Actual source code: ex42.c

  1: static char help[] = "Solves the incompressible, variable viscosity stokes equation in 3d using Q1Q1 elements, \n\
  2: stabilized with Bochev's polynomial projection method. Note that implementation here assumes \n\
  3: all boundaries are free-slip, i.e. zero normal flow and zero tangential stress \n\
  4:      -mx : number elements in x-direction \n\
  5:      -my : number elements in y-direction \n\
  6:      -mz : number elements in z-direction \n\
  7:      -stokes_ksp_monitor_blocks : active monitor for each component u,v,w,p \n\
  8:      -model : defines viscosity and forcing function. Choose either: 0 (isoviscous), 1 (manufactured-broken), 2 (solcx-2d), 3 (sinker), 4 (subdomain jumps) \n";

 10: /* Contributed by Dave May */

 12: #include <petscksp.h>
 13: #include <petscdmda.h>

 15: #define PROFILE_TIMING
 16: #define ASSEMBLE_LOWER_TRIANGULAR

 18: #define NSD            3 /* number of spatial dimensions */
 19: #define NODES_PER_EL   8 /* nodes per element */
 20: #define U_DOFS         3 /* degrees of freedom per velocity node */
 21: #define P_DOFS         1 /* degrees of freedom per pressure node */
 22: #define GAUSS_POINTS   8

 24: /* Gauss point based evaluation */
 25: typedef struct {
 26:   PetscScalar gp_coords[NSD*GAUSS_POINTS];
 27:   PetscScalar eta[GAUSS_POINTS];
 28:   PetscScalar fx[GAUSS_POINTS];
 29:   PetscScalar fy[GAUSS_POINTS];
 30:   PetscScalar fz[GAUSS_POINTS];
 31:   PetscScalar hc[GAUSS_POINTS];
 32: } GaussPointCoefficients;

 34: typedef struct {
 35:   PetscScalar u_dof;
 36:   PetscScalar v_dof;
 37:   PetscScalar w_dof;
 38:   PetscScalar p_dof;
 39: } StokesDOF;

 41: typedef struct _p_CellProperties *CellProperties;
 42: struct _p_CellProperties {
 43:   PetscInt               ncells;
 44:   PetscInt               mx,my,mz;
 45:   PetscInt               sex,sey,sez;
 46:   GaussPointCoefficients *gpc;
 47: };

 49: /* elements */
 50: PetscErrorCode CellPropertiesCreate(DM da_stokes,CellProperties *C)
 51: {
 52:   CellProperties cells;
 53:   PetscInt       mx,my,mz,sex,sey,sez;

 56:   PetscNew(&cells);

 58:   DMDAGetElementsCorners(da_stokes,&sex,&sey,&sez);
 59:   DMDAGetElementsSizes(da_stokes,&mx,&my,&mz);
 60:   cells->mx     = mx;
 61:   cells->my     = my;
 62:   cells->mz     = mz;
 63:   cells->ncells = mx * my * mz;
 64:   cells->sex    = sex;
 65:   cells->sey    = sey;
 66:   cells->sez    = sez;

 68:   PetscMalloc1(mx*my*mz,&cells->gpc);

 70:   *C = cells;
 71:   return 0;
 72: }

 74: PetscErrorCode CellPropertiesDestroy(CellProperties *C)
 75: {
 76:   CellProperties cells;

 79:   if (!C) return 0;
 80:   cells = *C;
 81:   PetscFree(cells->gpc);
 82:   PetscFree(cells);
 83:   *C = NULL;
 84:   return 0;
 85: }

 87: PetscErrorCode CellPropertiesGetCell(CellProperties C,PetscInt II,PetscInt J,PetscInt K,GaussPointCoefficients **G)
 88: {
 90:   *G = &C->gpc[(II-C->sex) + (J-C->sey)*C->mx + (K-C->sez)*C->mx*C->my];
 91:   return 0;
 92: }

 94: /* FEM routines */
 95: /*
 96:  Element: Local basis function ordering
 97:  1-----2
 98:  |     |
 99:  |     |
100:  0-----3
101:  */
102: static void ShapeFunctionQ13D_Evaluate(PetscScalar _xi[],PetscScalar Ni[])
103: {
104:   PetscReal xi   = PetscRealPart(_xi[0]);
105:   PetscReal eta  = PetscRealPart(_xi[1]);
106:   PetscReal zeta = PetscRealPart(_xi[2]);

108:   Ni[0] = 0.125 * (1.0 - xi) * (1.0 - eta) * (1.0 - zeta);
109:   Ni[1] = 0.125 * (1.0 - xi) * (1.0 + eta) * (1.0 - zeta);
110:   Ni[2] = 0.125 * (1.0 + xi) * (1.0 + eta) * (1.0 - zeta);
111:   Ni[3] = 0.125 * (1.0 + xi) * (1.0 - eta) * (1.0 - zeta);

113:   Ni[4] = 0.125 * (1.0 - xi) * (1.0 - eta) * (1.0 + zeta);
114:   Ni[5] = 0.125 * (1.0 - xi) * (1.0 + eta) * (1.0 + zeta);
115:   Ni[6] = 0.125 * (1.0 + xi) * (1.0 + eta) * (1.0 + zeta);
116:   Ni[7] = 0.125 * (1.0 + xi) * (1.0 - eta) * (1.0 + zeta);
117: }

119: static void ShapeFunctionQ13D_Evaluate_dxi(PetscScalar _xi[],PetscScalar GNi[][NODES_PER_EL])
120: {
121:   PetscReal xi   = PetscRealPart(_xi[0]);
122:   PetscReal eta  = PetscRealPart(_xi[1]);
123:   PetscReal zeta = PetscRealPart(_xi[2]);
124:   /* xi deriv */
125:   GNi[0][0] = -0.125 * (1.0 - eta) * (1.0 - zeta);
126:   GNi[0][1] = -0.125 * (1.0 + eta) * (1.0 - zeta);
127:   GNi[0][2] =  0.125 * (1.0 + eta) * (1.0 - zeta);
128:   GNi[0][3] =  0.125 * (1.0 - eta) * (1.0 - zeta);

130:   GNi[0][4] = -0.125 * (1.0 - eta) * (1.0 + zeta);
131:   GNi[0][5] = -0.125 * (1.0 + eta) * (1.0 + zeta);
132:   GNi[0][6] =  0.125 * (1.0 + eta) * (1.0 + zeta);
133:   GNi[0][7] =  0.125 * (1.0 - eta) * (1.0 + zeta);
134:   /* eta deriv */
135:   GNi[1][0] = -0.125 * (1.0 - xi) * (1.0 - zeta);
136:   GNi[1][1] =  0.125 * (1.0 - xi) * (1.0 - zeta);
137:   GNi[1][2] =  0.125 * (1.0 + xi) * (1.0 - zeta);
138:   GNi[1][3] = -0.125 * (1.0 + xi) * (1.0 - zeta);

140:   GNi[1][4] = -0.125 * (1.0 - xi) * (1.0 + zeta);
141:   GNi[1][5] =  0.125 * (1.0 - xi) * (1.0 + zeta);
142:   GNi[1][6] =  0.125 * (1.0 + xi) * (1.0 + zeta);
143:   GNi[1][7] = -0.125 * (1.0 + xi) * (1.0 + zeta);
144:   /* zeta deriv */
145:   GNi[2][0] = -0.125 * (1.0 - xi) * (1.0 - eta);
146:   GNi[2][1] = -0.125 * (1.0 - xi) * (1.0 + eta);
147:   GNi[2][2] = -0.125 * (1.0 + xi) * (1.0 + eta);
148:   GNi[2][3] = -0.125 * (1.0 + xi) * (1.0 - eta);

150:   GNi[2][4] = 0.125 * (1.0 - xi) * (1.0 - eta);
151:   GNi[2][5] = 0.125 * (1.0 - xi) * (1.0 + eta);
152:   GNi[2][6] = 0.125 * (1.0 + xi) * (1.0 + eta);
153:   GNi[2][7] = 0.125 * (1.0 + xi) * (1.0 - eta);
154: }

156: static void matrix_inverse_3x3(PetscScalar A[3][3],PetscScalar B[3][3])
157: {
158:   PetscScalar t4, t6, t8, t10, t12, t14, t17;

160:   t4  = A[2][0] * A[0][1];
161:   t6  = A[2][0] * A[0][2];
162:   t8  = A[1][0] * A[0][1];
163:   t10 = A[1][0] * A[0][2];
164:   t12 = A[0][0] * A[1][1];
165:   t14 = A[0][0] * A[1][2];
166:   t17 = 0.1e1 / (t4 * A[1][2] - t6 * A[1][1] - t8 * A[2][2] + t10 * A[2][1] + t12 * A[2][2] - t14 * A[2][1]);

168:   B[0][0] = (A[1][1] * A[2][2] - A[1][2] * A[2][1]) * t17;
169:   B[0][1] = -(A[0][1] * A[2][2] - A[0][2] * A[2][1]) * t17;
170:   B[0][2] = (A[0][1] * A[1][2] - A[0][2] * A[1][1]) * t17;
171:   B[1][0] = -(-A[2][0] * A[1][2] + A[1][0] * A[2][2]) * t17;
172:   B[1][1] = (-t6 + A[0][0] * A[2][2]) * t17;
173:   B[1][2] = -(-t10 + t14) * t17;
174:   B[2][0] = (-A[2][0] * A[1][1] + A[1][0] * A[2][1]) * t17;
175:   B[2][1] = -(-t4 + A[0][0] * A[2][1]) * t17;
176:   B[2][2] = (-t8 + t12) * t17;
177: }

179: static void ShapeFunctionQ13D_Evaluate_dx(PetscScalar GNi[][NODES_PER_EL],PetscScalar GNx[][NODES_PER_EL],PetscScalar coords[],PetscScalar *det_J)
180: {
181:   PetscScalar J00,J01,J02,J10,J11,J12,J20,J21,J22;
182:   PetscInt    n;
183:   PetscScalar iJ[3][3],JJ[3][3];

185:   J00 = J01 = J02 = 0.0;
186:   J10 = J11 = J12 = 0.0;
187:   J20 = J21 = J22 = 0.0;
188:   for (n=0; n<NODES_PER_EL; n++) {
189:     PetscScalar cx = coords[NSD*n + 0];
190:     PetscScalar cy = coords[NSD*n + 1];
191:     PetscScalar cz = coords[NSD*n + 2];

193:     /* J_ij = d(x_j) / d(xi_i) */ /* J_ij = \sum _I GNi[j][I} * x_i */
194:     J00 = J00 + GNi[0][n] * cx;   /* J_xx */
195:     J01 = J01 + GNi[0][n] * cy;   /* J_xy = dx/deta */
196:     J02 = J02 + GNi[0][n] * cz;   /* J_xz = dx/dzeta */

198:     J10 = J10 + GNi[1][n] * cx;   /* J_yx = dy/dxi */
199:     J11 = J11 + GNi[1][n] * cy;   /* J_yy */
200:     J12 = J12 + GNi[1][n] * cz;   /* J_yz */

202:     J20 = J20 + GNi[2][n] * cx;   /* J_zx */
203:     J21 = J21 + GNi[2][n] * cy;   /* J_zy */
204:     J22 = J22 + GNi[2][n] * cz;   /* J_zz */
205:   }

207:   JJ[0][0] = J00;      JJ[0][1] = J01;      JJ[0][2] = J02;
208:   JJ[1][0] = J10;      JJ[1][1] = J11;      JJ[1][2] = J12;
209:   JJ[2][0] = J20;      JJ[2][1] = J21;      JJ[2][2] = J22;

211:   matrix_inverse_3x3(JJ,iJ);

213:   *det_J = J00*J11*J22 - J00*J12*J21 - J10*J01*J22 + J10*J02*J21 + J20*J01*J12 - J20*J02*J11;

215:   for (n=0; n<NODES_PER_EL; n++) {
216:     GNx[0][n] = GNi[0][n]*iJ[0][0] + GNi[1][n]*iJ[0][1] + GNi[2][n]*iJ[0][2];
217:     GNx[1][n] = GNi[0][n]*iJ[1][0] + GNi[1][n]*iJ[1][1] + GNi[2][n]*iJ[1][2];
218:     GNx[2][n] = GNi[0][n]*iJ[2][0] + GNi[1][n]*iJ[2][1] + GNi[2][n]*iJ[2][2];
219:   }
220: }

222: static void ConstructGaussQuadrature3D(PetscInt *ngp,PetscScalar gp_xi[][NSD],PetscScalar gp_weight[])
223: {
224:   *ngp        = 8;
225:   gp_xi[0][0] = -0.57735026919; gp_xi[0][1] = -0.57735026919; gp_xi[0][2] = -0.57735026919;
226:   gp_xi[1][0] = -0.57735026919; gp_xi[1][1] =  0.57735026919; gp_xi[1][2] = -0.57735026919;
227:   gp_xi[2][0] =  0.57735026919; gp_xi[2][1] =  0.57735026919; gp_xi[2][2] = -0.57735026919;
228:   gp_xi[3][0] =  0.57735026919; gp_xi[3][1] = -0.57735026919; gp_xi[3][2] = -0.57735026919;

230:   gp_xi[4][0] = -0.57735026919; gp_xi[4][1] = -0.57735026919; gp_xi[4][2] =  0.57735026919;
231:   gp_xi[5][0] = -0.57735026919; gp_xi[5][1] =  0.57735026919; gp_xi[5][2] =  0.57735026919;
232:   gp_xi[6][0] =  0.57735026919; gp_xi[6][1] =  0.57735026919; gp_xi[6][2] =  0.57735026919;
233:   gp_xi[7][0] =  0.57735026919; gp_xi[7][1] = -0.57735026919; gp_xi[7][2] =  0.57735026919;

235:   gp_weight[0] = 1.0;
236:   gp_weight[1] = 1.0;
237:   gp_weight[2] = 1.0;
238:   gp_weight[3] = 1.0;

240:   gp_weight[4] = 1.0;
241:   gp_weight[5] = 1.0;
242:   gp_weight[6] = 1.0;
243:   gp_weight[7] = 1.0;
244: }

246: /*
247:  i,j are the element indices
248:  The unknown is a vector quantity.
249:  The s[].c is used to indicate the degree of freedom.
250:  */
251: static PetscErrorCode DMDAGetElementEqnums3D_up(MatStencil s_u[],MatStencil s_p[],PetscInt i,PetscInt j,PetscInt k)
252: {
253:   PetscInt n;

256:   /* velocity */
257:   n = 0;
258:   /* node 0 */
259:   s_u[n].i = i; s_u[n].j = j; s_u[n].k = k; s_u[n].c = 0; n++; /* Vx0 */
260:   s_u[n].i = i; s_u[n].j = j; s_u[n].k = k; s_u[n].c = 1; n++; /* Vy0 */
261:   s_u[n].i = i; s_u[n].j = j; s_u[n].k = k; s_u[n].c = 2; n++; /* Vz0 */

263:   s_u[n].i = i; s_u[n].j = j+1; s_u[n].k = k; s_u[n].c = 0; n++;
264:   s_u[n].i = i; s_u[n].j = j+1; s_u[n].k = k; s_u[n].c = 1; n++;
265:   s_u[n].i = i; s_u[n].j = j+1; s_u[n].k = k; s_u[n].c = 2; n++;

267:   s_u[n].i = i+1; s_u[n].j = j+1; s_u[n].k = k; s_u[n].c = 0; n++;
268:   s_u[n].i = i+1; s_u[n].j = j+1; s_u[n].k = k; s_u[n].c = 1; n++;
269:   s_u[n].i = i+1; s_u[n].j = j+1; s_u[n].k = k; s_u[n].c = 2; n++;

271:   s_u[n].i = i+1; s_u[n].j = j; s_u[n].k = k; s_u[n].c = 0; n++;
272:   s_u[n].i = i+1; s_u[n].j = j; s_u[n].k = k; s_u[n].c = 1; n++;
273:   s_u[n].i = i+1; s_u[n].j = j; s_u[n].k = k; s_u[n].c = 2; n++;

275:   /* */
276:   s_u[n].i = i; s_u[n].j = j; s_u[n].k = k+1; s_u[n].c = 0; n++; /* Vx4 */
277:   s_u[n].i = i; s_u[n].j = j; s_u[n].k = k+1; s_u[n].c = 1; n++; /* Vy4 */
278:   s_u[n].i = i; s_u[n].j = j; s_u[n].k = k+1; s_u[n].c = 2; n++; /* Vz4 */

280:   s_u[n].i = i; s_u[n].j = j+1; s_u[n].k = k+1; s_u[n].c = 0; n++;
281:   s_u[n].i = i; s_u[n].j = j+1; s_u[n].k = k+1; s_u[n].c = 1; n++;
282:   s_u[n].i = i; s_u[n].j = j+1; s_u[n].k = k+1; s_u[n].c = 2; n++;

284:   s_u[n].i = i+1; s_u[n].j = j+1; s_u[n].k = k+1; s_u[n].c = 0; n++;
285:   s_u[n].i = i+1; s_u[n].j = j+1; s_u[n].k = k+1; s_u[n].c = 1; n++;
286:   s_u[n].i = i+1; s_u[n].j = j+1; s_u[n].k = k+1; s_u[n].c = 2; n++;

288:   s_u[n].i = i+1; s_u[n].j = j; s_u[n].k = k+1; s_u[n].c = 0; n++;
289:   s_u[n].i = i+1; s_u[n].j = j; s_u[n].k = k+1; s_u[n].c = 1; n++;
290:   s_u[n].i = i+1; s_u[n].j = j; s_u[n].k = k+1; s_u[n].c = 2; n++;

292:   /* pressure */
293:   n = 0;

295:   s_p[n].i = i;   s_p[n].j = j;   s_p[n].k = k; s_p[n].c = 3; n++; /* P0 */
296:   s_p[n].i = i;   s_p[n].j = j+1; s_p[n].k = k; s_p[n].c = 3; n++;
297:   s_p[n].i = i+1; s_p[n].j = j+1; s_p[n].k = k; s_p[n].c = 3; n++;
298:   s_p[n].i = i+1; s_p[n].j = j;   s_p[n].k = k; s_p[n].c = 3; n++;

300:   s_p[n].i = i;   s_p[n].j = j;   s_p[n].k = k+1; s_p[n].c = 3; n++; /* P0 */
301:   s_p[n].i = i;   s_p[n].j = j+1; s_p[n].k = k+1; s_p[n].c = 3; n++;
302:   s_p[n].i = i+1; s_p[n].j = j+1; s_p[n].k = k+1; s_p[n].c = 3; n++;
303:   s_p[n].i = i+1; s_p[n].j = j;   s_p[n].k = k+1; s_p[n].c = 3; n++;
304:   return 0;
305: }

307: static PetscErrorCode GetElementCoords3D(DMDACoor3d ***coords,PetscInt i,PetscInt j,PetscInt k,PetscScalar el_coord[])
308: {
310:   /* get coords for the element */
311:   el_coord[0] = coords[k][j][i].x;
312:   el_coord[1] = coords[k][j][i].y;
313:   el_coord[2] = coords[k][j][i].z;

315:   el_coord[3] = coords[k][j+1][i].x;
316:   el_coord[4] = coords[k][j+1][i].y;
317:   el_coord[5] = coords[k][j+1][i].z;

319:   el_coord[6] = coords[k][j+1][i+1].x;
320:   el_coord[7] = coords[k][j+1][i+1].y;
321:   el_coord[8] = coords[k][j+1][i+1].z;

323:   el_coord[9]  = coords[k][j][i+1].x;
324:   el_coord[10] = coords[k][j][i+1].y;
325:   el_coord[11] = coords[k][j][i+1].z;

327:   el_coord[12] = coords[k+1][j][i].x;
328:   el_coord[13] = coords[k+1][j][i].y;
329:   el_coord[14] = coords[k+1][j][i].z;

331:   el_coord[15] = coords[k+1][j+1][i].x;
332:   el_coord[16] = coords[k+1][j+1][i].y;
333:   el_coord[17] = coords[k+1][j+1][i].z;

335:   el_coord[18] = coords[k+1][j+1][i+1].x;
336:   el_coord[19] = coords[k+1][j+1][i+1].y;
337:   el_coord[20] = coords[k+1][j+1][i+1].z;

339:   el_coord[21] = coords[k+1][j][i+1].x;
340:   el_coord[22] = coords[k+1][j][i+1].y;
341:   el_coord[23] = coords[k+1][j][i+1].z;
342:   return 0;
343: }

345: static PetscErrorCode StokesDAGetNodalFields3D(StokesDOF ***field,PetscInt i,PetscInt j,PetscInt k,StokesDOF nodal_fields[])
346: {
348:   /* get the nodal fields for u */
349:   nodal_fields[0].u_dof = field[k][j][i].u_dof;
350:   nodal_fields[0].v_dof = field[k][j][i].v_dof;
351:   nodal_fields[0].w_dof = field[k][j][i].w_dof;

353:   nodal_fields[1].u_dof = field[k][j+1][i].u_dof;
354:   nodal_fields[1].v_dof = field[k][j+1][i].v_dof;
355:   nodal_fields[1].w_dof = field[k][j+1][i].w_dof;

357:   nodal_fields[2].u_dof = field[k][j+1][i+1].u_dof;
358:   nodal_fields[2].v_dof = field[k][j+1][i+1].v_dof;
359:   nodal_fields[2].w_dof = field[k][j+1][i+1].w_dof;

361:   nodal_fields[3].u_dof = field[k][j][i+1].u_dof;
362:   nodal_fields[3].v_dof = field[k][j][i+1].v_dof;
363:   nodal_fields[3].w_dof = field[k][j][i+1].w_dof;

365:   nodal_fields[4].u_dof = field[k+1][j][i].u_dof;
366:   nodal_fields[4].v_dof = field[k+1][j][i].v_dof;
367:   nodal_fields[4].w_dof = field[k+1][j][i].w_dof;

369:   nodal_fields[5].u_dof = field[k+1][j+1][i].u_dof;
370:   nodal_fields[5].v_dof = field[k+1][j+1][i].v_dof;
371:   nodal_fields[5].w_dof = field[k+1][j+1][i].w_dof;

373:   nodal_fields[6].u_dof = field[k+1][j+1][i+1].u_dof;
374:   nodal_fields[6].v_dof = field[k+1][j+1][i+1].v_dof;
375:   nodal_fields[6].w_dof = field[k+1][j+1][i+1].w_dof;

377:   nodal_fields[7].u_dof = field[k+1][j][i+1].u_dof;
378:   nodal_fields[7].v_dof = field[k+1][j][i+1].v_dof;
379:   nodal_fields[7].w_dof = field[k+1][j][i+1].w_dof;

381:   /* get the nodal fields for p */
382:   nodal_fields[0].p_dof = field[k][j][i].p_dof;
383:   nodal_fields[1].p_dof = field[k][j+1][i].p_dof;
384:   nodal_fields[2].p_dof = field[k][j+1][i+1].p_dof;
385:   nodal_fields[3].p_dof = field[k][j][i+1].p_dof;

387:   nodal_fields[4].p_dof = field[k+1][j][i].p_dof;
388:   nodal_fields[5].p_dof = field[k+1][j+1][i].p_dof;
389:   nodal_fields[6].p_dof = field[k+1][j+1][i+1].p_dof;
390:   nodal_fields[7].p_dof = field[k+1][j][i+1].p_dof;
391:   return 0;
392: }

394: static PetscInt ASS_MAP_wIwDI_uJuDJ(PetscInt wi,PetscInt wd,PetscInt w_NPE,PetscInt w_dof,PetscInt ui,PetscInt ud,PetscInt u_NPE,PetscInt u_dof)
395: {
396:   PetscInt              ij;
397:   PETSC_UNUSED PetscInt r,c,nr,nc;

399:   nr = w_NPE*w_dof;
400:   nc = u_NPE*u_dof;

402:   r = w_dof*wi+wd;
403:   c = u_dof*ui+ud;

405:   ij = r*nc+c;

407:   return ij;
408: }

410: static PetscErrorCode DMDASetValuesLocalStencil3D_ADD_VALUES(StokesDOF ***fields_F,MatStencil u_eqn[],MatStencil p_eqn[],PetscScalar Fe_u[],PetscScalar Fe_p[])
411: {
412:   PetscInt n,II,J,K;

415:   for (n = 0; n<NODES_PER_EL; n++) {
416:     II = u_eqn[NSD*n].i;
417:     J = u_eqn[NSD*n].j;
418:     K = u_eqn[NSD*n].k;

420:     fields_F[K][J][II].u_dof = fields_F[K][J][II].u_dof+Fe_u[NSD*n];

422:     II = u_eqn[NSD*n+1].i;
423:     J = u_eqn[NSD*n+1].j;
424:     K = u_eqn[NSD*n+1].k;

426:     fields_F[K][J][II].v_dof = fields_F[K][J][II].v_dof+Fe_u[NSD*n+1];

428:     II = u_eqn[NSD*n+2].i;
429:     J = u_eqn[NSD*n+2].j;
430:     K = u_eqn[NSD*n+2].k;
431:     fields_F[K][J][II].w_dof = fields_F[K][J][II].w_dof+Fe_u[NSD*n+2];

433:     II = p_eqn[n].i;
434:     J = p_eqn[n].j;
435:     K = p_eqn[n].k;

437:     fields_F[K][J][II].p_dof = fields_F[K][J][II].p_dof+Fe_p[n];

439:   }
440:   return 0;
441: }

443: static void FormStressOperatorQ13D(PetscScalar Ke[],PetscScalar coords[],PetscScalar eta[])
444: {
445:   PetscInt       ngp;
446:   PetscScalar    gp_xi[GAUSS_POINTS][NSD];
447:   PetscScalar    gp_weight[GAUSS_POINTS];
448:   PetscInt       p,i,j,k;
449:   PetscScalar    GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
450:   PetscScalar    J_p,tildeD[6];
451:   PetscScalar    B[6][U_DOFS*NODES_PER_EL];
452:   const PetscInt nvdof = U_DOFS*NODES_PER_EL;

454:   /* define quadrature rule */
455:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

457:   /* evaluate integral */
458:   for (p = 0; p < ngp; p++) {
459:     ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
460:     ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,coords,&J_p);

462:     for (i = 0; i < NODES_PER_EL; i++) {
463:       PetscScalar d_dx_i = GNx_p[0][i];
464:       PetscScalar d_dy_i = GNx_p[1][i];
465:       PetscScalar d_dz_i = GNx_p[2][i];

467:       B[0][3*i] = d_dx_i; B[0][3*i+1] = 0.0;     B[0][3*i+2] = 0.0;
468:       B[1][3*i] = 0.0;    B[1][3*i+1] = d_dy_i;  B[1][3*i+2] = 0.0;
469:       B[2][3*i] = 0.0;    B[2][3*i+1] = 0.0;     B[2][3*i+2] = d_dz_i;

471:       B[3][3*i] = d_dy_i; B[3][3*i+1] = d_dx_i;  B[3][3*i+2] = 0.0;   /* e_xy */
472:       B[4][3*i] = d_dz_i; B[4][3*i+1] = 0.0;     B[4][3*i+2] = d_dx_i; /* e_xz */
473:       B[5][3*i] = 0.0;    B[5][3*i+1] = d_dz_i;  B[5][3*i+2] = d_dy_i; /* e_yz */
474:     }

476:     tildeD[0] = 2.0*gp_weight[p]*J_p*eta[p];
477:     tildeD[1] = 2.0*gp_weight[p]*J_p*eta[p];
478:     tildeD[2] = 2.0*gp_weight[p]*J_p*eta[p];

480:     tildeD[3] =     gp_weight[p]*J_p*eta[p];
481:     tildeD[4] =     gp_weight[p]*J_p*eta[p];
482:     tildeD[5] =     gp_weight[p]*J_p*eta[p];

484:     /* form Bt tildeD B */
485:     /*
486:      Ke_ij = Bt_ik . D_kl . B_lj
487:      = B_ki . D_kl . B_lj
488:      = B_ki . D_kk . B_kj
489:      */
490:     for (i = 0; i < nvdof; i++) {
491:       for (j = i; j < nvdof; j++) {
492:         for (k = 0; k < 6; k++) {
493:           Ke[i*nvdof+j] += B[k][i]*tildeD[k]*B[k][j];
494:         }
495:       }
496:     }

498:   }
499:   /* fill lower triangular part */
500: #if defined(ASSEMBLE_LOWER_TRIANGULAR)
501:   for (i = 0; i < nvdof; i++) {
502:     for (j = i; j < nvdof; j++) {
503:       Ke[j*nvdof+i] = Ke[i*nvdof+j];
504:     }
505:   }
506: #endif
507: }

509: static void FormGradientOperatorQ13D(PetscScalar Ke[],PetscScalar coords[])
510: {
511:   PetscInt    ngp;
512:   PetscScalar gp_xi[GAUSS_POINTS][NSD];
513:   PetscScalar gp_weight[GAUSS_POINTS];
514:   PetscInt    p,i,j,di;
515:   PetscScalar Ni_p[NODES_PER_EL];
516:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
517:   PetscScalar J_p,fac;

519:   /* define quadrature rule */
520:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

522:   /* evaluate integral */
523:   for (p = 0; p < ngp; p++) {
524:     ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
525:     ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
526:     ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,coords,&J_p);
527:     fac = gp_weight[p]*J_p;

529:     for (i = 0; i < NODES_PER_EL; i++) { /* u nodes */
530:       for (di = 0; di < NSD; di++) { /* u dofs */
531:         for (j = 0; j < NODES_PER_EL; j++) {  /* p nodes, p dofs = 1 (ie no loop) */
532:           PetscInt IJ;
533:           IJ = ASS_MAP_wIwDI_uJuDJ(i,di,NODES_PER_EL,3,j,0,NODES_PER_EL,1);

535:           Ke[IJ] = Ke[IJ]-GNx_p[di][i]*Ni_p[j]*fac;
536:         }
537:       }
538:     }
539:   }
540: }

542: static void FormDivergenceOperatorQ13D(PetscScalar De[],PetscScalar coords[])
543: {
544:   PetscScalar Ge[U_DOFS*NODES_PER_EL*P_DOFS*NODES_PER_EL];
545:   PetscInt    i,j;
546:   PetscInt    nr_g,nc_g;

548:   PetscMemzero(Ge,sizeof(Ge));
549:   FormGradientOperatorQ13D(Ge,coords);

551:   nr_g = U_DOFS*NODES_PER_EL;
552:   nc_g = P_DOFS*NODES_PER_EL;

554:   for (i = 0; i < nr_g; i++) {
555:     for (j = 0; j < nc_g; j++) {
556:       De[nr_g*j+i] = Ge[nc_g*i+j];
557:     }
558:   }
559: }

561: static void FormStabilisationOperatorQ13D(PetscScalar Ke[],PetscScalar coords[],PetscScalar eta[])
562: {
563:   PetscInt    ngp;
564:   PetscScalar gp_xi[GAUSS_POINTS][NSD];
565:   PetscScalar gp_weight[GAUSS_POINTS];
566:   PetscInt    p,i,j;
567:   PetscScalar Ni_p[NODES_PER_EL];
568:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
569:   PetscScalar J_p,fac,eta_avg;

571:   /* define quadrature rule */
572:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

574:   /* evaluate integral */
575:   for (p = 0; p < ngp; p++) {
576:     ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
577:     ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
578:     ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,coords,&J_p);
579:     fac = gp_weight[p]*J_p;
580:     /*
581:      for (i = 0; i < NODES_PER_EL; i++) {
582:      for (j = i; j < NODES_PER_EL; j++) {
583:      Ke[NODES_PER_EL*i+j] -= fac*(Ni_p[i]*Ni_p[j]-0.015625);
584:      }
585:      }
586:      */

588:     for (i = 0; i < NODES_PER_EL; i++) {
589:       for (j = 0; j < NODES_PER_EL; j++) {
590:         Ke[NODES_PER_EL*i+j] -= fac*(Ni_p[i]*Ni_p[j]-0.015625);
591:       }
592:     }
593:   }

595:   /* scale */
596:   eta_avg = 0.0;
597:   for (p = 0; p < ngp; p++) eta_avg += eta[p];
598:   eta_avg = (1.0/((PetscScalar)ngp))*eta_avg;
599:   fac     = 1.0/eta_avg;

601:   /*
602:    for (i = 0; i < NODES_PER_EL; i++) {
603:    for (j = i; j < NODES_PER_EL; j++) {
604:    Ke[NODES_PER_EL*i+j] = fac*Ke[NODES_PER_EL*i+j];
605:    #if defined(ASSEMBLE_LOWER_TRIANGULAR)
606:    Ke[NODES_PER_EL*j+i] = Ke[NODES_PER_EL*i+j];
607:    #endif
608:    }
609:    }
610:    */

612:   for (i = 0; i < NODES_PER_EL; i++) {
613:     for (j = 0; j < NODES_PER_EL; j++) {
614:       Ke[NODES_PER_EL*i+j] = fac*Ke[NODES_PER_EL*i+j];
615:     }
616:   }
617: }

619: static void FormScaledMassMatrixOperatorQ13D(PetscScalar Ke[],PetscScalar coords[],PetscScalar eta[])
620: {
621:   PetscInt    ngp;
622:   PetscScalar gp_xi[GAUSS_POINTS][NSD];
623:   PetscScalar gp_weight[GAUSS_POINTS];
624:   PetscInt    p,i,j;
625:   PetscScalar Ni_p[NODES_PER_EL];
626:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
627:   PetscScalar J_p,fac,eta_avg;

629:   /* define quadrature rule */
630:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

632:   /* evaluate integral */
633:   for (p = 0; p < ngp; p++) {
634:     ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
635:     ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
636:     ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,coords,&J_p);
637:     fac = gp_weight[p]*J_p;

639:     /*
640:      for (i = 0; i < NODES_PER_EL; i++) {
641:      for (j = i; j < NODES_PER_EL; j++) {
642:      Ke[NODES_PER_EL*i+j] = Ke[NODES_PER_EL*i+j]-fac*Ni_p[i]*Ni_p[j];
643:      }
644:      }
645:      */

647:     for (i = 0; i < NODES_PER_EL; i++) {
648:       for (j = 0; j < NODES_PER_EL; j++) {
649:         Ke[NODES_PER_EL*i+j] = Ke[NODES_PER_EL*i+j]-fac*Ni_p[i]*Ni_p[j];
650:       }
651:     }
652:   }

654:   /* scale */
655:   eta_avg = 0.0;
656:   for (p = 0; p < ngp; p++) eta_avg += eta[p];
657:   eta_avg = (1.0/((PetscScalar)ngp))*eta_avg;
658:   fac     = 1.0/eta_avg;
659:   /*
660:    for (i = 0; i < NODES_PER_EL; i++) {
661:    for (j = i; j < NODES_PER_EL; j++) {
662:    Ke[NODES_PER_EL*i+j] = fac*Ke[NODES_PER_EL*i+j];
663:    #if defined(ASSEMBLE_LOWER_TRIANGULAR)
664:    Ke[NODES_PER_EL*j+i] = Ke[NODES_PER_EL*i+j];
665:    #endif
666:    }
667:    }
668:    */

670:   for (i = 0; i < NODES_PER_EL; i++) {
671:     for (j = 0; j < NODES_PER_EL; j++) {
672:       Ke[NODES_PER_EL*i+j] = fac*Ke[NODES_PER_EL*i+j];
673:     }
674:   }
675: }

677: static void FormMomentumRhsQ13D(PetscScalar Fe[],PetscScalar coords[],PetscScalar fx[],PetscScalar fy[],PetscScalar fz[])
678: {
679:   PetscInt    ngp;
680:   PetscScalar gp_xi[GAUSS_POINTS][NSD];
681:   PetscScalar gp_weight[GAUSS_POINTS];
682:   PetscInt    p,i;
683:   PetscScalar Ni_p[NODES_PER_EL];
684:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
685:   PetscScalar J_p,fac;

687:   /* define quadrature rule */
688:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

690:   /* evaluate integral */
691:   for (p = 0; p < ngp; p++) {
692:     ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
693:     ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
694:     ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,coords,&J_p);
695:     fac = gp_weight[p]*J_p;

697:     for (i = 0; i < NODES_PER_EL; i++) {
698:       Fe[NSD*i]   -= fac*Ni_p[i]*fx[p];
699:       Fe[NSD*i+1] -= fac*Ni_p[i]*fy[p];
700:       Fe[NSD*i+2] -= fac*Ni_p[i]*fz[p];
701:     }
702:   }
703: }

705: static void FormContinuityRhsQ13D(PetscScalar Fe[],PetscScalar coords[],PetscScalar hc[])
706: {
707:   PetscInt    ngp;
708:   PetscScalar gp_xi[GAUSS_POINTS][NSD];
709:   PetscScalar gp_weight[GAUSS_POINTS];
710:   PetscInt    p,i;
711:   PetscScalar Ni_p[NODES_PER_EL];
712:   PetscScalar GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
713:   PetscScalar J_p,fac;

715:   /* define quadrature rule */
716:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

718:   /* evaluate integral */
719:   for (p = 0; p < ngp; p++) {
720:     ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
721:     ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
722:     ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,coords,&J_p);
723:     fac = gp_weight[p]*J_p;

725:     for (i = 0; i < NODES_PER_EL; i++) Fe[i] -= fac*Ni_p[i]*hc[p];
726:   }
727: }

729: #define _ZERO_ROWCOL_i(A,i) {                   \
730:     PetscInt    KK;                             \
731:     PetscScalar tmp = A[24*(i)+(i)];            \
732:     for (KK=0;KK<24;KK++) A[24*(i)+KK]=0.0;     \
733:     for (KK=0;KK<24;KK++) A[24*KK+(i)]=0.0;     \
734:     A[24*(i)+(i)] = tmp;}                       \

736: #define _ZERO_ROW_i(A,i) {                      \
737:     PetscInt KK;                                \
738:     for (KK=0;KK<8;KK++) A[8*(i)+KK]=0.0;}

740: #define _ZERO_COL_i(A,i) {                      \
741:     PetscInt KK;                                \
742:     for (KK=0;KK<8;KK++) A[24*KK+(i)]=0.0;}

744: static PetscErrorCode AssembleA_Stokes(Mat A,DM stokes_da,CellProperties cell_properties)
745: {
746:   DM                     cda;
747:   Vec                    coords;
748:   DMDACoor3d             ***_coords;
749:   MatStencil             u_eqn[NODES_PER_EL*U_DOFS];
750:   MatStencil             p_eqn[NODES_PER_EL*P_DOFS];
751:   PetscInt               sex,sey,sez,mx,my,mz;
752:   PetscInt               ei,ej,ek;
753:   PetscScalar            Ae[NODES_PER_EL*U_DOFS*NODES_PER_EL*U_DOFS];
754:   PetscScalar            Ge[NODES_PER_EL*U_DOFS*NODES_PER_EL*P_DOFS];
755:   PetscScalar            De[NODES_PER_EL*P_DOFS*NODES_PER_EL*U_DOFS];
756:   PetscScalar            Ce[NODES_PER_EL*P_DOFS*NODES_PER_EL*P_DOFS];
757:   PetscScalar            el_coords[NODES_PER_EL*NSD];
758:   GaussPointCoefficients *props;
759:   PetscScalar            *prop_eta;
760:   PetscInt               n,M,N,P;

763:   DMDAGetInfo(stokes_da,0,&M,&N,&P,0,0,0, 0,0,0,0,0,0);
764:   /* setup for coords */
765:   DMGetCoordinateDM(stokes_da,&cda);
766:   DMGetCoordinatesLocal(stokes_da,&coords);
767:   DMDAVecGetArray(cda,coords,&_coords);
768:   DMDAGetElementsCorners(stokes_da,&sex,&sey,&sez);
769:   DMDAGetElementsSizes(stokes_da,&mx,&my,&mz);
770:   for (ek = sez; ek < sez+mz; ek++) {
771:     for (ej = sey; ej < sey+my; ej++) {
772:       for (ei = sex; ei < sex+mx; ei++) {
773:         /* get coords for the element */
774:         GetElementCoords3D(_coords,ei,ej,ek,el_coords);
775:         /* get cell properties */
776:         CellPropertiesGetCell(cell_properties,ei,ej,ek,&props);
777:         /* get coefficients for the element */
778:         prop_eta = props->eta;

780:         /* initialise element stiffness matrix */
781:         PetscMemzero(Ae,sizeof(Ae));
782:         PetscMemzero(Ge,sizeof(Ge));
783:         PetscMemzero(De,sizeof(De));
784:         PetscMemzero(Ce,sizeof(Ce));

786:         /* form element stiffness matrix */
787:         FormStressOperatorQ13D(Ae,el_coords,prop_eta);
788:         FormGradientOperatorQ13D(Ge,el_coords);
789:         /*#if defined(ASSEMBLE_LOWER_TRIANGULAR)*/
790:         FormDivergenceOperatorQ13D(De,el_coords);
791:         /*#endif*/
792:         FormStabilisationOperatorQ13D(Ce,el_coords,prop_eta);

794:         /* insert element matrix into global matrix */
795:         DMDAGetElementEqnums3D_up(u_eqn,p_eqn,ei,ej,ek);

797:         for (n=0; n<NODES_PER_EL; n++) {
798:           if ((u_eqn[3*n].i == 0) || (u_eqn[3*n].i == M-1)) {
799:             _ZERO_ROWCOL_i(Ae,3*n);
800:             _ZERO_ROW_i   (Ge,3*n);
801:             _ZERO_COL_i   (De,3*n);
802:           }

804:           if ((u_eqn[3*n+1].j == 0) || (u_eqn[3*n+1].j == N-1)) {
805:             _ZERO_ROWCOL_i(Ae,3*n+1);
806:             _ZERO_ROW_i   (Ge,3*n+1);
807:             _ZERO_COL_i   (De,3*n+1);
808:           }

810:           if ((u_eqn[3*n+2].k == 0) || (u_eqn[3*n+2].k == P-1)) {
811:             _ZERO_ROWCOL_i(Ae,3*n+2);
812:             _ZERO_ROW_i   (Ge,3*n+2);
813:             _ZERO_COL_i   (De,3*n+2);
814:           }
815:         }
816:         MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*U_DOFS,u_eqn,Ae,ADD_VALUES);
817:         MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ge,ADD_VALUES);
818:         MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*U_DOFS,u_eqn,De,ADD_VALUES);
819:         MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ce,ADD_VALUES);
820:       }
821:     }
822:   }
823:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
824:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

826:   DMDAVecRestoreArray(cda,coords,&_coords);

828:   return 0;
829: }

831: static PetscErrorCode AssembleA_PCStokes(Mat A,DM stokes_da,CellProperties cell_properties)
832: {
833:   DM                     cda;
834:   Vec                    coords;
835:   DMDACoor3d             ***_coords;
836:   MatStencil             u_eqn[NODES_PER_EL*U_DOFS];
837:   MatStencil             p_eqn[NODES_PER_EL*P_DOFS];
838:   PetscInt               sex,sey,sez,mx,my,mz;
839:   PetscInt               ei,ej,ek;
840:   PetscScalar            Ae[NODES_PER_EL*U_DOFS*NODES_PER_EL*U_DOFS];
841:   PetscScalar            Ge[NODES_PER_EL*U_DOFS*NODES_PER_EL*P_DOFS];
842:   PetscScalar            De[NODES_PER_EL*P_DOFS*NODES_PER_EL*U_DOFS];
843:   PetscScalar            Ce[NODES_PER_EL*P_DOFS*NODES_PER_EL*P_DOFS];
844:   PetscScalar            el_coords[NODES_PER_EL*NSD];
845:   GaussPointCoefficients *props;
846:   PetscScalar            *prop_eta;
847:   PetscInt               n,M,N,P;

850:   DMDAGetInfo(stokes_da,0,&M,&N,&P,0,0,0, 0,0,0,0,0,0);
851:   /* setup for coords */
852:   DMGetCoordinateDM(stokes_da,&cda);
853:   DMGetCoordinatesLocal(stokes_da,&coords);
854:   DMDAVecGetArray(cda,coords,&_coords);

856:   DMDAGetElementsCorners(stokes_da,&sex,&sey,&sez);
857:   DMDAGetElementsSizes(stokes_da,&mx,&my,&mz);
858:   for (ek = sez; ek < sez+mz; ek++) {
859:     for (ej = sey; ej < sey+my; ej++) {
860:       for (ei = sex; ei < sex+mx; ei++) {
861:         /* get coords for the element */
862:         GetElementCoords3D(_coords,ei,ej,ek,el_coords);
863:         /* get cell properties */
864:         CellPropertiesGetCell(cell_properties,ei,ej,ek,&props);
865:         /* get coefficients for the element */
866:         prop_eta = props->eta;

868:         /* initialise element stiffness matrix */
869:         PetscMemzero(Ae,sizeof(Ae));
870:         PetscMemzero(Ge,sizeof(Ge));
871:         PetscMemzero(De,sizeof(De));
872:         PetscMemzero(Ce,sizeof(Ce));

874:         /* form element stiffness matrix */
875:         FormStressOperatorQ13D(Ae,el_coords,prop_eta);
876:         FormGradientOperatorQ13D(Ge,el_coords);
877:         /* FormDivergenceOperatorQ13D(De,el_coords); */
878:         FormScaledMassMatrixOperatorQ13D(Ce,el_coords,prop_eta);

880:         /* insert element matrix into global matrix */
881:         DMDAGetElementEqnums3D_up(u_eqn,p_eqn,ei,ej,ek);

883:         for (n=0; n<NODES_PER_EL; n++) {
884:           if ((u_eqn[3*n].i == 0) || (u_eqn[3*n].i == M-1)) {
885:             _ZERO_ROWCOL_i(Ae,3*n);
886:             _ZERO_ROW_i   (Ge,3*n);
887:             _ZERO_COL_i   (De,3*n);
888:           }

890:           if ((u_eqn[3*n+1].j == 0) || (u_eqn[3*n+1].j == N-1)) {
891:             _ZERO_ROWCOL_i(Ae,3*n+1);
892:             _ZERO_ROW_i   (Ge,3*n+1);
893:             _ZERO_COL_i   (De,3*n+1);
894:           }

896:           if ((u_eqn[3*n+2].k == 0) || (u_eqn[3*n+2].k == P-1)) {
897:             _ZERO_ROWCOL_i(Ae,3*n+2);
898:             _ZERO_ROW_i   (Ge,3*n+2);
899:             _ZERO_COL_i   (De,3*n+2);
900:           }
901:         }
902:         MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*U_DOFS,u_eqn,Ae,ADD_VALUES);
903:         MatSetValuesStencil(A,NODES_PER_EL*U_DOFS,u_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ge,ADD_VALUES);
904:         /*MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*U_DOFS,u_eqn,De,ADD_VALUES);*/
905:         MatSetValuesStencil(A,NODES_PER_EL*P_DOFS,p_eqn,NODES_PER_EL*P_DOFS,p_eqn,Ce,ADD_VALUES);
906:       }
907:     }
908:   }
909:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
910:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

912:   DMDAVecRestoreArray(cda,coords,&_coords);
913:   return 0;
914: }

916: static PetscErrorCode AssembleF_Stokes(Vec F,DM stokes_da,CellProperties cell_properties)
917: {
918:   DM                     cda;
919:   Vec                    coords;
920:   DMDACoor3d             ***_coords;
921:   MatStencil             u_eqn[NODES_PER_EL*U_DOFS];
922:   MatStencil             p_eqn[NODES_PER_EL*P_DOFS];
923:   PetscInt               sex,sey,sez,mx,my,mz;
924:   PetscInt               ei,ej,ek;
925:   PetscScalar            Fe[NODES_PER_EL*U_DOFS];
926:   PetscScalar            He[NODES_PER_EL*P_DOFS];
927:   PetscScalar            el_coords[NODES_PER_EL*NSD];
928:   GaussPointCoefficients *props;
929:   PetscScalar            *prop_fx,*prop_fy,*prop_fz,*prop_hc;
930:   Vec                    local_F;
931:   StokesDOF              ***ff;
932:   PetscInt               n,M,N,P;

935:   DMDAGetInfo(stokes_da,0,&M,&N,&P,0,0,0, 0,0,0,0,0,0);
936:   /* setup for coords */
937:   DMGetCoordinateDM(stokes_da,&cda);
938:   DMGetCoordinatesLocal(stokes_da,&coords);
939:   DMDAVecGetArray(cda,coords,&_coords);

941:   /* get access to the vector */
942:   DMGetLocalVector(stokes_da,&local_F);
943:   VecZeroEntries(local_F);
944:   DMDAVecGetArray(stokes_da,local_F,&ff);
945:   DMDAGetElementsCorners(stokes_da,&sex,&sey,&sez);
946:   DMDAGetElementsSizes(stokes_da,&mx,&my,&mz);
947:   for (ek = sez; ek < sez+mz; ek++) {
948:     for (ej = sey; ej < sey+my; ej++) {
949:       for (ei = sex; ei < sex+mx; ei++) {
950:         /* get coords for the element */
951:         GetElementCoords3D(_coords,ei,ej,ek,el_coords);
952:         /* get cell properties */
953:         CellPropertiesGetCell(cell_properties,ei,ej,ek,&props);
954:         /* get coefficients for the element */
955:         prop_fx = props->fx;
956:         prop_fy = props->fy;
957:         prop_fz = props->fz;
958:         prop_hc = props->hc;

960:         /* initialise element stiffness matrix */
961:         PetscMemzero(Fe,sizeof(Fe));
962:         PetscMemzero(He,sizeof(He));

964:         /* form element stiffness matrix */
965:         FormMomentumRhsQ13D(Fe,el_coords,prop_fx,prop_fy,prop_fz);
966:         FormContinuityRhsQ13D(He,el_coords,prop_hc);

968:         /* insert element matrix into global matrix */
969:         DMDAGetElementEqnums3D_up(u_eqn,p_eqn,ei,ej,ek);

971:         for (n=0; n<NODES_PER_EL; n++) {
972:           if ((u_eqn[3*n].i == 0) || (u_eqn[3*n].i == M-1)) Fe[3*n] = 0.0;

974:           if ((u_eqn[3*n+1].j == 0) || (u_eqn[3*n+1].j == N-1)) Fe[3*n+1] = 0.0;

976:           if ((u_eqn[3*n+2].k == 0) || (u_eqn[3*n+2].k == P-1)) Fe[3*n+2] = 0.0;
977:         }

979:         DMDASetValuesLocalStencil3D_ADD_VALUES(ff,u_eqn,p_eqn,Fe,He);
980:       }
981:     }
982:   }
983:   DMDAVecRestoreArray(stokes_da,local_F,&ff);
984:   DMLocalToGlobalBegin(stokes_da,local_F,ADD_VALUES,F);
985:   DMLocalToGlobalEnd(stokes_da,local_F,ADD_VALUES,F);
986:   DMRestoreLocalVector(stokes_da,&local_F);

988:   DMDAVecRestoreArray(cda,coords,&_coords);
989:   return 0;
990: }

992: static void evaluate_MS_FrankKamentski_constants(PetscReal *theta,PetscReal *MX,PetscReal *MY,PetscReal *MZ)
993: {
994:   *theta = 0.0;
995:   *MX    = 2.0 * PETSC_PI;
996:   *MY    = 2.0 * PETSC_PI;
997:   *MZ    = 2.0 * PETSC_PI;
998: }
999: static void evaluate_MS_FrankKamentski(PetscReal pos[],PetscReal v[],PetscReal *p,PetscReal *eta,PetscReal Fm[],PetscReal *Fc)
1000: {
1001:   PetscReal x,y,z;
1002:   PetscReal theta,MX,MY,MZ;

1004:   evaluate_MS_FrankKamentski_constants(&theta,&MX,&MY,&MZ);
1005:   x = pos[0];
1006:   y = pos[1];
1007:   z = pos[2];
1008:   if (v) {
1009:     /*
1010:      v[0] = PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x);
1011:      v[1] = z*cos(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y);
1012:      v[2] = -(PetscPowRealInt(x,3) + PetscPowRealInt(y,3))*PetscSinReal(2.0*PETSC_PI*z);
1013:      */
1014:     /*
1015:      v[0] = PetscSinReal(PETSC_PI*x);
1016:      v[1] = PetscSinReal(PETSC_PI*y);
1017:      v[2] = PetscSinReal(PETSC_PI*z);
1018:      */
1019:     v[0] = PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x);
1020:     v[1] = z*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y);
1021:     v[2] = PetscPowRealInt(z,2)*(PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)/2 - PETSC_PI*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)/2) - PETSC_PI*PetscPowRealInt(z,4)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y)/4;
1022:   }
1023:   if (p) *p = PetscPowRealInt(x,2) + PetscPowRealInt(y,2) + PetscPowRealInt(z,2);
1024:   if (eta) {
1025:     /* eta = PetscExpReal(-theta*(1.0 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)));*/
1026:     *eta = 1.0;
1027:   }
1028:   if (Fm) {
1029:     /*
1030:      Fm[0] = -2*x - 2.0*PetscPowRealInt(PETSC_PI,2)*PetscPowRealInt(z,3)*PetscExpReal(y)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(PETSC_PI*x) - 0.2*MZ*theta*(-1.5*PetscPowRealInt(x,2)*PetscSinReal(2.0*PETSC_PI*z) + 1.5*PetscPowRealInt(z,2)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x))*PetscCosReal(MX*x)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(MY*y)*PetscSinReal(MZ*z) - 0.2*PETSC_PI*MX*theta*PetscPowRealInt(z,3)*PetscCosReal(PETSC_PI*x)*PetscCosReal(MZ*z)*PetscExpReal(y)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(MX*x)*PetscSinReal(MY*y) + 2.0*(3.0*z*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) - 3.0*PETSC_PI*PetscPowRealInt(x,2)*PetscCosReal(2.0*PETSC_PI*z))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) + 2.0*(0.5*PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) + PETSC_PI*z*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)*PetscSinReal(2.0*PETSC_PI*x) - 1.0*z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(PETSC_PI*y)*PetscExpReal(-y)*PetscSinReal(2.0*PETSC_PI*x))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) + 2.0*theta*(1 + 0.1*MY*PetscCosReal(MX*x)*PetscCosReal(MY*y)*PetscCosReal(MZ*z))*(0.5*PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) - 1.0*PETSC_PI*z*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)*PetscSinReal(2.0*PETSC_PI*x))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) ;
1031:      Fm[1] = -2*y - 0.2*MX*theta*(0.5*PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) - 1.0*PETSC_PI*z*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)*PetscSinReal(2.0*PETSC_PI*x))*PetscCosReal(MZ*z)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(MX*x)*PetscSinReal(MY*y) - 0.2*MZ*theta*(-1.5*PetscPowRealInt(y,2)*PetscSinReal(2.0*PETSC_PI*z) + 0.5*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y))*PetscCosReal(MX*x)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(MY*y)*PetscSinReal(MZ*z) + 2.0*(-2.0*z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + 0.5*PETSC_PI*PetscPowRealInt(z,3)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) + 2.0*(z*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) - z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) - 2*PETSC_PI*z*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) + 2.0*theta*(1 + 0.1*MY*PetscCosReal(MX*x)*PetscCosReal(MY*y)*PetscCosReal(MZ*z))*(-z*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + PETSC_PI*z*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) - 6.0*PETSC_PI*PetscPowRealInt(y,2)*PetscCosReal(2.0*PETSC_PI*z)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)));
1032:      Fm[2] = -2*z + 8.0*PetscPowRealInt(PETSC_PI,2)*(PetscPowRealInt(x,3) + PetscPowRealInt(y,3))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(2.0*PETSC_PI*z) - 0.2*MX*theta*(-1.5*PetscPowRealInt(x,2)*PetscSinReal(2.0*PETSC_PI*z) + 1.5*PetscPowRealInt(z,2)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x))*PetscCosReal(MZ*z)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(MX*x)*PetscSinReal(MY*y) + 0.4*PETSC_PI*MZ*theta*(PetscPowRealInt(x,3) + PetscPowRealInt(y,3))*PetscCosReal(MX*x)*PetscCosReal(2.0*PETSC_PI*z)*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))*PetscSinReal(MY*y)*PetscSinReal(MZ*z) + 2.0*(-3.0*x*PetscSinReal(2.0*PETSC_PI*z) + 1.5*PETSC_PI*PetscPowRealInt(z,2)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) + 2.0*(-3.0*y*PetscSinReal(2.0*PETSC_PI*z) - 0.5*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + 0.5*PETSC_PI*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y))) + 2.0*theta*(1 + 0.1*MY*PetscCosReal(MX*x)*PetscCosReal(MY*y)*PetscCosReal(MZ*z))*(-1.5*PetscPowRealInt(y,2)*PetscSinReal(2.0*PETSC_PI*z) + 0.5*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y))*PetscExpReal(-theta*(1 - y - 0.1*PetscCosReal(MX*x)*PetscCosReal(MZ*z)*PetscSinReal(MY*y)))  ;
1033:      */
1034:     /*
1035:      Fm[0]=-2*x - 2.0*PetscPowRealInt(PETSC_PI,2)*PetscSinReal(PETSC_PI*x);
1036:      Fm[1]=-2*y - 2.0*PetscPowRealInt(PETSC_PI,2)*PetscSinReal(PETSC_PI*y);
1037:      Fm[2]=-2*z - 2.0*PetscPowRealInt(PETSC_PI,2)*PetscSinReal(PETSC_PI*z);
1038:      */
1039:     /*
1040:      Fm[0] = -2*x + PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) + 6.0*z*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) - 6.0*PETSC_PI*PetscPowRealInt(x,2)*PetscCosReal(2.0*PETSC_PI*z) - 2.0*PetscPowRealInt(PETSC_PI,2)*PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) + 2.0*PETSC_PI*z*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)*PetscSinReal(2.0*PETSC_PI*x) - 2.0*z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(PETSC_PI*y)*PetscExpReal(-y)*PetscSinReal(2.0*PETSC_PI*x) ;
1041:      Fm[1] = -2*y - 6.0*PETSC_PI*PetscPowRealInt(y,2)*PetscCosReal(2.0*PETSC_PI*z) + 2.0*z*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) - 6.0*z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + PETSC_PI*PetscPowRealInt(z,3)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) - 4.0*PETSC_PI*z*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y);
1042:      Fm[2] = -2*z - 6.0*x*PetscSinReal(2.0*PETSC_PI*z) - 6.0*y*PetscSinReal(2.0*PETSC_PI*z) - PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + 8.0*PetscPowRealInt(PETSC_PI,2)*(PetscPowRealInt(x,3) + PetscPowRealInt(y,3))*PetscSinReal(2.0*PETSC_PI*z) + 3.0*PETSC_PI*PetscPowRealInt(z,2)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) + PETSC_PI*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y) ;
1043:      */
1044:     Fm[0] = -2*x + 2*z*(PetscPowRealInt(PETSC_PI,2)*PetscCosReal(PETSC_PI*y)*PetscExpReal(-y)*PetscSinReal(2.0*PETSC_PI*x) - 1.0*PETSC_PI*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)*PetscSinReal(2.0*PETSC_PI*x)) + PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) + 6.0*z*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) - 1.0*PetscPowRealInt(PETSC_PI,2)*PetscPowRealInt(z,3)*PetscExpReal(y)*PetscSinReal(PETSC_PI*x) + 2.0*PETSC_PI*z*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)*PetscSinReal(2.0*PETSC_PI*x) - 2.0*z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(PETSC_PI*y)*PetscExpReal(-y)*PetscSinReal(2.0*PETSC_PI*x);
1045:     Fm[1] = -2*y + 2*z*(-PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)/2 + PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)/2 + PETSC_PI*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)) + 2.0*z*PetscCosReal(2.0*PETSC_PI *x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) - 6.0*z*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) - 4.0*PETSC_PI*z*PetscCosReal(PETSC_PI *y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y);
1046:     Fm[2] = -2*z + PetscPowRealInt(z,2)*(-2.0*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + 2.0*PetscPowRealInt(PETSC_PI,3)*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)) + PetscPowRealInt(z,2)*(PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)/2 - 3*PetscPowRealInt(PETSC_PI,2)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y)/2 + PetscPowRealInt(PETSC_PI,3)*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)/2 - 3*PETSC_PI*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)/2) + 1.0*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + 0.25*PetscPowRealInt(PETSC_PI,3)*PetscPowRealInt(z,4)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) - 0.25*PETSC_PI*PetscPowRealInt(z,4)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) - 3.0*PETSC_PI*PetscPowRealInt(z,2)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) - 1.0*PETSC_PI*PetscCosReal(PETSC_PI *y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y);
1047:   }
1048:   if (Fc) {
1049:     /* Fc = -2.0*PETSC_PI*(PetscPowRealInt(x,3) + PetscPowRealInt(y,3))*PetscCosReal(2.0*PETSC_PI*z) - z*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + PETSC_PI*PetscPowRealInt(z,3)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) + PETSC_PI*z*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y) ;*/
1050:     /* Fc = PETSC_PI*PetscCosReal(PETSC_PI*x) + PETSC_PI*PetscCosReal(PETSC_PI*y) + PETSC_PI*PetscCosReal(PETSC_PI*z);*/
1051:     /* Fc = -2.0*PETSC_PI*(PetscPowRealInt(x,3) + PetscPowRealInt(y,3))*PetscCosReal(2.0*PETSC_PI*z) - z*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y)*PetscSinReal(PETSC_PI*y) + PETSC_PI*PetscPowRealInt(z,3)*PetscCosReal(PETSC_PI*x)*PetscExpReal(y) + PETSC_PI*z*PetscCosReal(PETSC_PI*y)*PetscCosReal(2.0*PETSC_PI*x)*PetscExpReal(-y);*/
1052:     *Fc = 0.0;
1053:   }
1054: }

1056: static PetscErrorCode DMDACreateManufacturedSolution(PetscInt mx,PetscInt my,PetscInt mz,DM *_da,Vec *_X)
1057: {
1058:   DM             da,cda;
1059:   Vec            X;
1060:   StokesDOF      ***_stokes;
1061:   Vec            coords;
1062:   DMDACoor3d     ***_coords;
1063:   PetscInt       si,sj,sk,ei,ej,ek,i,j,k;

1067:   DMDACreate3d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,
1068:                       mx+1,my+1,mz+1,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,4,1,NULL,NULL,NULL,&da);
1069:   DMSetFromOptions(da);
1070:   DMSetUp(da);
1071:   DMDASetFieldName(da,0,"anlytic_Vx");
1072:   DMDASetFieldName(da,1,"anlytic_Vy");
1073:   DMDASetFieldName(da,2,"anlytic_Vz");
1074:   DMDASetFieldName(da,3,"analytic_P");

1076:   DMDASetUniformCoordinates(da,0.0,1.0,0.0,1.0,0.0,1.0);

1078:   DMGetCoordinatesLocal(da,&coords);
1079:   DMGetCoordinateDM(da,&cda);
1080:   DMDAVecGetArray(cda,coords,&_coords);

1082:   DMCreateGlobalVector(da,&X);
1083:   DMDAVecGetArray(da,X,&_stokes);

1085:   DMDAGetCorners(da,&si,&sj,&sk,&ei,&ej,&ek);
1086:   for (k = sk; k < sk+ek; k++) {
1087:     for (j = sj; j < sj+ej; j++) {
1088:       for (i = si; i < si+ei; i++) {
1089:         PetscReal pos[NSD],pressure,vel[NSD];

1091:         pos[0] = PetscRealPart(_coords[k][j][i].x);
1092:         pos[1] = PetscRealPart(_coords[k][j][i].y);
1093:         pos[2] = PetscRealPart(_coords[k][j][i].z);

1095:         evaluate_MS_FrankKamentski(pos,vel,&pressure,NULL,NULL,NULL);

1097:         _stokes[k][j][i].u_dof = vel[0];
1098:         _stokes[k][j][i].v_dof = vel[1];
1099:         _stokes[k][j][i].w_dof = vel[2];
1100:         _stokes[k][j][i].p_dof = pressure;
1101:       }
1102:     }
1103:   }
1104:   DMDAVecRestoreArray(da,X,&_stokes);
1105:   DMDAVecRestoreArray(cda,coords,&_coords);

1107:   *_da = da;
1108:   *_X  = X;
1109:   return 0;
1110: }

1112: static PetscErrorCode DMDAIntegrateErrors3D(DM stokes_da,Vec X,Vec X_analytic)
1113: {
1114:   DM          cda;
1115:   Vec         coords,X_analytic_local,X_local;
1116:   DMDACoor3d  ***_coords;
1117:   PetscInt    sex,sey,sez,mx,my,mz;
1118:   PetscInt    ei,ej,ek;
1119:   PetscScalar el_coords[NODES_PER_EL*NSD];
1120:   StokesDOF   ***stokes_analytic,***stokes;
1121:   StokesDOF   stokes_analytic_e[NODES_PER_EL],stokes_e[NODES_PER_EL];

1123:   PetscScalar    GNi_p[NSD][NODES_PER_EL],GNx_p[NSD][NODES_PER_EL];
1124:   PetscScalar    Ni_p[NODES_PER_EL];
1125:   PetscInt       ngp;
1126:   PetscScalar    gp_xi[GAUSS_POINTS][NSD];
1127:   PetscScalar    gp_weight[GAUSS_POINTS];
1128:   PetscInt       p,i;
1129:   PetscScalar    J_p,fac;
1130:   PetscScalar    h,p_e_L2,u_e_L2,u_e_H1,p_L2,u_L2,u_H1,tp_L2,tu_L2,tu_H1;
1131:   PetscScalar    tint_p_ms,tint_p,int_p_ms,int_p;
1132:   PetscInt       M;
1133:   PetscReal      xymin[NSD],xymax[NSD];

1136:   /* define quadrature rule */
1137:   ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

1139:   /* setup for coords */
1140:   DMGetCoordinateDM(stokes_da,&cda);
1141:   DMGetCoordinatesLocal(stokes_da,&coords);
1142:   DMDAVecGetArray(cda,coords,&_coords);

1144:   /* setup for analytic */
1145:   DMCreateLocalVector(stokes_da,&X_analytic_local);
1146:   DMGlobalToLocalBegin(stokes_da,X_analytic,INSERT_VALUES,X_analytic_local);
1147:   DMGlobalToLocalEnd(stokes_da,X_analytic,INSERT_VALUES,X_analytic_local);
1148:   DMDAVecGetArray(stokes_da,X_analytic_local,&stokes_analytic);

1150:   /* setup for solution */
1151:   DMCreateLocalVector(stokes_da,&X_local);
1152:   DMGlobalToLocalBegin(stokes_da,X,INSERT_VALUES,X_local);
1153:   DMGlobalToLocalEnd(stokes_da,X,INSERT_VALUES,X_local);
1154:   DMDAVecGetArray(stokes_da,X_local,&stokes);

1156:   DMDAGetInfo(stokes_da,0,&M,0,0,0,0,0,0,0,0,0,0,0);
1157:   DMGetBoundingBox(stokes_da,xymin,xymax);

1159:   h = (xymax[0]-xymin[0])/((PetscReal)(M-1));

1161:   tp_L2     = tu_L2 = tu_H1 = 0.0;
1162:   tint_p_ms = tint_p = 0.0;

1164:   DMDAGetElementsCorners(stokes_da,&sex,&sey,&sez);
1165:   DMDAGetElementsSizes(stokes_da,&mx,&my,&mz);
1166:   for (ek = sez; ek < sez+mz; ek++) {
1167:     for (ej = sey; ej < sey+my; ej++) {
1168:       for (ei = sex; ei < sex+mx; ei++) {
1169:         /* get coords for the element */
1170:         GetElementCoords3D(_coords,ei,ej,ek,el_coords);
1171:         StokesDAGetNodalFields3D(stokes,ei,ej,ek,stokes_e);
1172:         StokesDAGetNodalFields3D(stokes_analytic,ei,ej,ek,stokes_analytic_e);

1174:         /* evaluate integral */
1175:         for (p = 0; p < ngp; p++) {
1176:           ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
1177:           ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
1178:           ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,el_coords,&J_p);
1179:           fac = gp_weight[p]*J_p;

1181:           for (i = 0; i < NODES_PER_EL; i++) {
1182:             tint_p_ms = tint_p_ms+fac*Ni_p[i]*stokes_analytic_e[i].p_dof;
1183:             tint_p    = tint_p   +fac*Ni_p[i]*stokes_e[i].p_dof;
1184:           }
1185:         }
1186:       }
1187:     }
1188:   }
1189:   MPI_Allreduce(&tint_p_ms,&int_p_ms,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1190:   MPI_Allreduce(&tint_p,&int_p,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);

1192:   PetscPrintf(PETSC_COMM_WORLD,"\\int P dv %1.4e (h)  %1.4e (ms)\n",PetscRealPart(int_p),PetscRealPart(int_p_ms));

1194:   /* remove mine and add manufacture one */
1195:   DMDAVecRestoreArray(stokes_da,X_analytic_local,&stokes_analytic);
1196:   DMDAVecRestoreArray(stokes_da,X_local,&stokes);

1198:   {
1199:     PetscInt    k,L,dof;
1200:     PetscScalar *fields;
1201:     DMDAGetInfo(stokes_da,0, 0,0,0, 0,0,0, &dof,0,0,0,0,0);

1203:     VecGetLocalSize(X_local,&L);
1204:     VecGetArray(X_local,&fields);
1205:     for (k=0; k<L/dof; k++) fields[dof*k+3] = fields[dof*k+3] - int_p + int_p_ms;
1206:     VecRestoreArray(X_local,&fields);

1208:     VecGetLocalSize(X,&L);
1209:     VecGetArray(X,&fields);
1210:     for (k=0; k<L/dof; k++) fields[dof*k+3] = fields[dof*k+3] - int_p + int_p_ms;
1211:     VecRestoreArray(X,&fields);
1212:   }

1214:   DMDAVecGetArray(stokes_da,X_local,&stokes);
1215:   DMDAVecGetArray(stokes_da,X_analytic_local,&stokes_analytic);

1217:   for (ek = sez; ek < sez+mz; ek++) {
1218:     for (ej = sey; ej < sey+my; ej++) {
1219:       for (ei = sex; ei < sex+mx; ei++) {
1220:         /* get coords for the element */
1221:         GetElementCoords3D(_coords,ei,ej,ek,el_coords);
1222:         StokesDAGetNodalFields3D(stokes,ei,ej,ek,stokes_e);
1223:         StokesDAGetNodalFields3D(stokes_analytic,ei,ej,ek,stokes_analytic_e);

1225:         /* evaluate integral */
1226:         p_e_L2 = 0.0;
1227:         u_e_L2 = 0.0;
1228:         u_e_H1 = 0.0;
1229:         for (p = 0; p < ngp; p++) {
1230:           ShapeFunctionQ13D_Evaluate(gp_xi[p],Ni_p);
1231:           ShapeFunctionQ13D_Evaluate_dxi(gp_xi[p],GNi_p);
1232:           ShapeFunctionQ13D_Evaluate_dx(GNi_p,GNx_p,el_coords,&J_p);
1233:           fac = gp_weight[p]*J_p;

1235:           for (i = 0; i < NODES_PER_EL; i++) {
1236:             PetscScalar u_error,v_error,w_error;

1238:             p_e_L2 = p_e_L2+fac*Ni_p[i]*(stokes_e[i].p_dof-stokes_analytic_e[i].p_dof)*(stokes_e[i].p_dof-stokes_analytic_e[i].p_dof);

1240:             u_error = stokes_e[i].u_dof-stokes_analytic_e[i].u_dof;
1241:             v_error = stokes_e[i].v_dof-stokes_analytic_e[i].v_dof;
1242:             w_error = stokes_e[i].w_dof-stokes_analytic_e[i].w_dof;
1243:             u_e_L2 += fac*Ni_p[i]*(u_error*u_error+v_error*v_error+w_error*w_error);

1245:             u_e_H1 = u_e_H1+fac*(GNx_p[0][i]*u_error*GNx_p[0][i]*u_error              /* du/dx */
1246:                                  +GNx_p[1][i]*u_error*GNx_p[1][i]*u_error
1247:                                  +GNx_p[2][i]*u_error*GNx_p[2][i]*u_error
1248:                                  +GNx_p[0][i]*v_error*GNx_p[0][i]*v_error               /* dv/dx */
1249:                                  +GNx_p[1][i]*v_error*GNx_p[1][i]*v_error
1250:                                  +GNx_p[2][i]*v_error*GNx_p[2][i]*v_error
1251:                                  +GNx_p[0][i]*w_error*GNx_p[0][i]*w_error               /* dw/dx */
1252:                                  +GNx_p[1][i]*w_error*GNx_p[1][i]*w_error
1253:                                  +GNx_p[2][i]*w_error*GNx_p[2][i]*w_error);
1254:           }
1255:         }

1257:         tp_L2 += p_e_L2;
1258:         tu_L2 += u_e_L2;
1259:         tu_H1 += u_e_H1;
1260:       }
1261:     }
1262:   }
1263:   MPI_Allreduce(&tp_L2,&p_L2,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1264:   MPI_Allreduce(&tu_L2,&u_L2,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1265:   MPI_Allreduce(&tu_H1,&u_H1,1,MPIU_SCALAR,MPIU_SUM,PETSC_COMM_WORLD);
1266:   p_L2 = PetscSqrtScalar(p_L2);
1267:   u_L2 = PetscSqrtScalar(u_L2);
1268:   u_H1 = PetscSqrtScalar(u_H1);

1270:   PetscPrintf(PETSC_COMM_WORLD,"%1.4e   %1.4e   %1.4e   %1.4e \n",PetscRealPart(h),PetscRealPart(p_L2),PetscRealPart(u_L2),PetscRealPart(u_H1));

1272:   DMDAVecRestoreArray(cda,coords,&_coords);

1274:   DMDAVecRestoreArray(stokes_da,X_analytic_local,&stokes_analytic);
1275:   VecDestroy(&X_analytic_local);
1276:   DMDAVecRestoreArray(stokes_da,X_local,&stokes);
1277:   VecDestroy(&X_local);
1278:   return 0;
1279: }

1281: PetscErrorCode DAView_3DVTK_StructuredGrid_appended(DM da,Vec FIELD,const char file_prefix[])
1282: {
1283:   char           vtk_filename[PETSC_MAX_PATH_LEN];
1284:   PetscMPIInt    rank;
1285:   MPI_Comm       comm;
1286:   FILE           *vtk_fp = NULL;
1287:   const char     *byte_order = PetscBinaryBigEndian() ? "BigEndian" : "LittleEndian";
1288:   PetscInt       si,sj,sk,nx,ny,nz,i;
1289:   PetscInt       f,n_fields,N;
1290:   DM             cda;
1291:   Vec            coords;
1292:   Vec            l_FIELD;
1293:   PetscScalar    *_L_FIELD;
1294:   PetscInt       memory_offset;
1295:   PetscScalar    *buffer;


1299:   /* create file name */
1300:   PetscObjectGetComm((PetscObject)da,&comm);
1301:   MPI_Comm_rank(comm,&rank);
1302:   PetscSNPrintf(vtk_filename,sizeof(vtk_filename),"subdomain-%s-p%1.4d.vts",file_prefix,rank);

1304:   /* open file and write header */
1305:   vtk_fp = fopen(vtk_filename,"w");

1308:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"<?xml version=\"1.0\"?>\n");

1310:   /* coords */
1311:   DMDAGetGhostCorners(da,&si,&sj,&sk,&nx,&ny,&nz);
1312:   N    = nx * ny * nz;

1314:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"<VTKFile type=\"StructuredGrid\" version=\"0.1\" byte_order=\"%s\">\n",byte_order);
1315:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"  <StructuredGrid WholeExtent=\"%D %D %D %D %D %D\">\n",si,si+nx-1,sj,sj+ny-1,sk,sk+nz-1);
1316:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    <Piece Extent=\"%D %D %D %D %D %D\">\n",si,si+nx-1,sj,sj+ny-1,sk,sk+nz-1);

1318:   memory_offset = 0;

1320:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      <CellData></CellData>\n");

1322:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      <Points>\n");

1324:   /* copy coordinates */
1325:   DMGetCoordinateDM(da,&cda);
1326:   DMGetCoordinatesLocal(da,&coords);
1327:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"        <DataArray type=\"Float64\" NumberOfComponents=\"3\" format=\"appended\" offset=\"%d\" />\n",memory_offset);
1328:   memory_offset = memory_offset + sizeof(PetscInt) + sizeof(PetscScalar)*N*3;

1330:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      </Points>\n");

1332:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      <PointData Scalars=\" ");
1333:   DMDAGetInfo(da,0,0,0,0,0,0,0,&n_fields,0,0,0,0,0);
1334:   for (f=0; f<n_fields; f++) {
1335:     const char *field_name;
1336:     DMDAGetFieldName(da,f,&field_name);
1337:     PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"%s ",field_name);
1338:   }
1339:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"\">\n");

1341:   for (f=0; f<n_fields; f++) {
1342:     const char *field_name;

1344:     DMDAGetFieldName(da,f,&field_name);
1345:     PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"        <DataArray type=\"Float64\" Name=\"%s\" format=\"appended\" offset=\"%d\"/>\n", field_name,memory_offset);
1346:     memory_offset = memory_offset + sizeof(PetscInt) + sizeof(PetscScalar)*N;
1347:   }

1349:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      </PointData>\n");
1350:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    </Piece>\n");
1351:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"  </StructuredGrid>\n");

1353:   PetscMalloc1(N,&buffer);
1354:   DMGetLocalVector(da,&l_FIELD);
1355:   DMGlobalToLocalBegin(da, FIELD,INSERT_VALUES,l_FIELD);
1356:   DMGlobalToLocalEnd(da,FIELD,INSERT_VALUES,l_FIELD);
1357:   VecGetArray(l_FIELD,&_L_FIELD);

1359:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"  <AppendedData encoding=\"raw\">\n");
1360:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"_");

1362:   /* write coordinates */
1363:   {
1364:     int         length = sizeof(PetscScalar)*N*3;
1365:     PetscScalar *allcoords;

1367:     fwrite(&length,sizeof(int),1,vtk_fp);
1368:     VecGetArray(coords,&allcoords);
1369:     fwrite(allcoords,sizeof(PetscScalar),3*N,vtk_fp);
1370:     VecRestoreArray(coords,&allcoords);
1371:   }
1372:   /* write fields */
1373:   for (f=0; f<n_fields; f++) {
1374:     int length = sizeof(PetscScalar)*N;
1375:     fwrite(&length,sizeof(int),1,vtk_fp);
1376:     /* load */
1377:     for (i=0; i<N; i++) buffer[i] = _L_FIELD[n_fields*i + f];

1379:     /* write */
1380:     fwrite(buffer,sizeof(PetscScalar),N,vtk_fp);
1381:   }
1382:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"\n  </AppendedData>\n");

1384:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"</VTKFile>\n");

1386:   PetscFree(buffer);
1387:   VecRestoreArray(l_FIELD,&_L_FIELD);
1388:   DMRestoreLocalVector(da,&l_FIELD);

1390:   if (vtk_fp) {
1391:     fclose(vtk_fp);
1392:     vtk_fp = NULL;
1393:   }

1395:   return 0;
1396: }

1398: PetscErrorCode DAViewVTK_write_PieceExtend(FILE *vtk_fp,PetscInt indent_level,DM da,const char local_file_prefix[])
1399: {
1400:   PetscMPIInt    size,rank;
1401:   MPI_Comm       comm;
1402:   const PetscInt *lx,*ly,*lz;
1403:   PetscInt       M,N,P,pM,pN,pP,sum,*olx,*oly,*olz;
1404:   PetscInt       *osx,*osy,*osz,*oex,*oey,*oez;
1405:   PetscInt       i,j,k,II,stencil;

1408:   /* create file name */
1409:   PetscObjectGetComm((PetscObject)da,&comm);
1410:   MPI_Comm_size(comm,&size);
1411:   MPI_Comm_rank(comm,&rank);

1413:   DMDAGetInfo(da,0,&M,&N,&P,&pM,&pN,&pP,0,&stencil,0,0,0,0);
1414:   DMDAGetOwnershipRanges(da,&lx,&ly,&lz);

1416:   /* generate start,end list */
1417:   PetscMalloc1(pM+1,&olx);
1418:   PetscMalloc1(pN+1,&oly);
1419:   PetscMalloc1(pP+1,&olz);
1420:   sum  = 0;
1421:   for (i=0; i<pM; i++) {
1422:     olx[i] = sum;
1423:     sum    = sum + lx[i];
1424:   }
1425:   olx[pM] = sum;
1426:   sum     = 0;
1427:   for (i=0; i<pN; i++) {
1428:     oly[i] = sum;
1429:     sum    = sum + ly[i];
1430:   }
1431:   oly[pN] = sum;
1432:   sum     = 0;
1433:   for (i=0; i<pP; i++) {
1434:     olz[i] = sum;
1435:     sum    = sum + lz[i];
1436:   }
1437:   olz[pP] = sum;

1439:   PetscMalloc1(pM,&osx);
1440:   PetscMalloc1(pN,&osy);
1441:   PetscMalloc1(pP,&osz);
1442:   PetscMalloc1(pM,&oex);
1443:   PetscMalloc1(pN,&oey);
1444:   PetscMalloc1(pP,&oez);
1445:   for (i=0; i<pM; i++) {
1446:     osx[i] = olx[i] - stencil;
1447:     oex[i] = olx[i] + lx[i] + stencil;
1448:     if (osx[i]<0) osx[i]=0;
1449:     if (oex[i]>M) oex[i]=M;
1450:   }

1452:   for (i=0; i<pN; i++) {
1453:     osy[i] = oly[i] - stencil;
1454:     oey[i] = oly[i] + ly[i] + stencil;
1455:     if (osy[i]<0)osy[i]=0;
1456:     if (oey[i]>M)oey[i]=N;
1457:   }
1458:   for (i=0; i<pP; i++) {
1459:     osz[i] = olz[i] - stencil;
1460:     oez[i] = olz[i] + lz[i] + stencil;
1461:     if (osz[i]<0) osz[i]=0;
1462:     if (oez[i]>P) oez[i]=P;
1463:   }

1465:   for (k=0; k<pP; k++) {
1466:     for (j=0; j<pN; j++) {
1467:       for (i=0; i<pM; i++) {
1468:         char     name[PETSC_MAX_PATH_LEN];
1469:         PetscInt procid = i + j*pM + k*pM*pN; /* convert proc(i,j,k) to pid */
1470:         PetscSNPrintf(name,sizeof(name),"subdomain-%s-p%1.4d.vts",local_file_prefix,procid);
1471:         for (II=0; II<indent_level; II++) PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"  ");

1473:         PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"<Piece Extent=\"%d %d %d %d %d %d\"      Source=\"%s\"/>\n",
1474:                      osx[i],oex[i]-1,
1475:                      osy[j],oey[j]-1,
1476:                      osz[k],oez[k]-1,name);
1477:       }
1478:     }
1479:   }
1480:   PetscFree(olx);
1481:   PetscFree(oly);
1482:   PetscFree(olz);
1483:   PetscFree(osx);
1484:   PetscFree(osy);
1485:   PetscFree(osz);
1486:   PetscFree(oex);
1487:   PetscFree(oey);
1488:   PetscFree(oez);
1489:   return 0;
1490: }

1492: PetscErrorCode DAView_3DVTK_PStructuredGrid(DM da,const char file_prefix[],const char local_file_prefix[])
1493: {
1494:   MPI_Comm       comm;
1495:   PetscMPIInt    size,rank;
1496:   char           vtk_filename[PETSC_MAX_PATH_LEN];
1497:   FILE           *vtk_fp = NULL;
1498:   const char     *byte_order = PetscBinaryBigEndian() ? "BigEndian" : "LittleEndian";
1499:   PetscInt       M,N,P,si,sj,sk,nx,ny,nz;
1500:   PetscInt       i,dofs;

1503:   /* only rank-0 generates this file */
1504:   PetscObjectGetComm((PetscObject)da,&comm);
1505:   MPI_Comm_size(comm,&size);
1506:   MPI_Comm_rank(comm,&rank);

1508:   if (rank != 0) return 0;

1510:   /* create file name */
1511:   PetscSNPrintf(vtk_filename,sizeof(vtk_filename),"%s.pvts",file_prefix);
1512:   vtk_fp = fopen(vtk_filename,"w");

1515:   /* (VTK) generate pvts header */
1516:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"<?xml version=\"1.0\"?>\n");

1518:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"<VTKFile type=\"PStructuredGrid\" version=\"0.1\" byte_order=\"%s\">\n",byte_order);

1520:   /* define size of the nodal mesh based on the cell DM */
1521:   DMDAGetInfo(da,0,&M,&N,&P,0,0,0,&dofs,0,0,0,0,0);
1522:   DMDAGetGhostCorners(da,&si,&sj,&sk,&nx,&ny,&nz);
1523:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"  <PStructuredGrid GhostLevel=\"1\" WholeExtent=\"%d %d %d %d %d %d\">\n",0,M-1,0,N-1,0,P-1); /* note overlap = 1 for Q1 */

1525:   /* DUMP THE CELL REFERENCES */
1526:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    <PCellData>\n");
1527:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    </PCellData>\n");

1529:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    <PPoints>\n");
1530:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      <PDataArray type=\"Float64\" Name=\"Points\" NumberOfComponents=\"%d\"/>\n",NSD);
1531:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    </PPoints>\n");

1533:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    <PPointData>\n");
1534:   for (i=0; i<dofs; i++) {
1535:     const char *fieldname;
1536:     DMDAGetFieldName(da,i,&fieldname);
1537:     PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"      <PDataArray type=\"Float64\" Name=\"%s\" NumberOfComponents=\"1\"/>\n",fieldname);
1538:   }
1539:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"    </PPointData>\n");

1541:   /* write out the parallel information */
1542:   DAViewVTK_write_PieceExtend(vtk_fp,2,da,local_file_prefix);

1544:   /* close the file */
1545:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"  </PStructuredGrid>\n");
1546:   PetscFPrintf(PETSC_COMM_SELF,vtk_fp,"</VTKFile>\n");

1548:   if (vtk_fp) {
1549:     fclose(vtk_fp);
1550:     vtk_fp = NULL;
1551:   }
1552:   return 0;
1553: }

1555: PetscErrorCode DAView3DPVTS(DM da, Vec x,const char NAME[])
1556: {
1557:   char           vts_filename[PETSC_MAX_PATH_LEN];
1558:   char           pvts_filename[PETSC_MAX_PATH_LEN];

1561:   PetscSNPrintf(vts_filename,sizeof(vts_filename),"%s-mesh",NAME);
1562:   DAView_3DVTK_StructuredGrid_appended(da,x,vts_filename);

1564:   PetscSNPrintf(pvts_filename,sizeof(pvts_filename),"%s-mesh",NAME);
1565:   DAView_3DVTK_PStructuredGrid(da,pvts_filename,vts_filename);
1566:   return 0;
1567: }

1569: PetscErrorCode KSPMonitorStokesBlocks(KSP ksp,PetscInt n,PetscReal rnorm,void *dummy)
1570: {
1571:   PetscReal      norms[4];
1572:   Vec            Br,v,w;
1573:   Mat            A;

1576:   KSPGetOperators(ksp,&A,NULL);
1577:   MatCreateVecs(A,&w,&v);

1579:   KSPBuildResidual(ksp,v,w,&Br);

1581:   VecStrideNorm(Br,0,NORM_2,&norms[0]);
1582:   VecStrideNorm(Br,1,NORM_2,&norms[1]);
1583:   VecStrideNorm(Br,2,NORM_2,&norms[2]);
1584:   VecStrideNorm(Br,3,NORM_2,&norms[3]);

1586:   VecDestroy(&v);
1587:   VecDestroy(&w);

1589:   PetscPrintf(PETSC_COMM_WORLD,"%3D KSP Component U,V,W,P residual norm [ %1.12e, %1.12e, %1.12e, %1.12e ]\n",n,norms[0],norms[1],norms[2],norms[3]);
1590:   return 0;
1591: }

1593: static PetscErrorCode PCMGSetupViaCoarsen(PC pc,DM da_fine)
1594: {
1595:   PetscInt              nlevels,k;
1596:   PETSC_UNUSED PetscInt finest;
1597:   DM                    *da_list,*daclist;
1598:   Mat                   R;

1601:   nlevels = 1;
1602:   PetscOptionsGetInt(NULL,NULL,"-levels",&nlevels,0);

1604:   PetscMalloc1(nlevels,&da_list);
1605:   for (k=0; k<nlevels; k++) da_list[k] = NULL;
1606:   PetscMalloc1(nlevels,&daclist);
1607:   for (k=0; k<nlevels; k++) daclist[k] = NULL;

1609:   /* finest grid is nlevels - 1 */
1610:   finest     = nlevels - 1;
1611:   daclist[0] = da_fine;
1612:   PetscObjectReference((PetscObject)da_fine);
1613:   DMCoarsenHierarchy(da_fine,nlevels-1,&daclist[1]);
1614:   for (k=0; k<nlevels; k++) {
1615:     da_list[k] = daclist[nlevels-1-k];
1616:     DMDASetUniformCoordinates(da_list[k],0.0,1.0,0.0,1.0,0.0,1.0);
1617:   }

1619:   PCMGSetLevels(pc,nlevels,NULL);
1620:   PCMGSetType(pc,PC_MG_MULTIPLICATIVE);
1621:   PCMGSetGalerkin(pc,PC_MG_GALERKIN_PMAT);

1623:   for (k=1; k<nlevels; k++) {
1624:     DMCreateInterpolation(da_list[k-1],da_list[k],&R,NULL);
1625:     PCMGSetInterpolation(pc,k,R);
1626:     MatDestroy(&R);
1627:   }

1629:   /* tidy up */
1630:   for (k=0; k<nlevels; k++) {
1631:     DMDestroy(&da_list[k]);
1632:   }
1633:   PetscFree(da_list);
1634:   PetscFree(daclist);
1635:   return 0;
1636: }

1638: static PetscErrorCode solve_stokes_3d_coupled(PetscInt mx,PetscInt my,PetscInt mz)
1639: {
1640:   DM             da_Stokes;
1641:   PetscInt       u_dof,p_dof,dof,stencil_width;
1642:   Mat            A,B;
1643:   DM             vel_cda;
1644:   Vec            vel_coords;
1645:   PetscInt       p;
1646:   Vec            f,X,X1;
1647:   DMDACoor3d     ***_vel_coords;
1648:   PetscInt       its;
1649:   KSP            ksp_S;
1650:   PetscInt       model_definition = 0;
1651:   PetscInt       ei,ej,ek,sex,sey,sez,Imx,Jmy,Kmz;
1652:   CellProperties cell_properties;
1653:   PetscBool      write_output = PETSC_FALSE,resolve= PETSC_FALSE;

1657:   PetscOptionsGetBool(NULL,NULL,"-resolve",&resolve,NULL);
1658:   /* Generate the da for velocity and pressure */
1659:   /* Num nodes in each direction is mx+1, my+1, mz+1 */
1660:   u_dof         = U_DOFS; /* Vx, Vy - velocities */
1661:   p_dof         = P_DOFS; /* p - pressure */
1662:   dof           = u_dof+p_dof;
1663:   stencil_width = 1;
1664:   DMDACreate3d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,
1665:                                mx+1,my+1,mz+1,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,dof,stencil_width,NULL,NULL,NULL,&da_Stokes);
1666:   DMSetMatType(da_Stokes,MATAIJ);
1667:   DMSetFromOptions(da_Stokes);
1668:   DMSetUp(da_Stokes);
1669:   DMDASetFieldName(da_Stokes,0,"Vx");
1670:   DMDASetFieldName(da_Stokes,1,"Vy");
1671:   DMDASetFieldName(da_Stokes,2,"Vz");
1672:   DMDASetFieldName(da_Stokes,3,"P");

1674:   /* unit box [0,1] x [0,1] x [0,1] */
1675:   DMDASetUniformCoordinates(da_Stokes,0.0,1.0,0.0,1.0,0.0,1.0);

1677:   /* create quadrature point info for PDE coefficients */
1678:   CellPropertiesCreate(da_Stokes,&cell_properties);

1680:   /* interpolate the coordinates to quadrature points */
1681:   DMGetCoordinateDM(da_Stokes,&vel_cda);
1682:   DMGetCoordinatesLocal(da_Stokes,&vel_coords);
1683:   DMDAVecGetArray(vel_cda,vel_coords,&_vel_coords);
1684:   DMDAGetElementsCorners(da_Stokes,&sex,&sey,&sez);
1685:   DMDAGetElementsSizes(da_Stokes,&Imx,&Jmy,&Kmz);
1686:   for (ek = sez; ek < sez+Kmz; ek++) {
1687:     for (ej = sey; ej < sey+Jmy; ej++) {
1688:       for (ei = sex; ei < sex+Imx; ei++) {
1689:         /* get coords for the element */
1690:         PetscInt               ngp;
1691:         PetscScalar            gp_xi[GAUSS_POINTS][NSD],gp_weight[GAUSS_POINTS];
1692:         PetscScalar            el_coords[NSD*NODES_PER_EL];
1693:         GaussPointCoefficients *cell;

1695:         CellPropertiesGetCell(cell_properties,ei,ej,ek,&cell);
1696:         GetElementCoords3D(_vel_coords,ei,ej,ek,el_coords);
1697:         ConstructGaussQuadrature3D(&ngp,gp_xi,gp_weight);

1699:         for (p = 0; p < GAUSS_POINTS; p++) {
1700:           PetscScalar xi_p[NSD],Ni_p[NODES_PER_EL];
1701:           PetscScalar gp_x,gp_y,gp_z;
1702:           PetscInt    n;

1704:           xi_p[0] = gp_xi[p][0];
1705:           xi_p[1] = gp_xi[p][1];
1706:           xi_p[2] = gp_xi[p][2];
1707:           ShapeFunctionQ13D_Evaluate(xi_p,Ni_p);

1709:           gp_x = gp_y = gp_z = 0.0;
1710:           for (n = 0; n < NODES_PER_EL; n++) {
1711:             gp_x = gp_x+Ni_p[n]*el_coords[NSD*n];
1712:             gp_y = gp_y+Ni_p[n]*el_coords[NSD*n+1];
1713:             gp_z = gp_z+Ni_p[n]*el_coords[NSD*n+2];
1714:           }
1715:           cell->gp_coords[NSD*p]   = gp_x;
1716:           cell->gp_coords[NSD*p+1] = gp_y;
1717:           cell->gp_coords[NSD*p+2] = gp_z;
1718:         }
1719:       }
1720:     }
1721:   }

1723:   PetscOptionsGetInt(NULL,NULL,"-model",&model_definition,NULL);

1725:   switch (model_definition) {
1726:   case 0: /* isoviscous */
1727:     for (ek = sez; ek < sez+Kmz; ek++) {
1728:       for (ej = sey; ej < sey+Jmy; ej++) {
1729:         for (ei = sex; ei < sex+Imx; ei++) {
1730:           GaussPointCoefficients *cell;

1732:           CellPropertiesGetCell(cell_properties,ei,ej,ek,&cell);
1733:           for (p = 0; p < GAUSS_POINTS; p++) {
1734:             PetscReal coord_x = PetscRealPart(cell->gp_coords[NSD*p]);
1735:             PetscReal coord_y = PetscRealPart(cell->gp_coords[NSD*p+1]);
1736:             PetscReal coord_z = PetscRealPart(cell->gp_coords[NSD*p+2]);

1738:             cell->eta[p] = 1.0;

1740:             cell->fx[p] = 0.0*coord_x;
1741:             cell->fy[p] = -PetscSinReal(2.2*PETSC_PI*coord_y)*PetscCosReal(1.0*PETSC_PI*coord_x);
1742:             cell->fz[p] = 0.0*coord_z;
1743:             cell->hc[p] = 0.0;
1744:           }
1745:         }
1746:       }
1747:     }
1748:     break;

1750:   case 1: /* manufactured */
1751:     for (ek = sez; ek < sez+Kmz; ek++) {
1752:       for (ej = sey; ej < sey+Jmy; ej++) {
1753:         for (ei = sex; ei < sex+Imx; ei++) {
1754:           PetscReal              eta,Fm[NSD],Fc,pos[NSD];
1755:           GaussPointCoefficients *cell;

1757:           CellPropertiesGetCell(cell_properties,ei,ej,ek,&cell);
1758:           for (p = 0; p < GAUSS_POINTS; p++) {
1759:             PetscReal coord_x = PetscRealPart(cell->gp_coords[NSD*p]);
1760:             PetscReal coord_y = PetscRealPart(cell->gp_coords[NSD*p+1]);
1761:             PetscReal coord_z = PetscRealPart(cell->gp_coords[NSD*p+2]);

1763:             pos[0] = coord_x;
1764:             pos[1] = coord_y;
1765:             pos[2] = coord_z;

1767:             evaluate_MS_FrankKamentski(pos,NULL,NULL,&eta,Fm,&Fc);
1768:             cell->eta[p] = eta;

1770:             cell->fx[p] = Fm[0];
1771:             cell->fy[p] = Fm[1];
1772:             cell->fz[p] = Fm[2];
1773:             cell->hc[p] = Fc;
1774:           }
1775:         }
1776:       }
1777:     }
1778:     break;

1780:   case 2: /* solcx */
1781:     for (ek = sez; ek < sez+Kmz; ek++) {
1782:       for (ej = sey; ej < sey+Jmy; ej++) {
1783:         for (ei = sex; ei < sex+Imx; ei++) {
1784:           GaussPointCoefficients *cell;

1786:           CellPropertiesGetCell(cell_properties,ei,ej,ek,&cell);
1787:           for (p = 0; p < GAUSS_POINTS; p++) {
1788:             PetscReal coord_x = PetscRealPart(cell->gp_coords[NSD*p]);
1789:             PetscReal coord_y = PetscRealPart(cell->gp_coords[NSD*p+1]);
1790:             PetscReal coord_z = PetscRealPart(cell->gp_coords[NSD*p+2]);

1792:             cell->eta[p] = 1.0;

1794:             cell->fx[p] = 0.0;
1795:             cell->fy[p] = -PetscSinReal(3.0*PETSC_PI*coord_y)*PetscCosReal(1.0*PETSC_PI*coord_x);
1796:             cell->fz[p] = 0.0*coord_z;
1797:             cell->hc[p] = 0.0;
1798:           }
1799:         }
1800:       }
1801:     }
1802:     break;

1804:   case 3: /* sinker */
1805:     for (ek = sez; ek < sez+Kmz; ek++) {
1806:       for (ej = sey; ej < sey+Jmy; ej++) {
1807:         for (ei = sex; ei < sex+Imx; ei++) {
1808:           GaussPointCoefficients *cell;

1810:           CellPropertiesGetCell(cell_properties,ei,ej,ek,&cell);
1811:           for (p = 0; p < GAUSS_POINTS; p++) {
1812:             PetscReal xp = PetscRealPart(cell->gp_coords[NSD*p]);
1813:             PetscReal yp = PetscRealPart(cell->gp_coords[NSD*p+1]);
1814:             PetscReal zp = PetscRealPart(cell->gp_coords[NSD*p+2]);

1816:             cell->eta[p] = 1.0e-2;
1817:             cell->fx[p]  = 0.0;
1818:             cell->fy[p]  = 0.0;
1819:             cell->fz[p]  = 0.0;
1820:             cell->hc[p]  = 0.0;

1822:             if ((PetscAbs(xp-0.5) < 0.2) && (PetscAbs(yp-0.5) < 0.2) && (PetscAbs(zp-0.5) < 0.2)) {
1823:               cell->eta[p] = 1.0;
1824:               cell->fz[p]  = 1.0;
1825:             }

1827:           }
1828:         }
1829:       }
1830:     }
1831:     break;

1833:   case 4: /* subdomain jumps */
1834:     for (ek = sez; ek < sez+Kmz; ek++) {
1835:       for (ej = sey; ej < sey+Jmy; ej++) {
1836:         for (ei = sex; ei < sex+Imx; ei++) {
1837:           PetscReal              opts_mag,opts_eta0;
1838:           PetscInt               px,py,pz;
1839:           PetscBool              jump;
1840:           PetscMPIInt            rr;
1841:           GaussPointCoefficients *cell;

1843:           opts_mag  = 1.0;
1844:           opts_eta0 = 1.e-2;

1846:           PetscOptionsGetReal(NULL,NULL,"-jump_eta0",&opts_eta0,NULL);
1847:           PetscOptionsGetReal(NULL,NULL,"-jump_magnitude",&opts_mag,NULL);
1848:           DMDAGetInfo(da_Stokes,NULL,NULL,NULL,NULL,&px,&py,&pz,NULL,NULL,NULL,NULL,NULL,NULL);
1849:           rr   = PetscGlobalRank%(px*py);
1850:           if (px%2) jump = (PetscBool)(rr%2);
1851:           else jump = (PetscBool)((rr/px)%2 ? rr%2 : !(rr%2));
1852:           rr = PetscGlobalRank/(px*py);
1853:           if (rr%2) jump = (PetscBool)!jump;
1854:           CellPropertiesGetCell(cell_properties,ei,ej,ek,&cell);
1855:           for (p = 0; p < GAUSS_POINTS; p++) {
1856:             PetscReal xp = PetscRealPart(cell->gp_coords[NSD*p]);
1857:             PetscReal yp = PetscRealPart(cell->gp_coords[NSD*p+1]);

1859:             cell->eta[p] = jump ? PetscPowReal(10.0,opts_mag) : opts_eta0;
1860:             cell->fx[p]  = 0.0;
1861:             cell->fy[p]  = -PetscSinReal(2.2*PETSC_PI*yp)*PetscCosReal(1.0*PETSC_PI*xp);
1862:             cell->fz[p]  = 0.0;
1863:             cell->hc[p]  = 0.0;
1864:           }
1865:         }
1866:       }
1867:     }
1868:     break;
1869:   default:
1870:     SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"No default model is supported. Choose either -model {0,1,2,3}");
1871:   }

1873:   DMDAVecRestoreArray(vel_cda,vel_coords,&_vel_coords);

1875:   /* Generate a matrix with the correct non-zero pattern of type AIJ. This will work in parallel and serial */
1876:   DMCreateMatrix(da_Stokes,&A);
1877:   DMCreateMatrix(da_Stokes,&B);
1878:   DMCreateGlobalVector(da_Stokes,&X);
1879:   DMCreateGlobalVector(da_Stokes,&f);

1881:   /* assemble A11 */
1882:   MatZeroEntries(A);
1883:   MatZeroEntries(B);
1884:   VecZeroEntries(f);

1886:   AssembleA_Stokes(A,da_Stokes,cell_properties);
1887:   MatViewFromOptions(A,NULL,"-amat_view");
1888:   AssembleA_PCStokes(B,da_Stokes,cell_properties);
1889:   MatViewFromOptions(B,NULL,"-bmat_view");
1890:   /* build force vector */
1891:   AssembleF_Stokes(f,da_Stokes,cell_properties);

1893:   /* SOLVE */
1894:   KSPCreate(PETSC_COMM_WORLD,&ksp_S);
1895:   KSPSetOptionsPrefix(ksp_S,"stokes_"); /* stokes */ ierr;
1896:   KSPSetOperators(ksp_S,A,B);
1897:   KSPSetFromOptions(ksp_S);

1899:   {
1900:     PC             pc;
1901:     const PetscInt ufields[] = {0,1,2},pfields[] = {3};
1902:     KSPGetPC(ksp_S,&pc);
1903:     PCFieldSplitSetBlockSize(pc,4);
1904:     PCFieldSplitSetFields(pc,"u",3,ufields,ufields);
1905:     PCFieldSplitSetFields(pc,"p",1,pfields,pfields);
1906:   }

1908:   {
1909:     PC        pc;
1910:     PetscBool same = PETSC_FALSE;
1911:     KSPGetPC(ksp_S,&pc);
1912:     PetscObjectTypeCompare((PetscObject)pc,PCMG,&same);
1913:     if (same) {
1914:       PCMGSetupViaCoarsen(pc,da_Stokes);
1915:     }
1916:   }

1918:   {
1919:     PC        pc;
1920:     PetscBool same = PETSC_FALSE;
1921:     KSPGetPC(ksp_S,&pc);
1922:     PetscObjectTypeCompare((PetscObject)pc,PCBDDC,&same);
1923:     if (same) {
1924:       KSPSetOperators(ksp_S,A,A);
1925:     }
1926:   }

1928:   {
1929:     PetscBool stokes_monitor = PETSC_FALSE;
1930:     PetscOptionsGetBool(NULL,NULL,"-stokes_ksp_monitor_blocks",&stokes_monitor,0);
1931:     if (stokes_monitor) {
1932:       KSPMonitorSet(ksp_S,KSPMonitorStokesBlocks,NULL,NULL);
1933:     }
1934:   }

1936:   if (resolve) {
1937:     /* Test changing matrix data structure and resolve */
1938:     VecDuplicate(X,&X1);
1939:   }

1941:   KSPSolve(ksp_S,f,X);
1942:   if (resolve) {
1943:     Mat C;
1944:     MatDuplicate(A,MAT_COPY_VALUES,&C);
1945:     KSPSetOperators(ksp_S,C,C);
1946:     KSPSolve(ksp_S,f,X1);
1947:     MatDestroy(&C);
1948:     VecDestroy(&X1);
1949:   }

1951:   PetscOptionsGetBool(NULL,NULL,"-write_pvts",&write_output,NULL);
1952:   if (write_output) DAView3DPVTS(da_Stokes,X,"up");
1953:   {
1954:     PetscBool flg = PETSC_FALSE;
1955:     char      filename[PETSC_MAX_PATH_LEN];
1956:     PetscOptionsGetString(NULL,NULL,"-write_binary",filename,sizeof(filename),&flg);
1957:     if (flg) {
1958:       PetscViewer viewer;
1959:       /* PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename[0]?filename:"ex42-binaryoutput",FILE_MODE_WRITE,&viewer); */
1960:       PetscViewerVTKOpen(PETSC_COMM_WORLD,"ex42.vts",FILE_MODE_WRITE,&viewer);
1961:       VecView(X,viewer);
1962:       PetscViewerDestroy(&viewer);
1963:     }
1964:   }
1965:   KSPGetIterationNumber(ksp_S,&its);

1967:   /* verify */
1968:   if (model_definition == 1) {
1969:     DM  da_Stokes_analytic;
1970:     Vec X_analytic;

1972:     DMDACreateManufacturedSolution(mx,my,mz,&da_Stokes_analytic,&X_analytic);
1973:     if (write_output) {
1974:       DAView3DPVTS(da_Stokes_analytic,X_analytic,"ms");
1975:     }
1976:     DMDAIntegrateErrors3D(da_Stokes_analytic,X,X_analytic);
1977:     if (write_output) {
1978:       DAView3DPVTS(da_Stokes,X,"up2");
1979:     }
1980:     DMDestroy(&da_Stokes_analytic);
1981:     VecDestroy(&X_analytic);
1982:   }

1984:   KSPDestroy(&ksp_S);
1985:   VecDestroy(&X);
1986:   VecDestroy(&f);
1987:   MatDestroy(&A);
1988:   MatDestroy(&B);

1990:   CellPropertiesDestroy(&cell_properties);
1991:   DMDestroy(&da_Stokes);
1992:   return 0;
1993: }

1995: int main(int argc,char **args)
1996: {
1997:   PetscInt       mx,my,mz;

1999:   PetscInitialize(&argc,&args,(char*)0,help);
2000:   mx   = my = mz = 10;
2001:   PetscOptionsGetInt(NULL,NULL,"-mx",&mx,NULL);
2002:   my   = mx; mz = mx;
2003:   PetscOptionsGetInt(NULL,NULL,"-my",&my,NULL);
2004:   PetscOptionsGetInt(NULL,NULL,"-mz",&mz,NULL);
2005:   solve_stokes_3d_coupled(mx,my,mz);
2006:   PetscFinalize();
2007:   return 0;
2008: }

2010: /*TEST

2012:    test:
2013:       args: -stokes_ksp_monitor_short -stokes_ksp_converged_reason -stokes_pc_type lu

2015:    test:
2016:       suffix: 2
2017:       nsize: 3
2018:       args: -stokes_ksp_monitor_short -stokes_ksp_converged_reason -stokes_pc_type redundant -stokes_redundant_pc_type lu

2020:    test:
2021:       suffix: bddc_stokes
2022:       nsize: 6
2023:       args: -mx 5 -my 4 -mz 3 -stokes_ksp_monitor_short -stokes_ksp_converged_reason -stokes_pc_type bddc -dm_mat_type is -stokes_pc_bddc_dirichlet_pc_type svd -stokes_pc_bddc_neumann_pc_type svd -stokes_pc_bddc_coarse_redundant_pc_type svd

2025:    test:
2026:       suffix: bddc_stokes_deluxe
2027:       nsize: 6
2028:       args: -mx 5 -my 4 -mz 3 -stokes_ksp_monitor_short -stokes_ksp_converged_reason -stokes_pc_type bddc -dm_mat_type is -stokes_pc_bddc_dirichlet_pc_type svd -stokes_pc_bddc_neumann_pc_type svd -stokes_pc_bddc_coarse_redundant_pc_type svd -stokes_pc_bddc_use_deluxe_scaling -stokes_sub_schurs_posdef 0 -stokes_sub_schurs_symmetric -stokes_sub_schurs_mat_solver_type petsc

2030:    test:
2031:       requires: !single
2032:       suffix: bddc_stokes_subdomainjump_deluxe
2033:       nsize: 9
2034:       args: -model 4 -jump_magnitude 4 -mx 6 -my 6 -mz 2 -stokes_ksp_monitor_short -stokes_ksp_converged_reason -stokes_pc_type bddc -dm_mat_type is -stokes_pc_bddc_use_deluxe_scaling -stokes_sub_schurs_posdef 0 -stokes_sub_schurs_symmetric -stokes_sub_schurs_mat_solver_type petsc -stokes_pc_bddc_schur_layers 1

2036:    test:
2037:       requires: !single
2038:       suffix: 3
2039:       args: -stokes_ksp_converged_reason -stokes_pc_type fieldsplit -resolve

2041:    test:
2042:       suffix: tut_1
2043:       nsize: 4
2044:       requires: !single
2045:       args: -stokes_ksp_monitor

2047:    test:
2048:       suffix: tut_2
2049:       nsize: 4
2050:       requires: !single
2051:       args: -stokes_ksp_monitor -stokes_pc_type fieldsplit -stokes_pc_fieldsplit_type schur

2053:    test:
2054:       suffix: tut_3
2055:       nsize: 4
2056:       requires: !single
2057:       args: -mx 20 -stokes_ksp_monitor -stokes_pc_type fieldsplit -stokes_pc_fieldsplit_type schur

2059: TEST*/