Actual source code: dt.c

  1: /* Discretization tools */

  3: #include <petscdt.h>
  4: #include <petscblaslapack.h>
  5: #include <petsc/private/petscimpl.h>
  6: #include <petsc/private/dtimpl.h>
  7: #include <petsc/private/petscfeimpl.h>
  8: #include <petscviewer.h>
  9: #include <petscdmplex.h>
 10: #include <petscdmshell.h>

 12: #if defined(PETSC_HAVE_MPFR)
 13:   #include <mpfr.h>
 14: #endif

 16: const char *const        PetscDTNodeTypes_shifted[] = {"default", "gaussjacobi", "equispaced", "tanhsinh", "PETSCDTNODES_", NULL};
 17: const char *const *const PetscDTNodeTypes           = PetscDTNodeTypes_shifted + 1;

 19: const char *const        PetscDTSimplexQuadratureTypes_shifted[] = {"default", "conic", "minsym", "PETSCDTSIMPLEXQUAD_", NULL};
 20: const char *const *const PetscDTSimplexQuadratureTypes           = PetscDTSimplexQuadratureTypes_shifted + 1;

 22: static PetscBool GolubWelschCite       = PETSC_FALSE;
 23: const char       GolubWelschCitation[] = "@article{GolubWelsch1969,\n"
 24:                                          "  author  = {Golub and Welsch},\n"
 25:                                          "  title   = {Calculation of Quadrature Rules},\n"
 26:                                          "  journal = {Math. Comp.},\n"
 27:                                          "  volume  = {23},\n"
 28:                                          "  number  = {106},\n"
 29:                                          "  pages   = {221--230},\n"
 30:                                          "  year    = {1969}\n}\n";

 32: /* Numerical tests in src/dm/dt/tests/ex1.c show that when computing the nodes and weights of Gauss-Jacobi
 33:    quadrature rules:

 35:    - in double precision, Newton's method and Golub & Welsch both work for moderate degrees (< 100),
 36:    - in single precision, Newton's method starts producing incorrect roots around n = 15, but
 37:      the weights from Golub & Welsch become a problem before then: they produces errors
 38:      in computing the Jacobi-polynomial Gram matrix around n = 6.

 40:    So we default to Newton's method (required fewer dependencies) */
 41: PetscBool PetscDTGaussQuadratureNewton_Internal = PETSC_TRUE;

 43: PetscClassId PETSCQUADRATURE_CLASSID = 0;

 45: /*@
 46:   PetscQuadratureCreate - Create a `PetscQuadrature` object

 48:   Collective

 50:   Input Parameter:
 51: . comm - The communicator for the `PetscQuadrature` object

 53:   Output Parameter:
 54: . q - The `PetscQuadrature` object

 56:   Level: beginner

 58: .seealso: `PetscQuadrature`, `Petscquadraturedestroy()`, `PetscQuadratureGetData()`
 59: @*/
 60: PetscErrorCode PetscQuadratureCreate(MPI_Comm comm, PetscQuadrature *q)
 61: {
 62:   PetscFunctionBegin;
 63:   PetscAssertPointer(q, 2);
 64:   PetscCall(DMInitializePackage());
 65:   PetscCall(PetscHeaderCreate(*q, PETSCQUADRATURE_CLASSID, "PetscQuadrature", "Quadrature", "DT", comm, PetscQuadratureDestroy, PetscQuadratureView));
 66:   (*q)->ct        = DM_POLYTOPE_UNKNOWN;
 67:   (*q)->dim       = -1;
 68:   (*q)->Nc        = 1;
 69:   (*q)->order     = -1;
 70:   (*q)->numPoints = 0;
 71:   (*q)->points    = NULL;
 72:   (*q)->weights   = NULL;
 73:   PetscFunctionReturn(PETSC_SUCCESS);
 74: }

 76: /*@
 77:   PetscQuadratureDuplicate - Create a deep copy of the `PetscQuadrature` object

 79:   Collective

 81:   Input Parameter:
 82: . q - The `PetscQuadrature` object

 84:   Output Parameter:
 85: . r - The new `PetscQuadrature` object

 87:   Level: beginner

 89: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureDestroy()`, `PetscQuadratureGetData()`
 90: @*/
 91: PetscErrorCode PetscQuadratureDuplicate(PetscQuadrature q, PetscQuadrature *r)
 92: {
 93:   DMPolytopeType   ct;
 94:   PetscInt         order, dim, Nc, Nq;
 95:   const PetscReal *points, *weights;
 96:   PetscReal       *p, *w;

 98:   PetscFunctionBegin;
 99:   PetscAssertPointer(q, 1);
100:   PetscCall(PetscQuadratureCreate(PetscObjectComm((PetscObject)q), r));
101:   PetscCall(PetscQuadratureGetCellType(q, &ct));
102:   PetscCall(PetscQuadratureSetCellType(*r, ct));
103:   PetscCall(PetscQuadratureGetOrder(q, &order));
104:   PetscCall(PetscQuadratureSetOrder(*r, order));
105:   PetscCall(PetscQuadratureGetData(q, &dim, &Nc, &Nq, &points, &weights));
106:   PetscCall(PetscMalloc1(Nq * dim, &p));
107:   PetscCall(PetscMalloc1(Nq * Nc, &w));
108:   PetscCall(PetscArraycpy(p, points, Nq * dim));
109:   PetscCall(PetscArraycpy(w, weights, Nc * Nq));
110:   PetscCall(PetscQuadratureSetData(*r, dim, Nc, Nq, p, w));
111:   PetscFunctionReturn(PETSC_SUCCESS);
112: }

114: /*@
115:   PetscQuadratureDestroy - Destroys a `PetscQuadrature` object

117:   Collective

119:   Input Parameter:
120: . q - The `PetscQuadrature` object

122:   Level: beginner

124: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureGetData()`
125: @*/
126: PetscErrorCode PetscQuadratureDestroy(PetscQuadrature *q)
127: {
128:   PetscFunctionBegin;
129:   if (!*q) PetscFunctionReturn(PETSC_SUCCESS);
131:   if (--((PetscObject)*q)->refct > 0) {
132:     *q = NULL;
133:     PetscFunctionReturn(PETSC_SUCCESS);
134:   }
135:   PetscCall(PetscFree((*q)->points));
136:   PetscCall(PetscFree((*q)->weights));
137:   PetscCall(PetscHeaderDestroy(q));
138:   PetscFunctionReturn(PETSC_SUCCESS);
139: }

141: /*@
142:   PetscQuadratureGetCellType - Return the cell type of the integration domain

144:   Not Collective

146:   Input Parameter:
147: . q - The `PetscQuadrature` object

149:   Output Parameter:
150: . ct - The cell type of the integration domain

152:   Level: intermediate

154: .seealso: `PetscQuadrature`, `PetscQuadratureSetCellType()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
155: @*/
156: PetscErrorCode PetscQuadratureGetCellType(PetscQuadrature q, DMPolytopeType *ct)
157: {
158:   PetscFunctionBegin;
160:   PetscAssertPointer(ct, 2);
161:   *ct = q->ct;
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: /*@
166:   PetscQuadratureSetCellType - Set the cell type of the integration domain

168:   Not Collective

170:   Input Parameters:
171: + q  - The `PetscQuadrature` object
172: - ct - The cell type of the integration domain

174:   Level: intermediate

176: .seealso: `PetscQuadrature`, `PetscQuadratureGetCellType()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
177: @*/
178: PetscErrorCode PetscQuadratureSetCellType(PetscQuadrature q, DMPolytopeType ct)
179: {
180:   PetscFunctionBegin;
182:   q->ct = ct;
183:   PetscFunctionReturn(PETSC_SUCCESS);
184: }

186: /*@
187:   PetscQuadratureGetOrder - Return the order of the method in the `PetscQuadrature`

189:   Not Collective

191:   Input Parameter:
192: . q - The `PetscQuadrature` object

194:   Output Parameter:
195: . order - The order of the quadrature, i.e. the highest degree polynomial that is exactly integrated

197:   Level: intermediate

199: .seealso: `PetscQuadrature`, `PetscQuadratureSetOrder()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
200: @*/
201: PetscErrorCode PetscQuadratureGetOrder(PetscQuadrature q, PetscInt *order)
202: {
203:   PetscFunctionBegin;
205:   PetscAssertPointer(order, 2);
206:   *order = q->order;
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: /*@
211:   PetscQuadratureSetOrder - Set the order of the method in the `PetscQuadrature`

213:   Not Collective

215:   Input Parameters:
216: + q     - The `PetscQuadrature` object
217: - order - The order of the quadrature, i.e. the highest degree polynomial that is exactly integrated

219:   Level: intermediate

221: .seealso: `PetscQuadrature`, `PetscQuadratureGetOrder()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
222: @*/
223: PetscErrorCode PetscQuadratureSetOrder(PetscQuadrature q, PetscInt order)
224: {
225:   PetscFunctionBegin;
227:   q->order = order;
228:   PetscFunctionReturn(PETSC_SUCCESS);
229: }

231: /*@
232:   PetscQuadratureGetNumComponents - Return the number of components for functions to be integrated

234:   Not Collective

236:   Input Parameter:
237: . q - The `PetscQuadrature` object

239:   Output Parameter:
240: . Nc - The number of components

242:   Level: intermediate

244:   Note:
245:   We are performing an integral $\int f(x) w(x) dx$, where both $f$ and $w$ (the weight) have `Nc` components.

247: .seealso: `PetscQuadrature`, `PetscQuadratureSetNumComponents()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
248: @*/
249: PetscErrorCode PetscQuadratureGetNumComponents(PetscQuadrature q, PetscInt *Nc)
250: {
251:   PetscFunctionBegin;
253:   PetscAssertPointer(Nc, 2);
254:   *Nc = q->Nc;
255:   PetscFunctionReturn(PETSC_SUCCESS);
256: }

258: /*@
259:   PetscQuadratureSetNumComponents - Sets the number of components for functions to be integrated

261:   Not Collective

263:   Input Parameters:
264: + q  - The `PetscQuadrature` object
265: - Nc - The number of components

267:   Level: intermediate

269:   Note:
270:   We are performing an integral $\int f(x) w(x) dx$, where both $f$ and $w$ (the weight) have `Nc` components.

272: .seealso: `PetscQuadrature`, `PetscQuadratureGetNumComponents()`, `PetscQuadratureGetData()`, `PetscQuadratureSetData()`
273: @*/
274: PetscErrorCode PetscQuadratureSetNumComponents(PetscQuadrature q, PetscInt Nc)
275: {
276:   PetscFunctionBegin;
278:   q->Nc = Nc;
279:   PetscFunctionReturn(PETSC_SUCCESS);
280: }

282: /*@C
283:   PetscQuadratureGetData - Returns the data defining the `PetscQuadrature`

285:   Not Collective

287:   Input Parameter:
288: . q - The `PetscQuadrature` object

290:   Output Parameters:
291: + dim     - The spatial dimension
292: . Nc      - The number of components
293: . npoints - The number of quadrature points
294: . points  - The coordinates of each quadrature point
295: - weights - The weight of each quadrature point

297:   Level: intermediate

299:   Note:
300:   All output arguments are optional, pass `NULL` for any argument not required

302:   Fortran Note:
303:   Call `PetscQuadratureRestoreData()` when you are done with the data

305: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureSetData()`
306: @*/
307: PetscErrorCode PetscQuadratureGetData(PetscQuadrature q, PeOp PetscInt *dim, PeOp PetscInt *Nc, PeOp PetscInt *npoints, PeOp const PetscReal *points[], PeOp const PetscReal *weights[])
308: {
309:   PetscFunctionBegin;
311:   if (dim) {
312:     PetscAssertPointer(dim, 2);
313:     *dim = q->dim;
314:   }
315:   if (Nc) {
316:     PetscAssertPointer(Nc, 3);
317:     *Nc = q->Nc;
318:   }
319:   if (npoints) {
320:     PetscAssertPointer(npoints, 4);
321:     *npoints = q->numPoints;
322:   }
323:   if (points) {
324:     PetscAssertPointer(points, 5);
325:     *points = q->points;
326:   }
327:   if (weights) {
328:     PetscAssertPointer(weights, 6);
329:     *weights = q->weights;
330:   }
331:   PetscFunctionReturn(PETSC_SUCCESS);
332: }

334: /*@
335:   PetscQuadratureEqual - determine whether two quadratures are equivalent

337:   Input Parameters:
338: + A - A `PetscQuadrature` object
339: - B - Another `PetscQuadrature` object

341:   Output Parameter:
342: . equal - `PETSC_TRUE` if the quadratures are the same

344:   Level: intermediate

346: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`
347: @*/
348: PetscErrorCode PetscQuadratureEqual(PetscQuadrature A, PetscQuadrature B, PetscBool *equal)
349: {
350:   PetscFunctionBegin;
353:   PetscAssertPointer(equal, 3);
354:   *equal = PETSC_FALSE;
355:   if (A->ct != B->ct || A->dim != B->dim || A->Nc != B->Nc || A->order != B->order || A->numPoints != B->numPoints) PetscFunctionReturn(PETSC_SUCCESS);
356:   for (PetscInt i = 0; i < A->numPoints * A->dim; i++) {
357:     if (PetscAbsReal(A->points[i] - B->points[i]) > PETSC_SMALL) PetscFunctionReturn(PETSC_SUCCESS);
358:   }
359:   if (!A->weights && !B->weights) {
360:     *equal = PETSC_TRUE;
361:     PetscFunctionReturn(PETSC_SUCCESS);
362:   }
363:   if (A->weights && B->weights) {
364:     for (PetscInt i = 0; i < A->numPoints; i++) {
365:       if (PetscAbsReal(A->weights[i] - B->weights[i]) > PETSC_SMALL) PetscFunctionReturn(PETSC_SUCCESS);
366:     }
367:     *equal = PETSC_TRUE;
368:   }
369:   PetscFunctionReturn(PETSC_SUCCESS);
370: }

372: static PetscErrorCode PetscDTJacobianInverse_Internal(PetscInt m, PetscInt n, const PetscReal J[], PetscReal Jinv[])
373: {
374:   PetscScalar *Js, *Jinvs;
375:   PetscInt     i, j, k;
376:   PetscBLASInt bm, bn, info;

378:   PetscFunctionBegin;
379:   if (!m || !n) PetscFunctionReturn(PETSC_SUCCESS);
380:   PetscCall(PetscBLASIntCast(m, &bm));
381:   PetscCall(PetscBLASIntCast(n, &bn));
382: #if defined(PETSC_USE_COMPLEX)
383:   PetscCall(PetscMalloc2(m * n, &Js, m * n, &Jinvs));
384:   for (i = 0; i < m * n; i++) Js[i] = J[i];
385: #else
386:   Js    = (PetscReal *)J;
387:   Jinvs = Jinv;
388: #endif
389:   if (m == n) {
390:     PetscBLASInt *pivots;
391:     PetscScalar  *W;

393:     PetscCall(PetscMalloc2(m, &pivots, m, &W));

395:     PetscCall(PetscArraycpy(Jinvs, Js, m * m));
396:     PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&bm, &bm, Jinvs, &bm, pivots, &info));
397:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
398:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&bm, Jinvs, &bm, pivots, W, &bm, &info));
399:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
400:     PetscCall(PetscFree2(pivots, W));
401:   } else if (m < n) {
402:     PetscScalar  *JJT;
403:     PetscBLASInt *pivots;
404:     PetscScalar  *W;

406:     PetscCall(PetscMalloc1(m * m, &JJT));
407:     PetscCall(PetscMalloc2(m, &pivots, m, &W));
408:     for (i = 0; i < m; i++) {
409:       for (j = 0; j < m; j++) {
410:         PetscScalar val = 0.;

412:         for (k = 0; k < n; k++) val += Js[i * n + k] * Js[j * n + k];
413:         JJT[i * m + j] = val;
414:       }
415:     }

417:     PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&bm, &bm, JJT, &bm, pivots, &info));
418:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
419:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&bm, JJT, &bm, pivots, W, &bm, &info));
420:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
421:     for (i = 0; i < n; i++) {
422:       for (j = 0; j < m; j++) {
423:         PetscScalar val = 0.;

425:         for (k = 0; k < m; k++) val += Js[k * n + i] * JJT[k * m + j];
426:         Jinvs[i * m + j] = val;
427:       }
428:     }
429:     PetscCall(PetscFree2(pivots, W));
430:     PetscCall(PetscFree(JJT));
431:   } else {
432:     PetscScalar  *JTJ;
433:     PetscBLASInt *pivots;
434:     PetscScalar  *W;

436:     PetscCall(PetscMalloc1(n * n, &JTJ));
437:     PetscCall(PetscMalloc2(n, &pivots, n, &W));
438:     for (i = 0; i < n; i++) {
439:       for (j = 0; j < n; j++) {
440:         PetscScalar val = 0.;

442:         for (k = 0; k < m; k++) val += Js[k * n + i] * Js[k * n + j];
443:         JTJ[i * n + j] = val;
444:       }
445:     }

447:     PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&bn, &bn, JTJ, &bn, pivots, &info));
448:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetrf %" PetscBLASInt_FMT, info);
449:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&bn, JTJ, &bn, pivots, W, &bn, &info));
450:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error returned from LAPACKgetri %" PetscBLASInt_FMT, info);
451:     for (i = 0; i < n; i++) {
452:       for (j = 0; j < m; j++) {
453:         PetscScalar val = 0.;

455:         for (k = 0; k < n; k++) val += JTJ[i * n + k] * Js[j * n + k];
456:         Jinvs[i * m + j] = val;
457:       }
458:     }
459:     PetscCall(PetscFree2(pivots, W));
460:     PetscCall(PetscFree(JTJ));
461:   }
462: #if defined(PETSC_USE_COMPLEX)
463:   for (i = 0; i < m * n; i++) Jinv[i] = PetscRealPart(Jinvs[i]);
464:   PetscCall(PetscFree2(Js, Jinvs));
465: #endif
466:   PetscFunctionReturn(PETSC_SUCCESS);
467: }

469: /*@
470:   PetscQuadraturePushForward - Push forward a quadrature functional under an affine transformation.

472:   Collective

474:   Input Parameters:
475: + q           - the quadrature functional
476: . imageDim    - the dimension of the image of the transformation
477: . origin      - a point in the original space
478: . originImage - the image of the origin under the transformation
479: . J           - the Jacobian of the image: an [imageDim x dim] matrix in row major order
480: - formDegree  - transform the quadrature weights as k-forms of this form degree (if the number of components is a multiple of (dim choose `formDegree`),
481:                 it is assumed that they represent multiple k-forms) [see `PetscDTAltVPullback()` for interpretation of `formDegree`]

483:   Output Parameter:
484: . Jinvstarq - a quadrature rule where each point is the image of a point in the original quadrature rule, and where the k-form weights have
485:   been pulled-back by the pseudoinverse of `J` to the k-form weights in the image space.

487:   Level: intermediate

489:   Note:
490:   The new quadrature rule will have a different number of components if spaces have different dimensions.
491:   For example, pushing a 2-form forward from a two dimensional space to a three dimensional space changes the number of components from 1 to 3.

493: .seealso: `PetscQuadrature`, `PetscDTAltVPullback()`, `PetscDTAltVPullbackMatrix()`
494: @*/
495: PetscErrorCode PetscQuadraturePushForward(PetscQuadrature q, PetscInt imageDim, const PetscReal origin[], const PetscReal originImage[], const PetscReal J[], PetscInt formDegree, PetscQuadrature *Jinvstarq)
496: {
497:   PetscInt         dim, Nc, imageNc, formSize, Ncopies, imageFormSize, Npoints, pt, i, j, c;
498:   const PetscReal *points;
499:   const PetscReal *weights;
500:   PetscReal       *imagePoints, *imageWeights;
501:   PetscReal       *Jinv;
502:   PetscReal       *Jinvstar;

504:   PetscFunctionBegin;
506:   PetscCheck(imageDim >= PetscAbsInt(formDegree), PetscObjectComm((PetscObject)q), PETSC_ERR_ARG_INCOMP, "Cannot represent a %" PetscInt_FMT "-form in %" PetscInt_FMT " dimensions", PetscAbsInt(formDegree), imageDim);
507:   PetscCall(PetscQuadratureGetData(q, &dim, &Nc, &Npoints, &points, &weights));
508:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(formDegree), &formSize));
509:   PetscCheck(Nc % formSize == 0, PetscObjectComm((PetscObject)q), PETSC_ERR_ARG_INCOMP, "Number of components %" PetscInt_FMT " is not a multiple of formSize %" PetscInt_FMT, Nc, formSize);
510:   Ncopies = Nc / formSize;
511:   PetscCall(PetscDTBinomialInt(imageDim, PetscAbsInt(formDegree), &imageFormSize));
512:   imageNc = Ncopies * imageFormSize;
513:   PetscCall(PetscMalloc1(Npoints * imageDim, &imagePoints));
514:   PetscCall(PetscMalloc1(Npoints * imageNc, &imageWeights));
515:   PetscCall(PetscMalloc2(imageDim * dim, &Jinv, formSize * imageFormSize, &Jinvstar));
516:   PetscCall(PetscDTJacobianInverse_Internal(imageDim, dim, J, Jinv));
517:   PetscCall(PetscDTAltVPullbackMatrix(imageDim, dim, Jinv, formDegree, Jinvstar));
518:   for (pt = 0; pt < Npoints; pt++) {
519:     const PetscReal *point      = PetscSafePointerPlusOffset(points, pt * dim);
520:     PetscReal       *imagePoint = &imagePoints[pt * imageDim];

522:     for (i = 0; i < imageDim; i++) {
523:       PetscReal val = originImage[i];

525:       for (j = 0; j < dim; j++) val += J[i * dim + j] * (point[j] - origin[j]);
526:       imagePoint[i] = val;
527:     }
528:     for (c = 0; c < Ncopies; c++) {
529:       const PetscReal *form      = &weights[pt * Nc + c * formSize];
530:       PetscReal       *imageForm = &imageWeights[pt * imageNc + c * imageFormSize];

532:       for (i = 0; i < imageFormSize; i++) {
533:         PetscReal val = 0.;

535:         for (j = 0; j < formSize; j++) val += Jinvstar[i * formSize + j] * form[j];
536:         imageForm[i] = val;
537:       }
538:     }
539:   }
540:   PetscCall(PetscQuadratureCreate(PetscObjectComm((PetscObject)q), Jinvstarq));
541:   PetscCall(PetscQuadratureSetData(*Jinvstarq, imageDim, imageNc, Npoints, imagePoints, imageWeights));
542:   PetscCall(PetscFree2(Jinv, Jinvstar));
543:   PetscFunctionReturn(PETSC_SUCCESS);
544: }

546: /*@C
547:   PetscQuadratureSetData - Sets the data defining the quadrature

549:   Not Collective

551:   Input Parameters:
552: + q       - The `PetscQuadrature` object
553: . dim     - The spatial dimension
554: . Nc      - The number of components
555: . npoints - The number of quadrature points
556: . points  - The coordinates of each quadrature point
557: - weights - The weight of each quadrature point

559:   Level: intermediate

561:   Note:
562:   `q` owns the references to points and weights, so they must be allocated using `PetscMalloc()` and the user should not free them.

564: .seealso: `PetscQuadrature`, `PetscQuadratureCreate()`, `PetscQuadratureGetData()`
565: @*/
566: PetscErrorCode PetscQuadratureSetData(PetscQuadrature q, PetscInt dim, PetscInt Nc, PetscInt npoints, const PetscReal points[], const PetscReal weights[])
567: {
568:   PetscFunctionBegin;
570:   if (dim >= 0) q->dim = dim;
571:   if (Nc >= 0) q->Nc = Nc;
572:   if (npoints >= 0) q->numPoints = npoints;
573:   if (points) {
574:     PetscAssertPointer(points, 5);
575:     q->points = points;
576:   }
577:   if (weights) {
578:     PetscAssertPointer(weights, 6);
579:     q->weights = weights;
580:   }
581:   PetscFunctionReturn(PETSC_SUCCESS);
582: }

584: static PetscErrorCode PetscQuadratureView_Ascii(PetscQuadrature quad, PetscViewer v)
585: {
586:   PetscInt          q, d, c;
587:   PetscViewerFormat format;

589:   PetscFunctionBegin;
590:   if (quad->Nc > 1)
591:     PetscCall(PetscViewerASCIIPrintf(v, "Quadrature on a %s of order %" PetscInt_FMT " on %" PetscInt_FMT " points (dim %" PetscInt_FMT ") with %" PetscInt_FMT " components\n", DMPolytopeTypes[quad->ct], quad->order, quad->numPoints, quad->dim, quad->Nc));
592:   else PetscCall(PetscViewerASCIIPrintf(v, "Quadrature on a %s of order %" PetscInt_FMT " on %" PetscInt_FMT " points (dim %" PetscInt_FMT ")\n", DMPolytopeTypes[quad->ct], quad->order, quad->numPoints, quad->dim));
593:   PetscCall(PetscViewerGetFormat(v, &format));
594:   if (format != PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);
595:   for (q = 0; q < quad->numPoints; ++q) {
596:     PetscCall(PetscViewerASCIIPrintf(v, "p%" PetscInt_FMT " (", q));
597:     PetscCall(PetscViewerASCIIUseTabs(v, PETSC_FALSE));
598:     for (d = 0; d < quad->dim; ++d) {
599:       if (d) PetscCall(PetscViewerASCIIPrintf(v, ", "));
600:       PetscCall(PetscViewerASCIIPrintf(v, "%+g", (double)quad->points[q * quad->dim + d]));
601:     }
602:     PetscCall(PetscViewerASCIIPrintf(v, ") "));
603:     if (quad->Nc > 1) PetscCall(PetscViewerASCIIPrintf(v, "w%" PetscInt_FMT " (", q));
604:     for (c = 0; c < quad->Nc; ++c) {
605:       if (c) PetscCall(PetscViewerASCIIPrintf(v, ", "));
606:       PetscCall(PetscViewerASCIIPrintf(v, "%+g", (double)quad->weights[q * quad->Nc + c]));
607:     }
608:     if (quad->Nc > 1) PetscCall(PetscViewerASCIIPrintf(v, ")"));
609:     PetscCall(PetscViewerASCIIPrintf(v, "\n"));
610:     PetscCall(PetscViewerASCIIUseTabs(v, PETSC_TRUE));
611:   }
612:   PetscFunctionReturn(PETSC_SUCCESS);
613: }

615: /*@
616:   PetscQuadratureView - View a `PetscQuadrature` object

618:   Collective

620:   Input Parameters:
621: + quad   - The `PetscQuadrature` object
622: - viewer - The `PetscViewer` object

624:   Level: beginner

626: .seealso: `PetscQuadrature`, `PetscViewer`, `PetscQuadratureCreate()`, `PetscQuadratureGetData()`
627: @*/
628: PetscErrorCode PetscQuadratureView(PetscQuadrature quad, PetscViewer viewer)
629: {
630:   PetscBool iascii;

632:   PetscFunctionBegin;
635:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)quad), &viewer));
636:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
637:   PetscCall(PetscViewerASCIIPushTab(viewer));
638:   if (iascii) PetscCall(PetscQuadratureView_Ascii(quad, viewer));
639:   PetscCall(PetscViewerASCIIPopTab(viewer));
640:   PetscFunctionReturn(PETSC_SUCCESS);
641: }

643: /*@C
644:   PetscQuadratureExpandComposite - Return a quadrature over the composite element, which has the original quadrature in each subelement

646:   Not Collective; No Fortran Support

648:   Input Parameters:
649: + q              - The original `PetscQuadrature`
650: . numSubelements - The number of subelements the original element is divided into
651: . v0             - An array of the initial points for each subelement
652: - jac            - An array of the Jacobian mappings from the reference to each subelement

654:   Output Parameter:
655: . qref - The dimension

657:   Level: intermediate

659:   Note:
660:   Together `v0` and `jac` define an affine mapping from the original reference element to each subelement

662: .seealso: `PetscQuadrature`, `PetscFECreate()`, `PetscSpaceGetDimension()`, `PetscDualSpaceGetDimension()`
663: @*/
664: PetscErrorCode PetscQuadratureExpandComposite(PetscQuadrature q, PetscInt numSubelements, const PetscReal v0[], const PetscReal jac[], PetscQuadrature *qref)
665: {
666:   DMPolytopeType   ct;
667:   const PetscReal *points, *weights;
668:   PetscReal       *pointsRef, *weightsRef;
669:   PetscInt         dim, Nc, order, npoints, npointsRef, c, p, cp, d, e;

671:   PetscFunctionBegin;
673:   PetscAssertPointer(v0, 3);
674:   PetscAssertPointer(jac, 4);
675:   PetscAssertPointer(qref, 5);
676:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, qref));
677:   PetscCall(PetscQuadratureGetCellType(q, &ct));
678:   PetscCall(PetscQuadratureGetOrder(q, &order));
679:   PetscCall(PetscQuadratureGetData(q, &dim, &Nc, &npoints, &points, &weights));
680:   npointsRef = npoints * numSubelements;
681:   PetscCall(PetscMalloc1(npointsRef * dim, &pointsRef));
682:   PetscCall(PetscMalloc1(npointsRef * Nc, &weightsRef));
683:   for (c = 0; c < numSubelements; ++c) {
684:     for (p = 0; p < npoints; ++p) {
685:       for (d = 0; d < dim; ++d) {
686:         pointsRef[(c * npoints + p) * dim + d] = v0[c * dim + d];
687:         for (e = 0; e < dim; ++e) pointsRef[(c * npoints + p) * dim + d] += jac[(c * dim + d) * dim + e] * (points[p * dim + e] + 1.0);
688:       }
689:       /* Could also use detJ here */
690:       for (cp = 0; cp < Nc; ++cp) weightsRef[(c * npoints + p) * Nc + cp] = weights[p * Nc + cp] / numSubelements;
691:     }
692:   }
693:   PetscCall(PetscQuadratureSetCellType(*qref, ct));
694:   PetscCall(PetscQuadratureSetOrder(*qref, order));
695:   PetscCall(PetscQuadratureSetData(*qref, dim, Nc, npointsRef, pointsRef, weightsRef));
696:   PetscFunctionReturn(PETSC_SUCCESS);
697: }

699: /* Compute the coefficients for the Jacobi polynomial recurrence,

701:    J^{a,b}_n(x) = (cnm1 + cnm1x * x) * J^{a,b}_{n-1}(x) - cnm2 * J^{a,b}_{n-2}(x).
702:  */
703: #define PetscDTJacobiRecurrence_Internal(n, a, b, cnm1, cnm1x, cnm2) \
704:   do { \
705:     PetscReal _a = (a); \
706:     PetscReal _b = (b); \
707:     PetscReal _n = (n); \
708:     if (n == 1) { \
709:       (cnm1)  = (_a - _b) * 0.5; \
710:       (cnm1x) = (_a + _b + 2.) * 0.5; \
711:       (cnm2)  = 0.; \
712:     } else { \
713:       PetscReal _2n  = _n + _n; \
714:       PetscReal _d   = (_2n * (_n + _a + _b) * (_2n + _a + _b - 2)); \
715:       PetscReal _n1  = (_2n + _a + _b - 1.) * (_a * _a - _b * _b); \
716:       PetscReal _n1x = (_2n + _a + _b - 1.) * (_2n + _a + _b) * (_2n + _a + _b - 2); \
717:       PetscReal _n2  = 2. * ((_n + _a - 1.) * (_n + _b - 1.) * (_2n + _a + _b)); \
718:       (cnm1)         = _n1 / _d; \
719:       (cnm1x)        = _n1x / _d; \
720:       (cnm2)         = _n2 / _d; \
721:     } \
722:   } while (0)

724: /*@
725:   PetscDTJacobiNorm - Compute the weighted L2 norm of a Jacobi polynomial.

727:   $\| P^{\alpha,\beta}_n \|_{\alpha,\beta}^2 = \int_{-1}^1 (1 + x)^{\alpha} (1 - x)^{\beta} P^{\alpha,\beta}_n (x)^2 dx.$

729:   Input Parameters:
730: + alpha - the left exponent > -1
731: . beta  - the right exponent > -1
732: - n     - the polynomial degree

734:   Output Parameter:
735: . norm - the weighted L2 norm

737:   Level: beginner

739: .seealso: `PetscQuadrature`, `PetscDTJacobiEval()`
740: @*/
741: PetscErrorCode PetscDTJacobiNorm(PetscReal alpha, PetscReal beta, PetscInt n, PetscReal *norm)
742: {
743:   PetscReal twoab1;
744:   PetscReal gr;

746:   PetscFunctionBegin;
747:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Exponent alpha %g <= -1. invalid", (double)alpha);
748:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Exponent beta %g <= -1. invalid", (double)beta);
749:   PetscCheck(n >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "n %" PetscInt_FMT " < 0 invalid", n);
750:   twoab1 = PetscPowReal(2., alpha + beta + 1.);
751: #if defined(PETSC_HAVE_LGAMMA)
752:   if (!n) {
753:     gr = PetscExpReal(PetscLGamma(alpha + 1.) + PetscLGamma(beta + 1.) - PetscLGamma(alpha + beta + 2.));
754:   } else {
755:     gr = PetscExpReal(PetscLGamma(n + alpha + 1.) + PetscLGamma(n + beta + 1.) - (PetscLGamma(n + 1.) + PetscLGamma(n + alpha + beta + 1.))) / (n + n + alpha + beta + 1.);
756:   }
757: #else
758:   {
759:     PetscInt alphai = (PetscInt)alpha;
760:     PetscInt betai  = (PetscInt)beta;
761:     PetscInt i;

763:     gr = n ? (1. / (n + n + alpha + beta + 1.)) : 1.;
764:     if ((PetscReal)alphai == alpha) {
765:       if (!n) {
766:         for (i = 0; i < alphai; i++) gr *= (i + 1.) / (beta + i + 1.);
767:         gr /= (alpha + beta + 1.);
768:       } else {
769:         for (i = 0; i < alphai; i++) gr *= (n + i + 1.) / (n + beta + i + 1.);
770:       }
771:     } else if ((PetscReal)betai == beta) {
772:       if (!n) {
773:         for (i = 0; i < betai; i++) gr *= (i + 1.) / (alpha + i + 2.);
774:         gr /= (alpha + beta + 1.);
775:       } else {
776:         for (i = 0; i < betai; i++) gr *= (n + i + 1.) / (n + alpha + i + 1.);
777:       }
778:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "lgamma() - math routine is unavailable.");
779:   }
780: #endif
781:   *norm = PetscSqrtReal(twoab1 * gr);
782:   PetscFunctionReturn(PETSC_SUCCESS);
783: }

785: static PetscErrorCode PetscDTJacobiEval_Internal(PetscInt npoints, PetscReal a, PetscReal b, PetscInt k, const PetscReal *points, PetscInt ndegree, const PetscInt *degrees, PetscReal *p)
786: {
787:   PetscReal ak, bk;
788:   PetscReal abk1;
789:   PetscInt  i, l, maxdegree;

791:   PetscFunctionBegin;
792:   maxdegree = degrees[ndegree - 1] - k;
793:   ak        = a + k;
794:   bk        = b + k;
795:   abk1      = a + b + k + 1.;
796:   if (maxdegree < 0) {
797:     for (i = 0; i < npoints; i++)
798:       for (l = 0; l < ndegree; l++) p[i * ndegree + l] = 0.;
799:     PetscFunctionReturn(PETSC_SUCCESS);
800:   }
801:   for (i = 0; i < npoints; i++) {
802:     PetscReal pm1, pm2, x;
803:     PetscReal cnm1, cnm1x, cnm2;
804:     PetscInt  j, m;

806:     x   = points[i];
807:     pm2 = 1.;
808:     PetscDTJacobiRecurrence_Internal(1, ak, bk, cnm1, cnm1x, cnm2);
809:     pm1 = (cnm1 + cnm1x * x);
810:     l   = 0;
811:     while (l < ndegree && degrees[l] - k < 0) p[l++] = 0.;
812:     while (l < ndegree && degrees[l] - k == 0) {
813:       p[l] = pm2;
814:       for (m = 0; m < k; m++) p[l] *= (abk1 + m) * 0.5;
815:       l++;
816:     }
817:     while (l < ndegree && degrees[l] - k == 1) {
818:       p[l] = pm1;
819:       for (m = 0; m < k; m++) p[l] *= (abk1 + 1 + m) * 0.5;
820:       l++;
821:     }
822:     for (j = 2; j <= maxdegree; j++) {
823:       PetscReal pp;

825:       PetscDTJacobiRecurrence_Internal(j, ak, bk, cnm1, cnm1x, cnm2);
826:       pp  = (cnm1 + cnm1x * x) * pm1 - cnm2 * pm2;
827:       pm2 = pm1;
828:       pm1 = pp;
829:       while (l < ndegree && degrees[l] - k == j) {
830:         p[l] = pp;
831:         for (m = 0; m < k; m++) p[l] *= (abk1 + j + m) * 0.5;
832:         l++;
833:       }
834:     }
835:     p += ndegree;
836:   }
837:   PetscFunctionReturn(PETSC_SUCCESS);
838: }

840: /*@
841:   PetscDTJacobiEvalJet - Evaluate the jet (function and derivatives) of the Jacobi polynomials basis up to a given degree.

843:   Input Parameters:
844: + alpha   - the left exponent of the weight
845: . beta    - the right exponetn of the weight
846: . npoints - the number of points to evaluate the polynomials at
847: . points  - [npoints] array of point coordinates
848: . degree  - the maximm degree polynomial space to evaluate, (degree + 1) will be evaluated total.
849: - k       - the maximum derivative to evaluate in the jet, (k + 1) will be evaluated total.

851:   Output Parameter:
852: . p - an array containing the evaluations of the Jacobi polynomials's jets on the points.  the size is (degree + 1) x
853:       (k + 1) x npoints, which also describes the order of the dimensions of this three-dimensional array: the first
854:       (slowest varying) dimension is polynomial degree; the second dimension is derivative order; the third (fastest
855:       varying) dimension is the index of the evaluation point.

857:   Level: advanced

859:   Notes:
860:   The Jacobi polynomials with indices $\alpha$ and $\beta$ are orthogonal with respect to the
861:   weighted inner product $\langle f, g \rangle = \int_{-1}^1 (1+x)^{\alpha} (1-x)^{\beta} f(x)
862:   g(x) dx$.

864: .seealso: `PetscDTJacobiEval()`, `PetscDTPKDEvalJet()`
865: @*/
866: PetscErrorCode PetscDTJacobiEvalJet(PetscReal alpha, PetscReal beta, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt k, PetscReal p[])
867: {
868:   PetscInt   i, j, l;
869:   PetscInt  *degrees;
870:   PetscReal *psingle;

872:   PetscFunctionBegin;
873:   if (degree == 0) {
874:     PetscInt zero = 0;

876:     for (i = 0; i <= k; i++) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, i, points, 1, &zero, &p[i * npoints]));
877:     PetscFunctionReturn(PETSC_SUCCESS);
878:   }
879:   PetscCall(PetscMalloc1(degree + 1, &degrees));
880:   PetscCall(PetscMalloc1((degree + 1) * npoints, &psingle));
881:   for (i = 0; i <= degree; i++) degrees[i] = i;
882:   for (i = 0; i <= k; i++) {
883:     PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, i, points, degree + 1, degrees, psingle));
884:     for (j = 0; j <= degree; j++) {
885:       for (l = 0; l < npoints; l++) p[(j * (k + 1) + i) * npoints + l] = psingle[l * (degree + 1) + j];
886:     }
887:   }
888:   PetscCall(PetscFree(psingle));
889:   PetscCall(PetscFree(degrees));
890:   PetscFunctionReturn(PETSC_SUCCESS);
891: }

893: /*@
894:   PetscDTJacobiEval - evaluate Jacobi polynomials for the weight function $(1.+x)^{\alpha} (1.-x)^{\beta}$ at a set of points
895:   at points

897:   Not Collective

899:   Input Parameters:
900: + npoints - number of spatial points to evaluate at
901: . alpha   - the left exponent > -1
902: . beta    - the right exponent > -1
903: . points  - array of locations to evaluate at
904: . ndegree - number of basis degrees to evaluate
905: - degrees - sorted array of degrees to evaluate

907:   Output Parameters:
908: + B  - row-oriented basis evaluation matrix B[point*ndegree + degree] (dimension npoints*ndegrees, allocated by caller) (or `NULL`)
909: . D  - row-oriented derivative evaluation matrix (or `NULL`)
910: - D2 - row-oriented second derivative evaluation matrix (or `NULL`)

912:   Level: intermediate

914: .seealso: `PetscDTGaussQuadrature()`, `PetscDTLegendreEval()`
915: @*/
916: PetscErrorCode PetscDTJacobiEval(PetscInt npoints, PetscReal alpha, PetscReal beta, const PetscReal *points, PetscInt ndegree, const PetscInt *degrees, PeOp PetscReal B[], PeOp PetscReal D[], PeOp PetscReal D2[])
917: {
918:   PetscFunctionBegin;
919:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "alpha must be > -1.");
920:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "beta must be > -1.");
921:   if (!npoints || !ndegree) PetscFunctionReturn(PETSC_SUCCESS);
922:   if (B) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, 0, points, ndegree, degrees, B));
923:   if (D) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, 1, points, ndegree, degrees, D));
924:   if (D2) PetscCall(PetscDTJacobiEval_Internal(npoints, alpha, beta, 2, points, ndegree, degrees, D2));
925:   PetscFunctionReturn(PETSC_SUCCESS);
926: }

928: /*@
929:   PetscDTLegendreEval - evaluate Legendre polynomials at points

931:   Not Collective

933:   Input Parameters:
934: + npoints - number of spatial points to evaluate at
935: . points  - array of locations to evaluate at
936: . ndegree - number of basis degrees to evaluate
937: - degrees - sorted array of degrees to evaluate

939:   Output Parameters:
940: + B  - row-oriented basis evaluation matrix B[point*ndegree + degree] (dimension `npoints`*`ndegrees`, allocated by caller) (or `NULL`)
941: . D  - row-oriented derivative evaluation matrix (or `NULL`)
942: - D2 - row-oriented second derivative evaluation matrix (or `NULL`)

944:   Level: intermediate

946: .seealso: `PetscDTGaussQuadrature()`
947: @*/
948: PetscErrorCode PetscDTLegendreEval(PetscInt npoints, const PetscReal *points, PetscInt ndegree, const PetscInt *degrees, PeOp PetscReal B[], PeOp PetscReal D[], PeOp PetscReal D2[])
949: {
950:   PetscFunctionBegin;
951:   PetscCall(PetscDTJacobiEval(npoints, 0., 0., points, ndegree, degrees, B, D, D2));
952:   PetscFunctionReturn(PETSC_SUCCESS);
953: }

955: /*@
956:   PetscDTIndexToGradedOrder - convert an index into a tuple of monomial degrees in a graded order (that is, if the degree sum of tuple x is less than the degree sum of tuple y,
957:   then the index of x is smaller than the index of y)

959:   Input Parameters:
960: + len   - the desired length of the degree tuple
961: - index - the index to convert: should be >= 0

963:   Output Parameter:
964: . degtup - filled with a tuple of degrees

966:   Level: beginner

968:   Note:
969:   For two tuples x and y with the same degree sum, partial degree sums over the final elements of the tuples
970:   acts as a tiebreaker.  For example, (2, 1, 1) and (1, 2, 1) have the same degree sum, but the degree sum over the
971:   last two elements is smaller for the former, so (2, 1, 1) < (1, 2, 1).

973: .seealso: `PetscDTGradedOrderToIndex()`
974: @*/
975: PetscErrorCode PetscDTIndexToGradedOrder(PetscInt len, PetscInt index, PetscInt degtup[])
976: {
977:   PetscInt i, total;
978:   PetscInt sum;

980:   PetscFunctionBeginHot;
981:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
982:   PetscCheck(index >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "index must be non-negative");
983:   total = 1;
984:   sum   = 0;
985:   while (index >= total) {
986:     index -= total;
987:     total = (total * (len + sum)) / (sum + 1);
988:     sum++;
989:   }
990:   for (i = 0; i < len; i++) {
991:     PetscInt c;

993:     degtup[i] = sum;
994:     for (c = 0, total = 1; c < sum; c++) {
995:       /* going into the loop, total is the number of way to have a tuple of sum exactly c with length len - 1 - i */
996:       if (index < total) break;
997:       index -= total;
998:       total = (total * (len - 1 - i + c)) / (c + 1);
999:       degtup[i]--;
1000:     }
1001:     sum -= degtup[i];
1002:   }
1003:   PetscFunctionReturn(PETSC_SUCCESS);
1004: }

1006: /*@
1007:   PetscDTGradedOrderToIndex - convert a tuple into an index in a graded order, the inverse of `PetscDTIndexToGradedOrder()`.

1009:   Input Parameters:
1010: + len    - the length of the degree tuple
1011: - degtup - tuple with this length

1013:   Output Parameter:
1014: . index - index in graded order: >= 0

1016:   Level: beginner

1018:   Note:
1019:   For two tuples x and y with the same degree sum, partial degree sums over the final elements of the tuples
1020:   acts as a tiebreaker.  For example, (2, 1, 1) and (1, 2, 1) have the same degree sum, but the degree sum over the
1021:   last two elements is smaller for the former, so (2, 1, 1) < (1, 2, 1).

1023: .seealso: `PetscDTIndexToGradedOrder()`
1024: @*/
1025: PetscErrorCode PetscDTGradedOrderToIndex(PetscInt len, const PetscInt degtup[], PetscInt *index)
1026: {
1027:   PetscInt i, idx, sum, total;

1029:   PetscFunctionBeginHot;
1030:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
1031:   for (i = 0, sum = 0; i < len; i++) sum += degtup[i];
1032:   idx   = 0;
1033:   total = 1;
1034:   for (i = 0; i < sum; i++) {
1035:     idx += total;
1036:     total = (total * (len + i)) / (i + 1);
1037:   }
1038:   for (i = 0; i < len - 1; i++) {
1039:     PetscInt c;

1041:     total = 1;
1042:     sum -= degtup[i];
1043:     for (c = 0; c < sum; c++) {
1044:       idx += total;
1045:       total = (total * (len - 1 - i + c)) / (c + 1);
1046:     }
1047:   }
1048:   *index = idx;
1049:   PetscFunctionReturn(PETSC_SUCCESS);
1050: }

1052: static PetscBool PKDCite       = PETSC_FALSE;
1053: const char       PKDCitation[] = "@article{Kirby2010,\n"
1054:                                  "  title={Singularity-free evaluation of collapsed-coordinate orthogonal polynomials},\n"
1055:                                  "  author={Kirby, Robert C},\n"
1056:                                  "  journal={ACM Transactions on Mathematical Software (TOMS)},\n"
1057:                                  "  volume={37},\n"
1058:                                  "  number={1},\n"
1059:                                  "  pages={1--16},\n"
1060:                                  "  year={2010},\n"
1061:                                  "  publisher={ACM New York, NY, USA}\n}\n";

1063: /*@
1064:   PetscDTPKDEvalJet - Evaluate the jet (function and derivatives) of the Proriol-Koornwinder-Dubiner (PKD) basis for
1065:   the space of polynomials up to a given degree.

1067:   Input Parameters:
1068: + dim     - the number of variables in the multivariate polynomials
1069: . npoints - the number of points to evaluate the polynomials at
1070: . points  - [npoints x dim] array of point coordinates
1071: . degree  - the degree (sum of degrees on the variables in a monomial) of the polynomial space to evaluate.  There are ((dim + degree) choose dim) polynomials in this space.
1072: - k       - the maximum order partial derivative to evaluate in the jet.  There are (dim + k choose dim) partial derivatives
1073:             in the jet.  Choosing k = 0 means to evaluate just the function and no derivatives

1075:   Output Parameter:
1076: . p - an array containing the evaluations of the PKD polynomials' jets on the points.  The size is ((dim + degree)
1077:       choose dim) x ((dim + k) choose dim) x npoints, which also describes the order of the dimensions of this
1078:       three-dimensional array: the first (slowest varying) dimension is basis function index; the second dimension is jet
1079:       index; the third (fastest varying) dimension is the index of the evaluation point.

1081:   Level: advanced

1083:   Notes:
1084:   The PKD basis is L2-orthonormal on the biunit simplex (which is used as the reference element
1085:   for finite elements in PETSc), which makes it a stable basis to use for evaluating
1086:   polynomials in that domain.

1088:   The ordering of the basis functions, and the ordering of the derivatives in the jet, both follow the graded
1089:   ordering of `PetscDTIndexToGradedOrder()` and `PetscDTGradedOrderToIndex()`.  For example, in 3D, the polynomial with
1090:   leading monomial x^2,y^0,z^1, which has degree tuple (2,0,1), which by `PetscDTGradedOrderToIndex()` has index 12 (it is the 13th basis function in the space);
1091:   the partial derivative $\partial_x \partial_z$ has order tuple (1,0,1), appears at index 6 in the jet (it is the 7th partial derivative in the jet).

1093:   The implementation uses Kirby's singularity-free evaluation algorithm, <https://doi.org/10.1145/1644001.1644006>.

1095: .seealso: `PetscDTGradedOrderToIndex()`, `PetscDTIndexToGradedOrder()`, `PetscDTJacobiEvalJet()`
1096: @*/
1097: PetscErrorCode PetscDTPKDEvalJet(PetscInt dim, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt k, PetscReal p[])
1098: {
1099:   PetscInt   degidx, kidx, d, pt;
1100:   PetscInt   Nk, Ndeg;
1101:   PetscInt  *ktup, *degtup;
1102:   PetscReal *scales, initscale, scaleexp;

1104:   PetscFunctionBegin;
1105:   PetscCall(PetscCitationsRegister(PKDCitation, &PKDCite));
1106:   PetscCall(PetscDTBinomialInt(dim + k, k, &Nk));
1107:   PetscCall(PetscDTBinomialInt(degree + dim, degree, &Ndeg));
1108:   PetscCall(PetscMalloc2(dim, &degtup, dim, &ktup));
1109:   PetscCall(PetscMalloc1(Ndeg, &scales));
1110:   initscale = 1.;
1111:   if (dim > 1) {
1112:     PetscCall(PetscDTBinomial(dim, 2, &scaleexp));
1113:     initscale = PetscPowReal(2., scaleexp * 0.5);
1114:   }
1115:   for (degidx = 0; degidx < Ndeg; degidx++) {
1116:     PetscInt  e, i;
1117:     PetscInt  m1idx = -1, m2idx = -1;
1118:     PetscInt  n;
1119:     PetscInt  degsum;
1120:     PetscReal alpha;
1121:     PetscReal cnm1, cnm1x, cnm2;
1122:     PetscReal norm;

1124:     PetscCall(PetscDTIndexToGradedOrder(dim, degidx, degtup));
1125:     for (d = dim - 1; d >= 0; d--)
1126:       if (degtup[d]) break;
1127:     if (d < 0) { /* constant is 1 everywhere, all derivatives are zero */
1128:       scales[degidx] = initscale;
1129:       for (e = 0; e < dim; e++) {
1130:         PetscCall(PetscDTJacobiNorm(e, 0., 0, &norm));
1131:         scales[degidx] /= norm;
1132:       }
1133:       for (i = 0; i < npoints; i++) p[degidx * Nk * npoints + i] = 1.;
1134:       for (i = 0; i < (Nk - 1) * npoints; i++) p[(degidx * Nk + 1) * npoints + i] = 0.;
1135:       continue;
1136:     }
1137:     n = degtup[d];
1138:     degtup[d]--;
1139:     PetscCall(PetscDTGradedOrderToIndex(dim, degtup, &m1idx));
1140:     if (degtup[d] > 0) {
1141:       degtup[d]--;
1142:       PetscCall(PetscDTGradedOrderToIndex(dim, degtup, &m2idx));
1143:       degtup[d]++;
1144:     }
1145:     degtup[d]++;
1146:     for (e = 0, degsum = 0; e < d; e++) degsum += degtup[e];
1147:     alpha = 2 * degsum + d;
1148:     PetscDTJacobiRecurrence_Internal(n, alpha, 0., cnm1, cnm1x, cnm2);

1150:     scales[degidx] = initscale;
1151:     for (e = 0, degsum = 0; e < dim; e++) {
1152:       PetscInt  f;
1153:       PetscReal ealpha;
1154:       PetscReal enorm;

1156:       ealpha = 2 * degsum + e;
1157:       for (f = 0; f < degsum; f++) scales[degidx] *= 2.;
1158:       PetscCall(PetscDTJacobiNorm(ealpha, 0., degtup[e], &enorm));
1159:       scales[degidx] /= enorm;
1160:       degsum += degtup[e];
1161:     }

1163:     for (pt = 0; pt < npoints; pt++) {
1164:       /* compute the multipliers */
1165:       PetscReal thetanm1, thetanm1x, thetanm2;

1167:       thetanm1x = dim - (d + 1) + 2. * points[pt * dim + d];
1168:       for (e = d + 1; e < dim; e++) thetanm1x += points[pt * dim + e];
1169:       thetanm1x *= 0.5;
1170:       thetanm1 = (2. - (dim - (d + 1)));
1171:       for (e = d + 1; e < dim; e++) thetanm1 -= points[pt * dim + e];
1172:       thetanm1 *= 0.5;
1173:       thetanm2 = thetanm1 * thetanm1;

1175:       for (kidx = 0; kidx < Nk; kidx++) {
1176:         PetscInt f;

1178:         PetscCall(PetscDTIndexToGradedOrder(dim, kidx, ktup));
1179:         /* first sum in the same derivative terms */
1180:         p[(degidx * Nk + kidx) * npoints + pt] = (cnm1 * thetanm1 + cnm1x * thetanm1x) * p[(m1idx * Nk + kidx) * npoints + pt];
1181:         if (m2idx >= 0) p[(degidx * Nk + kidx) * npoints + pt] -= cnm2 * thetanm2 * p[(m2idx * Nk + kidx) * npoints + pt];

1183:         for (f = d; f < dim; f++) {
1184:           PetscInt km1idx, mplty = ktup[f];

1186:           if (!mplty) continue;
1187:           ktup[f]--;
1188:           PetscCall(PetscDTGradedOrderToIndex(dim, ktup, &km1idx));

1190:           /* the derivative of  cnm1x * thetanm1x  wrt x variable f is 0.5 * cnm1x if f > d otherwise it is cnm1x */
1191:           /* the derivative of  cnm1  * thetanm1   wrt x variable f is 0 if f == d, otherwise it is -0.5 * cnm1 */
1192:           /* the derivative of -cnm2  * thetanm2   wrt x variable f is 0 if f == d, otherwise it is cnm2 * thetanm1 */
1193:           if (f > d) {
1194:             PetscInt f2;

1196:             p[(degidx * Nk + kidx) * npoints + pt] += mplty * 0.5 * (cnm1x - cnm1) * p[(m1idx * Nk + km1idx) * npoints + pt];
1197:             if (m2idx >= 0) {
1198:               p[(degidx * Nk + kidx) * npoints + pt] += mplty * cnm2 * thetanm1 * p[(m2idx * Nk + km1idx) * npoints + pt];
1199:               /* second derivatives of -cnm2  * thetanm2   wrt x variable f,f2 is like - 0.5 * cnm2 */
1200:               for (f2 = f; f2 < dim; f2++) {
1201:                 PetscInt km2idx, mplty2 = ktup[f2];
1202:                 PetscInt factor;

1204:                 if (!mplty2) continue;
1205:                 ktup[f2]--;
1206:                 PetscCall(PetscDTGradedOrderToIndex(dim, ktup, &km2idx));

1208:                 factor = mplty * mplty2;
1209:                 if (f == f2) factor /= 2;
1210:                 p[(degidx * Nk + kidx) * npoints + pt] -= 0.5 * factor * cnm2 * p[(m2idx * Nk + km2idx) * npoints + pt];
1211:                 ktup[f2]++;
1212:               }
1213:             }
1214:           } else {
1215:             p[(degidx * Nk + kidx) * npoints + pt] += mplty * cnm1x * p[(m1idx * Nk + km1idx) * npoints + pt];
1216:           }
1217:           ktup[f]++;
1218:         }
1219:       }
1220:     }
1221:   }
1222:   for (degidx = 0; degidx < Ndeg; degidx++) {
1223:     PetscReal scale = scales[degidx];
1224:     PetscInt  i;

1226:     for (i = 0; i < Nk * npoints; i++) p[degidx * Nk * npoints + i] *= scale;
1227:   }
1228:   PetscCall(PetscFree(scales));
1229:   PetscCall(PetscFree2(degtup, ktup));
1230:   PetscFunctionReturn(PETSC_SUCCESS);
1231: }

1233: /*@
1234:   PetscDTPTrimmedSize - The size of the trimmed polynomial space of k-forms with a given degree and form degree,
1235:   which can be evaluated in `PetscDTPTrimmedEvalJet()`.

1237:   Input Parameters:
1238: + dim        - the number of variables in the multivariate polynomials
1239: . degree     - the degree (sum of degrees on the variables in a monomial) of the trimmed polynomial space.
1240: - formDegree - the degree of the form

1242:   Output Parameter:
1243: . size - The number ((`dim` + `degree`) choose (`dim` + `formDegree`)) x ((`degree` + `formDegree` - 1) choose (`formDegree`))

1245:   Level: advanced

1247: .seealso: `PetscDTPTrimmedEvalJet()`
1248: @*/
1249: PetscErrorCode PetscDTPTrimmedSize(PetscInt dim, PetscInt degree, PetscInt formDegree, PetscInt *size)
1250: {
1251:   PetscInt Nrk, Nbpt; // number of trimmed polynomials

1253:   PetscFunctionBegin;
1254:   formDegree = PetscAbsInt(formDegree);
1255:   PetscCall(PetscDTBinomialInt(degree + dim, degree + formDegree, &Nbpt));
1256:   PetscCall(PetscDTBinomialInt(degree + formDegree - 1, formDegree, &Nrk));
1257:   Nbpt *= Nrk;
1258:   *size = Nbpt;
1259:   PetscFunctionReturn(PETSC_SUCCESS);
1260: }

1262: /* there was a reference implementation based on section 4.4 of Arnold, Falk & Winther (acta numerica, 2006), but it
1263:  * was inferior to this implementation */
1264: static PetscErrorCode PetscDTPTrimmedEvalJet_Internal(PetscInt dim, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt formDegree, PetscInt jetDegree, PetscReal p[])
1265: {
1266:   PetscInt  formDegreeOrig = formDegree;
1267:   PetscBool formNegative   = (formDegreeOrig < 0) ? PETSC_TRUE : PETSC_FALSE;

1269:   PetscFunctionBegin;
1270:   formDegree = PetscAbsInt(formDegreeOrig);
1271:   if (formDegree == 0) {
1272:     PetscCall(PetscDTPKDEvalJet(dim, npoints, points, degree, jetDegree, p));
1273:     PetscFunctionReturn(PETSC_SUCCESS);
1274:   }
1275:   if (formDegree == dim) {
1276:     PetscCall(PetscDTPKDEvalJet(dim, npoints, points, degree - 1, jetDegree, p));
1277:     PetscFunctionReturn(PETSC_SUCCESS);
1278:   }
1279:   PetscInt Nbpt;
1280:   PetscCall(PetscDTPTrimmedSize(dim, degree, formDegree, &Nbpt));
1281:   PetscInt Nf;
1282:   PetscCall(PetscDTBinomialInt(dim, formDegree, &Nf));
1283:   PetscInt Nk;
1284:   PetscCall(PetscDTBinomialInt(dim + jetDegree, dim, &Nk));
1285:   PetscCall(PetscArrayzero(p, Nbpt * Nf * Nk * npoints));

1287:   PetscInt Nbpm1; // number of scalar polynomials up to degree - 1;
1288:   PetscCall(PetscDTBinomialInt(dim + degree - 1, dim, &Nbpm1));
1289:   PetscReal *p_scalar;
1290:   PetscCall(PetscMalloc1(Nbpm1 * Nk * npoints, &p_scalar));
1291:   PetscCall(PetscDTPKDEvalJet(dim, npoints, points, degree - 1, jetDegree, p_scalar));
1292:   PetscInt total = 0;
1293:   // First add the full polynomials up to degree - 1 into the basis: take the scalar
1294:   // and copy one for each form component
1295:   for (PetscInt i = 0; i < Nbpm1; i++) {
1296:     const PetscReal *src = &p_scalar[i * Nk * npoints];
1297:     for (PetscInt f = 0; f < Nf; f++) {
1298:       PetscReal *dest = &p[(total++ * Nf + f) * Nk * npoints];
1299:       PetscCall(PetscArraycpy(dest, src, Nk * npoints));
1300:     }
1301:   }
1302:   PetscInt *form_atoms;
1303:   PetscCall(PetscMalloc1(formDegree + 1, &form_atoms));
1304:   // construct the interior product pattern
1305:   PetscInt (*pattern)[3];
1306:   PetscInt Nf1; // number of formDegree + 1 forms
1307:   PetscCall(PetscDTBinomialInt(dim, formDegree + 1, &Nf1));
1308:   PetscInt nnz = Nf1 * (formDegree + 1);
1309:   PetscCall(PetscMalloc1(Nf1 * (formDegree + 1), &pattern));
1310:   PetscCall(PetscDTAltVInteriorPattern(dim, formDegree + 1, pattern));
1311:   PetscReal centroid = (1. - dim) / (dim + 1.);
1312:   PetscInt *deriv;
1313:   PetscCall(PetscMalloc1(dim, &deriv));
1314:   for (PetscInt d = dim; d >= formDegree + 1; d--) {
1315:     PetscInt Nfd1; // number of formDegree + 1 forms in dimension d that include dx_0
1316:                    // (equal to the number of formDegree forms in dimension d-1)
1317:     PetscCall(PetscDTBinomialInt(d - 1, formDegree, &Nfd1));
1318:     // The number of homogeneous (degree-1) scalar polynomials in d variables
1319:     PetscInt Nh;
1320:     PetscCall(PetscDTBinomialInt(d - 1 + degree - 1, d - 1, &Nh));
1321:     const PetscReal *h_scalar = &p_scalar[(Nbpm1 - Nh) * Nk * npoints];
1322:     for (PetscInt b = 0; b < Nh; b++) {
1323:       const PetscReal *h_s = &h_scalar[b * Nk * npoints];
1324:       for (PetscInt f = 0; f < Nfd1; f++) {
1325:         // construct all formDegree+1 forms that start with dx_(dim - d) /\ ...
1326:         form_atoms[0] = dim - d;
1327:         PetscCall(PetscDTEnumSubset(d - 1, formDegree, f, &form_atoms[1]));
1328:         for (PetscInt i = 0; i < formDegree; i++) form_atoms[1 + i] += form_atoms[0] + 1;
1329:         PetscInt f_ind; // index of the resulting form
1330:         PetscCall(PetscDTSubsetIndex(dim, formDegree + 1, form_atoms, &f_ind));
1331:         PetscReal *p_f = &p[total++ * Nf * Nk * npoints];
1332:         for (PetscInt nz = 0; nz < nnz; nz++) {
1333:           PetscInt  i     = pattern[nz][0]; // formDegree component
1334:           PetscInt  j     = pattern[nz][1]; // (formDegree + 1) component
1335:           PetscInt  v     = pattern[nz][2]; // coordinate component
1336:           PetscReal scale = v < 0 ? -1. : 1.;

1338:           i     = formNegative ? (Nf - 1 - i) : i;
1339:           scale = (formNegative && (i & 1)) ? -scale : scale;
1340:           v     = v < 0 ? -(v + 1) : v;
1341:           if (j != f_ind) continue;
1342:           PetscReal *p_i = &p_f[i * Nk * npoints];
1343:           for (PetscInt jet = 0; jet < Nk; jet++) {
1344:             const PetscReal *h_jet = &h_s[jet * npoints];
1345:             PetscReal       *p_jet = &p_i[jet * npoints];

1347:             for (PetscInt pt = 0; pt < npoints; pt++) p_jet[pt] += scale * h_jet[pt] * (points[pt * dim + v] - centroid);
1348:             PetscCall(PetscDTIndexToGradedOrder(dim, jet, deriv));
1349:             deriv[v]++;
1350:             PetscReal mult = deriv[v];
1351:             PetscInt  l;
1352:             PetscCall(PetscDTGradedOrderToIndex(dim, deriv, &l));
1353:             if (l >= Nk) continue;
1354:             p_jet = &p_i[l * npoints];
1355:             for (PetscInt pt = 0; pt < npoints; pt++) p_jet[pt] += scale * mult * h_jet[pt];
1356:             deriv[v]--;
1357:           }
1358:         }
1359:       }
1360:     }
1361:   }
1362:   PetscCheck(total == Nbpt, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrectly counted P trimmed polynomials");
1363:   PetscCall(PetscFree(deriv));
1364:   PetscCall(PetscFree(pattern));
1365:   PetscCall(PetscFree(form_atoms));
1366:   PetscCall(PetscFree(p_scalar));
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: /*@
1371:   PetscDTPTrimmedEvalJet - Evaluate the jet (function and derivatives) of a basis of the trimmed polynomial k-forms up to
1372:   a given degree.

1374:   Input Parameters:
1375: + dim        - the number of variables in the multivariate polynomials
1376: . npoints    - the number of points to evaluate the polynomials at
1377: . points     - [npoints x dim] array of point coordinates
1378: . degree     - the degree (sum of degrees on the variables in a monomial) of the trimmed polynomial space to evaluate.
1379:            There are ((dim + degree) choose (dim + formDegree)) x ((degree + formDegree - 1) choose (formDegree)) polynomials in this space.
1380:            (You can use `PetscDTPTrimmedSize()` to compute this size.)
1381: . formDegree - the degree of the form
1382: - jetDegree  - the maximum order partial derivative to evaluate in the jet.  There are ((dim + jetDegree) choose dim) partial derivatives
1383:               in the jet.  Choosing jetDegree = 0 means to evaluate just the function and no derivatives

1385:   Output Parameter:
1386: . p - an array containing the evaluations of the PKD polynomials' jets on the points.

1388:   Level: advanced

1390:   Notes:
1391:   The size of `p` is `PetscDTPTrimmedSize()` x ((dim + formDegree) choose dim) x ((dim + k)
1392:   choose dim) x npoints,which also describes the order of the dimensions of this
1393:   four-dimensional array\:

1395:   the first (slowest varying) dimension is basis function index;
1396:   the second dimension is component of the form;
1397:   the third dimension is jet index;
1398:   the fourth (fastest varying) dimension is the index of the evaluation point.

1400:   The ordering of the basis functions is not graded, so the basis functions are not nested by degree like `PetscDTPKDEvalJet()`.
1401:   The basis functions are not an L2-orthonormal basis on any particular domain.

1403:   The implementation is based on the description of the trimmed polynomials up to degree r as
1404:   the direct sum of polynomials up to degree (r-1) and the Koszul differential applied to
1405:   homogeneous polynomials of degree (r-1).

1407: .seealso: `PetscDTPKDEvalJet()`, `PetscDTPTrimmedSize()`
1408: @*/
1409: PetscErrorCode PetscDTPTrimmedEvalJet(PetscInt dim, PetscInt npoints, const PetscReal points[], PetscInt degree, PetscInt formDegree, PetscInt jetDegree, PetscReal p[])
1410: {
1411:   PetscFunctionBegin;
1412:   PetscCall(PetscDTPTrimmedEvalJet_Internal(dim, npoints, points, degree, formDegree, jetDegree, p));
1413:   PetscFunctionReturn(PETSC_SUCCESS);
1414: }

1416: /* solve the symmetric tridiagonal eigenvalue system, writing the eigenvalues into eigs and the eigenvectors into V
1417:  * with lds n; diag and subdiag are overwritten */
1418: static PetscErrorCode PetscDTSymmetricTridiagonalEigensolve(PetscInt n, PetscReal diag[], PetscReal subdiag[], PetscReal eigs[], PetscScalar V[])
1419: {
1420:   char          jobz   = 'V'; /* eigenvalues and eigenvectors */
1421:   char          range  = 'A'; /* all eigenvalues will be found */
1422:   PetscReal     VL     = 0.;  /* ignored because range is 'A' */
1423:   PetscReal     VU     = 0.;  /* ignored because range is 'A' */
1424:   PetscBLASInt  IL     = 0;   /* ignored because range is 'A' */
1425:   PetscBLASInt  IU     = 0;   /* ignored because range is 'A' */
1426:   PetscReal     abstol = 0.;  /* unused */
1427:   PetscBLASInt  bn, bm, ldz;  /* bm will equal bn on exit */
1428:   PetscBLASInt *isuppz;
1429:   PetscBLASInt  lwork, liwork;
1430:   PetscReal     workquery;
1431:   PetscBLASInt  iworkquery;
1432:   PetscBLASInt *iwork;
1433:   PetscBLASInt  info;
1434:   PetscReal    *work = NULL;

1436:   PetscFunctionBegin;
1437: #if !defined(PETSCDTGAUSSIANQUADRATURE_EIG)
1438:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP_SYS, "A LAPACK symmetric tridiagonal eigensolver could not be found");
1439: #endif
1440:   PetscCall(PetscBLASIntCast(n, &bn));
1441:   PetscCall(PetscBLASIntCast(n, &ldz));
1442: #if !defined(PETSC_MISSING_LAPACK_STEGR)
1443:   PetscCall(PetscMalloc1(2 * n, &isuppz));
1444:   lwork  = -1;
1445:   liwork = -1;
1446:   PetscCallBLAS("LAPACKstegr", LAPACKstegr_(&jobz, &range, &bn, diag, subdiag, &VL, &VU, &IL, &IU, &abstol, &bm, eigs, V, &ldz, isuppz, &workquery, &lwork, &iworkquery, &liwork, &info));
1447:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_PLIB, "xSTEGR error");
1448:   lwork  = (PetscBLASInt)workquery;
1449:   liwork = iworkquery;
1450:   PetscCall(PetscMalloc2(lwork, &work, liwork, &iwork));
1451:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
1452:   PetscCallBLAS("LAPACKstegr", LAPACKstegr_(&jobz, &range, &bn, diag, subdiag, &VL, &VU, &IL, &IU, &abstol, &bm, eigs, V, &ldz, isuppz, work, &lwork, iwork, &liwork, &info));
1453:   PetscCall(PetscFPTrapPop());
1454:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_PLIB, "xSTEGR error");
1455:   PetscCall(PetscFree2(work, iwork));
1456:   PetscCall(PetscFree(isuppz));
1457: #elif !defined(PETSC_MISSING_LAPACK_STEQR)
1458:   jobz = 'I'; /* Compute eigenvalues and eigenvectors of the
1459:                  tridiagonal matrix.  Z is initialized to the identity
1460:                  matrix. */
1461:   PetscCall(PetscMalloc1(PetscMax(1, 2 * n - 2), &work));
1462:   PetscCallBLAS("LAPACKsteqr", LAPACKsteqr_("I", &bn, diag, subdiag, V, &ldz, work, &info));
1463:   PetscCall(PetscFPTrapPop());
1464:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_PLIB, "xSTEQR error");
1465:   PetscCall(PetscFree(work));
1466:   PetscCall(PetscArraycpy(eigs, diag, n));
1467: #endif
1468:   PetscFunctionReturn(PETSC_SUCCESS);
1469: }

1471: /* Formula for the weights at the endpoints (-1 and 1) of Gauss-Lobatto-Jacobi
1472:  * quadrature rules on the interval [-1, 1] */
1473: static PetscErrorCode PetscDTGaussLobattoJacobiEndweights_Internal(PetscInt n, PetscReal alpha, PetscReal beta, PetscReal *leftw, PetscReal *rightw)
1474: {
1475:   PetscReal twoab1;
1476:   PetscInt  m = n - 2;
1477:   PetscReal a = alpha + 1.;
1478:   PetscReal b = beta + 1.;
1479:   PetscReal gra, grb;

1481:   PetscFunctionBegin;
1482:   twoab1 = PetscPowReal(2., a + b - 1.);
1483: #if defined(PETSC_HAVE_LGAMMA)
1484:   grb = PetscExpReal(2. * PetscLGamma(b + 1.) + PetscLGamma(m + 1.) + PetscLGamma(m + a + 1.) - (PetscLGamma(m + b + 1) + PetscLGamma(m + a + b + 1.)));
1485:   gra = PetscExpReal(2. * PetscLGamma(a + 1.) + PetscLGamma(m + 1.) + PetscLGamma(m + b + 1.) - (PetscLGamma(m + a + 1) + PetscLGamma(m + a + b + 1.)));
1486: #else
1487:   {
1488:     PetscInt alphai = (PetscInt)alpha;
1489:     PetscInt betai  = (PetscInt)beta;

1491:     if ((PetscReal)alphai == alpha && (PetscReal)betai == beta) {
1492:       PetscReal binom1, binom2;

1494:       PetscCall(PetscDTBinomial(m + b, b, &binom1));
1495:       PetscCall(PetscDTBinomial(m + a + b, b, &binom2));
1496:       grb = 1. / (binom1 * binom2);
1497:       PetscCall(PetscDTBinomial(m + a, a, &binom1));
1498:       PetscCall(PetscDTBinomial(m + a + b, a, &binom2));
1499:       gra = 1. / (binom1 * binom2);
1500:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "lgamma() - math routine is unavailable.");
1501:   }
1502: #endif
1503:   *leftw  = twoab1 * grb / b;
1504:   *rightw = twoab1 * gra / a;
1505:   PetscFunctionReturn(PETSC_SUCCESS);
1506: }

1508: /* Evaluates the nth jacobi polynomial with weight parameters a,b at a point x.
1509:    Recurrence relations implemented from the pseudocode given in Karniadakis and Sherwin, Appendix B */
1510: static inline PetscErrorCode PetscDTComputeJacobi(PetscReal a, PetscReal b, PetscInt n, PetscReal x, PetscReal *P)
1511: {
1512:   PetscReal pn1, pn2;
1513:   PetscReal cnm1, cnm1x, cnm2;
1514:   PetscInt  k;

1516:   PetscFunctionBegin;
1517:   if (!n) {
1518:     *P = 1.0;
1519:     PetscFunctionReturn(PETSC_SUCCESS);
1520:   }
1521:   PetscDTJacobiRecurrence_Internal(1, a, b, cnm1, cnm1x, cnm2);
1522:   pn2 = 1.;
1523:   pn1 = cnm1 + cnm1x * x;
1524:   if (n == 1) {
1525:     *P = pn1;
1526:     PetscFunctionReturn(PETSC_SUCCESS);
1527:   }
1528:   *P = 0.0;
1529:   for (k = 2; k < n + 1; ++k) {
1530:     PetscDTJacobiRecurrence_Internal(k, a, b, cnm1, cnm1x, cnm2);

1532:     *P  = (cnm1 + cnm1x * x) * pn1 - cnm2 * pn2;
1533:     pn2 = pn1;
1534:     pn1 = *P;
1535:   }
1536:   PetscFunctionReturn(PETSC_SUCCESS);
1537: }

1539: /* Evaluates the first derivative of P_{n}^{a,b} at a point x. */
1540: static inline PetscErrorCode PetscDTComputeJacobiDerivative(PetscReal a, PetscReal b, PetscInt n, PetscReal x, PetscInt k, PetscReal *P)
1541: {
1542:   PetscReal nP;
1543:   PetscInt  i;

1545:   PetscFunctionBegin;
1546:   *P = 0.0;
1547:   if (k > n) PetscFunctionReturn(PETSC_SUCCESS);
1548:   PetscCall(PetscDTComputeJacobi(a + k, b + k, n - k, x, &nP));
1549:   for (i = 0; i < k; i++) nP *= (a + b + n + 1. + i) * 0.5;
1550:   *P = nP;
1551:   PetscFunctionReturn(PETSC_SUCCESS);
1552: }

1554: static PetscErrorCode PetscDTGaussJacobiQuadrature_Newton_Internal(PetscInt npoints, PetscReal a, PetscReal b, PetscReal x[], PetscReal w[])
1555: {
1556:   PetscInt  maxIter = 100;
1557:   PetscReal eps     = PetscExpReal(0.75 * PetscLogReal(PETSC_MACHINE_EPSILON));
1558:   PetscReal a1, a6, gf;
1559:   PetscInt  k;

1561:   PetscFunctionBegin;
1562:   a1 = PetscPowReal(2.0, a + b + 1);
1563: #if defined(PETSC_HAVE_LGAMMA)
1564:   {
1565:     PetscReal a2, a3, a4, a5;
1566:     a2 = PetscLGamma(a + npoints + 1);
1567:     a3 = PetscLGamma(b + npoints + 1);
1568:     a4 = PetscLGamma(a + b + npoints + 1);
1569:     a5 = PetscLGamma(npoints + 1);
1570:     gf = PetscExpReal(a2 + a3 - (a4 + a5));
1571:   }
1572: #else
1573:   {
1574:     PetscInt ia, ib;

1576:     ia = (PetscInt)a;
1577:     ib = (PetscInt)b;
1578:     gf = 1.;
1579:     if (ia == a && ia >= 0) { /* compute ratio of rising factorals wrt a */
1580:       for (k = 0; k < ia; k++) gf *= (npoints + 1. + k) / (npoints + b + 1. + k);
1581:     } else if (b == b && ib >= 0) { /* compute ratio of rising factorials wrt b */
1582:       for (k = 0; k < ib; k++) gf *= (npoints + 1. + k) / (npoints + a + 1. + k);
1583:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "lgamma() - math routine is unavailable.");
1584:   }
1585: #endif

1587:   a6 = a1 * gf;
1588:   /* Computes the m roots of P_{m}^{a,b} on [-1,1] by Newton's method with Chebyshev points as initial guesses.
1589:    Algorithm implemented from the pseudocode given by Karniadakis and Sherwin and Python in FIAT */
1590:   for (k = 0; k < npoints; ++k) {
1591:     PetscReal r = PetscCosReal(PETSC_PI * (1. - (4. * k + 3. + 2. * b) / (4. * npoints + 2. * (a + b + 1.)))), dP;
1592:     PetscInt  j;

1594:     if (k > 0) r = 0.5 * (r + x[k - 1]);
1595:     for (j = 0; j < maxIter; ++j) {
1596:       PetscReal s = 0.0, delta, f, fp;
1597:       PetscInt  i;

1599:       for (i = 0; i < k; ++i) s = s + 1.0 / (r - x[i]);
1600:       PetscCall(PetscDTComputeJacobi(a, b, npoints, r, &f));
1601:       PetscCall(PetscDTComputeJacobiDerivative(a, b, npoints, r, 1, &fp));
1602:       delta = f / (fp - f * s);
1603:       r     = r - delta;
1604:       if (PetscAbsReal(delta) < eps) break;
1605:     }
1606:     x[k] = r;
1607:     PetscCall(PetscDTComputeJacobiDerivative(a, b, npoints, x[k], 1, &dP));
1608:     w[k] = a6 / (1.0 - PetscSqr(x[k])) / PetscSqr(dP);
1609:   }
1610:   PetscFunctionReturn(PETSC_SUCCESS);
1611: }

1613: /* Compute the diagonals of the Jacobi matrix used in Golub & Welsch algorithms for Gauss-Jacobi
1614:  * quadrature weight calculations on [-1,1] for exponents (1. + x)^a (1.-x)^b */
1615: static PetscErrorCode PetscDTJacobiMatrix_Internal(PetscInt nPoints, PetscReal a, PetscReal b, PetscReal *d, PetscReal *s)
1616: {
1617:   PetscInt i;

1619:   PetscFunctionBegin;
1620:   for (i = 0; i < nPoints; i++) {
1621:     PetscReal A, B, C;

1623:     PetscDTJacobiRecurrence_Internal(i + 1, a, b, A, B, C);
1624:     d[i] = -A / B;
1625:     if (i) s[i - 1] *= C / B;
1626:     if (i < nPoints - 1) s[i] = 1. / B;
1627:   }
1628:   PetscFunctionReturn(PETSC_SUCCESS);
1629: }

1631: static PetscErrorCode PetscDTGaussJacobiQuadrature_GolubWelsch_Internal(PetscInt npoints, PetscReal a, PetscReal b, PetscReal *x, PetscReal *w)
1632: {
1633:   PetscReal mu0;
1634:   PetscReal ga, gb, gab;
1635:   PetscInt  i;

1637:   PetscFunctionBegin;
1638:   PetscCall(PetscCitationsRegister(GolubWelschCitation, &GolubWelschCite));

1640: #if defined(PETSC_HAVE_TGAMMA)
1641:   ga  = PetscTGamma(a + 1);
1642:   gb  = PetscTGamma(b + 1);
1643:   gab = PetscTGamma(a + b + 2);
1644: #else
1645:   {
1646:     PetscInt ia, ib;

1648:     ia = (PetscInt)a;
1649:     ib = (PetscInt)b;
1650:     if (ia == a && ib == b && ia + 1 > 0 && ib + 1 > 0 && ia + ib + 2 > 0) { /* All gamma(x) terms are (x-1)! terms */
1651:       PetscCall(PetscDTFactorial(ia, &ga));
1652:       PetscCall(PetscDTFactorial(ib, &gb));
1653:       PetscCall(PetscDTFactorial(ia + ib + 1, &gab));
1654:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "tgamma() - math routine is unavailable.");
1655:   }
1656: #endif
1657:   mu0 = PetscPowReal(2., a + b + 1.) * ga * gb / gab;

1659: #if defined(PETSCDTGAUSSIANQUADRATURE_EIG)
1660:   {
1661:     PetscReal   *diag, *subdiag;
1662:     PetscScalar *V;

1664:     PetscCall(PetscMalloc2(npoints, &diag, npoints, &subdiag));
1665:     PetscCall(PetscMalloc1(npoints * npoints, &V));
1666:     PetscCall(PetscDTJacobiMatrix_Internal(npoints, a, b, diag, subdiag));
1667:     for (i = 0; i < npoints - 1; i++) subdiag[i] = PetscSqrtReal(subdiag[i]);
1668:     PetscCall(PetscDTSymmetricTridiagonalEigensolve(npoints, diag, subdiag, x, V));
1669:     for (i = 0; i < npoints; i++) w[i] = PetscSqr(PetscRealPart(V[i * npoints])) * mu0;
1670:     PetscCall(PetscFree(V));
1671:     PetscCall(PetscFree2(diag, subdiag));
1672:   }
1673: #else
1674:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP_SYS, "A LAPACK symmetric tridiagonal eigensolver could not be found");
1675: #endif
1676:   { /* As of March 2, 2020, The Sun Performance Library breaks the LAPACK contract for xstegr and xsteqr: the
1677:        eigenvalues are not guaranteed to be in ascending order.  So we heave a passive aggressive sigh and check that
1678:        the eigenvalues are sorted */
1679:     PetscBool sorted;

1681:     PetscCall(PetscSortedReal(npoints, x, &sorted));
1682:     if (!sorted) {
1683:       PetscInt  *order, i;
1684:       PetscReal *tmp;

1686:       PetscCall(PetscMalloc2(npoints, &order, npoints, &tmp));
1687:       for (i = 0; i < npoints; i++) order[i] = i;
1688:       PetscCall(PetscSortRealWithPermutation(npoints, x, order));
1689:       PetscCall(PetscArraycpy(tmp, x, npoints));
1690:       for (i = 0; i < npoints; i++) x[i] = tmp[order[i]];
1691:       PetscCall(PetscArraycpy(tmp, w, npoints));
1692:       for (i = 0; i < npoints; i++) w[i] = tmp[order[i]];
1693:       PetscCall(PetscFree2(order, tmp));
1694:     }
1695:   }
1696:   PetscFunctionReturn(PETSC_SUCCESS);
1697: }

1699: static PetscErrorCode PetscDTGaussJacobiQuadrature_Internal(PetscInt npoints, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[], PetscBool newton)
1700: {
1701:   PetscFunctionBegin;
1702:   PetscCheck(npoints >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of points must be positive");
1703:   /* If asking for a 1D Lobatto point, just return the non-Lobatto 1D point */
1704:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "alpha must be > -1.");
1705:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "beta must be > -1.");

1707:   if (newton) PetscCall(PetscDTGaussJacobiQuadrature_Newton_Internal(npoints, alpha, beta, x, w));
1708:   else PetscCall(PetscDTGaussJacobiQuadrature_GolubWelsch_Internal(npoints, alpha, beta, x, w));
1709:   if (alpha == beta) { /* symmetrize */
1710:     PetscInt i;
1711:     for (i = 0; i < (npoints + 1) / 2; i++) {
1712:       PetscInt  j  = npoints - 1 - i;
1713:       PetscReal xi = x[i];
1714:       PetscReal xj = x[j];
1715:       PetscReal wi = w[i];
1716:       PetscReal wj = w[j];

1718:       x[i] = (xi - xj) / 2.;
1719:       x[j] = (xj - xi) / 2.;
1720:       w[i] = w[j] = (wi + wj) / 2.;
1721:     }
1722:   }
1723:   PetscFunctionReturn(PETSC_SUCCESS);
1724: }

1726: /*@
1727:   PetscDTGaussJacobiQuadrature - quadrature for the interval $[a, b]$ with the weight function
1728:   $(x-a)^\alpha (x-b)^\beta$.

1730:   Not Collective

1732:   Input Parameters:
1733: + npoints - the number of points in the quadrature rule
1734: . a       - the left endpoint of the interval
1735: . b       - the right endpoint of the interval
1736: . alpha   - the left exponent
1737: - beta    - the right exponent

1739:   Output Parameters:
1740: + x - array of length `npoints`, the locations of the quadrature points
1741: - w - array of length `npoints`, the weights of the quadrature points

1743:   Level: intermediate

1745:   Note:
1746:   This quadrature rule is exact for polynomials up to degree 2*`npoints` - 1.

1748: .seealso: `PetscDTGaussQuadrature()`
1749: @*/
1750: PetscErrorCode PetscDTGaussJacobiQuadrature(PetscInt npoints, PetscReal a, PetscReal b, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[])
1751: {
1752:   PetscInt i;

1754:   PetscFunctionBegin;
1755:   PetscCall(PetscDTGaussJacobiQuadrature_Internal(npoints, alpha, beta, x, w, PetscDTGaussQuadratureNewton_Internal));
1756:   if (a != -1. || b != 1.) { /* shift */
1757:     for (i = 0; i < npoints; i++) {
1758:       x[i] = (x[i] + 1.) * ((b - a) / 2.) + a;
1759:       w[i] *= (b - a) / 2.;
1760:     }
1761:   }
1762:   PetscFunctionReturn(PETSC_SUCCESS);
1763: }

1765: static PetscErrorCode PetscDTGaussLobattoJacobiQuadrature_Internal(PetscInt npoints, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[], PetscBool newton)
1766: {
1767:   PetscInt i;

1769:   PetscFunctionBegin;
1770:   PetscCheck(npoints >= 2, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of points must be positive");
1771:   /* If asking for a 1D Lobatto point, just return the non-Lobatto 1D point */
1772:   PetscCheck(alpha > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "alpha must be > -1.");
1773:   PetscCheck(beta > -1., PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "beta must be > -1.");

1775:   x[0]           = -1.;
1776:   x[npoints - 1] = 1.;
1777:   if (npoints > 2) PetscCall(PetscDTGaussJacobiQuadrature_Internal(npoints - 2, alpha + 1., beta + 1., &x[1], &w[1], newton));
1778:   for (i = 1; i < npoints - 1; i++) w[i] /= (1. - x[i] * x[i]);
1779:   PetscCall(PetscDTGaussLobattoJacobiEndweights_Internal(npoints, alpha, beta, &w[0], &w[npoints - 1]));
1780:   PetscFunctionReturn(PETSC_SUCCESS);
1781: }

1783: /*@
1784:   PetscDTGaussLobattoJacobiQuadrature - quadrature for the interval $[a, b]$ with the weight function
1785:   $(x-a)^\alpha (x-b)^\beta$, with endpoints `a` and `b` included as quadrature points.

1787:   Not Collective

1789:   Input Parameters:
1790: + npoints - the number of points in the quadrature rule
1791: . a       - the left endpoint of the interval
1792: . b       - the right endpoint of the interval
1793: . alpha   - the left exponent
1794: - beta    - the right exponent

1796:   Output Parameters:
1797: + x - array of length `npoints`, the locations of the quadrature points
1798: - w - array of length `npoints`, the weights of the quadrature points

1800:   Level: intermediate

1802:   Note:
1803:   This quadrature rule is exact for polynomials up to degree 2*`npoints` - 3.

1805: .seealso: `PetscDTGaussJacobiQuadrature()`
1806: @*/
1807: PetscErrorCode PetscDTGaussLobattoJacobiQuadrature(PetscInt npoints, PetscReal a, PetscReal b, PetscReal alpha, PetscReal beta, PetscReal x[], PetscReal w[])
1808: {
1809:   PetscInt i;

1811:   PetscFunctionBegin;
1812:   PetscCall(PetscDTGaussLobattoJacobiQuadrature_Internal(npoints, alpha, beta, x, w, PetscDTGaussQuadratureNewton_Internal));
1813:   if (a != -1. || b != 1.) { /* shift */
1814:     for (i = 0; i < npoints; i++) {
1815:       x[i] = (x[i] + 1.) * ((b - a) / 2.) + a;
1816:       w[i] *= (b - a) / 2.;
1817:     }
1818:   }
1819:   PetscFunctionReturn(PETSC_SUCCESS);
1820: }

1822: /*@
1823:   PetscDTGaussQuadrature - create Gauss-Legendre quadrature

1825:   Not Collective

1827:   Input Parameters:
1828: + npoints - number of points
1829: . a       - left end of interval (often-1)
1830: - b       - right end of interval (often +1)

1832:   Output Parameters:
1833: + x - quadrature points
1834: - w - quadrature weights

1836:   Level: intermediate

1838:   Note:
1839:   See {cite}`golub1969calculation`

1841: .seealso: `PetscDTLegendreEval()`, `PetscDTGaussJacobiQuadrature()`
1842: @*/
1843: PetscErrorCode PetscDTGaussQuadrature(PetscInt npoints, PetscReal a, PetscReal b, PetscReal x[], PetscReal w[])
1844: {
1845:   PetscInt i;

1847:   PetscFunctionBegin;
1848:   PetscCall(PetscDTGaussJacobiQuadrature_Internal(npoints, 0., 0., x, w, PetscDTGaussQuadratureNewton_Internal));
1849:   if (a != -1. || b != 1.) { /* shift */
1850:     for (i = 0; i < npoints; i++) {
1851:       x[i] = (x[i] + 1.) * ((b - a) / 2.) + a;
1852:       w[i] *= (b - a) / 2.;
1853:     }
1854:   }
1855:   PetscFunctionReturn(PETSC_SUCCESS);
1856: }

1858: /*@
1859:   PetscDTGaussLobattoLegendreQuadrature - creates a set of the locations and weights of the Gauss-Lobatto-Legendre
1860:   nodes of a given size on the domain $[-1,1]$

1862:   Not Collective

1864:   Input Parameters:
1865: + npoints - number of grid nodes
1866: - type    - `PETSCGAUSSLOBATTOLEGENDRE_VIA_LINEAR_ALGEBRA` or `PETSCGAUSSLOBATTOLEGENDRE_VIA_NEWTON`

1868:   Output Parameters:
1869: + x - quadrature points, pass in an array of length `npoints`
1870: - w - quadrature weights, pass in an array of length `npoints`

1872:   Level: intermediate

1874:   Notes:
1875:   For n > 30  the Newton approach computes duplicate (incorrect) values for some nodes because the initial guess is apparently not
1876:   close enough to the desired solution

1878:   These are useful for implementing spectral methods based on Gauss-Lobatto-Legendre (GLL) nodes

1880:   See <https://epubs.siam.org/doi/abs/10.1137/110855442>  <https://epubs.siam.org/doi/abs/10.1137/120889873> for better ways to compute GLL nodes

1882: .seealso: `PetscDTGaussQuadrature()`, `PetscGaussLobattoLegendreCreateType`

1884: @*/
1885: PetscErrorCode PetscDTGaussLobattoLegendreQuadrature(PetscInt npoints, PetscGaussLobattoLegendreCreateType type, PetscReal x[], PetscReal w[])
1886: {
1887:   PetscBool newton;

1889:   PetscFunctionBegin;
1890:   PetscCheck(npoints >= 2, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must provide at least 2 grid points per element");
1891:   newton = (PetscBool)(type == PETSCGAUSSLOBATTOLEGENDRE_VIA_NEWTON);
1892:   PetscCall(PetscDTGaussLobattoJacobiQuadrature_Internal(npoints, 0., 0., x, w, newton));
1893:   PetscFunctionReturn(PETSC_SUCCESS);
1894: }

1896: /*@
1897:   PetscDTGaussTensorQuadrature - creates a tensor-product Gauss quadrature

1899:   Not Collective

1901:   Input Parameters:
1902: + dim     - The spatial dimension
1903: . Nc      - The number of components
1904: . npoints - number of points in one dimension
1905: . a       - left end of interval (often-1)
1906: - b       - right end of interval (often +1)

1908:   Output Parameter:
1909: . q - A `PetscQuadrature` object

1911:   Level: intermediate

1913: .seealso: `PetscDTGaussQuadrature()`, `PetscDTLegendreEval()`
1914: @*/
1915: PetscErrorCode PetscDTGaussTensorQuadrature(PetscInt dim, PetscInt Nc, PetscInt npoints, PetscReal a, PetscReal b, PetscQuadrature *q)
1916: {
1917:   DMPolytopeType ct;
1918:   PetscInt       totpoints = dim > 1 ? dim > 2 ? npoints * PetscSqr(npoints) : PetscSqr(npoints) : npoints;
1919:   PetscReal     *x, *w, *xw, *ww;

1921:   PetscFunctionBegin;
1922:   PetscCall(PetscMalloc1(totpoints * dim, &x));
1923:   PetscCall(PetscMalloc1(totpoints * Nc, &w));
1924:   /* Set up the Golub-Welsch system */
1925:   switch (dim) {
1926:   case 0:
1927:     ct = DM_POLYTOPE_POINT;
1928:     PetscCall(PetscFree(x));
1929:     PetscCall(PetscFree(w));
1930:     PetscCall(PetscMalloc1(1, &x));
1931:     PetscCall(PetscMalloc1(Nc, &w));
1932:     totpoints = 1;
1933:     x[0]      = 0.0;
1934:     for (PetscInt c = 0; c < Nc; ++c) w[c] = 1.0;
1935:     break;
1936:   case 1:
1937:     ct = DM_POLYTOPE_SEGMENT;
1938:     PetscCall(PetscMalloc1(npoints, &ww));
1939:     PetscCall(PetscDTGaussQuadrature(npoints, a, b, x, ww));
1940:     for (PetscInt i = 0; i < npoints; ++i)
1941:       for (PetscInt c = 0; c < Nc; ++c) w[i * Nc + c] = ww[i];
1942:     PetscCall(PetscFree(ww));
1943:     break;
1944:   case 2:
1945:     ct = DM_POLYTOPE_QUADRILATERAL;
1946:     PetscCall(PetscMalloc2(npoints, &xw, npoints, &ww));
1947:     PetscCall(PetscDTGaussQuadrature(npoints, a, b, xw, ww));
1948:     for (PetscInt i = 0; i < npoints; ++i) {
1949:       for (PetscInt j = 0; j < npoints; ++j) {
1950:         x[(i * npoints + j) * dim + 0] = xw[i];
1951:         x[(i * npoints + j) * dim + 1] = xw[j];
1952:         for (PetscInt c = 0; c < Nc; ++c) w[(i * npoints + j) * Nc + c] = ww[i] * ww[j];
1953:       }
1954:     }
1955:     PetscCall(PetscFree2(xw, ww));
1956:     break;
1957:   case 3:
1958:     ct = DM_POLYTOPE_HEXAHEDRON;
1959:     PetscCall(PetscMalloc2(npoints, &xw, npoints, &ww));
1960:     PetscCall(PetscDTGaussQuadrature(npoints, a, b, xw, ww));
1961:     for (PetscInt i = 0; i < npoints; ++i) {
1962:       for (PetscInt j = 0; j < npoints; ++j) {
1963:         for (PetscInt k = 0; k < npoints; ++k) {
1964:           x[((i * npoints + j) * npoints + k) * dim + 0] = xw[i];
1965:           x[((i * npoints + j) * npoints + k) * dim + 1] = xw[j];
1966:           x[((i * npoints + j) * npoints + k) * dim + 2] = xw[k];
1967:           for (PetscInt c = 0; c < Nc; ++c) w[((i * npoints + j) * npoints + k) * Nc + c] = ww[i] * ww[j] * ww[k];
1968:         }
1969:       }
1970:     }
1971:     PetscCall(PetscFree2(xw, ww));
1972:     break;
1973:   default:
1974:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot construct quadrature rule for dimension %" PetscInt_FMT, dim);
1975:   }
1976:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
1977:   PetscCall(PetscQuadratureSetCellType(*q, ct));
1978:   PetscCall(PetscQuadratureSetOrder(*q, 2 * npoints - 1));
1979:   PetscCall(PetscQuadratureSetData(*q, dim, Nc, totpoints, x, w));
1980:   PetscCall(PetscObjectChangeTypeName((PetscObject)*q, "GaussTensor"));
1981:   PetscFunctionReturn(PETSC_SUCCESS);
1982: }

1984: /*@
1985:   PetscDTStroudConicalQuadrature - create Stroud conical quadrature for a simplex {cite}`karniadakis2005spectral`

1987:   Not Collective

1989:   Input Parameters:
1990: + dim     - The simplex dimension
1991: . Nc      - The number of components
1992: . npoints - The number of points in one dimension
1993: . a       - left end of interval (often-1)
1994: - b       - right end of interval (often +1)

1996:   Output Parameter:
1997: . q - A `PetscQuadrature` object

1999:   Level: intermediate

2001:   Note:
2002:   For `dim` == 1, this is Gauss-Legendre quadrature

2004: .seealso: `PetscDTGaussTensorQuadrature()`, `PetscDTGaussQuadrature()`
2005: @*/
2006: PetscErrorCode PetscDTStroudConicalQuadrature(PetscInt dim, PetscInt Nc, PetscInt npoints, PetscReal a, PetscReal b, PetscQuadrature *q)
2007: {
2008:   DMPolytopeType ct;
2009:   PetscInt       totpoints;
2010:   PetscReal     *p1, *w1;
2011:   PetscReal     *x, *w;

2013:   PetscFunctionBegin;
2014:   PetscCheck(!(a != -1.0) && !(b != 1.0), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must use default internal right now");
2015:   switch (dim) {
2016:   case 0:
2017:     ct = DM_POLYTOPE_POINT;
2018:     break;
2019:   case 1:
2020:     ct = DM_POLYTOPE_SEGMENT;
2021:     break;
2022:   case 2:
2023:     ct = DM_POLYTOPE_TRIANGLE;
2024:     break;
2025:   case 3:
2026:     ct = DM_POLYTOPE_TETRAHEDRON;
2027:     break;
2028:   default:
2029:     ct = DM_POLYTOPE_UNKNOWN;
2030:   }
2031:   totpoints = 1;
2032:   for (PetscInt i = 0; i < dim; ++i) totpoints *= npoints;
2033:   PetscCall(PetscMalloc1(totpoints * dim, &x));
2034:   PetscCall(PetscMalloc1(totpoints * Nc, &w));
2035:   PetscCall(PetscMalloc2(npoints, &p1, npoints, &w1));
2036:   for (PetscInt i = 0; i < totpoints * Nc; ++i) w[i] = 1.;
2037:   for (PetscInt i = 0, totprev = 1, totrem = totpoints / npoints; i < dim; ++i) {
2038:     PetscReal mul;

2040:     mul = PetscPowReal(2., -i);
2041:     PetscCall(PetscDTGaussJacobiQuadrature(npoints, -1., 1., i, 0.0, p1, w1));
2042:     for (PetscInt pt = 0, l = 0; l < totprev; l++) {
2043:       for (PetscInt j = 0; j < npoints; j++) {
2044:         for (PetscInt m = 0; m < totrem; m++, pt++) {
2045:           for (PetscInt k = 0; k < i; k++) x[pt * dim + k] = (x[pt * dim + k] + 1.) * (1. - p1[j]) * 0.5 - 1.;
2046:           x[pt * dim + i] = p1[j];
2047:           for (PetscInt c = 0; c < Nc; c++) w[pt * Nc + c] *= mul * w1[j];
2048:         }
2049:       }
2050:     }
2051:     totprev *= npoints;
2052:     totrem /= npoints;
2053:   }
2054:   PetscCall(PetscFree2(p1, w1));
2055:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
2056:   PetscCall(PetscQuadratureSetCellType(*q, ct));
2057:   PetscCall(PetscQuadratureSetOrder(*q, 2 * npoints - 1));
2058:   PetscCall(PetscQuadratureSetData(*q, dim, Nc, totpoints, x, w));
2059:   PetscCall(PetscObjectChangeTypeName((PetscObject)*q, "StroudConical"));
2060:   PetscFunctionReturn(PETSC_SUCCESS);
2061: }

2063: static PetscBool MinSymTriQuadCite       = PETSC_FALSE;
2064: const char       MinSymTriQuadCitation[] = "@article{WitherdenVincent2015,\n"
2065:                                            "  title = {On the identification of symmetric quadrature rules for finite element methods},\n"
2066:                                            "  journal = {Computers & Mathematics with Applications},\n"
2067:                                            "  volume = {69},\n"
2068:                                            "  number = {10},\n"
2069:                                            "  pages = {1232-1241},\n"
2070:                                            "  year = {2015},\n"
2071:                                            "  issn = {0898-1221},\n"
2072:                                            "  doi = {10.1016/j.camwa.2015.03.017},\n"
2073:                                            "  url = {https://www.sciencedirect.com/science/article/pii/S0898122115001224},\n"
2074:                                            "  author = {F.D. Witherden and P.E. Vincent},\n"
2075:                                            "}\n";

2077: #include "petscdttriquadrules.h"

2079: static PetscBool MinSymTetQuadCite       = PETSC_FALSE;
2080: const char       MinSymTetQuadCitation[] = "@article{JaskowiecSukumar2021\n"
2081:                                            "  author = {Jaskowiec, Jan and Sukumar, N.},\n"
2082:                                            "  title = {High-order symmetric cubature rules for tetrahedra and pyramids},\n"
2083:                                            "  journal = {International Journal for Numerical Methods in Engineering},\n"
2084:                                            "  volume = {122},\n"
2085:                                            "  number = {1},\n"
2086:                                            "  pages = {148-171},\n"
2087:                                            "  doi = {10.1002/nme.6528},\n"
2088:                                            "  url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6528},\n"
2089:                                            "  eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6528},\n"
2090:                                            "  year = {2021}\n"
2091:                                            "}\n";

2093: #include "petscdttetquadrules.h"

2095: // https://en.wikipedia.org/wiki/Partition_(number_theory)
2096: static PetscErrorCode PetscDTPartitionNumber(PetscInt n, PetscInt *p)
2097: {
2098:   // sequence A000041 in the OEIS
2099:   const PetscInt partition[]   = {1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604};
2100:   PetscInt       tabulated_max = PETSC_STATIC_ARRAY_LENGTH(partition) - 1;

2102:   PetscFunctionBegin;
2103:   PetscCheck(n >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Partition number not defined for negative number %" PetscInt_FMT, n);
2104:   // not implementing the pentagonal number recurrence, we don't need partition numbers for n that high
2105:   PetscCheck(n <= tabulated_max, PETSC_COMM_SELF, PETSC_ERR_SUP, "Partition numbers only tabulated up to %" PetscInt_FMT ", not computed for %" PetscInt_FMT, tabulated_max, n);
2106:   *p = partition[n];
2107:   PetscFunctionReturn(PETSC_SUCCESS);
2108: }

2110: /*@
2111:   PetscDTSimplexQuadrature - Create a quadrature rule for a simplex that exactly integrates polynomials up to a given degree.

2113:   Not Collective

2115:   Input Parameters:
2116: + dim    - The spatial dimension of the simplex (1 = segment, 2 = triangle, 3 = tetrahedron)
2117: . degree - The largest polynomial degree that is required to be integrated exactly
2118: - type   - left end of interval (often-1)

2120:   Output Parameter:
2121: . quad - A `PetscQuadrature` object for integration over the biunit simplex
2122:             (defined by the bounds $x_i >= -1$ and $\sum_i x_i <= 2 - d$) that is exact for
2123:             polynomials up to the given degree

2125:   Level: intermediate

2127: .seealso: `PetscDTSimplexQuadratureType`, `PetscDTGaussQuadrature()`, `PetscDTStroudCononicalQuadrature()`, `PetscQuadrature`
2128: @*/
2129: PetscErrorCode PetscDTSimplexQuadrature(PetscInt dim, PetscInt degree, PetscDTSimplexQuadratureType type, PetscQuadrature *quad)
2130: {
2131:   PetscDTSimplexQuadratureType orig_type = type;

2133:   PetscFunctionBegin;
2134:   PetscCheck(dim >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative dimension %" PetscInt_FMT, dim);
2135:   PetscCheck(degree >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative degree %" PetscInt_FMT, degree);
2136:   if (type == PETSCDTSIMPLEXQUAD_DEFAULT) type = PETSCDTSIMPLEXQUAD_MINSYM;
2137:   if (type == PETSCDTSIMPLEXQUAD_CONIC || dim < 2) {
2138:     PetscInt points_per_dim = (degree + 2) / 2; // ceil((degree + 1) / 2);
2139:     PetscCall(PetscDTStroudConicalQuadrature(dim, 1, points_per_dim, -1, 1, quad));
2140:   } else {
2141:     DMPolytopeType    ct;
2142:     PetscInt          n    = dim + 1;
2143:     PetscInt          fact = 1;
2144:     PetscInt         *part, *perm;
2145:     PetscInt          p = 0;
2146:     PetscInt          max_degree;
2147:     const PetscInt   *nodes_per_type     = NULL;
2148:     const PetscInt   *all_num_full_nodes = NULL;
2149:     const PetscReal **weights_list       = NULL;
2150:     const PetscReal **compact_nodes_list = NULL;
2151:     const char       *citation           = NULL;
2152:     PetscBool        *cited              = NULL;

2154:     switch (dim) {
2155:     case 0:
2156:       ct = DM_POLYTOPE_POINT;
2157:       break;
2158:     case 1:
2159:       ct = DM_POLYTOPE_SEGMENT;
2160:       break;
2161:     case 2:
2162:       ct = DM_POLYTOPE_TRIANGLE;
2163:       break;
2164:     case 3:
2165:       ct = DM_POLYTOPE_TETRAHEDRON;
2166:       break;
2167:     default:
2168:       ct = DM_POLYTOPE_UNKNOWN;
2169:     }
2170:     switch (dim) {
2171:     case 2:
2172:       cited              = &MinSymTriQuadCite;
2173:       citation           = MinSymTriQuadCitation;
2174:       max_degree         = PetscDTWVTriQuad_max_degree;
2175:       nodes_per_type     = PetscDTWVTriQuad_num_orbits;
2176:       all_num_full_nodes = PetscDTWVTriQuad_num_nodes;
2177:       weights_list       = PetscDTWVTriQuad_weights;
2178:       compact_nodes_list = PetscDTWVTriQuad_orbits;
2179:       break;
2180:     case 3:
2181:       cited              = &MinSymTetQuadCite;
2182:       citation           = MinSymTetQuadCitation;
2183:       max_degree         = PetscDTJSTetQuad_max_degree;
2184:       nodes_per_type     = PetscDTJSTetQuad_num_orbits;
2185:       all_num_full_nodes = PetscDTJSTetQuad_num_nodes;
2186:       weights_list       = PetscDTJSTetQuad_weights;
2187:       compact_nodes_list = PetscDTJSTetQuad_orbits;
2188:       break;
2189:     default:
2190:       max_degree = -1;
2191:       break;
2192:     }

2194:     if (degree > max_degree) {
2195:       if (orig_type == PETSCDTSIMPLEXQUAD_DEFAULT) {
2196:         // fall back to conic
2197:         PetscCall(PetscDTSimplexQuadrature(dim, degree, PETSCDTSIMPLEXQUAD_CONIC, quad));
2198:         PetscFunctionReturn(PETSC_SUCCESS);
2199:       } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Minimal symmetric quadrature for dim %" PetscInt_FMT ", degree %" PetscInt_FMT " unsupported", dim, degree);
2200:     }

2202:     PetscCall(PetscCitationsRegister(citation, cited));

2204:     PetscCall(PetscDTPartitionNumber(n, &p));
2205:     for (PetscInt d = 2; d <= n; d++) fact *= d;

2207:     PetscInt         num_full_nodes      = all_num_full_nodes[degree];
2208:     const PetscReal *all_compact_nodes   = compact_nodes_list[degree];
2209:     const PetscReal *all_compact_weights = weights_list[degree];
2210:     nodes_per_type                       = &nodes_per_type[p * degree];

2212:     PetscReal      *points;
2213:     PetscReal      *counts;
2214:     PetscReal      *weights;
2215:     PetscReal      *bary_to_biunit; // row-major transformation of barycentric coordinate to biunit
2216:     PetscQuadrature q;

2218:     // compute the transformation
2219:     PetscCall(PetscMalloc1(n * dim, &bary_to_biunit));
2220:     for (PetscInt d = 0; d < dim; d++) {
2221:       for (PetscInt b = 0; b < n; b++) bary_to_biunit[d * n + b] = (d == b) ? 1.0 : -1.0;
2222:     }

2224:     PetscCall(PetscMalloc3(n, &part, n, &perm, n, &counts));
2225:     PetscCall(PetscCalloc1(num_full_nodes * dim, &points));
2226:     PetscCall(PetscMalloc1(num_full_nodes, &weights));

2228:     // (0, 0, ...) is the first partition lexicographically
2229:     PetscCall(PetscArrayzero(part, n));
2230:     PetscCall(PetscArrayzero(counts, n));
2231:     counts[0] = n;

2233:     // for each partition
2234:     for (PetscInt s = 0, node_offset = 0; s < p; s++) {
2235:       PetscInt num_compact_coords = part[n - 1] + 1;

2237:       const PetscReal *compact_nodes   = all_compact_nodes;
2238:       const PetscReal *compact_weights = all_compact_weights;
2239:       all_compact_nodes += num_compact_coords * nodes_per_type[s];
2240:       all_compact_weights += nodes_per_type[s];

2242:       // for every permutation of the vertices
2243:       for (PetscInt f = 0; f < fact; f++) {
2244:         PetscCall(PetscDTEnumPerm(n, f, perm, NULL));

2246:         // check if it is a valid permutation
2247:         PetscInt digit;
2248:         for (digit = 1; digit < n; digit++) {
2249:           // skip permutations that would duplicate a node because it has a smaller symmetry group
2250:           if (part[digit - 1] == part[digit] && perm[digit - 1] > perm[digit]) break;
2251:         }
2252:         if (digit < n) continue;

2254:         // create full nodes from this permutation of the compact nodes
2255:         PetscReal *full_nodes   = &points[node_offset * dim];
2256:         PetscReal *full_weights = &weights[node_offset];

2258:         PetscCall(PetscArraycpy(full_weights, compact_weights, nodes_per_type[s]));
2259:         for (PetscInt b = 0; b < n; b++) {
2260:           for (PetscInt d = 0; d < dim; d++) {
2261:             for (PetscInt node = 0; node < nodes_per_type[s]; node++) full_nodes[node * dim + d] += bary_to_biunit[d * n + perm[b]] * compact_nodes[node * num_compact_coords + part[b]];
2262:           }
2263:         }
2264:         node_offset += nodes_per_type[s];
2265:       }

2267:       if (s < p - 1) { // Generate the next partition
2268:         /* A partition is described by the number of coordinates that are in
2269:          * each set of duplicates (counts) and redundantly by mapping each
2270:          * index to its set of duplicates (part)
2271:          *
2272:          * Counts should always be in nonincreasing order
2273:          *
2274:          * We want to generate the partitions lexically by part, which means
2275:          * finding the last index where count > 1 and reducing by 1.
2276:          *
2277:          * For the new counts beyond that index, we eagerly assign the remaining
2278:          * capacity of the partition to smaller indices (ensures lexical ordering),
2279:          * while respecting the nonincreasing invariant of the counts
2280:          */
2281:         PetscInt last_digit            = part[n - 1];
2282:         PetscInt last_digit_with_extra = last_digit;
2283:         while (counts[last_digit_with_extra] == 1) last_digit_with_extra--;
2284:         PetscInt limit               = --counts[last_digit_with_extra];
2285:         PetscInt total_to_distribute = last_digit - last_digit_with_extra + 1;
2286:         for (PetscInt digit = last_digit_with_extra + 1; digit < n; digit++) {
2287:           counts[digit] = PetscMin(limit, total_to_distribute);
2288:           total_to_distribute -= PetscMin(limit, total_to_distribute);
2289:         }
2290:         for (PetscInt digit = 0, offset = 0; digit < n; digit++) {
2291:           PetscInt count = counts[digit];
2292:           for (PetscInt c = 0; c < count; c++) part[offset++] = digit;
2293:         }
2294:       }
2295:     }
2296:     PetscCall(PetscFree3(part, perm, counts));
2297:     PetscCall(PetscFree(bary_to_biunit));
2298:     PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &q));
2299:     PetscCall(PetscQuadratureSetCellType(q, ct));
2300:     PetscCall(PetscQuadratureSetOrder(q, degree));
2301:     PetscCall(PetscQuadratureSetData(q, dim, 1, num_full_nodes, points, weights));
2302:     *quad = q;
2303:   }
2304:   PetscFunctionReturn(PETSC_SUCCESS);
2305: }

2307: /*@
2308:   PetscDTTanhSinhTensorQuadrature - create tanh-sinh quadrature for a tensor product cell

2310:   Not Collective

2312:   Input Parameters:
2313: + dim   - The cell dimension
2314: . level - The number of points in one dimension, $2^l$
2315: . a     - left end of interval (often-1)
2316: - b     - right end of interval (often +1)

2318:   Output Parameter:
2319: . q - A `PetscQuadrature` object

2321:   Level: intermediate

2323: .seealso: `PetscDTGaussTensorQuadrature()`, `PetscQuadrature`
2324: @*/
2325: PetscErrorCode PetscDTTanhSinhTensorQuadrature(PetscInt dim, PetscInt level, PetscReal a, PetscReal b, PetscQuadrature *q)
2326: {
2327:   DMPolytopeType  ct;
2328:   const PetscInt  p     = 16;                        /* Digits of precision in the evaluation */
2329:   const PetscReal alpha = (b - a) / 2.;              /* Half-width of the integration interval */
2330:   const PetscReal beta  = (b + a) / 2.;              /* Center of the integration interval */
2331:   const PetscReal h     = PetscPowReal(2.0, -level); /* Step size, length between x_k */
2332:   PetscReal       xk;                                /* Quadrature point x_k on reference domain [-1, 1] */
2333:   PetscReal       wk = 0.5 * PETSC_PI;               /* Quadrature weight at x_k */
2334:   PetscReal      *x, *w;
2335:   PetscInt        K, k, npoints;

2337:   PetscFunctionBegin;
2338:   PetscCheck(dim <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Dimension %" PetscInt_FMT " not yet implemented", dim);
2339:   PetscCheck(level, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must give a number of significant digits");
2340:   switch (dim) {
2341:   case 0:
2342:     ct = DM_POLYTOPE_POINT;
2343:     break;
2344:   case 1:
2345:     ct = DM_POLYTOPE_SEGMENT;
2346:     break;
2347:   case 2:
2348:     ct = DM_POLYTOPE_QUADRILATERAL;
2349:     break;
2350:   case 3:
2351:     ct = DM_POLYTOPE_HEXAHEDRON;
2352:     break;
2353:   default:
2354:     ct = DM_POLYTOPE_UNKNOWN;
2355:   }
2356:   /* Find K such that the weights are < 32 digits of precision */
2357:   for (K = 1; PetscAbsReal(PetscLog10Real(wk)) < 2 * p; ++K) wk = 0.5 * h * PETSC_PI * PetscCoshReal(K * h) / PetscSqr(PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(K * h)));
2358:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
2359:   PetscCall(PetscQuadratureSetCellType(*q, ct));
2360:   PetscCall(PetscQuadratureSetOrder(*q, 2 * K + 1));
2361:   npoints = 2 * K - 1;
2362:   PetscCall(PetscMalloc1(npoints * dim, &x));
2363:   PetscCall(PetscMalloc1(npoints, &w));
2364:   /* Center term */
2365:   x[0] = beta;
2366:   w[0] = 0.5 * alpha * PETSC_PI;
2367:   for (k = 1; k < K; ++k) {
2368:     wk           = 0.5 * alpha * h * PETSC_PI * PetscCoshReal(k * h) / PetscSqr(PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(k * h)));
2369:     xk           = PetscTanhReal(0.5 * PETSC_PI * PetscSinhReal(k * h));
2370:     x[2 * k - 1] = -alpha * xk + beta;
2371:     w[2 * k - 1] = wk;
2372:     x[2 * k + 0] = alpha * xk + beta;
2373:     w[2 * k + 0] = wk;
2374:   }
2375:   PetscCall(PetscQuadratureSetData(*q, dim, 1, npoints, x, w));
2376:   PetscFunctionReturn(PETSC_SUCCESS);
2377: }

2379: PetscErrorCode PetscDTTanhSinhIntegrate(void (*func)(const PetscReal[], void *, PetscReal *), PetscReal a, PetscReal b, PetscInt digits, void *ctx, PetscReal *sol)
2380: {
2381:   const PetscInt  p     = 16;           /* Digits of precision in the evaluation */
2382:   const PetscReal alpha = (b - a) / 2.; /* Half-width of the integration interval */
2383:   const PetscReal beta  = (b + a) / 2.; /* Center of the integration interval */
2384:   PetscReal       h     = 1.0;          /* Step size, length between x_k */
2385:   PetscInt        l     = 0;            /* Level of refinement, h = 2^{-l} */
2386:   PetscReal       osum  = 0.0;          /* Integral on last level */
2387:   PetscReal       psum  = 0.0;          /* Integral on the level before the last level */
2388:   PetscReal       sum;                  /* Integral on current level */
2389:   PetscReal       yk;                   /* Quadrature point 1 - x_k on reference domain [-1, 1] */
2390:   PetscReal       lx, rx;               /* Quadrature points to the left and right of 0 on the real domain [a, b] */
2391:   PetscReal       wk;                   /* Quadrature weight at x_k */
2392:   PetscReal       lval, rval;           /* Terms in the quadature sum to the left and right of 0 */
2393:   PetscInt        d;                    /* Digits of precision in the integral */

2395:   PetscFunctionBegin;
2396:   PetscCheck(digits > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must give a positive number of significant digits");
2397:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2398:   /* Center term */
2399:   func(&beta, ctx, &lval);
2400:   sum = 0.5 * alpha * PETSC_PI * lval;
2401:   /* */
2402:   do {
2403:     PetscReal lterm, rterm, maxTerm = 0.0, d1, d2, d3, d4;
2404:     PetscInt  k = 1;

2406:     ++l;
2407:     /* PetscPrintf(PETSC_COMM_SELF, "LEVEL %" PetscInt_FMT " sum: %15.15f\n", l, sum); */
2408:     /* At each level of refinement, h --> h/2 and sum --> sum/2 */
2409:     psum = osum;
2410:     osum = sum;
2411:     h *= 0.5;
2412:     sum *= 0.5;
2413:     do {
2414:       wk = 0.5 * h * PETSC_PI * PetscCoshReal(k * h) / PetscSqr(PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(k * h)));
2415:       yk = 1.0 / (PetscExpReal(0.5 * PETSC_PI * PetscSinhReal(k * h)) * PetscCoshReal(0.5 * PETSC_PI * PetscSinhReal(k * h)));
2416:       lx = -alpha * (1.0 - yk) + beta;
2417:       rx = alpha * (1.0 - yk) + beta;
2418:       func(&lx, ctx, &lval);
2419:       func(&rx, ctx, &rval);
2420:       lterm   = alpha * wk * lval;
2421:       maxTerm = PetscMax(PetscAbsReal(lterm), maxTerm);
2422:       sum += lterm;
2423:       rterm   = alpha * wk * rval;
2424:       maxTerm = PetscMax(PetscAbsReal(rterm), maxTerm);
2425:       sum += rterm;
2426:       ++k;
2427:       /* Only need to evaluate every other point on refined levels */
2428:       if (l != 1) ++k;
2429:     } while (PetscAbsReal(PetscLog10Real(wk)) < p); /* Only need to evaluate sum until weights are < 32 digits of precision */

2431:     d1 = PetscLog10Real(PetscAbsReal(sum - osum));
2432:     d2 = PetscLog10Real(PetscAbsReal(sum - psum));
2433:     d3 = PetscLog10Real(maxTerm) - p;
2434:     if (PetscMax(PetscAbsReal(lterm), PetscAbsReal(rterm)) == 0.0) d4 = 0.0;
2435:     else d4 = PetscLog10Real(PetscMax(PetscAbsReal(lterm), PetscAbsReal(rterm)));
2436:     d = PetscAbsInt(PetscMin(0, PetscMax(PetscMax(PetscMax(PetscSqr(d1) / d2, 2 * d1), d3), d4)));
2437:   } while (d < digits && l < 12);
2438:   *sol = sum;
2439:   PetscCall(PetscFPTrapPop());
2440:   PetscFunctionReturn(PETSC_SUCCESS);
2441: }

2443: #if defined(PETSC_HAVE_MPFR)
2444: PetscErrorCode PetscDTTanhSinhIntegrateMPFR(void (*func)(const PetscReal[], void *, PetscReal *), PetscReal a, PetscReal b, PetscInt digits, void *ctx, PetscReal *sol)
2445: {
2446:   const PetscInt safetyFactor = 2; /* Calculate abcissa until 2*p digits */
2447:   PetscInt       l            = 0; /* Level of refinement, h = 2^{-l} */
2448:   mpfr_t         alpha;            /* Half-width of the integration interval */
2449:   mpfr_t         beta;             /* Center of the integration interval */
2450:   mpfr_t         h;                /* Step size, length between x_k */
2451:   mpfr_t         osum;             /* Integral on last level */
2452:   mpfr_t         psum;             /* Integral on the level before the last level */
2453:   mpfr_t         sum;              /* Integral on current level */
2454:   mpfr_t         yk;               /* Quadrature point 1 - x_k on reference domain [-1, 1] */
2455:   mpfr_t         lx, rx;           /* Quadrature points to the left and right of 0 on the real domain [a, b] */
2456:   mpfr_t         wk;               /* Quadrature weight at x_k */
2457:   PetscReal      lval, rval, rtmp; /* Terms in the quadature sum to the left and right of 0 */
2458:   PetscInt       d;                /* Digits of precision in the integral */
2459:   mpfr_t         pi2, kh, msinh, mcosh, maxTerm, curTerm, tmp;

2461:   PetscFunctionBegin;
2462:   PetscCheck(digits > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must give a positive number of significant digits");
2463:   /* Create high precision storage */
2464:   mpfr_inits2(PetscCeilReal(safetyFactor * digits * PetscLogReal(10.) / PetscLogReal(2.)), alpha, beta, h, sum, osum, psum, yk, wk, lx, rx, tmp, maxTerm, curTerm, pi2, kh, msinh, mcosh, NULL);
2465:   /* Initialization */
2466:   mpfr_set_d(alpha, 0.5 * (b - a), MPFR_RNDN);
2467:   mpfr_set_d(beta, 0.5 * (b + a), MPFR_RNDN);
2468:   mpfr_set_d(osum, 0.0, MPFR_RNDN);
2469:   mpfr_set_d(psum, 0.0, MPFR_RNDN);
2470:   mpfr_set_d(h, 1.0, MPFR_RNDN);
2471:   mpfr_const_pi(pi2, MPFR_RNDN);
2472:   mpfr_mul_d(pi2, pi2, 0.5, MPFR_RNDN);
2473:   /* Center term */
2474:   rtmp = 0.5 * (b + a);
2475:   func(&rtmp, ctx, &lval);
2476:   mpfr_set(sum, pi2, MPFR_RNDN);
2477:   mpfr_mul(sum, sum, alpha, MPFR_RNDN);
2478:   mpfr_mul_d(sum, sum, lval, MPFR_RNDN);
2479:   /* */
2480:   do {
2481:     PetscReal d1, d2, d3, d4;
2482:     PetscInt  k = 1;

2484:     ++l;
2485:     mpfr_set_d(maxTerm, 0.0, MPFR_RNDN);
2486:     /* PetscPrintf(PETSC_COMM_SELF, "LEVEL %" PetscInt_FMT " sum: %15.15f\n", l, sum); */
2487:     /* At each level of refinement, h --> h/2 and sum --> sum/2 */
2488:     mpfr_set(psum, osum, MPFR_RNDN);
2489:     mpfr_set(osum, sum, MPFR_RNDN);
2490:     mpfr_mul_d(h, h, 0.5, MPFR_RNDN);
2491:     mpfr_mul_d(sum, sum, 0.5, MPFR_RNDN);
2492:     do {
2493:       mpfr_set_si(kh, k, MPFR_RNDN);
2494:       mpfr_mul(kh, kh, h, MPFR_RNDN);
2495:       /* Weight */
2496:       mpfr_set(wk, h, MPFR_RNDN);
2497:       mpfr_sinh_cosh(msinh, mcosh, kh, MPFR_RNDN);
2498:       mpfr_mul(msinh, msinh, pi2, MPFR_RNDN);
2499:       mpfr_mul(mcosh, mcosh, pi2, MPFR_RNDN);
2500:       mpfr_cosh(tmp, msinh, MPFR_RNDN);
2501:       mpfr_sqr(tmp, tmp, MPFR_RNDN);
2502:       mpfr_mul(wk, wk, mcosh, MPFR_RNDN);
2503:       mpfr_div(wk, wk, tmp, MPFR_RNDN);
2504:       /* Abscissa */
2505:       mpfr_set_d(yk, 1.0, MPFR_RNDZ);
2506:       mpfr_cosh(tmp, msinh, MPFR_RNDN);
2507:       mpfr_div(yk, yk, tmp, MPFR_RNDZ);
2508:       mpfr_exp(tmp, msinh, MPFR_RNDN);
2509:       mpfr_div(yk, yk, tmp, MPFR_RNDZ);
2510:       /* Quadrature points */
2511:       mpfr_sub_d(lx, yk, 1.0, MPFR_RNDZ);
2512:       mpfr_mul(lx, lx, alpha, MPFR_RNDU);
2513:       mpfr_add(lx, lx, beta, MPFR_RNDU);
2514:       mpfr_d_sub(rx, 1.0, yk, MPFR_RNDZ);
2515:       mpfr_mul(rx, rx, alpha, MPFR_RNDD);
2516:       mpfr_add(rx, rx, beta, MPFR_RNDD);
2517:       /* Evaluation */
2518:       rtmp = mpfr_get_d(lx, MPFR_RNDU);
2519:       func(&rtmp, ctx, &lval);
2520:       rtmp = mpfr_get_d(rx, MPFR_RNDD);
2521:       func(&rtmp, ctx, &rval);
2522:       /* Update */
2523:       mpfr_mul(tmp, wk, alpha, MPFR_RNDN);
2524:       mpfr_mul_d(tmp, tmp, lval, MPFR_RNDN);
2525:       mpfr_add(sum, sum, tmp, MPFR_RNDN);
2526:       mpfr_abs(tmp, tmp, MPFR_RNDN);
2527:       mpfr_max(maxTerm, maxTerm, tmp, MPFR_RNDN);
2528:       mpfr_set(curTerm, tmp, MPFR_RNDN);
2529:       mpfr_mul(tmp, wk, alpha, MPFR_RNDN);
2530:       mpfr_mul_d(tmp, tmp, rval, MPFR_RNDN);
2531:       mpfr_add(sum, sum, tmp, MPFR_RNDN);
2532:       mpfr_abs(tmp, tmp, MPFR_RNDN);
2533:       mpfr_max(maxTerm, maxTerm, tmp, MPFR_RNDN);
2534:       mpfr_max(curTerm, curTerm, tmp, MPFR_RNDN);
2535:       ++k;
2536:       /* Only need to evaluate every other point on refined levels */
2537:       if (l != 1) ++k;
2538:       mpfr_log10(tmp, wk, MPFR_RNDN);
2539:       mpfr_abs(tmp, tmp, MPFR_RNDN);
2540:     } while (mpfr_get_d(tmp, MPFR_RNDN) < safetyFactor * digits); /* Only need to evaluate sum until weights are < 32 digits of precision */
2541:     mpfr_sub(tmp, sum, osum, MPFR_RNDN);
2542:     mpfr_abs(tmp, tmp, MPFR_RNDN);
2543:     mpfr_log10(tmp, tmp, MPFR_RNDN);
2544:     d1 = mpfr_get_d(tmp, MPFR_RNDN);
2545:     mpfr_sub(tmp, sum, psum, MPFR_RNDN);
2546:     mpfr_abs(tmp, tmp, MPFR_RNDN);
2547:     mpfr_log10(tmp, tmp, MPFR_RNDN);
2548:     d2 = mpfr_get_d(tmp, MPFR_RNDN);
2549:     mpfr_log10(tmp, maxTerm, MPFR_RNDN);
2550:     d3 = mpfr_get_d(tmp, MPFR_RNDN) - digits;
2551:     mpfr_log10(tmp, curTerm, MPFR_RNDN);
2552:     d4 = mpfr_get_d(tmp, MPFR_RNDN);
2553:     d  = PetscAbsInt(PetscMin(0, PetscMax(PetscMax(PetscMax(PetscSqr(d1) / d2, 2 * d1), d3), d4)));
2554:   } while (d < digits && l < 8);
2555:   *sol = mpfr_get_d(sum, MPFR_RNDN);
2556:   /* Cleanup */
2557:   mpfr_clears(alpha, beta, h, sum, osum, psum, yk, wk, lx, rx, tmp, maxTerm, curTerm, pi2, kh, msinh, mcosh, NULL);
2558:   PetscFunctionReturn(PETSC_SUCCESS);
2559: }
2560: #else

2562: PetscErrorCode PetscDTTanhSinhIntegrateMPFR(void (*func)(const PetscReal[], void *, PetscReal *), PetscReal a, PetscReal b, PetscInt digits, void *ctx, PetscReal *sol)
2563: {
2564:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "This method will not work without MPFR. Reconfigure using --download-mpfr --download-gmp");
2565: }
2566: #endif

2568: /*@
2569:   PetscDTTensorQuadratureCreate - create the tensor product quadrature from two lower-dimensional quadratures

2571:   Not Collective

2573:   Input Parameters:
2574: + q1 - The first quadrature
2575: - q2 - The second quadrature

2577:   Output Parameter:
2578: . q - A `PetscQuadrature` object

2580:   Level: intermediate

2582: .seealso: `PetscQuadrature`, `PetscDTGaussTensorQuadrature()`
2583: @*/
2584: PetscErrorCode PetscDTTensorQuadratureCreate(PetscQuadrature q1, PetscQuadrature q2, PetscQuadrature *q)
2585: {
2586:   DMPolytopeType   ct1, ct2, ct;
2587:   const PetscReal *x1, *w1, *x2, *w2;
2588:   PetscReal       *x, *w;
2589:   PetscInt         dim1, Nc1, Np1, order1, qa, d1;
2590:   PetscInt         dim2, Nc2, Np2, order2, qb, d2;
2591:   PetscInt         dim, Nc, Np, order, qc, d;

2593:   PetscFunctionBegin;
2596:   PetscAssertPointer(q, 3);

2598:   PetscCall(PetscQuadratureGetOrder(q1, &order1));
2599:   PetscCall(PetscQuadratureGetOrder(q2, &order2));
2600:   PetscCheck(order1 == order2, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Order1 %" PetscInt_FMT " != %" PetscInt_FMT " Order2", order1, order2);
2601:   PetscCall(PetscQuadratureGetData(q1, &dim1, &Nc1, &Np1, &x1, &w1));
2602:   PetscCall(PetscQuadratureGetCellType(q1, &ct1));
2603:   PetscCall(PetscQuadratureGetData(q2, &dim2, &Nc2, &Np2, &x2, &w2));
2604:   PetscCall(PetscQuadratureGetCellType(q2, &ct2));
2605:   PetscCheck(Nc1 == Nc2, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "NumComp1 %" PetscInt_FMT " != %" PetscInt_FMT " NumComp2", Nc1, Nc2);

2607:   switch (ct1) {
2608:   case DM_POLYTOPE_POINT:
2609:     ct = ct2;
2610:     break;
2611:   case DM_POLYTOPE_SEGMENT:
2612:     switch (ct2) {
2613:     case DM_POLYTOPE_POINT:
2614:       ct = ct1;
2615:       break;
2616:     case DM_POLYTOPE_SEGMENT:
2617:       ct = DM_POLYTOPE_QUADRILATERAL;
2618:       break;
2619:     case DM_POLYTOPE_TRIANGLE:
2620:       ct = DM_POLYTOPE_TRI_PRISM;
2621:       break;
2622:     case DM_POLYTOPE_QUADRILATERAL:
2623:       ct = DM_POLYTOPE_HEXAHEDRON;
2624:       break;
2625:     case DM_POLYTOPE_TETRAHEDRON:
2626:       ct = DM_POLYTOPE_UNKNOWN;
2627:       break;
2628:     case DM_POLYTOPE_HEXAHEDRON:
2629:       ct = DM_POLYTOPE_UNKNOWN;
2630:       break;
2631:     default:
2632:       ct = DM_POLYTOPE_UNKNOWN;
2633:     }
2634:     break;
2635:   case DM_POLYTOPE_TRIANGLE:
2636:     switch (ct2) {
2637:     case DM_POLYTOPE_POINT:
2638:       ct = ct1;
2639:       break;
2640:     case DM_POLYTOPE_SEGMENT:
2641:       ct = DM_POLYTOPE_TRI_PRISM;
2642:       break;
2643:     case DM_POLYTOPE_TRIANGLE:
2644:       ct = DM_POLYTOPE_UNKNOWN;
2645:       break;
2646:     case DM_POLYTOPE_QUADRILATERAL:
2647:       ct = DM_POLYTOPE_UNKNOWN;
2648:       break;
2649:     case DM_POLYTOPE_TETRAHEDRON:
2650:       ct = DM_POLYTOPE_UNKNOWN;
2651:       break;
2652:     case DM_POLYTOPE_HEXAHEDRON:
2653:       ct = DM_POLYTOPE_UNKNOWN;
2654:       break;
2655:     default:
2656:       ct = DM_POLYTOPE_UNKNOWN;
2657:     }
2658:     break;
2659:   case DM_POLYTOPE_QUADRILATERAL:
2660:     switch (ct2) {
2661:     case DM_POLYTOPE_POINT:
2662:       ct = ct1;
2663:       break;
2664:     case DM_POLYTOPE_SEGMENT:
2665:       ct = DM_POLYTOPE_HEXAHEDRON;
2666:       break;
2667:     case DM_POLYTOPE_TRIANGLE:
2668:       ct = DM_POLYTOPE_UNKNOWN;
2669:       break;
2670:     case DM_POLYTOPE_QUADRILATERAL:
2671:       ct = DM_POLYTOPE_UNKNOWN;
2672:       break;
2673:     case DM_POLYTOPE_TETRAHEDRON:
2674:       ct = DM_POLYTOPE_UNKNOWN;
2675:       break;
2676:     case DM_POLYTOPE_HEXAHEDRON:
2677:       ct = DM_POLYTOPE_UNKNOWN;
2678:       break;
2679:     default:
2680:       ct = DM_POLYTOPE_UNKNOWN;
2681:     }
2682:     break;
2683:   case DM_POLYTOPE_TETRAHEDRON:
2684:     switch (ct2) {
2685:     case DM_POLYTOPE_POINT:
2686:       ct = ct1;
2687:       break;
2688:     case DM_POLYTOPE_SEGMENT:
2689:       ct = DM_POLYTOPE_UNKNOWN;
2690:       break;
2691:     case DM_POLYTOPE_TRIANGLE:
2692:       ct = DM_POLYTOPE_UNKNOWN;
2693:       break;
2694:     case DM_POLYTOPE_QUADRILATERAL:
2695:       ct = DM_POLYTOPE_UNKNOWN;
2696:       break;
2697:     case DM_POLYTOPE_TETRAHEDRON:
2698:       ct = DM_POLYTOPE_UNKNOWN;
2699:       break;
2700:     case DM_POLYTOPE_HEXAHEDRON:
2701:       ct = DM_POLYTOPE_UNKNOWN;
2702:       break;
2703:     default:
2704:       ct = DM_POLYTOPE_UNKNOWN;
2705:     }
2706:     break;
2707:   case DM_POLYTOPE_HEXAHEDRON:
2708:     switch (ct2) {
2709:     case DM_POLYTOPE_POINT:
2710:       ct = ct1;
2711:       break;
2712:     case DM_POLYTOPE_SEGMENT:
2713:       ct = DM_POLYTOPE_UNKNOWN;
2714:       break;
2715:     case DM_POLYTOPE_TRIANGLE:
2716:       ct = DM_POLYTOPE_UNKNOWN;
2717:       break;
2718:     case DM_POLYTOPE_QUADRILATERAL:
2719:       ct = DM_POLYTOPE_UNKNOWN;
2720:       break;
2721:     case DM_POLYTOPE_TETRAHEDRON:
2722:       ct = DM_POLYTOPE_UNKNOWN;
2723:       break;
2724:     case DM_POLYTOPE_HEXAHEDRON:
2725:       ct = DM_POLYTOPE_UNKNOWN;
2726:       break;
2727:     default:
2728:       ct = DM_POLYTOPE_UNKNOWN;
2729:     }
2730:     break;
2731:   default:
2732:     ct = DM_POLYTOPE_UNKNOWN;
2733:   }
2734:   dim   = dim1 + dim2;
2735:   Nc    = Nc1;
2736:   Np    = Np1 * Np2;
2737:   order = order1;
2738:   PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, q));
2739:   PetscCall(PetscQuadratureSetCellType(*q, ct));
2740:   PetscCall(PetscQuadratureSetOrder(*q, order));
2741:   PetscCall(PetscMalloc1(Np * dim, &x));
2742:   PetscCall(PetscMalloc1(Np, &w));
2743:   for (qa = 0, qc = 0; qa < Np1; ++qa) {
2744:     for (qb = 0; qb < Np2; ++qb, ++qc) {
2745:       for (d1 = 0, d = 0; d1 < dim1; ++d1, ++d) x[qc * dim + d] = x1[qa * dim1 + d1];
2746:       for (d2 = 0; d2 < dim2; ++d2, ++d) x[qc * dim + d] = x2[qb * dim2 + d2];
2747:       w[qc] = w1[qa] * w2[qb];
2748:     }
2749:   }
2750:   PetscCall(PetscQuadratureSetData(*q, dim, Nc, Np, x, w));
2751:   PetscFunctionReturn(PETSC_SUCCESS);
2752: }

2754: /* Overwrites A. Can only handle full-rank problems with m>=n
2755:    A in column-major format
2756:    Ainv in row-major format
2757:    tau has length m
2758:    worksize must be >= max(1,n)
2759:  */
2760: static PetscErrorCode PetscDTPseudoInverseQR(PetscInt m, PetscInt mstride, PetscInt n, PetscReal *A_in, PetscReal *Ainv_out, PetscScalar *tau, PetscInt worksize, PetscScalar *work)
2761: {
2762:   PetscBLASInt M, N, K, lda, ldb, ldwork, info;
2763:   PetscScalar *A, *Ainv, *R, *Q, Alpha;

2765:   PetscFunctionBegin;
2766: #if defined(PETSC_USE_COMPLEX)
2767:   {
2768:     PetscInt i, j;
2769:     PetscCall(PetscMalloc2(m * n, &A, m * n, &Ainv));
2770:     for (j = 0; j < n; j++) {
2771:       for (i = 0; i < m; i++) A[i + m * j] = A_in[i + mstride * j];
2772:     }
2773:     mstride = m;
2774:   }
2775: #else
2776:   A    = A_in;
2777:   Ainv = Ainv_out;
2778: #endif

2780:   PetscCall(PetscBLASIntCast(m, &M));
2781:   PetscCall(PetscBLASIntCast(n, &N));
2782:   PetscCall(PetscBLASIntCast(mstride, &lda));
2783:   PetscCall(PetscBLASIntCast(worksize, &ldwork));
2784:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2785:   PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&M, &N, A, &lda, tau, work, &ldwork, &info));
2786:   PetscCall(PetscFPTrapPop());
2787:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "xGEQRF error");
2788:   R = A; /* Upper triangular part of A now contains R, the rest contains the elementary reflectors */

2790:   /* Extract an explicit representation of Q */
2791:   Q = Ainv;
2792:   PetscCall(PetscArraycpy(Q, A, mstride * n));
2793:   K = N; /* full rank */
2794:   PetscCallBLAS("LAPACKorgqr", LAPACKorgqr_(&M, &N, &K, Q, &lda, tau, work, &ldwork, &info));
2795:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "xORGQR/xUNGQR error");

2797:   /* Compute A^{-T} = (R^{-1} Q^T)^T = Q R^{-T} */
2798:   Alpha = 1.0;
2799:   ldb   = lda;
2800:   PetscCallBLAS("BLAStrsm", BLAStrsm_("Right", "Upper", "ConjugateTranspose", "NotUnitTriangular", &M, &N, &Alpha, R, &lda, Q, &ldb));
2801:   /* Ainv is Q, overwritten with inverse */

2803: #if defined(PETSC_USE_COMPLEX)
2804:   {
2805:     PetscInt i;
2806:     for (i = 0; i < m * n; i++) Ainv_out[i] = PetscRealPart(Ainv[i]);
2807:     PetscCall(PetscFree2(A, Ainv));
2808:   }
2809: #endif
2810:   PetscFunctionReturn(PETSC_SUCCESS);
2811: }

2813: /* Computes integral of L_p' over intervals {(x0,x1),(x1,x2),...} */
2814: static PetscErrorCode PetscDTLegendreIntegrate(PetscInt ninterval, const PetscReal *x, PetscInt ndegree, const PetscInt *degrees, PetscBool Transpose, PetscReal *B)
2815: {
2816:   PetscReal *Bv;
2817:   PetscInt   i, j;

2819:   PetscFunctionBegin;
2820:   PetscCall(PetscMalloc1((ninterval + 1) * ndegree, &Bv));
2821:   /* Point evaluation of L_p on all the source vertices */
2822:   PetscCall(PetscDTLegendreEval(ninterval + 1, x, ndegree, degrees, Bv, NULL, NULL));
2823:   /* Integral over each interval: \int_a^b L_p' = L_p(b)-L_p(a) */
2824:   for (i = 0; i < ninterval; i++) {
2825:     for (j = 0; j < ndegree; j++) {
2826:       if (Transpose) B[i + ninterval * j] = Bv[(i + 1) * ndegree + j] - Bv[i * ndegree + j];
2827:       else B[i * ndegree + j] = Bv[(i + 1) * ndegree + j] - Bv[i * ndegree + j];
2828:     }
2829:   }
2830:   PetscCall(PetscFree(Bv));
2831:   PetscFunctionReturn(PETSC_SUCCESS);
2832: }

2834: /*@
2835:   PetscDTReconstructPoly - create matrix representing polynomial reconstruction using cell intervals and evaluation at target intervals

2837:   Not Collective

2839:   Input Parameters:
2840: + degree  - degree of reconstruction polynomial
2841: . nsource - number of source intervals
2842: . sourcex - sorted coordinates of source cell boundaries (length `nsource`+1)
2843: . ntarget - number of target intervals
2844: - targetx - sorted coordinates of target cell boundaries (length `ntarget`+1)

2846:   Output Parameter:
2847: . R - reconstruction matrix, utarget = sum_s R[t*nsource+s] * usource[s]

2849:   Level: advanced

2851: .seealso: `PetscDTLegendreEval()`
2852: @*/
2853: PetscErrorCode PetscDTReconstructPoly(PetscInt degree, PetscInt nsource, const PetscReal sourcex[], PetscInt ntarget, const PetscReal targetx[], PetscReal R[])
2854: {
2855:   PetscInt     i, j, k, *bdegrees, worksize;
2856:   PetscReal    xmin, xmax, center, hscale, *sourcey, *targety, *Bsource, *Bsinv, *Btarget;
2857:   PetscScalar *tau, *work;

2859:   PetscFunctionBegin;
2860:   PetscAssertPointer(sourcex, 3);
2861:   PetscAssertPointer(targetx, 5);
2862:   PetscAssertPointer(R, 6);
2863:   PetscCheck(degree < nsource, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Reconstruction degree %" PetscInt_FMT " must be less than number of source intervals %" PetscInt_FMT, degree, nsource);
2864:   if (PetscDefined(USE_DEBUG)) {
2865:     for (i = 0; i < nsource; i++) PetscCheck(sourcex[i] < sourcex[i + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_CORRUPT, "Source interval %" PetscInt_FMT " has negative orientation (%g,%g)", i, (double)sourcex[i], (double)sourcex[i + 1]);
2866:     for (i = 0; i < ntarget; i++) PetscCheck(targetx[i] < targetx[i + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_CORRUPT, "Target interval %" PetscInt_FMT " has negative orientation (%g,%g)", i, (double)targetx[i], (double)targetx[i + 1]);
2867:   }
2868:   xmin     = PetscMin(sourcex[0], targetx[0]);
2869:   xmax     = PetscMax(sourcex[nsource], targetx[ntarget]);
2870:   center   = (xmin + xmax) / 2;
2871:   hscale   = (xmax - xmin) / 2;
2872:   worksize = nsource;
2873:   PetscCall(PetscMalloc4(degree + 1, &bdegrees, nsource + 1, &sourcey, nsource * (degree + 1), &Bsource, worksize, &work));
2874:   PetscCall(PetscMalloc4(nsource, &tau, nsource * (degree + 1), &Bsinv, ntarget + 1, &targety, ntarget * (degree + 1), &Btarget));
2875:   for (i = 0; i <= nsource; i++) sourcey[i] = (sourcex[i] - center) / hscale;
2876:   for (i = 0; i <= degree; i++) bdegrees[i] = i + 1;
2877:   PetscCall(PetscDTLegendreIntegrate(nsource, sourcey, degree + 1, bdegrees, PETSC_TRUE, Bsource));
2878:   PetscCall(PetscDTPseudoInverseQR(nsource, nsource, degree + 1, Bsource, Bsinv, tau, nsource, work));
2879:   for (i = 0; i <= ntarget; i++) targety[i] = (targetx[i] - center) / hscale;
2880:   PetscCall(PetscDTLegendreIntegrate(ntarget, targety, degree + 1, bdegrees, PETSC_FALSE, Btarget));
2881:   for (i = 0; i < ntarget; i++) {
2882:     PetscReal rowsum = 0;
2883:     for (j = 0; j < nsource; j++) {
2884:       PetscReal sum = 0;
2885:       for (k = 0; k < degree + 1; k++) sum += Btarget[i * (degree + 1) + k] * Bsinv[k * nsource + j];
2886:       R[i * nsource + j] = sum;
2887:       rowsum += sum;
2888:     }
2889:     for (j = 0; j < nsource; j++) R[i * nsource + j] /= rowsum; /* normalize each row */
2890:   }
2891:   PetscCall(PetscFree4(bdegrees, sourcey, Bsource, work));
2892:   PetscCall(PetscFree4(tau, Bsinv, targety, Btarget));
2893:   PetscFunctionReturn(PETSC_SUCCESS);
2894: }

2896: /*@
2897:   PetscGaussLobattoLegendreIntegrate - Compute the L2 integral of a function on the GLL points

2899:   Not Collective

2901:   Input Parameters:
2902: + n       - the number of GLL nodes
2903: . nodes   - the GLL nodes
2904: . weights - the GLL weights
2905: - f       - the function values at the nodes

2907:   Output Parameter:
2908: . in - the value of the integral

2910:   Level: beginner

2912: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`
2913: @*/
2914: PetscErrorCode PetscGaussLobattoLegendreIntegrate(PetscInt n, PetscReal nodes[], PetscReal weights[], const PetscReal f[], PetscReal *in)
2915: {
2916:   PetscInt i;

2918:   PetscFunctionBegin;
2919:   *in = 0.;
2920:   for (i = 0; i < n; i++) *in += f[i] * f[i] * weights[i];
2921:   PetscFunctionReturn(PETSC_SUCCESS);
2922: }

2924: /*@C
2925:   PetscGaussLobattoLegendreElementLaplacianCreate - computes the Laplacian for a single 1d GLL element

2927:   Not Collective

2929:   Input Parameters:
2930: + n       - the number of GLL nodes
2931: . nodes   - the GLL nodes, of length `n`
2932: - weights - the GLL weights, of length `n`

2934:   Output Parameter:
2935: . AA - the stiffness element, of size `n` by `n`

2937:   Level: beginner

2939:   Notes:
2940:   Destroy this with `PetscGaussLobattoLegendreElementLaplacianDestroy()`

2942:   You can access entries in this array with AA[i][j] but in memory it is stored in contiguous memory, row-oriented (the array is symmetric)

2944: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianDestroy()`
2945: @*/
2946: PetscErrorCode PetscGaussLobattoLegendreElementLaplacianCreate(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
2947: {
2948:   PetscReal      **A;
2949:   const PetscReal *gllnodes = nodes;
2950:   const PetscInt   p        = n - 1;
2951:   PetscReal        z0, z1, z2 = -1, x, Lpj, Lpr;
2952:   PetscInt         i, j, nn, r;

2954:   PetscFunctionBegin;
2955:   PetscCall(PetscMalloc1(n, &A));
2956:   PetscCall(PetscMalloc1(n * n, &A[0]));
2957:   for (i = 1; i < n; i++) A[i] = A[i - 1] + n;

2959:   for (j = 1; j < p; j++) {
2960:     x  = gllnodes[j];
2961:     z0 = 1.;
2962:     z1 = x;
2963:     for (nn = 1; nn < p; nn++) {
2964:       z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
2965:       z0 = z1;
2966:       z1 = z2;
2967:     }
2968:     Lpj = z2;
2969:     for (r = 1; r < p; r++) {
2970:       if (r == j) {
2971:         A[j][j] = 2. / (3. * (1. - gllnodes[j] * gllnodes[j]) * Lpj * Lpj);
2972:       } else {
2973:         x  = gllnodes[r];
2974:         z0 = 1.;
2975:         z1 = x;
2976:         for (nn = 1; nn < p; nn++) {
2977:           z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
2978:           z0 = z1;
2979:           z1 = z2;
2980:         }
2981:         Lpr     = z2;
2982:         A[r][j] = 4. / (((PetscReal)p) * (((PetscReal)p) + 1.) * Lpj * Lpr * (gllnodes[j] - gllnodes[r]) * (gllnodes[j] - gllnodes[r]));
2983:       }
2984:     }
2985:   }
2986:   for (j = 1; j < p + 1; j++) {
2987:     x  = gllnodes[j];
2988:     z0 = 1.;
2989:     z1 = x;
2990:     for (nn = 1; nn < p; nn++) {
2991:       z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
2992:       z0 = z1;
2993:       z1 = z2;
2994:     }
2995:     Lpj     = z2;
2996:     A[j][0] = 4. * PetscPowRealInt(-1., p) / (((PetscReal)p) * (((PetscReal)p) + 1.) * Lpj * (1. + gllnodes[j]) * (1. + gllnodes[j]));
2997:     A[0][j] = A[j][0];
2998:   }
2999:   for (j = 0; j < p; j++) {
3000:     x  = gllnodes[j];
3001:     z0 = 1.;
3002:     z1 = x;
3003:     for (nn = 1; nn < p; nn++) {
3004:       z2 = x * z1 * (2. * ((PetscReal)nn) + 1.) / (((PetscReal)nn) + 1.) - z0 * (((PetscReal)nn) / (((PetscReal)nn) + 1.));
3005:       z0 = z1;
3006:       z1 = z2;
3007:     }
3008:     Lpj = z2;

3010:     A[p][j] = 4. / (((PetscReal)p) * (((PetscReal)p) + 1.) * Lpj * (1. - gllnodes[j]) * (1. - gllnodes[j]));
3011:     A[j][p] = A[p][j];
3012:   }
3013:   A[0][0] = 0.5 + (((PetscReal)p) * (((PetscReal)p) + 1.) - 2.) / 6.;
3014:   A[p][p] = A[0][0];
3015:   *AA     = A;
3016:   PetscFunctionReturn(PETSC_SUCCESS);
3017: }

3019: /*@C
3020:   PetscGaussLobattoLegendreElementLaplacianDestroy - frees the Laplacian for a single 1d GLL element created with `PetscGaussLobattoLegendreElementLaplacianCreate()`

3022:   Not Collective

3024:   Input Parameters:
3025: + n       - the number of GLL nodes
3026: . nodes   - the GLL nodes, ignored
3027: . weights - the GLL weightss, ignored
3028: - AA      - the stiffness element from `PetscGaussLobattoLegendreElementLaplacianCreate()`

3030:   Level: beginner

3032: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianCreate()`
3033: @*/
3034: PetscErrorCode PetscGaussLobattoLegendreElementLaplacianDestroy(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
3035: {
3036:   PetscFunctionBegin;
3037:   PetscCall(PetscFree((*AA)[0]));
3038:   PetscCall(PetscFree(*AA));
3039:   *AA = NULL;
3040:   PetscFunctionReturn(PETSC_SUCCESS);
3041: }

3043: /*@C
3044:   PetscGaussLobattoLegendreElementGradientCreate - computes the gradient for a single 1d GLL element

3046:   Not Collective

3048:   Input Parameters:
3049: + n       - the number of GLL nodes
3050: . nodes   - the GLL nodes, of length `n`
3051: - weights - the GLL weights, of length `n`

3053:   Output Parameters:
3054: + AA  - the stiffness element, of dimension `n` by `n`
3055: - AAT - the transpose of AA (pass in `NULL` if you do not need this array), of dimension `n` by `n`

3057:   Level: beginner

3059:   Notes:
3060:   Destroy this with `PetscGaussLobattoLegendreElementGradientDestroy()`

3062:   You can access entries in these arrays with AA[i][j] but in memory it is stored in contiguous memory, row-oriented

3064: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianDestroy()`, `PetscGaussLobattoLegendreElementGradientDestroy()`
3065: @*/
3066: PetscErrorCode PetscGaussLobattoLegendreElementGradientCreate(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA, PetscReal ***AAT)
3067: {
3068:   PetscReal      **A, **AT = NULL;
3069:   const PetscReal *gllnodes = nodes;
3070:   const PetscInt   p        = n - 1;
3071:   PetscReal        Li, Lj, d0;
3072:   PetscInt         i, j;

3074:   PetscFunctionBegin;
3075:   PetscCall(PetscMalloc1(n, &A));
3076:   PetscCall(PetscMalloc1(n * n, &A[0]));
3077:   for (i = 1; i < n; i++) A[i] = A[i - 1] + n;

3079:   if (AAT) {
3080:     PetscCall(PetscMalloc1(n, &AT));
3081:     PetscCall(PetscMalloc1(n * n, &AT[0]));
3082:     for (i = 1; i < n; i++) AT[i] = AT[i - 1] + n;
3083:   }

3085:   if (n == 1) A[0][0] = 0.;
3086:   d0 = (PetscReal)p * ((PetscReal)p + 1.) / 4.;
3087:   for (i = 0; i < n; i++) {
3088:     for (j = 0; j < n; j++) {
3089:       A[i][j] = 0.;
3090:       PetscCall(PetscDTComputeJacobi(0., 0., p, gllnodes[i], &Li));
3091:       PetscCall(PetscDTComputeJacobi(0., 0., p, gllnodes[j], &Lj));
3092:       if (i != j) A[i][j] = Li / (Lj * (gllnodes[i] - gllnodes[j]));
3093:       if ((j == i) && (i == 0)) A[i][j] = -d0;
3094:       if (j == i && i == p) A[i][j] = d0;
3095:       if (AT) AT[j][i] = A[i][j];
3096:     }
3097:   }
3098:   if (AAT) *AAT = AT;
3099:   *AA = A;
3100:   PetscFunctionReturn(PETSC_SUCCESS);
3101: }

3103: /*@C
3104:   PetscGaussLobattoLegendreElementGradientDestroy - frees the gradient for a single 1d GLL element obtained with `PetscGaussLobattoLegendreElementGradientCreate()`

3106:   Not Collective

3108:   Input Parameters:
3109: + n       - the number of GLL nodes
3110: . nodes   - the GLL nodes, ignored
3111: . weights - the GLL weights, ignored
3112: . AA      - the stiffness element obtained with `PetscGaussLobattoLegendreElementGradientCreate()`
3113: - AAT     - the transpose of the element obtained with `PetscGaussLobattoLegendreElementGradientCreate()`

3115:   Level: beginner

3117: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianCreate()`, `PetscGaussLobattoLegendreElementAdvectionCreate()`
3118: @*/
3119: PetscErrorCode PetscGaussLobattoLegendreElementGradientDestroy(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA, PetscReal ***AAT)
3120: {
3121:   PetscFunctionBegin;
3122:   PetscCall(PetscFree((*AA)[0]));
3123:   PetscCall(PetscFree(*AA));
3124:   *AA = NULL;
3125:   if (AAT) {
3126:     PetscCall(PetscFree((*AAT)[0]));
3127:     PetscCall(PetscFree(*AAT));
3128:     *AAT = NULL;
3129:   }
3130:   PetscFunctionReturn(PETSC_SUCCESS);
3131: }

3133: /*@C
3134:   PetscGaussLobattoLegendreElementAdvectionCreate - computes the advection operator for a single 1d GLL element

3136:   Not Collective

3138:   Input Parameters:
3139: + n       - the number of GLL nodes
3140: . nodes   - the GLL nodes, of length `n`
3141: - weights - the GLL weights, of length `n`

3143:   Output Parameter:
3144: . AA - the stiffness element, of dimension `n` by `n`

3146:   Level: beginner

3148:   Notes:
3149:   Destroy this with `PetscGaussLobattoLegendreElementAdvectionDestroy()`

3151:   This is the same as the Gradient operator multiplied by the diagonal mass matrix

3153:   You can access entries in this array with AA[i][j] but in memory it is stored in contiguous memory, row-oriented

3155: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementLaplacianCreate()`, `PetscGaussLobattoLegendreElementAdvectionDestroy()`
3156: @*/
3157: PetscErrorCode PetscGaussLobattoLegendreElementAdvectionCreate(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
3158: {
3159:   PetscReal      **D;
3160:   const PetscReal *gllweights = weights;
3161:   const PetscInt   glln       = n;
3162:   PetscInt         i, j;

3164:   PetscFunctionBegin;
3165:   PetscCall(PetscGaussLobattoLegendreElementGradientCreate(n, nodes, weights, &D, NULL));
3166:   for (i = 0; i < glln; i++) {
3167:     for (j = 0; j < glln; j++) D[i][j] = gllweights[i] * D[i][j];
3168:   }
3169:   *AA = D;
3170:   PetscFunctionReturn(PETSC_SUCCESS);
3171: }

3173: /*@C
3174:   PetscGaussLobattoLegendreElementAdvectionDestroy - frees the advection stiffness for a single 1d GLL element created with `PetscGaussLobattoLegendreElementAdvectionCreate()`

3176:   Not Collective

3178:   Input Parameters:
3179: + n       - the number of GLL nodes
3180: . nodes   - the GLL nodes, ignored
3181: . weights - the GLL weights, ignored
3182: - AA      - advection obtained with `PetscGaussLobattoLegendreElementAdvectionCreate()`

3184:   Level: beginner

3186: .seealso: `PetscDTGaussLobattoLegendreQuadrature()`, `PetscGaussLobattoLegendreElementAdvectionCreate()`
3187: @*/
3188: PetscErrorCode PetscGaussLobattoLegendreElementAdvectionDestroy(PetscInt n, PetscReal nodes[], PetscReal weights[], PetscReal ***AA)
3189: {
3190:   PetscFunctionBegin;
3191:   PetscCall(PetscFree((*AA)[0]));
3192:   PetscCall(PetscFree(*AA));
3193:   *AA = NULL;
3194:   PetscFunctionReturn(PETSC_SUCCESS);
3195: }

3197: PetscErrorCode PetscGaussLobattoLegendreElementMassCreate(PetscInt n, PetscReal *nodes, PetscReal *weights, PetscReal ***AA)
3198: {
3199:   PetscReal      **A;
3200:   const PetscReal *gllweights = weights;
3201:   const PetscInt   glln       = n;
3202:   PetscInt         i, j;

3204:   PetscFunctionBegin;
3205:   PetscCall(PetscMalloc1(glln, &A));
3206:   PetscCall(PetscMalloc1(glln * glln, &A[0]));
3207:   for (i = 1; i < glln; i++) A[i] = A[i - 1] + glln;
3208:   if (glln == 1) A[0][0] = 0.;
3209:   for (i = 0; i < glln; i++) {
3210:     for (j = 0; j < glln; j++) {
3211:       A[i][j] = 0.;
3212:       if (j == i) A[i][j] = gllweights[i];
3213:     }
3214:   }
3215:   *AA = A;
3216:   PetscFunctionReturn(PETSC_SUCCESS);
3217: }

3219: PetscErrorCode PetscGaussLobattoLegendreElementMassDestroy(PetscInt n, PetscReal *nodes, PetscReal *weights, PetscReal ***AA)
3220: {
3221:   PetscFunctionBegin;
3222:   PetscCall(PetscFree((*AA)[0]));
3223:   PetscCall(PetscFree(*AA));
3224:   *AA = NULL;
3225:   PetscFunctionReturn(PETSC_SUCCESS);
3226: }

3228: /*@
3229:   PetscDTIndexToBary - convert an index into a barycentric coordinate.

3231:   Input Parameters:
3232: + len   - the desired length of the barycentric tuple (usually 1 more than the dimension it represents, so a barycentric coordinate in a triangle has length 3)
3233: . sum   - the value that the sum of the barycentric coordinates (which will be non-negative integers) should sum to
3234: - index - the index to convert: should be >= 0 and < Binomial(len - 1 + sum, sum)

3236:   Output Parameter:
3237: . coord - will be filled with the barycentric coordinate, of length `n`

3239:   Level: beginner

3241:   Note:
3242:   The indices map to barycentric coordinates in lexicographic order, where the first index is the
3243:   least significant and the last index is the most significant.

3245: .seealso: `PetscDTBaryToIndex()`
3246: @*/
3247: PetscErrorCode PetscDTIndexToBary(PetscInt len, PetscInt sum, PetscInt index, PetscInt coord[])
3248: {
3249:   PetscInt c, d, s, total, subtotal, nexttotal;

3251:   PetscFunctionBeginHot;
3252:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
3253:   PetscCheck(index >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "index must be non-negative");
3254:   if (!len) {
3255:     if (!sum && !index) PetscFunctionReturn(PETSC_SUCCESS);
3256:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid index or sum for length 0 barycentric coordinate");
3257:   }
3258:   for (c = 1, total = 1; c <= len; c++) {
3259:     /* total is the number of ways to have a tuple of length c with sum */
3260:     if (index < total) break;
3261:     total = (total * (sum + c)) / c;
3262:   }
3263:   PetscCheck(c <= len, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "index out of range");
3264:   for (d = c; d < len; d++) coord[d] = 0;
3265:   for (s = 0, subtotal = 1, nexttotal = 1; c > 0;) {
3266:     /* subtotal is the number of ways to have a tuple of length c with sum s */
3267:     /* nexttotal is the number of ways to have a tuple of length c-1 with sum s */
3268:     if ((index + subtotal) >= total) {
3269:       coord[--c] = sum - s;
3270:       index -= (total - subtotal);
3271:       sum       = s;
3272:       total     = nexttotal;
3273:       subtotal  = 1;
3274:       nexttotal = 1;
3275:       s         = 0;
3276:     } else {
3277:       subtotal  = (subtotal * (c + s)) / (s + 1);
3278:       nexttotal = (nexttotal * (c - 1 + s)) / (s + 1);
3279:       s++;
3280:     }
3281:   }
3282:   PetscFunctionReturn(PETSC_SUCCESS);
3283: }

3285: /*@
3286:   PetscDTBaryToIndex - convert a barycentric coordinate to an index

3288:   Input Parameters:
3289: + len   - the desired length of the barycentric tuple (usually 1 more than the dimension it represents, so a barycentric coordinate in a triangle has length 3)
3290: . sum   - the value that the sum of the barycentric coordinates (which will be non-negative integers) should sum to
3291: - coord - a barycentric coordinate with the given length `len` and `sum`

3293:   Output Parameter:
3294: . index - the unique index for the coordinate, >= 0 and < Binomial(len - 1 + sum, sum)

3296:   Level: beginner

3298:   Note:
3299:   The indices map to barycentric coordinates in lexicographic order, where the first index is the
3300:   least significant and the last index is the most significant.

3302: .seealso: `PetscDTIndexToBary`
3303: @*/
3304: PetscErrorCode PetscDTBaryToIndex(PetscInt len, PetscInt sum, const PetscInt coord[], PetscInt *index)
3305: {
3306:   PetscInt c;
3307:   PetscInt i;
3308:   PetscInt total;

3310:   PetscFunctionBeginHot;
3311:   PetscCheck(len >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "length must be non-negative");
3312:   if (!len) {
3313:     if (!sum) {
3314:       *index = 0;
3315:       PetscFunctionReturn(PETSC_SUCCESS);
3316:     }
3317:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid index or sum for length 0 barycentric coordinate");
3318:   }
3319:   for (c = 1, total = 1; c < len; c++) total = (total * (sum + c)) / c;
3320:   i = total - 1;
3321:   c = len - 1;
3322:   sum -= coord[c];
3323:   while (sum > 0) {
3324:     PetscInt subtotal;
3325:     PetscInt s;

3327:     for (s = 1, subtotal = 1; s < sum; s++) subtotal = (subtotal * (c + s)) / s;
3328:     i -= subtotal;
3329:     sum -= coord[--c];
3330:   }
3331:   *index = i;
3332:   PetscFunctionReturn(PETSC_SUCCESS);
3333: }

3335: /*@
3336:   PetscQuadratureComputePermutations - Compute permutations of quadrature points corresponding to domain orientations

3338:   Input Parameter:
3339: . quad - The `PetscQuadrature`

3341:   Output Parameters:
3342: + Np   - The number of domain orientations
3343: - perm - An array of `IS` permutations, one for ech orientation,

3345:   Level: developer

3347: .seealso: `PetscQuadratureSetCellType()`, `PetscQuadrature`
3348: @*/
3349: PetscErrorCode PetscQuadratureComputePermutations(PetscQuadrature quad, PeOp PetscInt *Np, IS *perm[])
3350: {
3351:   DMPolytopeType   ct;
3352:   const PetscReal *xq, *wq;
3353:   PetscInt         dim, qdim, d, Na, o, Nq, q, qp;

3355:   PetscFunctionBegin;
3356:   PetscCall(PetscQuadratureGetData(quad, &qdim, NULL, &Nq, &xq, &wq));
3357:   PetscCall(PetscQuadratureGetCellType(quad, &ct));
3358:   dim = DMPolytopeTypeGetDim(ct);
3359:   Na  = DMPolytopeTypeGetNumArrangements(ct);
3360:   PetscCall(PetscMalloc1(Na, perm));
3361:   if (Np) *Np = Na;
3362:   Na /= 2;
3363:   for (o = -Na; o < Na; ++o) {
3364:     DM        refdm;
3365:     PetscInt *idx;
3366:     PetscReal xi0[3] = {-1., -1., -1.}, v0[3], J[9], detJ, txq[3];
3367:     PetscBool flg;

3369:     PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &refdm));
3370:     PetscCall(DMPlexOrientPoint(refdm, 0, o));
3371:     PetscCall(DMPlexComputeCellGeometryFEM(refdm, 0, NULL, v0, J, NULL, &detJ));
3372:     PetscCall(PetscMalloc1(Nq, &idx));
3373:     for (q = 0; q < Nq; ++q) {
3374:       CoordinatesRefToReal(dim, dim, xi0, v0, J, &xq[q * dim], txq);
3375:       for (qp = 0; qp < Nq; ++qp) {
3376:         PetscReal diff = 0.;

3378:         for (d = 0; d < dim; ++d) diff += PetscAbsReal(txq[d] - xq[qp * dim + d]);
3379:         if (diff < PETSC_SMALL) break;
3380:       }
3381:       PetscCheck(qp < Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Transformed quad point %" PetscInt_FMT " does not match another quad point", q);
3382:       idx[q] = qp;
3383:     }
3384:     PetscCall(DMDestroy(&refdm));
3385:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, Nq, idx, PETSC_OWN_POINTER, &(*perm)[o + Na]));
3386:     PetscCall(ISGetInfo((*perm)[o + Na], IS_PERMUTATION, IS_LOCAL, PETSC_TRUE, &flg));
3387:     PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Ordering for orientation %" PetscInt_FMT " was not a permutation", o);
3388:     PetscCall(ISSetPermutation((*perm)[o + Na]));
3389:   }
3390:   if (!Na) (*perm)[0] = NULL;
3391:   PetscFunctionReturn(PETSC_SUCCESS);
3392: }

3394: /*@
3395:   PetscDTCreateDefaultQuadrature - Create default quadrature for a given cell

3397:   Not collective

3399:   Input Parameters:
3400: + ct     - The integration domain
3401: - qorder - The desired quadrature order

3403:   Output Parameters:
3404: + q  - The cell quadrature
3405: - fq - The face quadrature

3407:   Level: developer

3409: .seealso: `PetscFECreateDefault()`, `PetscDTGaussTensorQuadrature()`, `PetscDTSimplexQuadrature()`, `PetscDTTensorQuadratureCreate()`
3410: @*/
3411: PetscErrorCode PetscDTCreateDefaultQuadrature(DMPolytopeType ct, PetscInt qorder, PetscQuadrature *q, PetscQuadrature *fq)
3412: {
3413:   const PetscInt quadPointsPerEdge = PetscMax(qorder + 1, 1);
3414:   const PetscInt dim               = DMPolytopeTypeGetDim(ct);

3416:   PetscFunctionBegin;
3417:   switch (ct) {
3418:   case DM_POLYTOPE_SEGMENT:
3419:   case DM_POLYTOPE_POINT_PRISM_TENSOR:
3420:   case DM_POLYTOPE_QUADRILATERAL:
3421:   case DM_POLYTOPE_SEG_PRISM_TENSOR:
3422:   case DM_POLYTOPE_HEXAHEDRON:
3423:   case DM_POLYTOPE_QUAD_PRISM_TENSOR:
3424:     PetscCall(PetscDTGaussTensorQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, q));
3425:     PetscCall(PetscDTGaussTensorQuadrature(dim - 1, 1, quadPointsPerEdge, -1.0, 1.0, fq));
3426:     break;
3427:   case DM_POLYTOPE_TRIANGLE:
3428:   case DM_POLYTOPE_TETRAHEDRON:
3429:     PetscCall(PetscDTSimplexQuadrature(dim, 2 * qorder, PETSCDTSIMPLEXQUAD_DEFAULT, q));
3430:     PetscCall(PetscDTSimplexQuadrature(dim - 1, 2 * qorder, PETSCDTSIMPLEXQUAD_DEFAULT, fq));
3431:     break;
3432:   case DM_POLYTOPE_TRI_PRISM:
3433:   case DM_POLYTOPE_TRI_PRISM_TENSOR: {
3434:     PetscQuadrature q1, q2;

3436:     // TODO: this should be able to use symmetric rules, but doing so causes tests to fail
3437:     PetscCall(PetscDTSimplexQuadrature(2, 2 * qorder, PETSCDTSIMPLEXQUAD_CONIC, &q1));
3438:     PetscCall(PetscDTGaussTensorQuadrature(1, 1, quadPointsPerEdge, -1.0, 1.0, &q2));
3439:     PetscCall(PetscDTTensorQuadratureCreate(q1, q2, q));
3440:     PetscCall(PetscQuadratureDestroy(&q2));
3441:     *fq = q1;
3442:     /* TODO Need separate quadratures for each face */
3443:   } break;
3444:   default:
3445:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "No quadrature for celltype %s", DMPolytopeTypes[PetscMin(ct, DM_POLYTOPE_UNKNOWN)]);
3446:   }
3447:   PetscFunctionReturn(PETSC_SUCCESS);
3448: }