Actual source code: ts.c
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmda.h>
3: #include <petscdmshell.h>
4: #include <petscdmplex.h>
5: #include <petscdmswarm.h>
6: #include <petscviewer.h>
7: #include <petscdraw.h>
8: #include <petscconvest.h>
10: /* Logging support */
11: PetscClassId TS_CLASSID, DMTS_CLASSID;
12: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
14: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED", "STEPOVER", "INTERPOLATE", "MATCHSTEP", "TSExactFinalTimeOption", "TS_EXACTFINALTIME_", NULL};
16: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt, TSAdaptType default_type)
17: {
18: PetscFunctionBegin;
20: PetscAssertPointer(default_type, 2);
21: if (!((PetscObject)adapt)->type_name) PetscCall(TSAdaptSetType(adapt, default_type));
22: PetscFunctionReturn(PETSC_SUCCESS);
23: }
25: /*@
26: TSSetFromOptions - Sets various `TS` parameters from the options database
28: Collective
30: Input Parameter:
31: . ts - the `TS` context obtained from `TSCreate()`
33: Options Database Keys:
34: + -ts_type <type> - EULER, BEULER, SUNDIALS, PSEUDO, CN, RK, THETA, ALPHA, GLLE, SSP, GLEE, BSYMP, IRK, see `TSType`
35: . -ts_save_trajectory - checkpoint the solution at each time-step
36: . -ts_max_time <time> - maximum time to compute to
37: . -ts_time_span <t0,...tf> - sets the time span, solutions are computed and stored for each indicated time, init_time and max_time are set
38: . -ts_eval_times <t0,...tn> - time points where solutions are computed and stored for each indicated time
39: . -ts_max_steps <steps> - maximum number of time-steps to take
40: . -ts_init_time <time> - initial time to start computation
41: . -ts_final_time <time> - final time to compute to (deprecated: use `-ts_max_time`)
42: . -ts_dt <dt> - initial time step
43: . -ts_exact_final_time <stepover,interpolate,matchstep> - whether to stop at the exact given final time and how to compute the solution at that time
44: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
45: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
46: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
47: . -ts_rtol <rtol> - relative tolerance for local truncation error
48: . -ts_atol <atol> - Absolute tolerance for local truncation error
49: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
50: . -ts_rhs_jacobian_test_mult_transpose - test the Jacobian at each iteration against finite difference with RHS function
51: . -ts_adjoint_solve <yes,no> - After solving the ODE/DAE solve the adjoint problem (requires `-ts_save_trajectory`)
52: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
53: . -ts_monitor - print information at each timestep
54: . -ts_monitor_cancel - Cancel all monitors
55: . -ts_monitor_lg_solution - Monitor solution graphically
56: . -ts_monitor_lg_error - Monitor error graphically
57: . -ts_monitor_error - Monitors norm of error
58: . -ts_monitor_lg_timestep - Monitor timestep size graphically
59: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
60: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
61: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
62: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
63: . -ts_monitor_draw_solution - Monitor solution graphically
64: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
65: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
66: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
67: . -ts_monitor_solution_interval <interval> - output once every interval (default=1) time steps. Use -1 to only output at the end of the simulation
68: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03" PetscInt_FMT ".vts (filename-%%03" PetscInt_FMT ".vtu)
69: . -ts_monitor_solution_vtk_interval <interval> - output once every interval (default=1) time steps. Use -1 to only output at the end of the simulation
70: - -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
72: Level: beginner
74: Notes:
75: See `SNESSetFromOptions()` and `KSPSetFromOptions()` for how to control the nonlinear and linear solves used by the time-stepper.
77: Certain `SNES` options get reset for each new nonlinear solver, for example `-snes_lag_jacobian its` and `-snes_lag_preconditioner its`, in order
78: to retain them over the multiple nonlinear solves that `TS` uses you must also provide `-snes_lag_jacobian_persists true` and
79: `-snes_lag_preconditioner_persists true`
81: Developer Notes:
82: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
84: .seealso: [](ch_ts), `TS`, `TSGetType()`
85: @*/
86: PetscErrorCode TSSetFromOptions(TS ts)
87: {
88: PetscBool opt, flg, tflg;
89: char monfilename[PETSC_MAX_PATH_LEN];
90: PetscReal time_step, eval_times[100];
91: PetscInt num_eval_times = PETSC_STATIC_ARRAY_LENGTH(eval_times);
92: TSExactFinalTimeOption eftopt;
93: char dir[16];
94: TSIFunctionFn *ifun;
95: const char *defaultType;
96: char typeName[256];
98: PetscFunctionBegin;
101: PetscCall(TSRegisterAll());
102: PetscCall(TSGetIFunction(ts, NULL, &ifun, NULL));
104: PetscObjectOptionsBegin((PetscObject)ts);
105: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
106: else defaultType = ifun ? TSBEULER : TSEULER;
107: PetscCall(PetscOptionsFList("-ts_type", "TS method", "TSSetType", TSList, defaultType, typeName, 256, &opt));
108: if (opt) PetscCall(TSSetType(ts, typeName));
109: else PetscCall(TSSetType(ts, defaultType));
111: /* Handle generic TS options */
112: PetscCall(PetscOptionsDeprecated("-ts_final_time", "-ts_max_time", "3.10", NULL));
113: PetscCall(PetscOptionsReal("-ts_max_time", "Maximum time to run to", "TSSetMaxTime", ts->max_time, &ts->max_time, NULL));
114: PetscCall(PetscOptionsRealArray("-ts_time_span", "Time span", "TSSetTimeSpan", eval_times, &num_eval_times, &flg));
115: if (flg) PetscCall(TSSetTimeSpan(ts, num_eval_times, eval_times));
116: num_eval_times = PETSC_STATIC_ARRAY_LENGTH(eval_times);
117: PetscCall(PetscOptionsRealArray("-ts_eval_times", "Evaluation time points", "TSSetEvaluationTimes", eval_times, &num_eval_times, &opt));
118: PetscCheck(flg != opt || (!flg && !opt), PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "May not provide -ts_time_span and -ts_eval_times simultaneously");
119: if (opt) PetscCall(TSSetEvaluationTimes(ts, num_eval_times, eval_times));
120: PetscCall(PetscOptionsInt("-ts_max_steps", "Maximum number of time steps", "TSSetMaxSteps", ts->max_steps, &ts->max_steps, NULL));
121: PetscCall(PetscOptionsReal("-ts_init_time", "Initial time", "TSSetTime", ts->ptime, &ts->ptime, NULL));
122: PetscCall(PetscOptionsReal("-ts_dt", "Initial time step", "TSSetTimeStep", ts->time_step, &time_step, &flg));
123: if (flg) PetscCall(TSSetTimeStep(ts, time_step));
124: PetscCall(PetscOptionsEnum("-ts_exact_final_time", "Option for handling of final time step", "TSSetExactFinalTime", TSExactFinalTimeOptions, (PetscEnum)ts->exact_final_time, (PetscEnum *)&eftopt, &flg));
125: if (flg) PetscCall(TSSetExactFinalTime(ts, eftopt));
126: PetscCall(PetscOptionsInt("-ts_max_snes_failures", "Maximum number of nonlinear solve failures", "TSSetMaxSNESFailures", ts->max_snes_failures, &ts->max_snes_failures, &flg));
127: if (flg) PetscCall(TSSetMaxSNESFailures(ts, ts->max_snes_failures));
128: PetscCall(PetscOptionsInt("-ts_max_reject", "Maximum number of step rejections before step fails", "TSSetMaxStepRejections", ts->max_reject, &ts->max_reject, &flg));
129: if (flg) PetscCall(TSSetMaxStepRejections(ts, ts->max_reject));
130: PetscCall(PetscOptionsBool("-ts_error_if_step_fails", "Error if no step succeeds", "TSSetErrorIfStepFails", ts->errorifstepfailed, &ts->errorifstepfailed, NULL));
131: PetscCall(PetscOptionsBoundedReal("-ts_rtol", "Relative tolerance for local truncation error", "TSSetTolerances", ts->rtol, &ts->rtol, NULL, 0));
132: PetscCall(PetscOptionsBoundedReal("-ts_atol", "Absolute tolerance for local truncation error", "TSSetTolerances", ts->atol, &ts->atol, NULL, 0));
134: PetscCall(PetscOptionsBool("-ts_rhs_jacobian_test_mult", "Test the RHS Jacobian for consistency with RHS at each solve ", "None", ts->testjacobian, &ts->testjacobian, NULL));
135: PetscCall(PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose", "Test the RHS Jacobian transpose for consistency with RHS at each solve ", "None", ts->testjacobiantranspose, &ts->testjacobiantranspose, NULL));
136: PetscCall(PetscOptionsBool("-ts_use_splitrhsfunction", "Use the split RHS function for multirate solvers ", "TSSetUseSplitRHSFunction", ts->use_splitrhsfunction, &ts->use_splitrhsfunction, NULL));
137: #if defined(PETSC_HAVE_SAWS)
138: {
139: PetscBool set;
140: flg = PETSC_FALSE;
141: PetscCall(PetscOptionsBool("-ts_saws_block", "Block for SAWs memory snooper at end of TSSolve", "PetscObjectSAWsBlock", ((PetscObject)ts)->amspublishblock, &flg, &set));
142: if (set) PetscCall(PetscObjectSAWsSetBlock((PetscObject)ts, flg));
143: }
144: #endif
146: /* Monitor options */
147: PetscCall(PetscOptionsInt("-ts_monitor_frequency", "Number of time steps between monitor output", "TSMonitorSetFrequency", ts->monitorFrequency, &ts->monitorFrequency, NULL));
148: PetscCall(TSMonitorSetFromOptions(ts, "-ts_monitor", "Monitor time and timestep size", "TSMonitorDefault", TSMonitorDefault, NULL));
149: PetscCall(TSMonitorSetFromOptions(ts, "-ts_monitor_extreme", "Monitor extreme values of the solution", "TSMonitorExtreme", TSMonitorExtreme, NULL));
150: PetscCall(TSMonitorSetFromOptions(ts, "-ts_monitor_solution", "View the solution at each timestep", "TSMonitorSolution", TSMonitorSolution, NULL));
151: PetscCall(TSMonitorSetFromOptions(ts, "-ts_dmswarm_monitor_moments", "Monitor moments of particle distribution", "TSDMSwarmMonitorMoments", TSDMSwarmMonitorMoments, NULL));
153: PetscCall(PetscOptionsString("-ts_monitor_python", "Use Python function", "TSMonitorSet", NULL, monfilename, sizeof(monfilename), &flg));
154: if (flg) PetscCall(PetscPythonMonitorSet((PetscObject)ts, monfilename));
156: PetscCall(PetscOptionsName("-ts_monitor_lg_solution", "Monitor solution graphically", "TSMonitorLGSolution", &opt));
157: if (opt) {
158: PetscInt howoften = 1;
159: DM dm;
160: PetscBool net;
162: PetscCall(PetscOptionsInt("-ts_monitor_lg_solution", "Monitor solution graphically", "TSMonitorLGSolution", howoften, &howoften, NULL));
163: PetscCall(TSGetDM(ts, &dm));
164: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMNETWORK, &net));
165: if (net) {
166: TSMonitorLGCtxNetwork ctx;
167: PetscCall(TSMonitorLGCtxNetworkCreate(ts, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 600, 400, howoften, &ctx));
168: PetscCall(TSMonitorSet(ts, TSMonitorLGCtxNetworkSolution, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxNetworkDestroy));
169: PetscCall(PetscOptionsBool("-ts_monitor_lg_solution_semilogy", "Plot the solution with a semi-log axis", "", ctx->semilogy, &ctx->semilogy, NULL));
170: } else {
171: TSMonitorLGCtx ctx;
172: PetscCall(TSMonitorLGCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300, howoften, &ctx));
173: PetscCall(TSMonitorSet(ts, TSMonitorLGSolution, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxDestroy));
174: }
175: }
177: PetscCall(PetscOptionsName("-ts_monitor_lg_error", "Monitor error graphically", "TSMonitorLGError", &opt));
178: if (opt) {
179: TSMonitorLGCtx ctx;
180: PetscInt howoften = 1;
182: PetscCall(PetscOptionsInt("-ts_monitor_lg_error", "Monitor error graphically", "TSMonitorLGError", howoften, &howoften, NULL));
183: PetscCall(TSMonitorLGCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300, howoften, &ctx));
184: PetscCall(TSMonitorSet(ts, TSMonitorLGError, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxDestroy));
185: }
186: PetscCall(TSMonitorSetFromOptions(ts, "-ts_monitor_error", "View the error at each timestep", "TSMonitorError", TSMonitorError, NULL));
188: PetscCall(PetscOptionsName("-ts_monitor_lg_timestep", "Monitor timestep size graphically", "TSMonitorLGTimeStep", &opt));
189: if (opt) {
190: TSMonitorLGCtx ctx;
191: PetscInt howoften = 1;
193: PetscCall(PetscOptionsInt("-ts_monitor_lg_timestep", "Monitor timestep size graphically", "TSMonitorLGTimeStep", howoften, &howoften, NULL));
194: PetscCall(TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300, howoften, &ctx));
195: PetscCall(TSMonitorSet(ts, TSMonitorLGTimeStep, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxDestroy));
196: }
197: PetscCall(PetscOptionsName("-ts_monitor_lg_timestep_log", "Monitor log timestep size graphically", "TSMonitorLGTimeStep", &opt));
198: if (opt) {
199: TSMonitorLGCtx ctx;
200: PetscInt howoften = 1;
202: PetscCall(PetscOptionsInt("-ts_monitor_lg_timestep_log", "Monitor log timestep size graphically", "TSMonitorLGTimeStep", howoften, &howoften, NULL));
203: PetscCall(TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300, howoften, &ctx));
204: PetscCall(TSMonitorSet(ts, TSMonitorLGTimeStep, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxDestroy));
205: ctx->semilogy = PETSC_TRUE;
206: }
208: PetscCall(PetscOptionsName("-ts_monitor_lg_snes_iterations", "Monitor number nonlinear iterations for each timestep graphically", "TSMonitorLGSNESIterations", &opt));
209: if (opt) {
210: TSMonitorLGCtx ctx;
211: PetscInt howoften = 1;
213: PetscCall(PetscOptionsInt("-ts_monitor_lg_snes_iterations", "Monitor number nonlinear iterations for each timestep graphically", "TSMonitorLGSNESIterations", howoften, &howoften, NULL));
214: PetscCall(TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300, howoften, &ctx));
215: PetscCall(TSMonitorSet(ts, TSMonitorLGSNESIterations, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxDestroy));
216: }
217: PetscCall(PetscOptionsName("-ts_monitor_lg_ksp_iterations", "Monitor number nonlinear iterations for each timestep graphically", "TSMonitorLGKSPIterations", &opt));
218: if (opt) {
219: TSMonitorLGCtx ctx;
220: PetscInt howoften = 1;
222: PetscCall(PetscOptionsInt("-ts_monitor_lg_ksp_iterations", "Monitor number nonlinear iterations for each timestep graphically", "TSMonitorLGKSPIterations", howoften, &howoften, NULL));
223: PetscCall(TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 400, 300, howoften, &ctx));
224: PetscCall(TSMonitorSet(ts, TSMonitorLGKSPIterations, ctx, (PetscCtxDestroyFn *)TSMonitorLGCtxDestroy));
225: }
226: PetscCall(PetscOptionsName("-ts_monitor_sp_eig", "Monitor eigenvalues of linearized operator graphically", "TSMonitorSPEig", &opt));
227: if (opt) {
228: TSMonitorSPEigCtx ctx;
229: PetscInt howoften = 1;
231: PetscCall(PetscOptionsInt("-ts_monitor_sp_eig", "Monitor eigenvalues of linearized operator graphically", "TSMonitorSPEig", howoften, &howoften, NULL));
232: PetscCall(TSMonitorSPEigCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx));
233: PetscCall(TSMonitorSet(ts, TSMonitorSPEig, ctx, (PetscCtxDestroyFn *)TSMonitorSPEigCtxDestroy));
234: }
235: PetscCall(PetscOptionsName("-ts_monitor_sp_swarm", "Display particle phase space from the DMSwarm", "TSMonitorSPSwarm", &opt));
236: if (opt) {
237: TSMonitorSPCtx ctx;
238: PetscInt howoften = 1, retain = 0;
239: PetscBool phase = PETSC_TRUE, create = PETSC_TRUE, multispecies = PETSC_FALSE;
241: for (PetscInt i = 0; i < ts->numbermonitors; ++i)
242: if (ts->monitor[i] == TSMonitorSPSwarmSolution) {
243: create = PETSC_FALSE;
244: break;
245: }
246: if (create) {
247: PetscCall(PetscOptionsInt("-ts_monitor_sp_swarm", "Display particles phase space from the DMSwarm", "TSMonitorSPSwarm", howoften, &howoften, NULL));
248: PetscCall(PetscOptionsInt("-ts_monitor_sp_swarm_retain", "Retain n points plotted to show trajectory, -1 for all points", "TSMonitorSPSwarm", retain, &retain, NULL));
249: PetscCall(PetscOptionsBool("-ts_monitor_sp_swarm_phase", "Plot in phase space rather than coordinate space", "TSMonitorSPSwarm", phase, &phase, NULL));
250: PetscCall(PetscOptionsBool("-ts_monitor_sp_swarm_multi_species", "Color particles by particle species", "TSMonitorSPSwarm", multispecies, &multispecies, NULL));
251: PetscCall(TSMonitorSPCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, retain, phase, multispecies, &ctx));
252: PetscCall(TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscCtxDestroyFn *)TSMonitorSPCtxDestroy));
253: }
254: }
255: PetscCall(PetscOptionsName("-ts_monitor_hg_swarm", "Display particle histogram from the DMSwarm", "TSMonitorHGSwarm", &opt));
256: if (opt) {
257: TSMonitorHGCtx ctx;
258: PetscInt howoften = 1, Ns = 1;
259: PetscBool velocity = PETSC_FALSE, create = PETSC_TRUE;
261: for (PetscInt i = 0; i < ts->numbermonitors; ++i)
262: if (ts->monitor[i] == TSMonitorHGSwarmSolution) {
263: create = PETSC_FALSE;
264: break;
265: }
266: if (create) {
267: DM sw, dm;
268: PetscInt Nc, Nb;
270: PetscCall(TSGetDM(ts, &sw));
271: PetscCall(DMSwarmGetCellDM(sw, &dm));
272: PetscCall(DMPlexGetHeightStratum(dm, 0, NULL, &Nc));
273: Nb = PetscMin(20, PetscMax(10, Nc));
274: PetscCall(PetscOptionsInt("-ts_monitor_hg_swarm", "Display particles histogram from the DMSwarm", "TSMonitorHGSwarm", howoften, &howoften, NULL));
275: PetscCall(PetscOptionsBool("-ts_monitor_hg_swarm_velocity", "Plot in velocity space rather than coordinate space", "TSMonitorHGSwarm", velocity, &velocity, NULL));
276: PetscCall(PetscOptionsInt("-ts_monitor_hg_swarm_species", "Number of species to histogram", "TSMonitorHGSwarm", Ns, &Ns, NULL));
277: PetscCall(PetscOptionsInt("-ts_monitor_hg_swarm_bins", "Number of histogram bins", "TSMonitorHGSwarm", Nb, &Nb, NULL));
278: PetscCall(TSMonitorHGCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, Ns, Nb, velocity, &ctx));
279: PetscCall(TSMonitorSet(ts, TSMonitorHGSwarmSolution, ctx, (PetscCtxDestroyFn *)TSMonitorHGCtxDestroy));
280: }
281: }
282: opt = PETSC_FALSE;
283: PetscCall(PetscOptionsName("-ts_monitor_draw_solution", "Monitor solution graphically", "TSMonitorDrawSolution", &opt));
284: if (opt) {
285: TSMonitorDrawCtx ctx;
286: PetscInt howoften = 1;
288: PetscCall(PetscOptionsInt("-ts_monitor_draw_solution", "Monitor solution graphically", "TSMonitorDrawSolution", howoften, &howoften, NULL));
289: PetscCall(TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts), NULL, "Computed Solution", PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx));
290: PetscCall(TSMonitorSet(ts, TSMonitorDrawSolution, ctx, (PetscCtxDestroyFn *)TSMonitorDrawCtxDestroy));
291: }
292: opt = PETSC_FALSE;
293: PetscCall(PetscOptionsName("-ts_monitor_draw_solution_phase", "Monitor solution graphically", "TSMonitorDrawSolutionPhase", &opt));
294: if (opt) {
295: TSMonitorDrawCtx ctx;
296: PetscReal bounds[4];
297: PetscInt n = 4;
298: PetscDraw draw;
299: PetscDrawAxis axis;
301: PetscCall(PetscOptionsRealArray("-ts_monitor_draw_solution_phase", "Monitor solution graphically", "TSMonitorDrawSolutionPhase", bounds, &n, NULL));
302: PetscCheck(n == 4, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Must provide bounding box of phase field");
303: PetscCall(TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, 1, &ctx));
304: PetscCall(PetscViewerDrawGetDraw(ctx->viewer, 0, &draw));
305: PetscCall(PetscViewerDrawGetDrawAxis(ctx->viewer, 0, &axis));
306: PetscCall(PetscDrawAxisSetLimits(axis, bounds[0], bounds[2], bounds[1], bounds[3]));
307: PetscCall(PetscDrawAxisSetLabels(axis, "Phase Diagram", "Variable 1", "Variable 2"));
308: PetscCall(TSMonitorSet(ts, TSMonitorDrawSolutionPhase, ctx, (PetscCtxDestroyFn *)TSMonitorDrawCtxDestroy));
309: }
310: opt = PETSC_FALSE;
311: PetscCall(PetscOptionsName("-ts_monitor_draw_error", "Monitor error graphically", "TSMonitorDrawError", &opt));
312: if (opt) {
313: TSMonitorDrawCtx ctx;
314: PetscInt howoften = 1;
316: PetscCall(PetscOptionsInt("-ts_monitor_draw_error", "Monitor error graphically", "TSMonitorDrawError", howoften, &howoften, NULL));
317: PetscCall(TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts), NULL, "Error", PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx));
318: PetscCall(TSMonitorSet(ts, TSMonitorDrawError, ctx, (PetscCtxDestroyFn *)TSMonitorDrawCtxDestroy));
319: }
320: opt = PETSC_FALSE;
321: PetscCall(PetscOptionsName("-ts_monitor_draw_solution_function", "Monitor solution provided by TSMonitorSetSolutionFunction() graphically", "TSMonitorDrawSolutionFunction", &opt));
322: if (opt) {
323: TSMonitorDrawCtx ctx;
324: PetscInt howoften = 1;
326: PetscCall(PetscOptionsInt("-ts_monitor_draw_solution_function", "Monitor solution provided by TSMonitorSetSolutionFunction() graphically", "TSMonitorDrawSolutionFunction", howoften, &howoften, NULL));
327: PetscCall(TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts), NULL, "Solution provided by user function", PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx));
328: PetscCall(TSMonitorSet(ts, TSMonitorDrawSolutionFunction, ctx, (PetscCtxDestroyFn *)TSMonitorDrawCtxDestroy));
329: }
331: opt = PETSC_FALSE;
332: PetscCall(PetscOptionsString("-ts_monitor_solution_vtk", "Save each time step to a binary file, use filename-%%03" PetscInt_FMT ".vts", "TSMonitorSolutionVTK", NULL, monfilename, sizeof(monfilename), &flg));
333: if (flg) {
334: TSMonitorVTKCtx ctx;
336: PetscCall(TSMonitorSolutionVTKCtxCreate(monfilename, &ctx));
337: PetscCall(PetscOptionsInt("-ts_monitor_solution_vtk_interval", "Save every interval time step (-1 for last step only)", NULL, ctx->interval, &ctx->interval, NULL));
338: PetscCall(TSMonitorSet(ts, (PetscErrorCode (*)(TS, PetscInt, PetscReal, Vec, void *))TSMonitorSolutionVTK, ctx, (PetscCtxDestroyFn *)TSMonitorSolutionVTKDestroy));
339: }
341: PetscCall(PetscOptionsString("-ts_monitor_dmda_ray", "Display a ray of the solution", "None", "y=0", dir, sizeof(dir), &flg));
342: if (flg) {
343: TSMonitorDMDARayCtx *rayctx;
344: int ray = 0;
345: DMDirection ddir;
346: DM da;
347: PetscMPIInt rank;
349: PetscCheck(dir[1] == '=', PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Unknown ray %s", dir);
350: if (dir[0] == 'x') ddir = DM_X;
351: else if (dir[0] == 'y') ddir = DM_Y;
352: else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Unknown ray %s", dir);
353: sscanf(dir + 2, "%d", &ray);
355: PetscCall(PetscInfo(ts, "Displaying DMDA ray %c = %d\n", dir[0], ray));
356: PetscCall(PetscNew(&rayctx));
357: PetscCall(TSGetDM(ts, &da));
358: PetscCall(DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter));
359: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)ts), &rank));
360: if (rank == 0) PetscCall(PetscViewerDrawOpen(PETSC_COMM_SELF, NULL, NULL, 0, 0, 600, 300, &rayctx->viewer));
361: rayctx->lgctx = NULL;
362: PetscCall(TSMonitorSet(ts, TSMonitorDMDARay, rayctx, TSMonitorDMDARayDestroy));
363: }
364: PetscCall(PetscOptionsString("-ts_monitor_lg_dmda_ray", "Display a ray of the solution", "None", "x=0", dir, sizeof(dir), &flg));
365: if (flg) {
366: TSMonitorDMDARayCtx *rayctx;
367: int ray = 0;
368: DMDirection ddir;
369: DM da;
370: PetscInt howoften = 1;
372: PetscCheck(dir[1] == '=', PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
373: if (dir[0] == 'x') ddir = DM_X;
374: else if (dir[0] == 'y') ddir = DM_Y;
375: else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
376: sscanf(dir + 2, "%d", &ray);
378: PetscCall(PetscInfo(ts, "Displaying LG DMDA ray %c = %d\n", dir[0], ray));
379: PetscCall(PetscNew(&rayctx));
380: PetscCall(TSGetDM(ts, &da));
381: PetscCall(DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter));
382: PetscCall(TSMonitorLGCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 600, 400, howoften, &rayctx->lgctx));
383: PetscCall(TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy));
384: }
386: PetscCall(PetscOptionsName("-ts_monitor_envelope", "Monitor maximum and minimum value of each component of the solution", "TSMonitorEnvelope", &opt));
387: if (opt) {
388: TSMonitorEnvelopeCtx ctx;
390: PetscCall(TSMonitorEnvelopeCtxCreate(ts, &ctx));
391: PetscCall(TSMonitorSet(ts, TSMonitorEnvelope, ctx, (PetscCtxDestroyFn *)TSMonitorEnvelopeCtxDestroy));
392: }
393: flg = PETSC_FALSE;
394: PetscCall(PetscOptionsBool("-ts_monitor_cancel", "Remove all monitors", "TSMonitorCancel", flg, &flg, &opt));
395: if (opt && flg) PetscCall(TSMonitorCancel(ts));
397: flg = PETSC_FALSE;
398: PetscCall(PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeIJacobianDefaultColor", flg, &flg, NULL));
399: if (flg) {
400: DM dm;
402: PetscCall(TSGetDM(ts, &dm));
403: PetscCall(DMTSUnsetIJacobianContext_Internal(dm));
404: PetscCall(TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, NULL));
405: PetscCall(PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n"));
406: }
408: /* Handle specific TS options */
409: PetscTryTypeMethod(ts, setfromoptions, PetscOptionsObject);
411: /* Handle TSAdapt options */
412: PetscCall(TSGetAdapt(ts, &ts->adapt));
413: PetscCall(TSAdaptSetDefaultType(ts->adapt, ts->default_adapt_type));
414: PetscCall(TSAdaptSetFromOptions(ts->adapt, PetscOptionsObject));
416: /* TS trajectory must be set after TS, since it may use some TS options above */
417: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
418: PetscCall(PetscOptionsBool("-ts_save_trajectory", "Save the solution at each timestep", "TSSetSaveTrajectory", tflg, &tflg, NULL));
419: if (tflg) PetscCall(TSSetSaveTrajectory(ts));
421: PetscCall(TSAdjointSetFromOptions(ts, PetscOptionsObject));
423: /* process any options handlers added with PetscObjectAddOptionsHandler() */
424: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)ts, PetscOptionsObject));
425: PetscOptionsEnd();
427: if (ts->trajectory) PetscCall(TSTrajectorySetFromOptions(ts->trajectory, ts));
429: /* why do we have to do this here and not during TSSetUp? */
430: PetscCall(TSGetSNES(ts, &ts->snes));
431: if (ts->problem_type == TS_LINEAR) {
432: PetscCall(PetscObjectTypeCompareAny((PetscObject)ts->snes, &flg, SNESKSPONLY, SNESKSPTRANSPOSEONLY, ""));
433: if (!flg) PetscCall(SNESSetType(ts->snes, SNESKSPONLY));
434: }
435: PetscCall(SNESSetFromOptions(ts->snes));
436: PetscFunctionReturn(PETSC_SUCCESS);
437: }
439: /*@
440: TSGetTrajectory - Gets the trajectory from a `TS` if it exists
442: Collective
444: Input Parameter:
445: . ts - the `TS` context obtained from `TSCreate()`
447: Output Parameter:
448: . tr - the `TSTrajectory` object, if it exists
450: Level: advanced
452: Note:
453: This routine should be called after all `TS` options have been set
455: .seealso: [](ch_ts), `TS`, `TSTrajectory`, `TSAdjointSolve()`, `TSTrajectoryCreate()`
456: @*/
457: PetscErrorCode TSGetTrajectory(TS ts, TSTrajectory *tr)
458: {
459: PetscFunctionBegin;
461: *tr = ts->trajectory;
462: PetscFunctionReturn(PETSC_SUCCESS);
463: }
465: /*@
466: TSSetSaveTrajectory - Causes the `TS` to save its solutions as it iterates forward in time in a `TSTrajectory` object
468: Collective
470: Input Parameter:
471: . ts - the `TS` context obtained from `TSCreate()`
473: Options Database Keys:
474: + -ts_save_trajectory - saves the trajectory to a file
475: - -ts_trajectory_type type - set trajectory type
477: Level: intermediate
479: Notes:
480: This routine should be called after all `TS` options have been set
482: The `TSTRAJECTORYVISUALIZATION` files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
483: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
485: .seealso: [](ch_ts), `TS`, `TSTrajectory`, `TSGetTrajectory()`, `TSAdjointSolve()`
486: @*/
487: PetscErrorCode TSSetSaveTrajectory(TS ts)
488: {
489: PetscFunctionBegin;
491: if (!ts->trajectory) PetscCall(TSTrajectoryCreate(PetscObjectComm((PetscObject)ts), &ts->trajectory));
492: PetscFunctionReturn(PETSC_SUCCESS);
493: }
495: /*@
496: TSResetTrajectory - Destroys and recreates the internal `TSTrajectory` object
498: Collective
500: Input Parameter:
501: . ts - the `TS` context obtained from `TSCreate()`
503: Level: intermediate
505: .seealso: [](ch_ts), `TSTrajectory`, `TSGetTrajectory()`, `TSAdjointSolve()`, `TSRemoveTrajectory()`
506: @*/
507: PetscErrorCode TSResetTrajectory(TS ts)
508: {
509: PetscFunctionBegin;
511: if (ts->trajectory) {
512: PetscCall(TSTrajectoryDestroy(&ts->trajectory));
513: PetscCall(TSTrajectoryCreate(PetscObjectComm((PetscObject)ts), &ts->trajectory));
514: }
515: PetscFunctionReturn(PETSC_SUCCESS);
516: }
518: /*@
519: TSRemoveTrajectory - Destroys and removes the internal `TSTrajectory` object from a `TS`
521: Collective
523: Input Parameter:
524: . ts - the `TS` context obtained from `TSCreate()`
526: Level: intermediate
528: .seealso: [](ch_ts), `TSTrajectory`, `TSResetTrajectory()`, `TSAdjointSolve()`
529: @*/
530: PetscErrorCode TSRemoveTrajectory(TS ts)
531: {
532: PetscFunctionBegin;
534: if (ts->trajectory) PetscCall(TSTrajectoryDestroy(&ts->trajectory));
535: PetscFunctionReturn(PETSC_SUCCESS);
536: }
538: /*@
539: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
540: set with `TSSetRHSJacobian()`.
542: Collective
544: Input Parameters:
545: + ts - the `TS` context
546: . t - current timestep
547: - U - input vector
549: Output Parameters:
550: + A - Jacobian matrix
551: - B - optional preconditioning matrix
553: Level: developer
555: Note:
556: Most users should not need to explicitly call this routine, as it
557: is used internally within the nonlinear solvers.
559: .seealso: [](ch_ts), `TS`, `TSSetRHSJacobian()`, `KSPSetOperators()`
560: @*/
561: PetscErrorCode TSComputeRHSJacobian(TS ts, PetscReal t, Vec U, Mat A, Mat B)
562: {
563: PetscObjectState Ustate;
564: PetscObjectId Uid;
565: DM dm;
566: DMTS tsdm;
567: TSRHSJacobianFn *rhsjacobianfunc;
568: void *ctx;
569: TSRHSFunctionFn *rhsfunction;
571: PetscFunctionBegin;
574: PetscCheckSameComm(ts, 1, U, 3);
575: PetscCall(TSGetDM(ts, &dm));
576: PetscCall(DMGetDMTS(dm, &tsdm));
577: PetscCall(DMTSGetRHSFunction(dm, &rhsfunction, NULL));
578: PetscCall(DMTSGetRHSJacobian(dm, &rhsjacobianfunc, &ctx));
579: PetscCall(PetscObjectStateGet((PetscObject)U, &Ustate));
580: PetscCall(PetscObjectGetId((PetscObject)U, &Uid));
582: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) PetscFunctionReturn(PETSC_SUCCESS);
584: PetscCheck(ts->rhsjacobian.shift == 0.0 || !ts->rhsjacobian.reuse, PetscObjectComm((PetscObject)ts), PETSC_ERR_USER, "Should not call TSComputeRHSJacobian() on a shifted matrix (shift=%lf) when RHSJacobian is reusable.", (double)ts->rhsjacobian.shift);
585: if (rhsjacobianfunc) {
586: PetscCall(PetscLogEventBegin(TS_JacobianEval, U, ts, A, B));
587: PetscCallBack("TS callback Jacobian", (*rhsjacobianfunc)(ts, t, U, A, B, ctx));
588: ts->rhsjacs++;
589: PetscCall(PetscLogEventEnd(TS_JacobianEval, U, ts, A, B));
590: } else {
591: PetscCall(MatZeroEntries(A));
592: if (B && A != B) PetscCall(MatZeroEntries(B));
593: }
594: ts->rhsjacobian.time = t;
595: ts->rhsjacobian.shift = 0;
596: ts->rhsjacobian.scale = 1.;
597: PetscCall(PetscObjectGetId((PetscObject)U, &ts->rhsjacobian.Xid));
598: PetscCall(PetscObjectStateGet((PetscObject)U, &ts->rhsjacobian.Xstate));
599: PetscFunctionReturn(PETSC_SUCCESS);
600: }
602: /*@
603: TSComputeRHSFunction - Evaluates the right-hand-side function for a `TS`
605: Collective
607: Input Parameters:
608: + ts - the `TS` context
609: . t - current time
610: - U - state vector
612: Output Parameter:
613: . y - right-hand side
615: Level: developer
617: Note:
618: Most users should not need to explicitly call this routine, as it
619: is used internally within the nonlinear solvers.
621: .seealso: [](ch_ts), `TS`, `TSSetRHSFunction()`, `TSComputeIFunction()`
622: @*/
623: PetscErrorCode TSComputeRHSFunction(TS ts, PetscReal t, Vec U, Vec y)
624: {
625: TSRHSFunctionFn *rhsfunction;
626: TSIFunctionFn *ifunction;
627: void *ctx;
628: DM dm;
630: PetscFunctionBegin;
634: PetscCall(TSGetDM(ts, &dm));
635: PetscCall(DMTSGetRHSFunction(dm, &rhsfunction, &ctx));
636: PetscCall(DMTSGetIFunction(dm, &ifunction, NULL));
638: PetscCheck(rhsfunction || ifunction, PetscObjectComm((PetscObject)ts), PETSC_ERR_USER, "Must call TSSetRHSFunction() and / or TSSetIFunction()");
640: if (rhsfunction) {
641: PetscCall(PetscLogEventBegin(TS_FunctionEval, U, ts, y, 0));
642: PetscCall(VecLockReadPush(U));
643: PetscCallBack("TS callback right-hand-side", (*rhsfunction)(ts, t, U, y, ctx));
644: PetscCall(VecLockReadPop(U));
645: ts->rhsfuncs++;
646: PetscCall(PetscLogEventEnd(TS_FunctionEval, U, ts, y, 0));
647: } else PetscCall(VecZeroEntries(y));
648: PetscFunctionReturn(PETSC_SUCCESS);
649: }
651: /*@
652: TSComputeSolutionFunction - Evaluates the solution function.
654: Collective
656: Input Parameters:
657: + ts - the `TS` context
658: - t - current time
660: Output Parameter:
661: . U - the solution
663: Level: developer
665: .seealso: [](ch_ts), `TS`, `TSSetSolutionFunction()`, `TSSetRHSFunction()`, `TSComputeIFunction()`
666: @*/
667: PetscErrorCode TSComputeSolutionFunction(TS ts, PetscReal t, Vec U)
668: {
669: TSSolutionFn *solutionfunction;
670: void *ctx;
671: DM dm;
673: PetscFunctionBegin;
676: PetscCall(TSGetDM(ts, &dm));
677: PetscCall(DMTSGetSolutionFunction(dm, &solutionfunction, &ctx));
678: if (solutionfunction) PetscCallBack("TS callback solution", (*solutionfunction)(ts, t, U, ctx));
679: PetscFunctionReturn(PETSC_SUCCESS);
680: }
681: /*@
682: TSComputeForcingFunction - Evaluates the forcing function.
684: Collective
686: Input Parameters:
687: + ts - the `TS` context
688: - t - current time
690: Output Parameter:
691: . U - the function value
693: Level: developer
695: .seealso: [](ch_ts), `TS`, `TSSetSolutionFunction()`, `TSSetRHSFunction()`, `TSComputeIFunction()`
696: @*/
697: PetscErrorCode TSComputeForcingFunction(TS ts, PetscReal t, Vec U)
698: {
699: void *ctx;
700: DM dm;
701: TSForcingFn *forcing;
703: PetscFunctionBegin;
706: PetscCall(TSGetDM(ts, &dm));
707: PetscCall(DMTSGetForcingFunction(dm, &forcing, &ctx));
709: if (forcing) PetscCallBack("TS callback forcing function", (*forcing)(ts, t, U, ctx));
710: PetscFunctionReturn(PETSC_SUCCESS);
711: }
713: PetscErrorCode TSGetRHSMats_Private(TS ts, Mat *Arhs, Mat *Brhs)
714: {
715: Mat A, B;
716: TSIJacobianFn *ijacobian;
718: PetscFunctionBegin;
719: if (Arhs) *Arhs = NULL;
720: if (Brhs) *Brhs = NULL;
721: PetscCall(TSGetIJacobian(ts, &A, &B, &ijacobian, NULL));
722: if (Arhs) {
723: if (!ts->Arhs) {
724: if (ijacobian) {
725: PetscCall(MatDuplicate(A, MAT_DO_NOT_COPY_VALUES, &ts->Arhs));
726: PetscCall(TSSetMatStructure(ts, SAME_NONZERO_PATTERN));
727: } else {
728: ts->Arhs = A;
729: PetscCall(PetscObjectReference((PetscObject)A));
730: }
731: } else {
732: PetscBool flg;
733: PetscCall(SNESGetUseMatrixFree(ts->snes, NULL, &flg));
734: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
735: if (flg && !ijacobian && ts->Arhs == ts->Brhs) {
736: PetscCall(PetscObjectDereference((PetscObject)ts->Arhs));
737: ts->Arhs = A;
738: PetscCall(PetscObjectReference((PetscObject)A));
739: }
740: }
741: *Arhs = ts->Arhs;
742: }
743: if (Brhs) {
744: if (!ts->Brhs) {
745: if (A != B) {
746: if (ijacobian) {
747: PetscCall(MatDuplicate(B, MAT_DO_NOT_COPY_VALUES, &ts->Brhs));
748: } else {
749: ts->Brhs = B;
750: PetscCall(PetscObjectReference((PetscObject)B));
751: }
752: } else {
753: PetscCall(PetscObjectReference((PetscObject)ts->Arhs));
754: ts->Brhs = ts->Arhs;
755: }
756: }
757: *Brhs = ts->Brhs;
758: }
759: PetscFunctionReturn(PETSC_SUCCESS);
760: }
762: /*@
763: TSComputeIFunction - Evaluates the DAE residual written in the implicit form F(t,U,Udot)=0
765: Collective
767: Input Parameters:
768: + ts - the `TS` context
769: . t - current time
770: . U - state vector
771: . Udot - time derivative of state vector
772: - imex - flag indicates if the method is `TSARKIMEX` so that the RHSFunction should be kept separate
774: Output Parameter:
775: . Y - right-hand side
777: Level: developer
779: Note:
780: Most users should not need to explicitly call this routine, as it
781: is used internally within the nonlinear solvers.
783: If the user did not write their equations in implicit form, this
784: function recasts them in implicit form.
786: .seealso: [](ch_ts), `TS`, `TSSetIFunction()`, `TSComputeRHSFunction()`
787: @*/
788: PetscErrorCode TSComputeIFunction(TS ts, PetscReal t, Vec U, Vec Udot, Vec Y, PetscBool imex)
789: {
790: TSIFunctionFn *ifunction;
791: TSRHSFunctionFn *rhsfunction;
792: void *ctx;
793: DM dm;
795: PetscFunctionBegin;
801: PetscCall(TSGetDM(ts, &dm));
802: PetscCall(DMTSGetIFunction(dm, &ifunction, &ctx));
803: PetscCall(DMTSGetRHSFunction(dm, &rhsfunction, NULL));
805: PetscCheck(rhsfunction || ifunction, PetscObjectComm((PetscObject)ts), PETSC_ERR_USER, "Must call TSSetRHSFunction() and / or TSSetIFunction()");
807: PetscCall(PetscLogEventBegin(TS_FunctionEval, U, ts, Udot, Y));
808: if (ifunction) {
809: PetscCallBack("TS callback implicit function", (*ifunction)(ts, t, U, Udot, Y, ctx));
810: ts->ifuncs++;
811: }
812: if (imex) {
813: if (!ifunction) PetscCall(VecCopy(Udot, Y));
814: } else if (rhsfunction) {
815: if (ifunction) {
816: Vec Frhs;
818: PetscCall(DMGetGlobalVector(dm, &Frhs));
819: PetscCall(TSComputeRHSFunction(ts, t, U, Frhs));
820: PetscCall(VecAXPY(Y, -1, Frhs));
821: PetscCall(DMRestoreGlobalVector(dm, &Frhs));
822: } else {
823: PetscCall(TSComputeRHSFunction(ts, t, U, Y));
824: PetscCall(VecAYPX(Y, -1, Udot));
825: }
826: }
827: PetscCall(PetscLogEventEnd(TS_FunctionEval, U, ts, Udot, Y));
828: PetscFunctionReturn(PETSC_SUCCESS);
829: }
831: /*
832: TSRecoverRHSJacobian - Recover the Jacobian matrix so that one can call `TSComputeRHSJacobian()` on it.
834: Note:
835: This routine is needed when one switches from `TSComputeIJacobian()` to `TSComputeRHSJacobian()` because the Jacobian matrix may be shifted or scaled in `TSComputeIJacobian()`.
837: */
838: static PetscErrorCode TSRecoverRHSJacobian(TS ts, Mat A, Mat B)
839: {
840: PetscFunctionBegin;
842: PetscCheck(A == ts->Arhs, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Invalid Amat");
843: PetscCheck(B == ts->Brhs, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Invalid Bmat");
845: if (ts->rhsjacobian.shift) PetscCall(MatShift(A, -ts->rhsjacobian.shift));
846: if (ts->rhsjacobian.scale == -1.) PetscCall(MatScale(A, -1));
847: if (B && B == ts->Brhs && A != B) {
848: if (ts->rhsjacobian.shift) PetscCall(MatShift(B, -ts->rhsjacobian.shift));
849: if (ts->rhsjacobian.scale == -1.) PetscCall(MatScale(B, -1));
850: }
851: ts->rhsjacobian.shift = 0;
852: ts->rhsjacobian.scale = 1.;
853: PetscFunctionReturn(PETSC_SUCCESS);
854: }
856: /*@
857: TSComputeIJacobian - Evaluates the Jacobian of the DAE
859: Collective
861: Input Parameters:
862: + ts - the `TS` context
863: . t - current timestep
864: . U - state vector
865: . Udot - time derivative of state vector
866: . shift - shift to apply, see note below
867: - imex - flag indicates if the method is `TSARKIMEX` so that the RHSJacobian should be kept separate
869: Output Parameters:
870: + A - Jacobian matrix
871: - B - matrix from which the preconditioner is constructed; often the same as `A`
873: Level: developer
875: Notes:
876: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
877: .vb
878: dF/dU + shift*dF/dUdot
879: .ve
880: Most users should not need to explicitly call this routine, as it
881: is used internally within the nonlinear solvers.
883: .seealso: [](ch_ts), `TS`, `TSSetIJacobian()`
884: @*/
885: PetscErrorCode TSComputeIJacobian(TS ts, PetscReal t, Vec U, Vec Udot, PetscReal shift, Mat A, Mat B, PetscBool imex)
886: {
887: TSIJacobianFn *ijacobian;
888: TSRHSJacobianFn *rhsjacobian;
889: DM dm;
890: void *ctx;
892: PetscFunctionBegin;
899: PetscCall(TSGetDM(ts, &dm));
900: PetscCall(DMTSGetIJacobian(dm, &ijacobian, &ctx));
901: PetscCall(DMTSGetRHSJacobian(dm, &rhsjacobian, NULL));
903: PetscCheck(rhsjacobian || ijacobian, PetscObjectComm((PetscObject)ts), PETSC_ERR_USER, "Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
905: PetscCall(PetscLogEventBegin(TS_JacobianEval, U, ts, A, B));
906: if (ijacobian) {
907: PetscCallBack("TS callback implicit Jacobian", (*ijacobian)(ts, t, U, Udot, shift, A, B, ctx));
908: ts->ijacs++;
909: }
910: if (imex) {
911: if (!ijacobian) { /* system was written as Udot = G(t,U) */
912: PetscBool assembled;
913: if (rhsjacobian) {
914: Mat Arhs = NULL;
915: PetscCall(TSGetRHSMats_Private(ts, &Arhs, NULL));
916: if (A == Arhs) {
917: PetscCheck(rhsjacobian != TSComputeRHSJacobianConstant, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Unsupported operation! cannot use TSComputeRHSJacobianConstant"); /* there is no way to reconstruct shift*M-J since J cannot be reevaluated */
918: ts->rhsjacobian.time = PETSC_MIN_REAL;
919: }
920: }
921: PetscCall(MatZeroEntries(A));
922: PetscCall(MatAssembled(A, &assembled));
923: if (!assembled) {
924: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
925: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
926: }
927: PetscCall(MatShift(A, shift));
928: if (A != B) {
929: PetscCall(MatZeroEntries(B));
930: PetscCall(MatAssembled(B, &assembled));
931: if (!assembled) {
932: PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
933: PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
934: }
935: PetscCall(MatShift(B, shift));
936: }
937: }
938: } else {
939: Mat Arhs = NULL, Brhs = NULL;
941: /* RHSJacobian needs to be converted to part of IJacobian if exists */
942: if (rhsjacobian) PetscCall(TSGetRHSMats_Private(ts, &Arhs, &Brhs));
943: if (Arhs == A) { /* No IJacobian matrix, so we only have the RHS matrix */
944: PetscObjectState Ustate;
945: PetscObjectId Uid;
946: TSRHSFunctionFn *rhsfunction;
948: PetscCall(DMTSGetRHSFunction(dm, &rhsfunction, NULL));
949: PetscCall(PetscObjectStateGet((PetscObject)U, &Ustate));
950: PetscCall(PetscObjectGetId((PetscObject)U, &Uid));
951: if ((rhsjacobian == TSComputeRHSJacobianConstant || (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && rhsfunction != TSComputeRHSFunctionLinear)) &&
952: ts->rhsjacobian.scale == -1.) { /* No need to recompute RHSJacobian */
953: PetscCall(MatShift(A, shift - ts->rhsjacobian.shift)); /* revert the old shift and add the new shift with a single call to MatShift */
954: if (A != B) PetscCall(MatShift(B, shift - ts->rhsjacobian.shift));
955: } else {
956: PetscBool flg;
958: if (ts->rhsjacobian.reuse) { /* Undo the damage */
959: /* MatScale has a short path for this case.
960: However, this code path is taken the first time TSComputeRHSJacobian is called
961: and the matrices have not been assembled yet */
962: PetscCall(TSRecoverRHSJacobian(ts, A, B));
963: }
964: PetscCall(TSComputeRHSJacobian(ts, t, U, A, B));
965: PetscCall(SNESGetUseMatrixFree(ts->snes, NULL, &flg));
966: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
967: if (!flg) {
968: PetscCall(MatScale(A, -1));
969: PetscCall(MatShift(A, shift));
970: }
971: if (A != B) {
972: PetscCall(MatScale(B, -1));
973: PetscCall(MatShift(B, shift));
974: }
975: }
976: ts->rhsjacobian.scale = -1;
977: ts->rhsjacobian.shift = shift;
978: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
979: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
980: PetscCall(MatZeroEntries(A));
981: PetscCall(MatShift(A, shift));
982: if (A != B) {
983: PetscCall(MatZeroEntries(B));
984: PetscCall(MatShift(B, shift));
985: }
986: }
987: PetscCall(TSComputeRHSJacobian(ts, t, U, Arhs, Brhs));
988: PetscCall(MatAXPY(A, -1, Arhs, ts->axpy_pattern));
989: if (A != B) PetscCall(MatAXPY(B, -1, Brhs, ts->axpy_pattern));
990: }
991: }
992: PetscCall(PetscLogEventEnd(TS_JacobianEval, U, ts, A, B));
993: PetscFunctionReturn(PETSC_SUCCESS);
994: }
996: /*@C
997: TSSetRHSFunction - Sets the routine for evaluating the function,
998: where U_t = G(t,u).
1000: Logically Collective
1002: Input Parameters:
1003: + ts - the `TS` context obtained from `TSCreate()`
1004: . r - vector to put the computed right-hand side (or `NULL` to have it created)
1005: . f - routine for evaluating the right-hand-side function
1006: - ctx - [optional] user-defined context for private data for the function evaluation routine (may be `NULL`)
1008: Level: beginner
1010: Note:
1011: You must call this function or `TSSetIFunction()` to define your ODE. You cannot use this function when solving a DAE.
1013: .seealso: [](ch_ts), `TS`, `TSRHSFunctionFn`, `TSSetRHSJacobian()`, `TSSetIJacobian()`, `TSSetIFunction()`
1014: @*/
1015: PetscErrorCode TSSetRHSFunction(TS ts, Vec r, TSRHSFunctionFn *f, void *ctx)
1016: {
1017: SNES snes;
1018: Vec ralloc = NULL;
1019: DM dm;
1021: PetscFunctionBegin;
1025: PetscCall(TSGetDM(ts, &dm));
1026: PetscCall(DMTSSetRHSFunction(dm, f, ctx));
1027: PetscCall(TSGetSNES(ts, &snes));
1028: if (!r && !ts->dm && ts->vec_sol) {
1029: PetscCall(VecDuplicate(ts->vec_sol, &ralloc));
1030: r = ralloc;
1031: }
1032: PetscCall(SNESSetFunction(snes, r, SNESTSFormFunction, ts));
1033: PetscCall(VecDestroy(&ralloc));
1034: PetscFunctionReturn(PETSC_SUCCESS);
1035: }
1037: /*@C
1038: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1040: Logically Collective
1042: Input Parameters:
1043: + ts - the `TS` context obtained from `TSCreate()`
1044: . f - routine for evaluating the solution
1045: - ctx - [optional] user-defined context for private data for the
1046: function evaluation routine (may be `NULL`)
1048: Options Database Keys:
1049: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided `TSSetSolutionFunction()`
1050: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided `TSSetSolutionFunction()`
1052: Level: intermediate
1054: Notes:
1055: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1056: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1057: create closed-form solutions with non-physical forcing terms.
1059: For low-dimensional problems solved in serial, such as small discrete systems, `TSMonitorLGError()` can be used to monitor the error history.
1061: .seealso: [](ch_ts), `TS`, `TSSolutionFn`, `TSSetRHSJacobian()`, `TSSetIJacobian()`, `TSComputeSolutionFunction()`, `TSSetForcingFunction()`, `TSSetSolution()`, `TSGetSolution()`, `TSMonitorLGError()`, `TSMonitorDrawError()`
1062: @*/
1063: PetscErrorCode TSSetSolutionFunction(TS ts, TSSolutionFn *f, void *ctx)
1064: {
1065: DM dm;
1067: PetscFunctionBegin;
1069: PetscCall(TSGetDM(ts, &dm));
1070: PetscCall(DMTSSetSolutionFunction(dm, f, ctx));
1071: PetscFunctionReturn(PETSC_SUCCESS);
1072: }
1074: /*@C
1075: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1077: Logically Collective
1079: Input Parameters:
1080: + ts - the `TS` context obtained from `TSCreate()`
1081: . func - routine for evaluating the forcing function
1082: - ctx - [optional] user-defined context for private data for the function evaluation routine
1083: (may be `NULL`)
1085: Level: intermediate
1087: Notes:
1088: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1089: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1090: definition of the problem you are solving and hence possibly introducing bugs.
1092: This replaces the ODE F(u,u_t,t) = 0 the `TS` is solving with F(u,u_t,t) - func(t) = 0
1094: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1095: parameters can be passed in the ctx variable.
1097: For low-dimensional problems solved in serial, such as small discrete systems, `TSMonitorLGError()` can be used to monitor the error history.
1099: .seealso: [](ch_ts), `TS`, `TSForcingFn`, `TSSetRHSJacobian()`, `TSSetIJacobian()`,
1100: `TSComputeSolutionFunction()`, `TSSetSolutionFunction()`
1101: @*/
1102: PetscErrorCode TSSetForcingFunction(TS ts, TSForcingFn *func, void *ctx)
1103: {
1104: DM dm;
1106: PetscFunctionBegin;
1108: PetscCall(TSGetDM(ts, &dm));
1109: PetscCall(DMTSSetForcingFunction(dm, func, ctx));
1110: PetscFunctionReturn(PETSC_SUCCESS);
1111: }
1113: /*@C
1114: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1115: where U_t = G(U,t), as well as the location to store the matrix.
1117: Logically Collective
1119: Input Parameters:
1120: + ts - the `TS` context obtained from `TSCreate()`
1121: . Amat - (approximate) location to store Jacobian matrix entries computed by `f`
1122: . Pmat - matrix from which preconditioner is to be constructed (usually the same as `Amat`)
1123: . f - the Jacobian evaluation routine
1124: - ctx - [optional] user-defined context for private data for the Jacobian evaluation routine (may be `NULL`)
1126: Level: beginner
1128: Notes:
1129: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1131: The `TS` solver may modify the nonzero structure and the entries of the matrices `Amat` and `Pmat` between the calls to `f()`
1132: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1134: .seealso: [](ch_ts), `TS`, `TSRHSJacobianFn`, `SNESComputeJacobianDefaultColor()`,
1135: `TSSetRHSFunction()`, `TSRHSJacobianSetReuse()`, `TSSetIJacobian()`, `TSRHSFunctionFn`, `TSIFunctionFn`
1136: @*/
1137: PetscErrorCode TSSetRHSJacobian(TS ts, Mat Amat, Mat Pmat, TSRHSJacobianFn *f, void *ctx)
1138: {
1139: SNES snes;
1140: DM dm;
1141: TSIJacobianFn *ijacobian;
1143: PetscFunctionBegin;
1147: if (Amat) PetscCheckSameComm(ts, 1, Amat, 2);
1148: if (Pmat) PetscCheckSameComm(ts, 1, Pmat, 3);
1150: PetscCall(TSGetDM(ts, &dm));
1151: PetscCall(DMTSSetRHSJacobian(dm, f, ctx));
1152: PetscCall(DMTSGetIJacobian(dm, &ijacobian, NULL));
1153: PetscCall(TSGetSNES(ts, &snes));
1154: if (!ijacobian) PetscCall(SNESSetJacobian(snes, Amat, Pmat, SNESTSFormJacobian, ts));
1155: if (Amat) {
1156: PetscCall(PetscObjectReference((PetscObject)Amat));
1157: PetscCall(MatDestroy(&ts->Arhs));
1158: ts->Arhs = Amat;
1159: }
1160: if (Pmat) {
1161: PetscCall(PetscObjectReference((PetscObject)Pmat));
1162: PetscCall(MatDestroy(&ts->Brhs));
1163: ts->Brhs = Pmat;
1164: }
1165: PetscFunctionReturn(PETSC_SUCCESS);
1166: }
1168: /*@C
1169: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1171: Logically Collective
1173: Input Parameters:
1174: + ts - the `TS` context obtained from `TSCreate()`
1175: . r - vector to hold the residual (or `NULL` to have it created internally)
1176: . f - the function evaluation routine
1177: - ctx - user-defined context for private data for the function evaluation routine (may be `NULL`)
1179: Level: beginner
1181: Note:
1182: The user MUST call either this routine or `TSSetRHSFunction()` to define the ODE. When solving DAEs you must use this function.
1184: .seealso: [](ch_ts), `TS`, `TSIFunctionFn`, `TSSetRHSJacobian()`, `TSSetRHSFunction()`,
1185: `TSSetIJacobian()`
1186: @*/
1187: PetscErrorCode TSSetIFunction(TS ts, Vec r, TSIFunctionFn *f, void *ctx)
1188: {
1189: SNES snes;
1190: Vec ralloc = NULL;
1191: DM dm;
1193: PetscFunctionBegin;
1197: PetscCall(TSGetDM(ts, &dm));
1198: PetscCall(DMTSSetIFunction(dm, f, ctx));
1200: PetscCall(TSGetSNES(ts, &snes));
1201: if (!r && !ts->dm && ts->vec_sol) {
1202: PetscCall(VecDuplicate(ts->vec_sol, &ralloc));
1203: r = ralloc;
1204: }
1205: PetscCall(SNESSetFunction(snes, r, SNESTSFormFunction, ts));
1206: PetscCall(VecDestroy(&ralloc));
1207: PetscFunctionReturn(PETSC_SUCCESS);
1208: }
1210: /*@C
1211: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/context to compute it.
1213: Not Collective
1215: Input Parameter:
1216: . ts - the `TS` context
1218: Output Parameters:
1219: + r - vector to hold residual (or `NULL`)
1220: . func - the function to compute residual (or `NULL`)
1221: - ctx - the function context (or `NULL`)
1223: Level: advanced
1225: .seealso: [](ch_ts), `TS`, `TSSetIFunction()`, `SNESGetFunction()`
1226: @*/
1227: PetscErrorCode TSGetIFunction(TS ts, Vec *r, TSIFunctionFn **func, void **ctx)
1228: {
1229: SNES snes;
1230: DM dm;
1232: PetscFunctionBegin;
1234: PetscCall(TSGetSNES(ts, &snes));
1235: PetscCall(SNESGetFunction(snes, r, NULL, NULL));
1236: PetscCall(TSGetDM(ts, &dm));
1237: PetscCall(DMTSGetIFunction(dm, func, ctx));
1238: PetscFunctionReturn(PETSC_SUCCESS);
1239: }
1241: /*@C
1242: TSGetRHSFunction - Returns the vector where the right-hand side is stored and the function/context to compute it.
1244: Not Collective
1246: Input Parameter:
1247: . ts - the `TS` context
1249: Output Parameters:
1250: + r - vector to hold computed right-hand side (or `NULL`)
1251: . func - the function to compute right-hand side (or `NULL`)
1252: - ctx - the function context (or `NULL`)
1254: Level: advanced
1256: .seealso: [](ch_ts), `TS`, `TSSetRHSFunction()`, `SNESGetFunction()`
1257: @*/
1258: PetscErrorCode TSGetRHSFunction(TS ts, Vec *r, TSRHSFunctionFn **func, void **ctx)
1259: {
1260: SNES snes;
1261: DM dm;
1263: PetscFunctionBegin;
1265: PetscCall(TSGetSNES(ts, &snes));
1266: PetscCall(SNESGetFunction(snes, r, NULL, NULL));
1267: PetscCall(TSGetDM(ts, &dm));
1268: PetscCall(DMTSGetRHSFunction(dm, func, ctx));
1269: PetscFunctionReturn(PETSC_SUCCESS);
1270: }
1272: /*@C
1273: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1274: provided with `TSSetIFunction()`.
1276: Logically Collective
1278: Input Parameters:
1279: + ts - the `TS` context obtained from `TSCreate()`
1280: . Amat - (approximate) matrix to store Jacobian entries computed by `f`
1281: . Pmat - matrix used to compute preconditioner (usually the same as `Amat`)
1282: . f - the Jacobian evaluation routine
1283: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be `NULL`)
1285: Level: beginner
1287: Notes:
1288: The matrices `Amat` and `Pmat` are exactly the matrices that are used by `SNES` for the nonlinear solve.
1290: If you know the operator Amat has a null space you can use `MatSetNullSpace()` and `MatSetTransposeNullSpace()` to supply the null
1291: space to `Amat` and the `KSP` solvers will automatically use that null space as needed during the solution process.
1293: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1294: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1295: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1296: a and vector W depend on the integration method, step size, and past states. For example with
1297: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1298: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1300: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1302: The TS solver may modify the nonzero structure and the entries of the matrices `Amat` and `Pmat` between the calls to `f`
1303: You should not assume the values are the same in the next call to `f` as you set them in the previous call.
1305: In case `TSSetRHSJacobian()` is also used in conjunction with a fully-implicit solver,
1306: multilevel linear solvers, e.g. `PCMG`, will likely not work due to the way `TS` handles rhs matrices.
1308: .seealso: [](ch_ts), `TS`, `TSIJacobianFn`, `TSSetIFunction()`, `TSSetRHSJacobian()`,
1309: `SNESComputeJacobianDefaultColor()`, `SNESComputeJacobianDefault()`, `TSSetRHSFunction()`
1310: @*/
1311: PetscErrorCode TSSetIJacobian(TS ts, Mat Amat, Mat Pmat, TSIJacobianFn *f, void *ctx)
1312: {
1313: SNES snes;
1314: DM dm;
1316: PetscFunctionBegin;
1320: if (Amat) PetscCheckSameComm(ts, 1, Amat, 2);
1321: if (Pmat) PetscCheckSameComm(ts, 1, Pmat, 3);
1323: PetscCall(TSGetDM(ts, &dm));
1324: PetscCall(DMTSSetIJacobian(dm, f, ctx));
1326: PetscCall(TSGetSNES(ts, &snes));
1327: PetscCall(SNESSetJacobian(snes, Amat, Pmat, SNESTSFormJacobian, ts));
1328: PetscFunctionReturn(PETSC_SUCCESS);
1329: }
1331: /*@
1332: TSRHSJacobianSetReuse - restore the RHS Jacobian before calling the user-provided `TSRHSJacobianFn` function again
1334: Logically Collective
1336: Input Parameters:
1337: + ts - `TS` context obtained from `TSCreate()`
1338: - reuse - `PETSC_TRUE` if the RHS Jacobian
1340: Level: intermediate
1342: Notes:
1343: Without this flag, `TS` will change the sign and shift the RHS Jacobian for a
1344: finite-time-step implicit solve, in which case the user function will need to recompute the
1345: entire Jacobian. The `reuse `flag must be set if the evaluation function assumes that the
1346: matrix entries have not been changed by the `TS`.
1348: .seealso: [](ch_ts), `TS`, `TSSetRHSJacobian()`, `TSComputeRHSJacobianConstant()`
1349: @*/
1350: PetscErrorCode TSRHSJacobianSetReuse(TS ts, PetscBool reuse)
1351: {
1352: PetscFunctionBegin;
1353: ts->rhsjacobian.reuse = reuse;
1354: PetscFunctionReturn(PETSC_SUCCESS);
1355: }
1357: /*@C
1358: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1360: Logically Collective
1362: Input Parameters:
1363: + ts - the `TS` context obtained from `TSCreate()`
1364: . F - vector to hold the residual (or `NULL` to have it created internally)
1365: . fun - the function evaluation routine
1366: - ctx - user-defined context for private data for the function evaluation routine (may be `NULL`)
1368: Level: beginner
1370: .seealso: [](ch_ts), `TS`, `TSI2FunctionFn`, `TSSetI2Jacobian()`, `TSSetIFunction()`,
1371: `TSCreate()`, `TSSetRHSFunction()`
1372: @*/
1373: PetscErrorCode TSSetI2Function(TS ts, Vec F, TSI2FunctionFn *fun, void *ctx)
1374: {
1375: DM dm;
1377: PetscFunctionBegin;
1380: PetscCall(TSSetIFunction(ts, F, NULL, NULL));
1381: PetscCall(TSGetDM(ts, &dm));
1382: PetscCall(DMTSSetI2Function(dm, fun, ctx));
1383: PetscFunctionReturn(PETSC_SUCCESS);
1384: }
1386: /*@C
1387: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/context to compute it.
1389: Not Collective
1391: Input Parameter:
1392: . ts - the `TS` context
1394: Output Parameters:
1395: + r - vector to hold residual (or `NULL`)
1396: . fun - the function to compute residual (or `NULL`)
1397: - ctx - the function context (or `NULL`)
1399: Level: advanced
1401: .seealso: [](ch_ts), `TS`, `TSSetIFunction()`, `SNESGetFunction()`, `TSCreate()`
1402: @*/
1403: PetscErrorCode TSGetI2Function(TS ts, Vec *r, TSI2FunctionFn **fun, void **ctx)
1404: {
1405: SNES snes;
1406: DM dm;
1408: PetscFunctionBegin;
1410: PetscCall(TSGetSNES(ts, &snes));
1411: PetscCall(SNESGetFunction(snes, r, NULL, NULL));
1412: PetscCall(TSGetDM(ts, &dm));
1413: PetscCall(DMTSGetI2Function(dm, fun, ctx));
1414: PetscFunctionReturn(PETSC_SUCCESS);
1415: }
1417: /*@C
1418: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1419: where F(t,U,U_t,U_tt) is the function you provided with `TSSetI2Function()`.
1421: Logically Collective
1423: Input Parameters:
1424: + ts - the `TS` context obtained from `TSCreate()`
1425: . J - matrix to hold the Jacobian values
1426: . P - matrix for constructing the preconditioner (may be same as `J`)
1427: . jac - the Jacobian evaluation routine, see `TSI2JacobianFn` for the calling sequence
1428: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be `NULL`)
1430: Level: beginner
1432: Notes:
1433: The matrices `J` and `P` are exactly the matrices that are used by `SNES` for the nonlinear solve.
1435: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1436: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1437: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1438: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1440: .seealso: [](ch_ts), `TS`, `TSI2JacobianFn`, `TSSetI2Function()`, `TSGetI2Jacobian()`
1441: @*/
1442: PetscErrorCode TSSetI2Jacobian(TS ts, Mat J, Mat P, TSI2JacobianFn *jac, void *ctx)
1443: {
1444: DM dm;
1446: PetscFunctionBegin;
1450: PetscCall(TSSetIJacobian(ts, J, P, NULL, NULL));
1451: PetscCall(TSGetDM(ts, &dm));
1452: PetscCall(DMTSSetI2Jacobian(dm, jac, ctx));
1453: PetscFunctionReturn(PETSC_SUCCESS);
1454: }
1456: /*@C
1457: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1459: Not Collective, but parallel objects are returned if `TS` is parallel
1461: Input Parameter:
1462: . ts - The `TS` context obtained from `TSCreate()`
1464: Output Parameters:
1465: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1466: . P - The matrix from which the preconditioner is constructed, often the same as `J`
1467: . jac - The function to compute the Jacobian matrices
1468: - ctx - User-defined context for Jacobian evaluation routine
1470: Level: advanced
1472: Note:
1473: You can pass in `NULL` for any return argument you do not need.
1475: .seealso: [](ch_ts), `TS`, `TSGetTimeStep()`, `TSGetMatrices()`, `TSGetTime()`, `TSGetStepNumber()`, `TSSetI2Jacobian()`, `TSGetI2Function()`, `TSCreate()`
1476: @*/
1477: PetscErrorCode TSGetI2Jacobian(TS ts, Mat *J, Mat *P, TSI2JacobianFn **jac, void **ctx)
1478: {
1479: SNES snes;
1480: DM dm;
1482: PetscFunctionBegin;
1483: PetscCall(TSGetSNES(ts, &snes));
1484: PetscCall(SNESSetUpMatrices(snes));
1485: PetscCall(SNESGetJacobian(snes, J, P, NULL, NULL));
1486: PetscCall(TSGetDM(ts, &dm));
1487: PetscCall(DMTSGetI2Jacobian(dm, jac, ctx));
1488: PetscFunctionReturn(PETSC_SUCCESS);
1489: }
1491: /*@
1492: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1494: Collective
1496: Input Parameters:
1497: + ts - the `TS` context
1498: . t - current time
1499: . U - state vector
1500: . V - time derivative of state vector (U_t)
1501: - A - second time derivative of state vector (U_tt)
1503: Output Parameter:
1504: . F - the residual vector
1506: Level: developer
1508: Note:
1509: Most users should not need to explicitly call this routine, as it
1510: is used internally within the nonlinear solvers.
1512: .seealso: [](ch_ts), `TS`, `TSSetI2Function()`, `TSGetI2Function()`
1513: @*/
1514: PetscErrorCode TSComputeI2Function(TS ts, PetscReal t, Vec U, Vec V, Vec A, Vec F)
1515: {
1516: DM dm;
1517: TSI2FunctionFn *I2Function;
1518: void *ctx;
1519: TSRHSFunctionFn *rhsfunction;
1521: PetscFunctionBegin;
1528: PetscCall(TSGetDM(ts, &dm));
1529: PetscCall(DMTSGetI2Function(dm, &I2Function, &ctx));
1530: PetscCall(DMTSGetRHSFunction(dm, &rhsfunction, NULL));
1532: if (!I2Function) {
1533: PetscCall(TSComputeIFunction(ts, t, U, A, F, PETSC_FALSE));
1534: PetscFunctionReturn(PETSC_SUCCESS);
1535: }
1537: PetscCall(PetscLogEventBegin(TS_FunctionEval, U, ts, V, F));
1539: PetscCallBack("TS callback implicit function", I2Function(ts, t, U, V, A, F, ctx));
1541: if (rhsfunction) {
1542: Vec Frhs;
1544: PetscCall(DMGetGlobalVector(dm, &Frhs));
1545: PetscCall(TSComputeRHSFunction(ts, t, U, Frhs));
1546: PetscCall(VecAXPY(F, -1, Frhs));
1547: PetscCall(DMRestoreGlobalVector(dm, &Frhs));
1548: }
1550: PetscCall(PetscLogEventEnd(TS_FunctionEval, U, ts, V, F));
1551: PetscFunctionReturn(PETSC_SUCCESS);
1552: }
1554: /*@
1555: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1557: Collective
1559: Input Parameters:
1560: + ts - the `TS` context
1561: . t - current timestep
1562: . U - state vector
1563: . V - time derivative of state vector
1564: . A - second time derivative of state vector
1565: . shiftV - shift to apply, see note below
1566: - shiftA - shift to apply, see note below
1568: Output Parameters:
1569: + J - Jacobian matrix
1570: - P - optional preconditioning matrix
1572: Level: developer
1574: Notes:
1575: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1577: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1579: Most users should not need to explicitly call this routine, as it
1580: is used internally within the nonlinear solvers.
1582: .seealso: [](ch_ts), `TS`, `TSSetI2Jacobian()`
1583: @*/
1584: PetscErrorCode TSComputeI2Jacobian(TS ts, PetscReal t, Vec U, Vec V, Vec A, PetscReal shiftV, PetscReal shiftA, Mat J, Mat P)
1585: {
1586: DM dm;
1587: TSI2JacobianFn *I2Jacobian;
1588: void *ctx;
1589: TSRHSJacobianFn *rhsjacobian;
1591: PetscFunctionBegin;
1599: PetscCall(TSGetDM(ts, &dm));
1600: PetscCall(DMTSGetI2Jacobian(dm, &I2Jacobian, &ctx));
1601: PetscCall(DMTSGetRHSJacobian(dm, &rhsjacobian, NULL));
1603: if (!I2Jacobian) {
1604: PetscCall(TSComputeIJacobian(ts, t, U, A, shiftA, J, P, PETSC_FALSE));
1605: PetscFunctionReturn(PETSC_SUCCESS);
1606: }
1608: PetscCall(PetscLogEventBegin(TS_JacobianEval, U, ts, J, P));
1609: PetscCallBack("TS callback implicit Jacobian", I2Jacobian(ts, t, U, V, A, shiftV, shiftA, J, P, ctx));
1610: if (rhsjacobian) {
1611: Mat Jrhs, Prhs;
1612: PetscCall(TSGetRHSMats_Private(ts, &Jrhs, &Prhs));
1613: PetscCall(TSComputeRHSJacobian(ts, t, U, Jrhs, Prhs));
1614: PetscCall(MatAXPY(J, -1, Jrhs, ts->axpy_pattern));
1615: if (P != J) PetscCall(MatAXPY(P, -1, Prhs, ts->axpy_pattern));
1616: }
1618: PetscCall(PetscLogEventEnd(TS_JacobianEval, U, ts, J, P));
1619: PetscFunctionReturn(PETSC_SUCCESS);
1620: }
1622: /*@C
1623: TSSetTransientVariable - sets function to transform from state to transient variables
1625: Logically Collective
1627: Input Parameters:
1628: + ts - time stepping context on which to change the transient variable
1629: . tvar - a function that transforms to transient variables, see `TSTransientVariableFn` for the calling sequence
1630: - ctx - a context for tvar
1632: Level: advanced
1634: Notes:
1635: This is typically used to transform from primitive to conservative variables so that a time integrator (e.g., `TSBDF`)
1636: can be conservative. In this context, primitive variables P are used to model the state (e.g., because they lead to
1637: well-conditioned formulations even in limiting cases such as low-Mach or zero porosity). The transient variable is
1638: C(P), specified by calling this function. An IFunction thus receives arguments (P, Cdot) and the IJacobian must be
1639: evaluated via the chain rule, as in
1640: .vb
1641: dF/dP + shift * dF/dCdot dC/dP.
1642: .ve
1644: .seealso: [](ch_ts), `TS`, `TSBDF`, `TSTransientVariableFn`, `DMTSSetTransientVariable()`, `DMTSGetTransientVariable()`, `TSSetIFunction()`, `TSSetIJacobian()`
1645: @*/
1646: PetscErrorCode TSSetTransientVariable(TS ts, TSTransientVariableFn *tvar, void *ctx)
1647: {
1648: DM dm;
1650: PetscFunctionBegin;
1652: PetscCall(TSGetDM(ts, &dm));
1653: PetscCall(DMTSSetTransientVariable(dm, tvar, ctx));
1654: PetscFunctionReturn(PETSC_SUCCESS);
1655: }
1657: /*@
1658: TSComputeTransientVariable - transforms state (primitive) variables to transient (conservative) variables
1660: Logically Collective
1662: Input Parameters:
1663: + ts - TS on which to compute
1664: - U - state vector to be transformed to transient variables
1666: Output Parameter:
1667: . C - transient (conservative) variable
1669: Level: developer
1671: Developer Notes:
1672: If `DMTSSetTransientVariable()` has not been called, then C is not modified in this routine and C = `NULL` is allowed.
1673: This makes it safe to call without a guard. One can use `TSHasTransientVariable()` to check if transient variables are
1674: being used.
1676: .seealso: [](ch_ts), `TS`, `TSBDF`, `DMTSSetTransientVariable()`, `TSComputeIFunction()`, `TSComputeIJacobian()`
1677: @*/
1678: PetscErrorCode TSComputeTransientVariable(TS ts, Vec U, Vec C)
1679: {
1680: DM dm;
1681: DMTS dmts;
1683: PetscFunctionBegin;
1686: PetscCall(TSGetDM(ts, &dm));
1687: PetscCall(DMGetDMTS(dm, &dmts));
1688: if (dmts->ops->transientvar) {
1690: PetscCall((*dmts->ops->transientvar)(ts, U, C, dmts->transientvarctx));
1691: }
1692: PetscFunctionReturn(PETSC_SUCCESS);
1693: }
1695: /*@
1696: TSHasTransientVariable - determine whether transient variables have been set
1698: Logically Collective
1700: Input Parameter:
1701: . ts - `TS` on which to compute
1703: Output Parameter:
1704: . has - `PETSC_TRUE` if transient variables have been set
1706: Level: developer
1708: .seealso: [](ch_ts), `TS`, `TSBDF`, `DMTSSetTransientVariable()`, `TSComputeTransientVariable()`
1709: @*/
1710: PetscErrorCode TSHasTransientVariable(TS ts, PetscBool *has)
1711: {
1712: DM dm;
1713: DMTS dmts;
1715: PetscFunctionBegin;
1717: PetscCall(TSGetDM(ts, &dm));
1718: PetscCall(DMGetDMTS(dm, &dmts));
1719: *has = dmts->ops->transientvar ? PETSC_TRUE : PETSC_FALSE;
1720: PetscFunctionReturn(PETSC_SUCCESS);
1721: }
1723: /*@
1724: TS2SetSolution - Sets the initial solution and time derivative vectors
1725: for use by the `TS` routines handling second order equations.
1727: Logically Collective
1729: Input Parameters:
1730: + ts - the `TS` context obtained from `TSCreate()`
1731: . u - the solution vector
1732: - v - the time derivative vector
1734: Level: beginner
1736: .seealso: [](ch_ts), `TS`
1737: @*/
1738: PetscErrorCode TS2SetSolution(TS ts, Vec u, Vec v)
1739: {
1740: PetscFunctionBegin;
1744: PetscCall(TSSetSolution(ts, u));
1745: PetscCall(PetscObjectReference((PetscObject)v));
1746: PetscCall(VecDestroy(&ts->vec_dot));
1747: ts->vec_dot = v;
1748: PetscFunctionReturn(PETSC_SUCCESS);
1749: }
1751: /*@
1752: TS2GetSolution - Returns the solution and time derivative at the present timestep
1753: for second order equations.
1755: Not Collective
1757: Input Parameter:
1758: . ts - the `TS` context obtained from `TSCreate()`
1760: Output Parameters:
1761: + u - the vector containing the solution
1762: - v - the vector containing the time derivative
1764: Level: intermediate
1766: Notes:
1767: It is valid to call this routine inside the function
1768: that you are evaluating in order to move to the new timestep. This vector not
1769: changed until the solution at the next timestep has been calculated.
1771: .seealso: [](ch_ts), `TS`, `TS2SetSolution()`, `TSGetTimeStep()`, `TSGetTime()`
1772: @*/
1773: PetscErrorCode TS2GetSolution(TS ts, Vec *u, Vec *v)
1774: {
1775: PetscFunctionBegin;
1777: if (u) PetscAssertPointer(u, 2);
1778: if (v) PetscAssertPointer(v, 3);
1779: if (u) *u = ts->vec_sol;
1780: if (v) *v = ts->vec_dot;
1781: PetscFunctionReturn(PETSC_SUCCESS);
1782: }
1784: /*@
1785: TSLoad - Loads a `TS` that has been stored in binary with `TSView()`.
1787: Collective
1789: Input Parameters:
1790: + ts - the newly loaded `TS`, this needs to have been created with `TSCreate()` or
1791: some related function before a call to `TSLoad()`.
1792: - viewer - binary file viewer, obtained from `PetscViewerBinaryOpen()`
1794: Level: intermediate
1796: Note:
1797: The type is determined by the data in the file, any type set into the `TS` before this call is ignored.
1799: .seealso: [](ch_ts), `TS`, `PetscViewer`, `PetscViewerBinaryOpen()`, `TSView()`, `MatLoad()`, `VecLoad()`
1800: @*/
1801: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1802: {
1803: PetscBool isbinary;
1804: PetscInt classid;
1805: char type[256];
1806: DMTS sdm;
1807: DM dm;
1809: PetscFunctionBegin;
1812: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1813: PetscCheck(isbinary, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1815: PetscCall(PetscViewerBinaryRead(viewer, &classid, 1, NULL, PETSC_INT));
1816: PetscCheck(classid == TS_FILE_CLASSID, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Not TS next in file");
1817: PetscCall(PetscViewerBinaryRead(viewer, type, 256, NULL, PETSC_CHAR));
1818: PetscCall(TSSetType(ts, type));
1819: PetscTryTypeMethod(ts, load, viewer);
1820: PetscCall(DMCreate(PetscObjectComm((PetscObject)ts), &dm));
1821: PetscCall(DMLoad(dm, viewer));
1822: PetscCall(TSSetDM(ts, dm));
1823: PetscCall(DMCreateGlobalVector(ts->dm, &ts->vec_sol));
1824: PetscCall(VecLoad(ts->vec_sol, viewer));
1825: PetscCall(DMGetDMTS(ts->dm, &sdm));
1826: PetscCall(DMTSLoad(sdm, viewer));
1827: PetscFunctionReturn(PETSC_SUCCESS);
1828: }
1830: #include <petscdraw.h>
1831: #if defined(PETSC_HAVE_SAWS)
1832: #include <petscviewersaws.h>
1833: #endif
1835: /*@
1836: TSViewFromOptions - View a `TS` based on values in the options database
1838: Collective
1840: Input Parameters:
1841: + ts - the `TS` context
1842: . obj - Optional object that provides the prefix for the options database keys
1843: - name - command line option string to be passed by user
1845: Level: intermediate
1847: .seealso: [](ch_ts), `TS`, `TSView`, `PetscObjectViewFromOptions()`, `TSCreate()`
1848: @*/
1849: PetscErrorCode TSViewFromOptions(TS ts, PetscObject obj, const char name[])
1850: {
1851: PetscFunctionBegin;
1853: PetscCall(PetscObjectViewFromOptions((PetscObject)ts, obj, name));
1854: PetscFunctionReturn(PETSC_SUCCESS);
1855: }
1857: /*@
1858: TSView - Prints the `TS` data structure.
1860: Collective
1862: Input Parameters:
1863: + ts - the `TS` context obtained from `TSCreate()`
1864: - viewer - visualization context
1866: Options Database Key:
1867: . -ts_view - calls `TSView()` at end of `TSStep()`
1869: Level: beginner
1871: Notes:
1872: The available visualization contexts include
1873: + `PETSC_VIEWER_STDOUT_SELF` - standard output (default)
1874: - `PETSC_VIEWER_STDOUT_WORLD` - synchronized standard
1875: output where only the first processor opens
1876: the file. All other processors send their
1877: data to the first processor to print.
1879: The user can open an alternative visualization context with
1880: `PetscViewerASCIIOpen()` - output to a specified file.
1882: In the debugger you can do call `TSView`(ts,0) to display the `TS` solver. (The same holds for any PETSc object viewer).
1884: .seealso: [](ch_ts), `TS`, `PetscViewer`, `PetscViewerASCIIOpen()`
1885: @*/
1886: PetscErrorCode TSView(TS ts, PetscViewer viewer)
1887: {
1888: TSType type;
1889: PetscBool iascii, isstring, isundials, isbinary, isdraw;
1890: DMTS sdm;
1891: #if defined(PETSC_HAVE_SAWS)
1892: PetscBool issaws;
1893: #endif
1895: PetscFunctionBegin;
1897: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts), &viewer));
1899: PetscCheckSameComm(ts, 1, viewer, 2);
1901: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1902: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring));
1903: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1904: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1905: #if defined(PETSC_HAVE_SAWS)
1906: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSAWS, &issaws));
1907: #endif
1908: if (iascii) {
1909: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)ts, viewer));
1910: if (ts->ops->view) {
1911: PetscCall(PetscViewerASCIIPushTab(viewer));
1912: PetscUseTypeMethod(ts, view, viewer);
1913: PetscCall(PetscViewerASCIIPopTab(viewer));
1914: }
1915: if (ts->max_steps < PETSC_INT_MAX) PetscCall(PetscViewerASCIIPrintf(viewer, " maximum steps=%" PetscInt_FMT "\n", ts->max_steps));
1916: if (ts->max_time < PETSC_MAX_REAL) PetscCall(PetscViewerASCIIPrintf(viewer, " maximum time=%g\n", (double)ts->max_time));
1917: if (ts->ifuncs) PetscCall(PetscViewerASCIIPrintf(viewer, " total number of I function evaluations=%" PetscInt_FMT "\n", ts->ifuncs));
1918: if (ts->ijacs) PetscCall(PetscViewerASCIIPrintf(viewer, " total number of I Jacobian evaluations=%" PetscInt_FMT "\n", ts->ijacs));
1919: if (ts->rhsfuncs) PetscCall(PetscViewerASCIIPrintf(viewer, " total number of RHS function evaluations=%" PetscInt_FMT "\n", ts->rhsfuncs));
1920: if (ts->rhsjacs) PetscCall(PetscViewerASCIIPrintf(viewer, " total number of RHS Jacobian evaluations=%" PetscInt_FMT "\n", ts->rhsjacs));
1921: if (ts->usessnes) {
1922: PetscBool lin;
1923: if (ts->problem_type == TS_NONLINEAR) PetscCall(PetscViewerASCIIPrintf(viewer, " total number of nonlinear solver iterations=%" PetscInt_FMT "\n", ts->snes_its));
1924: PetscCall(PetscViewerASCIIPrintf(viewer, " total number of linear solver iterations=%" PetscInt_FMT "\n", ts->ksp_its));
1925: PetscCall(PetscObjectTypeCompareAny((PetscObject)ts->snes, &lin, SNESKSPONLY, SNESKSPTRANSPOSEONLY, ""));
1926: PetscCall(PetscViewerASCIIPrintf(viewer, " total number of %slinear solve failures=%" PetscInt_FMT "\n", lin ? "" : "non", ts->num_snes_failures));
1927: }
1928: PetscCall(PetscViewerASCIIPrintf(viewer, " total number of rejected steps=%" PetscInt_FMT "\n", ts->reject));
1929: if (ts->vrtol) PetscCall(PetscViewerASCIIPrintf(viewer, " using vector of relative error tolerances, "));
1930: else PetscCall(PetscViewerASCIIPrintf(viewer, " using relative error tolerance of %g, ", (double)ts->rtol));
1931: if (ts->vatol) PetscCall(PetscViewerASCIIPrintf(viewer, " using vector of absolute error tolerances\n"));
1932: else PetscCall(PetscViewerASCIIPrintf(viewer, " using absolute error tolerance of %g\n", (double)ts->atol));
1933: PetscCall(PetscViewerASCIIPushTab(viewer));
1934: PetscCall(TSAdaptView(ts->adapt, viewer));
1935: PetscCall(PetscViewerASCIIPopTab(viewer));
1936: } else if (isstring) {
1937: PetscCall(TSGetType(ts, &type));
1938: PetscCall(PetscViewerStringSPrintf(viewer, " TSType: %-7.7s", type));
1939: PetscTryTypeMethod(ts, view, viewer);
1940: } else if (isbinary) {
1941: PetscInt classid = TS_FILE_CLASSID;
1942: MPI_Comm comm;
1943: PetscMPIInt rank;
1944: char type[256];
1946: PetscCall(PetscObjectGetComm((PetscObject)ts, &comm));
1947: PetscCallMPI(MPI_Comm_rank(comm, &rank));
1948: if (rank == 0) {
1949: PetscCall(PetscViewerBinaryWrite(viewer, &classid, 1, PETSC_INT));
1950: PetscCall(PetscStrncpy(type, ((PetscObject)ts)->type_name, 256));
1951: PetscCall(PetscViewerBinaryWrite(viewer, type, 256, PETSC_CHAR));
1952: }
1953: PetscTryTypeMethod(ts, view, viewer);
1954: if (ts->adapt) PetscCall(TSAdaptView(ts->adapt, viewer));
1955: PetscCall(DMView(ts->dm, viewer));
1956: PetscCall(VecView(ts->vec_sol, viewer));
1957: PetscCall(DMGetDMTS(ts->dm, &sdm));
1958: PetscCall(DMTSView(sdm, viewer));
1959: } else if (isdraw) {
1960: PetscDraw draw;
1961: char str[36];
1962: PetscReal x, y, bottom, h;
1964: PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1965: PetscCall(PetscDrawGetCurrentPoint(draw, &x, &y));
1966: PetscCall(PetscStrncpy(str, "TS: ", sizeof(str)));
1967: PetscCall(PetscStrlcat(str, ((PetscObject)ts)->type_name, sizeof(str)));
1968: PetscCall(PetscDrawStringBoxed(draw, x, y, PETSC_DRAW_BLACK, PETSC_DRAW_BLACK, str, NULL, &h));
1969: bottom = y - h;
1970: PetscCall(PetscDrawPushCurrentPoint(draw, x, bottom));
1971: PetscTryTypeMethod(ts, view, viewer);
1972: if (ts->adapt) PetscCall(TSAdaptView(ts->adapt, viewer));
1973: if (ts->snes) PetscCall(SNESView(ts->snes, viewer));
1974: PetscCall(PetscDrawPopCurrentPoint(draw));
1975: #if defined(PETSC_HAVE_SAWS)
1976: } else if (issaws) {
1977: PetscMPIInt rank;
1978: const char *name;
1980: PetscCall(PetscObjectGetName((PetscObject)ts, &name));
1981: PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
1982: if (!((PetscObject)ts)->amsmem && rank == 0) {
1983: char dir[1024];
1985: PetscCall(PetscObjectViewSAWs((PetscObject)ts, viewer));
1986: PetscCall(PetscSNPrintf(dir, 1024, "/PETSc/Objects/%s/time_step", name));
1987: PetscCallSAWs(SAWs_Register, (dir, &ts->steps, 1, SAWs_READ, SAWs_INT));
1988: PetscCall(PetscSNPrintf(dir, 1024, "/PETSc/Objects/%s/time", name));
1989: PetscCallSAWs(SAWs_Register, (dir, &ts->ptime, 1, SAWs_READ, SAWs_DOUBLE));
1990: }
1991: PetscTryTypeMethod(ts, view, viewer);
1992: #endif
1993: }
1994: if (ts->snes && ts->usessnes) {
1995: PetscCall(PetscViewerASCIIPushTab(viewer));
1996: PetscCall(SNESView(ts->snes, viewer));
1997: PetscCall(PetscViewerASCIIPopTab(viewer));
1998: }
1999: PetscCall(DMGetDMTS(ts->dm, &sdm));
2000: PetscCall(DMTSView(sdm, viewer));
2002: PetscCall(PetscViewerASCIIPushTab(viewer));
2003: PetscCall(PetscObjectTypeCompare((PetscObject)ts, TSSUNDIALS, &isundials));
2004: PetscCall(PetscViewerASCIIPopTab(viewer));
2005: PetscFunctionReturn(PETSC_SUCCESS);
2006: }
2008: /*@
2009: TSSetApplicationContext - Sets an optional user-defined context for the timesteppers that may be accessed, for example inside the user provided
2010: `TS` callbacks with `TSGetApplicationContext()`
2012: Logically Collective
2014: Input Parameters:
2015: + ts - the `TS` context obtained from `TSCreate()`
2016: - ctx - user context
2018: Level: intermediate
2020: Fortran Note:
2021: This only works when `ctx` is a Fortran derived type (it cannot be a `PetscObject`), we recommend writing a Fortran interface definition for this
2022: function that tells the Fortran compiler the derived data type that is passed in as the `ctx` argument. See `TSGetApplicationContext()` for
2023: an example.
2025: .seealso: [](ch_ts), `TS`, `TSGetApplicationContext()`
2026: @*/
2027: PetscErrorCode TSSetApplicationContext(TS ts, PeCtx ctx)
2028: {
2029: PetscFunctionBegin;
2031: ts->ctx = ctx;
2032: PetscFunctionReturn(PETSC_SUCCESS);
2033: }
2035: /*@
2036: TSGetApplicationContext - Gets the user-defined context for the
2037: timestepper that was set with `TSSetApplicationContext()`
2039: Not Collective
2041: Input Parameter:
2042: . ts - the `TS` context obtained from `TSCreate()`
2044: Output Parameter:
2045: . ctx - a pointer to the user context
2047: Level: intermediate
2049: Fortran Notes:
2050: This only works when the context is a Fortran derived type (it cannot be a `PetscObject`) and you **must** write a Fortran interface definition for this
2051: function that tells the Fortran compiler the derived data type that is returned as the `ctx` argument. For example,
2052: .vb
2053: Interface TSGetApplicationContext
2054: Subroutine TSGetApplicationContext(ts,ctx,ierr)
2055: #include <petsc/finclude/petscts.h>
2056: use petscts
2057: TS ts
2058: type(tUsertype), pointer :: ctx
2059: PetscErrorCode ierr
2060: End Subroutine
2061: End Interface TSGetApplicationContext
2062: .ve
2064: The prototype for `ctx` must be
2065: .vb
2066: type(tUsertype), pointer :: ctx
2067: .ve
2069: .seealso: [](ch_ts), `TS`, `TSSetApplicationContext()`
2070: @*/
2071: PetscErrorCode TSGetApplicationContext(TS ts, void *ctx)
2072: {
2073: PetscFunctionBegin;
2075: *(void **)ctx = ts->ctx;
2076: PetscFunctionReturn(PETSC_SUCCESS);
2077: }
2079: /*@
2080: TSGetStepNumber - Gets the number of time steps completed.
2082: Not Collective
2084: Input Parameter:
2085: . ts - the `TS` context obtained from `TSCreate()`
2087: Output Parameter:
2088: . steps - number of steps completed so far
2090: Level: intermediate
2092: .seealso: [](ch_ts), `TS`, `TSGetTime()`, `TSGetTimeStep()`, `TSSetPreStep()`, `TSSetPreStage()`, `TSSetPostStage()`, `TSSetPostStep()`
2093: @*/
2094: PetscErrorCode TSGetStepNumber(TS ts, PetscInt *steps)
2095: {
2096: PetscFunctionBegin;
2098: PetscAssertPointer(steps, 2);
2099: *steps = ts->steps;
2100: PetscFunctionReturn(PETSC_SUCCESS);
2101: }
2103: /*@
2104: TSSetStepNumber - Sets the number of steps completed.
2106: Logically Collective
2108: Input Parameters:
2109: + ts - the `TS` context
2110: - steps - number of steps completed so far
2112: Level: developer
2114: Note:
2115: For most uses of the `TS` solvers the user need not explicitly call
2116: `TSSetStepNumber()`, as the step counter is appropriately updated in
2117: `TSSolve()`/`TSStep()`/`TSRollBack()`. Power users may call this routine to
2118: reinitialize timestepping by setting the step counter to zero (and time
2119: to the initial time) to solve a similar problem with different initial
2120: conditions or parameters. Other possible use case is to continue
2121: timestepping from a previously interrupted run in such a way that `TS`
2122: monitors will be called with a initial nonzero step counter.
2124: .seealso: [](ch_ts), `TS`, `TSGetStepNumber()`, `TSSetTime()`, `TSSetTimeStep()`, `TSSetSolution()`
2125: @*/
2126: PetscErrorCode TSSetStepNumber(TS ts, PetscInt steps)
2127: {
2128: PetscFunctionBegin;
2131: PetscCheck(steps >= 0, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Step number must be non-negative");
2132: ts->steps = steps;
2133: PetscFunctionReturn(PETSC_SUCCESS);
2134: }
2136: /*@
2137: TSSetTimeStep - Allows one to reset the timestep at any time,
2138: useful for simple pseudo-timestepping codes.
2140: Logically Collective
2142: Input Parameters:
2143: + ts - the `TS` context obtained from `TSCreate()`
2144: - time_step - the size of the timestep
2146: Level: intermediate
2148: .seealso: [](ch_ts), `TS`, `TSPSEUDO`, `TSGetTimeStep()`, `TSSetTime()`
2149: @*/
2150: PetscErrorCode TSSetTimeStep(TS ts, PetscReal time_step)
2151: {
2152: PetscFunctionBegin;
2155: ts->time_step = time_step;
2156: PetscFunctionReturn(PETSC_SUCCESS);
2157: }
2159: /*@
2160: TSSetExactFinalTime - Determines whether to adapt the final time step to
2161: match the exact final time, to interpolate the solution to the exact final time,
2162: or to just return at the final time `TS` computed (which may be slightly larger
2163: than the requested final time).
2165: Logically Collective
2167: Input Parameters:
2168: + ts - the time-step context
2169: - eftopt - exact final time option
2170: .vb
2171: TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded, just use it
2172: TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time if the final time is exceeded
2173: TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to ensure the computed final time exactly equals the requested final time
2174: .ve
2176: Options Database Key:
2177: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step approach at runtime
2179: Level: beginner
2181: Note:
2182: If you use the option `TS_EXACTFINALTIME_STEPOVER` the solution may be at a very different time
2183: then the final time you selected.
2185: .seealso: [](ch_ts), `TS`, `TSExactFinalTimeOption`, `TSGetExactFinalTime()`
2186: @*/
2187: PetscErrorCode TSSetExactFinalTime(TS ts, TSExactFinalTimeOption eftopt)
2188: {
2189: PetscFunctionBegin;
2192: ts->exact_final_time = eftopt;
2193: PetscFunctionReturn(PETSC_SUCCESS);
2194: }
2196: /*@
2197: TSGetExactFinalTime - Gets the exact final time option set with `TSSetExactFinalTime()`
2199: Not Collective
2201: Input Parameter:
2202: . ts - the `TS` context
2204: Output Parameter:
2205: . eftopt - exact final time option
2207: Level: beginner
2209: .seealso: [](ch_ts), `TS`, `TSExactFinalTimeOption`, `TSSetExactFinalTime()`
2210: @*/
2211: PetscErrorCode TSGetExactFinalTime(TS ts, TSExactFinalTimeOption *eftopt)
2212: {
2213: PetscFunctionBegin;
2215: PetscAssertPointer(eftopt, 2);
2216: *eftopt = ts->exact_final_time;
2217: PetscFunctionReturn(PETSC_SUCCESS);
2218: }
2220: /*@
2221: TSGetTimeStep - Gets the current timestep size.
2223: Not Collective
2225: Input Parameter:
2226: . ts - the `TS` context obtained from `TSCreate()`
2228: Output Parameter:
2229: . dt - the current timestep size
2231: Level: intermediate
2233: .seealso: [](ch_ts), `TS`, `TSSetTimeStep()`, `TSGetTime()`
2234: @*/
2235: PetscErrorCode TSGetTimeStep(TS ts, PetscReal *dt)
2236: {
2237: PetscFunctionBegin;
2239: PetscAssertPointer(dt, 2);
2240: *dt = ts->time_step;
2241: PetscFunctionReturn(PETSC_SUCCESS);
2242: }
2244: /*@
2245: TSGetSolution - Returns the solution at the present timestep. It
2246: is valid to call this routine inside the function that you are evaluating
2247: in order to move to the new timestep. This vector not changed until
2248: the solution at the next timestep has been calculated.
2250: Not Collective, but v returned is parallel if ts is parallel
2252: Input Parameter:
2253: . ts - the `TS` context obtained from `TSCreate()`
2255: Output Parameter:
2256: . v - the vector containing the solution
2258: Level: intermediate
2260: Note:
2261: If you used `TSSetExactFinalTime`(ts,`TS_EXACTFINALTIME_MATCHSTEP`); this does not return the solution at the requested
2262: final time. It returns the solution at the next timestep.
2264: .seealso: [](ch_ts), `TS`, `TSGetTimeStep()`, `TSGetTime()`, `TSGetSolveTime()`, `TSGetSolutionComponents()`, `TSSetSolutionFunction()`
2265: @*/
2266: PetscErrorCode TSGetSolution(TS ts, Vec *v)
2267: {
2268: PetscFunctionBegin;
2270: PetscAssertPointer(v, 2);
2271: *v = ts->vec_sol;
2272: PetscFunctionReturn(PETSC_SUCCESS);
2273: }
2275: /*@
2276: TSGetSolutionComponents - Returns any solution components at the present
2277: timestep, if available for the time integration method being used.
2278: Solution components are quantities that share the same size and
2279: structure as the solution vector.
2281: Not Collective, but v returned is parallel if ts is parallel
2283: Input Parameters:
2284: + ts - the `TS` context obtained from `TSCreate()` (input parameter).
2285: . n - If v is `NULL`, then the number of solution components is
2286: returned through n, else the n-th solution component is
2287: returned in v.
2288: - v - the vector containing the n-th solution component
2289: (may be `NULL` to use this function to find out
2290: the number of solutions components).
2292: Level: advanced
2294: .seealso: [](ch_ts), `TS`, `TSGetSolution()`
2295: @*/
2296: PetscErrorCode TSGetSolutionComponents(TS ts, PetscInt *n, Vec *v)
2297: {
2298: PetscFunctionBegin;
2300: if (!ts->ops->getsolutioncomponents) *n = 0;
2301: else PetscUseTypeMethod(ts, getsolutioncomponents, n, v);
2302: PetscFunctionReturn(PETSC_SUCCESS);
2303: }
2305: /*@
2306: TSGetAuxSolution - Returns an auxiliary solution at the present
2307: timestep, if available for the time integration method being used.
2309: Not Collective, but v returned is parallel if ts is parallel
2311: Input Parameters:
2312: + ts - the `TS` context obtained from `TSCreate()` (input parameter).
2313: - v - the vector containing the auxiliary solution
2315: Level: intermediate
2317: .seealso: [](ch_ts), `TS`, `TSGetSolution()`
2318: @*/
2319: PetscErrorCode TSGetAuxSolution(TS ts, Vec *v)
2320: {
2321: PetscFunctionBegin;
2323: if (ts->ops->getauxsolution) PetscUseTypeMethod(ts, getauxsolution, v);
2324: else PetscCall(VecZeroEntries(*v));
2325: PetscFunctionReturn(PETSC_SUCCESS);
2326: }
2328: /*@
2329: TSGetTimeError - Returns the estimated error vector, if the chosen
2330: `TSType` has an error estimation functionality and `TSSetTimeError()` was called
2332: Not Collective, but v returned is parallel if ts is parallel
2334: Input Parameters:
2335: + ts - the `TS` context obtained from `TSCreate()` (input parameter).
2336: . n - current estimate (n=0) or previous one (n=-1)
2337: - v - the vector containing the error (same size as the solution).
2339: Level: intermediate
2341: Note:
2342: MUST call after `TSSetUp()`
2344: .seealso: [](ch_ts), `TSGetSolution()`, `TSSetTimeError()`
2345: @*/
2346: PetscErrorCode TSGetTimeError(TS ts, PetscInt n, Vec *v)
2347: {
2348: PetscFunctionBegin;
2350: if (ts->ops->gettimeerror) PetscUseTypeMethod(ts, gettimeerror, n, v);
2351: else PetscCall(VecZeroEntries(*v));
2352: PetscFunctionReturn(PETSC_SUCCESS);
2353: }
2355: /*@
2356: TSSetTimeError - Sets the estimated error vector, if the chosen
2357: `TSType` has an error estimation functionality. This can be used
2358: to restart such a time integrator with a given error vector.
2360: Not Collective, but v returned is parallel if ts is parallel
2362: Input Parameters:
2363: + ts - the `TS` context obtained from `TSCreate()` (input parameter).
2364: - v - the vector containing the error (same size as the solution).
2366: Level: intermediate
2368: .seealso: [](ch_ts), `TS`, `TSSetSolution()`, `TSGetTimeError()`
2369: @*/
2370: PetscErrorCode TSSetTimeError(TS ts, Vec v)
2371: {
2372: PetscFunctionBegin;
2374: PetscCheck(ts->setupcalled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call TSSetUp() first");
2375: PetscTryTypeMethod(ts, settimeerror, v);
2376: PetscFunctionReturn(PETSC_SUCCESS);
2377: }
2379: /* ----- Routines to initialize and destroy a timestepper ---- */
2380: /*@
2381: TSSetProblemType - Sets the type of problem to be solved.
2383: Not collective
2385: Input Parameters:
2386: + ts - The `TS`
2387: - type - One of `TS_LINEAR`, `TS_NONLINEAR` where these types refer to problems of the forms
2388: .vb
2389: U_t - A U = 0 (linear)
2390: U_t - A(t) U = 0 (linear)
2391: F(t,U,U_t) = 0 (nonlinear)
2392: .ve
2394: Level: beginner
2396: .seealso: [](ch_ts), `TSSetUp()`, `TSProblemType`, `TS`
2397: @*/
2398: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2399: {
2400: PetscFunctionBegin;
2402: ts->problem_type = type;
2403: if (type == TS_LINEAR) {
2404: SNES snes;
2405: PetscCall(TSGetSNES(ts, &snes));
2406: PetscCall(SNESSetType(snes, SNESKSPONLY));
2407: }
2408: PetscFunctionReturn(PETSC_SUCCESS);
2409: }
2411: /*@
2412: TSGetProblemType - Gets the type of problem to be solved.
2414: Not collective
2416: Input Parameter:
2417: . ts - The `TS`
2419: Output Parameter:
2420: . type - One of `TS_LINEAR`, `TS_NONLINEAR` where these types refer to problems of the forms
2421: .vb
2422: M U_t = A U
2423: M(t) U_t = A(t) U
2424: F(t,U,U_t)
2425: .ve
2427: Level: beginner
2429: .seealso: [](ch_ts), `TSSetUp()`, `TSProblemType`, `TS`
2430: @*/
2431: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2432: {
2433: PetscFunctionBegin;
2435: PetscAssertPointer(type, 2);
2436: *type = ts->problem_type;
2437: PetscFunctionReturn(PETSC_SUCCESS);
2438: }
2440: /*
2441: Attempt to check/preset a default value for the exact final time option. This is needed at the beginning of TSSolve() and in TSSetUp()
2442: */
2443: static PetscErrorCode TSSetExactFinalTimeDefault(TS ts)
2444: {
2445: PetscBool isnone;
2447: PetscFunctionBegin;
2448: PetscCall(TSGetAdapt(ts, &ts->adapt));
2449: PetscCall(TSAdaptSetDefaultType(ts->adapt, ts->default_adapt_type));
2451: PetscCall(PetscObjectTypeCompare((PetscObject)ts->adapt, TSADAPTNONE, &isnone));
2452: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2453: else if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) ts->exact_final_time = TS_EXACTFINALTIME_INTERPOLATE;
2454: PetscFunctionReturn(PETSC_SUCCESS);
2455: }
2457: /*@
2458: TSSetUp - Sets up the internal data structures for the later use of a timestepper.
2460: Collective
2462: Input Parameter:
2463: . ts - the `TS` context obtained from `TSCreate()`
2465: Level: advanced
2467: Note:
2468: For basic use of the `TS` solvers the user need not explicitly call
2469: `TSSetUp()`, since these actions will automatically occur during
2470: the call to `TSStep()` or `TSSolve()`. However, if one wishes to control this
2471: phase separately, `TSSetUp()` should be called after `TSCreate()`
2472: and optional routines of the form TSSetXXX(), but before `TSStep()` and `TSSolve()`.
2474: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSStep()`, `TSDestroy()`, `TSSolve()`
2475: @*/
2476: PetscErrorCode TSSetUp(TS ts)
2477: {
2478: DM dm;
2479: PetscErrorCode (*func)(SNES, Vec, Vec, void *);
2480: PetscErrorCode (*jac)(SNES, Vec, Mat, Mat, void *);
2481: TSIFunctionFn *ifun;
2482: TSIJacobianFn *ijac;
2483: TSI2JacobianFn *i2jac;
2484: TSRHSJacobianFn *rhsjac;
2486: PetscFunctionBegin;
2488: if (ts->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
2490: if (!((PetscObject)ts)->type_name) {
2491: PetscCall(TSGetIFunction(ts, NULL, &ifun, NULL));
2492: PetscCall(TSSetType(ts, ifun ? TSBEULER : TSEULER));
2493: }
2495: if (!ts->vec_sol) {
2496: PetscCheck(ts->dm, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call TSSetSolution() first");
2497: PetscCall(DMCreateGlobalVector(ts->dm, &ts->vec_sol));
2498: }
2500: if (ts->eval_times) {
2501: if (!ts->eval_times->sol_vecs) PetscCall(VecDuplicateVecs(ts->vec_sol, ts->eval_times->num_time_points, &ts->eval_times->sol_vecs));
2502: if (!ts->eval_times->sol_times) PetscCall(PetscMalloc1(ts->eval_times->num_time_points, &ts->eval_times->sol_times));
2503: }
2504: if (!ts->Jacp && ts->Jacprhs) { /* IJacobianP shares the same matrix with RHSJacobianP if only RHSJacobianP is provided */
2505: PetscCall(PetscObjectReference((PetscObject)ts->Jacprhs));
2506: ts->Jacp = ts->Jacprhs;
2507: }
2509: if (ts->quadraturets) {
2510: PetscCall(TSSetUp(ts->quadraturets));
2511: PetscCall(VecDestroy(&ts->vec_costintegrand));
2512: PetscCall(VecDuplicate(ts->quadraturets->vec_sol, &ts->vec_costintegrand));
2513: }
2515: PetscCall(TSGetRHSJacobian(ts, NULL, NULL, &rhsjac, NULL));
2516: if (rhsjac == TSComputeRHSJacobianConstant) {
2517: Mat Amat, Pmat;
2518: SNES snes;
2519: PetscCall(TSGetSNES(ts, &snes));
2520: PetscCall(SNESGetJacobian(snes, &Amat, &Pmat, NULL, NULL));
2521: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2522: * have displaced the RHS matrix */
2523: if (Amat && Amat == ts->Arhs) {
2524: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2525: PetscCall(MatDuplicate(ts->Arhs, MAT_COPY_VALUES, &Amat));
2526: PetscCall(SNESSetJacobian(snes, Amat, NULL, NULL, NULL));
2527: PetscCall(MatDestroy(&Amat));
2528: }
2529: if (Pmat && Pmat == ts->Brhs) {
2530: PetscCall(MatDuplicate(ts->Brhs, MAT_COPY_VALUES, &Pmat));
2531: PetscCall(SNESSetJacobian(snes, NULL, Pmat, NULL, NULL));
2532: PetscCall(MatDestroy(&Pmat));
2533: }
2534: }
2536: PetscCall(TSGetAdapt(ts, &ts->adapt));
2537: PetscCall(TSAdaptSetDefaultType(ts->adapt, ts->default_adapt_type));
2539: PetscTryTypeMethod(ts, setup);
2541: PetscCall(TSSetExactFinalTimeDefault(ts));
2543: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2544: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2545: */
2546: PetscCall(TSGetDM(ts, &dm));
2547: PetscCall(DMSNESGetFunction(dm, &func, NULL));
2548: if (!func) PetscCall(DMSNESSetFunction(dm, SNESTSFormFunction, ts));
2550: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2551: Otherwise, the SNES will use coloring internally to form the Jacobian.
2552: */
2553: PetscCall(DMSNESGetJacobian(dm, &jac, NULL));
2554: PetscCall(DMTSGetIJacobian(dm, &ijac, NULL));
2555: PetscCall(DMTSGetI2Jacobian(dm, &i2jac, NULL));
2556: PetscCall(DMTSGetRHSJacobian(dm, &rhsjac, NULL));
2557: if (!jac && (ijac || i2jac || rhsjac)) PetscCall(DMSNESSetJacobian(dm, SNESTSFormJacobian, ts));
2559: /* if time integration scheme has a starting method, call it */
2560: PetscTryTypeMethod(ts, startingmethod);
2562: ts->setupcalled = PETSC_TRUE;
2563: PetscFunctionReturn(PETSC_SUCCESS);
2564: }
2566: /*@
2567: TSReset - Resets a `TS` context to the state it was in before `TSSetUp()` was called and removes any allocated `Vec` and `Mat` from its data structures
2569: Collective
2571: Input Parameter:
2572: . ts - the `TS` context obtained from `TSCreate()`
2574: Level: developer
2576: Notes:
2577: Any options set on the `TS` object, including those set with `TSSetFromOptions()` remain.
2579: See also `TSSetResize()` to change the size of the system being integrated (for example by adaptive mesh refinement) during the time integration.
2581: .seealso: [](ch_ts), `TS`, `TSCreate()`, `TSSetUp()`, `TSDestroy()`, `TSSetResize()`
2582: @*/
2583: PetscErrorCode TSReset(TS ts)
2584: {
2585: TS_RHSSplitLink ilink = ts->tsrhssplit, next;
2587: PetscFunctionBegin;
2590: PetscTryTypeMethod(ts, reset);
2591: if (ts->snes) PetscCall(SNESReset(ts->snes));
2592: if (ts->adapt) PetscCall(TSAdaptReset(ts->adapt));
2594: PetscCall(MatDestroy(&ts->Arhs));
2595: PetscCall(MatDestroy(&ts->Brhs));
2596: PetscCall(VecDestroy(&ts->Frhs));
2597: PetscCall(VecDestroy(&ts->vec_sol));
2598: PetscCall(VecDestroy(&ts->vec_sol0));
2599: PetscCall(VecDestroy(&ts->vec_dot));
2600: PetscCall(VecDestroy(&ts->vatol));
2601: PetscCall(VecDestroy(&ts->vrtol));
2602: PetscCall(VecDestroyVecs(ts->nwork, &ts->work));
2604: PetscCall(MatDestroy(&ts->Jacprhs));
2605: PetscCall(MatDestroy(&ts->Jacp));
2606: if (ts->forward_solve) PetscCall(TSForwardReset(ts));
2607: if (ts->quadraturets) {
2608: PetscCall(TSReset(ts->quadraturets));
2609: PetscCall(VecDestroy(&ts->vec_costintegrand));
2610: }
2611: while (ilink) {
2612: next = ilink->next;
2613: PetscCall(TSDestroy(&ilink->ts));
2614: PetscCall(PetscFree(ilink->splitname));
2615: PetscCall(ISDestroy(&ilink->is));
2616: PetscCall(PetscFree(ilink));
2617: ilink = next;
2618: }
2619: ts->tsrhssplit = NULL;
2620: ts->num_rhs_splits = 0;
2621: if (ts->eval_times) {
2622: PetscCall(PetscFree(ts->eval_times->time_points));
2623: PetscCall(PetscFree(ts->eval_times->sol_times));
2624: PetscCall(VecDestroyVecs(ts->eval_times->num_time_points, &ts->eval_times->sol_vecs));
2625: PetscCall(PetscFree(ts->eval_times));
2626: }
2627: ts->rhsjacobian.time = PETSC_MIN_REAL;
2628: ts->rhsjacobian.scale = 1.0;
2629: ts->ijacobian.shift = 1.0;
2630: ts->setupcalled = PETSC_FALSE;
2631: PetscFunctionReturn(PETSC_SUCCESS);
2632: }
2634: static PetscErrorCode TSResizeReset(TS);
2636: /*@
2637: TSDestroy - Destroys the timestepper context that was created
2638: with `TSCreate()`.
2640: Collective
2642: Input Parameter:
2643: . ts - the `TS` context obtained from `TSCreate()`
2645: Level: beginner
2647: .seealso: [](ch_ts), `TS`, `TSCreate()`, `TSSetUp()`, `TSSolve()`
2648: @*/
2649: PetscErrorCode TSDestroy(TS *ts)
2650: {
2651: PetscFunctionBegin;
2652: if (!*ts) PetscFunctionReturn(PETSC_SUCCESS);
2654: if (--((PetscObject)*ts)->refct > 0) {
2655: *ts = NULL;
2656: PetscFunctionReturn(PETSC_SUCCESS);
2657: }
2659: PetscCall(TSReset(*ts));
2660: PetscCall(TSAdjointReset(*ts));
2661: if ((*ts)->forward_solve) PetscCall(TSForwardReset(*ts));
2662: PetscCall(TSResizeReset(*ts));
2664: /* if memory was published with SAWs then destroy it */
2665: PetscCall(PetscObjectSAWsViewOff((PetscObject)*ts));
2666: PetscTryTypeMethod(*ts, destroy);
2668: PetscCall(TSTrajectoryDestroy(&(*ts)->trajectory));
2670: PetscCall(TSAdaptDestroy(&(*ts)->adapt));
2671: PetscCall(TSEventDestroy(&(*ts)->event));
2673: PetscCall(SNESDestroy(&(*ts)->snes));
2674: PetscCall(SNESDestroy(&(*ts)->snesrhssplit));
2675: PetscCall(DMDestroy(&(*ts)->dm));
2676: PetscCall(TSMonitorCancel(*ts));
2677: PetscCall(TSAdjointMonitorCancel(*ts));
2679: PetscCall(TSDestroy(&(*ts)->quadraturets));
2680: PetscCall(PetscHeaderDestroy(ts));
2681: PetscFunctionReturn(PETSC_SUCCESS);
2682: }
2684: /*@
2685: TSGetSNES - Returns the `SNES` (nonlinear solver) associated with
2686: a `TS` (timestepper) context. Valid only for nonlinear problems.
2688: Not Collective, but snes is parallel if ts is parallel
2690: Input Parameter:
2691: . ts - the `TS` context obtained from `TSCreate()`
2693: Output Parameter:
2694: . snes - the nonlinear solver context
2696: Level: beginner
2698: Notes:
2699: The user can then directly manipulate the `SNES` context to set various
2700: options, etc. Likewise, the user can then extract and manipulate the
2701: `KSP`, and `PC` contexts as well.
2703: `TSGetSNES()` does not work for integrators that do not use `SNES`; in
2704: this case `TSGetSNES()` returns `NULL` in `snes`.
2706: .seealso: [](ch_ts), `TS`, `SNES`, `TSCreate()`, `TSSetUp()`, `TSSolve()`
2707: @*/
2708: PetscErrorCode TSGetSNES(TS ts, SNES *snes)
2709: {
2710: PetscFunctionBegin;
2712: PetscAssertPointer(snes, 2);
2713: if (!ts->snes) {
2714: PetscCall(SNESCreate(PetscObjectComm((PetscObject)ts), &ts->snes));
2715: PetscCall(PetscObjectSetOptions((PetscObject)ts->snes, ((PetscObject)ts)->options));
2716: PetscCall(SNESSetFunction(ts->snes, NULL, SNESTSFormFunction, ts));
2717: PetscCall(PetscObjectIncrementTabLevel((PetscObject)ts->snes, (PetscObject)ts, 1));
2718: if (ts->dm) PetscCall(SNESSetDM(ts->snes, ts->dm));
2719: if (ts->problem_type == TS_LINEAR) PetscCall(SNESSetType(ts->snes, SNESKSPONLY));
2720: }
2721: *snes = ts->snes;
2722: PetscFunctionReturn(PETSC_SUCCESS);
2723: }
2725: /*@
2726: TSSetSNES - Set the `SNES` (nonlinear solver) to be used by the `TS` timestepping context
2728: Collective
2730: Input Parameters:
2731: + ts - the `TS` context obtained from `TSCreate()`
2732: - snes - the nonlinear solver context
2734: Level: developer
2736: Note:
2737: Most users should have the `TS` created by calling `TSGetSNES()`
2739: .seealso: [](ch_ts), `TS`, `SNES`, `TSCreate()`, `TSSetUp()`, `TSSolve()`, `TSGetSNES()`
2740: @*/
2741: PetscErrorCode TSSetSNES(TS ts, SNES snes)
2742: {
2743: PetscErrorCode (*func)(SNES, Vec, Mat, Mat, void *);
2745: PetscFunctionBegin;
2748: PetscCall(PetscObjectReference((PetscObject)snes));
2749: PetscCall(SNESDestroy(&ts->snes));
2751: ts->snes = snes;
2753: PetscCall(SNESSetFunction(ts->snes, NULL, SNESTSFormFunction, ts));
2754: PetscCall(SNESGetJacobian(ts->snes, NULL, NULL, &func, NULL));
2755: if (func == SNESTSFormJacobian) PetscCall(SNESSetJacobian(ts->snes, NULL, NULL, SNESTSFormJacobian, ts));
2756: PetscFunctionReturn(PETSC_SUCCESS);
2757: }
2759: /*@
2760: TSGetKSP - Returns the `KSP` (linear solver) associated with
2761: a `TS` (timestepper) context.
2763: Not Collective, but `ksp` is parallel if `ts` is parallel
2765: Input Parameter:
2766: . ts - the `TS` context obtained from `TSCreate()`
2768: Output Parameter:
2769: . ksp - the nonlinear solver context
2771: Level: beginner
2773: Notes:
2774: The user can then directly manipulate the `KSP` context to set various
2775: options, etc. Likewise, the user can then extract and manipulate the
2776: `PC` context as well.
2778: `TSGetKSP()` does not work for integrators that do not use `KSP`;
2779: in this case `TSGetKSP()` returns `NULL` in `ksp`.
2781: .seealso: [](ch_ts), `TS`, `SNES`, `KSP`, `TSCreate()`, `TSSetUp()`, `TSSolve()`, `TSGetSNES()`
2782: @*/
2783: PetscErrorCode TSGetKSP(TS ts, KSP *ksp)
2784: {
2785: SNES snes;
2787: PetscFunctionBegin;
2789: PetscAssertPointer(ksp, 2);
2790: PetscCheck(((PetscObject)ts)->type_name, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "KSP is not created yet. Call TSSetType() first");
2791: PetscCheck(ts->problem_type == TS_LINEAR, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Linear only; use TSGetSNES()");
2792: PetscCall(TSGetSNES(ts, &snes));
2793: PetscCall(SNESGetKSP(snes, ksp));
2794: PetscFunctionReturn(PETSC_SUCCESS);
2795: }
2797: /* ----------- Routines to set solver parameters ---------- */
2799: /*@
2800: TSSetMaxSteps - Sets the maximum number of steps to use.
2802: Logically Collective
2804: Input Parameters:
2805: + ts - the `TS` context obtained from `TSCreate()`
2806: - maxsteps - maximum number of steps to use
2808: Options Database Key:
2809: . -ts_max_steps <maxsteps> - Sets maxsteps
2811: Level: intermediate
2813: Note:
2814: Use `PETSC_DETERMINE` to reset the maximum number of steps to the default from when the object's type was set
2816: The default maximum number of steps is 5,000
2818: Fortran Note:
2819: Use `PETSC_DETERMINE_INTEGER`
2821: .seealso: [](ch_ts), `TS`, `TSGetMaxSteps()`, `TSSetMaxTime()`, `TSSetExactFinalTime()`
2822: @*/
2823: PetscErrorCode TSSetMaxSteps(TS ts, PetscInt maxsteps)
2824: {
2825: PetscFunctionBegin;
2828: if (maxsteps == PETSC_DETERMINE) {
2829: ts->max_steps = ts->default_max_steps;
2830: } else {
2831: PetscCheck(maxsteps >= 0, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Maximum number of steps must be non-negative");
2832: ts->max_steps = maxsteps;
2833: }
2834: PetscFunctionReturn(PETSC_SUCCESS);
2835: }
2837: /*@
2838: TSGetMaxSteps - Gets the maximum number of steps to use.
2840: Not Collective
2842: Input Parameter:
2843: . ts - the `TS` context obtained from `TSCreate()`
2845: Output Parameter:
2846: . maxsteps - maximum number of steps to use
2848: Level: advanced
2850: .seealso: [](ch_ts), `TS`, `TSSetMaxSteps()`, `TSGetMaxTime()`, `TSSetMaxTime()`
2851: @*/
2852: PetscErrorCode TSGetMaxSteps(TS ts, PetscInt *maxsteps)
2853: {
2854: PetscFunctionBegin;
2856: PetscAssertPointer(maxsteps, 2);
2857: *maxsteps = ts->max_steps;
2858: PetscFunctionReturn(PETSC_SUCCESS);
2859: }
2861: /*@
2862: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
2864: Logically Collective
2866: Input Parameters:
2867: + ts - the `TS` context obtained from `TSCreate()`
2868: - maxtime - final time to step to
2870: Options Database Key:
2871: . -ts_max_time <maxtime> - Sets maxtime
2873: Level: intermediate
2875: Notes:
2876: Use `PETSC_DETERMINE` to reset the maximum time to the default from when the object's type was set
2878: The default maximum time is 5.0
2880: Fortran Note:
2881: Use `PETSC_DETERMINE_REAL`
2883: .seealso: [](ch_ts), `TS`, `TSGetMaxTime()`, `TSSetMaxSteps()`, `TSSetExactFinalTime()`
2884: @*/
2885: PetscErrorCode TSSetMaxTime(TS ts, PetscReal maxtime)
2886: {
2887: PetscFunctionBegin;
2890: if (maxtime == PETSC_DETERMINE) {
2891: ts->max_time = ts->default_max_time;
2892: } else {
2893: ts->max_time = maxtime;
2894: }
2895: PetscFunctionReturn(PETSC_SUCCESS);
2896: }
2898: /*@
2899: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
2901: Not Collective
2903: Input Parameter:
2904: . ts - the `TS` context obtained from `TSCreate()`
2906: Output Parameter:
2907: . maxtime - final time to step to
2909: Level: advanced
2911: .seealso: [](ch_ts), `TS`, `TSSetMaxTime()`, `TSGetMaxSteps()`, `TSSetMaxSteps()`
2912: @*/
2913: PetscErrorCode TSGetMaxTime(TS ts, PetscReal *maxtime)
2914: {
2915: PetscFunctionBegin;
2917: PetscAssertPointer(maxtime, 2);
2918: *maxtime = ts->max_time;
2919: PetscFunctionReturn(PETSC_SUCCESS);
2920: }
2922: // PetscClangLinter pragma disable: -fdoc-*
2923: /*@
2924: TSSetInitialTimeStep - Deprecated, use `TSSetTime()` and `TSSetTimeStep()`.
2926: Level: deprecated
2928: @*/
2929: PetscErrorCode TSSetInitialTimeStep(TS ts, PetscReal initial_time, PetscReal time_step)
2930: {
2931: PetscFunctionBegin;
2933: PetscCall(TSSetTime(ts, initial_time));
2934: PetscCall(TSSetTimeStep(ts, time_step));
2935: PetscFunctionReturn(PETSC_SUCCESS);
2936: }
2938: // PetscClangLinter pragma disable: -fdoc-*
2939: /*@
2940: TSGetDuration - Deprecated, use `TSGetMaxSteps()` and `TSGetMaxTime()`.
2942: Level: deprecated
2944: @*/
2945: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2946: {
2947: PetscFunctionBegin;
2949: if (maxsteps) {
2950: PetscAssertPointer(maxsteps, 2);
2951: *maxsteps = ts->max_steps;
2952: }
2953: if (maxtime) {
2954: PetscAssertPointer(maxtime, 3);
2955: *maxtime = ts->max_time;
2956: }
2957: PetscFunctionReturn(PETSC_SUCCESS);
2958: }
2960: // PetscClangLinter pragma disable: -fdoc-*
2961: /*@
2962: TSSetDuration - Deprecated, use `TSSetMaxSteps()` and `TSSetMaxTime()`.
2964: Level: deprecated
2966: @*/
2967: PetscErrorCode TSSetDuration(TS ts, PetscInt maxsteps, PetscReal maxtime)
2968: {
2969: PetscFunctionBegin;
2970: if (maxsteps != PETSC_CURRENT) PetscCall(TSSetMaxSteps(ts, maxsteps));
2971: if (maxtime != (PetscReal)PETSC_CURRENT) PetscCall(TSSetMaxTime(ts, maxtime));
2972: PetscFunctionReturn(PETSC_SUCCESS);
2973: }
2975: // PetscClangLinter pragma disable: -fdoc-*
2976: /*@
2977: TSGetTimeStepNumber - Deprecated, use `TSGetStepNumber()`.
2979: Level: deprecated
2981: @*/
2982: PetscErrorCode TSGetTimeStepNumber(TS ts, PetscInt *steps)
2983: {
2984: return TSGetStepNumber(ts, steps);
2985: }
2987: // PetscClangLinter pragma disable: -fdoc-*
2988: /*@
2989: TSGetTotalSteps - Deprecated, use `TSGetStepNumber()`.
2991: Level: deprecated
2993: @*/
2994: PetscErrorCode TSGetTotalSteps(TS ts, PetscInt *steps)
2995: {
2996: return TSGetStepNumber(ts, steps);
2997: }
2999: /*@
3000: TSSetSolution - Sets the initial solution vector
3001: for use by the `TS` routines.
3003: Logically Collective
3005: Input Parameters:
3006: + ts - the `TS` context obtained from `TSCreate()`
3007: - u - the solution vector
3009: Level: beginner
3011: .seealso: [](ch_ts), `TS`, `TSSetSolutionFunction()`, `TSGetSolution()`, `TSCreate()`
3012: @*/
3013: PetscErrorCode TSSetSolution(TS ts, Vec u)
3014: {
3015: DM dm;
3017: PetscFunctionBegin;
3020: PetscCall(PetscObjectReference((PetscObject)u));
3021: PetscCall(VecDestroy(&ts->vec_sol));
3022: ts->vec_sol = u;
3024: PetscCall(TSGetDM(ts, &dm));
3025: PetscCall(DMShellSetGlobalVector(dm, u));
3026: PetscFunctionReturn(PETSC_SUCCESS);
3027: }
3029: /*@C
3030: TSSetPreStep - Sets the general-purpose function
3031: called once at the beginning of each time step.
3033: Logically Collective
3035: Input Parameters:
3036: + ts - The `TS` context obtained from `TSCreate()`
3037: - func - The function
3039: Calling sequence of `func`:
3040: . ts - the `TS` context
3042: Level: intermediate
3044: .seealso: [](ch_ts), `TS`, `TSSetPreStage()`, `TSSetPostStage()`, `TSSetPostStep()`, `TSStep()`, `TSRestartStep()`
3045: @*/
3046: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS ts))
3047: {
3048: PetscFunctionBegin;
3050: ts->prestep = func;
3051: PetscFunctionReturn(PETSC_SUCCESS);
3052: }
3054: /*@
3055: TSPreStep - Runs the user-defined pre-step function provided with `TSSetPreStep()`
3057: Collective
3059: Input Parameter:
3060: . ts - The `TS` context obtained from `TSCreate()`
3062: Level: developer
3064: Note:
3065: `TSPreStep()` is typically used within time stepping implementations,
3066: so most users would not generally call this routine themselves.
3068: .seealso: [](ch_ts), `TS`, `TSSetPreStep()`, `TSPreStage()`, `TSPostStage()`, `TSPostStep()`
3069: @*/
3070: PetscErrorCode TSPreStep(TS ts)
3071: {
3072: PetscFunctionBegin;
3074: if (ts->prestep) {
3075: Vec U;
3076: PetscObjectId idprev;
3077: PetscBool sameObject;
3078: PetscObjectState sprev, spost;
3080: PetscCall(TSGetSolution(ts, &U));
3081: PetscCall(PetscObjectGetId((PetscObject)U, &idprev));
3082: PetscCall(PetscObjectStateGet((PetscObject)U, &sprev));
3083: PetscCallBack("TS callback preset", (*ts->prestep)(ts));
3084: PetscCall(TSGetSolution(ts, &U));
3085: PetscCall(PetscObjectCompareId((PetscObject)U, idprev, &sameObject));
3086: PetscCall(PetscObjectStateGet((PetscObject)U, &spost));
3087: if (!sameObject || sprev != spost) PetscCall(TSRestartStep(ts));
3088: }
3089: PetscFunctionReturn(PETSC_SUCCESS);
3090: }
3092: /*@C
3093: TSSetPreStage - Sets the general-purpose function
3094: called once at the beginning of each stage.
3096: Logically Collective
3098: Input Parameters:
3099: + ts - The `TS` context obtained from `TSCreate()`
3100: - func - The function
3102: Calling sequence of `func`:
3103: + ts - the `TS` context
3104: - stagetime - the stage time
3106: Level: intermediate
3108: Note:
3109: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3110: The time step number being computed can be queried using `TSGetStepNumber()` and the total size of the step being
3111: attempted can be obtained using `TSGetTimeStep()`. The time at the start of the step is available via `TSGetTime()`.
3113: .seealso: [](ch_ts), `TS`, `TSSetPostStage()`, `TSSetPreStep()`, `TSSetPostStep()`, `TSGetApplicationContext()`
3114: @*/
3115: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS ts, PetscReal stagetime))
3116: {
3117: PetscFunctionBegin;
3119: ts->prestage = func;
3120: PetscFunctionReturn(PETSC_SUCCESS);
3121: }
3123: /*@C
3124: TSSetPostStage - Sets the general-purpose function
3125: called once at the end of each stage.
3127: Logically Collective
3129: Input Parameters:
3130: + ts - The `TS` context obtained from `TSCreate()`
3131: - func - The function
3133: Calling sequence of `func`:
3134: + ts - the `TS` context
3135: . stagetime - the stage time
3136: . stageindex - the stage index
3137: - Y - Array of vectors (of size = total number of stages) with the stage solutions
3139: Level: intermediate
3141: Note:
3142: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3143: The time step number being computed can be queried using `TSGetStepNumber()` and the total size of the step being
3144: attempted can be obtained using `TSGetTimeStep()`. The time at the start of the step is available via `TSGetTime()`.
3146: .seealso: [](ch_ts), `TS`, `TSSetPreStage()`, `TSSetPreStep()`, `TSSetPostStep()`, `TSGetApplicationContext()`
3147: @*/
3148: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y))
3149: {
3150: PetscFunctionBegin;
3152: ts->poststage = func;
3153: PetscFunctionReturn(PETSC_SUCCESS);
3154: }
3156: /*@C
3157: TSSetPostEvaluate - Sets the general-purpose function
3158: called at the end of each step evaluation.
3160: Logically Collective
3162: Input Parameters:
3163: + ts - The `TS` context obtained from `TSCreate()`
3164: - func - The function
3166: Calling sequence of `func`:
3167: . ts - the `TS` context
3169: Level: intermediate
3171: Note:
3172: The function set by `TSSetPostEvaluate()` is called after the solution is evaluated, or after the step rollback.
3173: Inside the `func` callback, the solution vector can be obtained with `TSGetSolution()`, and modified, if need be.
3174: The time step can be obtained with `TSGetTimeStep()`, and the time at the start of the step - via `TSGetTime()`.
3175: The potential changes to the solution vector introduced by event handling (`postevent()`) are not relevant for `TSSetPostEvaluate()`,
3176: but are relevant for `TSSetPostStep()`, according to the function call scheme in `TSSolve()`, as shown below
3177: .vb
3178: ...
3179: Step()
3180: PostEvaluate()
3181: EventHandling()
3182: step_rollback ? PostEvaluate() : PostStep()
3183: ...
3184: .ve
3185: where EventHandling() may result in one of the following three outcomes
3186: .vb
3187: (1) | successful step | solution intact
3188: (2) | successful step | solution modified by `postevent()`
3189: (3) | step_rollback | solution rolled back
3190: .ve
3192: .seealso: [](ch_ts), `TS`, `TSSetPreStage()`, `TSSetPreStep()`, `TSSetPostStep()`, `TSGetApplicationContext()`
3193: @*/
3194: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS ts))
3195: {
3196: PetscFunctionBegin;
3198: ts->postevaluate = func;
3199: PetscFunctionReturn(PETSC_SUCCESS);
3200: }
3202: /*@
3203: TSPreStage - Runs the user-defined pre-stage function set using `TSSetPreStage()`
3205: Collective
3207: Input Parameters:
3208: + ts - The `TS` context obtained from `TSCreate()`
3209: - stagetime - The absolute time of the current stage
3211: Level: developer
3213: Note:
3214: `TSPreStage()` is typically used within time stepping implementations,
3215: most users would not generally call this routine themselves.
3217: .seealso: [](ch_ts), `TS`, `TSPostStage()`, `TSSetPreStep()`, `TSPreStep()`, `TSPostStep()`
3218: @*/
3219: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3220: {
3221: PetscFunctionBegin;
3223: if (ts->prestage) PetscCallBack("TS callback prestage", (*ts->prestage)(ts, stagetime));
3224: PetscFunctionReturn(PETSC_SUCCESS);
3225: }
3227: /*@
3228: TSPostStage - Runs the user-defined post-stage function set using `TSSetPostStage()`
3230: Collective
3232: Input Parameters:
3233: + ts - The `TS` context obtained from `TSCreate()`
3234: . stagetime - The absolute time of the current stage
3235: . stageindex - Stage number
3236: - Y - Array of vectors (of size = total number of stages) with the stage solutions
3238: Level: developer
3240: Note:
3241: `TSPostStage()` is typically used within time stepping implementations,
3242: most users would not generally call this routine themselves.
3244: .seealso: [](ch_ts), `TS`, `TSPreStage()`, `TSSetPreStep()`, `TSPreStep()`, `TSPostStep()`
3245: @*/
3246: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3247: {
3248: PetscFunctionBegin;
3250: if (ts->poststage) PetscCallBack("TS callback poststage", (*ts->poststage)(ts, stagetime, stageindex, Y));
3251: PetscFunctionReturn(PETSC_SUCCESS);
3252: }
3254: /*@
3255: TSPostEvaluate - Runs the user-defined post-evaluate function set using `TSSetPostEvaluate()`
3257: Collective
3259: Input Parameter:
3260: . ts - The `TS` context obtained from `TSCreate()`
3262: Level: developer
3264: Note:
3265: `TSPostEvaluate()` is typically used within time stepping implementations,
3266: most users would not generally call this routine themselves.
3268: .seealso: [](ch_ts), `TS`, `TSSetPostEvaluate()`, `TSSetPreStep()`, `TSPreStep()`, `TSPostStep()`
3269: @*/
3270: PetscErrorCode TSPostEvaluate(TS ts)
3271: {
3272: PetscFunctionBegin;
3274: if (ts->postevaluate) {
3275: Vec U;
3276: PetscObjectState sprev, spost;
3278: PetscCall(TSGetSolution(ts, &U));
3279: PetscCall(PetscObjectStateGet((PetscObject)U, &sprev));
3280: PetscCallBack("TS callback postevaluate", (*ts->postevaluate)(ts));
3281: PetscCall(PetscObjectStateGet((PetscObject)U, &spost));
3282: if (sprev != spost) PetscCall(TSRestartStep(ts));
3283: }
3284: PetscFunctionReturn(PETSC_SUCCESS);
3285: }
3287: /*@C
3288: TSSetPostStep - Sets the general-purpose function
3289: called once at the end of each successful time step.
3291: Logically Collective
3293: Input Parameters:
3294: + ts - The `TS` context obtained from `TSCreate()`
3295: - func - The function
3297: Calling sequence of `func`:
3298: . ts - the `TS` context
3300: Level: intermediate
3302: Note:
3303: The function set by `TSSetPostStep()` is called after each successful step. If the event handler locates an event at the
3304: given step, and `postevent()` modifies the solution vector, the solution vector obtained by `TSGetSolution()` inside `func` will
3305: contain the changes. To get the solution without these changes, use `TSSetPostEvaluate()` to set the appropriate callback.
3306: The scheme of the relevant function calls in `TSSolve()` is shown below
3307: .vb
3308: ...
3309: Step()
3310: PostEvaluate()
3311: EventHandling()
3312: step_rollback ? PostEvaluate() : PostStep()
3313: ...
3314: .ve
3315: where EventHandling() may result in one of the following three outcomes
3316: .vb
3317: (1) | successful step | solution intact
3318: (2) | successful step | solution modified by `postevent()`
3319: (3) | step_rollback | solution rolled back
3320: .ve
3322: .seealso: [](ch_ts), `TS`, `TSSetPreStep()`, `TSSetPreStage()`, `TSSetPostEvaluate()`, `TSGetTimeStep()`, `TSGetStepNumber()`, `TSGetTime()`, `TSRestartStep()`
3323: @*/
3324: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS ts))
3325: {
3326: PetscFunctionBegin;
3328: ts->poststep = func;
3329: PetscFunctionReturn(PETSC_SUCCESS);
3330: }
3332: /*@
3333: TSPostStep - Runs the user-defined post-step function that was set with `TSSetPostStep()`
3335: Collective
3337: Input Parameter:
3338: . ts - The `TS` context obtained from `TSCreate()`
3340: Note:
3341: `TSPostStep()` is typically used within time stepping implementations,
3342: so most users would not generally call this routine themselves.
3344: Level: developer
3346: .seealso: [](ch_ts), `TS`, `TSSetPreStep()`, `TSSetPreStage()`, `TSSetPostEvaluate()`, `TSGetTimeStep()`, `TSGetStepNumber()`, `TSGetTime()`, `TSSetPostStep()`
3347: @*/
3348: PetscErrorCode TSPostStep(TS ts)
3349: {
3350: PetscFunctionBegin;
3352: if (ts->poststep) {
3353: Vec U;
3354: PetscObjectId idprev;
3355: PetscBool sameObject;
3356: PetscObjectState sprev, spost;
3358: PetscCall(TSGetSolution(ts, &U));
3359: PetscCall(PetscObjectGetId((PetscObject)U, &idprev));
3360: PetscCall(PetscObjectStateGet((PetscObject)U, &sprev));
3361: PetscCallBack("TS callback poststep", (*ts->poststep)(ts));
3362: PetscCall(TSGetSolution(ts, &U));
3363: PetscCall(PetscObjectCompareId((PetscObject)U, idprev, &sameObject));
3364: PetscCall(PetscObjectStateGet((PetscObject)U, &spost));
3365: if (!sameObject || sprev != spost) PetscCall(TSRestartStep(ts));
3366: }
3367: PetscFunctionReturn(PETSC_SUCCESS);
3368: }
3370: /*@
3371: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3373: Collective
3375: Input Parameters:
3376: + ts - time stepping context
3377: - t - time to interpolate to
3379: Output Parameter:
3380: . U - state at given time
3382: Level: intermediate
3384: Developer Notes:
3385: `TSInterpolate()` and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3387: .seealso: [](ch_ts), `TS`, `TSSetExactFinalTime()`, `TSSolve()`
3388: @*/
3389: PetscErrorCode TSInterpolate(TS ts, PetscReal t, Vec U)
3390: {
3391: PetscFunctionBegin;
3394: PetscCheck(t >= ts->ptime_prev && t <= ts->ptime, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Requested time %g not in last time steps [%g,%g]", (double)t, (double)ts->ptime_prev, (double)ts->ptime);
3395: PetscUseTypeMethod(ts, interpolate, t, U);
3396: PetscFunctionReturn(PETSC_SUCCESS);
3397: }
3399: /*@
3400: TSStep - Steps one time step
3402: Collective
3404: Input Parameter:
3405: . ts - the `TS` context obtained from `TSCreate()`
3407: Level: developer
3409: Notes:
3410: The public interface for the ODE/DAE solvers is `TSSolve()`, you should almost for sure be using that routine and not this routine.
3412: The hook set using `TSSetPreStep()` is called before each attempt to take the step. In general, the time step size may
3413: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3415: This may over-step the final time provided in `TSSetMaxTime()` depending on the time-step used. `TSSolve()` interpolates to exactly the
3416: time provided in `TSSetMaxTime()`. One can use `TSInterpolate()` to determine an interpolated solution within the final timestep.
3418: .seealso: [](ch_ts), `TS`, `TSCreate()`, `TSSetUp()`, `TSDestroy()`, `TSSolve()`, `TSSetPreStep()`, `TSSetPreStage()`, `TSSetPostStage()`, `TSInterpolate()`
3419: @*/
3420: PetscErrorCode TSStep(TS ts)
3421: {
3422: static PetscBool cite = PETSC_FALSE;
3423: PetscReal ptime;
3425: PetscFunctionBegin;
3427: PetscCall(PetscCitationsRegister("@article{tspaper,\n"
3428: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3429: " author = {Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil and Ghosh, Debojyoti and Smith, Barry F. and Zhang, Hong},\n"
3430: " journal = {arXiv e-preprints},\n"
3431: " eprint = {1806.01437},\n"
3432: " archivePrefix = {arXiv},\n"
3433: " year = {2018}\n}\n",
3434: &cite));
3435: PetscCall(TSSetUp(ts));
3436: PetscCall(TSTrajectorySetUp(ts->trajectory, ts));
3437: if (ts->eval_times)
3438: ts->eval_times->worktol = 0; /* In each step of TSSolve() 'eval_times->worktol' will be meaningfully defined (later) only once:
3439: in TSAdaptChoose() or TSEvent_dt_cap(), and then reused till the end of the step */
3441: PetscCheck(ts->max_time < PETSC_MAX_REAL || ts->max_steps != PETSC_INT_MAX, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONGSTATE, "You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3442: PetscCheck(ts->exact_final_time != TS_EXACTFINALTIME_UNSPECIFIED, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONGSTATE, "You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3443: PetscCheck(ts->exact_final_time != TS_EXACTFINALTIME_MATCHSTEP || ts->adapt, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3445: if (!ts->vec_sol0) PetscCall(VecDuplicate(ts->vec_sol, &ts->vec_sol0));
3446: PetscCall(VecCopy(ts->vec_sol, ts->vec_sol0));
3447: ts->time_step0 = ts->time_step;
3449: if (!ts->steps) ts->ptime_prev = ts->ptime;
3450: ptime = ts->ptime;
3452: ts->ptime_prev_rollback = ts->ptime_prev;
3453: ts->reason = TS_CONVERGED_ITERATING;
3455: PetscCall(PetscLogEventBegin(TS_Step, ts, 0, 0, 0));
3456: PetscUseTypeMethod(ts, step);
3457: PetscCall(PetscLogEventEnd(TS_Step, ts, 0, 0, 0));
3459: if (ts->reason >= 0) {
3460: ts->ptime_prev = ptime;
3461: ts->steps++;
3462: ts->steprollback = PETSC_FALSE;
3463: ts->steprestart = PETSC_FALSE;
3464: ts->stepresize = PETSC_FALSE;
3465: }
3467: if (ts->reason < 0 && ts->errorifstepfailed) {
3468: PetscCall(TSMonitorCancel(ts));
3469: PetscCheck(ts->reason != TS_DIVERGED_NONLINEAR_SOLVE, PetscObjectComm((PetscObject)ts), PETSC_ERR_NOT_CONVERGED, "TSStep has failed due to %s, increase -ts_max_snes_failures or use unlimited to attempt recovery", TSConvergedReasons[ts->reason]);
3470: SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_NOT_CONVERGED, "TSStep has failed due to %s", TSConvergedReasons[ts->reason]);
3471: }
3472: PetscFunctionReturn(PETSC_SUCCESS);
3473: }
3475: /*@
3476: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3477: at the end of a time step with a given order of accuracy.
3479: Collective
3481: Input Parameters:
3482: + ts - time stepping context
3483: - wnormtype - norm type, either `NORM_2` or `NORM_INFINITY`
3485: Input/Output Parameter:
3486: . order - optional, desired order for the error evaluation or `PETSC_DECIDE`;
3487: on output, the actual order of the error evaluation
3489: Output Parameter:
3490: . wlte - the weighted local truncation error norm
3492: Level: advanced
3494: Note:
3495: If the timestepper cannot evaluate the error in a particular step
3496: (eg. in the first step or restart steps after event handling),
3497: this routine returns wlte=-1.0 .
3499: .seealso: [](ch_ts), `TS`, `TSStep()`, `TSAdapt`, `TSErrorWeightedNorm()`
3500: @*/
3501: PetscErrorCode TSEvaluateWLTE(TS ts, NormType wnormtype, PetscInt *order, PetscReal *wlte)
3502: {
3503: PetscFunctionBegin;
3507: if (order) PetscAssertPointer(order, 3);
3509: PetscAssertPointer(wlte, 4);
3510: PetscCheck(wnormtype == NORM_2 || wnormtype == NORM_INFINITY, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "No support for norm type %s", NormTypes[wnormtype]);
3511: PetscUseTypeMethod(ts, evaluatewlte, wnormtype, order, wlte);
3512: PetscFunctionReturn(PETSC_SUCCESS);
3513: }
3515: /*@
3516: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3518: Collective
3520: Input Parameters:
3521: + ts - time stepping context
3522: . order - desired order of accuracy
3523: - done - whether the step was evaluated at this order (pass `NULL` to generate an error if not available)
3525: Output Parameter:
3526: . U - state at the end of the current step
3528: Level: advanced
3530: Notes:
3531: This function cannot be called until all stages have been evaluated.
3533: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after `TSStep()` has returned.
3535: .seealso: [](ch_ts), `TS`, `TSStep()`, `TSAdapt`
3536: @*/
3537: PetscErrorCode TSEvaluateStep(TS ts, PetscInt order, Vec U, PetscBool *done)
3538: {
3539: PetscFunctionBegin;
3543: PetscUseTypeMethod(ts, evaluatestep, order, U, done);
3544: PetscFunctionReturn(PETSC_SUCCESS);
3545: }
3547: /*@C
3548: TSGetComputeInitialCondition - Get the function used to automatically compute an initial condition for the timestepping.
3550: Not collective
3552: Input Parameter:
3553: . ts - time stepping context
3555: Output Parameter:
3556: . initCondition - The function which computes an initial condition
3558: Calling sequence of `initCondition`:
3559: + ts - The timestepping context
3560: - u - The input vector in which the initial condition is stored
3562: Level: advanced
3564: .seealso: [](ch_ts), `TS`, `TSSetComputeInitialCondition()`, `TSComputeInitialCondition()`
3565: @*/
3566: PetscErrorCode TSGetComputeInitialCondition(TS ts, PetscErrorCode (**initCondition)(TS ts, Vec u))
3567: {
3568: PetscFunctionBegin;
3570: PetscAssertPointer(initCondition, 2);
3571: *initCondition = ts->ops->initcondition;
3572: PetscFunctionReturn(PETSC_SUCCESS);
3573: }
3575: /*@C
3576: TSSetComputeInitialCondition - Set the function used to automatically compute an initial condition for the timestepping.
3578: Logically collective
3580: Input Parameters:
3581: + ts - time stepping context
3582: - initCondition - The function which computes an initial condition
3584: Calling sequence of `initCondition`:
3585: + ts - The timestepping context
3586: - e - The input vector in which the initial condition is to be stored
3588: Level: advanced
3590: .seealso: [](ch_ts), `TS`, `TSGetComputeInitialCondition()`, `TSComputeInitialCondition()`
3591: @*/
3592: PetscErrorCode TSSetComputeInitialCondition(TS ts, PetscErrorCode (*initCondition)(TS ts, Vec e))
3593: {
3594: PetscFunctionBegin;
3597: ts->ops->initcondition = initCondition;
3598: PetscFunctionReturn(PETSC_SUCCESS);
3599: }
3601: /*@
3602: TSComputeInitialCondition - Compute an initial condition for the timestepping using the function previously set with `TSSetComputeInitialCondition()`
3604: Collective
3606: Input Parameters:
3607: + ts - time stepping context
3608: - u - The `Vec` to store the condition in which will be used in `TSSolve()`
3610: Level: advanced
3612: .seealso: [](ch_ts), `TS`, `TSGetComputeInitialCondition()`, `TSSetComputeInitialCondition()`, `TSSolve()`
3613: @*/
3614: PetscErrorCode TSComputeInitialCondition(TS ts, Vec u)
3615: {
3616: PetscFunctionBegin;
3619: PetscTryTypeMethod(ts, initcondition, u);
3620: PetscFunctionReturn(PETSC_SUCCESS);
3621: }
3623: /*@C
3624: TSGetComputeExactError - Get the function used to automatically compute the exact error for the timestepping.
3626: Not collective
3628: Input Parameter:
3629: . ts - time stepping context
3631: Output Parameter:
3632: . exactError - The function which computes the solution error
3634: Calling sequence of `exactError`:
3635: + ts - The timestepping context
3636: . u - The approximate solution vector
3637: - e - The vector in which the error is stored
3639: Level: advanced
3641: .seealso: [](ch_ts), `TS`, `TSComputeExactError()`
3642: @*/
3643: PetscErrorCode TSGetComputeExactError(TS ts, PetscErrorCode (**exactError)(TS ts, Vec u, Vec e))
3644: {
3645: PetscFunctionBegin;
3647: PetscAssertPointer(exactError, 2);
3648: *exactError = ts->ops->exacterror;
3649: PetscFunctionReturn(PETSC_SUCCESS);
3650: }
3652: /*@C
3653: TSSetComputeExactError - Set the function used to automatically compute the exact error for the timestepping.
3655: Logically collective
3657: Input Parameters:
3658: + ts - time stepping context
3659: - exactError - The function which computes the solution error
3661: Calling sequence of `exactError`:
3662: + ts - The timestepping context
3663: . u - The approximate solution vector
3664: - e - The vector in which the error is stored
3666: Level: advanced
3668: .seealso: [](ch_ts), `TS`, `TSGetComputeExactError()`, `TSComputeExactError()`
3669: @*/
3670: PetscErrorCode TSSetComputeExactError(TS ts, PetscErrorCode (*exactError)(TS ts, Vec u, Vec e))
3671: {
3672: PetscFunctionBegin;
3675: ts->ops->exacterror = exactError;
3676: PetscFunctionReturn(PETSC_SUCCESS);
3677: }
3679: /*@
3680: TSComputeExactError - Compute the solution error for the timestepping using the function previously set with `TSSetComputeExactError()`
3682: Collective
3684: Input Parameters:
3685: + ts - time stepping context
3686: . u - The approximate solution
3687: - e - The `Vec` used to store the error
3689: Level: advanced
3691: .seealso: [](ch_ts), `TS`, `TSGetComputeInitialCondition()`, `TSSetComputeInitialCondition()`, `TSSolve()`
3692: @*/
3693: PetscErrorCode TSComputeExactError(TS ts, Vec u, Vec e)
3694: {
3695: PetscFunctionBegin;
3699: PetscTryTypeMethod(ts, exacterror, u, e);
3700: PetscFunctionReturn(PETSC_SUCCESS);
3701: }
3703: /*@C
3704: TSSetResize - Sets the resize callbacks.
3706: Logically Collective
3708: Input Parameters:
3709: + ts - The `TS` context obtained from `TSCreate()`
3710: . rollback - Whether a resize will restart the step
3711: . setup - The setup function
3712: . transfer - The transfer function
3713: - ctx - [optional] The user-defined context
3715: Calling sequence of `setup`:
3716: + ts - the `TS` context
3717: . step - the current step
3718: . time - the current time
3719: . state - the current vector of state
3720: . resize - (output parameter) `PETSC_TRUE` if need resizing, `PETSC_FALSE` otherwise
3721: - ctx - user defined context
3723: Calling sequence of `transfer`:
3724: + ts - the `TS` context
3725: . nv - the number of vectors to be transferred
3726: . vecsin - array of vectors to be transferred
3727: . vecsout - array of transferred vectors
3728: - ctx - user defined context
3730: Notes:
3731: The `setup` function is called inside `TSSolve()` after `TSEventHandler()` or after `TSPostStep()`
3732: depending on the `rollback` value: if `rollback` is true, then these callbacks behave as error indicators
3733: and will flag the need to remesh and restart the current step. Otherwise, they will simply flag the solver
3734: that the size of the discrete problem has changed.
3735: In both cases, the solver will collect the needed vectors that will be
3736: transferred from the old to the new sizes using the `transfer` callback. These vectors will include the
3737: current solution vector, and other vectors needed by the specific solver used.
3738: For example, `TSBDF` uses previous solutions vectors to solve for the next time step.
3739: Other application specific objects associated with the solver, i.e. Jacobian matrices and `DM`,
3740: will be automatically reset if the sizes are changed and they must be specified again by the user
3741: inside the `transfer` function.
3742: The input and output arrays passed to `transfer` are allocated by PETSc.
3743: Vectors in `vecsout` must be created by the user.
3744: Ownership of vectors in `vecsout` is transferred to PETSc.
3746: Level: advanced
3748: .seealso: [](ch_ts), `TS`, `TSSetDM()`, `TSSetIJacobian()`, `TSSetRHSJacobian()`
3749: @*/
3750: PetscErrorCode TSSetResize(TS ts, PetscBool rollback, PetscErrorCode (*setup)(TS ts, PetscInt step, PetscReal time, Vec state, PetscBool *resize, void *ctx), PetscErrorCode (*transfer)(TS ts, PetscInt nv, Vec vecsin[], Vec vecsout[], void *ctx), void *ctx)
3751: {
3752: PetscFunctionBegin;
3754: ts->resizerollback = rollback;
3755: ts->resizesetup = setup;
3756: ts->resizetransfer = transfer;
3757: ts->resizectx = ctx;
3758: PetscFunctionReturn(PETSC_SUCCESS);
3759: }
3761: /*
3762: TSResizeRegisterOrRetrieve - Register or import vectors transferred with `TSResize()`.
3764: Collective
3766: Input Parameters:
3767: + ts - The `TS` context obtained from `TSCreate()`
3768: - flg - If `PETSC_TRUE` each TS implementation (e.g. `TSBDF`) will register vectors to be transferred, if `PETSC_FALSE` vectors will be imported from transferred vectors.
3770: Level: developer
3772: Note:
3773: `TSResizeRegisterOrRetrieve()` is declared PETSC_INTERN since it is
3774: used within time stepping implementations,
3775: so most users would not generally call this routine themselves.
3777: .seealso: [](ch_ts), `TS`, `TSSetResize()`
3778: @*/
3779: static PetscErrorCode TSResizeRegisterOrRetrieve(TS ts, PetscBool flg)
3780: {
3781: PetscFunctionBegin;
3783: PetscTryTypeMethod(ts, resizeregister, flg);
3784: /* PetscTryTypeMethod(adapt, resizeregister, flg); */
3785: PetscFunctionReturn(PETSC_SUCCESS);
3786: }
3788: static PetscErrorCode TSResizeReset(TS ts)
3789: {
3790: PetscFunctionBegin;
3792: PetscCall(PetscObjectListDestroy(&ts->resizetransferobjs));
3793: PetscFunctionReturn(PETSC_SUCCESS);
3794: }
3796: static PetscErrorCode TSResizeTransferVecs(TS ts, PetscInt cnt, Vec vecsin[], Vec vecsout[])
3797: {
3798: PetscFunctionBegin;
3801: for (PetscInt i = 0; i < cnt; i++) PetscCall(VecLockReadPush(vecsin[i]));
3802: if (ts->resizetransfer) {
3803: PetscCall(PetscInfo(ts, "Transferring %" PetscInt_FMT " vectors\n", cnt));
3804: PetscCallBack("TS callback resize transfer", (*ts->resizetransfer)(ts, cnt, vecsin, vecsout, ts->resizectx));
3805: }
3806: for (PetscInt i = 0; i < cnt; i++) PetscCall(VecLockReadPop(vecsin[i]));
3807: PetscFunctionReturn(PETSC_SUCCESS);
3808: }
3810: /*@C
3811: TSResizeRegisterVec - Register a vector to be transferred with `TSResize()`.
3813: Collective
3815: Input Parameters:
3816: + ts - The `TS` context obtained from `TSCreate()`
3817: . name - A string identifying the vector
3818: - vec - The vector
3820: Level: developer
3822: Note:
3823: `TSResizeRegisterVec()` is typically used within time stepping implementations,
3824: so most users would not generally call this routine themselves.
3826: .seealso: [](ch_ts), `TS`, `TSSetResize()`, `TSResize()`, `TSResizeRetrieveVec()`
3827: @*/
3828: PetscErrorCode TSResizeRegisterVec(TS ts, const char name[], Vec vec)
3829: {
3830: PetscFunctionBegin;
3832: PetscAssertPointer(name, 2);
3834: PetscCall(PetscObjectListAdd(&ts->resizetransferobjs, name, (PetscObject)vec));
3835: PetscFunctionReturn(PETSC_SUCCESS);
3836: }
3838: /*@C
3839: TSResizeRetrieveVec - Retrieve a vector registered with `TSResizeRegisterVec()`.
3841: Collective
3843: Input Parameters:
3844: + ts - The `TS` context obtained from `TSCreate()`
3845: . name - A string identifying the vector
3846: - vec - The vector
3848: Level: developer
3850: Note:
3851: `TSResizeRetrieveVec()` is typically used within time stepping implementations,
3852: so most users would not generally call this routine themselves.
3854: .seealso: [](ch_ts), `TS`, `TSSetResize()`, `TSResize()`, `TSResizeRegisterVec()`
3855: @*/
3856: PetscErrorCode TSResizeRetrieveVec(TS ts, const char name[], Vec *vec)
3857: {
3858: PetscFunctionBegin;
3860: PetscAssertPointer(name, 2);
3861: PetscAssertPointer(vec, 3);
3862: PetscCall(PetscObjectListFind(ts->resizetransferobjs, name, (PetscObject *)vec));
3863: PetscFunctionReturn(PETSC_SUCCESS);
3864: }
3866: static PetscErrorCode TSResizeGetVecArray(TS ts, PetscInt *nv, const char **names[], Vec *vecs[])
3867: {
3868: PetscInt cnt;
3869: PetscObjectList tmp;
3870: Vec *vecsin = NULL;
3871: const char **namesin = NULL;
3873: PetscFunctionBegin;
3874: for (tmp = ts->resizetransferobjs, cnt = 0; tmp; tmp = tmp->next)
3875: if (tmp->obj && tmp->obj->classid == VEC_CLASSID) cnt++;
3876: if (names) PetscCall(PetscMalloc1(cnt, &namesin));
3877: if (vecs) PetscCall(PetscMalloc1(cnt, &vecsin));
3878: for (tmp = ts->resizetransferobjs, cnt = 0; tmp; tmp = tmp->next) {
3879: if (tmp->obj && tmp->obj->classid == VEC_CLASSID) {
3880: if (vecs) vecsin[cnt] = (Vec)tmp->obj;
3881: if (names) namesin[cnt] = tmp->name;
3882: cnt++;
3883: }
3884: }
3885: if (nv) *nv = cnt;
3886: if (names) *names = namesin;
3887: if (vecs) *vecs = vecsin;
3888: PetscFunctionReturn(PETSC_SUCCESS);
3889: }
3891: /*@
3892: TSResize - Runs the user-defined transfer functions provided with `TSSetResize()`
3894: Collective
3896: Input Parameter:
3897: . ts - The `TS` context obtained from `TSCreate()`
3899: Level: developer
3901: Note:
3902: `TSResize()` is typically used within time stepping implementations,
3903: so most users would not generally call this routine themselves.
3905: .seealso: [](ch_ts), `TS`, `TSSetResize()`
3906: @*/
3907: PetscErrorCode TSResize(TS ts)
3908: {
3909: PetscInt nv = 0;
3910: const char **names = NULL;
3911: Vec *vecsin = NULL;
3912: const char *solname = "ts:vec_sol";
3914: PetscFunctionBegin;
3916: if (!ts->resizesetup) PetscFunctionReturn(PETSC_SUCCESS);
3917: if (ts->resizesetup) {
3918: PetscCall(VecLockReadPush(ts->vec_sol));
3919: PetscCallBack("TS callback resize setup", (*ts->resizesetup)(ts, ts->steps, ts->ptime, ts->vec_sol, &ts->stepresize, ts->resizectx));
3920: PetscCall(VecLockReadPop(ts->vec_sol));
3921: if (ts->stepresize) {
3922: if (ts->resizerollback) {
3923: PetscCall(TSRollBack(ts));
3924: ts->time_step = ts->time_step0;
3925: }
3926: PetscCall(TSResizeRegisterVec(ts, solname, ts->vec_sol));
3927: PetscCall(TSResizeRegisterOrRetrieve(ts, PETSC_TRUE)); /* specific impls register their own objects */
3928: }
3929: }
3931: PetscCall(TSResizeGetVecArray(ts, &nv, &names, &vecsin));
3932: if (nv) {
3933: Vec *vecsout, vecsol;
3935: /* Reset internal objects */
3936: PetscCall(TSReset(ts));
3938: /* Transfer needed vectors (users can call SetJacobian, SetDM, etc. here) */
3939: PetscCall(PetscCalloc1(nv, &vecsout));
3940: PetscCall(TSResizeTransferVecs(ts, nv, vecsin, vecsout));
3941: for (PetscInt i = 0; i < nv; i++) {
3942: const char *name;
3943: char *oname;
3945: PetscCall(PetscObjectGetName((PetscObject)vecsin[i], &name));
3946: PetscCall(PetscStrallocpy(name, &oname));
3947: PetscCall(TSResizeRegisterVec(ts, names[i], vecsout[i]));
3948: if (vecsout[i]) PetscCall(PetscObjectSetName((PetscObject)vecsout[i], oname));
3949: PetscCall(PetscFree(oname));
3950: PetscCall(VecDestroy(&vecsout[i]));
3951: }
3952: PetscCall(PetscFree(vecsout));
3953: PetscCall(TSResizeRegisterOrRetrieve(ts, PETSC_FALSE)); /* specific impls import the transferred objects */
3955: PetscCall(TSResizeRetrieveVec(ts, solname, &vecsol));
3956: if (vecsol) PetscCall(TSSetSolution(ts, vecsol));
3957: PetscAssert(ts->vec_sol, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_NULL, "Missing TS solution");
3958: }
3960: PetscCall(PetscFree(names));
3961: PetscCall(PetscFree(vecsin));
3962: PetscCall(TSResizeReset(ts));
3963: PetscFunctionReturn(PETSC_SUCCESS);
3964: }
3966: /*@
3967: TSSolve - Steps the requested number of timesteps.
3969: Collective
3971: Input Parameters:
3972: + ts - the `TS` context obtained from `TSCreate()`
3973: - u - the solution vector (can be null if `TSSetSolution()` was used and `TSSetExactFinalTime`(ts,`TS_EXACTFINALTIME_MATCHSTEP`) was not used,
3974: otherwise it must contain the initial conditions and will contain the solution at the final requested time
3976: Level: beginner
3978: Notes:
3979: The final time returned by this function may be different from the time of the internally
3980: held state accessible by `TSGetSolution()` and `TSGetTime()` because the method may have
3981: stepped over the final time.
3983: .seealso: [](ch_ts), `TS`, `TSCreate()`, `TSSetSolution()`, `TSStep()`, `TSGetTime()`, `TSGetSolveTime()`
3984: @*/
3985: PetscErrorCode TSSolve(TS ts, Vec u)
3986: {
3987: Vec solution;
3989: PetscFunctionBegin;
3993: PetscCall(TSSetExactFinalTimeDefault(ts));
3994: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3995: if (!ts->vec_sol || u == ts->vec_sol) {
3996: PetscCall(VecDuplicate(u, &solution));
3997: PetscCall(TSSetSolution(ts, solution));
3998: PetscCall(VecDestroy(&solution)); /* grant ownership */
3999: }
4000: PetscCall(VecCopy(u, ts->vec_sol));
4001: PetscCheck(!ts->forward_solve, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4002: } else if (u) PetscCall(TSSetSolution(ts, u));
4003: PetscCall(TSSetUp(ts));
4004: PetscCall(TSTrajectorySetUp(ts->trajectory, ts));
4006: PetscCheck(ts->max_time < PETSC_MAX_REAL || ts->max_steps != PETSC_INT_MAX, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONGSTATE, "You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4007: PetscCheck(ts->exact_final_time != TS_EXACTFINALTIME_UNSPECIFIED, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONGSTATE, "You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4008: PetscCheck(ts->exact_final_time != TS_EXACTFINALTIME_MATCHSTEP || ts->adapt, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
4009: PetscCheck(!(ts->eval_times && ts->exact_final_time != TS_EXACTFINALTIME_MATCHSTEP), PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "You must use TS_EXACTFINALTIME_MATCHSTEP when using time span or evaluation times");
4011: if (ts->eval_times) {
4012: for (PetscInt i = 0; i < ts->eval_times->num_time_points; i++) {
4013: PetscBool is_close = PetscIsCloseAtTol(ts->ptime, ts->eval_times->time_points[i], ts->eval_times->reltol * ts->time_step + ts->eval_times->abstol, 0);
4014: if (ts->ptime <= ts->eval_times->time_points[i] || is_close) {
4015: ts->eval_times->time_point_idx = i;
4016: if (is_close) { /* starting point in evaluation times */
4017: PetscCall(VecCopy(ts->vec_sol, ts->eval_times->sol_vecs[ts->eval_times->sol_ctr]));
4018: ts->eval_times->sol_times[ts->eval_times->sol_ctr] = ts->ptime;
4019: ts->eval_times->sol_ctr++;
4020: ts->eval_times->time_point_idx++;
4021: }
4022: break;
4023: }
4024: }
4025: }
4027: if (ts->forward_solve) PetscCall(TSForwardSetUp(ts));
4029: /* reset number of steps only when the step is not restarted. ARKIMEX
4030: restarts the step after an event. Resetting these counters in such case causes
4031: TSTrajectory to incorrectly save the output files
4032: */
4033: /* reset time step and iteration counters */
4034: if (!ts->steps) {
4035: ts->ksp_its = 0;
4036: ts->snes_its = 0;
4037: ts->num_snes_failures = 0;
4038: ts->reject = 0;
4039: ts->steprestart = PETSC_TRUE;
4040: ts->steprollback = PETSC_FALSE;
4041: ts->stepresize = PETSC_FALSE;
4042: ts->rhsjacobian.time = PETSC_MIN_REAL;
4043: }
4045: /* make sure initial time step does not overshoot final time or the next point in evaluation times */
4046: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP) {
4047: PetscReal maxdt;
4048: PetscReal dt = ts->time_step;
4050: if (ts->eval_times) maxdt = ts->eval_times->time_points[ts->eval_times->time_point_idx] - ts->ptime;
4051: else maxdt = ts->max_time - ts->ptime;
4052: ts->time_step = dt >= maxdt ? maxdt : (PetscIsCloseAtTol(dt, maxdt, 10 * PETSC_MACHINE_EPSILON, 0) ? maxdt : dt);
4053: }
4054: ts->reason = TS_CONVERGED_ITERATING;
4056: {
4057: PetscViewer viewer;
4058: PetscViewerFormat format;
4059: PetscBool flg;
4060: static PetscBool incall = PETSC_FALSE;
4062: if (!incall) {
4063: /* Estimate the convergence rate of the time discretization */
4064: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)ts), ((PetscObject)ts)->options, ((PetscObject)ts)->prefix, "-ts_convergence_estimate", &viewer, &format, &flg));
4065: if (flg) {
4066: PetscConvEst conv;
4067: DM dm;
4068: PetscReal *alpha; /* Convergence rate of the solution error for each field in the L_2 norm */
4069: PetscInt Nf;
4070: PetscBool checkTemporal = PETSC_TRUE;
4072: incall = PETSC_TRUE;
4073: PetscCall(PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject)ts)->prefix, "-ts_convergence_temporal", &checkTemporal, &flg));
4074: PetscCall(TSGetDM(ts, &dm));
4075: PetscCall(DMGetNumFields(dm, &Nf));
4076: PetscCall(PetscCalloc1(PetscMax(Nf, 1), &alpha));
4077: PetscCall(PetscConvEstCreate(PetscObjectComm((PetscObject)ts), &conv));
4078: PetscCall(PetscConvEstUseTS(conv, checkTemporal));
4079: PetscCall(PetscConvEstSetSolver(conv, (PetscObject)ts));
4080: PetscCall(PetscConvEstSetFromOptions(conv));
4081: PetscCall(PetscConvEstSetUp(conv));
4082: PetscCall(PetscConvEstGetConvRate(conv, alpha));
4083: PetscCall(PetscViewerPushFormat(viewer, format));
4084: PetscCall(PetscConvEstRateView(conv, alpha, viewer));
4085: PetscCall(PetscViewerPopFormat(viewer));
4086: PetscCall(PetscViewerDestroy(&viewer));
4087: PetscCall(PetscConvEstDestroy(&conv));
4088: PetscCall(PetscFree(alpha));
4089: incall = PETSC_FALSE;
4090: }
4091: }
4092: }
4094: PetscCall(TSViewFromOptions(ts, NULL, "-ts_view_pre"));
4096: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4097: PetscUseTypeMethod(ts, solve);
4098: if (u) PetscCall(VecCopy(ts->vec_sol, u));
4099: ts->solvetime = ts->ptime;
4100: solution = ts->vec_sol;
4101: } else { /* Step the requested number of timesteps. */
4102: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4103: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
4105: if (!ts->steps) {
4106: PetscCall(TSTrajectorySet(ts->trajectory, ts, ts->steps, ts->ptime, ts->vec_sol));
4107: PetscCall(TSEventInitialize(ts->event, ts, ts->ptime, ts->vec_sol));
4108: }
4110: while (!ts->reason) {
4111: PetscCall(TSMonitor(ts, ts->steps, ts->ptime, ts->vec_sol));
4112: if (!ts->steprollback || (ts->stepresize && ts->resizerollback)) PetscCall(TSPreStep(ts));
4113: PetscCall(TSStep(ts));
4114: if (ts->testjacobian) PetscCall(TSRHSJacobianTest(ts, NULL));
4115: if (ts->testjacobiantranspose) PetscCall(TSRHSJacobianTestTranspose(ts, NULL));
4116: if (ts->quadraturets && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4117: if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4118: PetscCall(TSForwardCostIntegral(ts));
4119: if (ts->reason >= 0) ts->steps++;
4120: }
4121: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4122: if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4123: PetscCall(TSForwardStep(ts));
4124: if (ts->reason >= 0) ts->steps++;
4125: }
4126: PetscCall(TSPostEvaluate(ts));
4127: PetscCall(TSEventHandler(ts)); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4128: if (ts->steprollback) PetscCall(TSPostEvaluate(ts));
4129: if (!ts->steprollback && ts->resizerollback) PetscCall(TSResize(ts));
4130: /* check convergence */
4131: if (!ts->reason) {
4132: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4133: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
4134: }
4135: if (!ts->steprollback) {
4136: PetscCall(TSTrajectorySet(ts->trajectory, ts, ts->steps, ts->ptime, ts->vec_sol));
4137: PetscCall(TSPostStep(ts));
4138: if (!ts->resizerollback) PetscCall(TSResize(ts));
4140: if (ts->eval_times && ts->eval_times->time_point_idx < ts->eval_times->num_time_points && ts->reason >= 0) {
4141: PetscCheck(ts->eval_times->worktol > 0, PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Unexpected state !(eval_times->worktol > 0) in TSSolve()");
4142: if (PetscIsCloseAtTol(ts->ptime, ts->eval_times->time_points[ts->eval_times->time_point_idx], ts->eval_times->worktol, 0)) {
4143: ts->eval_times->sol_times[ts->eval_times->sol_ctr] = ts->ptime;
4144: PetscCall(VecCopy(ts->vec_sol, ts->eval_times->sol_vecs[ts->eval_times->sol_ctr]));
4145: ts->eval_times->sol_ctr++;
4146: ts->eval_times->time_point_idx++;
4147: }
4148: }
4149: }
4150: }
4151: PetscCall(TSMonitor(ts, ts->steps, ts->ptime, ts->vec_sol));
4153: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4154: if (!u) u = ts->vec_sol;
4155: PetscCall(TSInterpolate(ts, ts->max_time, u));
4156: ts->solvetime = ts->max_time;
4157: solution = u;
4158: PetscCall(TSMonitor(ts, -1, ts->solvetime, solution));
4159: } else {
4160: if (u) PetscCall(VecCopy(ts->vec_sol, u));
4161: ts->solvetime = ts->ptime;
4162: solution = ts->vec_sol;
4163: }
4164: }
4166: PetscCall(TSViewFromOptions(ts, NULL, "-ts_view"));
4167: PetscCall(VecViewFromOptions(solution, (PetscObject)ts, "-ts_view_solution"));
4168: PetscCall(PetscObjectSAWsBlock((PetscObject)ts));
4169: if (ts->adjoint_solve) PetscCall(TSAdjointSolve(ts));
4170: PetscFunctionReturn(PETSC_SUCCESS);
4171: }
4173: /*@
4174: TSGetTime - Gets the time of the most recently completed step.
4176: Not Collective
4178: Input Parameter:
4179: . ts - the `TS` context obtained from `TSCreate()`
4181: Output Parameter:
4182: . t - the current time. This time may not corresponds to the final time set with `TSSetMaxTime()`, use `TSGetSolveTime()`.
4184: Level: beginner
4186: Note:
4187: When called during time step evaluation (e.g. during residual evaluation or via hooks set using `TSSetPreStep()`,
4188: `TSSetPreStage()`, `TSSetPostStage()`, or `TSSetPostStep()`), the time is the time at the start of the step being evaluated.
4190: .seealso: [](ch_ts), `TS`, `TSGetSolveTime()`, `TSSetTime()`, `TSGetTimeStep()`, `TSGetStepNumber()`
4191: @*/
4192: PetscErrorCode TSGetTime(TS ts, PetscReal *t)
4193: {
4194: PetscFunctionBegin;
4196: PetscAssertPointer(t, 2);
4197: *t = ts->ptime;
4198: PetscFunctionReturn(PETSC_SUCCESS);
4199: }
4201: /*@
4202: TSGetPrevTime - Gets the starting time of the previously completed step.
4204: Not Collective
4206: Input Parameter:
4207: . ts - the `TS` context obtained from `TSCreate()`
4209: Output Parameter:
4210: . t - the previous time
4212: Level: beginner
4214: .seealso: [](ch_ts), `TS`, `TSGetTime()`, `TSGetSolveTime()`, `TSGetTimeStep()`
4215: @*/
4216: PetscErrorCode TSGetPrevTime(TS ts, PetscReal *t)
4217: {
4218: PetscFunctionBegin;
4220: PetscAssertPointer(t, 2);
4221: *t = ts->ptime_prev;
4222: PetscFunctionReturn(PETSC_SUCCESS);
4223: }
4225: /*@
4226: TSSetTime - Allows one to reset the time.
4228: Logically Collective
4230: Input Parameters:
4231: + ts - the `TS` context obtained from `TSCreate()`
4232: - t - the time
4234: Level: intermediate
4236: .seealso: [](ch_ts), `TS`, `TSGetTime()`, `TSSetMaxSteps()`
4237: @*/
4238: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4239: {
4240: PetscFunctionBegin;
4243: ts->ptime = t;
4244: PetscFunctionReturn(PETSC_SUCCESS);
4245: }
4247: /*@
4248: TSSetOptionsPrefix - Sets the prefix used for searching for all
4249: TS options in the database.
4251: Logically Collective
4253: Input Parameters:
4254: + ts - The `TS` context
4255: - prefix - The prefix to prepend to all option names
4257: Level: advanced
4259: Note:
4260: A hyphen (-) must NOT be given at the beginning of the prefix name.
4261: The first character of all runtime options is AUTOMATICALLY the
4262: hyphen.
4264: .seealso: [](ch_ts), `TS`, `TSSetFromOptions()`, `TSAppendOptionsPrefix()`
4265: @*/
4266: PetscErrorCode TSSetOptionsPrefix(TS ts, const char prefix[])
4267: {
4268: SNES snes;
4270: PetscFunctionBegin;
4272: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)ts, prefix));
4273: PetscCall(TSGetSNES(ts, &snes));
4274: PetscCall(SNESSetOptionsPrefix(snes, prefix));
4275: PetscFunctionReturn(PETSC_SUCCESS);
4276: }
4278: /*@
4279: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4280: TS options in the database.
4282: Logically Collective
4284: Input Parameters:
4285: + ts - The `TS` context
4286: - prefix - The prefix to prepend to all option names
4288: Level: advanced
4290: Note:
4291: A hyphen (-) must NOT be given at the beginning of the prefix name.
4292: The first character of all runtime options is AUTOMATICALLY the
4293: hyphen.
4295: .seealso: [](ch_ts), `TS`, `TSGetOptionsPrefix()`, `TSSetOptionsPrefix()`, `TSSetFromOptions()`
4296: @*/
4297: PetscErrorCode TSAppendOptionsPrefix(TS ts, const char prefix[])
4298: {
4299: SNES snes;
4301: PetscFunctionBegin;
4303: PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)ts, prefix));
4304: PetscCall(TSGetSNES(ts, &snes));
4305: PetscCall(SNESAppendOptionsPrefix(snes, prefix));
4306: PetscFunctionReturn(PETSC_SUCCESS);
4307: }
4309: /*@
4310: TSGetOptionsPrefix - Sets the prefix used for searching for all
4311: `TS` options in the database.
4313: Not Collective
4315: Input Parameter:
4316: . ts - The `TS` context
4318: Output Parameter:
4319: . prefix - A pointer to the prefix string used
4321: Level: intermediate
4323: .seealso: [](ch_ts), `TS`, `TSAppendOptionsPrefix()`, `TSSetFromOptions()`
4324: @*/
4325: PetscErrorCode TSGetOptionsPrefix(TS ts, const char *prefix[])
4326: {
4327: PetscFunctionBegin;
4329: PetscAssertPointer(prefix, 2);
4330: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)ts, prefix));
4331: PetscFunctionReturn(PETSC_SUCCESS);
4332: }
4334: /*@C
4335: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4337: Not Collective, but parallel objects are returned if ts is parallel
4339: Input Parameter:
4340: . ts - The `TS` context obtained from `TSCreate()`
4342: Output Parameters:
4343: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or `NULL`)
4344: . Pmat - The matrix from which the preconditioner is constructed, usually the same as `Amat` (or `NULL`)
4345: . func - Function to compute the Jacobian of the RHS (or `NULL`)
4346: - ctx - User-defined context for Jacobian evaluation routine (or `NULL`)
4348: Level: intermediate
4350: Note:
4351: You can pass in `NULL` for any return argument you do not need.
4353: .seealso: [](ch_ts), `TS`, `TSGetTimeStep()`, `TSGetMatrices()`, `TSGetTime()`, `TSGetStepNumber()`
4355: @*/
4356: PetscErrorCode TSGetRHSJacobian(TS ts, Mat *Amat, Mat *Pmat, TSRHSJacobianFn **func, void **ctx)
4357: {
4358: DM dm;
4360: PetscFunctionBegin;
4361: if (Amat || Pmat) {
4362: SNES snes;
4363: PetscCall(TSGetSNES(ts, &snes));
4364: PetscCall(SNESSetUpMatrices(snes));
4365: PetscCall(SNESGetJacobian(snes, Amat, Pmat, NULL, NULL));
4366: }
4367: PetscCall(TSGetDM(ts, &dm));
4368: PetscCall(DMTSGetRHSJacobian(dm, func, ctx));
4369: PetscFunctionReturn(PETSC_SUCCESS);
4370: }
4372: /*@C
4373: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4375: Not Collective, but parallel objects are returned if ts is parallel
4377: Input Parameter:
4378: . ts - The `TS` context obtained from `TSCreate()`
4380: Output Parameters:
4381: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4382: . Pmat - The matrix from which the preconditioner is constructed, often the same as `Amat`
4383: . f - The function to compute the matrices
4384: - ctx - User-defined context for Jacobian evaluation routine
4386: Level: advanced
4388: Note:
4389: You can pass in `NULL` for any return argument you do not need.
4391: .seealso: [](ch_ts), `TS`, `TSGetTimeStep()`, `TSGetRHSJacobian()`, `TSGetMatrices()`, `TSGetTime()`, `TSGetStepNumber()`
4392: @*/
4393: PetscErrorCode TSGetIJacobian(TS ts, Mat *Amat, Mat *Pmat, TSIJacobianFn **f, void **ctx)
4394: {
4395: DM dm;
4397: PetscFunctionBegin;
4398: if (Amat || Pmat) {
4399: SNES snes;
4400: PetscCall(TSGetSNES(ts, &snes));
4401: PetscCall(SNESSetUpMatrices(snes));
4402: PetscCall(SNESGetJacobian(snes, Amat, Pmat, NULL, NULL));
4403: }
4404: PetscCall(TSGetDM(ts, &dm));
4405: PetscCall(DMTSGetIJacobian(dm, f, ctx));
4406: PetscFunctionReturn(PETSC_SUCCESS);
4407: }
4409: #include <petsc/private/dmimpl.h>
4410: /*@
4411: TSSetDM - Sets the `DM` that may be used by some nonlinear solvers or preconditioners under the `TS`
4413: Logically Collective
4415: Input Parameters:
4416: + ts - the `TS` integrator object
4417: - dm - the dm, cannot be `NULL`
4419: Level: intermediate
4421: Notes:
4422: A `DM` can only be used for solving one problem at a time because information about the problem is stored on the `DM`,
4423: even when not using interfaces like `DMTSSetIFunction()`. Use `DMClone()` to get a distinct `DM` when solving
4424: different problems using the same function space.
4426: .seealso: [](ch_ts), `TS`, `DM`, `TSGetDM()`, `SNESSetDM()`, `SNESGetDM()`
4427: @*/
4428: PetscErrorCode TSSetDM(TS ts, DM dm)
4429: {
4430: SNES snes;
4431: DMTS tsdm;
4433: PetscFunctionBegin;
4436: PetscCall(PetscObjectReference((PetscObject)dm));
4437: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4438: if (ts->dm->dmts && !dm->dmts) {
4439: PetscCall(DMCopyDMTS(ts->dm, dm));
4440: PetscCall(DMGetDMTS(ts->dm, &tsdm));
4441: /* Grant write privileges to the replacement DM */
4442: if (tsdm->originaldm == ts->dm) tsdm->originaldm = dm;
4443: }
4444: PetscCall(DMDestroy(&ts->dm));
4445: }
4446: ts->dm = dm;
4448: PetscCall(TSGetSNES(ts, &snes));
4449: PetscCall(SNESSetDM(snes, dm));
4450: PetscFunctionReturn(PETSC_SUCCESS);
4451: }
4453: /*@
4454: TSGetDM - Gets the `DM` that may be used by some preconditioners
4456: Not Collective
4458: Input Parameter:
4459: . ts - the `TS`
4461: Output Parameter:
4462: . dm - the `DM`
4464: Level: intermediate
4466: .seealso: [](ch_ts), `TS`, `DM`, `TSSetDM()`, `SNESSetDM()`, `SNESGetDM()`
4467: @*/
4468: PetscErrorCode TSGetDM(TS ts, DM *dm)
4469: {
4470: PetscFunctionBegin;
4472: if (!ts->dm) {
4473: PetscCall(DMShellCreate(PetscObjectComm((PetscObject)ts), &ts->dm));
4474: if (ts->snes) PetscCall(SNESSetDM(ts->snes, ts->dm));
4475: }
4476: *dm = ts->dm;
4477: PetscFunctionReturn(PETSC_SUCCESS);
4478: }
4480: /*@
4481: SNESTSFormFunction - Function to evaluate nonlinear residual
4483: Logically Collective
4485: Input Parameters:
4486: + snes - nonlinear solver
4487: . U - the current state at which to evaluate the residual
4488: - ctx - user context, must be a TS
4490: Output Parameter:
4491: . F - the nonlinear residual
4493: Level: advanced
4495: Note:
4496: This function is not normally called by users and is automatically registered with the `SNES` used by `TS`.
4497: It is most frequently passed to `MatFDColoringSetFunction()`.
4499: .seealso: [](ch_ts), `SNESSetFunction()`, `MatFDColoringSetFunction()`
4500: @*/
4501: PetscErrorCode SNESTSFormFunction(SNES snes, Vec U, Vec F, void *ctx)
4502: {
4503: TS ts = (TS)ctx;
4505: PetscFunctionBegin;
4510: PetscCheck(ts->ops->snesfunction, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "No method snesfunction for TS of type %s", ((PetscObject)ts)->type_name);
4511: PetscCall((*ts->ops->snesfunction)(snes, U, F, ts));
4512: PetscFunctionReturn(PETSC_SUCCESS);
4513: }
4515: /*@
4516: SNESTSFormJacobian - Function to evaluate the Jacobian
4518: Collective
4520: Input Parameters:
4521: + snes - nonlinear solver
4522: . U - the current state at which to evaluate the residual
4523: - ctx - user context, must be a `TS`
4525: Output Parameters:
4526: + A - the Jacobian
4527: - B - the preconditioning matrix (may be the same as A)
4529: Level: developer
4531: Note:
4532: This function is not normally called by users and is automatically registered with the `SNES` used by `TS`.
4534: .seealso: [](ch_ts), `SNESSetJacobian()`
4535: @*/
4536: PetscErrorCode SNESTSFormJacobian(SNES snes, Vec U, Mat A, Mat B, void *ctx)
4537: {
4538: TS ts = (TS)ctx;
4540: PetscFunctionBegin;
4546: PetscCheck(ts->ops->snesjacobian, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "No method snesjacobian for TS of type %s", ((PetscObject)ts)->type_name);
4547: PetscCall((*ts->ops->snesjacobian)(snes, U, A, B, ts));
4548: PetscFunctionReturn(PETSC_SUCCESS);
4549: }
4551: /*@C
4552: TSComputeRHSFunctionLinear - Evaluate the right-hand side via the user-provided Jacobian, for linear problems Udot = A U only
4554: Collective
4556: Input Parameters:
4557: + ts - time stepping context
4558: . t - time at which to evaluate
4559: . U - state at which to evaluate
4560: - ctx - context
4562: Output Parameter:
4563: . F - right-hand side
4565: Level: intermediate
4567: Note:
4568: This function is intended to be passed to `TSSetRHSFunction()` to evaluate the right-hand side for linear problems.
4569: The matrix (and optionally the evaluation context) should be passed to `TSSetRHSJacobian()`.
4571: .seealso: [](ch_ts), `TS`, `TSSetRHSFunction()`, `TSSetRHSJacobian()`, `TSComputeRHSJacobianConstant()`
4572: @*/
4573: PetscErrorCode TSComputeRHSFunctionLinear(TS ts, PetscReal t, Vec U, Vec F, void *ctx)
4574: {
4575: Mat Arhs, Brhs;
4577: PetscFunctionBegin;
4578: PetscCall(TSGetRHSMats_Private(ts, &Arhs, &Brhs));
4579: /* undo the damage caused by shifting */
4580: PetscCall(TSRecoverRHSJacobian(ts, Arhs, Brhs));
4581: PetscCall(TSComputeRHSJacobian(ts, t, U, Arhs, Brhs));
4582: PetscCall(MatMult(Arhs, U, F));
4583: PetscFunctionReturn(PETSC_SUCCESS);
4584: }
4586: /*@C
4587: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
4589: Collective
4591: Input Parameters:
4592: + ts - time stepping context
4593: . t - time at which to evaluate
4594: . U - state at which to evaluate
4595: - ctx - context
4597: Output Parameters:
4598: + A - pointer to operator
4599: - B - pointer to preconditioning matrix
4601: Level: intermediate
4603: Note:
4604: This function is intended to be passed to `TSSetRHSJacobian()` to evaluate the Jacobian for linear time-independent problems.
4606: .seealso: [](ch_ts), `TS`, `TSSetRHSFunction()`, `TSSetRHSJacobian()`, `TSComputeRHSFunctionLinear()`
4607: @*/
4608: PetscErrorCode TSComputeRHSJacobianConstant(TS ts, PetscReal t, Vec U, Mat A, Mat B, void *ctx)
4609: {
4610: PetscFunctionBegin;
4611: PetscFunctionReturn(PETSC_SUCCESS);
4612: }
4614: /*@C
4615: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
4617: Collective
4619: Input Parameters:
4620: + ts - time stepping context
4621: . t - time at which to evaluate
4622: . U - state at which to evaluate
4623: . Udot - time derivative of state vector
4624: - ctx - context
4626: Output Parameter:
4627: . F - left hand side
4629: Level: intermediate
4631: Notes:
4632: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
4633: user is required to write their own `TSComputeIFunction()`.
4634: This function is intended to be passed to `TSSetIFunction()` to evaluate the left hand side for linear problems.
4635: The matrix (and optionally the evaluation context) should be passed to `TSSetIJacobian()`.
4637: Note that using this function is NOT equivalent to using `TSComputeRHSFunctionLinear()` since that solves Udot = A U
4639: .seealso: [](ch_ts), `TS`, `TSSetIFunction()`, `TSSetIJacobian()`, `TSComputeIJacobianConstant()`, `TSComputeRHSFunctionLinear()`
4640: @*/
4641: PetscErrorCode TSComputeIFunctionLinear(TS ts, PetscReal t, Vec U, Vec Udot, Vec F, void *ctx)
4642: {
4643: Mat A, B;
4645: PetscFunctionBegin;
4646: PetscCall(TSGetIJacobian(ts, &A, &B, NULL, NULL));
4647: PetscCall(TSComputeIJacobian(ts, t, U, Udot, 1.0, A, B, PETSC_TRUE));
4648: PetscCall(MatMult(A, Udot, F));
4649: PetscFunctionReturn(PETSC_SUCCESS);
4650: }
4652: /*@C
4653: TSComputeIJacobianConstant - Reuses the matrix previously computed with the provided `TSIJacobianFn` for a semi-implicit DAE or ODE
4655: Collective
4657: Input Parameters:
4658: + ts - time stepping context
4659: . t - time at which to evaluate
4660: . U - state at which to evaluate
4661: . Udot - time derivative of state vector
4662: . shift - shift to apply
4663: - ctx - context
4665: Output Parameters:
4666: + A - pointer to operator
4667: - B - pointer to matrix from which the preconditioner is built (often `A`)
4669: Level: advanced
4671: Notes:
4672: This function is intended to be passed to `TSSetIJacobian()` to evaluate the Jacobian for linear time-independent problems.
4674: It is only appropriate for problems of the form
4676: $$
4677: M \dot{U} = F(U,t)
4678: $$
4680: where M is constant and F is non-stiff. The user must pass M to `TSSetIJacobian()`. The current implementation only
4681: works with IMEX time integration methods such as `TSROSW` and `TSARKIMEX`, since there is no support for de-constructing
4682: an implicit operator of the form
4684: $$
4685: shift*M + J
4686: $$
4688: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
4689: a copy of M or reassemble it when requested.
4691: .seealso: [](ch_ts), `TS`, `TSROSW`, `TSARKIMEX`, `TSSetIFunction()`, `TSSetIJacobian()`, `TSComputeIFunctionLinear()`
4692: @*/
4693: PetscErrorCode TSComputeIJacobianConstant(TS ts, PetscReal t, Vec U, Vec Udot, PetscReal shift, Mat A, Mat B, void *ctx)
4694: {
4695: PetscFunctionBegin;
4696: PetscCall(MatScale(A, shift / ts->ijacobian.shift));
4697: ts->ijacobian.shift = shift;
4698: PetscFunctionReturn(PETSC_SUCCESS);
4699: }
4701: /*@
4702: TSGetEquationType - Gets the type of the equation that `TS` is solving.
4704: Not Collective
4706: Input Parameter:
4707: . ts - the `TS` context
4709: Output Parameter:
4710: . equation_type - see `TSEquationType`
4712: Level: beginner
4714: .seealso: [](ch_ts), `TS`, `TSSetEquationType()`, `TSEquationType`
4715: @*/
4716: PetscErrorCode TSGetEquationType(TS ts, TSEquationType *equation_type)
4717: {
4718: PetscFunctionBegin;
4720: PetscAssertPointer(equation_type, 2);
4721: *equation_type = ts->equation_type;
4722: PetscFunctionReturn(PETSC_SUCCESS);
4723: }
4725: /*@
4726: TSSetEquationType - Sets the type of the equation that `TS` is solving.
4728: Not Collective
4730: Input Parameters:
4731: + ts - the `TS` context
4732: - equation_type - see `TSEquationType`
4734: Level: advanced
4736: .seealso: [](ch_ts), `TS`, `TSGetEquationType()`, `TSEquationType`
4737: @*/
4738: PetscErrorCode TSSetEquationType(TS ts, TSEquationType equation_type)
4739: {
4740: PetscFunctionBegin;
4742: ts->equation_type = equation_type;
4743: PetscFunctionReturn(PETSC_SUCCESS);
4744: }
4746: /*@
4747: TSGetConvergedReason - Gets the reason the `TS` iteration was stopped.
4749: Not Collective
4751: Input Parameter:
4752: . ts - the `TS` context
4754: Output Parameter:
4755: . reason - negative value indicates diverged, positive value converged, see `TSConvergedReason` or the
4756: manual pages for the individual convergence tests for complete lists
4758: Level: beginner
4760: Note:
4761: Can only be called after the call to `TSSolve()` is complete.
4763: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSConvergedReason`
4764: @*/
4765: PetscErrorCode TSGetConvergedReason(TS ts, TSConvergedReason *reason)
4766: {
4767: PetscFunctionBegin;
4769: PetscAssertPointer(reason, 2);
4770: *reason = ts->reason;
4771: PetscFunctionReturn(PETSC_SUCCESS);
4772: }
4774: /*@
4775: TSSetConvergedReason - Sets the reason for handling the convergence of `TSSolve()`.
4777: Logically Collective; reason must contain common value
4779: Input Parameters:
4780: + ts - the `TS` context
4781: - reason - negative value indicates diverged, positive value converged, see `TSConvergedReason` or the
4782: manual pages for the individual convergence tests for complete lists
4784: Level: advanced
4786: Note:
4787: Can only be called while `TSSolve()` is active.
4789: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSConvergedReason`
4790: @*/
4791: PetscErrorCode TSSetConvergedReason(TS ts, TSConvergedReason reason)
4792: {
4793: PetscFunctionBegin;
4795: ts->reason = reason;
4796: PetscFunctionReturn(PETSC_SUCCESS);
4797: }
4799: /*@
4800: TSGetSolveTime - Gets the time after a call to `TSSolve()`
4802: Not Collective
4804: Input Parameter:
4805: . ts - the `TS` context
4807: Output Parameter:
4808: . ftime - the final time. This time corresponds to the final time set with `TSSetMaxTime()`
4810: Level: beginner
4812: Note:
4813: Can only be called after the call to `TSSolve()` is complete.
4815: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSConvergedReason`
4816: @*/
4817: PetscErrorCode TSGetSolveTime(TS ts, PetscReal *ftime)
4818: {
4819: PetscFunctionBegin;
4821: PetscAssertPointer(ftime, 2);
4822: *ftime = ts->solvetime;
4823: PetscFunctionReturn(PETSC_SUCCESS);
4824: }
4826: /*@
4827: TSGetSNESIterations - Gets the total number of nonlinear iterations
4828: used by the time integrator.
4830: Not Collective
4832: Input Parameter:
4833: . ts - `TS` context
4835: Output Parameter:
4836: . nits - number of nonlinear iterations
4838: Level: intermediate
4840: Note:
4841: This counter is reset to zero for each successive call to `TSSolve()`.
4843: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSGetKSPIterations()`
4844: @*/
4845: PetscErrorCode TSGetSNESIterations(TS ts, PetscInt *nits)
4846: {
4847: PetscFunctionBegin;
4849: PetscAssertPointer(nits, 2);
4850: *nits = ts->snes_its;
4851: PetscFunctionReturn(PETSC_SUCCESS);
4852: }
4854: /*@
4855: TSGetKSPIterations - Gets the total number of linear iterations
4856: used by the time integrator.
4858: Not Collective
4860: Input Parameter:
4861: . ts - `TS` context
4863: Output Parameter:
4864: . lits - number of linear iterations
4866: Level: intermediate
4868: Note:
4869: This counter is reset to zero for each successive call to `TSSolve()`.
4871: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSGetSNESIterations()`
4872: @*/
4873: PetscErrorCode TSGetKSPIterations(TS ts, PetscInt *lits)
4874: {
4875: PetscFunctionBegin;
4877: PetscAssertPointer(lits, 2);
4878: *lits = ts->ksp_its;
4879: PetscFunctionReturn(PETSC_SUCCESS);
4880: }
4882: /*@
4883: TSGetStepRejections - Gets the total number of rejected steps.
4885: Not Collective
4887: Input Parameter:
4888: . ts - `TS` context
4890: Output Parameter:
4891: . rejects - number of steps rejected
4893: Level: intermediate
4895: Note:
4896: This counter is reset to zero for each successive call to `TSSolve()`.
4898: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSGetSNESIterations()`, `TSGetKSPIterations()`, `TSSetMaxStepRejections()`, `TSGetSNESFailures()`, `TSSetMaxSNESFailures()`, `TSSetErrorIfStepFails()`
4899: @*/
4900: PetscErrorCode TSGetStepRejections(TS ts, PetscInt *rejects)
4901: {
4902: PetscFunctionBegin;
4904: PetscAssertPointer(rejects, 2);
4905: *rejects = ts->reject;
4906: PetscFunctionReturn(PETSC_SUCCESS);
4907: }
4909: /*@
4910: TSGetSNESFailures - Gets the total number of failed `SNES` solves in a `TS`
4912: Not Collective
4914: Input Parameter:
4915: . ts - `TS` context
4917: Output Parameter:
4918: . fails - number of failed nonlinear solves
4920: Level: intermediate
4922: Note:
4923: This counter is reset to zero for each successive call to `TSSolve()`.
4925: .seealso: [](ch_ts), `TS`, `TSSolve()`, `TSGetSNESIterations()`, `TSGetKSPIterations()`, `TSSetMaxStepRejections()`, `TSGetStepRejections()`, `TSSetMaxSNESFailures()`
4926: @*/
4927: PetscErrorCode TSGetSNESFailures(TS ts, PetscInt *fails)
4928: {
4929: PetscFunctionBegin;
4931: PetscAssertPointer(fails, 2);
4932: *fails = ts->num_snes_failures;
4933: PetscFunctionReturn(PETSC_SUCCESS);
4934: }
4936: /*@
4937: TSSetMaxStepRejections - Sets the maximum number of step rejections before a time step fails
4939: Not Collective
4941: Input Parameters:
4942: + ts - `TS` context
4943: - rejects - maximum number of rejected steps, pass `PETSC_UNLIMITED` for unlimited
4945: Options Database Key:
4946: . -ts_max_reject - Maximum number of step rejections before a step fails
4948: Level: intermediate
4950: Developer Note:
4951: The options database name is incorrect.
4953: .seealso: [](ch_ts), `TS`, `SNES`, `TSGetSNESIterations()`, `TSGetKSPIterations()`, `TSSetMaxSNESFailures()`, `TSGetStepRejections()`, `TSGetSNESFailures()`, `TSSetErrorIfStepFails()`, `TSGetConvergedReason()`
4954: @*/
4955: PetscErrorCode TSSetMaxStepRejections(TS ts, PetscInt rejects)
4956: {
4957: PetscFunctionBegin;
4959: if (rejects == PETSC_UNLIMITED || rejects == -1) {
4960: ts->max_reject = PETSC_UNLIMITED;
4961: } else {
4962: PetscCheck(rejects >= 0, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Cannot have a negative maximum number of rejections");
4963: ts->max_reject = rejects;
4964: }
4965: PetscFunctionReturn(PETSC_SUCCESS);
4966: }
4968: /*@
4969: TSSetMaxSNESFailures - Sets the maximum number of failed `SNES` solves
4971: Not Collective
4973: Input Parameters:
4974: + ts - `TS` context
4975: - fails - maximum number of failed nonlinear solves, pass `PETSC_UNLIMITED` to allow any number of failures.
4977: Options Database Key:
4978: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
4980: Level: intermediate
4982: .seealso: [](ch_ts), `TS`, `SNES`, `TSGetSNESIterations()`, `TSGetKSPIterations()`, `TSSetMaxStepRejections()`, `TSGetStepRejections()`, `TSGetSNESFailures()`, `SNESGetConvergedReason()`, `TSGetConvergedReason()`
4983: @*/
4984: PetscErrorCode TSSetMaxSNESFailures(TS ts, PetscInt fails)
4985: {
4986: PetscFunctionBegin;
4988: if (fails == PETSC_UNLIMITED || fails == -1) {
4989: ts->max_snes_failures = PETSC_UNLIMITED;
4990: } else {
4991: PetscCheck(fails >= 0, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Cannot have a negative maximum number of failures");
4992: ts->max_snes_failures = fails;
4993: }
4994: PetscFunctionReturn(PETSC_SUCCESS);
4995: }
4997: /*@
4998: TSSetErrorIfStepFails - Immediately error if no step succeeds during `TSSolve()`
5000: Not Collective
5002: Input Parameters:
5003: + ts - `TS` context
5004: - err - `PETSC_TRUE` to error if no step succeeds, `PETSC_FALSE` to return without failure
5006: Options Database Key:
5007: . -ts_error_if_step_fails - Error if no step succeeds
5009: Level: intermediate
5011: .seealso: [](ch_ts), `TS`, `TSGetSNESIterations()`, `TSGetKSPIterations()`, `TSSetMaxStepRejections()`, `TSGetStepRejections()`, `TSGetSNESFailures()`, `TSGetConvergedReason()`
5012: @*/
5013: PetscErrorCode TSSetErrorIfStepFails(TS ts, PetscBool err)
5014: {
5015: PetscFunctionBegin;
5017: ts->errorifstepfailed = err;
5018: PetscFunctionReturn(PETSC_SUCCESS);
5019: }
5021: /*@
5022: TSGetAdapt - Get the adaptive controller context for the current method
5024: Collective if controller has not yet been created
5026: Input Parameter:
5027: . ts - time stepping context
5029: Output Parameter:
5030: . adapt - adaptive controller
5032: Level: intermediate
5034: .seealso: [](ch_ts), `TS`, `TSAdapt`, `TSAdaptSetType()`, `TSAdaptChoose()`
5035: @*/
5036: PetscErrorCode TSGetAdapt(TS ts, TSAdapt *adapt)
5037: {
5038: PetscFunctionBegin;
5040: PetscAssertPointer(adapt, 2);
5041: if (!ts->adapt) {
5042: PetscCall(TSAdaptCreate(PetscObjectComm((PetscObject)ts), &ts->adapt));
5043: PetscCall(PetscObjectIncrementTabLevel((PetscObject)ts->adapt, (PetscObject)ts, 1));
5044: }
5045: *adapt = ts->adapt;
5046: PetscFunctionReturn(PETSC_SUCCESS);
5047: }
5049: /*@
5050: TSSetTolerances - Set tolerances for local truncation error when using an adaptive controller
5052: Logically Collective
5054: Input Parameters:
5055: + ts - time integration context
5056: . atol - scalar absolute tolerances
5057: . vatol - vector of absolute tolerances or `NULL`, used in preference to `atol` if present
5058: . rtol - scalar relative tolerances
5059: - vrtol - vector of relative tolerances or `NULL`, used in preference to `rtol` if present
5061: Options Database Keys:
5062: + -ts_rtol <rtol> - relative tolerance for local truncation error
5063: - -ts_atol <atol> - Absolute tolerance for local truncation error
5065: Level: beginner
5067: Notes:
5068: `PETSC_CURRENT` or `PETSC_DETERMINE` may be used for `atol` or `rtol` to indicate the current value
5069: or the default value from when the object's type was set.
5071: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5072: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5073: computed only for the differential or the algebraic part then this can be done using the vector of
5074: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5075: differential part and infinity for the algebraic part, the LTE calculation will include only the
5076: differential variables.
5078: Fortran Note:
5079: Use `PETSC_CURRENT_INTEGER` or `PETSC_DETERMINE_INTEGER`.
5081: .seealso: [](ch_ts), `TS`, `TSAdapt`, `TSErrorWeightedNorm()`, `TSGetTolerances()`
5082: @*/
5083: PetscErrorCode TSSetTolerances(TS ts, PetscReal atol, Vec vatol, PetscReal rtol, Vec vrtol)
5084: {
5085: PetscFunctionBegin;
5086: if (atol == (PetscReal)PETSC_DETERMINE) {
5087: ts->atol = ts->default_atol;
5088: } else if (atol != (PetscReal)PETSC_CURRENT) {
5089: PetscCheck(atol >= 0.0, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Absolute tolerance %g must be non-negative", (double)atol);
5090: ts->atol = atol;
5091: }
5093: if (vatol) {
5094: PetscCall(PetscObjectReference((PetscObject)vatol));
5095: PetscCall(VecDestroy(&ts->vatol));
5096: ts->vatol = vatol;
5097: }
5099: if (rtol == (PetscReal)PETSC_DETERMINE) {
5100: ts->rtol = ts->default_rtol;
5101: } else if (rtol != (PetscReal)PETSC_CURRENT) {
5102: PetscCheck(rtol >= 0.0, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Relative tolerance %g must be non-negative", (double)rtol);
5103: ts->rtol = rtol;
5104: }
5106: if (vrtol) {
5107: PetscCall(PetscObjectReference((PetscObject)vrtol));
5108: PetscCall(VecDestroy(&ts->vrtol));
5109: ts->vrtol = vrtol;
5110: }
5111: PetscFunctionReturn(PETSC_SUCCESS);
5112: }
5114: /*@
5115: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5117: Logically Collective
5119: Input Parameter:
5120: . ts - time integration context
5122: Output Parameters:
5123: + atol - scalar absolute tolerances, `NULL` to ignore
5124: . vatol - vector of absolute tolerances, `NULL` to ignore
5125: . rtol - scalar relative tolerances, `NULL` to ignore
5126: - vrtol - vector of relative tolerances, `NULL` to ignore
5128: Level: beginner
5130: .seealso: [](ch_ts), `TS`, `TSAdapt`, `TSErrorWeightedNorm()`, `TSSetTolerances()`
5131: @*/
5132: PetscErrorCode TSGetTolerances(TS ts, PetscReal *atol, Vec *vatol, PetscReal *rtol, Vec *vrtol)
5133: {
5134: PetscFunctionBegin;
5135: if (atol) *atol = ts->atol;
5136: if (vatol) *vatol = ts->vatol;
5137: if (rtol) *rtol = ts->rtol;
5138: if (vrtol) *vrtol = ts->vrtol;
5139: PetscFunctionReturn(PETSC_SUCCESS);
5140: }
5142: /*@
5143: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
5145: Collective
5147: Input Parameters:
5148: + ts - time stepping context
5149: . U - state vector, usually ts->vec_sol
5150: . Y - state vector to be compared to U
5151: - wnormtype - norm type, either `NORM_2` or `NORM_INFINITY`
5153: Output Parameters:
5154: + norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5155: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5156: - normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5158: Options Database Key:
5159: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5161: Level: developer
5163: .seealso: [](ch_ts), `TS`, `VecErrorWeightedNorms()`, `TSErrorWeightedENorm()`
5164: @*/
5165: PetscErrorCode TSErrorWeightedNorm(TS ts, Vec U, Vec Y, NormType wnormtype, PetscReal *norm, PetscReal *norma, PetscReal *normr)
5166: {
5167: PetscInt norma_loc, norm_loc, normr_loc;
5169: PetscFunctionBegin;
5171: PetscCall(VecErrorWeightedNorms(U, Y, NULL, wnormtype, ts->atol, ts->vatol, ts->rtol, ts->vrtol, ts->adapt->ignore_max, norm, &norm_loc, norma, &norma_loc, normr, &normr_loc));
5172: if (wnormtype == NORM_2) {
5173: if (norm_loc) *norm = PetscSqrtReal(PetscSqr(*norm) / norm_loc);
5174: if (norma_loc) *norma = PetscSqrtReal(PetscSqr(*norma) / norma_loc);
5175: if (normr_loc) *normr = PetscSqrtReal(PetscSqr(*normr) / normr_loc);
5176: }
5177: PetscCheck(!PetscIsInfOrNanScalar(*norm), PetscObjectComm((PetscObject)ts), PETSC_ERR_FP, "Infinite or not-a-number generated in norm");
5178: PetscCheck(!PetscIsInfOrNanScalar(*norma), PetscObjectComm((PetscObject)ts), PETSC_ERR_FP, "Infinite or not-a-number generated in norma");
5179: PetscCheck(!PetscIsInfOrNanScalar(*normr), PetscObjectComm((PetscObject)ts), PETSC_ERR_FP, "Infinite or not-a-number generated in normr");
5180: PetscFunctionReturn(PETSC_SUCCESS);
5181: }
5183: /*@
5184: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
5186: Collective
5188: Input Parameters:
5189: + ts - time stepping context
5190: . E - error vector
5191: . U - state vector, usually ts->vec_sol
5192: . Y - state vector, previous time step
5193: - wnormtype - norm type, either `NORM_2` or `NORM_INFINITY`
5195: Output Parameters:
5196: + norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5197: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5198: - normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5200: Options Database Key:
5201: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5203: Level: developer
5205: .seealso: [](ch_ts), `TS`, `VecErrorWeightedNorms()`, `TSErrorWeightedNorm()`
5206: @*/
5207: PetscErrorCode TSErrorWeightedENorm(TS ts, Vec E, Vec U, Vec Y, NormType wnormtype, PetscReal *norm, PetscReal *norma, PetscReal *normr)
5208: {
5209: PetscInt norma_loc, norm_loc, normr_loc;
5211: PetscFunctionBegin;
5213: PetscCall(VecErrorWeightedNorms(U, Y, E, wnormtype, ts->atol, ts->vatol, ts->rtol, ts->vrtol, ts->adapt->ignore_max, norm, &norm_loc, norma, &norma_loc, normr, &normr_loc));
5214: if (wnormtype == NORM_2) {
5215: if (norm_loc) *norm = PetscSqrtReal(PetscSqr(*norm) / norm_loc);
5216: if (norma_loc) *norma = PetscSqrtReal(PetscSqr(*norma) / norma_loc);
5217: if (normr_loc) *normr = PetscSqrtReal(PetscSqr(*normr) / normr_loc);
5218: }
5219: PetscCheck(!PetscIsInfOrNanScalar(*norm), PetscObjectComm((PetscObject)ts), PETSC_ERR_FP, "Infinite or not-a-number generated in norm");
5220: PetscCheck(!PetscIsInfOrNanScalar(*norma), PetscObjectComm((PetscObject)ts), PETSC_ERR_FP, "Infinite or not-a-number generated in norma");
5221: PetscCheck(!PetscIsInfOrNanScalar(*normr), PetscObjectComm((PetscObject)ts), PETSC_ERR_FP, "Infinite or not-a-number generated in normr");
5222: PetscFunctionReturn(PETSC_SUCCESS);
5223: }
5225: /*@
5226: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
5228: Logically Collective
5230: Input Parameters:
5231: + ts - time stepping context
5232: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
5234: Note:
5235: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
5237: Level: intermediate
5239: .seealso: [](ch_ts), `TSGetCFLTime()`, `TSADAPTCFL`
5240: @*/
5241: PetscErrorCode TSSetCFLTimeLocal(TS ts, PetscReal cfltime)
5242: {
5243: PetscFunctionBegin;
5245: ts->cfltime_local = cfltime;
5246: ts->cfltime = -1.;
5247: PetscFunctionReturn(PETSC_SUCCESS);
5248: }
5250: /*@
5251: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
5253: Collective
5255: Input Parameter:
5256: . ts - time stepping context
5258: Output Parameter:
5259: . cfltime - maximum stable time step for forward Euler
5261: Level: advanced
5263: .seealso: [](ch_ts), `TSSetCFLTimeLocal()`
5264: @*/
5265: PetscErrorCode TSGetCFLTime(TS ts, PetscReal *cfltime)
5266: {
5267: PetscFunctionBegin;
5268: if (ts->cfltime < 0) PetscCallMPI(MPIU_Allreduce(&ts->cfltime_local, &ts->cfltime, 1, MPIU_REAL, MPIU_MIN, PetscObjectComm((PetscObject)ts)));
5269: *cfltime = ts->cfltime;
5270: PetscFunctionReturn(PETSC_SUCCESS);
5271: }
5273: /*@
5274: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
5276: Input Parameters:
5277: + ts - the `TS` context.
5278: . xl - lower bound.
5279: - xu - upper bound.
5281: Level: advanced
5283: Note:
5284: If this routine is not called then the lower and upper bounds are set to
5285: `PETSC_NINFINITY` and `PETSC_INFINITY` respectively during `SNESSetUp()`.
5287: .seealso: [](ch_ts), `TS`
5288: @*/
5289: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
5290: {
5291: SNES snes;
5293: PetscFunctionBegin;
5294: PetscCall(TSGetSNES(ts, &snes));
5295: PetscCall(SNESVISetVariableBounds(snes, xl, xu));
5296: PetscFunctionReturn(PETSC_SUCCESS);
5297: }
5299: /*@
5300: TSComputeLinearStability - computes the linear stability function at a point
5302: Collective
5304: Input Parameters:
5305: + ts - the `TS` context
5306: . xr - real part of input argument
5307: - xi - imaginary part of input argument
5309: Output Parameters:
5310: + yr - real part of function value
5311: - yi - imaginary part of function value
5313: Level: developer
5315: .seealso: [](ch_ts), `TS`, `TSSetRHSFunction()`, `TSComputeIFunction()`
5316: @*/
5317: PetscErrorCode TSComputeLinearStability(TS ts, PetscReal xr, PetscReal xi, PetscReal *yr, PetscReal *yi)
5318: {
5319: PetscFunctionBegin;
5321: PetscUseTypeMethod(ts, linearstability, xr, xi, yr, yi);
5322: PetscFunctionReturn(PETSC_SUCCESS);
5323: }
5325: /*@
5326: TSRestartStep - Flags the solver to restart the next step
5328: Collective
5330: Input Parameter:
5331: . ts - the `TS` context obtained from `TSCreate()`
5333: Level: advanced
5335: Notes:
5336: Multistep methods like `TSBDF` or Runge-Kutta methods with FSAL property require restarting the solver in the event of
5337: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
5338: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
5339: the sake of correctness and maximum safety, users are expected to call `TSRestart()` whenever they introduce
5340: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
5341: discontinuous source terms).
5343: .seealso: [](ch_ts), `TS`, `TSBDF`, `TSSolve()`, `TSSetPreStep()`, `TSSetPostStep()`
5344: @*/
5345: PetscErrorCode TSRestartStep(TS ts)
5346: {
5347: PetscFunctionBegin;
5349: ts->steprestart = PETSC_TRUE;
5350: PetscFunctionReturn(PETSC_SUCCESS);
5351: }
5353: /*@
5354: TSRollBack - Rolls back one time step
5356: Collective
5358: Input Parameter:
5359: . ts - the `TS` context obtained from `TSCreate()`
5361: Level: advanced
5363: .seealso: [](ch_ts), `TS`, `TSGetStepRollBack()`, `TSCreate()`, `TSSetUp()`, `TSDestroy()`, `TSSolve()`, `TSSetPreStep()`, `TSSetPreStage()`, `TSInterpolate()`
5364: @*/
5365: PetscErrorCode TSRollBack(TS ts)
5366: {
5367: PetscFunctionBegin;
5369: PetscCheck(!ts->steprollback, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONGSTATE, "TSRollBack already called");
5370: PetscTryTypeMethod(ts, rollback);
5371: PetscCall(VecCopy(ts->vec_sol0, ts->vec_sol));
5372: ts->time_step = ts->ptime - ts->ptime_prev;
5373: ts->ptime = ts->ptime_prev;
5374: ts->ptime_prev = ts->ptime_prev_rollback;
5375: ts->steps--;
5376: ts->steprollback = PETSC_TRUE;
5377: PetscFunctionReturn(PETSC_SUCCESS);
5378: }
5380: /*@
5381: TSGetStepRollBack - Get the internal flag indicating if you are rolling back a step
5383: Not collective
5385: Input Parameter:
5386: . ts - the `TS` context obtained from `TSCreate()`
5388: Output Parameter:
5389: . flg - the rollback flag
5391: Level: advanced
5393: .seealso: [](ch_ts), `TS`, `TSCreate()`, `TSRollBack()`
5394: @*/
5395: PetscErrorCode TSGetStepRollBack(TS ts, PetscBool *flg)
5396: {
5397: PetscFunctionBegin;
5399: PetscAssertPointer(flg, 2);
5400: *flg = ts->steprollback;
5401: PetscFunctionReturn(PETSC_SUCCESS);
5402: }
5404: /*@
5405: TSGetStepResize - Get the internal flag indicating if the current step is after a resize.
5407: Not collective
5409: Input Parameter:
5410: . ts - the `TS` context obtained from `TSCreate()`
5412: Output Parameter:
5413: . flg - the resize flag
5415: Level: advanced
5417: .seealso: [](ch_ts), `TS`, `TSCreate()`, `TSSetResize()`
5418: @*/
5419: PetscErrorCode TSGetStepResize(TS ts, PetscBool *flg)
5420: {
5421: PetscFunctionBegin;
5423: PetscAssertPointer(flg, 2);
5424: *flg = ts->stepresize;
5425: PetscFunctionReturn(PETSC_SUCCESS);
5426: }
5428: /*@
5429: TSGetStages - Get the number of stages and stage values
5431: Input Parameter:
5432: . ts - the `TS` context obtained from `TSCreate()`
5434: Output Parameters:
5435: + ns - the number of stages
5436: - Y - the current stage vectors
5438: Level: advanced
5440: Note:
5441: Both `ns` and `Y` can be `NULL`.
5443: .seealso: [](ch_ts), `TS`, `TSCreate()`
5444: @*/
5445: PetscErrorCode TSGetStages(TS ts, PetscInt *ns, Vec **Y)
5446: {
5447: PetscFunctionBegin;
5449: if (ns) PetscAssertPointer(ns, 2);
5450: if (Y) PetscAssertPointer(Y, 3);
5451: if (!ts->ops->getstages) {
5452: if (ns) *ns = 0;
5453: if (Y) *Y = NULL;
5454: } else PetscUseTypeMethod(ts, getstages, ns, Y);
5455: PetscFunctionReturn(PETSC_SUCCESS);
5456: }
5458: /*@C
5459: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
5461: Collective
5463: Input Parameters:
5464: + ts - the `TS` context
5465: . t - current timestep
5466: . U - state vector
5467: . Udot - time derivative of state vector
5468: . shift - shift to apply, see note below
5469: - ctx - an optional user context
5471: Output Parameters:
5472: + J - Jacobian matrix (not altered in this routine)
5473: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as `J`)
5475: Level: intermediate
5477: Notes:
5478: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
5480: dF/dU + shift*dF/dUdot
5482: Most users should not need to explicitly call this routine, as it
5483: is used internally within the nonlinear solvers.
5485: This will first try to get the coloring from the `DM`. If the `DM` type has no coloring
5486: routine, then it will try to get the coloring from the matrix. This requires that the
5487: matrix have nonzero entries precomputed.
5489: .seealso: [](ch_ts), `TS`, `TSSetIJacobian()`, `MatFDColoringCreate()`, `MatFDColoringSetFunction()`
5490: @*/
5491: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts, PetscReal t, Vec U, Vec Udot, PetscReal shift, Mat J, Mat B, void *ctx)
5492: {
5493: SNES snes;
5494: MatFDColoring color;
5495: PetscBool hascolor, matcolor = PETSC_FALSE;
5497: PetscFunctionBegin;
5498: PetscCall(PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject)ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL));
5499: PetscCall(PetscObjectQuery((PetscObject)B, "TSMatFDColoring", (PetscObject *)&color));
5500: if (!color) {
5501: DM dm;
5502: ISColoring iscoloring;
5504: PetscCall(TSGetDM(ts, &dm));
5505: PetscCall(DMHasColoring(dm, &hascolor));
5506: if (hascolor && !matcolor) {
5507: PetscCall(DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring));
5508: PetscCall(MatFDColoringCreate(B, iscoloring, &color));
5509: PetscCall(MatFDColoringSetFunction(color, (PetscErrorCode (*)(void))SNESTSFormFunction, (void *)ts));
5510: PetscCall(MatFDColoringSetFromOptions(color));
5511: PetscCall(MatFDColoringSetUp(B, iscoloring, color));
5512: PetscCall(ISColoringDestroy(&iscoloring));
5513: } else {
5514: MatColoring mc;
5516: PetscCall(MatColoringCreate(B, &mc));
5517: PetscCall(MatColoringSetDistance(mc, 2));
5518: PetscCall(MatColoringSetType(mc, MATCOLORINGSL));
5519: PetscCall(MatColoringSetFromOptions(mc));
5520: PetscCall(MatColoringApply(mc, &iscoloring));
5521: PetscCall(MatColoringDestroy(&mc));
5522: PetscCall(MatFDColoringCreate(B, iscoloring, &color));
5523: PetscCall(MatFDColoringSetFunction(color, (PetscErrorCode (*)(void))SNESTSFormFunction, (void *)ts));
5524: PetscCall(MatFDColoringSetFromOptions(color));
5525: PetscCall(MatFDColoringSetUp(B, iscoloring, color));
5526: PetscCall(ISColoringDestroy(&iscoloring));
5527: }
5528: PetscCall(PetscObjectCompose((PetscObject)B, "TSMatFDColoring", (PetscObject)color));
5529: PetscCall(PetscObjectDereference((PetscObject)color));
5530: }
5531: PetscCall(TSGetSNES(ts, &snes));
5532: PetscCall(MatFDColoringApply(B, color, U, snes));
5533: if (J != B) {
5534: PetscCall(MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY));
5535: PetscCall(MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY));
5536: }
5537: PetscFunctionReturn(PETSC_SUCCESS);
5538: }
5540: /*@C
5541: TSSetFunctionDomainError - Set a function that tests if the current state vector is valid
5543: Input Parameters:
5544: + ts - the `TS` context
5545: - func - function called within `TSFunctionDomainError()`
5547: Calling sequence of `func`:
5548: + ts - the `TS` context
5549: . time - the current time (of the stage)
5550: . state - the state to check if it is valid
5551: - accept - (output parameter) `PETSC_FALSE` if the state is not acceptable, `PETSC_TRUE` if acceptable
5553: Level: intermediate
5555: Notes:
5556: If an implicit ODE solver is being used then, in addition to providing this routine, the
5557: user's code should call `SNESSetFunctionDomainError()` when domain errors occur during
5558: function evaluations where the functions are provided by `TSSetIFunction()` or `TSSetRHSFunction()`.
5559: Use `TSGetSNES()` to obtain the `SNES` object
5561: Developer Notes:
5562: The naming of this function is inconsistent with the `SNESSetFunctionDomainError()`
5563: since one takes a function pointer and the other does not.
5565: .seealso: [](ch_ts), `TSAdaptCheckStage()`, `TSFunctionDomainError()`, `SNESSetFunctionDomainError()`, `TSGetSNES()`
5566: @*/
5567: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS ts, PetscReal time, Vec state, PetscBool *accept))
5568: {
5569: PetscFunctionBegin;
5571: ts->functiondomainerror = func;
5572: PetscFunctionReturn(PETSC_SUCCESS);
5573: }
5575: /*@
5576: TSFunctionDomainError - Checks if the current state is valid
5578: Input Parameters:
5579: + ts - the `TS` context
5580: . stagetime - time of the simulation
5581: - Y - state vector to check.
5583: Output Parameter:
5584: . accept - Set to `PETSC_FALSE` if the current state vector is valid.
5586: Level: developer
5588: Note:
5589: This function is called by the `TS` integration routines and calls the user provided function (set with `TSSetFunctionDomainError()`)
5590: to check if the current state is valid.
5592: .seealso: [](ch_ts), `TS`, `TSSetFunctionDomainError()`
5593: @*/
5594: PetscErrorCode TSFunctionDomainError(TS ts, PetscReal stagetime, Vec Y, PetscBool *accept)
5595: {
5596: PetscFunctionBegin;
5598: *accept = PETSC_TRUE;
5599: if (ts->functiondomainerror) PetscCall((*ts->functiondomainerror)(ts, stagetime, Y, accept));
5600: PetscFunctionReturn(PETSC_SUCCESS);
5601: }
5603: /*@
5604: TSClone - This function clones a time step `TS` object.
5606: Collective
5608: Input Parameter:
5609: . tsin - The input `TS`
5611: Output Parameter:
5612: . tsout - The output `TS` (cloned)
5614: Level: developer
5616: Notes:
5617: This function is used to create a clone of a `TS` object. It is used in `TSARKIMEX` for initializing the slope for first stage explicit methods.
5618: It will likely be replaced in the future with a mechanism of switching methods on the fly.
5620: When using `TSDestroy()` on a clone the user has to first reset the correct `TS` reference in the embedded `SNES` object: e.g., by running
5621: .vb
5622: SNES snes_dup = NULL;
5623: TSGetSNES(ts,&snes_dup);
5624: TSSetSNES(ts,snes_dup);
5625: .ve
5627: .seealso: [](ch_ts), `TS`, `SNES`, `TSCreate()`, `TSSetType()`, `TSSetUp()`, `TSDestroy()`, `TSSetProblemType()`
5628: @*/
5629: PetscErrorCode TSClone(TS tsin, TS *tsout)
5630: {
5631: TS t;
5632: SNES snes_start;
5633: DM dm;
5634: TSType type;
5636: PetscFunctionBegin;
5637: PetscAssertPointer(tsin, 1);
5638: *tsout = NULL;
5640: PetscCall(PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView));
5642: /* General TS description */
5643: t->numbermonitors = 0;
5644: t->monitorFrequency = 1;
5645: t->setupcalled = 0;
5646: t->ksp_its = 0;
5647: t->snes_its = 0;
5648: t->nwork = 0;
5649: t->rhsjacobian.time = PETSC_MIN_REAL;
5650: t->rhsjacobian.scale = 1.;
5651: t->ijacobian.shift = 1.;
5653: PetscCall(TSGetSNES(tsin, &snes_start));
5654: PetscCall(TSSetSNES(t, snes_start));
5656: PetscCall(TSGetDM(tsin, &dm));
5657: PetscCall(TSSetDM(t, dm));
5659: t->adapt = tsin->adapt;
5660: PetscCall(PetscObjectReference((PetscObject)t->adapt));
5662: t->trajectory = tsin->trajectory;
5663: PetscCall(PetscObjectReference((PetscObject)t->trajectory));
5665: t->event = tsin->event;
5666: if (t->event) t->event->refct++;
5668: t->problem_type = tsin->problem_type;
5669: t->ptime = tsin->ptime;
5670: t->ptime_prev = tsin->ptime_prev;
5671: t->time_step = tsin->time_step;
5672: t->max_time = tsin->max_time;
5673: t->steps = tsin->steps;
5674: t->max_steps = tsin->max_steps;
5675: t->equation_type = tsin->equation_type;
5676: t->atol = tsin->atol;
5677: t->rtol = tsin->rtol;
5678: t->max_snes_failures = tsin->max_snes_failures;
5679: t->max_reject = tsin->max_reject;
5680: t->errorifstepfailed = tsin->errorifstepfailed;
5682: PetscCall(TSGetType(tsin, &type));
5683: PetscCall(TSSetType(t, type));
5685: t->vec_sol = NULL;
5687: t->cfltime = tsin->cfltime;
5688: t->cfltime_local = tsin->cfltime_local;
5689: t->exact_final_time = tsin->exact_final_time;
5691: t->ops[0] = tsin->ops[0];
5693: if (((PetscObject)tsin)->fortran_func_pointers) {
5694: PetscInt i;
5695: PetscCall(PetscMalloc((10) * sizeof(void (*)(void)), &((PetscObject)t)->fortran_func_pointers));
5696: for (i = 0; i < 10; i++) ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
5697: }
5698: *tsout = t;
5699: PetscFunctionReturn(PETSC_SUCCESS);
5700: }
5702: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void *ctx, Vec x, Vec y)
5703: {
5704: TS ts = (TS)ctx;
5706: PetscFunctionBegin;
5707: PetscCall(TSComputeRHSFunction(ts, 0, x, y));
5708: PetscFunctionReturn(PETSC_SUCCESS);
5709: }
5711: /*@
5712: TSRHSJacobianTest - Compares the multiply routine provided to the `MATSHELL` with differencing on the `TS` given RHS function.
5714: Logically Collective
5716: Input Parameter:
5717: . ts - the time stepping routine
5719: Output Parameter:
5720: . flg - `PETSC_TRUE` if the multiply is likely correct
5722: Options Database Key:
5723: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
5725: Level: advanced
5727: Note:
5728: This only works for problems defined using `TSSetRHSFunction()` and Jacobian NOT `TSSetIFunction()` and Jacobian
5730: .seealso: [](ch_ts), `TS`, `Mat`, `MATSHELL`, `MatCreateShell()`, `MatShellGetContext()`, `MatShellGetOperation()`, `MatShellTestMultTranspose()`, `TSRHSJacobianTestTranspose()`
5731: @*/
5732: PetscErrorCode TSRHSJacobianTest(TS ts, PetscBool *flg)
5733: {
5734: Mat J, B;
5735: TSRHSJacobianFn *func;
5736: void *ctx;
5738: PetscFunctionBegin;
5739: PetscCall(TSGetRHSJacobian(ts, &J, &B, &func, &ctx));
5740: PetscCall((*func)(ts, 0.0, ts->vec_sol, J, B, ctx));
5741: PetscCall(MatShellTestMult(J, RHSWrapperFunction_TSRHSJacobianTest, ts->vec_sol, ts, flg));
5742: PetscFunctionReturn(PETSC_SUCCESS);
5743: }
5745: /*@
5746: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the `MATSHELL` with differencing on the `TS` given RHS function.
5748: Logically Collective
5750: Input Parameter:
5751: . ts - the time stepping routine
5753: Output Parameter:
5754: . flg - `PETSC_TRUE` if the multiply is likely correct
5756: Options Database Key:
5757: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
5759: Level: advanced
5761: Notes:
5762: This only works for problems defined using `TSSetRHSFunction()` and Jacobian NOT `TSSetIFunction()` and Jacobian
5764: .seealso: [](ch_ts), `TS`, `Mat`, `MatCreateShell()`, `MatShellGetContext()`, `MatShellGetOperation()`, `MatShellTestMultTranspose()`, `TSRHSJacobianTest()`
5765: @*/
5766: PetscErrorCode TSRHSJacobianTestTranspose(TS ts, PetscBool *flg)
5767: {
5768: Mat J, B;
5769: void *ctx;
5770: TSRHSJacobianFn *func;
5772: PetscFunctionBegin;
5773: PetscCall(TSGetRHSJacobian(ts, &J, &B, &func, &ctx));
5774: PetscCall((*func)(ts, 0.0, ts->vec_sol, J, B, ctx));
5775: PetscCall(MatShellTestMultTranspose(J, RHSWrapperFunction_TSRHSJacobianTest, ts->vec_sol, ts, flg));
5776: PetscFunctionReturn(PETSC_SUCCESS);
5777: }
5779: /*@
5780: TSSetUseSplitRHSFunction - Use the split RHSFunction when a multirate method is used.
5782: Logically Collective
5784: Input Parameters:
5785: + ts - timestepping context
5786: - use_splitrhsfunction - `PETSC_TRUE` indicates that the split RHSFunction will be used
5788: Options Database Key:
5789: . -ts_use_splitrhsfunction - <true,false>
5791: Level: intermediate
5793: Note:
5794: This is only for multirate methods
5796: .seealso: [](ch_ts), `TS`, `TSGetUseSplitRHSFunction()`
5797: @*/
5798: PetscErrorCode TSSetUseSplitRHSFunction(TS ts, PetscBool use_splitrhsfunction)
5799: {
5800: PetscFunctionBegin;
5802: ts->use_splitrhsfunction = use_splitrhsfunction;
5803: PetscFunctionReturn(PETSC_SUCCESS);
5804: }
5806: /*@
5807: TSGetUseSplitRHSFunction - Gets whether to use the split RHSFunction when a multirate method is used.
5809: Not Collective
5811: Input Parameter:
5812: . ts - timestepping context
5814: Output Parameter:
5815: . use_splitrhsfunction - `PETSC_TRUE` indicates that the split RHSFunction will be used
5817: Level: intermediate
5819: .seealso: [](ch_ts), `TS`, `TSSetUseSplitRHSFunction()`
5820: @*/
5821: PetscErrorCode TSGetUseSplitRHSFunction(TS ts, PetscBool *use_splitrhsfunction)
5822: {
5823: PetscFunctionBegin;
5825: *use_splitrhsfunction = ts->use_splitrhsfunction;
5826: PetscFunctionReturn(PETSC_SUCCESS);
5827: }
5829: /*@
5830: TSSetMatStructure - sets the relationship between the nonzero structure of the RHS Jacobian matrix to the IJacobian matrix.
5832: Logically Collective
5834: Input Parameters:
5835: + ts - the time-stepper
5836: - str - the structure (the default is `UNKNOWN_NONZERO_PATTERN`)
5838: Level: intermediate
5840: Note:
5841: When the relationship between the nonzero structures is known and supplied the solution process can be much faster
5843: .seealso: [](ch_ts), `TS`, `MatAXPY()`, `MatStructure`
5844: @*/
5845: PetscErrorCode TSSetMatStructure(TS ts, MatStructure str)
5846: {
5847: PetscFunctionBegin;
5849: ts->axpy_pattern = str;
5850: PetscFunctionReturn(PETSC_SUCCESS);
5851: }
5853: /*@
5854: TSSetEvaluationTimes - sets the evaluation points. The solution will be computed and stored for each time requested
5856: Collective
5858: Input Parameters:
5859: + ts - the time-stepper
5860: . n - number of the time points
5861: - time_points - array of the time points
5863: Options Database Key:
5864: . -ts_eval_times <t0,...tn> - Sets the evaluation times
5866: Level: intermediate
5868: Notes:
5869: The elements in `time_points` must be all increasing. They correspond to the intermediate points for time integration.
5871: `TS_EXACTFINALTIME_MATCHSTEP` must be used to make the last time step in each sub-interval match the intermediate points specified.
5873: The intermediate solutions are saved in a vector array that can be accessed with `TSGetEvaluationSolutions()`. Thus using evaluation times may
5874: pressure the memory system when using a large number of time points.
5876: .seealso: [](ch_ts), `TS`, `TSGetEvaluationTimes()`, `TSGetEvaluationSolutions()`, `TSSetTimeSpan()`
5877: @*/
5878: PetscErrorCode TSSetEvaluationTimes(TS ts, PetscInt n, PetscReal *time_points)
5879: {
5880: PetscBool is_sorted;
5882: PetscFunctionBegin;
5884: if (ts->eval_times && n != ts->eval_times->num_time_points) {
5885: PetscCall(PetscFree(ts->eval_times->time_points));
5886: PetscCall(VecDestroyVecs(ts->eval_times->num_time_points, &ts->eval_times->sol_vecs));
5887: PetscCall(PetscMalloc1(n, &ts->eval_times->time_points));
5888: }
5889: if (!ts->eval_times) {
5890: TSEvaluationTimes eval_times;
5891: PetscCall(PetscNew(&eval_times));
5892: PetscCall(PetscMalloc1(n, &eval_times->time_points));
5893: eval_times->reltol = 1e-6;
5894: eval_times->abstol = 10 * PETSC_MACHINE_EPSILON;
5895: eval_times->worktol = 0;
5896: ts->eval_times = eval_times;
5897: }
5898: ts->eval_times->num_time_points = n;
5899: PetscCall(PetscSortedReal(n, time_points, &is_sorted));
5900: PetscCheck(is_sorted, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "time_points array must be sorted");
5901: PetscCall(PetscArraycpy(ts->eval_times->time_points, time_points, n));
5902: PetscFunctionReturn(PETSC_SUCCESS);
5903: }
5905: /*@C
5906: TSGetEvaluationTimes - gets the evaluation times set with `TSSetEvaluationTimes()`
5908: Not Collective
5910: Input Parameter:
5911: . ts - the time-stepper
5913: Output Parameters:
5914: + n - number of the time points
5915: - time_points - array of the time points
5917: Level: beginner
5919: Note:
5920: The values obtained are valid until the `TS` object is destroyed.
5922: Both `n` and `time_points` can be `NULL`.
5924: Also used to see time points set by `TSSetTimeSpan()`.
5926: .seealso: [](ch_ts), `TS`, `TSSetEvaluationTimes()`, `TSGetEvaluationSolutions()`
5927: @*/
5928: PetscErrorCode TSGetEvaluationTimes(TS ts, PetscInt *n, const PetscReal *time_points[])
5929: {
5930: PetscFunctionBegin;
5932: if (n) PetscAssertPointer(n, 2);
5933: if (time_points) PetscAssertPointer(time_points, 3);
5934: if (!ts->eval_times) {
5935: if (n) *n = 0;
5936: if (time_points) *time_points = NULL;
5937: } else {
5938: if (n) *n = ts->eval_times->num_time_points;
5939: if (time_points) *time_points = ts->eval_times->time_points;
5940: }
5941: PetscFunctionReturn(PETSC_SUCCESS);
5942: }
5944: /*@C
5945: TSGetEvaluationSolutions - Get the number of solutions and the solutions at the evaluation time points specified
5947: Input Parameter:
5948: . ts - the `TS` context obtained from `TSCreate()`
5950: Output Parameters:
5951: + nsol - the number of solutions
5952: . sol_times - array of solution times corresponding to the solution vectors. See note below
5953: - Sols - the solution vectors
5955: Level: intermediate
5957: Notes:
5958: Both `nsol` and `Sols` can be `NULL`.
5960: Some time points in the evaluation points may be skipped by `TS` so that `nsol` is less than the number of points specified by `TSSetEvaluationTimes()`.
5961: For example, manipulating the step size, especially with a reduced precision, may cause `TS` to step over certain evaluation times.
5963: Also used to see view solutions requested by `TSSetTimeSpan()`.
5965: .seealso: [](ch_ts), `TS`, `TSSetEvaluationTimes()`, `TSGetEvaluationTimes()`
5966: @*/
5967: PetscErrorCode TSGetEvaluationSolutions(TS ts, PetscInt *nsol, const PetscReal *sol_times[], Vec **Sols)
5968: {
5969: PetscFunctionBegin;
5971: if (nsol) PetscAssertPointer(nsol, 2);
5972: if (sol_times) PetscAssertPointer(sol_times, 3);
5973: if (Sols) PetscAssertPointer(Sols, 4);
5974: if (!ts->eval_times) {
5975: if (nsol) *nsol = 0;
5976: if (sol_times) *sol_times = NULL;
5977: if (Sols) *Sols = NULL;
5978: } else {
5979: if (nsol) *nsol = ts->eval_times->sol_ctr;
5980: if (sol_times) *sol_times = ts->eval_times->sol_times;
5981: if (Sols) *Sols = ts->eval_times->sol_vecs;
5982: }
5983: PetscFunctionReturn(PETSC_SUCCESS);
5984: }
5986: /*@
5987: TSSetTimeSpan - sets the time span. The solution will be computed and stored for each time requested in the span
5989: Collective
5991: Input Parameters:
5992: + ts - the time-stepper
5993: . n - number of the time points (>=2)
5994: - span_times - array of the time points. The first element and the last element are the initial time and the final time respectively.
5996: Options Database Key:
5997: . -ts_time_span <t0,...tf> - Sets the time span
5999: Level: intermediate
6001: Notes:
6002: This function is identical to `TSSetEvaluationTimes()`, except that it also sets the initial time and final time for the `ts` to the first and last `span_times` entries.
6004: The elements in tspan must be all increasing. They correspond to the intermediate points for time integration.
6006: `TS_EXACTFINALTIME_MATCHSTEP` must be used to make the last time step in each sub-interval match the intermediate points specified.
6008: The intermediate solutions are saved in a vector array that can be accessed with `TSGetEvaluationSolutions()`. Thus using time span may
6009: pressure the memory system when using a large number of span points.
6011: .seealso: [](ch_ts), `TS`, `TSSetEvaluationTimes()`, `TSGetEvaluationTimes()`, `TSGetEvaluationSolutions()`
6012: @*/
6013: PetscErrorCode TSSetTimeSpan(TS ts, PetscInt n, PetscReal *span_times)
6014: {
6015: PetscFunctionBegin;
6017: PetscCheck(n >= 2, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_WRONG, "Minimum time span size is 2 but %" PetscInt_FMT " is provided", n);
6018: PetscCall(TSSetEvaluationTimes(ts, n, span_times));
6019: PetscCall(TSSetTime(ts, span_times[0]));
6020: PetscCall(TSSetMaxTime(ts, span_times[n - 1]));
6021: PetscFunctionReturn(PETSC_SUCCESS);
6022: }
6024: /*@
6025: TSPruneIJacobianColor - Remove nondiagonal zeros in the Jacobian matrix and update the `MatMFFD` coloring information.
6027: Collective
6029: Input Parameters:
6030: + ts - the `TS` context
6031: . J - Jacobian matrix (not altered in this routine)
6032: - B - newly computed Jacobian matrix to use with preconditioner
6034: Level: intermediate
6036: Notes:
6037: This function improves the `MatFDColoring` performance when the Jacobian matrix was over-allocated or contains
6038: many constant zeros entries, which is typically the case when the matrix is generated by a `DM`
6039: and multiple fields are involved.
6041: Users need to make sure that the Jacobian matrix is properly filled to reflect the sparsity
6042: structure. For `MatFDColoring`, the values of nonzero entries are not important. So one can
6043: usually call `TSComputeIJacobian()` with randomized input vectors to generate a dummy Jacobian.
6044: `TSComputeIJacobian()` should be called before `TSSolve()` but after `TSSetUp()`.
6046: .seealso: [](ch_ts), `TS`, `MatFDColoring`, `TSComputeIJacobianDefaultColor()`, `MatEliminateZeros()`, `MatFDColoringCreate()`, `MatFDColoringSetFunction()`
6047: @*/
6048: PetscErrorCode TSPruneIJacobianColor(TS ts, Mat J, Mat B)
6049: {
6050: MatColoring mc = NULL;
6051: ISColoring iscoloring = NULL;
6052: MatFDColoring matfdcoloring = NULL;
6054: PetscFunctionBegin;
6055: /* Generate new coloring after eliminating zeros in the matrix */
6056: PetscCall(MatEliminateZeros(B, PETSC_TRUE));
6057: PetscCall(MatColoringCreate(B, &mc));
6058: PetscCall(MatColoringSetDistance(mc, 2));
6059: PetscCall(MatColoringSetType(mc, MATCOLORINGSL));
6060: PetscCall(MatColoringSetFromOptions(mc));
6061: PetscCall(MatColoringApply(mc, &iscoloring));
6062: PetscCall(MatColoringDestroy(&mc));
6063: /* Replace the old coloring with the new one */
6064: PetscCall(MatFDColoringCreate(B, iscoloring, &matfdcoloring));
6065: PetscCall(MatFDColoringSetFunction(matfdcoloring, (PetscErrorCode (*)(void))SNESTSFormFunction, (void *)ts));
6066: PetscCall(MatFDColoringSetFromOptions(matfdcoloring));
6067: PetscCall(MatFDColoringSetUp(B, iscoloring, matfdcoloring));
6068: PetscCall(PetscObjectCompose((PetscObject)B, "TSMatFDColoring", (PetscObject)matfdcoloring));
6069: PetscCall(PetscObjectDereference((PetscObject)matfdcoloring));
6070: PetscCall(ISColoringDestroy(&iscoloring));
6071: PetscFunctionReturn(PETSC_SUCCESS);
6072: }