   PetscFunctionReturn(PETSC_SUCCESS);
1777: }

1779: static struct _MatOps MatOps_Values = {MatSetValues_SeqSELL,
1780:                                        MatGetRow_SeqSELL,
1781:                                        MatRestoreRow_SeqSELL,
1782:                                        MatMult_SeqSELL,
1783:                                        /* 4*/ MatMultAdd_SeqSELL,
1784:                                        MatMultTranspose_SeqSELL,
1785:                                        MatMultTransposeAdd_SeqSELL,
1786:                                        NULL,
1787:                                        NULL,
1788:                                        NULL,
1789:                                        /* 10*/ NULL,
1790:                                        NULL,
1791:                                        NULL,
1792:                                        MatSOR_SeqSELL,
1793:                                        NULL,
1794:                                        /* 15*/ MatGetInfo_SeqSELL,
1795:                                        MatEqual_SeqSELL,
1796:                                        MatGetDiagonal_SeqSELL,
1797:                                        MatDiagonalScale_SeqSELL,
1798:                                        NULL,
1799:                                        /* 20*/ NULL,
1800:                                        MatAssemblyEnd_SeqSELL,
1801:                                        MatSetOption_SeqSELL,
1802:                                        MatZeroEntries_SeqSELL,
1803:                                        /* 24*/ NULL,
1804:                                        NULL,
1805:                                        NULL,
1806:                                        NULL,
1807:                                        NULL,
1808:                                        /* 29*/ MatSetUp_SeqSELL,
1809:                                        NULL,
1810:                                        NULL,
1811:                                        NULL,
1812:                                        NULL,
1813:                                        /* 34*/ MatDuplicate_SeqSELL,
1814:                                        NULL,
1815:                                        NULL,
1816:                                        NULL,
1817:                                        NULL,
1818:                                        /* 39*/ NULL,
1819:                                        NULL,
1820:                                        NULL,
1821:                                        MatGetValues_SeqSELL,
1822:                                        MatCopy_SeqSELL,
1823:                                        /* 44*/ NULL,
1824:                                        MatScale_SeqSELL,
1825:                                        MatShift_SeqSELL,
1826:                                        NULL,
1827:                                        NULL,
1828:                                        /* 49*/ NULL,
1829:                                        NULL,
1830:                                        NULL,
1831:                                        NULL,
1832:                                        NULL,
1833:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
1834:                                        NULL,
1835:                                        NULL,
1836:                                        NULL,
1837:                                        NULL,
1838:                                        /* 59*/ NULL,
1839:                                        MatDestroy_SeqSELL,
1840:                                        MatView_SeqSELL,
1841:                                        NULL,
1842:                                        NULL,
1843:                                        /* 64*/ NULL,
1844:                                        NULL,
1845:                                        NULL,
1846:                                        NULL,
1847:                                        NULL,
1848:                                        /* 69*/ NULL,
1849:                                        NULL,
1850:                                        NULL,
1851:                                        NULL,
1852:                                        NULL,
1853:                                        /* 74*/ NULL,
1854:                                        MatFDColoringApply_AIJ, /* reuse the FDColoring function for AIJ */
1855:                                        NULL,
1856:                                        NULL,
1857:                                        NULL,
1858:                                        /* 79*/ NULL,
1859:                                        NULL,
1860:                                        NULL,
1861:                                        NULL,
1862:                                        NULL,
1863:                                        /* 84*/ NULL,
1864:                                        NULL,
1865:                                        NULL,
1866:                                        NULL,
1867:                                        NULL,
1868:                                        /* 89*/ NULL,
1869:                                        NULL,
1870:                                        NULL,
1871:                                        NULL,
1872:                                        NULL,
1873:                                        /* 94*/ NULL,
1874:                                        NULL,
1875:                                        NULL,
1876:                                        NULL,
1877:                                        NULL,
1878:                                        /* 99*/ NULL,
1879:                                        NULL,
1880:                                        NULL,
1881:                                        MatConjugate_SeqSELL,
1882:                                        NULL,
1883:                                        /*104*/ NULL,
1884:                                        NULL,
1885:                                        NULL,
1886:                                        NULL,
1887:                                        NULL,
1888:                                        /*109*/ NULL,
1889:                                        NULL,
1890:                                        NULL,
1891:                                        NULL,
1892:                                        MatMissingDiagonal_SeqSELL,
1893:                                        /*114*/ NULL,
1894:                                        NULL,
1895:                                        NULL,
1896:                                        NULL,
1897:                                        NULL,
1898:                                        /*119*/ NULL,
1899:                                        NULL,
1900:                                        NULL,
1901:                                        NULL,
1902:                                        NULL,
1903:                                        /*124*/ NULL,
1904:                                        NULL,
1905:                                        NULL,
1906:                                        NULL,
1907:                                        NULL,
1908:                                        /*129*/ NULL,
1909:                                        NULL,
1910:                                        NULL,
1911:                                        NULL,
1912:                                        NULL,
1913:                                        /*134*/ NULL,
1914:                                        NULL,
1915:                                        NULL,
1916:                                        NULL,
1917:                                        NULL,
1918:                                        /*139*/ NULL,
1919:                                        NULL,
1920:                                        NULL,
1921:                                        MatFDColoringSetUp_SeqXAIJ,
1922:                                        NULL,
1923:                                        /*144*/ NULL,
1924:                                        NULL,
1925:                                        NULL,
1926:                                        NULL,
1927:                                        NULL,
1928:                                        NULL,
1929:                                        /*150*/ NULL,
1930:                                        NULL,
1931:                                        NULL,
1932:                                        NULL,
1933:                                        NULL,
1934:                                        /*155*/ NULL,
1935:                                        NULL};

1937: static PetscErrorCode MatStoreValues_SeqSELL(Mat mat)
1938: {
1939:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1941:   PetscFunctionBegin;
1942:   PetscCheck(a->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

1944:   /* allocate space for values if not already there */
1945:   if (!a->saved_values) PetscCall(PetscMalloc1(a->sliidx[a->totalslices] + 1, &a->saved_values));

1947:   /* copy values over */
1948:   PetscCall(PetscArraycpy(a->saved_values, a->val, a->sliidx[a->totalslices]));
1949:   PetscFunctionReturn(PETSC_SUCCESS);
1950: }

1952: static PetscErrorCode MatRetrieveValues_SeqSELL(Mat mat)
1953: {
1954:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1956:   PetscFunctionBegin;
1957:   PetscCheck(a->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
1958:   PetscCheck(a->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
1959:   PetscCall(PetscArraycpy(a->val, a->saved_values, a->sliidx[a->totalslices]));
1960:   PetscFunctionReturn(PETSC_SUCCESS);
1961: }

1963: static PetscErrorCode MatSeqSELLGetFillRatio_SeqSELL(Mat mat, PetscReal *ratio)
1964: {
1965:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1967:   PetscFunctionBegin;
1968:   if (a->totalslices && a->sliidx[a->totalslices]) {
1969:     *ratio = (PetscReal)(a->sliidx[a->totalslices] - a->nz) / a->sliidx[a->totalslices];
1970:   } else {
1971:     *ratio = 0.0;
1972:   }
1973:   PetscFunctionReturn(PETSC_SUCCESS);
1974: }

1976: static PetscErrorCode MatSeqSELLGetMaxSliceWidth_SeqSELL(Mat mat, PetscInt *slicewidth)
1977: {
1978:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;
1979:   PetscInt     i, current_slicewidth;

1981:   PetscFunctionBegin;
1982:   *slicewidth = 0;
1983:   for (i = 0; i < a->totalslices; i++) {
1984:     current_slicewidth = (a->sliidx[i + 1] - a->sliidx[i]) / a->sliceheight;
1985:     if (current_slicewidth > *slicewidth) *slicewidth = current_slicewidth;
1986:   }
1987:   PetscFunctionReturn(PETSC_SUCCESS);
1988: }

1990: static PetscErrorCode MatSeqSELLGetAvgSliceWidth_SeqSELL(Mat mat, PetscReal *slicewidth)
1991: {
1992:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;

1994:   PetscFunctionBegin;
1995:   *slicewidth = 0;
1996:   if (a->totalslices) { *slicewidth = (PetscReal)a->sliidx[a->totalslices] / a->sliceheight / a->totalslices; }
1997:   PetscFunctionReturn(PETSC_SUCCESS);
1998: }

2000: static PetscErrorCode MatSeqSELLGetVarSliceSize_SeqSELL(Mat mat, PetscReal *variance)
2001: {
2002:   Mat_SeqSELL *a = (Mat_SeqSELL *)mat->data;
2003:   PetscReal    mean;
2004:   PetscInt     i, totalslices = a->totalslices, *sliidx = a->sliidx;

2006:   PetscFunctionBegin;
2007:   *variance = 0;
2008:   if (totalslices) {
2009:     mean = (PetscReal)sliidx[totalslices] / totalslices;
2010:     for (i = 1; i <= totalslices; i++) { *variance += ((PetscReal)(sliidx[i] - sliidx[i - 1]) - mean) * ((PetscReal)(sliidx[i] - sliidx[i - 1]) - mean) / totalslices; }
2011:   }
2012:   PetscFunctionReturn(PETSC_SUCCESS);
2013: }

2015: static PetscErrorCode MatSeqSELLSetSliceHeight_SeqSELL(Mat A, PetscInt sliceheight)
2016: {
2017:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

2019:   PetscFunctionBegin;
2020:   if (A->preallocated) PetscFunctionReturn(PETSC_SUCCESS);
2021:   PetscCheck(a->sliceheight <= 0 || a->sliceheight == sliceheight, PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change slice height %" PetscInt_FMT " to %" PetscInt_FMT, a->sliceheight, sliceheight);
2022:   a->sliceheight = sliceheight;
2023: #if defined(PETSC_HAVE_CUPM)
2024:   PetscCheck(PetscMax(DEVICE_MEM_ALIGN, sliceheight) % PetscMin(DEVICE_MEM_ALIGN, sliceheight) == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "The slice height is not compatible with DEVICE_MEM_ALIGN (one must be divisible by the other) %" PetscInt_FMT, sliceheight);
2025: #endif
2026:   PetscFunctionReturn(PETSC_SUCCESS);
2027: }

2029: /*@
2030:   MatSeqSELLGetFillRatio - returns a ratio that indicates the irregularity of the matrix.

2032:   Not Collective

2034:   Input Parameter:
2035: . A - a MATSEQSELL matrix

2037:   Output Parameter:
2038: . ratio - ratio of number of padded zeros to number of allocated elements

2040:   Level: intermediate

2042: .seealso: `MATSEQSELL`, `MatSeqSELLGetAvgSliceWidth()`
2043: @*/
2044: PetscErrorCode MatSeqSELLGetFillRatio(Mat A, PetscReal *ratio)
2045: {
2046:   PetscFunctionBegin;
2047:   PetscUseMethod(A, "MatSeqSELLGetFillRatio_C", (Mat, PetscReal *), (A, ratio));
2048:   PetscFunctionReturn(PETSC_SUCCESS);
2049: }

2051: /*@
2052:   MatSeqSELLGetMaxSliceWidth - returns the maximum slice width.

2054:   Not Collective

2056:   Input Parameter:
2057: . A - a MATSEQSELL matrix

2059:   Output Parameter:
2060: . slicewidth - maximum slice width

2062:   Level: intermediate

2064: .seealso: `MATSEQSELL`, `MatSeqSELLGetAvgSliceWidth()`
2065: @*/
2066: PetscErrorCode MatSeqSELLGetMaxSliceWidth(Mat A, PetscInt *slicewidth)
2067: {
2068:   PetscFunctionBegin;
2069:   PetscUseMethod(A, "MatSeqSELLGetMaxSliceWidth_C", (Mat, PetscInt *), (A, slicewidth));
2070:   PetscFunctionReturn(PETSC_SUCCESS);
2071: }

2073: /*@
2074:   MatSeqSELLGetAvgSliceWidth - returns the average slice width.

2076:   Not Collective

2078:   Input Parameter:
2079: . A - a MATSEQSELL matrix

2081:   Output Parameter:
2082: . slicewidth - average slice width

2084:   Level: intermediate

2086: .seealso: `MATSEQSELL`, `MatSeqSELLGetMaxSliceWidth()`
2087: @*/
2088: PetscErrorCode MatSeqSELLGetAvgSliceWidth(Mat A, PetscReal *slicewidth)
2089: {
2090:   PetscFunctionBegin;
2091:   PetscUseMethod(A, "MatSeqSELLGetAvgSliceWidth_C", (Mat, PetscReal *), (A, slicewidth));
2092:   PetscFunctionReturn(PETSC_SUCCESS);
2093: }

2095: /*@
2096:   MatSeqSELLSetSliceHeight - sets the slice height.

2098:   Not Collective

2100:   Input Parameters:
2101: + A           - a MATSEQSELL matrix
2102: - sliceheight - slice height

2104:   Notes:
2105:   You cannot change the slice height once it have been set.

2107:   The slice height must be set before MatSetUp() or MatXXXSetPreallocation() is called.

2109:   Level: intermediate

2111: .seealso: `MATSEQSELL`, `MatSeqSELLGetVarSliceSize()`
2112: @*/
2113: PetscErrorCode MatSeqSELLSetSliceHeight(Mat A, PetscInt sliceheight)
2114: {
2115:   PetscFunctionBegin;
2116:   PetscUseMethod(A, "MatSeqSELLSetSliceHeight_C", (Mat, PetscInt), (A, sliceheight));
2117:   PetscFunctionReturn(PETSC_SUCCESS);
2118: }

2120: /*@
2121:   MatSeqSELLGetVarSliceSize - returns the variance of the slice size.

2123:   Not Collective

2125:   Input Parameter:
2126: . A - a MATSEQSELL matrix

2128:   Output Parameter:
2129: . variance - variance of the slice size

2131:   Level: intermediate

2133: .seealso: `MATSEQSELL`, `MatSeqSELLSetSliceHeight()`
2134: @*/
2135: PetscErrorCode MatSeqSELLGetVarSliceSize(Mat A, PetscReal *variance)
2136: {
2137:   PetscFunctionBegin;
2138:   PetscUseMethod(A, "MatSeqSELLGetVarSliceSize_C", (Mat, PetscReal *), (A, variance));
2139:   PetscFunctionReturn(PETSC_SUCCESS);
2140: }

2142: #if defined(PETSC_HAVE_CUDA)
2143: PETSC_EXTERN PetscErrorCode MatConvert_SeqSELL_SeqSELLCUDA(Mat);
2144: #endif
2145: #if defined(PETSC_HAVE_HIP)
2146: PETSC_EXTERN PetscErrorCode MatConvert_SeqSELL_SeqSELLHIP(Mat);
2147: #endif

2149: PETSC_EXTERN PetscErrorCode MatCreate_SeqSELL(Mat B)
2150: {
2151:   Mat_SeqSELL *b;
2152:   PetscMPIInt  size;

2154:   PetscFunctionBegin;
2155:   PetscCall(PetscCitationsRegister(citation, &cited));
2156:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
2157:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

2159:   PetscCall(PetscNew(&b));

2161:   B->data   = (void *)b;
2162:   B->ops[0] = MatOps_Values;

2164:   b->row                = NULL;
2165:   b->col                = NULL;
2166:   b->icol               = NULL;
2167:   b->reallocs           = 0;
2168:   b->ignorezeroentries  = PETSC_FALSE;
2169:   b->roworiented        = PETSC_TRUE;
2170:   b->nonew              = 0;
2171:   b->diag               = NULL;
2172:   b->solve_work         = NULL;
2173:   B->spptr              = NULL;
2174:   b->saved_values       = NULL;
2175:   b->idiag              = NULL;
2176:   b->mdiag              = NULL;
2177:   b->ssor_work          = NULL;
2178:   b->omega              = 1.0;
2179:   b->fshift             = 0.0;
2180:   b->idiagvalid         = PETSC_FALSE;
2181:   b->keepnonzeropattern = PETSC_FALSE;
2182:   b->sliceheight        = 0;

2184:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQSELL));
2185:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetArray_C", MatSeqSELLGetArray_SeqSELL));
2186:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLRestoreArray_C", MatSeqSELLRestoreArray_SeqSELL));
2187:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqSELL));
2188:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqSELL));
2189:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLSetPreallocation_C", MatSeqSELLSetPreallocation_SeqSELL));
2190:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsell_seqaij_C", MatConvert_SeqSELL_SeqAIJ));
2191: #if defined(PETSC_HAVE_CUDA)
2192:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsell_seqsellcuda_C", MatConvert_SeqSELL_SeqSELLCUDA));
2193: #endif
2194: #if defined(PETSC_HAVE_HIP)
2195:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqsell_seqsellhip_C", MatConvert_SeqSELL_SeqSELLHIP));
2196: #endif
2197:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetFillRatio_C", MatSeqSELLGetFillRatio_SeqSELL));
2198:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetMaxSliceWidth_C", MatSeqSELLGetMaxSliceWidth_SeqSELL));
2199:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetAvgSliceWidth_C", MatSeqSELLGetAvgSliceWidth_SeqSELL));
2200:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLGetVarSliceSize_C", MatSeqSELLGetVarSliceSize_SeqSELL));
2201:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqSELLSetSliceHeight_C", MatSeqSELLSetSliceHeight_SeqSELL));

2203:   PetscObjectOptionsBegin((PetscObject)B);
2204:   {
2205:     PetscInt  newsh = -1;
2206:     PetscBool flg;
2207: #if defined(PETSC_HAVE_CUPM)
2208:     PetscInt chunksize = 0;
2209: #endif

2211:     PetscCall(PetscOptionsInt("-mat_sell_slice_height", "Set the slice height used to store SELL matrix", "MatSELLSetSliceHeight", newsh, &newsh, &flg));
2212:     if (flg) { PetscCall(MatSeqSELLSetSliceHeight(B, newsh)); }
2213: #if defined(PETSC_HAVE_CUPM)
2214:     PetscCall(PetscOptionsInt("-mat_sell_chunk_size", "Set the chunksize for load-balanced CUDA/HIP kernels. Choices include 64,128,256,512,1024", NULL, chunksize, &chunksize, &flg));
2215:     if (flg) {
2216:       PetscCheck(chunksize >= 64 && chunksize <= 1024 && chunksize % 64 == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "chunksize must be a number in {64,128,256,512,1024}: value %" PetscInt_FMT, chunksize);
2217:       b->chunksize = chunksize;
2218:     }
2219: #endif
2220:   }
2221:   PetscOptionsEnd();
2222:   PetscFunctionReturn(PETSC_SUCCESS);
2223: }

2225: /*
2226:  Given a matrix generated with MatGetFactor() duplicates all the information in A into B
2227:  */
2228: static PetscErrorCode MatDuplicateNoCreate_SeqSELL(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
2229: {
2230:   Mat_SeqSELL *c = (Mat_SeqSELL *)C->data, *a = (Mat_SeqSELL *)A->data;
2231:   PetscInt     i, m                           = A->rmap->n;
2232:   PetscInt     totalslices = a->totalslices;

2234:   PetscFunctionBegin;
2235:   C->factortype = A->factortype;
2236:   c->row        = NULL;
2237:   c->col        = NULL;
2238:   c->icol       = NULL;
2239:   c->reallocs   = 0;
2240:   C->assembled  = PETSC_TRUE;

2242:   PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
2243:   PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

2245:   c->sliceheight = a->sliceheight;
2246:   PetscCall(PetscMalloc1(c->sliceheight * totalslices, &c->rlen));
2247:   PetscCall(PetscMalloc1(totalslices + 1, &c->sliidx));

2249:   for (i = 0; i < m; i++) c->rlen[i] = a->rlen[i];
2250:   for (i = 0; i < totalslices + 1; i++) c->sliidx[i] = a->sliidx[i];

2252:   /* allocate the matrix space */
2253:   if (mallocmatspace) {
2254:     PetscCall(PetscMalloc2(a->maxallocmat, &c->val, a->maxallocmat, &c->colidx));

2256:     c->singlemalloc = PETSC_TRUE;

2258:     if (m > 0) {
2259:       PetscCall(PetscArraycpy(c->colidx, a->colidx, a->maxallocmat));
2260:       if (cpvalues == MAT_COPY_VALUES) {
2261:         PetscCall(PetscArraycpy(c->val, a->val, a->maxallocmat));
2262:       } else {
2263:         PetscCall(PetscArrayzero(c->val, a->maxallocmat));
2264:       }
2265:     }
2266:   }

2268:   c->ignorezeroentries = a->ignorezeroentries;
2269:   c->roworiented       = a->roworiented;
2270:   c->nonew             = a->nonew;
2271:   if (a->diag) {
2272:     PetscCall(PetscMalloc1(m, &c->diag));
2273:     for (i = 0; i < m; i++) c->diag[i] = a->diag[i];
2274:   } else c->diag = NULL;

2276:   c->solve_work         = NULL;
2277:   c->saved_values       = NULL;
2278:   c->idiag              = NULL;
2279:   c->ssor_work          = NULL;
2280:   c->keepnonzeropattern = a->keepnonzeropattern;
2281:   c->free_val           = PETSC_TRUE;
2282:   c->free_colidx        = PETSC_TRUE;

2284:   c->maxallocmat  = a->maxallocmat;
2285:   c->maxallocrow  = a->maxallocrow;
2286:   c->rlenmax      = a->rlenmax;
2287:   c->nz           = a->nz;
2288:   C->preallocated = PETSC_TRUE;

2290:   c->nonzerorowcnt = a->nonzerorowcnt;
2291:   C->nonzerostate  = A->nonzerostate;

2293:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
2294:   PetscFunctionReturn(PETSC_SUCCESS);
2295: }

2297: PetscErrorCode MatDuplicate_SeqSELL(Mat A, MatDuplicateOption cpvalues, Mat *B)
2298: {
2299:   PetscFunctionBegin;
2300:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2301:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
2302:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2303:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2304:   PetscCall(MatDuplicateNoCreate_SeqSELL(*B, A, cpvalues, PETSC_TRUE));
2305:   PetscFunctionReturn(PETSC_SUCCESS);
2306: }

2308: /*MC
2309:    MATSEQSELL - MATSEQSELL = "seqsell" - A matrix type to be used for sequential sparse matrices,
2310:    based on the sliced Ellpack format, {cite}`zhangellpack2018`

2312:    Options Database Key:
2313: . -mat_type seqsell - sets the matrix type to "`MATSEQELL` during a call to `MatSetFromOptions()`

2315:    Level: beginner

2317: .seealso: `Mat`, `MatCreateSeqSELL()`, `MATSELL`, `MATMPISELL`, `MATSEQAIJ`, `MATAIJ`, `MATMPIAIJ`
2318: M*/

2320: /*MC
2321:    MATSELL - MATSELL = "sell" - A matrix type to be used for sparse matrices, {cite}`zhangellpack2018`

2323:    This matrix type is identical to `MATSEQSELL` when constructed with a single process communicator,
2324:    and `MATMPISELL` otherwise.  As a result, for single process communicators,
2325:   `MatSeqSELLSetPreallocation()` is supported, and similarly `MatMPISELLSetPreallocation()` is supported
2326:   for communicators controlling multiple processes.  It is recommended that you call both of
2327:   the above preallocation routines for simplicity.

2329:    Options Database Key:
2330: . -mat_type sell - sets the matrix type to "sell" during a call to MatSetFromOptions()

2332:   Level: beginner

2334:   Notes:
2335:   This format is only supported for real scalars, double precision, and 32-bit indices (the defaults).

2337:   It can provide better performance on Intel and AMD processes with AVX2 or AVX512 support for matrices that have a similar number of
2338:   non-zeros in contiguous groups of rows. However if the computation is memory bandwidth limited it may not provide much improvement.

2340:   Developer Notes:
2341:   On Intel (and AMD) systems some of the matrix operations use SIMD (AVX) instructions to achieve higher performance.

2343:   The sparse matrix format is as follows. For simplicity we assume a slice size of 2, it is actually 8
2344: .vb
2345:                             (2 0  3 4)
2346:    Consider the matrix A =  (5 0  6 0)
2347:                             (0 0  7 8)
2348:                             (0 0  9 9)

2350:    symbolically the Ellpack format can be written as

2352:         (2 3 4 |)           (0 2 3 |)
2353:    v =  (5 6 0 |)  colidx = (0 2 2 |)
2354:         --------            ---------
2355:         (7 8 |)             (2 3 |)
2356:         (9 9 |)             (2 3 |)

2358:     The data for 2 contiguous rows of the matrix are stored together (in column-major format) (with any left-over rows handled as a special case).
2359:     Any of the rows in a slice fewer columns than the rest of the slice (row 1 above) are padded with a previous valid column in their "extra" colidx[] locations and
2360:     zeros in their "extra" v locations so that the matrix operations do not need special code to handle different length rows within the 2 rows in a slice.

2362:     The one-dimensional representation of v used in the code is (2 5 3 6 4 0 7 9 8 9)  and for colidx is (0 0 2 2 3 2 2 2 3 3)

2364: .ve

2366:     See `MatMult_SeqSELL()` for how this format is used with the SIMD operations to achieve high performance.

2368: .seealso: `Mat`, `MatCreateSeqSELL()`, `MatCreateSeqAIJ()`, `MatCreateSELL()`, `MATSEQSELL`, `MATMPISELL`, `MATSEQAIJ`, `MATMPIAIJ`, `MATAIJ`
2369: M*/

2371: /*@
2372:   MatCreateSeqSELL - Creates a sparse matrix in `MATSEQSELL` format.

2374:   Collective

2376:   Input Parameters:
2377: + comm    - MPI communicator, set to `PETSC_COMM_SELF`
2378: . m       - number of rows
2379: . n       - number of columns
2380: . rlenmax - maximum number of nonzeros in a row, ignored if `rlen` is provided
2381: - rlen    - array containing the number of nonzeros in the various rows (possibly different for each row) or NULL

2383:   Output Parameter:
2384: . A - the matrix

2386:   Level: intermediate

2388:   Notes:
2389:   It is recommended that one use the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
2390:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
2391:   [MatXXXXSetPreallocation() is, for example, `MatSeqSELLSetPreallocation()`]

2393:   Specify the preallocated storage with either `rlenmax` or `rlen` (not both).
2394:   Set `rlenmax` = `PETSC_DEFAULT` and `rlen` = `NULL` for PETSc to control dynamic memory
2395:   allocation.

2397: .seealso: `Mat`, `MATSEQSELL`, `MatCreate()`, `MatCreateSELL()`, `MatSetValues()`, `MatSeqSELLSetPreallocation()`, `MATSELL`, `MATMPISELL`
2398:  @*/
2399: PetscErrorCode MatCreateSeqSELL(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt rlenmax, const PetscInt rlen[], Mat *A)
2400: {
2401:   PetscFunctionBegin;
2402:   PetscCall(MatCreate(comm, A));
2403:   PetscCall(MatSetSizes(*A, m, n, m, n));
2404:   PetscCall(MatSetType(*A, MATSEQSELL));
2405:   PetscCall(MatSeqSELLSetPreallocation_SeqSELL(*A, rlenmax, rlen));
2406:   PetscFunctionReturn(PETSC_SUCCESS);
2407: }

2409: PetscErrorCode MatEqual_SeqSELL(Mat A, Mat B, PetscBool *flg)
2410: {
2411:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data, *b = (Mat_SeqSELL *)B->data;
2412:   PetscInt     totalslices = a->totalslices;

2414:   PetscFunctionBegin;
2415:   /* If the  matrix dimensions are not equal,or no of nonzeros */
2416:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz) || (a->rlenmax != b->rlenmax)) {
2417:     *flg = PETSC_FALSE;
2418:     PetscFunctionReturn(PETSC_SUCCESS);
2419:   }
2420:   /* if the a->colidx are the same */
2421:   PetscCall(PetscArraycmp(a->colidx, b->colidx, a->sliidx[totalslices], flg));
2422:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);
2423:   /* if a->val are the same */
2424:   PetscCall(PetscArraycmp(a->val, b->val, a->sliidx[totalslices], flg));
2425:   PetscFunctionReturn(PETSC_SUCCESS);
2426: }

2428: PetscErrorCode MatSeqSELLInvalidateDiagonal(Mat A)
2429: {
2430:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;

2432:   PetscFunctionBegin;
2433:   a->idiagvalid = PETSC_FALSE;
2434:   PetscFunctionReturn(PETSC_SUCCESS);
2435: }

2437: PetscErrorCode MatConjugate_SeqSELL(Mat A)
2438: {
2439: #if defined(PETSC_USE_COMPLEX)
2440:   Mat_SeqSELL *a = (Mat_SeqSELL *)A->data;
2441:   PetscInt     i;
2442:   PetscScalar *val = a->val;

2444:   PetscFunctionBegin;
2445:   for (i = 0; i < a->sliidx[a->totalslices]; i++) { val[i] = PetscConj(val[i]); }
2446:   #if defined(PETSC_HAVE_CUPM)
2447:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
2448:   #endif
2449: #else
2450:   PetscFunctionBegin;
2451: #endif
2452:   PetscFunctionReturn(PETSC_SUCCESS);
2453: }