Actual source code: asm.c

  1: /*
  2:   This file defines an additive Schwarz preconditioner for any Mat implementation.

  4:   Note that each processor may have any number of subdomains. But in order to
  5:   deal easily with the VecScatter(), we treat each processor as if it has the
  6:   same number of subdomains.

  8:        n - total number of true subdomains on all processors
  9:        n_local_true - actual number of subdomains on this processor
 10:        n_local = maximum over all processors of n_local_true
 11: */

 13: #include <petsc/private/pcasmimpl.h>
 14: #include <petsc/private/matimpl.h>

 16: static PetscErrorCode PCView_ASM(PC pc, PetscViewer viewer)
 17: {
 18:   PC_ASM           *osm = (PC_ASM *)pc->data;
 19:   PetscMPIInt       rank;
 20:   PetscInt          i, bsz;
 21:   PetscBool         iascii, isstring;
 22:   PetscViewer       sviewer;
 23:   PetscViewerFormat format;
 24:   const char       *prefix;

 26:   PetscFunctionBegin;
 27:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
 28:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring));
 29:   if (iascii) {
 30:     char overlaps[256] = "user-defined overlap", blocks[256] = "total subdomain blocks not yet set";
 31:     if (osm->overlap >= 0) PetscCall(PetscSNPrintf(overlaps, sizeof(overlaps), "amount of overlap = %" PetscInt_FMT, osm->overlap));
 32:     if (osm->n > 0) PetscCall(PetscSNPrintf(blocks, sizeof(blocks), "total subdomain blocks = %" PetscInt_FMT, osm->n));
 33:     PetscCall(PetscViewerASCIIPrintf(viewer, "  %s, %s\n", blocks, overlaps));
 34:     PetscCall(PetscViewerASCIIPrintf(viewer, "  restriction/interpolation type - %s\n", PCASMTypes[osm->type]));
 35:     if (osm->dm_subdomains) PetscCall(PetscViewerASCIIPrintf(viewer, "  Additive Schwarz: using DM to define subdomains\n"));
 36:     if (osm->loctype != PC_COMPOSITE_ADDITIVE) PetscCall(PetscViewerASCIIPrintf(viewer, "  Additive Schwarz: local solve composition type - %s\n", PCCompositeTypes[osm->loctype]));
 37:     PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pc), &rank));
 38:     PetscCall(PetscViewerGetFormat(viewer, &format));
 39:     if (format != PETSC_VIEWER_ASCII_INFO_DETAIL) {
 40:       if (osm->ksp) {
 41:         PetscCall(PetscViewerASCIIPrintf(viewer, "  Local solver information for first block is in the following KSP and PC objects on rank 0:\n"));
 42:         PetscCall(PCGetOptionsPrefix(pc, &prefix));
 43:         PetscCall(PetscViewerASCIIPrintf(viewer, "  Use -%sksp_view ::ascii_info_detail to display information for all blocks\n", prefix ? prefix : ""));
 44:         PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
 45:         if (rank == 0) {
 46:           PetscCall(PetscViewerASCIIPushTab(sviewer));
 47:           PetscCall(KSPView(osm->ksp[0], sviewer));
 48:           PetscCall(PetscViewerASCIIPopTab(sviewer));
 49:         }
 50:         PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
 51:       }
 52:     } else {
 53:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
 54:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "  [%d] number of local blocks = %" PetscInt_FMT "\n", rank, osm->n_local_true));
 55:       PetscCall(PetscViewerFlush(viewer));
 56:       PetscCall(PetscViewerASCIIPrintf(viewer, "  Local solver information for each block is in the following KSP and PC objects:\n"));
 57:       PetscCall(PetscViewerASCIIPushTab(viewer));
 58:       PetscCall(PetscViewerASCIIPrintf(viewer, "- - - - - - - - - - - - - - - - - -\n"));
 59:       PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
 60:       for (i = 0; i < osm->n_local_true; i++) {
 61:         PetscCall(ISGetLocalSize(osm->is[i], &bsz));
 62:         PetscCall(PetscViewerASCIIPrintf(sviewer, "[%d] local block number %" PetscInt_FMT ", size = %" PetscInt_FMT "\n", rank, i, bsz));
 63:         PetscCall(KSPView(osm->ksp[i], sviewer));
 64:         PetscCall(PetscViewerASCIIPrintf(sviewer, "- - - - - - - - - - - - - - - - - -\n"));
 65:       }
 66:       PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
 67:       PetscCall(PetscViewerASCIIPopTab(viewer));
 68:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
 69:     }
 70:   } else if (isstring) {
 71:     PetscCall(PetscViewerStringSPrintf(viewer, " blocks=%" PetscInt_FMT ", overlap=%" PetscInt_FMT ", type=%s", osm->n, osm->overlap, PCASMTypes[osm->type]));
 72:     PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
 73:     if (osm->ksp) PetscCall(KSPView(osm->ksp[0], sviewer));
 74:     PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
 75:   }
 76:   PetscFunctionReturn(PETSC_SUCCESS);
 77: }

 79: static PetscErrorCode PCASMPrintSubdomains(PC pc)
 80: {
 81:   PC_ASM         *osm = (PC_ASM *)pc->data;
 82:   const char     *prefix;
 83:   char            fname[PETSC_MAX_PATH_LEN + 1];
 84:   PetscViewer     viewer, sviewer;
 85:   char           *s;
 86:   PetscInt        i, j, nidx;
 87:   const PetscInt *idx;
 88:   PetscMPIInt     rank, size;

 90:   PetscFunctionBegin;
 91:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
 92:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pc), &rank));
 93:   PetscCall(PCGetOptionsPrefix(pc, &prefix));
 94:   PetscCall(PetscOptionsGetString(NULL, prefix, "-pc_asm_print_subdomains", fname, sizeof(fname), NULL));
 95:   if (fname[0] == 0) PetscCall(PetscStrncpy(fname, "stdout", sizeof(fname)));
 96:   PetscCall(PetscViewerASCIIOpen(PetscObjectComm((PetscObject)pc), fname, &viewer));
 97:   for (i = 0; i < osm->n_local; i++) {
 98:     if (i < osm->n_local_true) {
 99:       PetscCall(ISGetLocalSize(osm->is[i], &nidx));
100:       PetscCall(ISGetIndices(osm->is[i], &idx));
101:       /* Print to a string viewer; no more than 15 characters per index plus 512 char for the header.*/
102: #define len 16 * (nidx + 1) + 512
103:       PetscCall(PetscMalloc1(len, &s));
104:       PetscCall(PetscViewerStringOpen(PETSC_COMM_SELF, s, len, &sviewer));
105: #undef len
106:       PetscCall(PetscViewerStringSPrintf(sviewer, "[%d:%d] Subdomain %" PetscInt_FMT " with overlap:\n", rank, size, i));
107:       for (j = 0; j < nidx; j++) PetscCall(PetscViewerStringSPrintf(sviewer, "%" PetscInt_FMT " ", idx[j]));
108:       PetscCall(ISRestoreIndices(osm->is[i], &idx));
109:       PetscCall(PetscViewerStringSPrintf(sviewer, "\n"));
110:       PetscCall(PetscViewerDestroy(&sviewer));
111:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
112:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "%s", s));
113:       PetscCall(PetscViewerFlush(viewer));
114:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
115:       PetscCall(PetscFree(s));
116:       if (osm->is_local) {
117:         /* Print to a string viewer; no more than 15 characters per index plus 512 char for the header.*/
118: #define len 16 * (nidx + 1) + 512
119:         PetscCall(PetscMalloc1(len, &s));
120:         PetscCall(PetscViewerStringOpen(PETSC_COMM_SELF, s, len, &sviewer));
121: #undef len
122:         PetscCall(PetscViewerStringSPrintf(sviewer, "[%d:%d] Subdomain %" PetscInt_FMT " without overlap:\n", rank, size, i));
123:         PetscCall(ISGetLocalSize(osm->is_local[i], &nidx));
124:         PetscCall(ISGetIndices(osm->is_local[i], &idx));
125:         for (j = 0; j < nidx; j++) PetscCall(PetscViewerStringSPrintf(sviewer, "%" PetscInt_FMT " ", idx[j]));
126:         PetscCall(ISRestoreIndices(osm->is_local[i], &idx));
127:         PetscCall(PetscViewerStringSPrintf(sviewer, "\n"));
128:         PetscCall(PetscViewerDestroy(&sviewer));
129:         PetscCall(PetscViewerASCIIPushSynchronized(viewer));
130:         PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "%s", s));
131:         PetscCall(PetscViewerFlush(viewer));
132:         PetscCall(PetscViewerASCIIPopSynchronized(viewer));
133:         PetscCall(PetscFree(s));
134:       }
135:     } else {
136:       /* Participate in collective viewer calls. */
137:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
138:       PetscCall(PetscViewerFlush(viewer));
139:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
140:       /* Assume either all ranks have is_local or none do. */
141:       if (osm->is_local) {
142:         PetscCall(PetscViewerASCIIPushSynchronized(viewer));
143:         PetscCall(PetscViewerFlush(viewer));
144:         PetscCall(PetscViewerASCIIPopSynchronized(viewer));
145:       }
146:     }
147:   }
148:   PetscCall(PetscViewerFlush(viewer));
149:   PetscCall(PetscViewerDestroy(&viewer));
150:   PetscFunctionReturn(PETSC_SUCCESS);
151: }

153: static PetscErrorCode PCSetUp_ASM(PC pc)
154: {
155:   PC_ASM       *osm = (PC_ASM *)pc->data;
156:   PetscBool     flg;
157:   PetscInt      i, m, m_local;
158:   MatReuse      scall = MAT_REUSE_MATRIX;
159:   IS            isl;
160:   KSP           ksp;
161:   PC            subpc;
162:   const char   *prefix, *pprefix;
163:   Vec           vec;
164:   DM           *domain_dm = NULL;
165:   MatNullSpace *nullsp    = NULL;

167:   PetscFunctionBegin;
168:   if (!pc->setupcalled) {
169:     PetscInt m;

171:     /* Note: if subdomains have been set either via PCASMSetTotalSubdomains() or via PCASMSetLocalSubdomains(), osm->n_local_true will not be PETSC_DECIDE */
172:     if (osm->n_local_true == PETSC_DECIDE) {
173:       /* no subdomains given */
174:       /* try pc->dm first, if allowed */
175:       if (osm->dm_subdomains && pc->dm) {
176:         PetscInt num_domains, d;
177:         char   **domain_names;
178:         IS      *inner_domain_is, *outer_domain_is;
179:         PetscCall(DMCreateDomainDecomposition(pc->dm, &num_domains, &domain_names, &inner_domain_is, &outer_domain_is, &domain_dm));
180:         osm->overlap = -1; /* We do not want to increase the overlap of the IS.
181:                               A future improvement of this code might allow one to use
182:                               DM-defined subdomains and also increase the overlap,
183:                               but that is not currently supported */
184:         if (num_domains) PetscCall(PCASMSetLocalSubdomains(pc, num_domains, outer_domain_is, inner_domain_is));
185:         for (d = 0; d < num_domains; ++d) {
186:           if (domain_names) PetscCall(PetscFree(domain_names[d]));
187:           if (inner_domain_is) PetscCall(ISDestroy(&inner_domain_is[d]));
188:           if (outer_domain_is) PetscCall(ISDestroy(&outer_domain_is[d]));
189:         }
190:         PetscCall(PetscFree(domain_names));
191:         PetscCall(PetscFree(inner_domain_is));
192:         PetscCall(PetscFree(outer_domain_is));
193:       }
194:       if (osm->n_local_true == PETSC_DECIDE) {
195:         /* still no subdomains; use one subdomain per processor */
196:         osm->n_local_true = 1;
197:       }
198:     }
199:     { /* determine the global and max number of subdomains */
200:       struct {
201:         PetscInt max, sum;
202:       } inwork, outwork;
203:       PetscMPIInt size;

205:       inwork.max = osm->n_local_true;
206:       inwork.sum = osm->n_local_true;
207:       PetscCallMPI(MPIU_Allreduce(&inwork, &outwork, 1, MPIU_2INT, MPIU_MAXSUM_OP, PetscObjectComm((PetscObject)pc)));
208:       osm->n_local = outwork.max;
209:       osm->n       = outwork.sum;

211:       PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
212:       if (outwork.max == 1 && outwork.sum == size) {
213:         /* osm->n_local_true = 1 on all processes, set this option may enable use of optimized MatCreateSubMatrices() implementation */
214:         PetscCall(MatSetOption(pc->pmat, MAT_SUBMAT_SINGLEIS, PETSC_TRUE));
215:       }
216:     }
217:     if (!osm->is) { /* create the index sets */
218:       PetscCall(PCASMCreateSubdomains(pc->pmat, osm->n_local_true, &osm->is));
219:     }
220:     if (osm->n_local_true > 1 && !osm->is_local) {
221:       PetscCall(PetscMalloc1(osm->n_local_true, &osm->is_local));
222:       for (i = 0; i < osm->n_local_true; i++) {
223:         if (osm->overlap > 0) { /* With positive overlap, osm->is[i] will be modified */
224:           PetscCall(ISDuplicate(osm->is[i], &osm->is_local[i]));
225:           PetscCall(ISCopy(osm->is[i], osm->is_local[i]));
226:         } else {
227:           PetscCall(PetscObjectReference((PetscObject)osm->is[i]));
228:           osm->is_local[i] = osm->is[i];
229:         }
230:       }
231:     }
232:     PetscCall(PCGetOptionsPrefix(pc, &prefix));
233:     if (osm->overlap > 0) {
234:       /* Extend the "overlapping" regions by a number of steps */
235:       PetscCall(MatIncreaseOverlap(pc->pmat, osm->n_local_true, osm->is, osm->overlap));
236:     }
237:     if (osm->sort_indices) {
238:       for (i = 0; i < osm->n_local_true; i++) {
239:         PetscCall(ISSort(osm->is[i]));
240:         if (osm->is_local) PetscCall(ISSort(osm->is_local[i]));
241:       }
242:     }
243:     flg = PETSC_FALSE;
244:     PetscCall(PetscOptionsHasName(NULL, prefix, "-pc_asm_print_subdomains", &flg));
245:     if (flg) PetscCall(PCASMPrintSubdomains(pc));
246:     if (!osm->ksp) {
247:       /* Create the local solvers */
248:       PetscCall(PetscMalloc1(osm->n_local_true, &osm->ksp));
249:       if (domain_dm) PetscCall(PetscInfo(pc, "Setting up ASM subproblems using the embedded DM\n"));
250:       for (i = 0; i < osm->n_local_true; i++) {
251:         PetscCall(KSPCreate(PETSC_COMM_SELF, &ksp));
252:         PetscCall(KSPSetNestLevel(ksp, pc->kspnestlevel));
253:         PetscCall(KSPSetErrorIfNotConverged(ksp, pc->erroriffailure));
254:         PetscCall(PetscObjectIncrementTabLevel((PetscObject)ksp, (PetscObject)pc, 1));
255:         PetscCall(KSPSetType(ksp, KSPPREONLY));
256:         PetscCall(KSPGetPC(ksp, &subpc));
257:         PetscCall(PCGetOptionsPrefix(pc, &prefix));
258:         PetscCall(KSPSetOptionsPrefix(ksp, prefix));
259:         PetscCall(KSPAppendOptionsPrefix(ksp, "sub_"));
260:         if (domain_dm) {
261:           PetscCall(KSPSetDM(ksp, domain_dm[i]));
262:           PetscCall(KSPSetDMActive(ksp, PETSC_FALSE));
263:           PetscCall(DMDestroy(&domain_dm[i]));
264:         }
265:         osm->ksp[i] = ksp;
266:       }
267:       if (domain_dm) PetscCall(PetscFree(domain_dm));
268:     }

270:     PetscCall(ISConcatenate(PETSC_COMM_SELF, osm->n_local_true, osm->is, &osm->lis));
271:     PetscCall(ISSortRemoveDups(osm->lis));
272:     PetscCall(ISGetLocalSize(osm->lis, &m));

274:     scall = MAT_INITIAL_MATRIX;
275:   } else {
276:     /*
277:        Destroy the blocks from the previous iteration
278:     */
279:     if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
280:       PetscCall(MatGetNullSpaces(osm->n_local_true, osm->pmat, &nullsp));
281:       PetscCall(MatDestroyMatrices(osm->n_local_true, &osm->pmat));
282:       scall = MAT_INITIAL_MATRIX;
283:     }
284:   }

286:   /* Destroy previous submatrices of a different type than pc->pmat since MAT_REUSE_MATRIX won't work in that case */
287:   if (scall == MAT_REUSE_MATRIX && osm->sub_mat_type) {
288:     PetscCall(MatGetNullSpaces(osm->n_local_true, osm->pmat, &nullsp));
289:     if (osm->n_local_true > 0) PetscCall(MatDestroySubMatrices(osm->n_local_true, &osm->pmat));
290:     scall = MAT_INITIAL_MATRIX;
291:   }

293:   /*
294:      Extract out the submatrices
295:   */
296:   PetscCall(MatCreateSubMatrices(pc->pmat, osm->n_local_true, osm->is, osm->is, scall, &osm->pmat));
297:   if (scall == MAT_INITIAL_MATRIX) {
298:     PetscCall(PetscObjectGetOptionsPrefix((PetscObject)pc->pmat, &pprefix));
299:     for (i = 0; i < osm->n_local_true; i++) PetscCall(PetscObjectSetOptionsPrefix((PetscObject)osm->pmat[i], pprefix));
300:     if (nullsp) PetscCall(MatRestoreNullSpaces(osm->n_local_true, osm->pmat, &nullsp));
301:   }

303:   /* Convert the types of the submatrices (if needbe) */
304:   if (osm->sub_mat_type) {
305:     for (i = 0; i < osm->n_local_true; i++) PetscCall(MatConvert(osm->pmat[i], osm->sub_mat_type, MAT_INPLACE_MATRIX, &osm->pmat[i]));
306:   }

308:   if (!pc->setupcalled) {
309:     VecType vtype;

311:     /* Create the local work vectors (from the local matrices) and scatter contexts */
312:     PetscCall(MatCreateVecs(pc->pmat, &vec, NULL));

314:     PetscCheck(!osm->is_local || osm->n_local_true == 1 || (osm->type != PC_ASM_INTERPOLATE && osm->type != PC_ASM_NONE), PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot use interpolate or none PCASMType if is_local was provided to PCASMSetLocalSubdomains() with more than a single subdomain");
315:     if (osm->is_local && osm->type != PC_ASM_BASIC && osm->loctype == PC_COMPOSITE_ADDITIVE) PetscCall(PetscMalloc1(osm->n_local_true, &osm->lprolongation));
316:     PetscCall(PetscMalloc1(osm->n_local_true, &osm->lrestriction));
317:     PetscCall(PetscMalloc1(osm->n_local_true, &osm->x));
318:     PetscCall(PetscMalloc1(osm->n_local_true, &osm->y));

320:     PetscCall(ISGetLocalSize(osm->lis, &m));
321:     PetscCall(ISCreateStride(PETSC_COMM_SELF, m, 0, 1, &isl));
322:     PetscCall(MatGetVecType(osm->pmat[0], &vtype));
323:     PetscCall(VecCreate(PETSC_COMM_SELF, &osm->lx));
324:     PetscCall(VecSetSizes(osm->lx, m, m));
325:     PetscCall(VecSetType(osm->lx, vtype));
326:     PetscCall(VecDuplicate(osm->lx, &osm->ly));
327:     PetscCall(VecScatterCreate(vec, osm->lis, osm->lx, isl, &osm->restriction));
328:     PetscCall(ISDestroy(&isl));

330:     for (i = 0; i < osm->n_local_true; ++i) {
331:       ISLocalToGlobalMapping ltog;
332:       IS                     isll;
333:       const PetscInt        *idx_is;
334:       PetscInt              *idx_lis, nout;

336:       PetscCall(ISGetLocalSize(osm->is[i], &m));
337:       PetscCall(MatCreateVecs(osm->pmat[i], &osm->x[i], NULL));
338:       PetscCall(VecDuplicate(osm->x[i], &osm->y[i]));

340:       /* generate a scatter from ly to y[i] picking all the overlapping is[i] entries */
341:       PetscCall(ISLocalToGlobalMappingCreateIS(osm->lis, &ltog));
342:       PetscCall(ISGetLocalSize(osm->is[i], &m));
343:       PetscCall(ISGetIndices(osm->is[i], &idx_is));
344:       PetscCall(PetscMalloc1(m, &idx_lis));
345:       PetscCall(ISGlobalToLocalMappingApply(ltog, IS_GTOLM_DROP, m, idx_is, &nout, idx_lis));
346:       PetscCheck(nout == m, PETSC_COMM_SELF, PETSC_ERR_PLIB, "is not a subset of lis");
347:       PetscCall(ISRestoreIndices(osm->is[i], &idx_is));
348:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, idx_lis, PETSC_OWN_POINTER, &isll));
349:       PetscCall(ISLocalToGlobalMappingDestroy(&ltog));
350:       PetscCall(ISCreateStride(PETSC_COMM_SELF, m, 0, 1, &isl));
351:       PetscCall(VecScatterCreate(osm->ly, isll, osm->y[i], isl, &osm->lrestriction[i]));
352:       PetscCall(ISDestroy(&isll));
353:       PetscCall(ISDestroy(&isl));
354:       if (osm->lprolongation) { /* generate a scatter from y[i] to ly picking only the non-overlapping is_local[i] entries */
355:         ISLocalToGlobalMapping ltog;
356:         IS                     isll, isll_local;
357:         const PetscInt        *idx_local;
358:         PetscInt              *idx1, *idx2, nout;

360:         PetscCall(ISGetLocalSize(osm->is_local[i], &m_local));
361:         PetscCall(ISGetIndices(osm->is_local[i], &idx_local));

363:         PetscCall(ISLocalToGlobalMappingCreateIS(osm->is[i], &ltog));
364:         PetscCall(PetscMalloc1(m_local, &idx1));
365:         PetscCall(ISGlobalToLocalMappingApply(ltog, IS_GTOLM_DROP, m_local, idx_local, &nout, idx1));
366:         PetscCall(ISLocalToGlobalMappingDestroy(&ltog));
367:         PetscCheck(nout == m_local, PETSC_COMM_SELF, PETSC_ERR_PLIB, "is_local not a subset of is");
368:         PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m_local, idx1, PETSC_OWN_POINTER, &isll));

370:         PetscCall(ISLocalToGlobalMappingCreateIS(osm->lis, &ltog));
371:         PetscCall(PetscMalloc1(m_local, &idx2));
372:         PetscCall(ISGlobalToLocalMappingApply(ltog, IS_GTOLM_DROP, m_local, idx_local, &nout, idx2));
373:         PetscCall(ISLocalToGlobalMappingDestroy(&ltog));
374:         PetscCheck(nout == m_local, PETSC_COMM_SELF, PETSC_ERR_PLIB, "is_local not a subset of lis");
375:         PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m_local, idx2, PETSC_OWN_POINTER, &isll_local));

377:         PetscCall(ISRestoreIndices(osm->is_local[i], &idx_local));
378:         PetscCall(VecScatterCreate(osm->y[i], isll, osm->ly, isll_local, &osm->lprolongation[i]));

380:         PetscCall(ISDestroy(&isll));
381:         PetscCall(ISDestroy(&isll_local));
382:       }
383:     }
384:     PetscCall(VecDestroy(&vec));
385:   }

387:   if (osm->loctype == PC_COMPOSITE_MULTIPLICATIVE) {
388:     IS      *cis;
389:     PetscInt c;

391:     PetscCall(PetscMalloc1(osm->n_local_true, &cis));
392:     for (c = 0; c < osm->n_local_true; ++c) cis[c] = osm->lis;
393:     PetscCall(MatCreateSubMatrices(pc->pmat, osm->n_local_true, osm->is, cis, scall, &osm->lmats));
394:     PetscCall(PetscFree(cis));
395:   }

397:   /* Return control to the user so that the submatrices can be modified (e.g., to apply
398:      different boundary conditions for the submatrices than for the global problem) */
399:   PetscCall(PCModifySubMatrices(pc, osm->n_local_true, osm->is, osm->is, osm->pmat, pc->modifysubmatricesP));

401:   /*
402:      Loop over subdomains putting them into local ksp
403:   */
404:   PetscCall(KSPGetOptionsPrefix(osm->ksp[0], &prefix));
405:   for (i = 0; i < osm->n_local_true; i++) {
406:     PetscCall(KSPSetOperators(osm->ksp[i], osm->pmat[i], osm->pmat[i]));
407:     PetscCall(MatSetOptionsPrefix(osm->pmat[i], prefix));
408:     if (!pc->setupcalled) PetscCall(KSPSetFromOptions(osm->ksp[i]));
409:   }
410:   PetscFunctionReturn(PETSC_SUCCESS);
411: }

413: static PetscErrorCode PCSetUpOnBlocks_ASM(PC pc)
414: {
415:   PC_ASM            *osm = (PC_ASM *)pc->data;
416:   PetscInt           i;
417:   KSPConvergedReason reason;

419:   PetscFunctionBegin;
420:   for (i = 0; i < osm->n_local_true; i++) {
421:     PetscCall(KSPSetUp(osm->ksp[i]));
422:     PetscCall(KSPGetConvergedReason(osm->ksp[i], &reason));
423:     if (reason == KSP_DIVERGED_PC_FAILED) pc->failedreason = PC_SUBPC_ERROR;
424:   }
425:   PetscFunctionReturn(PETSC_SUCCESS);
426: }

428: static PetscErrorCode PCApply_ASM(PC pc, Vec x, Vec y)
429: {
430:   PC_ASM     *osm = (PC_ASM *)pc->data;
431:   PetscInt    i, n_local_true = osm->n_local_true;
432:   ScatterMode forward = SCATTER_FORWARD, reverse = SCATTER_REVERSE;

434:   PetscFunctionBegin;
435:   /*
436:      support for limiting the restriction or interpolation to only local
437:      subdomain values (leaving the other values 0).
438:   */
439:   if (!(osm->type & PC_ASM_RESTRICT)) {
440:     forward = SCATTER_FORWARD_LOCAL;
441:     /* have to zero the work RHS since scatter may leave some slots empty */
442:     PetscCall(VecSet(osm->lx, 0.0));
443:   }
444:   if (!(osm->type & PC_ASM_INTERPOLATE)) reverse = SCATTER_REVERSE_LOCAL;

446:   PetscCheck(osm->loctype == PC_COMPOSITE_MULTIPLICATIVE || osm->loctype == PC_COMPOSITE_ADDITIVE, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Invalid local composition type: %s", PCCompositeTypes[osm->loctype]);
447:   /* zero the global and the local solutions */
448:   PetscCall(VecSet(y, 0.0));
449:   PetscCall(VecSet(osm->ly, 0.0));

451:   /* copy the global RHS to local RHS including the ghost nodes */
452:   PetscCall(VecScatterBegin(osm->restriction, x, osm->lx, INSERT_VALUES, forward));
453:   PetscCall(VecScatterEnd(osm->restriction, x, osm->lx, INSERT_VALUES, forward));

455:   /* restrict local RHS to the overlapping 0-block RHS */
456:   PetscCall(VecScatterBegin(osm->lrestriction[0], osm->lx, osm->x[0], INSERT_VALUES, forward));
457:   PetscCall(VecScatterEnd(osm->lrestriction[0], osm->lx, osm->x[0], INSERT_VALUES, forward));

459:   /* do the local solves */
460:   for (i = 0; i < n_local_true; ++i) {
461:     /* solve the overlapping i-block */
462:     PetscCall(PetscLogEventBegin(PC_ApplyOnBlocks, osm->ksp[i], osm->x[i], osm->y[i], 0));
463:     PetscCall(KSPSolve(osm->ksp[i], osm->x[i], osm->y[i]));
464:     PetscCall(KSPCheckSolve(osm->ksp[i], pc, osm->y[i]));
465:     PetscCall(PetscLogEventEnd(PC_ApplyOnBlocks, osm->ksp[i], osm->x[i], osm->y[i], 0));

467:     if (osm->lprolongation && osm->type != PC_ASM_INTERPOLATE) { /* interpolate the non-overlapping i-block solution to the local solution (only for restrictive additive) */
468:       PetscCall(VecScatterBegin(osm->lprolongation[i], osm->y[i], osm->ly, ADD_VALUES, forward));
469:       PetscCall(VecScatterEnd(osm->lprolongation[i], osm->y[i], osm->ly, ADD_VALUES, forward));
470:     } else { /* interpolate the overlapping i-block solution to the local solution */
471:       PetscCall(VecScatterBegin(osm->lrestriction[i], osm->y[i], osm->ly, ADD_VALUES, reverse));
472:       PetscCall(VecScatterEnd(osm->lrestriction[i], osm->y[i], osm->ly, ADD_VALUES, reverse));
473:     }

475:     if (i < n_local_true - 1) {
476:       /* restrict local RHS to the overlapping (i+1)-block RHS */
477:       PetscCall(VecScatterBegin(osm->lrestriction[i + 1], osm->lx, osm->x[i + 1], INSERT_VALUES, forward));
478:       PetscCall(VecScatterEnd(osm->lrestriction[i + 1], osm->lx, osm->x[i + 1], INSERT_VALUES, forward));

480:       if (osm->loctype == PC_COMPOSITE_MULTIPLICATIVE) {
481:         /* update the overlapping (i+1)-block RHS using the current local solution */
482:         PetscCall(MatMult(osm->lmats[i + 1], osm->ly, osm->y[i + 1]));
483:         PetscCall(VecAXPBY(osm->x[i + 1], -1., 1., osm->y[i + 1]));
484:       }
485:     }
486:   }
487:   /* add the local solution to the global solution including the ghost nodes */
488:   PetscCall(VecScatterBegin(osm->restriction, osm->ly, y, ADD_VALUES, reverse));
489:   PetscCall(VecScatterEnd(osm->restriction, osm->ly, y, ADD_VALUES, reverse));
490:   PetscFunctionReturn(PETSC_SUCCESS);
491: }

493: static PetscErrorCode PCMatApply_ASM(PC pc, Mat X, Mat Y)
494: {
495:   PC_ASM     *osm = (PC_ASM *)pc->data;
496:   Mat         Z, W;
497:   Vec         x;
498:   PetscInt    i, m, N;
499:   ScatterMode forward = SCATTER_FORWARD, reverse = SCATTER_REVERSE;

501:   PetscFunctionBegin;
502:   PetscCheck(osm->n_local_true <= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Not yet implemented");
503:   /*
504:      support for limiting the restriction or interpolation to only local
505:      subdomain values (leaving the other values 0).
506:   */
507:   if (!(osm->type & PC_ASM_RESTRICT)) {
508:     forward = SCATTER_FORWARD_LOCAL;
509:     /* have to zero the work RHS since scatter may leave some slots empty */
510:     PetscCall(VecSet(osm->lx, 0.0));
511:   }
512:   if (!(osm->type & PC_ASM_INTERPOLATE)) reverse = SCATTER_REVERSE_LOCAL;
513:   PetscCall(VecGetLocalSize(osm->x[0], &m));
514:   PetscCall(MatGetSize(X, NULL, &N));
515:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, m, N, NULL, &Z));

517:   PetscCheck(osm->loctype == PC_COMPOSITE_MULTIPLICATIVE || osm->loctype == PC_COMPOSITE_ADDITIVE, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Invalid local composition type: %s", PCCompositeTypes[osm->loctype]);
518:   /* zero the global and the local solutions */
519:   PetscCall(MatZeroEntries(Y));
520:   PetscCall(VecSet(osm->ly, 0.0));

522:   for (i = 0; i < N; ++i) {
523:     PetscCall(MatDenseGetColumnVecRead(X, i, &x));
524:     /* copy the global RHS to local RHS including the ghost nodes */
525:     PetscCall(VecScatterBegin(osm->restriction, x, osm->lx, INSERT_VALUES, forward));
526:     PetscCall(VecScatterEnd(osm->restriction, x, osm->lx, INSERT_VALUES, forward));
527:     PetscCall(MatDenseRestoreColumnVecRead(X, i, &x));

529:     PetscCall(MatDenseGetColumnVecWrite(Z, i, &x));
530:     /* restrict local RHS to the overlapping 0-block RHS */
531:     PetscCall(VecScatterBegin(osm->lrestriction[0], osm->lx, x, INSERT_VALUES, forward));
532:     PetscCall(VecScatterEnd(osm->lrestriction[0], osm->lx, x, INSERT_VALUES, forward));
533:     PetscCall(MatDenseRestoreColumnVecWrite(Z, i, &x));
534:   }
535:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, m, N, NULL, &W));
536:   /* solve the overlapping 0-block */
537:   PetscCall(PetscLogEventBegin(PC_ApplyOnBlocks, osm->ksp[0], Z, W, 0));
538:   PetscCall(KSPMatSolve(osm->ksp[0], Z, W));
539:   PetscCall(KSPCheckSolve(osm->ksp[0], pc, NULL));
540:   PetscCall(PetscLogEventEnd(PC_ApplyOnBlocks, osm->ksp[0], Z, W, 0));
541:   PetscCall(MatDestroy(&Z));

543:   for (i = 0; i < N; ++i) {
544:     PetscCall(VecSet(osm->ly, 0.0));
545:     PetscCall(MatDenseGetColumnVecRead(W, i, &x));
546:     if (osm->lprolongation && osm->type != PC_ASM_INTERPOLATE) { /* interpolate the non-overlapping 0-block solution to the local solution (only for restrictive additive) */
547:       PetscCall(VecScatterBegin(osm->lprolongation[0], x, osm->ly, ADD_VALUES, forward));
548:       PetscCall(VecScatterEnd(osm->lprolongation[0], x, osm->ly, ADD_VALUES, forward));
549:     } else { /* interpolate the overlapping 0-block solution to the local solution */
550:       PetscCall(VecScatterBegin(osm->lrestriction[0], x, osm->ly, ADD_VALUES, reverse));
551:       PetscCall(VecScatterEnd(osm->lrestriction[0], x, osm->ly, ADD_VALUES, reverse));
552:     }
553:     PetscCall(MatDenseRestoreColumnVecRead(W, i, &x));

555:     PetscCall(MatDenseGetColumnVecWrite(Y, i, &x));
556:     /* add the local solution to the global solution including the ghost nodes */
557:     PetscCall(VecScatterBegin(osm->restriction, osm->ly, x, ADD_VALUES, reverse));
558:     PetscCall(VecScatterEnd(osm->restriction, osm->ly, x, ADD_VALUES, reverse));
559:     PetscCall(MatDenseRestoreColumnVecWrite(Y, i, &x));
560:   }
561:   PetscCall(MatDestroy(&W));
562:   PetscFunctionReturn(PETSC_SUCCESS);
563: }

565: static PetscErrorCode PCApplyTranspose_ASM(PC pc, Vec x, Vec y)
566: {
567:   PC_ASM     *osm = (PC_ASM *)pc->data;
568:   PetscInt    i, n_local_true = osm->n_local_true;
569:   ScatterMode forward = SCATTER_FORWARD, reverse = SCATTER_REVERSE;

571:   PetscFunctionBegin;
572:   PetscCheck(osm->n_local_true <= 1 || osm->loctype == PC_COMPOSITE_ADDITIVE, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Not yet implemented");
573:   /*
574:      Support for limiting the restriction or interpolation to only local
575:      subdomain values (leaving the other values 0).

577:      Note: these are reversed from the PCApply_ASM() because we are applying the
578:      transpose of the three terms
579:   */

581:   if (!(osm->type & PC_ASM_INTERPOLATE)) {
582:     forward = SCATTER_FORWARD_LOCAL;
583:     /* have to zero the work RHS since scatter may leave some slots empty */
584:     PetscCall(VecSet(osm->lx, 0.0));
585:   }
586:   if (!(osm->type & PC_ASM_RESTRICT)) reverse = SCATTER_REVERSE_LOCAL;

588:   /* zero the global and the local solutions */
589:   PetscCall(VecSet(y, 0.0));
590:   PetscCall(VecSet(osm->ly, 0.0));

592:   /* Copy the global RHS to local RHS including the ghost nodes */
593:   PetscCall(VecScatterBegin(osm->restriction, x, osm->lx, INSERT_VALUES, forward));
594:   PetscCall(VecScatterEnd(osm->restriction, x, osm->lx, INSERT_VALUES, forward));

596:   /* Restrict local RHS to the overlapping 0-block RHS */
597:   PetscCall(VecScatterBegin(osm->lrestriction[0], osm->lx, osm->x[0], INSERT_VALUES, forward));
598:   PetscCall(VecScatterEnd(osm->lrestriction[0], osm->lx, osm->x[0], INSERT_VALUES, forward));

600:   /* do the local solves */
601:   for (i = 0; i < n_local_true; ++i) {
602:     /* solve the overlapping i-block */
603:     PetscCall(PetscLogEventBegin(PC_ApplyTransposeOnBlocks, osm->ksp[i], osm->x[i], osm->y[i], 0));
604:     PetscCall(KSPSolveTranspose(osm->ksp[i], osm->x[i], osm->y[i]));
605:     PetscCall(KSPCheckSolve(osm->ksp[i], pc, osm->y[i]));
606:     PetscCall(PetscLogEventEnd(PC_ApplyTransposeOnBlocks, osm->ksp[i], osm->x[i], osm->y[i], 0));

608:     if (osm->lprolongation && osm->type != PC_ASM_RESTRICT) { /* interpolate the non-overlapping i-block solution to the local solution */
609:       PetscCall(VecScatterBegin(osm->lprolongation[i], osm->y[i], osm->ly, ADD_VALUES, forward));
610:       PetscCall(VecScatterEnd(osm->lprolongation[i], osm->y[i], osm->ly, ADD_VALUES, forward));
611:     } else { /* interpolate the overlapping i-block solution to the local solution */
612:       PetscCall(VecScatterBegin(osm->lrestriction[i], osm->y[i], osm->ly, ADD_VALUES, reverse));
613:       PetscCall(VecScatterEnd(osm->lrestriction[i], osm->y[i], osm->ly, ADD_VALUES, reverse));
614:     }

616:     if (i < n_local_true - 1) {
617:       /* Restrict local RHS to the overlapping (i+1)-block RHS */
618:       PetscCall(VecScatterBegin(osm->lrestriction[i + 1], osm->lx, osm->x[i + 1], INSERT_VALUES, forward));
619:       PetscCall(VecScatterEnd(osm->lrestriction[i + 1], osm->lx, osm->x[i + 1], INSERT_VALUES, forward));
620:     }
621:   }
622:   /* Add the local solution to the global solution including the ghost nodes */
623:   PetscCall(VecScatterBegin(osm->restriction, osm->ly, y, ADD_VALUES, reverse));
624:   PetscCall(VecScatterEnd(osm->restriction, osm->ly, y, ADD_VALUES, reverse));
625:   PetscFunctionReturn(PETSC_SUCCESS);
626: }

628: static PetscErrorCode PCReset_ASM(PC pc)
629: {
630:   PC_ASM  *osm = (PC_ASM *)pc->data;
631:   PetscInt i;

633:   PetscFunctionBegin;
634:   if (osm->ksp) {
635:     for (i = 0; i < osm->n_local_true; i++) PetscCall(KSPReset(osm->ksp[i]));
636:   }
637:   if (osm->pmat) {
638:     if (osm->n_local_true > 0) PetscCall(MatDestroySubMatrices(osm->n_local_true, &osm->pmat));
639:   }
640:   if (osm->lrestriction) {
641:     PetscCall(VecScatterDestroy(&osm->restriction));
642:     for (i = 0; i < osm->n_local_true; i++) {
643:       PetscCall(VecScatterDestroy(&osm->lrestriction[i]));
644:       if (osm->lprolongation) PetscCall(VecScatterDestroy(&osm->lprolongation[i]));
645:       PetscCall(VecDestroy(&osm->x[i]));
646:       PetscCall(VecDestroy(&osm->y[i]));
647:     }
648:     PetscCall(PetscFree(osm->lrestriction));
649:     if (osm->lprolongation) PetscCall(PetscFree(osm->lprolongation));
650:     PetscCall(PetscFree(osm->x));
651:     PetscCall(PetscFree(osm->y));
652:   }
653:   PetscCall(PCASMDestroySubdomains(osm->n_local_true, &osm->is, &osm->is_local));
654:   PetscCall(ISDestroy(&osm->lis));
655:   PetscCall(VecDestroy(&osm->lx));
656:   PetscCall(VecDestroy(&osm->ly));
657:   if (osm->loctype == PC_COMPOSITE_MULTIPLICATIVE) PetscCall(MatDestroyMatrices(osm->n_local_true, &osm->lmats));

659:   PetscCall(PetscFree(osm->sub_mat_type));

661:   osm->is       = NULL;
662:   osm->is_local = NULL;
663:   PetscFunctionReturn(PETSC_SUCCESS);
664: }

666: static PetscErrorCode PCDestroy_ASM(PC pc)
667: {
668:   PC_ASM  *osm = (PC_ASM *)pc->data;
669:   PetscInt i;

671:   PetscFunctionBegin;
672:   PetscCall(PCReset_ASM(pc));
673:   if (osm->ksp) {
674:     for (i = 0; i < osm->n_local_true; i++) PetscCall(KSPDestroy(&osm->ksp[i]));
675:     PetscCall(PetscFree(osm->ksp));
676:   }
677:   PetscCall(PetscFree(pc->data));

679:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetLocalSubdomains_C", NULL));
680:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetTotalSubdomains_C", NULL));
681:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetOverlap_C", NULL));
682:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetType_C", NULL));
683:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetType_C", NULL));
684:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetLocalType_C", NULL));
685:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetLocalType_C", NULL));
686:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetSortIndices_C", NULL));
687:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetSubKSP_C", NULL));
688:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetSubMatType_C", NULL));
689:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetSubMatType_C", NULL));
690:   PetscFunctionReturn(PETSC_SUCCESS);
691: }

693: static PetscErrorCode PCSetFromOptions_ASM(PC pc, PetscOptionItems PetscOptionsObject)
694: {
695:   PC_ASM         *osm = (PC_ASM *)pc->data;
696:   PetscInt        blocks, ovl;
697:   PetscBool       flg;
698:   PCASMType       asmtype;
699:   PCCompositeType loctype;
700:   char            sub_mat_type[256];

702:   PetscFunctionBegin;
703:   PetscOptionsHeadBegin(PetscOptionsObject, "Additive Schwarz options");
704:   PetscCall(PetscOptionsBool("-pc_asm_dm_subdomains", "Use DMCreateDomainDecomposition() to define subdomains", "PCASMSetDMSubdomains", osm->dm_subdomains, &osm->dm_subdomains, &flg));
705:   PetscCall(PetscOptionsInt("-pc_asm_blocks", "Number of subdomains", "PCASMSetTotalSubdomains", osm->n, &blocks, &flg));
706:   if (flg) {
707:     PetscCall(PCASMSetTotalSubdomains(pc, blocks, NULL, NULL));
708:     osm->dm_subdomains = PETSC_FALSE;
709:   }
710:   PetscCall(PetscOptionsInt("-pc_asm_local_blocks", "Number of local subdomains", "PCASMSetLocalSubdomains", osm->n_local_true, &blocks, &flg));
711:   if (flg) {
712:     PetscCall(PCASMSetLocalSubdomains(pc, blocks, NULL, NULL));
713:     osm->dm_subdomains = PETSC_FALSE;
714:   }
715:   PetscCall(PetscOptionsInt("-pc_asm_overlap", "Number of grid points overlap", "PCASMSetOverlap", osm->overlap, &ovl, &flg));
716:   if (flg) {
717:     PetscCall(PCASMSetOverlap(pc, ovl));
718:     osm->dm_subdomains = PETSC_FALSE;
719:   }
720:   flg = PETSC_FALSE;
721:   PetscCall(PetscOptionsEnum("-pc_asm_type", "Type of restriction/extension", "PCASMSetType", PCASMTypes, (PetscEnum)osm->type, (PetscEnum *)&asmtype, &flg));
722:   if (flg) PetscCall(PCASMSetType(pc, asmtype));
723:   flg = PETSC_FALSE;
724:   PetscCall(PetscOptionsEnum("-pc_asm_local_type", "Type of local solver composition", "PCASMSetLocalType", PCCompositeTypes, (PetscEnum)osm->loctype, (PetscEnum *)&loctype, &flg));
725:   if (flg) PetscCall(PCASMSetLocalType(pc, loctype));
726:   PetscCall(PetscOptionsFList("-pc_asm_sub_mat_type", "Subsolve Matrix Type", "PCASMSetSubMatType", MatList, NULL, sub_mat_type, 256, &flg));
727:   if (flg) PetscCall(PCASMSetSubMatType(pc, sub_mat_type));
728:   PetscOptionsHeadEnd();
729:   PetscFunctionReturn(PETSC_SUCCESS);
730: }

732: static PetscErrorCode PCASMSetLocalSubdomains_ASM(PC pc, PetscInt n, IS is[], IS is_local[])
733: {
734:   PC_ASM  *osm = (PC_ASM *)pc->data;
735:   PetscInt i;

737:   PetscFunctionBegin;
738:   PetscCheck(n >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Each process must have 1 or more blocks, n = %" PetscInt_FMT, n);
739:   PetscCheck(!pc->setupcalled || (n == osm->n_local_true && !is), PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "PCASMSetLocalSubdomains() should be called before calling PCSetUp().");

741:   if (!pc->setupcalled) {
742:     if (is) {
743:       for (i = 0; i < n; i++) PetscCall(PetscObjectReference((PetscObject)is[i]));
744:     }
745:     if (is_local) {
746:       for (i = 0; i < n; i++) PetscCall(PetscObjectReference((PetscObject)is_local[i]));
747:     }
748:     PetscCall(PCASMDestroySubdomains(osm->n_local_true, &osm->is, &osm->is_local));

750:     if (osm->ksp && osm->n_local_true != n) {
751:       for (i = 0; i < osm->n_local_true; i++) PetscCall(KSPDestroy(&osm->ksp[i]));
752:       PetscCall(PetscFree(osm->ksp));
753:     }

755:     osm->n_local_true = n;
756:     osm->is           = NULL;
757:     osm->is_local     = NULL;
758:     if (is) {
759:       PetscCall(PetscMalloc1(n, &osm->is));
760:       for (i = 0; i < n; i++) osm->is[i] = is[i];
761:       /* Flag indicating that the user has set overlapping subdomains so PCASM should not increase their size. */
762:       osm->overlap = -1;
763:     }
764:     if (is_local) {
765:       PetscCall(PetscMalloc1(n, &osm->is_local));
766:       for (i = 0; i < n; i++) osm->is_local[i] = is_local[i];
767:       if (!is) {
768:         PetscCall(PetscMalloc1(osm->n_local_true, &osm->is));
769:         for (i = 0; i < osm->n_local_true; i++) {
770:           if (osm->overlap > 0) { /* With positive overlap, osm->is[i] will be modified */
771:             PetscCall(ISDuplicate(osm->is_local[i], &osm->is[i]));
772:             PetscCall(ISCopy(osm->is_local[i], osm->is[i]));
773:           } else {
774:             PetscCall(PetscObjectReference((PetscObject)osm->is_local[i]));
775:             osm->is[i] = osm->is_local[i];
776:           }
777:         }
778:       }
779:     }
780:   }
781:   PetscFunctionReturn(PETSC_SUCCESS);
782: }

784: static PetscErrorCode PCASMSetTotalSubdomains_ASM(PC pc, PetscInt N, IS *is, IS *is_local)
785: {
786:   PC_ASM     *osm = (PC_ASM *)pc->data;
787:   PetscMPIInt rank, size;
788:   PetscInt    n;

790:   PetscFunctionBegin;
791:   PetscCheck(N >= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Number of total blocks must be > 0, N = %" PetscInt_FMT, N);
792:   PetscCheck(!is && !is_local, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Use PCASMSetLocalSubdomains() to set specific index sets, they cannot be set globally yet.");

794:   /*
795:      Split the subdomains equally among all processors
796:   */
797:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)pc), &rank));
798:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
799:   n = N / size + ((N % size) > rank);
800:   PetscCheck(n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Process %d must have at least one block: total processors %d total blocks %" PetscInt_FMT, rank, size, N);
801:   PetscCheck(!pc->setupcalled || n == osm->n_local_true, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "PCASMSetTotalSubdomains() should be called before PCSetUp().");
802:   if (!pc->setupcalled) {
803:     PetscCall(PCASMDestroySubdomains(osm->n_local_true, &osm->is, &osm->is_local));

805:     osm->n_local_true = n;
806:     osm->is           = NULL;
807:     osm->is_local     = NULL;
808:   }
809:   PetscFunctionReturn(PETSC_SUCCESS);
810: }

812: static PetscErrorCode PCASMSetOverlap_ASM(PC pc, PetscInt ovl)
813: {
814:   PC_ASM *osm = (PC_ASM *)pc->data;

816:   PetscFunctionBegin;
817:   PetscCheck(ovl >= 0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Negative overlap value requested");
818:   PetscCheck(!pc->setupcalled || ovl == osm->overlap, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "PCASMSetOverlap() should be called before PCSetUp().");
819:   if (!pc->setupcalled) osm->overlap = ovl;
820:   PetscFunctionReturn(PETSC_SUCCESS);
821: }

823: static PetscErrorCode PCASMSetType_ASM(PC pc, PCASMType type)
824: {
825:   PC_ASM *osm = (PC_ASM *)pc->data;

827:   PetscFunctionBegin;
828:   osm->type     = type;
829:   osm->type_set = PETSC_TRUE;
830:   PetscFunctionReturn(PETSC_SUCCESS);
831: }

833: static PetscErrorCode PCASMGetType_ASM(PC pc, PCASMType *type)
834: {
835:   PC_ASM *osm = (PC_ASM *)pc->data;

837:   PetscFunctionBegin;
838:   *type = osm->type;
839:   PetscFunctionReturn(PETSC_SUCCESS);
840: }

842: static PetscErrorCode PCASMSetLocalType_ASM(PC pc, PCCompositeType type)
843: {
844:   PC_ASM *osm = (PC_ASM *)pc->data;

846:   PetscFunctionBegin;
847:   PetscCheck(type == PC_COMPOSITE_ADDITIVE || type == PC_COMPOSITE_MULTIPLICATIVE, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Only supports additive or multiplicative as the local type");
848:   osm->loctype = type;
849:   PetscFunctionReturn(PETSC_SUCCESS);
850: }

852: static PetscErrorCode PCASMGetLocalType_ASM(PC pc, PCCompositeType *type)
853: {
854:   PC_ASM *osm = (PC_ASM *)pc->data;

856:   PetscFunctionBegin;
857:   *type = osm->loctype;
858:   PetscFunctionReturn(PETSC_SUCCESS);
859: }

861: static PetscErrorCode PCASMSetSortIndices_ASM(PC pc, PetscBool doSort)
862: {
863:   PC_ASM *osm = (PC_ASM *)pc->data;

865:   PetscFunctionBegin;
866:   osm->sort_indices = doSort;
867:   PetscFunctionReturn(PETSC_SUCCESS);
868: }

870: static PetscErrorCode PCASMGetSubKSP_ASM(PC pc, PetscInt *n_local, PetscInt *first_local, KSP **ksp)
871: {
872:   PC_ASM *osm = (PC_ASM *)pc->data;

874:   PetscFunctionBegin;
875:   PetscCheck(osm->n_local_true >= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_ORDER, "Need to call PCSetUp() on PC (or KSPSetUp() on the outer KSP object) before calling here");

877:   if (n_local) *n_local = osm->n_local_true;
878:   if (first_local) {
879:     PetscCallMPI(MPI_Scan(&osm->n_local_true, first_local, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)pc)));
880:     *first_local -= osm->n_local_true;
881:   }
882:   if (ksp) *ksp = osm->ksp;
883:   PetscFunctionReturn(PETSC_SUCCESS);
884: }

886: static PetscErrorCode PCASMGetSubMatType_ASM(PC pc, MatType *sub_mat_type)
887: {
888:   PC_ASM *osm = (PC_ASM *)pc->data;

890:   PetscFunctionBegin;
892:   PetscAssertPointer(sub_mat_type, 2);
893:   *sub_mat_type = osm->sub_mat_type;
894:   PetscFunctionReturn(PETSC_SUCCESS);
895: }

897: static PetscErrorCode PCASMSetSubMatType_ASM(PC pc, MatType sub_mat_type)
898: {
899:   PC_ASM *osm = (PC_ASM *)pc->data;

901:   PetscFunctionBegin;
903:   PetscCall(PetscFree(osm->sub_mat_type));
904:   PetscCall(PetscStrallocpy(sub_mat_type, (char **)&osm->sub_mat_type));
905:   PetscFunctionReturn(PETSC_SUCCESS);
906: }

908: /*@
909:   PCASMSetLocalSubdomains - Sets the local subdomains (for this processor only) for the additive Schwarz preconditioner `PCASM`.

911:   Collective

913:   Input Parameters:
914: + pc       - the preconditioner context
915: . n        - the number of subdomains for this processor (default value = 1)
916: . is       - the index set that defines the subdomains for this processor (or `NULL` for PETSc to determine subdomains)
917:              the values of the `is` array are copied so you can free the array (not the `IS` in the array) after this call
918: - is_local - the index sets that define the local part of the subdomains for this processor, not used unless `PCASMType` is `PC_ASM_RESTRICT`
919:              (or `NULL` to not provide these). The values of the `is_local` array are copied so you can free the array
920:              (not the `IS` in the array) after this call

922:   Options Database Key:
923: . -pc_asm_local_blocks <blks> - Sets number of local blocks

925:   Level: advanced

927:   Notes:
928:   The `IS` numbering is in the parallel, global numbering of the vector for both `is` and `is_local`

930:   By default the `PCASM` preconditioner uses 1 block per processor.

932:   Use `PCASMSetTotalSubdomains()` to set the subdomains for all processors.

934:   If `is_local` is provided and `PCASMType` is `PC_ASM_RESTRICT` then the solution only over the `is_local` region is interpolated
935:   back to form the global solution (this is the standard restricted additive Schwarz method, RASM)

937:   If `is_local` is provided and `PCASMType` is `PC_ASM_INTERPOLATE` or `PC_ASM_NONE` then an error is generated since there is
938:   no code to handle that case.

940: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMSetOverlap()`, `PCASMGetSubKSP()`,
941:           `PCASMCreateSubdomains2D()`, `PCASMGetLocalSubdomains()`, `PCASMType`, `PCASMSetType()`, `PCGASM`
942: @*/
943: PetscErrorCode PCASMSetLocalSubdomains(PC pc, PetscInt n, IS is[], IS is_local[])
944: {
945:   PetscFunctionBegin;
947:   PetscTryMethod(pc, "PCASMSetLocalSubdomains_C", (PC, PetscInt, IS[], IS[]), (pc, n, is, is_local));
948:   PetscFunctionReturn(PETSC_SUCCESS);
949: }

951: /*@
952:   PCASMSetTotalSubdomains - Sets the subdomains for all processors for the
953:   additive Schwarz preconditioner, `PCASM`.

955:   Collective, all MPI ranks must pass in the same array of `IS`

957:   Input Parameters:
958: + pc       - the preconditioner context
959: . N        - the number of subdomains for all processors
960: . is       - the index sets that define the subdomains for all processors (or `NULL` to ask PETSc to determine the subdomains)
961:              the values of the `is` array are copied so you can free the array (not the `IS` in the array) after this call
962: - is_local - the index sets that define the local part of the subdomains for this processor (or `NULL` to not provide this information)
963:              The values of the `is_local` array are copied so you can free the array (not the `IS` in the array) after this call

965:   Options Database Key:
966: . -pc_asm_blocks <blks> - Sets total blocks

968:   Level: advanced

970:   Notes:
971:   Currently you cannot use this to set the actual subdomains with the argument `is` or `is_local`.

973:   By default the `PCASM` preconditioner uses 1 block per processor.

975:   These index sets cannot be destroyed until after completion of the
976:   linear solves for which the `PCASM` preconditioner is being used.

978:   Use `PCASMSetLocalSubdomains()` to set local subdomains.

980:   The `IS` numbering is in the parallel, global numbering of the vector for both is and is_local

982: .seealso: [](ch_ksp), `PCASM`, `PCASMSetLocalSubdomains()`, `PCASMSetOverlap()`, `PCASMGetSubKSP()`,
983:           `PCASMCreateSubdomains2D()`, `PCGASM`
984: @*/
985: PetscErrorCode PCASMSetTotalSubdomains(PC pc, PetscInt N, IS is[], IS is_local[])
986: {
987:   PetscFunctionBegin;
989:   PetscTryMethod(pc, "PCASMSetTotalSubdomains_C", (PC, PetscInt, IS[], IS[]), (pc, N, is, is_local));
990:   PetscFunctionReturn(PETSC_SUCCESS);
991: }

993: /*@
994:   PCASMSetOverlap - Sets the overlap between a pair of subdomains for the
995:   additive Schwarz preconditioner, `PCASM`.

997:   Logically Collective

999:   Input Parameters:
1000: + pc  - the preconditioner context
1001: - ovl - the amount of overlap between subdomains (ovl >= 0, default value = 1)

1003:   Options Database Key:
1004: . -pc_asm_overlap <ovl> - Sets overlap

1006:   Level: intermediate

1008:   Notes:
1009:   By default the `PCASM` preconditioner uses 1 block per processor.  To use
1010:   multiple blocks per perocessor, see `PCASMSetTotalSubdomains()` and
1011:   `PCASMSetLocalSubdomains()` (and the option -pc_asm_blocks <blks>).

1013:   The overlap defaults to 1, so if one desires that no additional
1014:   overlap be computed beyond what may have been set with a call to
1015:   `PCASMSetTotalSubdomains()` or `PCASMSetLocalSubdomains()`, then ovl
1016:   must be set to be 0.  In particular, if one does not explicitly set
1017:   the subdomains an application code, then all overlap would be computed
1018:   internally by PETSc, and using an overlap of 0 would result in an `PCASM`
1019:   variant that is equivalent to the block Jacobi preconditioner.

1021:   The default algorithm used by PETSc to increase overlap is fast, but not scalable,
1022:   use the option -mat_increase_overlap_scalable when the problem and number of processes is large.

1024:   One can define initial index sets with any overlap via
1025:   `PCASMSetLocalSubdomains()`; the routine
1026:   `PCASMSetOverlap()` merely allows PETSc to extend that overlap further
1027:   if desired.

1029: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMSetLocalSubdomains()`, `PCASMGetSubKSP()`,
1030:           `PCASMCreateSubdomains2D()`, `PCASMGetLocalSubdomains()`, `MatIncreaseOverlap()`, `PCGASM`
1031: @*/
1032: PetscErrorCode PCASMSetOverlap(PC pc, PetscInt ovl)
1033: {
1034:   PetscFunctionBegin;
1037:   PetscTryMethod(pc, "PCASMSetOverlap_C", (PC, PetscInt), (pc, ovl));
1038:   PetscFunctionReturn(PETSC_SUCCESS);
1039: }

1041: /*@
1042:   PCASMSetType - Sets the type of restriction and interpolation used
1043:   for local problems in the additive Schwarz method, `PCASM`.

1045:   Logically Collective

1047:   Input Parameters:
1048: + pc   - the preconditioner context
1049: - type - variant of `PCASM`, one of
1050: .vb
1051:       PC_ASM_BASIC       - full interpolation and restriction
1052:       PC_ASM_RESTRICT    - full restriction, local processor interpolation (default)
1053:       PC_ASM_INTERPOLATE - full interpolation, local processor restriction
1054:       PC_ASM_NONE        - local processor restriction and interpolation
1055: .ve

1057:   Options Database Key:
1058: . -pc_asm_type [basic,restrict,interpolate,none] - Sets `PCASMType`

1060:   Level: intermediate

1062:   Note:
1063:   if the is_local arguments are passed to `PCASMSetLocalSubdomains()` then they are used when `PC_ASM_RESTRICT` has been selected
1064:   to limit the local processor interpolation

1066: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMGetSubKSP()`,
1067:           `PCASMCreateSubdomains2D()`, `PCASMType`, `PCASMSetLocalType()`, `PCASMGetLocalType()`, `PCGASM`
1068: @*/
1069: PetscErrorCode PCASMSetType(PC pc, PCASMType type)
1070: {
1071:   PetscFunctionBegin;
1074:   PetscTryMethod(pc, "PCASMSetType_C", (PC, PCASMType), (pc, type));
1075:   PetscFunctionReturn(PETSC_SUCCESS);
1076: }

1078: /*@
1079:   PCASMGetType - Gets the type of restriction and interpolation used
1080:   for local problems in the additive Schwarz method, `PCASM`.

1082:   Logically Collective

1084:   Input Parameter:
1085: . pc - the preconditioner context

1087:   Output Parameter:
1088: . type - variant of `PCASM`, one of
1089: .vb
1090:       PC_ASM_BASIC       - full interpolation and restriction
1091:       PC_ASM_RESTRICT    - full restriction, local processor interpolation
1092:       PC_ASM_INTERPOLATE - full interpolation, local processor restriction
1093:       PC_ASM_NONE        - local processor restriction and interpolation
1094: .ve

1096:   Options Database Key:
1097: . -pc_asm_type [basic,restrict,interpolate,none] - Sets `PCASM` type

1099:   Level: intermediate

1101: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMGetSubKSP()`, `PCGASM`,
1102:           `PCASMCreateSubdomains2D()`, `PCASMType`, `PCASMSetType()`, `PCASMSetLocalType()`, `PCASMGetLocalType()`
1103: @*/
1104: PetscErrorCode PCASMGetType(PC pc, PCASMType *type)
1105: {
1106:   PetscFunctionBegin;
1108:   PetscUseMethod(pc, "PCASMGetType_C", (PC, PCASMType *), (pc, type));
1109:   PetscFunctionReturn(PETSC_SUCCESS);
1110: }

1112: /*@
1113:   PCASMSetLocalType - Sets the type of composition used for local problems in the additive Schwarz method, `PCASM`.

1115:   Logically Collective

1117:   Input Parameters:
1118: + pc   - the preconditioner context
1119: - type - type of composition, one of
1120: .vb
1121:   PC_COMPOSITE_ADDITIVE       - local additive combination
1122:   PC_COMPOSITE_MULTIPLICATIVE - local multiplicative combination
1123: .ve

1125:   Options Database Key:
1126: . -pc_asm_local_type [additive,multiplicative] - Sets local solver composition type

1128:   Level: intermediate

1130: .seealso: [](ch_ksp), `PCASM`, `PCASMSetType()`, `PCASMGetType()`, `PCASMGetLocalType()`, `PCASMType`, `PCCompositeType`
1131: @*/
1132: PetscErrorCode PCASMSetLocalType(PC pc, PCCompositeType type)
1133: {
1134:   PetscFunctionBegin;
1137:   PetscTryMethod(pc, "PCASMSetLocalType_C", (PC, PCCompositeType), (pc, type));
1138:   PetscFunctionReturn(PETSC_SUCCESS);
1139: }

1141: /*@
1142:   PCASMGetLocalType - Gets the type of composition used for local problems in the additive Schwarz method, `PCASM`.

1144:   Logically Collective

1146:   Input Parameter:
1147: . pc - the preconditioner context

1149:   Output Parameter:
1150: . type - type of composition, one of
1151: .vb
1152:   PC_COMPOSITE_ADDITIVE       - local additive combination
1153:   PC_COMPOSITE_MULTIPLICATIVE - local multiplicative combination
1154: .ve

1156:   Options Database Key:
1157: . -pc_asm_local_type [additive,multiplicative] - Sets local solver composition type

1159:   Level: intermediate

1161: .seealso: [](ch_ksp), `PCASM`, `PCASMSetType()`, `PCASMGetType()`, `PCASMSetLocalType()`, `PCASMType`, `PCCompositeType`
1162: @*/
1163: PetscErrorCode PCASMGetLocalType(PC pc, PCCompositeType *type)
1164: {
1165:   PetscFunctionBegin;
1167:   PetscAssertPointer(type, 2);
1168:   PetscUseMethod(pc, "PCASMGetLocalType_C", (PC, PCCompositeType *), (pc, type));
1169:   PetscFunctionReturn(PETSC_SUCCESS);
1170: }

1172: /*@
1173:   PCASMSetSortIndices - Determines whether subdomain indices are sorted.

1175:   Logically Collective

1177:   Input Parameters:
1178: + pc     - the preconditioner context
1179: - doSort - sort the subdomain indices

1181:   Level: intermediate

1183: .seealso: [](ch_ksp), `PCASM`, `PCASMSetLocalSubdomains()`, `PCASMSetTotalSubdomains()`, `PCASMGetSubKSP()`,
1184:           `PCASMCreateSubdomains2D()`
1185: @*/
1186: PetscErrorCode PCASMSetSortIndices(PC pc, PetscBool doSort)
1187: {
1188:   PetscFunctionBegin;
1191:   PetscTryMethod(pc, "PCASMSetSortIndices_C", (PC, PetscBool), (pc, doSort));
1192:   PetscFunctionReturn(PETSC_SUCCESS);
1193: }

1195: /*@C
1196:   PCASMGetSubKSP - Gets the local `KSP` contexts for all blocks on
1197:   this processor.

1199:   Collective iff first_local is requested

1201:   Input Parameter:
1202: . pc - the preconditioner context

1204:   Output Parameters:
1205: + n_local     - the number of blocks on this processor or `NULL`
1206: . first_local - the global number of the first block on this processor or `NULL`, all processors must request or all must pass `NULL`
1207: - ksp         - the array of `KSP` contexts

1209:   Level: advanced

1211:   Notes:
1212:   After `PCASMGetSubKSP()` the array of `KSP`s is not to be freed.

1214:   You must call `KSPSetUp()` before calling `PCASMGetSubKSP()`.

1216: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMSetOverlap()`,
1217:           `PCASMCreateSubdomains2D()`,
1218: @*/
1219: PetscErrorCode PCASMGetSubKSP(PC pc, PetscInt *n_local, PetscInt *first_local, KSP *ksp[])
1220: {
1221:   PetscFunctionBegin;
1223:   PetscUseMethod(pc, "PCASMGetSubKSP_C", (PC, PetscInt *, PetscInt *, KSP **), (pc, n_local, first_local, ksp));
1224:   PetscFunctionReturn(PETSC_SUCCESS);
1225: }

1227: /*MC
1228:    PCASM - Use the (restricted) additive Schwarz method, each block is (approximately) solved with
1229:            its own `KSP` object, {cite}`dryja1987additive` and {cite}`1sbg`

1231:    Options Database Keys:
1232: +  -pc_asm_blocks <blks>                          - Sets total blocks. Defaults to one block per MPI process.
1233: .  -pc_asm_overlap <ovl>                          - Sets overlap
1234: .  -pc_asm_type [basic,restrict,interpolate,none] - Sets `PCASMType`, default is restrict. See `PCASMSetType()`
1235: .  -pc_asm_dm_subdomains <bool>                   - use subdomains defined by the `DM` with `DMCreateDomainDecomposition()`
1236: -  -pc_asm_local_type [additive, multiplicative]  - Sets `PCCompositeType`, default is additive. See `PCASMSetLocalType()`

1238:    Level: beginner

1240:    Notes:
1241:    If you run with, for example, 3 blocks on 1 processor or 3 blocks on 3 processors you
1242:    will get a different convergence rate due to the default option of `-pc_asm_type restrict`. Use
1243:    `-pc_asm_type basic` to get the same convergence behavior

1245:    Each processor can have one or more blocks, but a block cannot be shared by more
1246:    than one processor. Use `PCGASM` for subdomains shared by multiple processes.

1248:    To set options on the solvers for each block append `-sub_` to all the `KSP`, and `PC`
1249:    options database keys. For example, `-sub_pc_type ilu -sub_pc_factor_levels 1 -sub_ksp_type preonly`

1251:    To set the options on the solvers separate for each block call `PCASMGetSubKSP()`
1252:    and set the options directly on the resulting `KSP` object (you can access its `PC` with `KSPGetPC()`)

1254:    If the `PC` has an associated `DM`, then, by default, `DMCreateDomainDecomposition()` is used to create the subdomains

1256: .seealso: [](ch_ksp), `PCCreate()`, `PCSetType()`, `PCType`, `PC`, `PCASMType`, `PCCompositeType`,
1257:           `PCBJACOBI`, `PCASMGetSubKSP()`, `PCASMSetLocalSubdomains()`, `PCASMType`, `PCASMGetType()`, `PCASMSetLocalType()`, `PCASMGetLocalType()`
1258:           `PCASMSetTotalSubdomains()`, `PCSetModifySubMatrices()`, `PCASMSetOverlap()`, `PCASMSetType()`, `PCCompositeType`
1259: M*/

1261: PETSC_EXTERN PetscErrorCode PCCreate_ASM(PC pc)
1262: {
1263:   PC_ASM *osm;

1265:   PetscFunctionBegin;
1266:   PetscCall(PetscNew(&osm));

1268:   osm->n             = PETSC_DECIDE;
1269:   osm->n_local       = 0;
1270:   osm->n_local_true  = PETSC_DECIDE;
1271:   osm->overlap       = 1;
1272:   osm->ksp           = NULL;
1273:   osm->restriction   = NULL;
1274:   osm->lprolongation = NULL;
1275:   osm->lrestriction  = NULL;
1276:   osm->x             = NULL;
1277:   osm->y             = NULL;
1278:   osm->is            = NULL;
1279:   osm->is_local      = NULL;
1280:   osm->mat           = NULL;
1281:   osm->pmat          = NULL;
1282:   osm->type          = PC_ASM_RESTRICT;
1283:   osm->loctype       = PC_COMPOSITE_ADDITIVE;
1284:   osm->sort_indices  = PETSC_TRUE;
1285:   osm->dm_subdomains = PETSC_FALSE;
1286:   osm->sub_mat_type  = NULL;

1288:   pc->data                 = (void *)osm;
1289:   pc->ops->apply           = PCApply_ASM;
1290:   pc->ops->matapply        = PCMatApply_ASM;
1291:   pc->ops->applytranspose  = PCApplyTranspose_ASM;
1292:   pc->ops->setup           = PCSetUp_ASM;
1293:   pc->ops->reset           = PCReset_ASM;
1294:   pc->ops->destroy         = PCDestroy_ASM;
1295:   pc->ops->setfromoptions  = PCSetFromOptions_ASM;
1296:   pc->ops->setuponblocks   = PCSetUpOnBlocks_ASM;
1297:   pc->ops->view            = PCView_ASM;
1298:   pc->ops->applyrichardson = NULL;

1300:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetLocalSubdomains_C", PCASMSetLocalSubdomains_ASM));
1301:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetTotalSubdomains_C", PCASMSetTotalSubdomains_ASM));
1302:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetOverlap_C", PCASMSetOverlap_ASM));
1303:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetType_C", PCASMSetType_ASM));
1304:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetType_C", PCASMGetType_ASM));
1305:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetLocalType_C", PCASMSetLocalType_ASM));
1306:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetLocalType_C", PCASMGetLocalType_ASM));
1307:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetSortIndices_C", PCASMSetSortIndices_ASM));
1308:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetSubKSP_C", PCASMGetSubKSP_ASM));
1309:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMGetSubMatType_C", PCASMGetSubMatType_ASM));
1310:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCASMSetSubMatType_C", PCASMSetSubMatType_ASM));
1311:   PetscFunctionReturn(PETSC_SUCCESS);
1312: }

1314: /*@C
1315:   PCASMCreateSubdomains - Creates the index sets for the overlapping Schwarz
1316:   preconditioner, `PCASM`,  for any problem on a general grid.

1318:   Collective

1320:   Input Parameters:
1321: + A - The global matrix operator
1322: - n - the number of local blocks

1324:   Output Parameter:
1325: . outis - the array of index sets defining the subdomains

1327:   Level: advanced

1329:   Note:
1330:   This generates nonoverlapping subdomains; the `PCASM` will generate the overlap
1331:   from these if you use `PCASMSetLocalSubdomains()`

1333: .seealso: [](ch_ksp), `PCASM`, `PCASMSetLocalSubdomains()`, `PCASMDestroySubdomains()`
1334: @*/
1335: PetscErrorCode PCASMCreateSubdomains(Mat A, PetscInt n, IS *outis[])
1336: {
1337:   MatPartitioning mpart;
1338:   const char     *prefix;
1339:   PetscInt        i, j, rstart, rend, bs;
1340:   PetscBool       hasop, isbaij = PETSC_FALSE, foundpart = PETSC_FALSE;
1341:   Mat             Ad = NULL, adj;
1342:   IS              ispart, isnumb, *is;

1344:   PetscFunctionBegin;
1346:   PetscAssertPointer(outis, 3);
1347:   PetscCheck(n >= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "number of local blocks must be > 0, n = %" PetscInt_FMT, n);

1349:   /* Get prefix, row distribution, and block size */
1350:   PetscCall(MatGetOptionsPrefix(A, &prefix));
1351:   PetscCall(MatGetOwnershipRange(A, &rstart, &rend));
1352:   PetscCall(MatGetBlockSize(A, &bs));
1353:   PetscCheck(rstart / bs * bs == rstart && rend / bs * bs == rend, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "bad row distribution [%" PetscInt_FMT ",%" PetscInt_FMT ") for matrix block size %" PetscInt_FMT, rstart, rend, bs);

1355:   /* Get diagonal block from matrix if possible */
1356:   PetscCall(MatHasOperation(A, MATOP_GET_DIAGONAL_BLOCK, &hasop));
1357:   if (hasop) PetscCall(MatGetDiagonalBlock(A, &Ad));
1358:   if (Ad) {
1359:     PetscCall(PetscObjectBaseTypeCompare((PetscObject)Ad, MATSEQBAIJ, &isbaij));
1360:     if (!isbaij) PetscCall(PetscObjectBaseTypeCompare((PetscObject)Ad, MATSEQSBAIJ, &isbaij));
1361:   }
1362:   if (Ad && n > 1) {
1363:     PetscBool match, done;
1364:     /* Try to setup a good matrix partitioning if available */
1365:     PetscCall(MatPartitioningCreate(PETSC_COMM_SELF, &mpart));
1366:     PetscCall(PetscObjectSetOptionsPrefix((PetscObject)mpart, prefix));
1367:     PetscCall(MatPartitioningSetFromOptions(mpart));
1368:     PetscCall(PetscObjectTypeCompare((PetscObject)mpart, MATPARTITIONINGCURRENT, &match));
1369:     if (!match) PetscCall(PetscObjectTypeCompare((PetscObject)mpart, MATPARTITIONINGSQUARE, &match));
1370:     if (!match) { /* assume a "good" partitioner is available */
1371:       PetscInt        na;
1372:       const PetscInt *ia, *ja;
1373:       PetscCall(MatGetRowIJ(Ad, 0, PETSC_TRUE, isbaij, &na, &ia, &ja, &done));
1374:       if (done) {
1375:         /* Build adjacency matrix by hand. Unfortunately a call to
1376:            MatConvert(Ad,MATMPIADJ,MAT_INITIAL_MATRIX,&adj) will
1377:            remove the block-aij structure and we cannot expect
1378:            MatPartitioning to split vertices as we need */
1379:         PetscInt        i, j, len, nnz, cnt, *iia = NULL, *jja = NULL;
1380:         const PetscInt *row;
1381:         nnz = 0;
1382:         for (i = 0; i < na; i++) { /* count number of nonzeros */
1383:           len = ia[i + 1] - ia[i];
1384:           row = ja + ia[i];
1385:           for (j = 0; j < len; j++) {
1386:             if (row[j] == i) { /* don't count diagonal */
1387:               len--;
1388:               break;
1389:             }
1390:           }
1391:           nnz += len;
1392:         }
1393:         PetscCall(PetscMalloc1(na + 1, &iia));
1394:         PetscCall(PetscMalloc1(nnz, &jja));
1395:         nnz    = 0;
1396:         iia[0] = 0;
1397:         for (i = 0; i < na; i++) { /* fill adjacency */
1398:           cnt = 0;
1399:           len = ia[i + 1] - ia[i];
1400:           row = ja + ia[i];
1401:           for (j = 0; j < len; j++) {
1402:             if (row[j] != i) { /* if not diagonal */
1403:               jja[nnz + cnt++] = row[j];
1404:             }
1405:           }
1406:           nnz += cnt;
1407:           iia[i + 1] = nnz;
1408:         }
1409:         /* Partitioning of the adjacency matrix */
1410:         PetscCall(MatCreateMPIAdj(PETSC_COMM_SELF, na, na, iia, jja, NULL, &adj));
1411:         PetscCall(MatPartitioningSetAdjacency(mpart, adj));
1412:         PetscCall(MatPartitioningSetNParts(mpart, n));
1413:         PetscCall(MatPartitioningApply(mpart, &ispart));
1414:         PetscCall(ISPartitioningToNumbering(ispart, &isnumb));
1415:         PetscCall(MatDestroy(&adj));
1416:         foundpart = PETSC_TRUE;
1417:       }
1418:       PetscCall(MatRestoreRowIJ(Ad, 0, PETSC_TRUE, isbaij, &na, &ia, &ja, &done));
1419:     }
1420:     PetscCall(MatPartitioningDestroy(&mpart));
1421:   }

1423:   PetscCall(PetscMalloc1(n, &is));
1424:   *outis = is;

1426:   if (!foundpart) {
1427:     /* Partitioning by contiguous chunks of rows */

1429:     PetscInt mbs   = (rend - rstart) / bs;
1430:     PetscInt start = rstart;
1431:     for (i = 0; i < n; i++) {
1432:       PetscInt count = (mbs / n + ((mbs % n) > i)) * bs;
1433:       PetscCall(ISCreateStride(PETSC_COMM_SELF, count, start, 1, &is[i]));
1434:       start += count;
1435:     }

1437:   } else {
1438:     /* Partitioning by adjacency of diagonal block  */

1440:     const PetscInt *numbering;
1441:     PetscInt       *count, nidx, *indices, *newidx, start = 0;
1442:     /* Get node count in each partition */
1443:     PetscCall(PetscMalloc1(n, &count));
1444:     PetscCall(ISPartitioningCount(ispart, n, count));
1445:     if (isbaij && bs > 1) { /* adjust for the block-aij case */
1446:       for (i = 0; i < n; i++) count[i] *= bs;
1447:     }
1448:     /* Build indices from node numbering */
1449:     PetscCall(ISGetLocalSize(isnumb, &nidx));
1450:     PetscCall(PetscMalloc1(nidx, &indices));
1451:     for (i = 0; i < nidx; i++) indices[i] = i; /* needs to be initialized */
1452:     PetscCall(ISGetIndices(isnumb, &numbering));
1453:     PetscCall(PetscSortIntWithPermutation(nidx, numbering, indices));
1454:     PetscCall(ISRestoreIndices(isnumb, &numbering));
1455:     if (isbaij && bs > 1) { /* adjust for the block-aij case */
1456:       PetscCall(PetscMalloc1(nidx * bs, &newidx));
1457:       for (i = 0; i < nidx; i++) {
1458:         for (j = 0; j < bs; j++) newidx[i * bs + j] = indices[i] * bs + j;
1459:       }
1460:       PetscCall(PetscFree(indices));
1461:       nidx *= bs;
1462:       indices = newidx;
1463:     }
1464:     /* Shift to get global indices */
1465:     for (i = 0; i < nidx; i++) indices[i] += rstart;

1467:     /* Build the index sets for each block */
1468:     for (i = 0; i < n; i++) {
1469:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, count[i], &indices[start], PETSC_COPY_VALUES, &is[i]));
1470:       PetscCall(ISSort(is[i]));
1471:       start += count[i];
1472:     }

1474:     PetscCall(PetscFree(count));
1475:     PetscCall(PetscFree(indices));
1476:     PetscCall(ISDestroy(&isnumb));
1477:     PetscCall(ISDestroy(&ispart));
1478:   }
1479:   PetscFunctionReturn(PETSC_SUCCESS);
1480: }

1482: /*@C
1483:   PCASMDestroySubdomains - Destroys the index sets created with
1484:   `PCASMCreateSubdomains()`. Should be called after setting subdomains with `PCASMSetLocalSubdomains()`.

1486:   Collective

1488:   Input Parameters:
1489: + n        - the number of index sets
1490: . is       - the array of index sets
1491: - is_local - the array of local index sets, can be `NULL`

1493:   Level: advanced

1495:   Developer Note:
1496:   The `IS` arguments should be a *[]

1498: .seealso: [](ch_ksp), `PCASM`, `PCASMCreateSubdomains()`, `PCASMSetLocalSubdomains()`
1499: @*/
1500: PetscErrorCode PCASMDestroySubdomains(PetscInt n, IS *is[], IS *is_local[])
1501: {
1502:   PetscInt i;

1504:   PetscFunctionBegin;
1505:   if (n <= 0) PetscFunctionReturn(PETSC_SUCCESS);
1506:   if (*is) {
1507:     PetscAssertPointer(*is, 2);
1508:     for (i = 0; i < n; i++) PetscCall(ISDestroy(&(*is)[i]));
1509:     PetscCall(PetscFree(*is));
1510:   }
1511:   if (is_local && *is_local) {
1512:     PetscAssertPointer(*is_local, 3);
1513:     for (i = 0; i < n; i++) PetscCall(ISDestroy(&(*is_local)[i]));
1514:     PetscCall(PetscFree(*is_local));
1515:   }
1516:   PetscFunctionReturn(PETSC_SUCCESS);
1517: }

1519: /*@C
1520:   PCASMCreateSubdomains2D - Creates the index sets for the overlapping Schwarz
1521:   preconditioner, `PCASM`, for a two-dimensional problem on a regular grid.

1523:   Not Collective

1525:   Input Parameters:
1526: + m       - the number of mesh points in the x direction
1527: . n       - the number of mesh points in the y direction
1528: . M       - the number of subdomains in the x direction
1529: . N       - the number of subdomains in the y direction
1530: . dof     - degrees of freedom per node
1531: - overlap - overlap in mesh lines

1533:   Output Parameters:
1534: + Nsub     - the number of subdomains created
1535: . is       - array of index sets defining overlapping (if overlap > 0) subdomains
1536: - is_local - array of index sets defining non-overlapping subdomains

1538:   Level: advanced

1540:   Note:
1541:   Presently `PCAMSCreateSubdomains2d()` is valid only for sequential
1542:   preconditioners.  More general related routines are
1543:   `PCASMSetTotalSubdomains()` and `PCASMSetLocalSubdomains()`.

1545: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMSetLocalSubdomains()`, `PCASMGetSubKSP()`,
1546:           `PCASMSetOverlap()`
1547: @*/
1548: PetscErrorCode PCASMCreateSubdomains2D(PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt dof, PetscInt overlap, PetscInt *Nsub, IS *is[], IS *is_local[])
1549: {
1550:   PetscInt i, j, height, width, ystart, xstart, yleft, yright, xleft, xright, loc_outer;
1551:   PetscInt nidx, *idx, loc, ii, jj, count;

1553:   PetscFunctionBegin;
1554:   PetscCheck(dof == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "dof must be 1");

1556:   *Nsub = N * M;
1557:   PetscCall(PetscMalloc1(*Nsub, is));
1558:   PetscCall(PetscMalloc1(*Nsub, is_local));
1559:   ystart    = 0;
1560:   loc_outer = 0;
1561:   for (i = 0; i < N; i++) {
1562:     height = n / N + ((n % N) > i); /* height of subdomain */
1563:     PetscCheck(height >= 2, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Too many N subdomains for mesh dimension n");
1564:     yleft = ystart - overlap;
1565:     if (yleft < 0) yleft = 0;
1566:     yright = ystart + height + overlap;
1567:     if (yright > n) yright = n;
1568:     xstart = 0;
1569:     for (j = 0; j < M; j++) {
1570:       width = m / M + ((m % M) > j); /* width of subdomain */
1571:       PetscCheck(width >= 2, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Too many M subdomains for mesh dimension m");
1572:       xleft = xstart - overlap;
1573:       if (xleft < 0) xleft = 0;
1574:       xright = xstart + width + overlap;
1575:       if (xright > m) xright = m;
1576:       nidx = (xright - xleft) * (yright - yleft);
1577:       PetscCall(PetscMalloc1(nidx, &idx));
1578:       loc = 0;
1579:       for (ii = yleft; ii < yright; ii++) {
1580:         count = m * ii + xleft;
1581:         for (jj = xleft; jj < xright; jj++) idx[loc++] = count++;
1582:       }
1583:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, nidx, idx, PETSC_COPY_VALUES, (*is) + loc_outer));
1584:       if (overlap == 0) {
1585:         PetscCall(PetscObjectReference((PetscObject)(*is)[loc_outer]));

1587:         (*is_local)[loc_outer] = (*is)[loc_outer];
1588:       } else {
1589:         for (loc = 0, ii = ystart; ii < ystart + height; ii++) {
1590:           for (jj = xstart; jj < xstart + width; jj++) idx[loc++] = m * ii + jj;
1591:         }
1592:         PetscCall(ISCreateGeneral(PETSC_COMM_SELF, loc, idx, PETSC_COPY_VALUES, *is_local + loc_outer));
1593:       }
1594:       PetscCall(PetscFree(idx));
1595:       xstart += width;
1596:       loc_outer++;
1597:     }
1598:     ystart += height;
1599:   }
1600:   for (i = 0; i < *Nsub; i++) PetscCall(ISSort((*is)[i]));
1601:   PetscFunctionReturn(PETSC_SUCCESS);
1602: }

1604: /*@C
1605:   PCASMGetLocalSubdomains - Gets the local subdomains (for this processor
1606:   only) for the additive Schwarz preconditioner, `PCASM`.

1608:   Not Collective

1610:   Input Parameter:
1611: . pc - the preconditioner context

1613:   Output Parameters:
1614: + n        - if requested, the number of subdomains for this processor (default value = 1)
1615: . is       - if requested, the index sets that define the subdomains for this processor
1616: - is_local - if requested, the index sets that define the local part of the subdomains for this processor (can be `NULL`)

1618:   Level: advanced

1620:   Note:
1621:   The `IS` numbering is in the parallel, global numbering of the vector.

1623: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMSetOverlap()`, `PCASMGetSubKSP()`,
1624:           `PCASMCreateSubdomains2D()`, `PCASMSetLocalSubdomains()`, `PCASMGetLocalSubmatrices()`
1625: @*/
1626: PetscErrorCode PCASMGetLocalSubdomains(PC pc, PetscInt *n, IS *is[], IS *is_local[])
1627: {
1628:   PC_ASM   *osm = (PC_ASM *)pc->data;
1629:   PetscBool match;

1631:   PetscFunctionBegin;
1633:   if (n) PetscAssertPointer(n, 2);
1634:   if (is) PetscAssertPointer(is, 3);
1635:   if (is_local) PetscAssertPointer(is_local, 4);
1636:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCASM, &match));
1637:   PetscCheck(match, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "PC is not a PCASM");
1638:   if (n) *n = osm->n_local_true;
1639:   if (is) *is = osm->is;
1640:   if (is_local) *is_local = osm->is_local;
1641:   PetscFunctionReturn(PETSC_SUCCESS);
1642: }

1644: /*@C
1645:   PCASMGetLocalSubmatrices - Gets the local submatrices (for this processor
1646:   only) for the additive Schwarz preconditioner, `PCASM`.

1648:   Not Collective

1650:   Input Parameter:
1651: . pc - the preconditioner context

1653:   Output Parameters:
1654: + n   - if requested, the number of matrices for this processor (default value = 1)
1655: - mat - if requested, the matrices

1657:   Level: advanced

1659:   Notes:
1660:   Call after `PCSetUp()` (or `KSPSetUp()`) but before `PCApply()` and before `PCSetUpOnBlocks()`)

1662:   Usually one would use `PCSetModifySubMatrices()` to change the submatrices in building the preconditioner.

1664: .seealso: [](ch_ksp), `PCASM`, `PCASMSetTotalSubdomains()`, `PCASMSetOverlap()`, `PCASMGetSubKSP()`,
1665:           `PCASMCreateSubdomains2D()`, `PCASMSetLocalSubdomains()`, `PCASMGetLocalSubdomains()`, `PCSetModifySubMatrices()`
1666: @*/
1667: PetscErrorCode PCASMGetLocalSubmatrices(PC pc, PetscInt *n, Mat *mat[])
1668: {
1669:   PC_ASM   *osm;
1670:   PetscBool match;

1672:   PetscFunctionBegin;
1674:   if (n) PetscAssertPointer(n, 2);
1675:   if (mat) PetscAssertPointer(mat, 3);
1676:   PetscCheck(pc->setupcalled, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Must call after KSPSetUp() or PCSetUp().");
1677:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCASM, &match));
1678:   if (!match) {
1679:     if (n) *n = 0;
1680:     if (mat) *mat = NULL;
1681:   } else {
1682:     osm = (PC_ASM *)pc->data;
1683:     if (n) *n = osm->n_local_true;
1684:     if (mat) *mat = osm->pmat;
1685:   }
1686:   PetscFunctionReturn(PETSC_SUCCESS);
1687: }

1689: /*@
1690:   PCASMSetDMSubdomains - Indicates whether to use `DMCreateDomainDecomposition()` to define the subdomains, whenever possible.

1692:   Logically Collective

1694:   Input Parameters:
1695: + pc  - the preconditioner
1696: - flg - boolean indicating whether to use subdomains defined by the `DM`

1698:   Options Database Key:
1699: . -pc_asm_dm_subdomains <bool> - use subdomains defined by the `DM` with `DMCreateDomainDecomposition()`

1701:   Level: intermediate

1703:   Note:
1704:   `PCASMSetTotalSubdomains()` and `PCASMSetOverlap()` take precedence over `PCASMSetDMSubdomains()`,
1705:   so setting either of the first two effectively turns the latter off.

1707:   Developer Note:
1708:   This should be `PCASMSetUseDMSubdomains()`, similarly for the options database key

1710: .seealso: [](ch_ksp), `PCASM`, `PCASMGetDMSubdomains()`, `PCASMSetTotalSubdomains()`, `PCASMSetOverlap()`
1711:           `PCASMCreateSubdomains2D()`, `PCASMSetLocalSubdomains()`, `PCASMGetLocalSubdomains()`
1712: @*/
1713: PetscErrorCode PCASMSetDMSubdomains(PC pc, PetscBool flg)
1714: {
1715:   PC_ASM   *osm = (PC_ASM *)pc->data;
1716:   PetscBool match;

1718:   PetscFunctionBegin;
1721:   PetscCheck(!pc->setupcalled, ((PetscObject)pc)->comm, PETSC_ERR_ARG_WRONGSTATE, "Not for a setup PC.");
1722:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCASM, &match));
1723:   if (match) osm->dm_subdomains = flg;
1724:   PetscFunctionReturn(PETSC_SUCCESS);
1725: }

1727: /*@
1728:   PCASMGetDMSubdomains - Returns flag indicating whether to use `DMCreateDomainDecomposition()` to define the subdomains, whenever possible.

1730:   Not Collective

1732:   Input Parameter:
1733: . pc - the preconditioner

1735:   Output Parameter:
1736: . flg - boolean indicating whether to use subdomains defined by the `DM`

1738:   Level: intermediate

1740:   Developer Note:
1741:   This should be `PCASMSetUseDMSubdomains()`

1743: .seealso: [](ch_ksp), `PCASM`, `PCASMSetDMSubdomains()`, `PCASMSetTotalSubdomains()`, `PCASMSetOverlap()`
1744:           `PCASMCreateSubdomains2D()`, `PCASMSetLocalSubdomains()`, `PCASMGetLocalSubdomains()`
1745: @*/
1746: PetscErrorCode PCASMGetDMSubdomains(PC pc, PetscBool *flg)
1747: {
1748:   PC_ASM   *osm = (PC_ASM *)pc->data;
1749:   PetscBool match;

1751:   PetscFunctionBegin;
1753:   PetscAssertPointer(flg, 2);
1754:   PetscCall(PetscObjectTypeCompare((PetscObject)pc, PCASM, &match));
1755:   if (match) *flg = osm->dm_subdomains;
1756:   else *flg = PETSC_FALSE;
1757:   PetscFunctionReturn(PETSC_SUCCESS);
1758: }

1760: /*@
1761:   PCASMGetSubMatType - Gets the matrix type used for `PCASM` subsolves, as a string.

1763:   Not Collective

1765:   Input Parameter:
1766: . pc - the `PC`

1768:   Output Parameter:
1769: . sub_mat_type - name of matrix type

1771:   Level: advanced

1773: .seealso: [](ch_ksp), `PCASM`, `PCASMSetSubMatType()`, `PCSetType()`, `VecSetType()`, `MatType`, `Mat`
1774: @*/
1775: PetscErrorCode PCASMGetSubMatType(PC pc, MatType *sub_mat_type)
1776: {
1777:   PetscFunctionBegin;
1779:   PetscTryMethod(pc, "PCASMGetSubMatType_C", (PC, MatType *), (pc, sub_mat_type));
1780:   PetscFunctionReturn(PETSC_SUCCESS);
1781: }

1783: /*@
1784:   PCASMSetSubMatType - Set the type of matrix used for `PCASM` subsolves

1786:   Collective

1788:   Input Parameters:
1789: + pc           - the `PC` object
1790: - sub_mat_type - the `MatType`

1792:   Options Database Key:
1793: . -pc_asm_sub_mat_type  <sub_mat_type> - Sets the matrix type used for subsolves, for example, seqaijviennacl.
1794:    If you specify a base name like aijviennacl, the corresponding sequential type is assumed.

1796:   Note:
1797:   See `MatType` for available types

1799:   Level: advanced

1801: .seealso: [](ch_ksp), `PCASM`, `PCASMGetSubMatType()`, `PCSetType()`, `VecSetType()`, `MatType`, `Mat`
1802: @*/
1803: PetscErrorCode PCASMSetSubMatType(PC pc, MatType sub_mat_type)
1804: {
1805:   PetscFunctionBegin;
1807:   PetscTryMethod(pc, "PCASMSetSubMatType_C", (PC, MatType), (pc, sub_mat_type));
1808:   PetscFunctionReturn(PETSC_SUCCESS);
1809: }