Actual source code: gcreate.c

  1: #include <petsc/private/matimpl.h>

  3: #include <../src/mat/impls/aij/seq/aij.h>
  4: #include <../src/mat/impls/aij/mpi/mpiaij.h>

  6: PetscErrorCode MatSetBlockSizes_Default(Mat mat, PetscInt rbs, PetscInt cbs)
  7: {
  8:   PetscFunctionBegin;
  9:   if (!mat->preallocated) PetscFunctionReturn(PETSC_SUCCESS);
 10:   PetscCheck(mat->rmap->bs <= 0 || mat->rmap->bs == rbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change row block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->rmap->bs, rbs);
 11:   PetscCheck(mat->cmap->bs <= 0 || mat->cmap->bs == cbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change column block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->cmap->bs, cbs);
 12:   PetscFunctionReturn(PETSC_SUCCESS);
 13: }

 15: PetscErrorCode MatShift_Basic(Mat Y, PetscScalar a)
 16: {
 17:   PetscInt    i, start, end, oldValA = 0, oldValB = 0;
 18:   PetscScalar alpha = a;
 19:   PetscBool   prevoption;
 20:   PetscBool   isSeqAIJDerived, isMPIAIJDerived; // all classes sharing SEQAIJHEADER or MPIAIJHEADER
 21:   Mat         A = NULL, B = NULL;

 23:   PetscFunctionBegin;
 24:   PetscCall(MatGetOption(Y, MAT_NO_OFF_PROC_ENTRIES, &prevoption));
 25:   PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
 26:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isSeqAIJDerived, MATSEQAIJ, MATSEQBAIJ, MATSEQSBAIJ, ""));
 27:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isMPIAIJDerived, MATMPIAIJ, MATMPIBAIJ, MATMPISBAIJ, ""));

 29:   if (isSeqAIJDerived) A = Y;
 30:   else if (isMPIAIJDerived) {
 31:     Mat_MPIAIJ *mpiaij = (Mat_MPIAIJ *)Y->data;
 32:     A                  = mpiaij->A;
 33:     B                  = mpiaij->B;
 34:   }

 36:   if (A) {
 37:     oldValA                        = ((Mat_SeqAIJ *)A->data)->nonew;
 38:     ((Mat_SeqAIJ *)A->data)->nonew = 0; // so that new nonzero locations are allowed
 39:   }
 40:   if (B) {
 41:     oldValB                        = ((Mat_SeqAIJ *)B->data)->nonew;
 42:     ((Mat_SeqAIJ *)B->data)->nonew = 0;
 43:   }

 45:   PetscCall(MatGetOwnershipRange(Y, &start, &end));
 46:   for (i = start; i < end; i++) {
 47:     if (i < Y->cmap->N) PetscCall(MatSetValues(Y, 1, &i, 1, &i, &alpha, ADD_VALUES));
 48:   }
 49:   PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
 50:   PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
 51:   PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, prevoption));
 52:   if (A) ((Mat_SeqAIJ *)A->data)->nonew = oldValA;
 53:   if (B) ((Mat_SeqAIJ *)B->data)->nonew = oldValB;
 54:   PetscFunctionReturn(PETSC_SUCCESS);
 55: }

 57: /*@
 58:   MatCreate - Creates a matrix where the type is determined
 59:   from either a call to `MatSetType()` or from the options database
 60:   with a call to `MatSetFromOptions()`.

 62:   Collective

 64:   Input Parameter:
 65: . comm - MPI communicator

 67:   Output Parameter:
 68: . A - the matrix

 70:   Options Database Keys:
 71: + -mat_type seqaij   - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
 72: . -mat_type mpiaij   - `MATMPIAIJ` type, uses `MatCreateAIJ()`
 73: . -mat_type seqdense - `MATSEQDENSE`, uses `MatCreateSeqDense()`
 74: . -mat_type mpidense - `MATMPIDENSE` type, uses `MatCreateDense()`
 75: . -mat_type seqbaij  - `MATSEQBAIJ` type, uses `MatCreateSeqBAIJ()`
 76: - -mat_type mpibaij  - `MATMPIBAIJ` type, uses `MatCreateBAIJ()`

 78:    See the manpages for particular formats (e.g., `MATSEQAIJ`)
 79:    for additional format-specific options.

 81:   Level: beginner

 83:   Notes:
 84:   The default matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` or
 85:   `MatCreateAIJ()` if you do not set a type in the options database. If you never call
 86:   `MatSetType()` or `MatSetFromOptions()` it will generate an error when you try to use the
 87:   matrix.

 89: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
 90:           `MatCreateSeqDense()`, `MatCreateDense()`,
 91:           `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
 92:           `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
 93:           `MatConvert()`
 94: @*/
 95: PetscErrorCode MatCreate(MPI_Comm comm, Mat *A)
 96: {
 97:   Mat B;

 99:   PetscFunctionBegin;
100:   PetscAssertPointer(A, 2);

102:   *A = NULL;
103:   PetscCall(MatInitializePackage());

105:   PetscCall(PetscHeaderCreate(B, MAT_CLASSID, "Mat", "Matrix", "Mat", comm, MatDestroy, MatView));
106:   PetscCall(PetscLayoutCreate(comm, &B->rmap));
107:   PetscCall(PetscLayoutCreate(comm, &B->cmap));
108:   PetscCall(PetscStrallocpy(VECSTANDARD, &B->defaultvectype));
109:   PetscCall(PetscStrallocpy(PETSCRANDER48, &B->defaultrandtype));

111:   B->symmetric                   = PETSC_BOOL3_UNKNOWN;
112:   B->hermitian                   = PETSC_BOOL3_UNKNOWN;
113:   B->structurally_symmetric      = PETSC_BOOL3_UNKNOWN;
114:   B->spd                         = PETSC_BOOL3_UNKNOWN;
115:   B->symmetry_eternal            = PETSC_FALSE;
116:   B->structural_symmetry_eternal = PETSC_FALSE;

118:   B->congruentlayouts = PETSC_DECIDE;
119:   B->preallocated     = PETSC_FALSE;
120: #if defined(PETSC_HAVE_DEVICE)
121:   B->boundtocpu = PETSC_TRUE;
122: #endif
123:   *A = B;
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: /*@C
128:   MatCreateFromOptions - Creates a matrix whose type is set from the options database

130:   Collective

132:   Input Parameters:
133: + comm   - MPI communicator
134: . prefix - [optional] prefix for the options database
135: . bs     - the blocksize (commonly 1)
136: . m      - the local number of rows (or `PETSC_DECIDE`)
137: . n      - the local number of columns (or `PETSC_DECIDE` or `PETSC_DETERMINE`)
138: . M      - the global number of rows (or `PETSC_DETERMINE`)
139: - N      - the global number of columns (or `PETSC_DETERMINE`)

141:   Output Parameter:
142: . A - the matrix

144:   Options Database Key:
145: . -mat_type - see `MatType`, for example `aij`, `aijcusparse`, `baij`, `sbaij`, dense, defaults to `aij`

147:   Level: beginner

149: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
150:           `MatCreateSeqDense()`, `MatCreateDense()`,
151:           `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
152:           `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
153:           `MatConvert()`, `MatCreate()`
154: @*/
155: PetscErrorCode MatCreateFromOptions(MPI_Comm comm, const char *prefix, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, Mat *A)
156: {
157:   PetscFunctionBegin;
158:   PetscAssertPointer(A, 8);
159:   PetscCall(MatCreate(comm, A));
160:   if (prefix) PetscCall(MatSetOptionsPrefix(*A, prefix));
161:   PetscCall(MatSetBlockSize(*A, bs));
162:   PetscCall(MatSetSizes(*A, m, n, M, N));
163:   PetscCall(MatSetFromOptions(*A));
164:   PetscFunctionReturn(PETSC_SUCCESS);
165: }

167: /*@
168:   MatSetErrorIfFailure - Causes `Mat` to generate an immediate error, for example a zero pivot, is detected.

170:   Logically Collective

172:   Input Parameters:
173: + mat - matrix obtained from `MatCreate()`
174: - flg - `PETSC_TRUE` indicates you want the error generated

176:   Level: advanced

178:   Note:
179:   If this flag is not set then the matrix operation will note the error and continue. The error may cause a later `PC` or `KSP` error
180:   or result in a `KSPConvergedReason` indicating the method did not converge.

182: .seealso: [](ch_matrices), `Mat`, `PCSetErrorIfFailure()`, `KSPConvergedReason`, `SNESConvergedReason`
183: @*/
184: PetscErrorCode MatSetErrorIfFailure(Mat mat, PetscBool flg)
185: {
186:   PetscFunctionBegin;
189:   mat->erroriffailure = flg;
190:   PetscFunctionReturn(PETSC_SUCCESS);
191: }

193: /*@
194:   MatSetSizes - Sets the local and global sizes, and checks to determine compatibility

196:   Collective

198:   Input Parameters:
199: + A - the matrix
200: . m - number of local rows (or `PETSC_DECIDE`)
201: . n - number of local columns (or `PETSC_DECIDE`)
202: . M - number of global rows (or `PETSC_DETERMINE`)
203: - N - number of global columns (or `PETSC_DETERMINE`)

205:   Level: beginner

207:   Notes:
208:   `m` (`n`) and `M` (`N`) cannot be both `PETSC_DECIDE`
209:   If one processor calls this with `M` (`N`) of `PETSC_DECIDE` then all processors must, otherwise the program will hang.

211:   If `PETSC_DECIDE` is not used for the arguments 'm' and 'n', then the
212:   user must ensure that they are chosen to be compatible with the
213:   vectors. To do this, one first considers the matrix-vector product
214:   'y = A x'. The `m` that is used in the above routine must match the
215:   local size used in the vector creation routine `VecCreateMPI()` for 'y'.
216:   Likewise, the `n` used must match that used as the local size in
217:   `VecCreateMPI()` for 'x'.

219:   If `m` and `n` are not `PETSC_DECIDE`, then the values determine the `PetscLayout` of the matrix and the ranges returned by
220:   `MatGetOwnershipRange()`,  `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.

222:   You cannot change the sizes once they have been set.

224:   The sizes must be set before `MatSetUp()` or MatXXXSetPreallocation() is called.

226: .seealso: [](ch_matrices), `Mat`, `MatGetSize()`, `PetscSplitOwnership()`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`,
227:           `MatGetOwnershipRangeColumn()`, `MatGetOwnershipRangesColumn()`, `PetscLayout`, `VecSetSizes()`
228: @*/
229: PetscErrorCode MatSetSizes(Mat A, PetscInt m, PetscInt n, PetscInt M, PetscInt N)
230: {
231:   PetscFunctionBegin;
235:   PetscCheck(M <= 0 || m <= M, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local row size %" PetscInt_FMT " cannot be larger than global row size %" PetscInt_FMT, m, M);
236:   PetscCheck(N <= 0 || n <= N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local column size %" PetscInt_FMT " cannot be larger than global column size %" PetscInt_FMT, n, N);
237:   PetscCheck((A->rmap->n < 0 || A->rmap->N < 0) || (A->rmap->n == m && (M <= 0 || A->rmap->N == M)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset row sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", m, M,
238:              A->rmap->n, A->rmap->N);
239:   PetscCheck((A->cmap->n < 0 || A->cmap->N < 0) || (A->cmap->n == n && (N <= 0 || A->cmap->N == N)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset column sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", n, N,
240:              A->cmap->n, A->cmap->N);
241:   A->rmap->n = m;
242:   A->cmap->n = n;
243:   A->rmap->N = M > -1 ? M : A->rmap->N;
244:   A->cmap->N = N > -1 ? N : A->cmap->N;
245:   PetscFunctionReturn(PETSC_SUCCESS);
246: }

248: /*@
249:   MatSetFromOptions - Creates a matrix where the type is determined
250:   from the options database.

252:   Collective

254:   Input Parameter:
255: . B - the matrix

257:   Options Database Keys:
258: + -mat_type seqaij   - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
259: . -mat_type mpiaij   - `MATMPIAIJ` type, uses `MatCreateAIJ()`
260: . -mat_type seqdense - `MATSEQDENSE` type, uses `MatCreateSeqDense()`
261: . -mat_type mpidense - `MATMPIDENSE`, uses `MatCreateDense()`
262: . -mat_type seqbaij  - `MATSEQBAIJ`, uses `MatCreateSeqBAIJ()`
263: - -mat_type mpibaij  - `MATMPIBAIJ`, uses `MatCreateBAIJ()`

265:    See the manpages for particular formats (e.g., `MATSEQAIJ`)
266:    for additional format-specific options.

268:   Level: beginner

270:   Notes:
271:   Generates a parallel MPI matrix if the communicator has more than one processor.  The default
272:   matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` and `MatCreateAIJ()` if you
273:   do not select a type in the options database.

275: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
276:           `MatCreateSeqDense()`, `MatCreateDense()`,
277:           `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
278:           `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
279:           `MatConvert()`
280: @*/
281: PetscErrorCode MatSetFromOptions(Mat B)
282: {
283:   const char *deft = MATAIJ;
284:   char        type[256];
285:   PetscBool   flg, set;
286:   PetscInt    bind_below = 0;

288:   PetscFunctionBegin;

291:   PetscObjectOptionsBegin((PetscObject)B);

293:   if (B->rmap->bs < 0) {
294:     PetscInt newbs = -1;
295:     PetscCall(PetscOptionsInt("-mat_block_size", "Set the blocksize used to store the matrix", "MatSetBlockSize", newbs, &newbs, &flg));
296:     if (flg) {
297:       PetscCall(PetscLayoutSetBlockSize(B->rmap, newbs));
298:       PetscCall(PetscLayoutSetBlockSize(B->cmap, newbs));
299:     }
300:   }

302:   PetscCall(PetscOptionsFList("-mat_type", "Matrix type", "MatSetType", MatList, deft, type, 256, &flg));
303:   if (flg) {
304:     PetscCall(MatSetType(B, type));
305:   } else if (!((PetscObject)B)->type_name) {
306:     PetscCall(MatSetType(B, deft));
307:   }

309:   PetscCall(PetscOptionsName("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", &B->checksymmetryonassembly));
310:   PetscCall(PetscOptionsReal("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", B->checksymmetrytol, &B->checksymmetrytol, NULL));
311:   PetscCall(PetscOptionsBool("-mat_null_space_test", "Checks if provided null space is correct in MatAssemblyEnd()", "MatSetNullSpaceTest", B->checknullspaceonassembly, &B->checknullspaceonassembly, NULL));
312:   PetscCall(PetscOptionsBool("-mat_error_if_failure", "Generate an error if an error occurs when factoring the matrix", "MatSetErrorIfFailure", B->erroriffailure, &B->erroriffailure, NULL));

314:   PetscTryTypeMethod(B, setfromoptions, PetscOptionsObject);

316:   flg = PETSC_FALSE;
317:   PetscCall(PetscOptionsBool("-mat_new_nonzero_location_err", "Generate an error if new nonzeros are created in the matrix structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
318:   if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, flg));
319:   flg = PETSC_FALSE;
320:   PetscCall(PetscOptionsBool("-mat_new_nonzero_allocation_err", "Generate an error if new nonzeros are allocated in the matrix structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
321:   if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, flg));
322:   flg = PETSC_FALSE;
323:   PetscCall(PetscOptionsBool("-mat_ignore_zero_entries", "For AIJ/IS matrices this will stop zero values from creating a zero location in the matrix", "MatSetOption", flg, &flg, &set));
324:   if (set) PetscCall(MatSetOption(B, MAT_IGNORE_ZERO_ENTRIES, flg));

326:   flg = PETSC_FALSE;
327:   PetscCall(PetscOptionsBool("-mat_form_explicit_transpose", "Hint to form an explicit transpose for operations like MatMultTranspose", "MatSetOption", flg, &flg, &set));
328:   if (set) PetscCall(MatSetOption(B, MAT_FORM_EXPLICIT_TRANSPOSE, flg));

330:   /* Bind to CPU if below a user-specified size threshold.
331:    * This perhaps belongs in the options for the GPU Mat types, but MatBindToCPU() does nothing when called on non-GPU types,
332:    * and putting it here makes is more maintainable than duplicating this for all. */
333:   PetscCall(PetscOptionsInt("-mat_bind_below", "Set the size threshold (in local rows) below which the Mat is bound to the CPU", "MatBindToCPU", bind_below, &bind_below, &flg));
334:   if (flg && B->rmap->n < bind_below) PetscCall(MatBindToCPU(B, PETSC_TRUE));

336:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
337:   PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)B, PetscOptionsObject));
338:   PetscOptionsEnd();
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: /*@C
343:   MatXAIJSetPreallocation - set preallocation for serial and parallel `MATAIJ`, `MATBAIJ`, and `MATSBAIJ` matrices and their unassembled versions.

345:   Collective

347:   Input Parameters:
348: + A     - matrix being preallocated
349: . bs    - block size
350: . dnnz  - number of nonzero column blocks per block row of diagonal part of parallel matrix
351: . onnz  - number of nonzero column blocks per block row of off-diagonal part of parallel matrix
352: . dnnzu - number of nonzero column blocks per block row of upper-triangular part of diagonal part of parallel matrix
353: - onnzu - number of nonzero column blocks per block row of upper-triangular part of off-diagonal part of parallel matrix

355:   Level: beginner

357: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocation()`,
358:           `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`,
359:           `PetscSplitOwnership()`
360: @*/
361: PetscErrorCode MatXAIJSetPreallocation(Mat A, PetscInt bs, const PetscInt dnnz[], const PetscInt onnz[], const PetscInt dnnzu[], const PetscInt onnzu[])
362: {
363:   PetscInt cbs;
364:   void (*aij)(void);
365:   void (*is)(void);
366:   void (*hyp)(void) = NULL;

368:   PetscFunctionBegin;
369:   if (bs != PETSC_DECIDE) { /* don't mess with an already set block size */
370:     PetscCall(MatSetBlockSize(A, bs));
371:   }
372:   PetscCall(PetscLayoutSetUp(A->rmap));
373:   PetscCall(PetscLayoutSetUp(A->cmap));
374:   PetscCall(MatGetBlockSizes(A, &bs, &cbs));
375:   /* these routines assumes bs == cbs, this should be checked somehow */
376:   PetscCall(MatSeqBAIJSetPreallocation(A, bs, 0, dnnz));
377:   PetscCall(MatMPIBAIJSetPreallocation(A, bs, 0, dnnz, 0, onnz));
378:   PetscCall(MatSeqSBAIJSetPreallocation(A, bs, 0, dnnzu));
379:   PetscCall(MatMPISBAIJSetPreallocation(A, bs, 0, dnnzu, 0, onnzu));
380:   /*
381:     In general, we have to do extra work to preallocate for scalar (AIJ) or unassembled (IS) matrices so we check whether it will do any
382:     good before going on with it.
383:   */
384:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatMPIAIJSetPreallocation_C", &aij));
385:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatISSetPreallocation_C", &is));
386: #if defined(PETSC_HAVE_HYPRE)
387:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatHYPRESetPreallocation_C", &hyp));
388: #endif
389:   if (!aij && !is && !hyp) PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", &aij));
390:   if (aij || is || hyp) {
391:     if (bs == cbs && bs == 1) {
392:       PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz));
393:       PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz, 0, onnz));
394:       PetscCall(MatISSetPreallocation(A, 0, dnnz, 0, onnz));
395: #if defined(PETSC_HAVE_HYPRE)
396:       PetscCall(MatHYPRESetPreallocation(A, 0, dnnz, 0, onnz));
397: #endif
398:     } else { /* Convert block-row precallocation to scalar-row */
399:       PetscInt i, m, *sdnnz, *sonnz;
400:       PetscCall(MatGetLocalSize(A, &m, NULL));
401:       PetscCall(PetscMalloc2((!!dnnz) * m, &sdnnz, (!!onnz) * m, &sonnz));
402:       for (i = 0; i < m; i++) {
403:         if (dnnz) sdnnz[i] = dnnz[i / bs] * cbs;
404:         if (onnz) sonnz[i] = onnz[i / bs] * cbs;
405:       }
406:       PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL));
407:       PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
408:       PetscCall(MatISSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
409: #if defined(PETSC_HAVE_HYPRE)
410:       PetscCall(MatHYPRESetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
411: #endif
412:       PetscCall(PetscFree2(sdnnz, sonnz));
413:     }
414:   }
415:   PetscFunctionReturn(PETSC_SUCCESS);
416: }

418: /*@C
419:   MatHeaderMerge - Merges some information from the header of `C` to `A`; the `C` object is then destroyed

421:   Collective, No Fortran Support

423:   Input Parameters:
424: + A - a `Mat` being merged into
425: - C - the `Mat` providing the merge information

427:   Level: developer

429:   Notes:
430:   `A` and `C` must be of the same type.
431:   The object list and query function list in `A` are retained, as well as the object name, and prefix.
432:   The object state of `A` is increased by 1.

434:   Developer Note:
435:   This is somewhat different from `MatHeaderReplace()`, it would be nice to merge the code

437: .seealso: `Mat`, `MatHeaderReplace()`
438:  @*/
439: PetscErrorCode MatHeaderMerge(Mat A, Mat *C)
440: {
441:   PetscInt          refct;
442:   PetscOps          Abops;
443:   struct _MatOps    Aops;
444:   char             *mtype, *mname, *mprefix;
445:   Mat_Product      *product;
446:   Mat_Redundant    *redundant;
447:   PetscObjectState  state;
448:   PetscObjectList   olist;
449:   PetscFunctionList qlist;

451:   PetscFunctionBegin;
454:   if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
455:   PetscCheckSameTypeAndComm(A, 1, *C, 2);
456:   /* save the parts of A we need */
457:   Abops     = ((PetscObject)A)->bops[0];
458:   Aops      = A->ops[0];
459:   refct     = ((PetscObject)A)->refct;
460:   mtype     = ((PetscObject)A)->type_name;
461:   mname     = ((PetscObject)A)->name;
462:   state     = ((PetscObject)A)->state;
463:   mprefix   = ((PetscObject)A)->prefix;
464:   product   = A->product;
465:   redundant = A->redundant;
466:   qlist     = ((PetscObject)A)->qlist;
467:   olist     = ((PetscObject)A)->olist;

469:   /* zero these so the destroy below does not free them */
470:   ((PetscObject)A)->type_name = NULL;
471:   ((PetscObject)A)->name      = NULL;
472:   ((PetscObject)A)->qlist     = NULL;
473:   ((PetscObject)A)->olist     = NULL;

475:   /*
476:      free all the interior data structures from mat
477:      cannot use PetscUseTypeMethod(A,destroy); because compiler
478:      thinks it may print NULL type_name and name
479:   */
480:   PetscTryTypeMethod(A, destroy);

482:   PetscCall(PetscFree(A->defaultvectype));
483:   PetscCall(PetscFree(A->defaultrandtype));
484:   PetscCall(PetscLayoutDestroy(&A->rmap));
485:   PetscCall(PetscLayoutDestroy(&A->cmap));
486:   PetscCall(PetscComposedQuantitiesDestroy((PetscObject)A));

488:   /* copy C over to A */
489:   PetscCall(PetscFree(A->factorprefix));
490:   PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));

492:   /* return the parts of A we saved */
493:   ((PetscObject)A)->bops[0]   = Abops;
494:   A->ops[0]                   = Aops;
495:   ((PetscObject)A)->refct     = refct;
496:   ((PetscObject)A)->type_name = mtype;
497:   ((PetscObject)A)->name      = mname;
498:   ((PetscObject)A)->prefix    = mprefix;
499:   ((PetscObject)A)->state     = state + 1;
500:   A->product                  = product;
501:   A->redundant                = redundant;

503:   /* Append the saved lists */
504:   PetscCall(PetscFunctionListDuplicate(qlist, &((PetscObject)A)->qlist));
505:   PetscCall(PetscObjectListDuplicate(olist, &((PetscObject)A)->olist));
506:   PetscCall(PetscFunctionListDestroy(&qlist));
507:   PetscCall(PetscObjectListDestroy(&olist));

509:   /* since these two are copied into A we do not want them destroyed in C */
510:   ((PetscObject)*C)->qlist = NULL;
511:   ((PetscObject)*C)->olist = NULL;
512:   PetscCall(PetscHeaderDestroy(C));
513:   PetscFunctionReturn(PETSC_SUCCESS);
514: }

516: /*@
517:   MatHeaderReplace - Replaces the internal data of matrix `A` by the internal data of matrix `C` while deleting the outer wrapper of `C`

519:   Input Parameters:
520: + A - a `Mat` whose internal data is to be replaced
521: - C - the `Mat` providing new internal data for `A`

523:   Level: advanced

525:   Example Usage\:
526: .vb
527:   Mat C;
528:   MatCreateSeqAIJWithArrays(..., &C);
529:   MatHeaderReplace(A, &C);
530:   // C has been destroyed and A contains the matrix entries of C
531: .ve

533:   Note:
534:   This can be used inside a function provided to `SNESSetJacobian()`, `TSSetRHSJacobian()`, or `TSSetIJacobian()` in cases where the user code computes an entirely new sparse matrix
535:   (generally with a different nonzero pattern) for each Newton update. It is usually better to reuse the matrix structure of `A` instead of constructing an entirely new one.

537:   Developer Note:
538:   This is somewhat different from `MatHeaderMerge()` it would be nice to merge the code

540: .seealso: `Mat`, `MatHeaderMerge()`
541:  @*/
542: PetscErrorCode MatHeaderReplace(Mat A, Mat *C)
543: {
544:   PetscInt         refct;
545:   PetscObjectState state;
546:   struct _p_Mat    buffer;
547:   MatStencilInfo   stencil;

549:   PetscFunctionBegin;
552:   if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
553:   PetscCheckSameComm(A, 1, *C, 2);
554:   PetscCheck(((PetscObject)*C)->refct == 1, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Object C has refct %" PetscInt_FMT " > 1, would leave hanging reference", ((PetscObject)*C)->refct);

556:   /* swap C and A */
557:   refct   = ((PetscObject)A)->refct;
558:   state   = ((PetscObject)A)->state;
559:   stencil = A->stencil;
560:   PetscCall(PetscMemcpy(&buffer, A, sizeof(struct _p_Mat)));
561:   PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));
562:   PetscCall(PetscMemcpy(*C, &buffer, sizeof(struct _p_Mat)));
563:   ((PetscObject)A)->refct = refct;
564:   ((PetscObject)A)->state = state + 1;
565:   A->stencil              = stencil;

567:   ((PetscObject)*C)->refct = 1;
568:   PetscCall(MatDestroy(C));
569:   PetscFunctionReturn(PETSC_SUCCESS);
570: }

572: /*@
573:   MatBindToCPU - marks a matrix to temporarily stay on the CPU and perform computations on the CPU

575:   Logically Collective

577:   Input Parameters:
578: + A   - the matrix
579: - flg - bind to the CPU if value of `PETSC_TRUE`

581:   Level: intermediate

583: .seealso: [](ch_matrices), `Mat`, `MatBoundToCPU()`
584: @*/
585: PetscErrorCode MatBindToCPU(Mat A, PetscBool flg)
586: {
587:   PetscFunctionBegin;
590: #if defined(PETSC_HAVE_DEVICE)
591:   if (A->boundtocpu == flg) PetscFunctionReturn(PETSC_SUCCESS);
592:   A->boundtocpu = flg;
593:   PetscTryTypeMethod(A, bindtocpu, flg);
594: #endif
595:   PetscFunctionReturn(PETSC_SUCCESS);
596: }

598: /*@
599:   MatBoundToCPU - query if a matrix is bound to the CPU

601:   Input Parameter:
602: . A - the matrix

604:   Output Parameter:
605: . flg - the logical flag

607:   Level: intermediate

609: .seealso: [](ch_matrices), `Mat`, `MatBindToCPU()`
610: @*/
611: PetscErrorCode MatBoundToCPU(Mat A, PetscBool *flg)
612: {
613:   PetscFunctionBegin;
615:   PetscAssertPointer(flg, 2);
616: #if defined(PETSC_HAVE_DEVICE)
617:   *flg = A->boundtocpu;
618: #else
619:   *flg = PETSC_TRUE;
620: #endif
621:   PetscFunctionReturn(PETSC_SUCCESS);
622: }

624: PetscErrorCode MatSetValuesCOO_Basic(Mat A, const PetscScalar coo_v[], InsertMode imode)
625: {
626:   IS              is_coo_i, is_coo_j;
627:   const PetscInt *coo_i, *coo_j;
628:   PetscInt        n, n_i, n_j;
629:   PetscScalar     zero = 0.;

631:   PetscFunctionBegin;
632:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_i", (PetscObject *)&is_coo_i));
633:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_j", (PetscObject *)&is_coo_j));
634:   PetscCheck(is_coo_i, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_i IS");
635:   PetscCheck(is_coo_j, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_j IS");
636:   PetscCall(ISGetLocalSize(is_coo_i, &n_i));
637:   PetscCall(ISGetLocalSize(is_coo_j, &n_j));
638:   PetscCheck(n_i == n_j, PETSC_COMM_SELF, PETSC_ERR_COR, "Wrong local size %" PetscInt_FMT " != %" PetscInt_FMT, n_i, n_j);
639:   PetscCall(ISGetIndices(is_coo_i, &coo_i));
640:   PetscCall(ISGetIndices(is_coo_j, &coo_j));
641:   if (imode != ADD_VALUES) PetscCall(MatZeroEntries(A));
642:   for (n = 0; n < n_i; n++) PetscCall(MatSetValue(A, coo_i[n], coo_j[n], coo_v ? coo_v[n] : zero, ADD_VALUES));
643:   PetscCall(ISRestoreIndices(is_coo_i, &coo_i));
644:   PetscCall(ISRestoreIndices(is_coo_j, &coo_j));
645:   PetscFunctionReturn(PETSC_SUCCESS);
646: }

648: PetscErrorCode MatSetPreallocationCOO_Basic(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
649: {
650:   Mat         preallocator;
651:   IS          is_coo_i, is_coo_j;
652:   PetscScalar zero = 0.0;

654:   PetscFunctionBegin;
655:   PetscCall(PetscLayoutSetUp(A->rmap));
656:   PetscCall(PetscLayoutSetUp(A->cmap));
657:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &preallocator));
658:   PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
659:   PetscCall(MatSetSizes(preallocator, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
660:   PetscCall(MatSetLayouts(preallocator, A->rmap, A->cmap));
661:   PetscCall(MatSetUp(preallocator));
662:   for (PetscCount n = 0; n < ncoo; n++) PetscCall(MatSetValue(preallocator, coo_i[n], coo_j[n], zero, INSERT_VALUES));
663:   PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
664:   PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
665:   PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, A));
666:   PetscCall(MatDestroy(&preallocator));
667:   PetscCheck(ncoo <= PETSC_MAX_INT, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
668:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo, coo_i, PETSC_COPY_VALUES, &is_coo_i));
669:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo, coo_j, PETSC_COPY_VALUES, &is_coo_j));
670:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_i", (PetscObject)is_coo_i));
671:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_j", (PetscObject)is_coo_j));
672:   PetscCall(ISDestroy(&is_coo_i));
673:   PetscCall(ISDestroy(&is_coo_j));
674:   PetscFunctionReturn(PETSC_SUCCESS);
675: }

677: /*@C
678:   MatSetPreallocationCOO - set preallocation for matrices using a coordinate format of the entries with global indices

680:   Collective

682:   Input Parameters:
683: + A     - matrix being preallocated
684: . ncoo  - number of entries
685: . coo_i - row indices
686: - coo_j - column indices

688:   Level: beginner

690:   Notes:
691:   The indices `coo_i` and `coo_j` may be modified within this function. The caller should not rely on them
692:   having any specific value after this function returns. The arrays can be freed or reused immediately
693:   after this function returns.

695:   Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
696:   but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
697:   are allowed and will be properly added or inserted to the matrix, unless the matrix option `MAT_IGNORE_OFF_PROC_ENTRIES`
698:   is set, in which case remote entries are ignored, or `MAT_NO_OFF_PROC_ENTRIES` is set, in which case an error will be generated.

700:   If you just want to create a sequential AIJ matrix (`MATSEQAIJ`), and your matrix entries in COO format are unique, you can also use
701:   `MatCreateSeqAIJFromTriple()`. But that is not recommended for iterative applications.

703: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
704:           `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOOLocal()`,
705:           `DMSetMatrixPreallocateSkip()`, `MatCreateSeqAIJFromTriple()`
706: @*/
707: PetscErrorCode MatSetPreallocationCOO(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
708: {
709:   PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;

711:   PetscFunctionBegin;
714:   if (ncoo) PetscAssertPointer(coo_i, 3);
715:   if (ncoo) PetscAssertPointer(coo_j, 4);
716:   PetscCall(PetscLayoutSetUp(A->rmap));
717:   PetscCall(PetscLayoutSetUp(A->cmap));
718:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOO_C", &f));

720:   PetscCall(PetscLogEventBegin(MAT_PreallCOO, A, 0, 0, 0));
721:   if (f) {
722:     PetscCall((*f)(A, ncoo, coo_i, coo_j));
723:   } else { /* allow fallback, very slow */
724:     PetscCall(MatSetPreallocationCOO_Basic(A, ncoo, coo_i, coo_j));
725:   }
726:   PetscCall(PetscLogEventEnd(MAT_PreallCOO, A, 0, 0, 0));
727:   A->preallocated = PETSC_TRUE;
728:   A->nonzerostate++;
729:   PetscFunctionReturn(PETSC_SUCCESS);
730: }

732: /*@C
733:   MatSetPreallocationCOOLocal - set preallocation for matrices using a coordinate format of the entries with local indices

735:   Collective

737:   Input Parameters:
738: + A     - matrix being preallocated
739: . ncoo  - number of entries
740: . coo_i - row indices (local numbering; may be modified)
741: - coo_j - column indices (local numbering; may be modified)

743:   Level: beginner

745:   Notes:
746:   The local indices are translated using the local to global mapping, thus `MatSetLocalToGlobalMapping()` must have been
747:   called prior to this function. For matrices created with `DMCreateMatrix()` the local to global mapping is often already provided.

749:   The indices `coo_i` and `coo_j` may be modified within this function. They might be translated to corresponding global
750:   indices, but the caller should not rely on them having any specific value after this function returns. The arrays
751:   can be freed or reused immediately after this function returns.

753:   Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
754:   but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
755:   are allowed and will be properly added or inserted to the matrix.

757: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
758:           `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOO()`,
759:           `DMSetMatrixPreallocateSkip()`
760: @*/
761: PetscErrorCode MatSetPreallocationCOOLocal(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
762: {
763:   PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;

765:   PetscFunctionBegin;
768:   if (ncoo) PetscAssertPointer(coo_i, 3);
769:   if (ncoo) PetscAssertPointer(coo_j, 4);
770:   PetscCheck(ncoo <= PETSC_MAX_INT, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
771:   PetscCall(PetscLayoutSetUp(A->rmap));
772:   PetscCall(PetscLayoutSetUp(A->cmap));

774:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOOLocal_C", &f));
775:   if (f) {
776:     PetscCall((*f)(A, ncoo, coo_i, coo_j));
777:     A->nonzerostate++;
778:   } else {
779:     ISLocalToGlobalMapping ltog_row, ltog_col;
780:     PetscCall(MatGetLocalToGlobalMapping(A, &ltog_row, &ltog_col));
781:     if (ltog_row) PetscCall(ISLocalToGlobalMappingApply(ltog_row, ncoo, coo_i, coo_i));
782:     if (ltog_col) PetscCall(ISLocalToGlobalMappingApply(ltog_col, ncoo, coo_j, coo_j));
783:     PetscCall(MatSetPreallocationCOO(A, ncoo, coo_i, coo_j));
784:   }
785:   A->preallocated = PETSC_TRUE;
786:   PetscFunctionReturn(PETSC_SUCCESS);
787: }

789: /*@
790:   MatSetValuesCOO - set values at once in a matrix preallocated using `MatSetPreallocationCOO()`

792:   Collective

794:   Input Parameters:
795: + A     - matrix being preallocated
796: . coo_v - the matrix values (can be `NULL`)
797: - imode - the insert mode

799:   Level: beginner

801:   Notes:
802:   The values must follow the order of the indices prescribed with `MatSetPreallocationCOO()` or `MatSetPreallocationCOOLocal()`.

804:   When repeated entries are specified in the COO indices the `coo_v` values are first properly summed, regardless of the value of imode.
805:   The imode flag indicates if coo_v must be added to the current values of the matrix (`ADD_VALUES`) or overwritten (`INSERT_VALUES`).

807:   `MatAssemblyBegin()` and `MatAssemblyEnd()` do not need to be called after this routine. It automatically handles the assembly process.

809: .seealso: [](ch_matrices), `Mat`, `MatSetPreallocationCOO()`, `MatSetPreallocationCOOLocal()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`
810: @*/
811: PetscErrorCode MatSetValuesCOO(Mat A, const PetscScalar coo_v[], InsertMode imode)
812: {
813:   PetscErrorCode (*f)(Mat, const PetscScalar[], InsertMode) = NULL;
814:   PetscBool oldFlg;

816:   PetscFunctionBegin;
819:   MatCheckPreallocated(A, 1);
821:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetValuesCOO_C", &f));
822:   PetscCall(PetscLogEventBegin(MAT_SetVCOO, A, 0, 0, 0));
823:   if (f) {
824:     PetscCall((*f)(A, coo_v, imode)); // all known COO implementations do not use MatStash. They do their own off-proc communication
825:     PetscCall(MatGetOption(A, MAT_NO_OFF_PROC_ENTRIES, &oldFlg));
826:     PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE)); // set A->nooffprocentries to avoid costly MatStash scatter in MatAssembly
827:   } else {
828:     PetscCall(MatSetValuesCOO_Basic(A, coo_v, imode)); // fall back to MatSetValues, which might use MatStash
829:   }
830:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
831:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
832:   if (f) PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, oldFlg));
833:   PetscCall(PetscLogEventEnd(MAT_SetVCOO, A, 0, 0, 0));
834:   PetscFunctionReturn(PETSC_SUCCESS);
835: }

837: /*@
838:   MatSetBindingPropagates - Sets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects

840:   Input Parameters:
841: + A   - the matrix
842: - flg - flag indicating whether the boundtocpu flag should be propagated

844:   Level: developer

846:   Notes:
847:   If the value of flg is set to true, the following will occur
848: +   `MatCreateSubMatrices()` and `MatCreateRedundantMatrix()` - bind created matrices to CPU if the input matrix is bound to the CPU.
849: -   `MatCreateVecs()` - bind created vectors to CPU if the input matrix is bound to the CPU.

851:   The bindingpropagates flag itself is also propagated by the above routines.

853:   Developer Notes:
854:   If the fine-scale `DMDA` has the `-dm_bind_below` option set to true, then `DMCreateInterpolationScale()` calls `MatSetBindingPropagates()`
855:   on the restriction/interpolation operator to set the bindingpropagates flag to true.

857: .seealso: [](ch_matrices), `Mat`, `VecSetBindingPropagates()`, `MatGetBindingPropagates()`
858: @*/
859: PetscErrorCode MatSetBindingPropagates(Mat A, PetscBool flg)
860: {
861:   PetscFunctionBegin;
863: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
864:   A->bindingpropagates = flg;
865: #endif
866:   PetscFunctionReturn(PETSC_SUCCESS);
867: }

869: /*@
870:   MatGetBindingPropagates - Gets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects

872:   Input Parameter:
873: . A - the matrix

875:   Output Parameter:
876: . flg - flag indicating whether the boundtocpu flag will be propagated

878:   Level: developer

880: .seealso: [](ch_matrices), `Mat`, `MatSetBindingPropagates()`
881: @*/
882: PetscErrorCode MatGetBindingPropagates(Mat A, PetscBool *flg)
883: {
884:   PetscFunctionBegin;
886:   PetscAssertPointer(flg, 2);
887: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
888:   *flg = A->bindingpropagates;
889: #else
890:   *flg = PETSC_FALSE;
891: #endif
892:   PetscFunctionReturn(PETSC_SUCCESS);
893: }