Actual source code: sf.c

  1: #include <petsc/private/sfimpl.h>
  2: #include <petsc/private/hashseti.h>
  3: #include <petsc/private/viewerimpl.h>
  4: #include <petsc/private/hashmapi.h>

  6: #if defined(PETSC_HAVE_CUDA)
  7:   #include <cuda_runtime.h>
  8: #include <petscdevice_cuda.h>
  9: #endif

 11: #if defined(PETSC_HAVE_HIP)
 12:   #include <hip/hip_runtime.h>
 13: #endif

 15: #if defined(PETSC_CLANG_STATIC_ANALYZER)
 16: extern void PetscSFCheckGraphSet(PetscSF, int);
 17: #else
 18:   #if defined(PETSC_USE_DEBUG)
 19:     #define PetscSFCheckGraphSet(sf, arg) PetscCheck((sf)->graphset, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetGraph() or PetscSFSetGraphWithPattern() on argument %d \"%s\" before %s()", (arg), #sf, PETSC_FUNCTION_NAME)
 20:   #else
 21:     #define PetscSFCheckGraphSet(sf, arg) \
 22:       do { \
 23:       } while (0)
 24:   #endif
 25: #endif

 27: const char *const PetscSFDuplicateOptions[]     = {"CONFONLY", "RANKS", "GRAPH", "PetscSFDuplicateOption", "PETSCSF_DUPLICATE_", NULL};
 28: const char *const PetscSFConcatenateRootModes[] = {"local", "shared", "global", "PetscSFConcatenateRootMode", "PETSCSF_CONCATENATE_ROOTMODE_", NULL};

 30: /*@
 31:   PetscSFCreate - create a star forest communication context

 33:   Collective

 35:   Input Parameter:
 36: . comm - communicator on which the star forest will operate

 38:   Output Parameter:
 39: . sf - new star forest context

 41:   Options Database Key:
 42: + -sf_type basic                 - Use MPI persistent Isend/Irecv for communication (Default)
 43: . -sf_type window                - Use MPI-3 one-sided window for communication
 44: . -sf_type neighbor              - Use MPI-3 neighborhood collectives for communication
 45: - -sf_neighbor_persistent <bool> - If true, use MPI-4 persistent neighborhood collectives for communication (used along with -sf_type neighbor)

 47:   Level: intermediate

 49:   Note:
 50:   When one knows the communication graph is one of the predefined graph, such as `MPI_Alltoall()`, `MPI_Allgatherv()`,
 51:   `MPI_Gatherv()`, one can create a `PetscSF` and then set its graph with `PetscSFSetGraphWithPattern()`. These special
 52:   `SF`s are optimized and they have better performance than the general `SF`s.

 54: .seealso: `PetscSF`, `PetscSFSetType`, `PetscSFSetGraph()`, `PetscSFSetGraphWithPattern()`, `PetscSFDestroy()`
 55: @*/
 56: PetscErrorCode PetscSFCreate(MPI_Comm comm, PetscSF *sf)
 57: {
 58:   PetscSF b;

 60:   PetscFunctionBegin;
 61:   PetscAssertPointer(sf, 2);
 62:   PetscCall(PetscSFInitializePackage());

 64:   PetscCall(PetscHeaderCreate(b, PETSCSF_CLASSID, "PetscSF", "Star Forest", "PetscSF", comm, PetscSFDestroy, PetscSFView));
 65:   b->nroots    = -1;
 66:   b->nleaves   = -1;
 67:   b->minleaf   = PETSC_MAX_INT;
 68:   b->maxleaf   = PETSC_MIN_INT;
 69:   b->nranks    = -1;
 70:   b->rankorder = PETSC_TRUE;
 71:   b->ingroup   = MPI_GROUP_NULL;
 72:   b->outgroup  = MPI_GROUP_NULL;
 73:   b->graphset  = PETSC_FALSE;
 74: #if defined(PETSC_HAVE_DEVICE)
 75:   b->use_gpu_aware_mpi    = use_gpu_aware_mpi;
 76:   b->use_stream_aware_mpi = PETSC_FALSE;
 77:   b->unknown_input_stream = PETSC_FALSE;
 78:   #if defined(PETSC_HAVE_KOKKOS) /* Prefer kokkos over cuda*/
 79:   b->backend = PETSCSF_BACKEND_KOKKOS;
 80:   #elif defined(PETSC_HAVE_CUDA)
 81:   b->backend = PETSCSF_BACKEND_CUDA;
 82:   #elif defined(PETSC_HAVE_HIP)
 83:   b->backend = PETSCSF_BACKEND_HIP;
 84:   #endif

 86:   #if defined(PETSC_HAVE_NVSHMEM)
 87:   b->use_nvshmem     = PETSC_FALSE; /* Default is not to try NVSHMEM */
 88:   b->use_nvshmem_get = PETSC_FALSE; /* Default is to use nvshmem_put based protocol */
 89:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_nvshmem", &b->use_nvshmem, NULL));
 90:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_nvshmem_get", &b->use_nvshmem_get, NULL));
 91:   #endif
 92: #endif
 93:   b->vscat.from_n = -1;
 94:   b->vscat.to_n   = -1;
 95:   b->vscat.unit   = MPIU_SCALAR;
 96:   *sf             = b;
 97:   PetscFunctionReturn(PETSC_SUCCESS);
 98: }

100: /*@
101:   PetscSFReset - Reset a star forest so that different sizes or neighbors can be used

103:   Collective

105:   Input Parameter:
106: . sf - star forest

108:   Level: advanced

110: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFSetGraph()`, `PetscSFDestroy()`
111: @*/
112: PetscErrorCode PetscSFReset(PetscSF sf)
113: {
114:   PetscFunctionBegin;
116:   PetscTryTypeMethod(sf, Reset);
117:   PetscCall(PetscSFDestroy(&sf->rankssf));

119:   sf->nroots   = -1;
120:   sf->nleaves  = -1;
121:   sf->minleaf  = PETSC_MAX_INT;
122:   sf->maxleaf  = PETSC_MIN_INT;
123:   sf->mine     = NULL;
124:   sf->remote   = NULL;
125:   sf->graphset = PETSC_FALSE;
126:   PetscCall(PetscFree(sf->mine_alloc));
127:   PetscCall(PetscFree(sf->remote_alloc));
128:   sf->nranks = -1;
129:   PetscCall(PetscFree4(sf->ranks, sf->roffset, sf->rmine, sf->rremote));
130:   sf->degreeknown = PETSC_FALSE;
131:   PetscCall(PetscFree(sf->degree));
132:   if (sf->ingroup != MPI_GROUP_NULL) PetscCallMPI(MPI_Group_free(&sf->ingroup));
133:   if (sf->outgroup != MPI_GROUP_NULL) PetscCallMPI(MPI_Group_free(&sf->outgroup));

135:   if (sf->multi) sf->multi->multi = NULL;
136:   PetscCall(PetscSFDestroy(&sf->multi));

138:   PetscCall(PetscLayoutDestroy(&sf->map));

140: #if defined(PETSC_HAVE_DEVICE)
141:   for (PetscInt i = 0; i < 2; i++) PetscCall(PetscSFFree(sf, PETSC_MEMTYPE_DEVICE, sf->rmine_d[i]));
142: #endif

144:   sf->setupcalled = PETSC_FALSE;
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: /*@
149:   PetscSFSetType - Set the `PetscSF` communication implementation

151:   Collective

153:   Input Parameters:
154: + sf   - the `PetscSF` context
155: - type - a known method
156: .vb
157:     PETSCSFWINDOW - MPI-2/3 one-sided
158:     PETSCSFBASIC - basic implementation using MPI-1 two-sided
159: .ve

161:   Options Database Key:
162: . -sf_type <type> - Sets the method; for example `basic` or `window` use -help for a list of available methods

164:   Level: intermediate

166:   Notes:
167:   See `PetscSFType` for possible values

169: .seealso: `PetscSF`, `PetscSFType`, `PetscSFCreate()`
170: @*/
171: PetscErrorCode PetscSFSetType(PetscSF sf, PetscSFType type)
172: {
173:   PetscBool match;
174:   PetscErrorCode (*r)(PetscSF);

176:   PetscFunctionBegin;
178:   PetscAssertPointer(type, 2);

180:   PetscCall(PetscObjectTypeCompare((PetscObject)sf, type, &match));
181:   if (match) PetscFunctionReturn(PETSC_SUCCESS);

183:   PetscCall(PetscFunctionListFind(PetscSFList, type, &r));
184:   PetscCheck(r, PetscObjectComm((PetscObject)sf), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unable to find requested PetscSF type %s", type);
185:   /* Destroy the previous PetscSF implementation context */
186:   PetscTryTypeMethod(sf, Destroy);
187:   PetscCall(PetscMemzero(sf->ops, sizeof(*sf->ops)));
188:   PetscCall(PetscObjectChangeTypeName((PetscObject)sf, type));
189:   PetscCall((*r)(sf));
190:   PetscFunctionReturn(PETSC_SUCCESS);
191: }

193: /*@
194:   PetscSFGetType - Get the `PetscSF` communication implementation

196:   Not Collective

198:   Input Parameter:
199: . sf - the `PetscSF` context

201:   Output Parameter:
202: . type - the `PetscSF` type name

204:   Level: intermediate

206: .seealso: `PetscSF`, `PetscSFType`, `PetscSFSetType()`, `PetscSFCreate()`
207: @*/
208: PetscErrorCode PetscSFGetType(PetscSF sf, PetscSFType *type)
209: {
210:   PetscFunctionBegin;
212:   PetscAssertPointer(type, 2);
213:   *type = ((PetscObject)sf)->type_name;
214:   PetscFunctionReturn(PETSC_SUCCESS);
215: }

217: /*@
218:   PetscSFDestroy - destroy a star forest

220:   Collective

222:   Input Parameter:
223: . sf - address of star forest

225:   Level: intermediate

227: .seealso: `PetscSF`, `PetscSFType`, `PetscSFCreate()`, `PetscSFReset()`
228: @*/
229: PetscErrorCode PetscSFDestroy(PetscSF *sf)
230: {
231:   PetscFunctionBegin;
232:   if (!*sf) PetscFunctionReturn(PETSC_SUCCESS);
234:   if (--((PetscObject)*sf)->refct > 0) {
235:     *sf = NULL;
236:     PetscFunctionReturn(PETSC_SUCCESS);
237:   }
238:   PetscCall(PetscSFReset(*sf));
239:   PetscTryTypeMethod(*sf, Destroy);
240:   PetscCall(PetscSFDestroy(&(*sf)->vscat.lsf));
241:   if ((*sf)->vscat.bs > 1) PetscCallMPI(MPI_Type_free(&(*sf)->vscat.unit));
242: #if defined(PETSC_HAVE_CUDA) && defined(PETSC_HAVE_MPIX_STREAM)
243:   if ((*sf)->use_stream_aware_mpi) {
244:     PetscCallMPI(MPIX_Stream_free(&(*sf)->mpi_stream));
245:     PetscCallMPI(MPI_Comm_free(&(*sf)->stream_comm));
246:   }
247: #endif
248:   PetscCall(PetscHeaderDestroy(sf));
249:   PetscFunctionReturn(PETSC_SUCCESS);
250: }

252: static PetscErrorCode PetscSFCheckGraphValid_Private(PetscSF sf)
253: {
254:   PetscInt           i, nleaves;
255:   PetscMPIInt        size;
256:   const PetscInt    *ilocal;
257:   const PetscSFNode *iremote;

259:   PetscFunctionBegin;
260:   if (!sf->graphset || !PetscDefined(USE_DEBUG)) PetscFunctionReturn(PETSC_SUCCESS);
261:   PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &ilocal, &iremote));
262:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)sf), &size));
263:   for (i = 0; i < nleaves; i++) {
264:     const PetscInt rank   = iremote[i].rank;
265:     const PetscInt remote = iremote[i].index;
266:     const PetscInt leaf   = ilocal ? ilocal[i] : i;
267:     PetscCheck(rank >= 0 && rank < size, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided rank (%" PetscInt_FMT ") for remote %" PetscInt_FMT " is invalid, should be in [0, %d)", rank, i, size);
268:     PetscCheck(remote >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided index (%" PetscInt_FMT ") for remote %" PetscInt_FMT " is invalid, should be >= 0", remote, i);
269:     PetscCheck(leaf >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided location (%" PetscInt_FMT ") for leaf %" PetscInt_FMT " is invalid, should be >= 0", leaf, i);
270:   }
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: /*@
275:   PetscSFSetUp - set up communication structures for a `PetscSF`, after this is done it may be used to perform communication

277:   Collective

279:   Input Parameter:
280: . sf - star forest communication object

282:   Level: beginner

284: .seealso: `PetscSF`, `PetscSFType`, `PetscSFSetFromOptions()`, `PetscSFSetType()`
285: @*/
286: PetscErrorCode PetscSFSetUp(PetscSF sf)
287: {
288:   PetscFunctionBegin;
290:   PetscSFCheckGraphSet(sf, 1);
291:   if (sf->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
292:   PetscCall(PetscLogEventBegin(PETSCSF_SetUp, sf, 0, 0, 0));
293:   PetscCall(PetscSFCheckGraphValid_Private(sf));
294:   if (!((PetscObject)sf)->type_name) PetscCall(PetscSFSetType(sf, PETSCSFBASIC)); /* Zero all sf->ops */
295:   PetscTryTypeMethod(sf, SetUp);
296: #if defined(PETSC_HAVE_CUDA)
297:   if (sf->backend == PETSCSF_BACKEND_CUDA) {
298:     sf->ops->Malloc = PetscSFMalloc_CUDA;
299:     sf->ops->Free   = PetscSFFree_CUDA;
300:   }
301: #endif
302: #if defined(PETSC_HAVE_HIP)
303:   if (sf->backend == PETSCSF_BACKEND_HIP) {
304:     sf->ops->Malloc = PetscSFMalloc_HIP;
305:     sf->ops->Free   = PetscSFFree_HIP;
306:   }
307: #endif

309: #if defined(PETSC_HAVE_KOKKOS)
310:   if (sf->backend == PETSCSF_BACKEND_KOKKOS) {
311:     sf->ops->Malloc = PetscSFMalloc_Kokkos;
312:     sf->ops->Free   = PetscSFFree_Kokkos;
313:   }
314: #endif
315:   PetscCall(PetscLogEventEnd(PETSCSF_SetUp, sf, 0, 0, 0));
316:   sf->setupcalled = PETSC_TRUE;
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: /*@
321:   PetscSFSetFromOptions - set `PetscSF` options using the options database

323:   Logically Collective

325:   Input Parameter:
326: . sf - star forest

328:   Options Database Keys:
329: + -sf_type                                                                                                         - implementation type, see `PetscSFSetType()`
330: . -sf_rank_order                                                                                                   - sort composite points for gathers and scatters in rank order, gathers are non-deterministic otherwise
331: . -sf_use_default_stream                                                                                           - Assume callers of `PetscSF` computed the input root/leafdata with the default CUDA stream. `PetscSF` will also
332:                             use the default stream to process data. Therefore, no stream synchronization is needed between `PetscSF` and its caller (default: true).
333:                             If true, this option only works with `-use_gpu_aware_mpi 1`.
334: . -sf_use_stream_aware_mpi                                                                                         - Assume the underlying MPI is CUDA-stream aware and `PetscSF` won't sync streams for send/recv buffers passed to MPI (default: false).
335:                                If true, this option only works with `-use_gpu_aware_mpi 1`.

337: - -sf_backend cuda | hip | kokkos -Select the device backend SF uses. Currently `PetscSF` has these backends: cuda - hip and Kokkos.
338:                               On CUDA (HIP) devices, one can choose cuda (hip) or kokkos with the default being kokkos. On other devices,
339:                               the only available is kokkos.

341:   Level: intermediate

343: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFSetType()`
344: @*/
345: PetscErrorCode PetscSFSetFromOptions(PetscSF sf)
346: {
347:   PetscSFType deft;
348:   char        type[256];
349:   PetscBool   flg;

351:   PetscFunctionBegin;
353:   PetscObjectOptionsBegin((PetscObject)sf);
354:   deft = ((PetscObject)sf)->type_name ? ((PetscObject)sf)->type_name : PETSCSFBASIC;
355:   PetscCall(PetscOptionsFList("-sf_type", "PetscSF implementation type", "PetscSFSetType", PetscSFList, deft, type, sizeof(type), &flg));
356:   PetscCall(PetscSFSetType(sf, flg ? type : deft));
357:   PetscCall(PetscOptionsBool("-sf_rank_order", "sort composite points for gathers and scatters in rank order, gathers are non-deterministic otherwise", "PetscSFSetRankOrder", sf->rankorder, &sf->rankorder, NULL));
358: #if defined(PETSC_HAVE_DEVICE)
359:   {
360:     char      backendstr[32] = {0};
361:     PetscBool isCuda = PETSC_FALSE, isHip = PETSC_FALSE, isKokkos = PETSC_FALSE, set;
362:     /* Change the defaults set in PetscSFCreate() with command line options */
363:     PetscCall(PetscOptionsBool("-sf_unknown_input_stream", "SF root/leafdata is computed on arbitrary streams unknown to SF", "PetscSFSetFromOptions", sf->unknown_input_stream, &sf->unknown_input_stream, NULL));
364:     PetscCall(PetscOptionsBool("-sf_use_stream_aware_mpi", "Assume the underlying MPI is cuda-stream aware", "PetscSFSetFromOptions", sf->use_stream_aware_mpi, &sf->use_stream_aware_mpi, NULL));
365:     PetscCall(PetscOptionsString("-sf_backend", "Select the device backend SF uses", "PetscSFSetFromOptions", NULL, backendstr, sizeof(backendstr), &set));
366:     PetscCall(PetscStrcasecmp("cuda", backendstr, &isCuda));
367:     PetscCall(PetscStrcasecmp("kokkos", backendstr, &isKokkos));
368:     PetscCall(PetscStrcasecmp("hip", backendstr, &isHip));
369:   #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
370:     if (isCuda) sf->backend = PETSCSF_BACKEND_CUDA;
371:     else if (isKokkos) sf->backend = PETSCSF_BACKEND_KOKKOS;
372:     else if (isHip) sf->backend = PETSCSF_BACKEND_HIP;
373:     else PetscCheck(!set, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "-sf_backend %s is not supported. You may choose cuda, hip or kokkos (if installed)", backendstr);
374:   #elif defined(PETSC_HAVE_KOKKOS)
375:     PetscCheck(!set || isKokkos, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "-sf_backend %s is not supported. You can only choose kokkos", backendstr);
376:   #endif

378:   #if defined(PETSC_HAVE_CUDA) && defined(PETSC_HAVE_MPIX_STREAM)
379:     if (sf->use_stream_aware_mpi) {
380:       MPI_Info info;

382:       PetscCallMPI(MPI_Info_create(&info));
383:       PetscCallMPI(MPI_Info_set(info, "type", "cudaStream_t"));
384:       PetscCallMPI(MPIX_Info_set_hex(info, "value", &PetscDefaultCudaStream, sizeof(PetscDefaultCudaStream)));
385:       PetscCallMPI(MPIX_Stream_create(info, &sf->mpi_stream));
386:       PetscCallMPI(MPI_Info_free(&info));
387:       PetscCallMPI(MPIX_Stream_comm_create(PetscObjectComm((PetscObject)sf), sf->mpi_stream, &sf->stream_comm));
388:     }
389:   #endif
390:   }
391: #endif
392:   PetscTryTypeMethod(sf, SetFromOptions, PetscOptionsObject);
393:   PetscOptionsEnd();
394:   PetscFunctionReturn(PETSC_SUCCESS);
395: }

397: /*@
398:   PetscSFSetRankOrder - sort multi-points for gathers and scatters by rank order

400:   Logically Collective

402:   Input Parameters:
403: + sf  - star forest
404: - flg - `PETSC_TRUE` to sort, `PETSC_FALSE` to skip sorting (lower setup cost, but non-deterministic)

406:   Level: advanced

408: .seealso: `PetscSF`, `PetscSFType`, `PetscSFGatherBegin()`, `PetscSFScatterBegin()`
409: @*/
410: PetscErrorCode PetscSFSetRankOrder(PetscSF sf, PetscBool flg)
411: {
412:   PetscFunctionBegin;
415:   PetscCheck(!sf->multi, PetscObjectComm((PetscObject)sf), PETSC_ERR_ARG_WRONGSTATE, "Rank ordering must be set before first call to PetscSFGatherBegin() or PetscSFScatterBegin()");
416:   sf->rankorder = flg;
417:   PetscFunctionReturn(PETSC_SUCCESS);
418: }

420: /*@
421:   PetscSFSetGraph - Set a parallel star forest

423:   Collective

425:   Input Parameters:
426: + sf         - star forest
427: . nroots     - number of root vertices on the current process (these are possible targets for other process to attach leaves)
428: . nleaves    - number of leaf vertices on the current process, each of these references a root on any process
429: . ilocal     - locations of leaves in leafdata buffers, pass `NULL` for contiguous storage (locations must be >= 0, enforced
430: during setup in debug mode)
431: . localmode  - copy mode for `ilocal`
432: . iremote    - remote locations of root vertices for each leaf on the current process (locations must be >= 0, enforced
433: during setup in debug mode)
434: - remotemode - copy mode for `iremote`

436:   Level: intermediate

438:   Notes:
439:   Leaf indices in `ilocal` must be unique, otherwise an error occurs.

441:   Input arrays `ilocal` and `iremote` follow the `PetscCopyMode` semantics.
442:   In particular, if `localmode` or `remotemode` is `PETSC_OWN_POINTER` or `PETSC_USE_POINTER`,
443:   PETSc might modify the respective array;
444:   if `PETSC_USE_POINTER`, the user must delete the array after `PetscSFDestroy()`.
445:   Only if `PETSC_COPY_VALUES` is used, the respective array is guaranteed to stay intact and a const array can be passed (but a cast to non-const is needed).

447:   Fortran Notes:
448:   In Fortran you must use `PETSC_COPY_VALUES` for `localmode` and `remotemode`.

450:   Developer Notes:
451:   We sort leaves to check for duplicates and contiguousness and to find minleaf/maxleaf.
452:   This also allows to compare leaf sets of two `PetscSF`s easily.

454: .seealso: `PetscSF`, `PetscSFType`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFGetGraph()`
455: @*/
456: PetscErrorCode PetscSFSetGraph(PetscSF sf, PetscInt nroots, PetscInt nleaves, PetscInt *ilocal, PetscCopyMode localmode, PetscSFNode *iremote, PetscCopyMode remotemode)
457: {
458:   PetscBool unique, contiguous;

460:   PetscFunctionBegin;
462:   if (nleaves > 0 && ilocal) PetscAssertPointer(ilocal, 4);
463:   if (nleaves > 0) PetscAssertPointer(iremote, 6);
464:   PetscCheck(nroots >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nroots %" PetscInt_FMT ", cannot be negative", nroots);
465:   PetscCheck(nleaves >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nleaves %" PetscInt_FMT ", cannot be negative", nleaves);
466:   /* enums may be handled as unsigned by some compilers, NVHPC for example, the int cast
467:    * below is to prevent NVHPC from warning about meaningless comparison of unsigned with zero */
468:   PetscCheck((int)localmode >= PETSC_COPY_VALUES && localmode <= PETSC_USE_POINTER, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Wrong localmode %d", localmode);
469:   PetscCheck((int)remotemode >= PETSC_COPY_VALUES && remotemode <= PETSC_USE_POINTER, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Wrong remotemode %d", remotemode);

471:   if (sf->nroots >= 0) { /* Reset only if graph already set */
472:     PetscCall(PetscSFReset(sf));
473:   }

475:   PetscCall(PetscLogEventBegin(PETSCSF_SetGraph, sf, 0, 0, 0));

477:   sf->nroots  = nroots;
478:   sf->nleaves = nleaves;

480:   if (localmode == PETSC_COPY_VALUES && ilocal) {
481:     PetscInt *tlocal = NULL;

483:     PetscCall(PetscMalloc1(nleaves, &tlocal));
484:     PetscCall(PetscArraycpy(tlocal, ilocal, nleaves));
485:     ilocal = tlocal;
486:   }
487:   if (remotemode == PETSC_COPY_VALUES) {
488:     PetscSFNode *tremote = NULL;

490:     PetscCall(PetscMalloc1(nleaves, &tremote));
491:     PetscCall(PetscArraycpy(tremote, iremote, nleaves));
492:     iremote = tremote;
493:   }

495:   if (nleaves && ilocal) {
496:     PetscSFNode work;

498:     PetscCall(PetscSortIntWithDataArray(nleaves, ilocal, iremote, sizeof(PetscSFNode), &work));
499:     PetscCall(PetscSortedCheckDupsInt(nleaves, ilocal, &unique));
500:     unique = PetscNot(unique);
501:     PetscCheck(sf->allow_multi_leaves || unique, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input ilocal has duplicate entries which is not allowed for this PetscSF");
502:     sf->minleaf = ilocal[0];
503:     sf->maxleaf = ilocal[nleaves - 1];
504:     contiguous  = (PetscBool)(unique && ilocal[0] == 0 && ilocal[nleaves - 1] == nleaves - 1);
505:   } else {
506:     sf->minleaf = 0;
507:     sf->maxleaf = nleaves - 1;
508:     unique      = PETSC_TRUE;
509:     contiguous  = PETSC_TRUE;
510:   }

512:   if (contiguous) {
513:     if (localmode == PETSC_USE_POINTER) {
514:       ilocal = NULL;
515:     } else {
516:       PetscCall(PetscFree(ilocal));
517:     }
518:   }
519:   sf->mine = ilocal;
520:   if (localmode == PETSC_USE_POINTER) {
521:     sf->mine_alloc = NULL;
522:   } else {
523:     sf->mine_alloc = ilocal;
524:   }
525:   sf->remote = iremote;
526:   if (remotemode == PETSC_USE_POINTER) {
527:     sf->remote_alloc = NULL;
528:   } else {
529:     sf->remote_alloc = iremote;
530:   }
531:   PetscCall(PetscLogEventEnd(PETSCSF_SetGraph, sf, 0, 0, 0));
532:   sf->graphset = PETSC_TRUE;
533:   PetscFunctionReturn(PETSC_SUCCESS);
534: }

536: /*@
537:   PetscSFSetGraphWithPattern - Sets the graph of a `PetscSF` with a specific pattern

539:   Collective

541:   Input Parameters:
542: + sf      - The `PetscSF`
543: . map     - Layout of roots over all processes (insignificant when pattern is `PETSCSF_PATTERN_ALLTOALL`)
544: - pattern - One of `PETSCSF_PATTERN_ALLGATHER`, `PETSCSF_PATTERN_GATHER`, `PETSCSF_PATTERN_ALLTOALL`

546:   Level: intermediate

548:   Notes:
549:   It is easier to explain `PetscSFPattern` using vectors. Suppose we have an MPI vector `x` and its `PetscLayout` is `map`.
550:   `n` and `N` are the local and global sizes of `x` respectively.

552:   With `PETSCSF_PATTERN_ALLGATHER`, the routine creates a graph that if one does `PetscSFBcastBegin()`/`PetscSFBcastEnd()` on it, it will copy `x` to
553:   sequential vectors `y` on all MPI processes.

555:   With `PETSCSF_PATTERN_GATHER`, the routine creates a graph that if one does `PetscSFBcastBegin()`/`PetscSFBcastEnd()` on it, it will copy `x` to a
556:   sequential vector `y` on rank 0.

558:   In above cases, entries of `x` are roots and entries of `y` are leaves.

560:   With `PETSCSF_PATTERN_ALLTOALL`, map is insignificant. Suppose NP is size of `sf`'s communicator. The routine
561:   creates a graph that every rank has NP leaves and NP roots. On rank i, its leaf j is connected to root i
562:   of rank j. Here 0 <=i,j<NP. It is a kind of `MPI_Alltoall()` with sendcount/recvcount being 1. Note that it does
563:   not mean one can not send multiple items. One just needs to create a new MPI datatype for the mulptiple data
564:   items with `MPI_Type_contiguous` and use that as the <unit> argument in SF routines.

566:   In this case, roots and leaves are symmetric.

568: .seealso: `PetscSF`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFGetGraph()`
569:  @*/
570: PetscErrorCode PetscSFSetGraphWithPattern(PetscSF sf, PetscLayout map, PetscSFPattern pattern)
571: {
572:   MPI_Comm    comm;
573:   PetscInt    n, N, res[2];
574:   PetscMPIInt rank, size;
575:   PetscSFType type;

577:   PetscFunctionBegin;
579:   if (pattern != PETSCSF_PATTERN_ALLTOALL) PetscAssertPointer(map, 2);
580:   PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
581:   PetscCheck(pattern >= PETSCSF_PATTERN_ALLGATHER && pattern <= PETSCSF_PATTERN_ALLTOALL, comm, PETSC_ERR_ARG_OUTOFRANGE, "Unsupported PetscSFPattern %d", pattern);
582:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
583:   PetscCallMPI(MPI_Comm_size(comm, &size));

585:   if (pattern == PETSCSF_PATTERN_ALLTOALL) {
586:     type = PETSCSFALLTOALL;
587:     PetscCall(PetscLayoutCreate(comm, &sf->map));
588:     PetscCall(PetscLayoutSetLocalSize(sf->map, size));
589:     PetscCall(PetscLayoutSetSize(sf->map, ((PetscInt)size) * size));
590:     PetscCall(PetscLayoutSetUp(sf->map));
591:   } else {
592:     PetscCall(PetscLayoutGetLocalSize(map, &n));
593:     PetscCall(PetscLayoutGetSize(map, &N));
594:     res[0] = n;
595:     res[1] = -n;
596:     /* Check if n are same over all ranks so that we can optimize it */
597:     PetscCall(MPIU_Allreduce(MPI_IN_PLACE, res, 2, MPIU_INT, MPI_MAX, comm));
598:     if (res[0] == -res[1]) { /* same n */
599:       type = (pattern == PETSCSF_PATTERN_ALLGATHER) ? PETSCSFALLGATHER : PETSCSFGATHER;
600:     } else {
601:       type = (pattern == PETSCSF_PATTERN_ALLGATHER) ? PETSCSFALLGATHERV : PETSCSFGATHERV;
602:     }
603:     PetscCall(PetscLayoutReference(map, &sf->map));
604:   }
605:   PetscCall(PetscSFSetType(sf, type));

607:   sf->pattern = pattern;
608:   sf->mine    = NULL; /* Contiguous */

610:   /* Set nleaves, nroots here in case user calls PetscSFGetGraph, which is legal to call even before PetscSFSetUp is called.
611:      Also set other easy stuff.
612:    */
613:   if (pattern == PETSCSF_PATTERN_ALLGATHER) {
614:     sf->nleaves = N;
615:     sf->nroots  = n;
616:     sf->nranks  = size;
617:     sf->minleaf = 0;
618:     sf->maxleaf = N - 1;
619:   } else if (pattern == PETSCSF_PATTERN_GATHER) {
620:     sf->nleaves = rank ? 0 : N;
621:     sf->nroots  = n;
622:     sf->nranks  = rank ? 0 : size;
623:     sf->minleaf = 0;
624:     sf->maxleaf = rank ? -1 : N - 1;
625:   } else if (pattern == PETSCSF_PATTERN_ALLTOALL) {
626:     sf->nleaves = size;
627:     sf->nroots  = size;
628:     sf->nranks  = size;
629:     sf->minleaf = 0;
630:     sf->maxleaf = size - 1;
631:   }
632:   sf->ndranks  = 0; /* We do not need to separate out distinguished ranks for patterned graphs to improve communication performance */
633:   sf->graphset = PETSC_TRUE;
634:   PetscFunctionReturn(PETSC_SUCCESS);
635: }

637: /*@
638:   PetscSFCreateInverseSF - given a `PetscSF` in which all vertices have degree 1, creates the inverse map

640:   Collective

642:   Input Parameter:
643: . sf - star forest to invert

645:   Output Parameter:
646: . isf - inverse of `sf`

648:   Level: advanced

650:   Notes:
651:   All roots must have degree 1.

653:   The local space may be a permutation, but cannot be sparse.

655: .seealso: `PetscSF`, `PetscSFType`, `PetscSFSetGraph()`
656: @*/
657: PetscErrorCode PetscSFCreateInverseSF(PetscSF sf, PetscSF *isf)
658: {
659:   PetscMPIInt     rank;
660:   PetscInt        i, nroots, nleaves, maxlocal, count, *newilocal;
661:   const PetscInt *ilocal;
662:   PetscSFNode    *roots, *leaves;

664:   PetscFunctionBegin;
666:   PetscSFCheckGraphSet(sf, 1);
667:   PetscAssertPointer(isf, 2);

669:   PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, NULL));
670:   maxlocal = sf->maxleaf + 1; /* TODO: We should use PetscSFGetLeafRange() */

672:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
673:   PetscCall(PetscMalloc2(nroots, &roots, maxlocal, &leaves));
674:   for (i = 0; i < maxlocal; i++) {
675:     leaves[i].rank  = rank;
676:     leaves[i].index = i;
677:   }
678:   for (i = 0; i < nroots; i++) {
679:     roots[i].rank  = -1;
680:     roots[i].index = -1;
681:   }
682:   PetscCall(PetscSFReduceBegin(sf, MPIU_2INT, leaves, roots, MPI_REPLACE));
683:   PetscCall(PetscSFReduceEnd(sf, MPIU_2INT, leaves, roots, MPI_REPLACE));

685:   /* Check whether our leaves are sparse */
686:   for (i = 0, count = 0; i < nroots; i++)
687:     if (roots[i].rank >= 0) count++;
688:   if (count == nroots) newilocal = NULL;
689:   else { /* Index for sparse leaves and compact "roots" array (which is to become our leaves). */ PetscCall(PetscMalloc1(count, &newilocal));
690:     for (i = 0, count = 0; i < nroots; i++) {
691:       if (roots[i].rank >= 0) {
692:         newilocal[count]   = i;
693:         roots[count].rank  = roots[i].rank;
694:         roots[count].index = roots[i].index;
695:         count++;
696:       }
697:     }
698:   }

700:   PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, isf));
701:   PetscCall(PetscSFSetGraph(*isf, maxlocal, count, newilocal, PETSC_OWN_POINTER, roots, PETSC_COPY_VALUES));
702:   PetscCall(PetscFree2(roots, leaves));
703:   PetscFunctionReturn(PETSC_SUCCESS);
704: }

706: /*@
707:   PetscSFDuplicate - duplicate a `PetscSF`, optionally preserving rank connectivity and graph

709:   Collective

711:   Input Parameters:
712: + sf  - communication object to duplicate
713: - opt - `PETSCSF_DUPLICATE_CONFONLY`, `PETSCSF_DUPLICATE_RANKS`, or `PETSCSF_DUPLICATE_GRAPH` (see `PetscSFDuplicateOption`)

715:   Output Parameter:
716: . newsf - new communication object

718:   Level: beginner

720: .seealso: `PetscSF`, `PetscSFType`, `PetscSFCreate()`, `PetscSFSetType()`, `PetscSFSetGraph()`
721: @*/
722: PetscErrorCode PetscSFDuplicate(PetscSF sf, PetscSFDuplicateOption opt, PetscSF *newsf)
723: {
724:   PetscSFType  type;
725:   MPI_Datatype dtype = MPIU_SCALAR;

727:   PetscFunctionBegin;
730:   PetscAssertPointer(newsf, 3);
731:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sf), newsf));
732:   PetscCall(PetscSFGetType(sf, &type));
733:   if (type) PetscCall(PetscSFSetType(*newsf, type));
734:   (*newsf)->allow_multi_leaves = sf->allow_multi_leaves; /* Dup this flag earlier since PetscSFSetGraph() below checks on this flag */
735:   if (opt == PETSCSF_DUPLICATE_GRAPH) {
736:     PetscSFCheckGraphSet(sf, 1);
737:     if (sf->pattern == PETSCSF_PATTERN_GENERAL) {
738:       PetscInt           nroots, nleaves;
739:       const PetscInt    *ilocal;
740:       const PetscSFNode *iremote;
741:       PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, &iremote));
742:       PetscCall(PetscSFSetGraph(*newsf, nroots, nleaves, (PetscInt *)ilocal, PETSC_COPY_VALUES, (PetscSFNode *)iremote, PETSC_COPY_VALUES));
743:     } else {
744:       PetscCall(PetscSFSetGraphWithPattern(*newsf, sf->map, sf->pattern));
745:     }
746:   }
747:   /* Since oldtype is committed, so is newtype, according to MPI */
748:   if (sf->vscat.bs > 1) PetscCallMPI(MPI_Type_dup(sf->vscat.unit, &dtype));
749:   (*newsf)->vscat.bs     = sf->vscat.bs;
750:   (*newsf)->vscat.unit   = dtype;
751:   (*newsf)->vscat.to_n   = sf->vscat.to_n;
752:   (*newsf)->vscat.from_n = sf->vscat.from_n;
753:   /* Do not copy lsf. Build it on demand since it is rarely used */

755: #if defined(PETSC_HAVE_DEVICE)
756:   (*newsf)->backend              = sf->backend;
757:   (*newsf)->unknown_input_stream = sf->unknown_input_stream;
758:   (*newsf)->use_gpu_aware_mpi    = sf->use_gpu_aware_mpi;
759:   (*newsf)->use_stream_aware_mpi = sf->use_stream_aware_mpi;
760: #endif
761:   PetscTryTypeMethod(sf, Duplicate, opt, *newsf);
762:   /* Don't do PetscSFSetUp() since the new sf's graph might have not been set. */
763:   PetscFunctionReturn(PETSC_SUCCESS);
764: }

766: /*@C
767:   PetscSFGetGraph - Get the graph specifying a parallel star forest

769:   Not Collective

771:   Input Parameter:
772: . sf - star forest

774:   Output Parameters:
775: + nroots  - number of root vertices on the current process (these are possible targets for other process to attach leaves)
776: . nleaves - number of leaf vertices on the current process, each of these references a root on any process
777: . ilocal  - locations of leaves in leafdata buffers (if returned value is `NULL`, it means leaves are in contiguous storage)
778: - iremote - remote locations of root vertices for each leaf on the current process

780:   Level: intermediate

782:   Notes:
783:   We are not currently requiring that the graph is set, thus returning `nroots` = -1 if it has not been set yet

785:   The returned `ilocal` and `iremote` might contain values in different order than the input ones in `PetscSFSetGraph()`

787:   Fortran Notes:
788:   The returned `iremote` array is a copy and must be deallocated after use. Consequently, if you
789:   want to update the graph, you must call `PetscSFSetGraph()` after modifying the `iremote` array.

791:   To check for a `NULL` `ilocal` use
792: $      if (loc(ilocal) == loc(PETSC_NULL_INTEGER)) then

794: .seealso: `PetscSF`, `PetscSFType`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFSetGraph()`
795: @*/
796: PetscErrorCode PetscSFGetGraph(PetscSF sf, PetscInt *nroots, PetscInt *nleaves, const PetscInt **ilocal, const PetscSFNode **iremote)
797: {
798:   PetscFunctionBegin;
800:   if (sf->ops->GetGraph) {
801:     PetscCall(sf->ops->GetGraph(sf, nroots, nleaves, ilocal, iremote));
802:   } else {
803:     if (nroots) *nroots = sf->nroots;
804:     if (nleaves) *nleaves = sf->nleaves;
805:     if (ilocal) *ilocal = sf->mine;
806:     if (iremote) *iremote = sf->remote;
807:   }
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: /*@
812:   PetscSFGetLeafRange - Get the active leaf ranges

814:   Not Collective

816:   Input Parameter:
817: . sf - star forest

819:   Output Parameters:
820: + minleaf - minimum active leaf on this process. Returns 0 if there are no leaves.
821: - maxleaf - maximum active leaf on this process. Returns -1 if there are no leaves.

823:   Level: developer

825: .seealso: `PetscSF`, `PetscSFType`, `PetscSFCreate()`, `PetscSFView()`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
826: @*/
827: PetscErrorCode PetscSFGetLeafRange(PetscSF sf, PetscInt *minleaf, PetscInt *maxleaf)
828: {
829:   PetscFunctionBegin;
831:   PetscSFCheckGraphSet(sf, 1);
832:   if (minleaf) *minleaf = sf->minleaf;
833:   if (maxleaf) *maxleaf = sf->maxleaf;
834:   PetscFunctionReturn(PETSC_SUCCESS);
835: }

837: /*@
838:   PetscSFViewFromOptions - View a `PetscSF` based on arguments in the options database

840:   Collective

842:   Input Parameters:
843: + A    - the star forest
844: . obj  - Optional object that provides the prefix for the option names
845: - name - command line option

847:   Level: intermediate

849:   Note:
850:   See `PetscObjectViewFromOptions()` for possible `PetscViewer` and `PetscViewerFormat`

852: .seealso: `PetscSF`, `PetscSFView`, `PetscObjectViewFromOptions()`, `PetscSFCreate()`
853: @*/
854: PetscErrorCode PetscSFViewFromOptions(PetscSF A, PetscObject obj, const char name[])
855: {
856:   PetscFunctionBegin;
858:   PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
859:   PetscFunctionReturn(PETSC_SUCCESS);
860: }

862: /*@
863:   PetscSFView - view a star forest

865:   Collective

867:   Input Parameters:
868: + sf     - star forest
869: - viewer - viewer to display graph, for example `PETSC_VIEWER_STDOUT_WORLD`

871:   Level: beginner

873: .seealso: `PetscSF`, `PetscViewer`, `PetscSFCreate()`, `PetscSFSetGraph()`
874: @*/
875: PetscErrorCode PetscSFView(PetscSF sf, PetscViewer viewer)
876: {
877:   PetscBool         iascii;
878:   PetscViewerFormat format;

880:   PetscFunctionBegin;
882:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)sf), &viewer));
884:   PetscCheckSameComm(sf, 1, viewer, 2);
885:   if (sf->graphset) PetscCall(PetscSFSetUp(sf));
886:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
887:   if (iascii && viewer->format != PETSC_VIEWER_ASCII_MATLAB) {
888:     PetscMPIInt rank;
889:     PetscInt    ii, i, j;

891:     PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)sf, viewer));
892:     PetscCall(PetscViewerASCIIPushTab(viewer));
893:     if (sf->pattern == PETSCSF_PATTERN_GENERAL) {
894:       if (!sf->graphset) {
895:         PetscCall(PetscViewerASCIIPrintf(viewer, "PetscSFSetGraph() has not been called yet\n"));
896:         PetscCall(PetscViewerASCIIPopTab(viewer));
897:         PetscFunctionReturn(PETSC_SUCCESS);
898:       }
899:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
900:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
901:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Number of roots=%" PetscInt_FMT ", leaves=%" PetscInt_FMT ", remote ranks=%" PetscInt_FMT "\n", rank, sf->nroots, sf->nleaves, sf->nranks));
902:       for (i = 0; i < sf->nleaves; i++) PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] %" PetscInt_FMT " <- (%" PetscInt_FMT ",%" PetscInt_FMT ")\n", rank, sf->mine ? sf->mine[i] : i, sf->remote[i].rank, sf->remote[i].index));
903:       PetscCall(PetscViewerFlush(viewer));
904:       PetscCall(PetscViewerGetFormat(viewer, &format));
905:       if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
906:         PetscMPIInt *tmpranks, *perm;
907:         PetscCall(PetscMalloc2(sf->nranks, &tmpranks, sf->nranks, &perm));
908:         PetscCall(PetscArraycpy(tmpranks, sf->ranks, sf->nranks));
909:         for (i = 0; i < sf->nranks; i++) perm[i] = i;
910:         PetscCall(PetscSortMPIIntWithArray(sf->nranks, tmpranks, perm));
911:         PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Roots referenced by my leaves, by rank\n", rank));
912:         for (ii = 0; ii < sf->nranks; ii++) {
913:           i = perm[ii];
914:           PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] %d: %" PetscInt_FMT " edges\n", rank, sf->ranks[i], sf->roffset[i + 1] - sf->roffset[i]));
915:           for (j = sf->roffset[i]; j < sf->roffset[i + 1]; j++) PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d]    %" PetscInt_FMT " <- %" PetscInt_FMT "\n", rank, sf->rmine[j], sf->rremote[j]));
916:         }
917:         PetscCall(PetscFree2(tmpranks, perm));
918:       }
919:       PetscCall(PetscViewerFlush(viewer));
920:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
921:     }
922:     PetscCall(PetscViewerASCIIPopTab(viewer));
923:   }
924:   PetscTryTypeMethod(sf, View, viewer);
925:   PetscFunctionReturn(PETSC_SUCCESS);
926: }

928: /*@C
929:   PetscSFGetRootRanks - Get root ranks and number of vertices referenced by leaves on this process

931:   Not Collective

933:   Input Parameter:
934: . sf - star forest

936:   Output Parameters:
937: + nranks  - number of ranks referenced by local part
938: . ranks   - [`nranks`] array of ranks
939: . roffset - [`nranks`+1] offset in `rmine`/`rremote` for each rank
940: . rmine   - [`roffset`[`nranks`]] concatenated array holding local indices referencing each remote rank
941: - rremote - [`roffset`[`nranks`]] concatenated array holding remote indices referenced for each remote rank

943:   Level: developer

945: .seealso: `PetscSF`, `PetscSFGetLeafRanks()`
946: @*/
947: PetscErrorCode PetscSFGetRootRanks(PetscSF sf, PetscInt *nranks, const PetscMPIInt **ranks, const PetscInt **roffset, const PetscInt **rmine, const PetscInt **rremote)
948: {
949:   PetscFunctionBegin;
951:   PetscCheck(sf->setupcalled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetUp() before obtaining ranks");
952:   if (sf->ops->GetRootRanks) {
953:     PetscUseTypeMethod(sf, GetRootRanks, nranks, ranks, roffset, rmine, rremote);
954:   } else {
955:     /* The generic implementation */
956:     if (nranks) *nranks = sf->nranks;
957:     if (ranks) *ranks = sf->ranks;
958:     if (roffset) *roffset = sf->roffset;
959:     if (rmine) *rmine = sf->rmine;
960:     if (rremote) *rremote = sf->rremote;
961:   }
962:   PetscFunctionReturn(PETSC_SUCCESS);
963: }

965: /*@C
966:   PetscSFGetLeafRanks - Get leaf ranks referencing roots on this process

968:   Not Collective

970:   Input Parameter:
971: . sf - star forest

973:   Output Parameters:
974: + niranks  - number of leaf ranks referencing roots on this process
975: . iranks   - [`niranks`] array of ranks
976: . ioffset  - [`niranks`+1] offset in `irootloc` for each rank
977: - irootloc - [`ioffset`[`niranks`]] concatenated array holding local indices of roots referenced by each leaf rank

979:   Level: developer

981: .seealso: `PetscSF`, `PetscSFGetRootRanks()`
982: @*/
983: PetscErrorCode PetscSFGetLeafRanks(PetscSF sf, PetscInt *niranks, const PetscMPIInt **iranks, const PetscInt **ioffset, const PetscInt **irootloc)
984: {
985:   PetscFunctionBegin;
987:   PetscCheck(sf->setupcalled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetUp() before obtaining ranks");
988:   if (sf->ops->GetLeafRanks) {
989:     PetscUseTypeMethod(sf, GetLeafRanks, niranks, iranks, ioffset, irootloc);
990:   } else {
991:     PetscSFType type;
992:     PetscCall(PetscSFGetType(sf, &type));
993:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "PetscSFGetLeafRanks() is not supported on this StarForest type: %s", type);
994:   }
995:   PetscFunctionReturn(PETSC_SUCCESS);
996: }

998: static PetscBool InList(PetscMPIInt needle, PetscMPIInt n, const PetscMPIInt *list)
999: {
1000:   PetscInt i;
1001:   for (i = 0; i < n; i++) {
1002:     if (needle == list[i]) return PETSC_TRUE;
1003:   }
1004:   return PETSC_FALSE;
1005: }

1007: /*@C
1008:   PetscSFSetUpRanks - Set up data structures associated with ranks; this is for internal use by `PetscSF` implementations.

1010:   Collective

1012:   Input Parameters:
1013: + sf     - `PetscSF` to set up; `PetscSFSetGraph()` must have been called
1014: - dgroup - `MPI_Group` of ranks to be distinguished (e.g., for self or shared memory exchange)

1016:   Level: developer

1018: .seealso: `PetscSF`, `PetscSFGetRootRanks()`
1019: @*/
1020: PetscErrorCode PetscSFSetUpRanks(PetscSF sf, MPI_Group dgroup)
1021: {
1022:   PetscHMapI    table;
1023:   PetscHashIter pos;
1024:   PetscMPIInt   size, groupsize, *groupranks;
1025:   PetscInt     *rcount, *ranks;
1026:   PetscInt      i, irank = -1, orank = -1;

1028:   PetscFunctionBegin;
1030:   PetscSFCheckGraphSet(sf, 1);
1031:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)sf), &size));
1032:   PetscCall(PetscHMapICreateWithSize(10, &table));
1033:   for (i = 0; i < sf->nleaves; i++) {
1034:     /* Log 1-based rank */
1035:     PetscCall(PetscHMapISetWithMode(table, sf->remote[i].rank + 1, 1, ADD_VALUES));
1036:   }
1037:   PetscCall(PetscHMapIGetSize(table, &sf->nranks));
1038:   PetscCall(PetscMalloc4(sf->nranks, &sf->ranks, sf->nranks + 1, &sf->roffset, sf->nleaves, &sf->rmine, sf->nleaves, &sf->rremote));
1039:   PetscCall(PetscMalloc2(sf->nranks, &rcount, sf->nranks, &ranks));
1040:   PetscHashIterBegin(table, pos);
1041:   for (i = 0; i < sf->nranks; i++) {
1042:     PetscHashIterGetKey(table, pos, ranks[i]);
1043:     PetscHashIterGetVal(table, pos, rcount[i]);
1044:     PetscHashIterNext(table, pos);
1045:     ranks[i]--; /* Convert back to 0-based */
1046:   }
1047:   PetscCall(PetscHMapIDestroy(&table));

1049:   /* We expect that dgroup is reliably "small" while nranks could be large */
1050:   {
1051:     MPI_Group    group = MPI_GROUP_NULL;
1052:     PetscMPIInt *dgroupranks;
1053:     PetscCallMPI(MPI_Comm_group(PetscObjectComm((PetscObject)sf), &group));
1054:     PetscCallMPI(MPI_Group_size(dgroup, &groupsize));
1055:     PetscCall(PetscMalloc1(groupsize, &dgroupranks));
1056:     PetscCall(PetscMalloc1(groupsize, &groupranks));
1057:     for (i = 0; i < groupsize; i++) dgroupranks[i] = i;
1058:     if (groupsize) PetscCallMPI(MPI_Group_translate_ranks(dgroup, groupsize, dgroupranks, group, groupranks));
1059:     PetscCallMPI(MPI_Group_free(&group));
1060:     PetscCall(PetscFree(dgroupranks));
1061:   }

1063:   /* Partition ranks[] into distinguished (first sf->ndranks) followed by non-distinguished */
1064:   for (sf->ndranks = 0, i = sf->nranks; sf->ndranks < i;) {
1065:     for (i--; sf->ndranks < i; i--) { /* Scan i backward looking for distinguished rank */
1066:       if (InList(ranks[i], groupsize, groupranks)) break;
1067:     }
1068:     for (; sf->ndranks <= i; sf->ndranks++) { /* Scan sf->ndranks forward looking for non-distinguished rank */
1069:       if (!InList(ranks[sf->ndranks], groupsize, groupranks)) break;
1070:     }
1071:     if (sf->ndranks < i) { /* Swap ranks[sf->ndranks] with ranks[i] */
1072:       PetscInt tmprank, tmpcount;

1074:       tmprank             = ranks[i];
1075:       tmpcount            = rcount[i];
1076:       ranks[i]            = ranks[sf->ndranks];
1077:       rcount[i]           = rcount[sf->ndranks];
1078:       ranks[sf->ndranks]  = tmprank;
1079:       rcount[sf->ndranks] = tmpcount;
1080:       sf->ndranks++;
1081:     }
1082:   }
1083:   PetscCall(PetscFree(groupranks));
1084:   PetscCall(PetscSortIntWithArray(sf->ndranks, ranks, rcount));
1085:   if (rcount) PetscCall(PetscSortIntWithArray(sf->nranks - sf->ndranks, ranks + sf->ndranks, rcount + sf->ndranks));
1086:   sf->roffset[0] = 0;
1087:   for (i = 0; i < sf->nranks; i++) {
1088:     PetscCall(PetscMPIIntCast(ranks[i], sf->ranks + i));
1089:     sf->roffset[i + 1] = sf->roffset[i] + rcount[i];
1090:     rcount[i]          = 0;
1091:   }
1092:   for (i = 0, irank = -1, orank = -1; i < sf->nleaves; i++) {
1093:     /* short circuit */
1094:     if (orank != sf->remote[i].rank) {
1095:       /* Search for index of iremote[i].rank in sf->ranks */
1096:       PetscCall(PetscFindMPIInt(sf->remote[i].rank, sf->ndranks, sf->ranks, &irank));
1097:       if (irank < 0) {
1098:         PetscCall(PetscFindMPIInt(sf->remote[i].rank, sf->nranks - sf->ndranks, sf->ranks + sf->ndranks, &irank));
1099:         if (irank >= 0) irank += sf->ndranks;
1100:       }
1101:       orank = sf->remote[i].rank;
1102:     }
1103:     PetscCheck(irank >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find rank %" PetscInt_FMT " in array", sf->remote[i].rank);
1104:     sf->rmine[sf->roffset[irank] + rcount[irank]]   = sf->mine ? sf->mine[i] : i;
1105:     sf->rremote[sf->roffset[irank] + rcount[irank]] = sf->remote[i].index;
1106:     rcount[irank]++;
1107:   }
1108:   PetscCall(PetscFree2(rcount, ranks));
1109:   PetscFunctionReturn(PETSC_SUCCESS);
1110: }

1112: /*@C
1113:   PetscSFGetGroups - gets incoming and outgoing process groups

1115:   Collective

1117:   Input Parameter:
1118: . sf - star forest

1120:   Output Parameters:
1121: + incoming - group of origin processes for incoming edges (leaves that reference my roots)
1122: - outgoing - group of destination processes for outgoing edges (roots that I reference)

1124:   Level: developer

1126: .seealso: `PetscSF`, `PetscSFGetWindow()`, `PetscSFRestoreWindow()`
1127: @*/
1128: PetscErrorCode PetscSFGetGroups(PetscSF sf, MPI_Group *incoming, MPI_Group *outgoing)
1129: {
1130:   MPI_Group group = MPI_GROUP_NULL;

1132:   PetscFunctionBegin;
1133:   PetscCheck(sf->nranks >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFSetUpRanks() before obtaining groups");
1134:   if (sf->ingroup == MPI_GROUP_NULL) {
1135:     PetscInt        i;
1136:     const PetscInt *indegree;
1137:     PetscMPIInt     rank, *outranks, *inranks;
1138:     PetscSFNode    *remote;
1139:     PetscSF         bgcount;

1141:     /* Compute the number of incoming ranks */
1142:     PetscCall(PetscMalloc1(sf->nranks, &remote));
1143:     for (i = 0; i < sf->nranks; i++) {
1144:       remote[i].rank  = sf->ranks[i];
1145:       remote[i].index = 0;
1146:     }
1147:     PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, &bgcount));
1148:     PetscCall(PetscSFSetGraph(bgcount, 1, sf->nranks, NULL, PETSC_COPY_VALUES, remote, PETSC_OWN_POINTER));
1149:     PetscCall(PetscSFComputeDegreeBegin(bgcount, &indegree));
1150:     PetscCall(PetscSFComputeDegreeEnd(bgcount, &indegree));
1151:     /* Enumerate the incoming ranks */
1152:     PetscCall(PetscMalloc2(indegree[0], &inranks, sf->nranks, &outranks));
1153:     PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
1154:     for (i = 0; i < sf->nranks; i++) outranks[i] = rank;
1155:     PetscCall(PetscSFGatherBegin(bgcount, MPI_INT, outranks, inranks));
1156:     PetscCall(PetscSFGatherEnd(bgcount, MPI_INT, outranks, inranks));
1157:     PetscCallMPI(MPI_Comm_group(PetscObjectComm((PetscObject)sf), &group));
1158:     PetscCallMPI(MPI_Group_incl(group, indegree[0], inranks, &sf->ingroup));
1159:     PetscCallMPI(MPI_Group_free(&group));
1160:     PetscCall(PetscFree2(inranks, outranks));
1161:     PetscCall(PetscSFDestroy(&bgcount));
1162:   }
1163:   *incoming = sf->ingroup;

1165:   if (sf->outgroup == MPI_GROUP_NULL) {
1166:     PetscCallMPI(MPI_Comm_group(PetscObjectComm((PetscObject)sf), &group));
1167:     PetscCallMPI(MPI_Group_incl(group, sf->nranks, sf->ranks, &sf->outgroup));
1168:     PetscCallMPI(MPI_Group_free(&group));
1169:   }
1170:   *outgoing = sf->outgroup;
1171:   PetscFunctionReturn(PETSC_SUCCESS);
1172: }

1174: /*@
1175:   PetscSFGetRanksSF - gets the `PetscSF` to perform communications with root ranks

1177:   Collective

1179:   Input Parameter:
1180: . sf - star forest

1182:   Output Parameter:
1183: . rsf - the star forest with a single root per process to perform communications

1185:   Level: developer

1187: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFGetRootRanks()`
1188: @*/
1189: PetscErrorCode PetscSFGetRanksSF(PetscSF sf, PetscSF *rsf)
1190: {
1191:   PetscFunctionBegin;
1193:   PetscAssertPointer(rsf, 2);
1194:   if (!sf->rankssf) {
1195:     PetscSFNode       *rremotes;
1196:     const PetscMPIInt *ranks;
1197:     PetscInt           nranks;

1199:     PetscCall(PetscSFGetRootRanks(sf, &nranks, &ranks, NULL, NULL, NULL));
1200:     PetscCall(PetscMalloc1(nranks, &rremotes));
1201:     for (PetscInt i = 0; i < nranks; i++) {
1202:       rremotes[i].rank  = ranks[i];
1203:       rremotes[i].index = 0;
1204:     }
1205:     PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, &sf->rankssf));
1206:     PetscCall(PetscSFSetGraph(sf->rankssf, 1, nranks, NULL, PETSC_OWN_POINTER, rremotes, PETSC_OWN_POINTER));
1207:   }
1208:   *rsf = sf->rankssf;
1209:   PetscFunctionReturn(PETSC_SUCCESS);
1210: }

1212: /*@
1213:   PetscSFGetMultiSF - gets the inner `PetscSF` implementing gathers and scatters

1215:   Collective

1217:   Input Parameter:
1218: . sf - star forest that may contain roots with 0 or with more than 1 vertex

1220:   Output Parameter:
1221: . multi - star forest with split roots, such that each root has degree exactly 1

1223:   Level: developer

1225:   Note:
1226:   In most cases, users should use `PetscSFGatherBegin()` and `PetscSFScatterBegin()` instead of manipulating multi
1227:   directly. Since multi satisfies the stronger condition that each entry in the global space has exactly one incoming
1228:   edge, it is a candidate for future optimization that might involve its removal.

1230: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFGatherBegin()`, `PetscSFScatterBegin()`, `PetscSFComputeMultiRootOriginalNumbering()`
1231: @*/
1232: PetscErrorCode PetscSFGetMultiSF(PetscSF sf, PetscSF *multi)
1233: {
1234:   PetscFunctionBegin;
1236:   PetscAssertPointer(multi, 2);
1237:   if (sf->nroots < 0) { /* Graph has not been set yet; why do we need this? */
1238:     PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_RANKS, &sf->multi));
1239:     *multi           = sf->multi;
1240:     sf->multi->multi = sf->multi;
1241:     PetscFunctionReturn(PETSC_SUCCESS);
1242:   }
1243:   if (!sf->multi) {
1244:     const PetscInt *indegree;
1245:     PetscInt        i, *inoffset, *outones, *outoffset, maxlocal;
1246:     PetscSFNode    *remote;
1247:     maxlocal = sf->maxleaf + 1; /* TODO: We should use PetscSFGetLeafRange() */
1248:     PetscCall(PetscSFComputeDegreeBegin(sf, &indegree));
1249:     PetscCall(PetscSFComputeDegreeEnd(sf, &indegree));
1250:     PetscCall(PetscMalloc3(sf->nroots + 1, &inoffset, maxlocal, &outones, maxlocal, &outoffset));
1251:     inoffset[0] = 0;
1252:     for (i = 0; i < sf->nroots; i++) inoffset[i + 1] = inoffset[i] + indegree[i];
1253:     for (i = 0; i < maxlocal; i++) outones[i] = 1;
1254:     PetscCall(PetscSFFetchAndOpBegin(sf, MPIU_INT, inoffset, outones, outoffset, MPI_SUM));
1255:     PetscCall(PetscSFFetchAndOpEnd(sf, MPIU_INT, inoffset, outones, outoffset, MPI_SUM));
1256:     for (i = 0; i < sf->nroots; i++) inoffset[i] -= indegree[i]; /* Undo the increment */
1257:     if (PetscDefined(USE_DEBUG)) {                               /* Check that the expected number of increments occurred */
1258:       for (i = 0; i < sf->nroots; i++) PetscCheck(inoffset[i] + indegree[i] == inoffset[i + 1], PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect result after PetscSFFetchAndOp");
1259:     }
1260:     PetscCall(PetscMalloc1(sf->nleaves, &remote));
1261:     for (i = 0; i < sf->nleaves; i++) {
1262:       remote[i].rank  = sf->remote[i].rank;
1263:       remote[i].index = outoffset[sf->mine ? sf->mine[i] : i];
1264:     }
1265:     PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_RANKS, &sf->multi));
1266:     sf->multi->multi = sf->multi;
1267:     PetscCall(PetscSFSetGraph(sf->multi, inoffset[sf->nroots], sf->nleaves, sf->mine, PETSC_COPY_VALUES, remote, PETSC_OWN_POINTER));
1268:     if (sf->rankorder) { /* Sort the ranks */
1269:       PetscMPIInt  rank;
1270:       PetscInt    *inranks, *newoffset, *outranks, *newoutoffset, *tmpoffset, maxdegree;
1271:       PetscSFNode *newremote;
1272:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)sf), &rank));
1273:       for (i = 0, maxdegree = 0; i < sf->nroots; i++) maxdegree = PetscMax(maxdegree, indegree[i]);
1274:       PetscCall(PetscMalloc5(sf->multi->nroots, &inranks, sf->multi->nroots, &newoffset, maxlocal, &outranks, maxlocal, &newoutoffset, maxdegree, &tmpoffset));
1275:       for (i = 0; i < maxlocal; i++) outranks[i] = rank;
1276:       PetscCall(PetscSFReduceBegin(sf->multi, MPIU_INT, outranks, inranks, MPI_REPLACE));
1277:       PetscCall(PetscSFReduceEnd(sf->multi, MPIU_INT, outranks, inranks, MPI_REPLACE));
1278:       /* Sort the incoming ranks at each vertex, build the inverse map */
1279:       for (i = 0; i < sf->nroots; i++) {
1280:         PetscInt j;
1281:         for (j = 0; j < indegree[i]; j++) tmpoffset[j] = j;
1282:         PetscCall(PetscSortIntWithArray(indegree[i], PetscSafePointerPlusOffset(inranks, inoffset[i]), tmpoffset));
1283:         for (j = 0; j < indegree[i]; j++) newoffset[inoffset[i] + tmpoffset[j]] = inoffset[i] + j;
1284:       }
1285:       PetscCall(PetscSFBcastBegin(sf->multi, MPIU_INT, newoffset, newoutoffset, MPI_REPLACE));
1286:       PetscCall(PetscSFBcastEnd(sf->multi, MPIU_INT, newoffset, newoutoffset, MPI_REPLACE));
1287:       PetscCall(PetscMalloc1(sf->nleaves, &newremote));
1288:       for (i = 0; i < sf->nleaves; i++) {
1289:         newremote[i].rank  = sf->remote[i].rank;
1290:         newremote[i].index = newoutoffset[sf->mine ? sf->mine[i] : i];
1291:       }
1292:       PetscCall(PetscSFSetGraph(sf->multi, inoffset[sf->nroots], sf->nleaves, sf->mine, PETSC_COPY_VALUES, newremote, PETSC_OWN_POINTER));
1293:       PetscCall(PetscFree5(inranks, newoffset, outranks, newoutoffset, tmpoffset));
1294:     }
1295:     PetscCall(PetscFree3(inoffset, outones, outoffset));
1296:   }
1297:   *multi = sf->multi;
1298:   PetscFunctionReturn(PETSC_SUCCESS);
1299: }

1301: /*@C
1302:   PetscSFCreateEmbeddedRootSF - removes edges from all but the selected roots of a `PetscSF`, does not remap indices

1304:   Collective

1306:   Input Parameters:
1307: + sf        - original star forest
1308: . nselected - number of selected roots on this process
1309: - selected  - indices of the selected roots on this process

1311:   Output Parameter:
1312: . esf - new star forest

1314:   Level: advanced

1316:   Note:
1317:   To use the new `PetscSF`, it may be necessary to know the indices of the leaves that are still participating. This can
1318:   be done by calling PetscSFGetGraph().

1320: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
1321: @*/
1322: PetscErrorCode PetscSFCreateEmbeddedRootSF(PetscSF sf, PetscInt nselected, const PetscInt *selected, PetscSF *esf)
1323: {
1324:   PetscInt           i, j, n, nroots, nleaves, esf_nleaves, *new_ilocal, minleaf, maxleaf, maxlocal;
1325:   const PetscInt    *ilocal;
1326:   signed char       *rootdata, *leafdata, *leafmem;
1327:   const PetscSFNode *iremote;
1328:   PetscSFNode       *new_iremote;
1329:   MPI_Comm           comm;

1331:   PetscFunctionBegin;
1333:   PetscSFCheckGraphSet(sf, 1);
1334:   if (nselected) PetscAssertPointer(selected, 3);
1335:   PetscAssertPointer(esf, 4);

1337:   PetscCall(PetscSFSetUp(sf));
1338:   PetscCall(PetscLogEventBegin(PETSCSF_EmbedSF, sf, 0, 0, 0));
1339:   PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
1340:   PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, &iremote));

1342:   if (PetscDefined(USE_DEBUG)) { /* Error out if selected[] has dups or out of range indices */
1343:     PetscBool dups;
1344:     PetscCall(PetscCheckDupsInt(nselected, selected, &dups));
1345:     PetscCheck(!dups, comm, PETSC_ERR_ARG_WRONG, "selected[] has dups");
1346:     for (i = 0; i < nselected; i++) PetscCheck(selected[i] >= 0 && selected[i] < nroots, comm, PETSC_ERR_ARG_OUTOFRANGE, "selected root index %" PetscInt_FMT " is out of [0,%" PetscInt_FMT ")", selected[i], nroots);
1347:   }

1349:   if (sf->ops->CreateEmbeddedRootSF) PetscUseTypeMethod(sf, CreateEmbeddedRootSF, nselected, selected, esf);
1350:   else {
1351:     /* A generic version of creating embedded sf */
1352:     PetscCall(PetscSFGetLeafRange(sf, &minleaf, &maxleaf));
1353:     maxlocal = maxleaf - minleaf + 1;
1354:     PetscCall(PetscCalloc2(nroots, &rootdata, maxlocal, &leafmem));
1355:     leafdata = PetscSafePointerPlusOffset(leafmem, -minleaf);
1356:     /* Tag selected roots and bcast to leaves */
1357:     for (i = 0; i < nselected; i++) rootdata[selected[i]] = 1;
1358:     PetscCall(PetscSFBcastBegin(sf, MPI_SIGNED_CHAR, rootdata, leafdata, MPI_REPLACE));
1359:     PetscCall(PetscSFBcastEnd(sf, MPI_SIGNED_CHAR, rootdata, leafdata, MPI_REPLACE));

1361:     /* Build esf with leaves that are still connected */
1362:     esf_nleaves = 0;
1363:     for (i = 0; i < nleaves; i++) {
1364:       j = ilocal ? ilocal[i] : i;
1365:       /* esf_nleaves += leafdata[j] should work in theory, but failed with SFWindow bugs
1366:          with PetscSFBcast. See https://gitlab.com/petsc/petsc/issues/555
1367:       */
1368:       esf_nleaves += (leafdata[j] ? 1 : 0);
1369:     }
1370:     PetscCall(PetscMalloc1(esf_nleaves, &new_ilocal));
1371:     PetscCall(PetscMalloc1(esf_nleaves, &new_iremote));
1372:     for (i = n = 0; i < nleaves; i++) {
1373:       j = ilocal ? ilocal[i] : i;
1374:       if (leafdata[j]) {
1375:         new_ilocal[n]        = j;
1376:         new_iremote[n].rank  = iremote[i].rank;
1377:         new_iremote[n].index = iremote[i].index;
1378:         ++n;
1379:       }
1380:     }
1381:     PetscCall(PetscSFCreate(comm, esf));
1382:     PetscCall(PetscSFSetFromOptions(*esf));
1383:     PetscCall(PetscSFSetGraph(*esf, nroots, esf_nleaves, new_ilocal, PETSC_OWN_POINTER, new_iremote, PETSC_OWN_POINTER));
1384:     PetscCall(PetscFree2(rootdata, leafmem));
1385:   }
1386:   PetscCall(PetscLogEventEnd(PETSCSF_EmbedSF, sf, 0, 0, 0));
1387:   PetscFunctionReturn(PETSC_SUCCESS);
1388: }

1390: /*@C
1391:   PetscSFCreateEmbeddedLeafSF - removes edges from all but the selected leaves of a `PetscSF`, does not remap indices

1393:   Collective

1395:   Input Parameters:
1396: + sf        - original star forest
1397: . nselected - number of selected leaves on this process
1398: - selected  - indices of the selected leaves on this process

1400:   Output Parameter:
1401: . newsf - new star forest

1403:   Level: advanced

1405: .seealso: `PetscSF`, `PetscSFCreateEmbeddedRootSF()`, `PetscSFSetGraph()`, `PetscSFGetGraph()`
1406: @*/
1407: PetscErrorCode PetscSFCreateEmbeddedLeafSF(PetscSF sf, PetscInt nselected, const PetscInt *selected, PetscSF *newsf)
1408: {
1409:   const PetscSFNode *iremote;
1410:   PetscSFNode       *new_iremote;
1411:   const PetscInt    *ilocal;
1412:   PetscInt           i, nroots, *leaves, *new_ilocal;
1413:   MPI_Comm           comm;

1415:   PetscFunctionBegin;
1417:   PetscSFCheckGraphSet(sf, 1);
1418:   if (nselected) PetscAssertPointer(selected, 3);
1419:   PetscAssertPointer(newsf, 4);

1421:   /* Uniq selected[] and put results in leaves[] */
1422:   PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
1423:   PetscCall(PetscMalloc1(nselected, &leaves));
1424:   PetscCall(PetscArraycpy(leaves, selected, nselected));
1425:   PetscCall(PetscSortedRemoveDupsInt(&nselected, leaves));
1426:   PetscCheck(!nselected || !(leaves[0] < 0 || leaves[nselected - 1] >= sf->nleaves), comm, PETSC_ERR_ARG_OUTOFRANGE, "Min/Max leaf indices %" PetscInt_FMT "/%" PetscInt_FMT " are not in [0,%" PetscInt_FMT ")", leaves[0], leaves[nselected - 1], sf->nleaves);

1428:   /* Optimize the routine only when sf is setup and hence we can reuse sf's communication pattern */
1429:   if (sf->setupcalled && sf->ops->CreateEmbeddedLeafSF) PetscUseTypeMethod(sf, CreateEmbeddedLeafSF, nselected, leaves, newsf);
1430:   else {
1431:     PetscCall(PetscSFGetGraph(sf, &nroots, NULL, &ilocal, &iremote));
1432:     PetscCall(PetscMalloc1(nselected, &new_ilocal));
1433:     PetscCall(PetscMalloc1(nselected, &new_iremote));
1434:     for (i = 0; i < nselected; ++i) {
1435:       const PetscInt l     = leaves[i];
1436:       new_ilocal[i]        = ilocal ? ilocal[l] : l;
1437:       new_iremote[i].rank  = iremote[l].rank;
1438:       new_iremote[i].index = iremote[l].index;
1439:     }
1440:     PetscCall(PetscSFDuplicate(sf, PETSCSF_DUPLICATE_CONFONLY, newsf));
1441:     PetscCall(PetscSFSetGraph(*newsf, nroots, nselected, new_ilocal, PETSC_OWN_POINTER, new_iremote, PETSC_OWN_POINTER));
1442:   }
1443:   PetscCall(PetscFree(leaves));
1444:   PetscFunctionReturn(PETSC_SUCCESS);
1445: }

1447: /*@C
1448:   PetscSFBcastBegin - begin pointwise broadcast with root value being reduced to leaf value, to be concluded with call to `PetscSFBcastEnd()`

1450:   Collective

1452:   Input Parameters:
1453: + sf       - star forest on which to communicate
1454: . unit     - data type associated with each node
1455: . rootdata - buffer to broadcast
1456: - op       - operation to use for reduction

1458:   Output Parameter:
1459: . leafdata - buffer to be reduced with values from each leaf's respective root

1461:   Level: intermediate

1463:   Note:
1464:   When PETSc is configured with device support, it will use its own mechanism to figure out whether the given data pointers
1465:   are host pointers or device pointers, which may incur a noticeable cost. If you already knew the info, you should
1466:   use `PetscSFBcastWithMemTypeBegin()` instead.

1468: .seealso: `PetscSF`, `PetscSFBcastEnd()`, `PetscSFBcastWithMemTypeBegin()`
1469: @*/
1470: PetscErrorCode PetscSFBcastBegin(PetscSF sf, MPI_Datatype unit, const void *rootdata, void *leafdata, MPI_Op op)
1471: {
1472:   PetscMemType rootmtype, leafmtype;

1474:   PetscFunctionBegin;
1476:   PetscCall(PetscSFSetUp(sf));
1477:   if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_BcastBegin, sf, 0, 0, 0));
1478:   PetscCall(PetscGetMemType(rootdata, &rootmtype));
1479:   PetscCall(PetscGetMemType(leafdata, &leafmtype));
1480:   PetscUseTypeMethod(sf, BcastBegin, unit, rootmtype, rootdata, leafmtype, leafdata, op);
1481:   if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_BcastBegin, sf, 0, 0, 0));
1482:   PetscFunctionReturn(PETSC_SUCCESS);
1483: }

1485: /*@C
1486:   PetscSFBcastWithMemTypeBegin - begin pointwise broadcast with root value being reduced to leaf value with explicit memory types, to be concluded with call
1487:   to `PetscSFBcastEnd()`

1489:   Collective

1491:   Input Parameters:
1492: + sf        - star forest on which to communicate
1493: . unit      - data type associated with each node
1494: . rootmtype - memory type of rootdata
1495: . rootdata  - buffer to broadcast
1496: . leafmtype - memory type of leafdata
1497: - op        - operation to use for reduction

1499:   Output Parameter:
1500: . leafdata - buffer to be reduced with values from each leaf's respective root

1502:   Level: intermediate

1504: .seealso: `PetscSF`, `PetscSFBcastEnd()`, `PetscSFBcastBegin()`
1505: @*/
1506: PetscErrorCode PetscSFBcastWithMemTypeBegin(PetscSF sf, MPI_Datatype unit, PetscMemType rootmtype, const void *rootdata, PetscMemType leafmtype, void *leafdata, MPI_Op op)
1507: {
1508:   PetscFunctionBegin;
1510:   PetscCall(PetscSFSetUp(sf));
1511:   if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_BcastBegin, sf, 0, 0, 0));
1512:   PetscUseTypeMethod(sf, BcastBegin, unit, rootmtype, rootdata, leafmtype, leafdata, op);
1513:   if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_BcastBegin, sf, 0, 0, 0));
1514:   PetscFunctionReturn(PETSC_SUCCESS);
1515: }

1517: /*@C
1518:   PetscSFBcastEnd - end a broadcast and reduce operation started with `PetscSFBcastBegin()` or `PetscSFBcastWithMemTypeBegin()`

1520:   Collective

1522:   Input Parameters:
1523: + sf       - star forest
1524: . unit     - data type
1525: . rootdata - buffer to broadcast
1526: - op       - operation to use for reduction

1528:   Output Parameter:
1529: . leafdata - buffer to be reduced with values from each leaf's respective root

1531:   Level: intermediate

1533: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFReduceEnd()`
1534: @*/
1535: PetscErrorCode PetscSFBcastEnd(PetscSF sf, MPI_Datatype unit, const void *rootdata, void *leafdata, MPI_Op op)
1536: {
1537:   PetscFunctionBegin;
1539:   if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_BcastEnd, sf, 0, 0, 0));
1540:   PetscUseTypeMethod(sf, BcastEnd, unit, rootdata, leafdata, op);
1541:   if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_BcastEnd, sf, 0, 0, 0));
1542:   PetscFunctionReturn(PETSC_SUCCESS);
1543: }

1545: /*@C
1546:   PetscSFReduceBegin - begin reduction of leafdata into rootdata, to be completed with call to `PetscSFReduceEnd()`

1548:   Collective

1550:   Input Parameters:
1551: + sf       - star forest
1552: . unit     - data type
1553: . leafdata - values to reduce
1554: - op       - reduction operation

1556:   Output Parameter:
1557: . rootdata - result of reduction of values from all leaves of each root

1559:   Level: intermediate

1561:   Note:
1562:   When PETSc is configured with device support, it will use its own mechanism to figure out whether the given data pointers
1563:   are host pointers or device pointers, which may incur a noticeable cost. If you already knew the info, you should
1564:   use `PetscSFReduceWithMemTypeBegin()` instead.

1566: .seealso: `PetscSF`, `PetscSFBcastBegin()`, `PetscSFReduceWithMemTypeBegin()`, `PetscSFReduceEnd()`
1567: @*/
1568: PetscErrorCode PetscSFReduceBegin(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *rootdata, MPI_Op op)
1569: {
1570:   PetscMemType rootmtype, leafmtype;

1572:   PetscFunctionBegin;
1574:   PetscCall(PetscSFSetUp(sf));
1575:   if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1576:   PetscCall(PetscGetMemType(rootdata, &rootmtype));
1577:   PetscCall(PetscGetMemType(leafdata, &leafmtype));
1578:   PetscCall(sf->ops->ReduceBegin(sf, unit, leafmtype, leafdata, rootmtype, rootdata, op));
1579:   if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1580:   PetscFunctionReturn(PETSC_SUCCESS);
1581: }

1583: /*@C
1584:   PetscSFReduceWithMemTypeBegin - begin reduction of leafdata into rootdata with explicit memory types, to be completed with call to `PetscSFReduceEnd()`

1586:   Collective

1588:   Input Parameters:
1589: + sf        - star forest
1590: . unit      - data type
1591: . leafmtype - memory type of leafdata
1592: . leafdata  - values to reduce
1593: . rootmtype - memory type of rootdata
1594: - op        - reduction operation

1596:   Output Parameter:
1597: . rootdata - result of reduction of values from all leaves of each root

1599:   Level: intermediate

1601: .seealso: `PetscSF`, `PetscSFBcastBegin()`, `PetscSFReduceBegin()`, `PetscSFReduceEnd()`
1602: @*/
1603: PetscErrorCode PetscSFReduceWithMemTypeBegin(PetscSF sf, MPI_Datatype unit, PetscMemType leafmtype, const void *leafdata, PetscMemType rootmtype, void *rootdata, MPI_Op op)
1604: {
1605:   PetscFunctionBegin;
1607:   PetscCall(PetscSFSetUp(sf));
1608:   if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1609:   PetscCall(sf->ops->ReduceBegin(sf, unit, leafmtype, leafdata, rootmtype, rootdata, op));
1610:   if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_ReduceBegin, sf, 0, 0, 0));
1611:   PetscFunctionReturn(PETSC_SUCCESS);
1612: }

1614: /*@C
1615:   PetscSFReduceEnd - end a reduction operation started with `PetscSFReduceBegin()` or `PetscSFReduceWithMemTypeBegin()`

1617:   Collective

1619:   Input Parameters:
1620: + sf       - star forest
1621: . unit     - data type
1622: . leafdata - values to reduce
1623: - op       - reduction operation

1625:   Output Parameter:
1626: . rootdata - result of reduction of values from all leaves of each root

1628:   Level: intermediate

1630: .seealso: `PetscSF`, `PetscSFSetGraph()`, `PetscSFBcastEnd()`, `PetscSFReduceBegin()`, `PetscSFReduceWithMemTypeBegin()`
1631: @*/
1632: PetscErrorCode PetscSFReduceEnd(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *rootdata, MPI_Op op)
1633: {
1634:   PetscFunctionBegin;
1636:   if (!sf->vscat.logging) PetscCall(PetscLogEventBegin(PETSCSF_ReduceEnd, sf, 0, 0, 0));
1637:   PetscUseTypeMethod(sf, ReduceEnd, unit, leafdata, rootdata, op);
1638:   if (!sf->vscat.logging) PetscCall(PetscLogEventEnd(PETSCSF_ReduceEnd, sf, 0, 0, 0));
1639:   PetscFunctionReturn(PETSC_SUCCESS);
1640: }

1642: /*@C
1643:   PetscSFFetchAndOpBegin - begin operation that fetches values from root and updates atomically by applying operation using my leaf value,
1644:   to be completed with `PetscSFFetchAndOpEnd()`

1646:   Collective

1648:   Input Parameters:
1649: + sf       - star forest
1650: . unit     - data type
1651: . leafdata - leaf values to use in reduction
1652: - op       - operation to use for reduction

1654:   Output Parameters:
1655: + rootdata   - root values to be updated, input state is seen by first process to perform an update
1656: - leafupdate - state at each leaf's respective root immediately prior to my atomic update

1658:   Level: advanced

1660:   Note:
1661:   The update is only atomic at the granularity provided by the hardware. Different roots referenced by the same process
1662:   might be updated in a different order. Furthermore, if a composite type is used for the unit datatype, atomicity is
1663:   not guaranteed across the whole vertex. Therefore, this function is mostly only used with primitive types such as
1664:   integers.

1666: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFReduceBegin()`, `PetscSFSetGraph()`
1667: @*/
1668: PetscErrorCode PetscSFFetchAndOpBegin(PetscSF sf, MPI_Datatype unit, void *rootdata, const void *leafdata, void *leafupdate, MPI_Op op)
1669: {
1670:   PetscMemType rootmtype, leafmtype, leafupdatemtype;

1672:   PetscFunctionBegin;
1674:   PetscCall(PetscSFSetUp(sf));
1675:   PetscCall(PetscLogEventBegin(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1676:   PetscCall(PetscGetMemType(rootdata, &rootmtype));
1677:   PetscCall(PetscGetMemType(leafdata, &leafmtype));
1678:   PetscCall(PetscGetMemType(leafupdate, &leafupdatemtype));
1679:   PetscCheck(leafmtype == leafupdatemtype, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for leafdata and leafupdate in different memory types");
1680:   PetscUseTypeMethod(sf, FetchAndOpBegin, unit, rootmtype, rootdata, leafmtype, leafdata, leafupdate, op);
1681:   PetscCall(PetscLogEventEnd(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1682:   PetscFunctionReturn(PETSC_SUCCESS);
1683: }

1685: /*@C
1686:   PetscSFFetchAndOpWithMemTypeBegin - begin operation with explicit memory types that fetches values from root and updates atomically by
1687:   applying operation using my leaf value, to be completed with `PetscSFFetchAndOpEnd()`

1689:   Collective

1691:   Input Parameters:
1692: + sf              - star forest
1693: . unit            - data type
1694: . rootmtype       - memory type of rootdata
1695: . leafmtype       - memory type of leafdata
1696: . leafdata        - leaf values to use in reduction
1697: . leafupdatemtype - memory type of leafupdate
1698: - op              - operation to use for reduction

1700:   Output Parameters:
1701: + rootdata   - root values to be updated, input state is seen by first process to perform an update
1702: - leafupdate - state at each leaf's respective root immediately prior to my atomic update

1704:   Level: advanced

1706:   Note:
1707:   See `PetscSFFetchAndOpBegin()` for more details.

1709: .seealso: `PetscSF`, `PetscSFFetchAndOpBegin()`, `PetscSFComputeDegreeBegin()`, `PetscSFReduceBegin()`, `PetscSFSetGraph()`, `PetscSFFetchAndOpEnd()`
1710: @*/
1711: PetscErrorCode PetscSFFetchAndOpWithMemTypeBegin(PetscSF sf, MPI_Datatype unit, PetscMemType rootmtype, void *rootdata, PetscMemType leafmtype, const void *leafdata, PetscMemType leafupdatemtype, void *leafupdate, MPI_Op op)
1712: {
1713:   PetscFunctionBegin;
1715:   PetscCall(PetscSFSetUp(sf));
1716:   PetscCall(PetscLogEventBegin(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1717:   PetscCheck(leafmtype == leafupdatemtype, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for leafdata and leafupdate in different memory types");
1718:   PetscUseTypeMethod(sf, FetchAndOpBegin, unit, rootmtype, rootdata, leafmtype, leafdata, leafupdate, op);
1719:   PetscCall(PetscLogEventEnd(PETSCSF_FetchAndOpBegin, sf, 0, 0, 0));
1720:   PetscFunctionReturn(PETSC_SUCCESS);
1721: }

1723: /*@C
1724:   PetscSFFetchAndOpEnd - end operation started in matching call to `PetscSFFetchAndOpBegin()` or `PetscSFFetchAndOpWithMemTypeBegin()`
1725:   to fetch values from roots and update atomically by applying operation using my leaf value

1727:   Collective

1729:   Input Parameters:
1730: + sf       - star forest
1731: . unit     - data type
1732: . leafdata - leaf values to use in reduction
1733: - op       - operation to use for reduction

1735:   Output Parameters:
1736: + rootdata   - root values to be updated, input state is seen by first process to perform an update
1737: - leafupdate - state at each leaf's respective root immediately prior to my atomic update

1739:   Level: advanced

1741: .seealso: `PetscSF`, `PetscSFComputeDegreeEnd()`, `PetscSFReduceEnd()`, `PetscSFSetGraph()`, `PetscSFFetchAndOpBegin()`, `PetscSFFetchAndOpWithMemTypeBegin()`
1742: @*/
1743: PetscErrorCode PetscSFFetchAndOpEnd(PetscSF sf, MPI_Datatype unit, void *rootdata, const void *leafdata, void *leafupdate, MPI_Op op)
1744: {
1745:   PetscFunctionBegin;
1747:   PetscCall(PetscLogEventBegin(PETSCSF_FetchAndOpEnd, sf, 0, 0, 0));
1748:   PetscUseTypeMethod(sf, FetchAndOpEnd, unit, rootdata, leafdata, leafupdate, op);
1749:   PetscCall(PetscLogEventEnd(PETSCSF_FetchAndOpEnd, sf, 0, 0, 0));
1750:   PetscFunctionReturn(PETSC_SUCCESS);
1751: }

1753: /*@C
1754:   PetscSFComputeDegreeBegin - begin computation of degree for each root vertex, to be completed with `PetscSFComputeDegreeEnd()`

1756:   Collective

1758:   Input Parameter:
1759: . sf - star forest

1761:   Output Parameter:
1762: . degree - degree of each root vertex

1764:   Level: advanced

1766:   Note:
1767:   The returned array is owned by `PetscSF` and automatically freed by `PetscSFDestroy()`. Hence there is no need to call `PetscFree()` on it.

1769: .seealso: `PetscSF`, `PetscSFGatherBegin()`, `PetscSFComputeDegreeEnd()`
1770: @*/
1771: PetscErrorCode PetscSFComputeDegreeBegin(PetscSF sf, const PetscInt **degree)
1772: {
1773:   PetscFunctionBegin;
1775:   PetscSFCheckGraphSet(sf, 1);
1776:   PetscAssertPointer(degree, 2);
1777:   if (!sf->degreeknown) {
1778:     PetscInt i, nroots = sf->nroots, maxlocal;
1779:     PetscCheck(!sf->degree, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Calls to PetscSFComputeDegreeBegin() cannot be nested.");
1780:     maxlocal = sf->maxleaf - sf->minleaf + 1;
1781:     PetscCall(PetscMalloc1(nroots, &sf->degree));
1782:     PetscCall(PetscMalloc1(PetscMax(maxlocal, 1), &sf->degreetmp)); /* allocate at least one entry, see check in PetscSFComputeDegreeEnd() */
1783:     for (i = 0; i < nroots; i++) sf->degree[i] = 0;
1784:     for (i = 0; i < maxlocal; i++) sf->degreetmp[i] = 1;
1785:     PetscCall(PetscSFReduceBegin(sf, MPIU_INT, sf->degreetmp - sf->minleaf, sf->degree, MPI_SUM));
1786:   }
1787:   *degree = NULL;
1788:   PetscFunctionReturn(PETSC_SUCCESS);
1789: }

1791: /*@C
1792:   PetscSFComputeDegreeEnd - complete computation of degree for each root vertex, started with `PetscSFComputeDegreeBegin()`

1794:   Collective

1796:   Input Parameter:
1797: . sf - star forest

1799:   Output Parameter:
1800: . degree - degree of each root vertex

1802:   Level: developer

1804:   Note:
1805:   The returned array is owned by `PetscSF` and automatically freed by `PetscSFDestroy()`. Hence there is no need to call `PetscFree()` on it.

1807: .seealso: `PetscSF`, `PetscSFGatherBegin()`, `PetscSFComputeDegreeBegin()`
1808: @*/
1809: PetscErrorCode PetscSFComputeDegreeEnd(PetscSF sf, const PetscInt **degree)
1810: {
1811:   PetscFunctionBegin;
1813:   PetscSFCheckGraphSet(sf, 1);
1814:   PetscAssertPointer(degree, 2);
1815:   if (!sf->degreeknown) {
1816:     PetscCheck(sf->degreetmp, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call PetscSFComputeDegreeBegin() before PetscSFComputeDegreeEnd()");
1817:     PetscCall(PetscSFReduceEnd(sf, MPIU_INT, sf->degreetmp - sf->minleaf, sf->degree, MPI_SUM));
1818:     PetscCall(PetscFree(sf->degreetmp));
1819:     sf->degreeknown = PETSC_TRUE;
1820:   }
1821:   *degree = sf->degree;
1822:   PetscFunctionReturn(PETSC_SUCCESS);
1823: }

1825: /*@C
1826:   PetscSFComputeMultiRootOriginalNumbering - Returns original numbering of multi-roots (roots of multi-`PetscSF` returned by `PetscSFGetMultiSF()`).
1827:   Each multi-root is assigned index of the corresponding original root.

1829:   Collective

1831:   Input Parameters:
1832: + sf     - star forest
1833: - degree - degree of each root vertex, computed with `PetscSFComputeDegreeBegin()`/`PetscSFComputeDegreeEnd()`

1835:   Output Parameters:
1836: + nMultiRoots             - (optional) number of multi-roots (roots of multi-`PetscSF`)
1837: - multiRootsOrigNumbering - original indices of multi-roots; length of this array is `nMultiRoots`

1839:   Level: developer

1841:   Note:
1842:   The returned array `multiRootsOrigNumbering` is newly allocated and should be destroyed with `PetscFree()` when no longer needed.

1844: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFComputeDegreeEnd()`, `PetscSFGetMultiSF()`
1845: @*/
1846: PetscErrorCode PetscSFComputeMultiRootOriginalNumbering(PetscSF sf, const PetscInt degree[], PetscInt *nMultiRoots, PetscInt *multiRootsOrigNumbering[])
1847: {
1848:   PetscSF  msf;
1849:   PetscInt i, j, k, nroots, nmroots;

1851:   PetscFunctionBegin;
1853:   PetscCall(PetscSFGetGraph(sf, &nroots, NULL, NULL, NULL));
1854:   if (nroots) PetscAssertPointer(degree, 2);
1855:   if (nMultiRoots) PetscAssertPointer(nMultiRoots, 3);
1856:   PetscAssertPointer(multiRootsOrigNumbering, 4);
1857:   PetscCall(PetscSFGetMultiSF(sf, &msf));
1858:   PetscCall(PetscSFGetGraph(msf, &nmroots, NULL, NULL, NULL));
1859:   PetscCall(PetscMalloc1(nmroots, multiRootsOrigNumbering));
1860:   for (i = 0, j = 0, k = 0; i < nroots; i++) {
1861:     if (!degree[i]) continue;
1862:     for (j = 0; j < degree[i]; j++, k++) (*multiRootsOrigNumbering)[k] = i;
1863:   }
1864:   PetscCheck(k == nmroots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "sanity check fail");
1865:   if (nMultiRoots) *nMultiRoots = nmroots;
1866:   PetscFunctionReturn(PETSC_SUCCESS);
1867: }

1869: /*@C
1870:   PetscSFGatherBegin - begin pointwise gather of all leaves into multi-roots, to be completed with `PetscSFGatherEnd()`

1872:   Collective

1874:   Input Parameters:
1875: + sf       - star forest
1876: . unit     - data type
1877: - leafdata - leaf data to gather to roots

1879:   Output Parameter:
1880: . multirootdata - root buffer to gather into, amount of space per root is equal to its degree

1882:   Level: intermediate

1884: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFScatterBegin()`
1885: @*/
1886: PetscErrorCode PetscSFGatherBegin(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *multirootdata)
1887: {
1888:   PetscSF multi = NULL;

1890:   PetscFunctionBegin;
1892:   PetscCall(PetscSFSetUp(sf));
1893:   PetscCall(PetscSFGetMultiSF(sf, &multi));
1894:   PetscCall(PetscSFReduceBegin(multi, unit, leafdata, multirootdata, MPI_REPLACE));
1895:   PetscFunctionReturn(PETSC_SUCCESS);
1896: }

1898: /*@C
1899:   PetscSFGatherEnd - ends pointwise gather operation that was started with `PetscSFGatherBegin()`

1901:   Collective

1903:   Input Parameters:
1904: + sf       - star forest
1905: . unit     - data type
1906: - leafdata - leaf data to gather to roots

1908:   Output Parameter:
1909: . multirootdata - root buffer to gather into, amount of space per root is equal to its degree

1911:   Level: intermediate

1913: .seealso: `PetscSF`, `PetscSFComputeDegreeEnd()`, `PetscSFScatterEnd()`
1914: @*/
1915: PetscErrorCode PetscSFGatherEnd(PetscSF sf, MPI_Datatype unit, const void *leafdata, void *multirootdata)
1916: {
1917:   PetscSF multi = NULL;

1919:   PetscFunctionBegin;
1921:   PetscCall(PetscSFGetMultiSF(sf, &multi));
1922:   PetscCall(PetscSFReduceEnd(multi, unit, leafdata, multirootdata, MPI_REPLACE));
1923:   PetscFunctionReturn(PETSC_SUCCESS);
1924: }

1926: /*@C
1927:   PetscSFScatterBegin - begin pointwise scatter operation from multi-roots to leaves, to be completed with `PetscSFScatterEnd()`

1929:   Collective

1931:   Input Parameters:
1932: + sf            - star forest
1933: . unit          - data type
1934: - multirootdata - root buffer to send to each leaf, one unit of data per leaf

1936:   Output Parameter:
1937: . leafdata - leaf data to be update with personal data from each respective root

1939:   Level: intermediate

1941: .seealso: `PetscSF`, `PetscSFComputeDegreeBegin()`, `PetscSFScatterEnd()`
1942: @*/
1943: PetscErrorCode PetscSFScatterBegin(PetscSF sf, MPI_Datatype unit, const void *multirootdata, void *leafdata)
1944: {
1945:   PetscSF multi = NULL;

1947:   PetscFunctionBegin;
1949:   PetscCall(PetscSFSetUp(sf));
1950:   PetscCall(PetscSFGetMultiSF(sf, &multi));
1951:   PetscCall(PetscSFBcastBegin(multi, unit, multirootdata, leafdata, MPI_REPLACE));
1952:   PetscFunctionReturn(PETSC_SUCCESS);
1953: }

1955: /*@C
1956:   PetscSFScatterEnd - ends pointwise scatter operation that was started with `PetscSFScatterBegin()`

1958:   Collective

1960:   Input Parameters:
1961: + sf            - star forest
1962: . unit          - data type
1963: - multirootdata - root buffer to send to each leaf, one unit of data per leaf

1965:   Output Parameter:
1966: . leafdata - leaf data to be update with personal data from each respective root

1968:   Level: intermediate

1970: .seealso: `PetscSF`, `PetscSFComputeDegreeEnd()`, `PetscSFScatterBegin()`
1971: @*/
1972: PetscErrorCode PetscSFScatterEnd(PetscSF sf, MPI_Datatype unit, const void *multirootdata, void *leafdata)
1973: {
1974:   PetscSF multi = NULL;

1976:   PetscFunctionBegin;
1978:   PetscCall(PetscSFGetMultiSF(sf, &multi));
1979:   PetscCall(PetscSFBcastEnd(multi, unit, multirootdata, leafdata, MPI_REPLACE));
1980:   PetscFunctionReturn(PETSC_SUCCESS);
1981: }

1983: static PetscErrorCode PetscSFCheckLeavesUnique_Private(PetscSF sf)
1984: {
1985:   PetscInt        i, n, nleaves;
1986:   const PetscInt *ilocal = NULL;
1987:   PetscHSetI      seen;

1989:   PetscFunctionBegin;
1990:   if (PetscDefined(USE_DEBUG)) {
1991:     PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &ilocal, NULL));
1992:     PetscCall(PetscHSetICreate(&seen));
1993:     for (i = 0; i < nleaves; i++) {
1994:       const PetscInt leaf = ilocal ? ilocal[i] : i;
1995:       PetscCall(PetscHSetIAdd(seen, leaf));
1996:     }
1997:     PetscCall(PetscHSetIGetSize(seen, &n));
1998:     PetscCheck(n == nleaves, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Provided leaves have repeated values: all leaves must be unique");
1999:     PetscCall(PetscHSetIDestroy(&seen));
2000:   }
2001:   PetscFunctionReturn(PETSC_SUCCESS);
2002: }

2004: /*@
2005:   PetscSFCompose - Compose a new `PetscSF` by putting the second `PetscSF` under the first one in a top (roots) down (leaves) view

2007:   Input Parameters:
2008: + sfA - The first `PetscSF`
2009: - sfB - The second `PetscSF`

2011:   Output Parameter:
2012: . sfBA - The composite `PetscSF`

2014:   Level: developer

2016:   Notes:
2017:   Currently, the two `PetscSF`s must be defined on congruent communicators and they must be true star
2018:   forests, i.e. the same leaf is not connected with different roots.

2020:   `sfA`'s leaf space and `sfB`'s root space might be partially overlapped. The composition builds
2021:   a graph with `sfA`'s roots and `sfB`'s leaves only when there is a path between them. Unconnected
2022:   nodes (roots or leaves) are not in `sfBA`. Doing a `PetscSFBcastBegin()`/`PetscSFBcastEnd()` on the new `PetscSF` is equivalent to doing a
2023:   `PetscSFBcastBegin()`/`PetscSFBcastEnd()` on `sfA`, then a `PetscSFBcastBegin()`/`PetscSFBcastEnd()` on `sfB`, on connected nodes.

2025: .seealso: `PetscSF`, `PetscSFComposeInverse()`, `PetscSFGetGraph()`, `PetscSFSetGraph()`
2026: @*/
2027: PetscErrorCode PetscSFCompose(PetscSF sfA, PetscSF sfB, PetscSF *sfBA)
2028: {
2029:   const PetscSFNode *remotePointsA, *remotePointsB;
2030:   PetscSFNode       *remotePointsBA = NULL, *reorderedRemotePointsA = NULL, *leafdataB;
2031:   const PetscInt    *localPointsA, *localPointsB;
2032:   PetscInt          *localPointsBA;
2033:   PetscInt           i, numRootsA, numLeavesA, numRootsB, numLeavesB, minleaf, maxleaf, numLeavesBA;
2034:   PetscBool          denseB;

2036:   PetscFunctionBegin;
2038:   PetscSFCheckGraphSet(sfA, 1);
2040:   PetscSFCheckGraphSet(sfB, 2);
2041:   PetscCheckSameComm(sfA, 1, sfB, 2);
2042:   PetscAssertPointer(sfBA, 3);
2043:   PetscCall(PetscSFCheckLeavesUnique_Private(sfA));
2044:   PetscCall(PetscSFCheckLeavesUnique_Private(sfB));

2046:   PetscCall(PetscSFGetGraph(sfA, &numRootsA, &numLeavesA, &localPointsA, &remotePointsA));
2047:   PetscCall(PetscSFGetGraph(sfB, &numRootsB, &numLeavesB, &localPointsB, &remotePointsB));
2048:   /* Make sure that PetscSFBcast{Begin, End}(sfB, ...) works with root data of size
2049:      numRootsB; otherwise, garbage will be broadcasted.
2050:      Example (comm size = 1):
2051:      sfA: 0 <- (0, 0)
2052:      sfB: 100 <- (0, 0)
2053:           101 <- (0, 1)
2054:      Here, we have remotePointsA = [(0, 0)], but for remotePointsA to be a valid tartget
2055:      of sfB, it has to be recasted as [(0, 0), (-1, -1)] so that points 100 and 101 would
2056:      receive (0, 0) and (-1, -1), respectively, when PetscSFBcast(sfB, ...) is called on
2057:      remotePointsA; if not recasted, point 101 would receive a garbage value.             */
2058:   PetscCall(PetscMalloc1(numRootsB, &reorderedRemotePointsA));
2059:   for (i = 0; i < numRootsB; i++) {
2060:     reorderedRemotePointsA[i].rank  = -1;
2061:     reorderedRemotePointsA[i].index = -1;
2062:   }
2063:   for (i = 0; i < numLeavesA; i++) {
2064:     PetscInt localp = localPointsA ? localPointsA[i] : i;

2066:     if (localp >= numRootsB) continue;
2067:     reorderedRemotePointsA[localp] = remotePointsA[i];
2068:   }
2069:   remotePointsA = reorderedRemotePointsA;
2070:   PetscCall(PetscSFGetLeafRange(sfB, &minleaf, &maxleaf));
2071:   PetscCall(PetscMalloc1(maxleaf - minleaf + 1, &leafdataB));
2072:   for (i = 0; i < maxleaf - minleaf + 1; i++) {
2073:     leafdataB[i].rank  = -1;
2074:     leafdataB[i].index = -1;
2075:   }
2076:   PetscCall(PetscSFBcastBegin(sfB, MPIU_2INT, remotePointsA, PetscSafePointerPlusOffset(leafdataB, -minleaf), MPI_REPLACE));
2077:   PetscCall(PetscSFBcastEnd(sfB, MPIU_2INT, remotePointsA, PetscSafePointerPlusOffset(leafdataB, -minleaf), MPI_REPLACE));
2078:   PetscCall(PetscFree(reorderedRemotePointsA));

2080:   denseB = (PetscBool)!localPointsB;
2081:   for (i = 0, numLeavesBA = 0; i < numLeavesB; i++) {
2082:     if (leafdataB[localPointsB ? localPointsB[i] - minleaf : i].rank == -1) denseB = PETSC_FALSE;
2083:     else numLeavesBA++;
2084:   }
2085:   if (denseB) {
2086:     localPointsBA  = NULL;
2087:     remotePointsBA = leafdataB;
2088:   } else {
2089:     PetscCall(PetscMalloc1(numLeavesBA, &localPointsBA));
2090:     PetscCall(PetscMalloc1(numLeavesBA, &remotePointsBA));
2091:     for (i = 0, numLeavesBA = 0; i < numLeavesB; i++) {
2092:       const PetscInt l = localPointsB ? localPointsB[i] : i;

2094:       if (leafdataB[l - minleaf].rank == -1) continue;
2095:       remotePointsBA[numLeavesBA] = leafdataB[l - minleaf];
2096:       localPointsBA[numLeavesBA]  = l;
2097:       numLeavesBA++;
2098:     }
2099:     PetscCall(PetscFree(leafdataB));
2100:   }
2101:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sfA), sfBA));
2102:   PetscCall(PetscSFSetFromOptions(*sfBA));
2103:   PetscCall(PetscSFSetGraph(*sfBA, numRootsA, numLeavesBA, localPointsBA, PETSC_OWN_POINTER, remotePointsBA, PETSC_OWN_POINTER));
2104:   PetscFunctionReturn(PETSC_SUCCESS);
2105: }

2107: /*@
2108:   PetscSFComposeInverse - Compose a new `PetscSF` by putting the inverse of the second `PetscSF` under the first one

2110:   Input Parameters:
2111: + sfA - The first `PetscSF`
2112: - sfB - The second `PetscSF`

2114:   Output Parameter:
2115: . sfBA - The composite `PetscSF`.

2117:   Level: developer

2119:   Notes:
2120:   Currently, the two `PetscSF`s must be defined on congruent communicators and they must be true star
2121:   forests, i.e. the same leaf is not connected with different roots. Even more, all roots of the
2122:   second `PetscSF` must have a degree of 1, i.e., no roots have more than one leaf connected.

2124:   `sfA`'s leaf space and `sfB`'s leaf space might be partially overlapped. The composition builds
2125:   a graph with `sfA`'s roots and `sfB`'s roots only when there is a path between them. Unconnected
2126:   roots are not in `sfBA`. Doing a `PetscSFBcastBegin()`/`PetscSFBcastEnd()` on the new `PetscSF` is equivalent to doing a `PetscSFBcastBegin()`/`PetscSFBcastEnd()`
2127:   on `sfA`, then
2128:   a `PetscSFReduceBegin()`/`PetscSFReduceEnd()` on `sfB`, on connected roots.

2130: .seealso: `PetscSF`, `PetscSFCompose()`, `PetscSFGetGraph()`, `PetscSFSetGraph()`, `PetscSFCreateInverseSF()`
2131: @*/
2132: PetscErrorCode PetscSFComposeInverse(PetscSF sfA, PetscSF sfB, PetscSF *sfBA)
2133: {
2134:   const PetscSFNode *remotePointsA, *remotePointsB;
2135:   PetscSFNode       *remotePointsBA;
2136:   const PetscInt    *localPointsA, *localPointsB;
2137:   PetscSFNode       *reorderedRemotePointsA = NULL;
2138:   PetscInt           i, numRootsA, numLeavesA, numLeavesBA, numRootsB, numLeavesB, minleaf, maxleaf, *localPointsBA;
2139:   MPI_Op             op;
2140: #if defined(PETSC_USE_64BIT_INDICES)
2141:   PetscBool iswin;
2142: #endif

2144:   PetscFunctionBegin;
2146:   PetscSFCheckGraphSet(sfA, 1);
2148:   PetscSFCheckGraphSet(sfB, 2);
2149:   PetscCheckSameComm(sfA, 1, sfB, 2);
2150:   PetscAssertPointer(sfBA, 3);
2151:   PetscCall(PetscSFCheckLeavesUnique_Private(sfA));
2152:   PetscCall(PetscSFCheckLeavesUnique_Private(sfB));

2154:   PetscCall(PetscSFGetGraph(sfA, &numRootsA, &numLeavesA, &localPointsA, &remotePointsA));
2155:   PetscCall(PetscSFGetGraph(sfB, &numRootsB, &numLeavesB, &localPointsB, &remotePointsB));

2157:   /* TODO: Check roots of sfB have degree of 1 */
2158:   /* Once we implement it, we can replace the MPI_MAXLOC
2159:      with MPI_REPLACE. In that case, MPI_MAXLOC and MPI_REPLACE have the same effect.
2160:      We use MPI_MAXLOC only to have a deterministic output from this routine if
2161:      the root condition is not meet.
2162:    */
2163:   op = MPI_MAXLOC;
2164: #if defined(PETSC_USE_64BIT_INDICES)
2165:   /* we accept a non-deterministic output (if any) with PETSCSFWINDOW, since MPI_MAXLOC cannot operate on MPIU_2INT with MPI_Accumulate */
2166:   PetscCall(PetscObjectTypeCompare((PetscObject)sfB, PETSCSFWINDOW, &iswin));
2167:   if (iswin) op = MPI_REPLACE;
2168: #endif

2170:   PetscCall(PetscSFGetLeafRange(sfB, &minleaf, &maxleaf));
2171:   PetscCall(PetscMalloc1(maxleaf - minleaf + 1, &reorderedRemotePointsA));
2172:   for (i = 0; i < maxleaf - minleaf + 1; i++) {
2173:     reorderedRemotePointsA[i].rank  = -1;
2174:     reorderedRemotePointsA[i].index = -1;
2175:   }
2176:   if (localPointsA) {
2177:     for (i = 0; i < numLeavesA; i++) {
2178:       if (localPointsA[i] > maxleaf || localPointsA[i] < minleaf) continue;
2179:       reorderedRemotePointsA[localPointsA[i] - minleaf] = remotePointsA[i];
2180:     }
2181:   } else {
2182:     for (i = 0; i < numLeavesA; i++) {
2183:       if (i > maxleaf || i < minleaf) continue;
2184:       reorderedRemotePointsA[i - minleaf] = remotePointsA[i];
2185:     }
2186:   }

2188:   PetscCall(PetscMalloc1(numRootsB, &localPointsBA));
2189:   PetscCall(PetscMalloc1(numRootsB, &remotePointsBA));
2190:   for (i = 0; i < numRootsB; i++) {
2191:     remotePointsBA[i].rank  = -1;
2192:     remotePointsBA[i].index = -1;
2193:   }

2195:   PetscCall(PetscSFReduceBegin(sfB, MPIU_2INT, PetscSafePointerPlusOffset(reorderedRemotePointsA, -minleaf), remotePointsBA, op));
2196:   PetscCall(PetscSFReduceEnd(sfB, MPIU_2INT, PetscSafePointerPlusOffset(reorderedRemotePointsA, -minleaf), remotePointsBA, op));
2197:   PetscCall(PetscFree(reorderedRemotePointsA));
2198:   for (i = 0, numLeavesBA = 0; i < numRootsB; i++) {
2199:     if (remotePointsBA[i].rank == -1) continue;
2200:     remotePointsBA[numLeavesBA].rank  = remotePointsBA[i].rank;
2201:     remotePointsBA[numLeavesBA].index = remotePointsBA[i].index;
2202:     localPointsBA[numLeavesBA]        = i;
2203:     numLeavesBA++;
2204:   }
2205:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)sfA), sfBA));
2206:   PetscCall(PetscSFSetFromOptions(*sfBA));
2207:   PetscCall(PetscSFSetGraph(*sfBA, numRootsA, numLeavesBA, localPointsBA, PETSC_OWN_POINTER, remotePointsBA, PETSC_OWN_POINTER));
2208:   PetscFunctionReturn(PETSC_SUCCESS);
2209: }

2211: /*
2212:   PetscSFCreateLocalSF_Private - Creates a local `PetscSF` that only has intra-process edges of the global `PetscSF`

2214:   Input Parameter:
2215: . sf - The global `PetscSF`

2217:   Output Parameter:
2218: . out - The local `PetscSF`

2220: .seealso: `PetscSF`, `PetscSFCreate()`
2221:  */
2222: PetscErrorCode PetscSFCreateLocalSF_Private(PetscSF sf, PetscSF *out)
2223: {
2224:   MPI_Comm           comm;
2225:   PetscMPIInt        myrank;
2226:   const PetscInt    *ilocal;
2227:   const PetscSFNode *iremote;
2228:   PetscInt           i, j, nroots, nleaves, lnleaves, *lilocal;
2229:   PetscSFNode       *liremote;
2230:   PetscSF            lsf;

2232:   PetscFunctionBegin;
2234:   if (sf->ops->CreateLocalSF) PetscUseTypeMethod(sf, CreateLocalSF, out);
2235:   else {
2236:     /* Could use PetscSFCreateEmbeddedLeafSF, but since we know the comm is PETSC_COMM_SELF, we can make it fast */
2237:     PetscCall(PetscObjectGetComm((PetscObject)sf, &comm));
2238:     PetscCallMPI(MPI_Comm_rank(comm, &myrank));

2240:     /* Find out local edges and build a local SF */
2241:     PetscCall(PetscSFGetGraph(sf, &nroots, &nleaves, &ilocal, &iremote));
2242:     for (i = lnleaves = 0; i < nleaves; i++) {
2243:       if (iremote[i].rank == (PetscInt)myrank) lnleaves++;
2244:     }
2245:     PetscCall(PetscMalloc1(lnleaves, &lilocal));
2246:     PetscCall(PetscMalloc1(lnleaves, &liremote));

2248:     for (i = j = 0; i < nleaves; i++) {
2249:       if (iremote[i].rank == (PetscInt)myrank) {
2250:         lilocal[j]        = ilocal ? ilocal[i] : i; /* ilocal=NULL for contiguous storage */
2251:         liremote[j].rank  = 0;                      /* rank in PETSC_COMM_SELF */
2252:         liremote[j].index = iremote[i].index;
2253:         j++;
2254:       }
2255:     }
2256:     PetscCall(PetscSFCreate(PETSC_COMM_SELF, &lsf));
2257:     PetscCall(PetscSFSetFromOptions(lsf));
2258:     PetscCall(PetscSFSetGraph(lsf, nroots, lnleaves, lilocal, PETSC_OWN_POINTER, liremote, PETSC_OWN_POINTER));
2259:     PetscCall(PetscSFSetUp(lsf));
2260:     *out = lsf;
2261:   }
2262:   PetscFunctionReturn(PETSC_SUCCESS);
2263: }

2265: /* Similar to PetscSFBcast, but only Bcast to leaves on rank 0 */
2266: PetscErrorCode PetscSFBcastToZero_Private(PetscSF sf, MPI_Datatype unit, const void *rootdata, void *leafdata)
2267: {
2268:   PetscMemType rootmtype, leafmtype;

2270:   PetscFunctionBegin;
2272:   PetscCall(PetscSFSetUp(sf));
2273:   PetscCall(PetscLogEventBegin(PETSCSF_BcastBegin, sf, 0, 0, 0));
2274:   PetscCall(PetscGetMemType(rootdata, &rootmtype));
2275:   PetscCall(PetscGetMemType(leafdata, &leafmtype));
2276:   PetscUseTypeMethod(sf, BcastToZero, unit, rootmtype, rootdata, leafmtype, leafdata);
2277:   PetscCall(PetscLogEventEnd(PETSCSF_BcastBegin, sf, 0, 0, 0));
2278:   PetscFunctionReturn(PETSC_SUCCESS);
2279: }

2281: /*@
2282:   PetscSFConcatenate - concatenate multiple `PetscSF` into one

2284:   Input Parameters:
2285: + comm        - the communicator
2286: . nsfs        - the number of input `PetscSF`
2287: . sfs         - the array of input `PetscSF`
2288: . rootMode    - the root mode specifying how roots are handled
2289: - leafOffsets - the array of local leaf offsets, one for each input `PetscSF`, or `NULL` for contiguous storage

2291:   Output Parameter:
2292: . newsf - The resulting `PetscSF`

2294:   Level: advanced

2296:   Notes:
2297:   The communicator of all `PetscSF`s in `sfs` must be comm.

2299:   Leaves are always concatenated locally, keeping them ordered by the input `PetscSF` index and original local order.

2301:   The offsets in `leafOffsets` are added to the original leaf indices.

2303:   If all input SFs use contiguous leaf storage (`ilocal` = `NULL`), `leafOffsets` can be passed as `NULL` as well.
2304:   In this case, `NULL` is also passed as `ilocal` to the resulting `PetscSF`.

2306:   If any input `PetscSF` has non-null `ilocal`, `leafOffsets` is needed to distinguish leaves from different input `PetscSF`s.
2307:   In this case, user is responsible to provide correct offsets so that the resulting leaves are unique (otherwise an error occurs).

2309:   All root modes retain the essential connectivity condition.
2310:   If two leaves of the same input `PetscSF` are connected (sharing the same root), they are also connected in the output `PetscSF`.
2311:   Parameter `rootMode` controls how the input root spaces are combined.
2312:   For `PETSCSF_CONCATENATE_ROOTMODE_SHARED`, the root space is considered the same for each input `PetscSF` (checked in debug mode)
2313:   and is also the same in the output `PetscSF`.
2314:   For `PETSCSF_CONCATENATE_ROOTMODE_LOCAL` and `PETSCSF_CONCATENATE_ROOTMODE_GLOBAL`, the input root spaces are taken as separate and joined.
2315:   `PETSCSF_CONCATENATE_ROOTMODE_LOCAL` joins the root spaces locally;
2316:   roots of sfs[0], sfs[1], sfs[2], ... are joined on each rank separately, ordered by input `PetscSF` and original local index, and renumbered contiguously.
2317:   `PETSCSF_CONCATENATE_ROOTMODE_GLOBAL` joins the root spaces globally;
2318:   roots of sfs[0], sfs[1], sfs[2], ... are joined globally, ordered by input `PetscSF` index and original global index, and renumbered contiguously;
2319:   the original root ranks are ignored.
2320:   For both `PETSCSF_CONCATENATE_ROOTMODE_LOCAL` and `PETSCSF_CONCATENATE_ROOTMODE_GLOBAL`,
2321:   the output `PetscSF`'s root layout is such that the local number of roots is a sum of the input `PetscSF`'s local numbers of roots on each rank
2322:   to keep the load balancing.
2323:   However, for `PETSCSF_CONCATENATE_ROOTMODE_GLOBAL`, roots can move to different ranks.

2325:   Example:
2326:   We can use src/vec/is/sf/tests/ex18.c to compare the root modes. By running
2327: .vb
2328:   make -C $PETSC_DIR/src/vec/is/sf/tests ex18
2329:   for m in {local,global,shared}; do
2330:     mpirun -n 2 $PETSC_DIR/src/vec/is/sf/tests/ex18 -nsfs 2 -n 2 -root_mode $m -sf_view
2331:   done
2332: .ve
2333:   we generate two identical `PetscSF`s sf_0 and sf_1,
2334: .vb
2335:   PetscSF Object: sf_0 2 MPI processes
2336:     type: basic
2337:     rank #leaves #roots
2338:     [ 0]       4      2
2339:     [ 1]       4      2
2340:     leaves      roots       roots in global numbering
2341:     ( 0,  0) <- ( 0,  0)  =   0
2342:     ( 0,  1) <- ( 0,  1)  =   1
2343:     ( 0,  2) <- ( 1,  0)  =   2
2344:     ( 0,  3) <- ( 1,  1)  =   3
2345:     ( 1,  0) <- ( 0,  0)  =   0
2346:     ( 1,  1) <- ( 0,  1)  =   1
2347:     ( 1,  2) <- ( 1,  0)  =   2
2348:     ( 1,  3) <- ( 1,  1)  =   3
2349: .ve
2350:   and pass them to `PetscSFConcatenate()` along with different choices of `rootMode`, yielding different result_sf\:
2351: .vb
2352:   rootMode = local:
2353:   PetscSF Object: result_sf 2 MPI processes
2354:     type: basic
2355:     rank #leaves #roots
2356:     [ 0]       8      4
2357:     [ 1]       8      4
2358:     leaves      roots       roots in global numbering
2359:     ( 0,  0) <- ( 0,  0)  =   0
2360:     ( 0,  1) <- ( 0,  1)  =   1
2361:     ( 0,  2) <- ( 1,  0)  =   4
2362:     ( 0,  3) <- ( 1,  1)  =   5
2363:     ( 0,  4) <- ( 0,  2)  =   2
2364:     ( 0,  5) <- ( 0,  3)  =   3
2365:     ( 0,  6) <- ( 1,  2)  =   6
2366:     ( 0,  7) <- ( 1,  3)  =   7
2367:     ( 1,  0) <- ( 0,  0)  =   0
2368:     ( 1,  1) <- ( 0,  1)  =   1
2369:     ( 1,  2) <- ( 1,  0)  =   4
2370:     ( 1,  3) <- ( 1,  1)  =   5
2371:     ( 1,  4) <- ( 0,  2)  =   2
2372:     ( 1,  5) <- ( 0,  3)  =   3
2373:     ( 1,  6) <- ( 1,  2)  =   6
2374:     ( 1,  7) <- ( 1,  3)  =   7

2376:   rootMode = global:
2377:   PetscSF Object: result_sf 2 MPI processes
2378:     type: basic
2379:     rank #leaves #roots
2380:     [ 0]       8      4
2381:     [ 1]       8      4
2382:     leaves      roots       roots in global numbering
2383:     ( 0,  0) <- ( 0,  0)  =   0
2384:     ( 0,  1) <- ( 0,  1)  =   1
2385:     ( 0,  2) <- ( 0,  2)  =   2
2386:     ( 0,  3) <- ( 0,  3)  =   3
2387:     ( 0,  4) <- ( 1,  0)  =   4
2388:     ( 0,  5) <- ( 1,  1)  =   5
2389:     ( 0,  6) <- ( 1,  2)  =   6
2390:     ( 0,  7) <- ( 1,  3)  =   7
2391:     ( 1,  0) <- ( 0,  0)  =   0
2392:     ( 1,  1) <- ( 0,  1)  =   1
2393:     ( 1,  2) <- ( 0,  2)  =   2
2394:     ( 1,  3) <- ( 0,  3)  =   3
2395:     ( 1,  4) <- ( 1,  0)  =   4
2396:     ( 1,  5) <- ( 1,  1)  =   5
2397:     ( 1,  6) <- ( 1,  2)  =   6
2398:     ( 1,  7) <- ( 1,  3)  =   7

2400:   rootMode = shared:
2401:   PetscSF Object: result_sf 2 MPI processes
2402:     type: basic
2403:     rank #leaves #roots
2404:     [ 0]       8      2
2405:     [ 1]       8      2
2406:     leaves      roots       roots in global numbering
2407:     ( 0,  0) <- ( 0,  0)  =   0
2408:     ( 0,  1) <- ( 0,  1)  =   1
2409:     ( 0,  2) <- ( 1,  0)  =   2
2410:     ( 0,  3) <- ( 1,  1)  =   3
2411:     ( 0,  4) <- ( 0,  0)  =   0
2412:     ( 0,  5) <- ( 0,  1)  =   1
2413:     ( 0,  6) <- ( 1,  0)  =   2
2414:     ( 0,  7) <- ( 1,  1)  =   3
2415:     ( 1,  0) <- ( 0,  0)  =   0
2416:     ( 1,  1) <- ( 0,  1)  =   1
2417:     ( 1,  2) <- ( 1,  0)  =   2
2418:     ( 1,  3) <- ( 1,  1)  =   3
2419:     ( 1,  4) <- ( 0,  0)  =   0
2420:     ( 1,  5) <- ( 0,  1)  =   1
2421:     ( 1,  6) <- ( 1,  0)  =   2
2422:     ( 1,  7) <- ( 1,  1)  =   3
2423: .ve

2425: .seealso: `PetscSF`, `PetscSFCompose()`, `PetscSFGetGraph()`, `PetscSFSetGraph()`, `PetscSFConcatenateRootMode`
2426: @*/
2427: PetscErrorCode PetscSFConcatenate(MPI_Comm comm, PetscInt nsfs, PetscSF sfs[], PetscSFConcatenateRootMode rootMode, PetscInt leafOffsets[], PetscSF *newsf)
2428: {
2429:   PetscInt     i, s, nLeaves, nRoots;
2430:   PetscInt    *leafArrayOffsets;
2431:   PetscInt    *ilocal_new;
2432:   PetscSFNode *iremote_new;
2433:   PetscBool    all_ilocal_null = PETSC_FALSE;
2434:   PetscLayout  glayout         = NULL;
2435:   PetscInt    *gremote         = NULL;
2436:   PetscMPIInt  rank, size;

2438:   PetscFunctionBegin;
2439:   if (PetscDefined(USE_DEBUG)) {
2440:     PetscSF dummy; /* just to have a PetscObject on comm for input validation */

2442:     PetscCall(PetscSFCreate(comm, &dummy));
2444:     PetscAssertPointer(sfs, 3);
2445:     for (i = 0; i < nsfs; i++) {
2447:       PetscCheckSameComm(dummy, 1, sfs[i], 3);
2448:     }
2450:     if (leafOffsets) PetscAssertPointer(leafOffsets, 5);
2451:     PetscAssertPointer(newsf, 6);
2452:     PetscCall(PetscSFDestroy(&dummy));
2453:   }
2454:   if (!nsfs) {
2455:     PetscCall(PetscSFCreate(comm, newsf));
2456:     PetscCall(PetscSFSetGraph(*newsf, 0, 0, NULL, PETSC_OWN_POINTER, NULL, PETSC_OWN_POINTER));
2457:     PetscFunctionReturn(PETSC_SUCCESS);
2458:   }
2459:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
2460:   PetscCallMPI(MPI_Comm_size(comm, &size));

2462:   /* Calculate leaf array offsets */
2463:   PetscCall(PetscMalloc1(nsfs + 1, &leafArrayOffsets));
2464:   leafArrayOffsets[0] = 0;
2465:   for (s = 0; s < nsfs; s++) {
2466:     PetscInt nl;

2468:     PetscCall(PetscSFGetGraph(sfs[s], NULL, &nl, NULL, NULL));
2469:     leafArrayOffsets[s + 1] = leafArrayOffsets[s] + nl;
2470:   }
2471:   nLeaves = leafArrayOffsets[nsfs];

2473:   /* Calculate number of roots */
2474:   switch (rootMode) {
2475:   case PETSCSF_CONCATENATE_ROOTMODE_SHARED: {
2476:     PetscCall(PetscSFGetGraph(sfs[0], &nRoots, NULL, NULL, NULL));
2477:     if (PetscDefined(USE_DEBUG)) {
2478:       for (s = 1; s < nsfs; s++) {
2479:         PetscInt nr;

2481:         PetscCall(PetscSFGetGraph(sfs[s], &nr, NULL, NULL, NULL));
2482:         PetscCheck(nr == nRoots, comm, PETSC_ERR_ARG_SIZ, "rootMode = %s but sfs[%" PetscInt_FMT "] has a different number of roots (%" PetscInt_FMT ") than sfs[0] (%" PetscInt_FMT ")", PetscSFConcatenateRootModes[rootMode], s, nr, nRoots);
2483:       }
2484:     }
2485:   } break;
2486:   case PETSCSF_CONCATENATE_ROOTMODE_GLOBAL: {
2487:     /* Calculate also global layout in this case */
2488:     PetscInt    *nls;
2489:     PetscLayout *lts;
2490:     PetscInt   **inds;
2491:     PetscInt     j;
2492:     PetscInt     rootOffset = 0;

2494:     PetscCall(PetscCalloc3(nsfs, &lts, nsfs, &nls, nsfs, &inds));
2495:     PetscCall(PetscLayoutCreate(comm, &glayout));
2496:     glayout->bs = 1;
2497:     glayout->n  = 0;
2498:     glayout->N  = 0;
2499:     for (s = 0; s < nsfs; s++) {
2500:       PetscCall(PetscSFGetGraphLayout(sfs[s], &lts[s], &nls[s], NULL, &inds[s]));
2501:       glayout->n += lts[s]->n;
2502:       glayout->N += lts[s]->N;
2503:     }
2504:     PetscCall(PetscLayoutSetUp(glayout));
2505:     PetscCall(PetscMalloc1(nLeaves, &gremote));
2506:     for (s = 0, j = 0; s < nsfs; s++) {
2507:       for (i = 0; i < nls[s]; i++, j++) gremote[j] = inds[s][i] + rootOffset;
2508:       rootOffset += lts[s]->N;
2509:       PetscCall(PetscLayoutDestroy(&lts[s]));
2510:       PetscCall(PetscFree(inds[s]));
2511:     }
2512:     PetscCall(PetscFree3(lts, nls, inds));
2513:     nRoots = glayout->N;
2514:   } break;
2515:   case PETSCSF_CONCATENATE_ROOTMODE_LOCAL:
2516:     /* nRoots calculated later in this case */
2517:     break;
2518:   default:
2519:     SETERRQ(comm, PETSC_ERR_ARG_WRONG, "Invalid PetscSFConcatenateRootMode %d", rootMode);
2520:   }

2522:   if (!leafOffsets) {
2523:     all_ilocal_null = PETSC_TRUE;
2524:     for (s = 0; s < nsfs; s++) {
2525:       const PetscInt *ilocal;

2527:       PetscCall(PetscSFGetGraph(sfs[s], NULL, NULL, &ilocal, NULL));
2528:       if (ilocal) {
2529:         all_ilocal_null = PETSC_FALSE;
2530:         break;
2531:       }
2532:     }
2533:     PetscCheck(all_ilocal_null, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "leafOffsets can be passed as NULL only if all SFs have ilocal = NULL");
2534:   }

2536:   /* Renumber and concatenate local leaves */
2537:   ilocal_new = NULL;
2538:   if (!all_ilocal_null) {
2539:     PetscCall(PetscMalloc1(nLeaves, &ilocal_new));
2540:     for (i = 0; i < nLeaves; i++) ilocal_new[i] = -1;
2541:     for (s = 0; s < nsfs; s++) {
2542:       const PetscInt *ilocal;
2543:       PetscInt       *ilocal_l = PetscSafePointerPlusOffset(ilocal_new, leafArrayOffsets[s]);
2544:       PetscInt        i, nleaves_l;

2546:       PetscCall(PetscSFGetGraph(sfs[s], NULL, &nleaves_l, &ilocal, NULL));
2547:       for (i = 0; i < nleaves_l; i++) ilocal_l[i] = (ilocal ? ilocal[i] : i) + leafOffsets[s];
2548:     }
2549:   }

2551:   /* Renumber and concatenate remote roots */
2552:   if (rootMode == PETSCSF_CONCATENATE_ROOTMODE_LOCAL || rootMode == PETSCSF_CONCATENATE_ROOTMODE_SHARED) {
2553:     PetscInt rootOffset = 0;

2555:     PetscCall(PetscMalloc1(nLeaves, &iremote_new));
2556:     for (i = 0; i < nLeaves; i++) {
2557:       iremote_new[i].rank  = -1;
2558:       iremote_new[i].index = -1;
2559:     }
2560:     for (s = 0; s < nsfs; s++) {
2561:       PetscInt           i, nl, nr;
2562:       PetscSF            tmp_sf;
2563:       const PetscSFNode *iremote;
2564:       PetscSFNode       *tmp_rootdata;
2565:       PetscSFNode       *tmp_leafdata = PetscSafePointerPlusOffset(iremote_new, leafArrayOffsets[s]);

2567:       PetscCall(PetscSFGetGraph(sfs[s], &nr, &nl, NULL, &iremote));
2568:       PetscCall(PetscSFCreate(comm, &tmp_sf));
2569:       /* create helper SF with contiguous leaves */
2570:       PetscCall(PetscSFSetGraph(tmp_sf, nr, nl, NULL, PETSC_USE_POINTER, (PetscSFNode *)iremote, PETSC_COPY_VALUES));
2571:       PetscCall(PetscSFSetUp(tmp_sf));
2572:       PetscCall(PetscMalloc1(nr, &tmp_rootdata));
2573:       if (rootMode == PETSCSF_CONCATENATE_ROOTMODE_LOCAL) {
2574:         for (i = 0; i < nr; i++) {
2575:           tmp_rootdata[i].index = i + rootOffset;
2576:           tmp_rootdata[i].rank  = (PetscInt)rank;
2577:         }
2578:         rootOffset += nr;
2579:       } else {
2580:         for (i = 0; i < nr; i++) {
2581:           tmp_rootdata[i].index = i;
2582:           tmp_rootdata[i].rank  = (PetscInt)rank;
2583:         }
2584:       }
2585:       PetscCall(PetscSFBcastBegin(tmp_sf, MPIU_2INT, tmp_rootdata, tmp_leafdata, MPI_REPLACE));
2586:       PetscCall(PetscSFBcastEnd(tmp_sf, MPIU_2INT, tmp_rootdata, tmp_leafdata, MPI_REPLACE));
2587:       PetscCall(PetscSFDestroy(&tmp_sf));
2588:       PetscCall(PetscFree(tmp_rootdata));
2589:     }
2590:     if (rootMode == PETSCSF_CONCATENATE_ROOTMODE_LOCAL) nRoots = rootOffset; // else nRoots already calculated above

2592:     /* Build the new SF */
2593:     PetscCall(PetscSFCreate(comm, newsf));
2594:     PetscCall(PetscSFSetGraph(*newsf, nRoots, nLeaves, ilocal_new, PETSC_OWN_POINTER, iremote_new, PETSC_OWN_POINTER));
2595:   } else {
2596:     /* Build the new SF */
2597:     PetscCall(PetscSFCreate(comm, newsf));
2598:     PetscCall(PetscSFSetGraphLayout(*newsf, glayout, nLeaves, ilocal_new, PETSC_OWN_POINTER, gremote));
2599:   }
2600:   PetscCall(PetscSFSetUp(*newsf));
2601:   PetscCall(PetscSFViewFromOptions(*newsf, NULL, "-sf_concat_view"));
2602:   PetscCall(PetscLayoutDestroy(&glayout));
2603:   PetscCall(PetscFree(gremote));
2604:   PetscCall(PetscFree(leafArrayOffsets));
2605:   PetscFunctionReturn(PETSC_SUCCESS);
2606: }