Actual source code: mpiaij.c

  1: #include <../src/mat/impls/aij/mpi/mpiaij.h>
  2: #include <petsc/private/vecimpl.h>
  3: #include <petsc/private/sfimpl.h>
  4: #include <petsc/private/isimpl.h>
  5: #include <petscblaslapack.h>
  6: #include <petscsf.h>
  7: #include <petsc/private/hashmapi.h>

  9: PetscErrorCode MatDestroy_MPIAIJ(Mat mat)
 10: {
 11:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;

 13:   PetscFunctionBegin;
 14:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT, mat->rmap->N, mat->cmap->N));
 15:   PetscCall(MatStashDestroy_Private(&mat->stash));
 16:   PetscCall(VecDestroy(&aij->diag));
 17:   PetscCall(MatDestroy(&aij->A));
 18:   PetscCall(MatDestroy(&aij->B));
 19: #if defined(PETSC_USE_CTABLE)
 20:   PetscCall(PetscHMapIDestroy(&aij->colmap));
 21: #else
 22:   PetscCall(PetscFree(aij->colmap));
 23: #endif
 24:   PetscCall(PetscFree(aij->garray));
 25:   PetscCall(VecDestroy(&aij->lvec));
 26:   PetscCall(VecScatterDestroy(&aij->Mvctx));
 27:   PetscCall(PetscFree2(aij->rowvalues, aij->rowindices));
 28:   PetscCall(PetscFree(aij->ld));

 30:   PetscCall(PetscFree(mat->data));

 32:   /* may be created by MatCreateMPIAIJSumSeqAIJSymbolic */
 33:   PetscCall(PetscObjectCompose((PetscObject)mat, "MatMergeSeqsToMPI", NULL));

 35:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
 36:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatStoreValues_C", NULL));
 37:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatRetrieveValues_C", NULL));
 38:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatIsTranspose_C", NULL));
 39:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIAIJSetPreallocation_C", NULL));
 40:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatResetPreallocation_C", NULL));
 41:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIAIJSetPreallocationCSR_C", NULL));
 42:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDiagonalScaleLocal_C", NULL));
 43:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpibaij_C", NULL));
 44:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpisbaij_C", NULL));
 45: #if defined(PETSC_HAVE_CUDA)
 46:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijcusparse_C", NULL));
 47: #endif
 48: #if defined(PETSC_HAVE_HIP)
 49:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijhipsparse_C", NULL));
 50: #endif
 51: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
 52:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijkokkos_C", NULL));
 53: #endif
 54:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpidense_C", NULL));
 55: #if defined(PETSC_HAVE_ELEMENTAL)
 56:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_elemental_C", NULL));
 57: #endif
 58: #if defined(PETSC_HAVE_SCALAPACK)
 59:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_scalapack_C", NULL));
 60: #endif
 61: #if defined(PETSC_HAVE_HYPRE)
 62:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_hypre_C", NULL));
 63:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_transpose_mpiaij_mpiaij_C", NULL));
 64: #endif
 65:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_is_C", NULL));
 66:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_is_mpiaij_C", NULL));
 67:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_mpiaij_mpiaij_C", NULL));
 68:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIAIJSetUseScalableIncreaseOverlap_C", NULL));
 69:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijperm_C", NULL));
 70:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijsell_C", NULL));
 71: #if defined(PETSC_HAVE_MKL_SPARSE)
 72:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijmkl_C", NULL));
 73: #endif
 74:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpiaijcrl_C", NULL));
 75:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_is_C", NULL));
 76:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpiaij_mpisell_C", NULL));
 77:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSetPreallocationCOO_C", NULL));
 78:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSetValuesCOO_C", NULL));
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: /* defines MatSetValues_MPI_Hash(), MatAssemblyBegin_MPI_Hash(), and  MatAssemblyEnd_MPI_Hash() */
 83: #define TYPE AIJ
 84: #define TYPE_AIJ
 85: #include "../src/mat/impls/aij/mpi/mpihashmat.h"
 86: #undef TYPE
 87: #undef TYPE_AIJ

 89: static PetscErrorCode MatGetRowIJ_MPIAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
 90: {
 91:   Mat B;

 93:   PetscFunctionBegin;
 94:   PetscCall(MatMPIAIJGetLocalMat(A, MAT_INITIAL_MATRIX, &B));
 95:   PetscCall(PetscObjectCompose((PetscObject)A, "MatGetRowIJ_MPIAIJ", (PetscObject)B));
 96:   PetscCall(MatGetRowIJ(B, oshift, symmetric, inodecompressed, m, ia, ja, done));
 97:   PetscCall(MatDestroy(&B));
 98:   PetscFunctionReturn(PETSC_SUCCESS);
 99: }

101: static PetscErrorCode MatRestoreRowIJ_MPIAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
102: {
103:   Mat B;

105:   PetscFunctionBegin;
106:   PetscCall(PetscObjectQuery((PetscObject)A, "MatGetRowIJ_MPIAIJ", (PetscObject *)&B));
107:   PetscCall(MatRestoreRowIJ(B, oshift, symmetric, inodecompressed, m, ia, ja, done));
108:   PetscCall(PetscObjectCompose((PetscObject)A, "MatGetRowIJ_MPIAIJ", NULL));
109:   PetscFunctionReturn(PETSC_SUCCESS);
110: }

112: /*MC
113:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

115:    This matrix type is identical to` MATSEQAIJ` when constructed with a single process communicator,
116:    and `MATMPIAIJ` otherwise.  As a result, for single process communicators,
117:   `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
118:   for communicators controlling multiple processes.  It is recommended that you call both of
119:   the above preallocation routines for simplicity.

121:    Options Database Key:
122: . -mat_type aij - sets the matrix type to `MATAIJ` during a call to `MatSetFromOptions()`

124:   Developer Note:
125:   Level: beginner

127:     Subclasses include `MATAIJCUSPARSE`, `MATAIJPERM`, `MATAIJSELL`, `MATAIJMKL`, `MATAIJCRL`, `MATAIJKOKKOS`,and also automatically switches over to use inodes when
128:    enough exist.

130: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MATSEQAIJ`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATMPIAIJ`
131: M*/

133: /*MC
134:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

136:    This matrix type is identical to `MATSEQAIJCRL` when constructed with a single process communicator,
137:    and `MATMPIAIJCRL` otherwise.  As a result, for single process communicators,
138:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
139:   for communicators controlling multiple processes.  It is recommended that you call both of
140:   the above preallocation routines for simplicity.

142:    Options Database Key:
143: . -mat_type aijcrl - sets the matrix type to `MATMPIAIJCRL` during a call to `MatSetFromOptions()`

145:   Level: beginner

147: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`
148: M*/

150: static PetscErrorCode MatBindToCPU_MPIAIJ(Mat A, PetscBool flg)
151: {
152:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

154:   PetscFunctionBegin;
155: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP) || defined(PETSC_HAVE_VIENNACL)
156:   A->boundtocpu = flg;
157: #endif
158:   if (a->A) PetscCall(MatBindToCPU(a->A, flg));
159:   if (a->B) PetscCall(MatBindToCPU(a->B, flg));

161:   /* In addition to binding the diagonal and off-diagonal matrices, bind the local vectors used for matrix-vector products.
162:    * This maybe seems a little odd for a MatBindToCPU() call to do, but it makes no sense for the binding of these vectors
163:    * to differ from the parent matrix. */
164:   if (a->lvec) PetscCall(VecBindToCPU(a->lvec, flg));
165:   if (a->diag) PetscCall(VecBindToCPU(a->diag, flg));
166:   PetscFunctionReturn(PETSC_SUCCESS);
167: }

169: static PetscErrorCode MatSetBlockSizes_MPIAIJ(Mat M, PetscInt rbs, PetscInt cbs)
170: {
171:   Mat_MPIAIJ *mat = (Mat_MPIAIJ *)M->data;

173:   PetscFunctionBegin;
174:   if (mat->A) {
175:     PetscCall(MatSetBlockSizes(mat->A, rbs, cbs));
176:     PetscCall(MatSetBlockSizes(mat->B, rbs, 1));
177:   }
178:   PetscFunctionReturn(PETSC_SUCCESS);
179: }

181: static PetscErrorCode MatFindNonzeroRows_MPIAIJ(Mat M, IS *keptrows)
182: {
183:   Mat_MPIAIJ      *mat = (Mat_MPIAIJ *)M->data;
184:   Mat_SeqAIJ      *a   = (Mat_SeqAIJ *)mat->A->data;
185:   Mat_SeqAIJ      *b   = (Mat_SeqAIJ *)mat->B->data;
186:   const PetscInt  *ia, *ib;
187:   const MatScalar *aa, *bb, *aav, *bav;
188:   PetscInt         na, nb, i, j, *rows, cnt = 0, n0rows;
189:   PetscInt         m = M->rmap->n, rstart = M->rmap->rstart;

191:   PetscFunctionBegin;
192:   *keptrows = NULL;

194:   ia = a->i;
195:   ib = b->i;
196:   PetscCall(MatSeqAIJGetArrayRead(mat->A, &aav));
197:   PetscCall(MatSeqAIJGetArrayRead(mat->B, &bav));
198:   for (i = 0; i < m; i++) {
199:     na = ia[i + 1] - ia[i];
200:     nb = ib[i + 1] - ib[i];
201:     if (!na && !nb) {
202:       cnt++;
203:       goto ok1;
204:     }
205:     aa = aav + ia[i];
206:     for (j = 0; j < na; j++) {
207:       if (aa[j] != 0.0) goto ok1;
208:     }
209:     bb = PetscSafePointerPlusOffset(bav, ib[i]);
210:     for (j = 0; j < nb; j++) {
211:       if (bb[j] != 0.0) goto ok1;
212:     }
213:     cnt++;
214:   ok1:;
215:   }
216:   PetscCallMPI(MPIU_Allreduce(&cnt, &n0rows, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)M)));
217:   if (!n0rows) {
218:     PetscCall(MatSeqAIJRestoreArrayRead(mat->A, &aav));
219:     PetscCall(MatSeqAIJRestoreArrayRead(mat->B, &bav));
220:     PetscFunctionReturn(PETSC_SUCCESS);
221:   }
222:   PetscCall(PetscMalloc1(M->rmap->n - cnt, &rows));
223:   cnt = 0;
224:   for (i = 0; i < m; i++) {
225:     na = ia[i + 1] - ia[i];
226:     nb = ib[i + 1] - ib[i];
227:     if (!na && !nb) continue;
228:     aa = aav + ia[i];
229:     for (j = 0; j < na; j++) {
230:       if (aa[j] != 0.0) {
231:         rows[cnt++] = rstart + i;
232:         goto ok2;
233:       }
234:     }
235:     bb = PetscSafePointerPlusOffset(bav, ib[i]);
236:     for (j = 0; j < nb; j++) {
237:       if (bb[j] != 0.0) {
238:         rows[cnt++] = rstart + i;
239:         goto ok2;
240:       }
241:     }
242:   ok2:;
243:   }
244:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)M), cnt, rows, PETSC_OWN_POINTER, keptrows));
245:   PetscCall(MatSeqAIJRestoreArrayRead(mat->A, &aav));
246:   PetscCall(MatSeqAIJRestoreArrayRead(mat->B, &bav));
247:   PetscFunctionReturn(PETSC_SUCCESS);
248: }

250: static PetscErrorCode MatDiagonalSet_MPIAIJ(Mat Y, Vec D, InsertMode is)
251: {
252:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)Y->data;
253:   PetscBool   cong;

255:   PetscFunctionBegin;
256:   PetscCall(MatHasCongruentLayouts(Y, &cong));
257:   if (Y->assembled && cong) {
258:     PetscCall(MatDiagonalSet(aij->A, D, is));
259:   } else {
260:     PetscCall(MatDiagonalSet_Default(Y, D, is));
261:   }
262:   PetscFunctionReturn(PETSC_SUCCESS);
263: }

265: static PetscErrorCode MatFindZeroDiagonals_MPIAIJ(Mat M, IS *zrows)
266: {
267:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)M->data;
268:   PetscInt    i, rstart, nrows, *rows;

270:   PetscFunctionBegin;
271:   *zrows = NULL;
272:   PetscCall(MatFindZeroDiagonals_SeqAIJ_Private(aij->A, &nrows, &rows));
273:   PetscCall(MatGetOwnershipRange(M, &rstart, NULL));
274:   for (i = 0; i < nrows; i++) rows[i] += rstart;
275:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)M), nrows, rows, PETSC_OWN_POINTER, zrows));
276:   PetscFunctionReturn(PETSC_SUCCESS);
277: }

279: static PetscErrorCode MatGetColumnReductions_MPIAIJ(Mat A, PetscInt type, PetscReal *reductions)
280: {
281:   Mat_MPIAIJ        *aij = (Mat_MPIAIJ *)A->data;
282:   PetscInt           i, m, n, *garray = aij->garray;
283:   Mat_SeqAIJ        *a_aij = (Mat_SeqAIJ *)aij->A->data;
284:   Mat_SeqAIJ        *b_aij = (Mat_SeqAIJ *)aij->B->data;
285:   PetscReal         *work;
286:   const PetscScalar *dummy;
287:   PetscMPIInt        in;

289:   PetscFunctionBegin;
290:   PetscCall(MatGetSize(A, &m, &n));
291:   PetscCall(PetscCalloc1(n, &work));
292:   PetscCall(MatSeqAIJGetArrayRead(aij->A, &dummy));
293:   PetscCall(MatSeqAIJRestoreArrayRead(aij->A, &dummy));
294:   PetscCall(MatSeqAIJGetArrayRead(aij->B, &dummy));
295:   PetscCall(MatSeqAIJRestoreArrayRead(aij->B, &dummy));
296:   if (type == NORM_2) {
297:     for (i = 0; i < a_aij->i[aij->A->rmap->n]; i++) work[A->cmap->rstart + a_aij->j[i]] += PetscAbsScalar(a_aij->a[i] * a_aij->a[i]);
298:     for (i = 0; i < b_aij->i[aij->B->rmap->n]; i++) work[garray[b_aij->j[i]]] += PetscAbsScalar(b_aij->a[i] * b_aij->a[i]);
299:   } else if (type == NORM_1) {
300:     for (i = 0; i < a_aij->i[aij->A->rmap->n]; i++) work[A->cmap->rstart + a_aij->j[i]] += PetscAbsScalar(a_aij->a[i]);
301:     for (i = 0; i < b_aij->i[aij->B->rmap->n]; i++) work[garray[b_aij->j[i]]] += PetscAbsScalar(b_aij->a[i]);
302:   } else if (type == NORM_INFINITY) {
303:     for (i = 0; i < a_aij->i[aij->A->rmap->n]; i++) work[A->cmap->rstart + a_aij->j[i]] = PetscMax(PetscAbsScalar(a_aij->a[i]), work[A->cmap->rstart + a_aij->j[i]]);
304:     for (i = 0; i < b_aij->i[aij->B->rmap->n]; i++) work[garray[b_aij->j[i]]] = PetscMax(PetscAbsScalar(b_aij->a[i]), work[garray[b_aij->j[i]]]);
305:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
306:     for (i = 0; i < a_aij->i[aij->A->rmap->n]; i++) work[A->cmap->rstart + a_aij->j[i]] += PetscRealPart(a_aij->a[i]);
307:     for (i = 0; i < b_aij->i[aij->B->rmap->n]; i++) work[garray[b_aij->j[i]]] += PetscRealPart(b_aij->a[i]);
308:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
309:     for (i = 0; i < a_aij->i[aij->A->rmap->n]; i++) work[A->cmap->rstart + a_aij->j[i]] += PetscImaginaryPart(a_aij->a[i]);
310:     for (i = 0; i < b_aij->i[aij->B->rmap->n]; i++) work[garray[b_aij->j[i]]] += PetscImaginaryPart(b_aij->a[i]);
311:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
312:   PetscCall(PetscMPIIntCast(n, &in));
313:   if (type == NORM_INFINITY) {
314:     PetscCallMPI(MPIU_Allreduce(work, reductions, in, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)A)));
315:   } else {
316:     PetscCallMPI(MPIU_Allreduce(work, reductions, in, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)A)));
317:   }
318:   PetscCall(PetscFree(work));
319:   if (type == NORM_2) {
320:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
321:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
322:     for (i = 0; i < n; i++) reductions[i] /= m;
323:   }
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: static PetscErrorCode MatFindOffBlockDiagonalEntries_MPIAIJ(Mat A, IS *is)
328: {
329:   Mat_MPIAIJ     *a = (Mat_MPIAIJ *)A->data;
330:   IS              sis, gis;
331:   const PetscInt *isis, *igis;
332:   PetscInt        n, *iis, nsis, ngis, rstart, i;

334:   PetscFunctionBegin;
335:   PetscCall(MatFindOffBlockDiagonalEntries(a->A, &sis));
336:   PetscCall(MatFindNonzeroRows(a->B, &gis));
337:   PetscCall(ISGetSize(gis, &ngis));
338:   PetscCall(ISGetSize(sis, &nsis));
339:   PetscCall(ISGetIndices(sis, &isis));
340:   PetscCall(ISGetIndices(gis, &igis));

342:   PetscCall(PetscMalloc1(ngis + nsis, &iis));
343:   PetscCall(PetscArraycpy(iis, igis, ngis));
344:   PetscCall(PetscArraycpy(iis + ngis, isis, nsis));
345:   n = ngis + nsis;
346:   PetscCall(PetscSortRemoveDupsInt(&n, iis));
347:   PetscCall(MatGetOwnershipRange(A, &rstart, NULL));
348:   for (i = 0; i < n; i++) iis[i] += rstart;
349:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), n, iis, PETSC_OWN_POINTER, is));

351:   PetscCall(ISRestoreIndices(sis, &isis));
352:   PetscCall(ISRestoreIndices(gis, &igis));
353:   PetscCall(ISDestroy(&sis));
354:   PetscCall(ISDestroy(&gis));
355:   PetscFunctionReturn(PETSC_SUCCESS);
356: }

358: /*
359:   Local utility routine that creates a mapping from the global column
360: number to the local number in the off-diagonal part of the local
361: storage of the matrix.  When PETSC_USE_CTABLE is used this is scalable at
362: a slightly higher hash table cost; without it it is not scalable (each processor
363: has an order N integer array but is fast to access.
364: */
365: PetscErrorCode MatCreateColmap_MPIAIJ_Private(Mat mat)
366: {
367:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;
368:   PetscInt    n   = aij->B->cmap->n, i;

370:   PetscFunctionBegin;
371:   PetscCheck(!n || aij->garray, PETSC_COMM_SELF, PETSC_ERR_PLIB, "MPIAIJ Matrix was assembled but is missing garray");
372: #if defined(PETSC_USE_CTABLE)
373:   PetscCall(PetscHMapICreateWithSize(n, &aij->colmap));
374:   for (i = 0; i < n; i++) PetscCall(PetscHMapISet(aij->colmap, aij->garray[i] + 1, i + 1));
375: #else
376:   PetscCall(PetscCalloc1(mat->cmap->N + 1, &aij->colmap));
377:   for (i = 0; i < n; i++) aij->colmap[aij->garray[i]] = i + 1;
378: #endif
379:   PetscFunctionReturn(PETSC_SUCCESS);
380: }

382: #define MatSetValues_SeqAIJ_A_Private(row, col, value, addv, orow, ocol) \
383:   do { \
384:     if (col <= lastcol1) low1 = 0; \
385:     else high1 = nrow1; \
386:     lastcol1 = col; \
387:     while (high1 - low1 > 5) { \
388:       t = (low1 + high1) / 2; \
389:       if (rp1[t] > col) high1 = t; \
390:       else low1 = t; \
391:     } \
392:     for (_i = low1; _i < high1; _i++) { \
393:       if (rp1[_i] > col) break; \
394:       if (rp1[_i] == col) { \
395:         if (addv == ADD_VALUES) { \
396:           ap1[_i] += value; \
397:           /* Not sure LogFlops will slow dow the code or not */ \
398:           (void)PetscLogFlops(1.0); \
399:         } else ap1[_i] = value; \
400:         goto a_noinsert; \
401:       } \
402:     } \
403:     if (value == 0.0 && ignorezeroentries && row != col) { \
404:       low1  = 0; \
405:       high1 = nrow1; \
406:       goto a_noinsert; \
407:     } \
408:     if (nonew == 1) { \
409:       low1  = 0; \
410:       high1 = nrow1; \
411:       goto a_noinsert; \
412:     } \
413:     PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
414:     MatSeqXAIJReallocateAIJ(A, am, 1, nrow1, row, col, rmax1, aa, ai, aj, rp1, ap1, aimax, nonew, MatScalar); \
415:     N = nrow1++ - 1; \
416:     a->nz++; \
417:     high1++; \
418:     /* shift up all the later entries in this row */ \
419:     PetscCall(PetscArraymove(rp1 + _i + 1, rp1 + _i, N - _i + 1)); \
420:     PetscCall(PetscArraymove(ap1 + _i + 1, ap1 + _i, N - _i + 1)); \
421:     rp1[_i] = col; \
422:     ap1[_i] = value; \
423:   a_noinsert:; \
424:     ailen[row] = nrow1; \
425:   } while (0)

427: #define MatSetValues_SeqAIJ_B_Private(row, col, value, addv, orow, ocol) \
428:   do { \
429:     if (col <= lastcol2) low2 = 0; \
430:     else high2 = nrow2; \
431:     lastcol2 = col; \
432:     while (high2 - low2 > 5) { \
433:       t = (low2 + high2) / 2; \
434:       if (rp2[t] > col) high2 = t; \
435:       else low2 = t; \
436:     } \
437:     for (_i = low2; _i < high2; _i++) { \
438:       if (rp2[_i] > col) break; \
439:       if (rp2[_i] == col) { \
440:         if (addv == ADD_VALUES) { \
441:           ap2[_i] += value; \
442:           (void)PetscLogFlops(1.0); \
443:         } else ap2[_i] = value; \
444:         goto b_noinsert; \
445:       } \
446:     } \
447:     if (value == 0.0 && ignorezeroentries) { \
448:       low2  = 0; \
449:       high2 = nrow2; \
450:       goto b_noinsert; \
451:     } \
452:     if (nonew == 1) { \
453:       low2  = 0; \
454:       high2 = nrow2; \
455:       goto b_noinsert; \
456:     } \
457:     PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
458:     MatSeqXAIJReallocateAIJ(B, bm, 1, nrow2, row, col, rmax2, ba, bi, bj, rp2, ap2, bimax, nonew, MatScalar); \
459:     N = nrow2++ - 1; \
460:     b->nz++; \
461:     high2++; \
462:     /* shift up all the later entries in this row */ \
463:     PetscCall(PetscArraymove(rp2 + _i + 1, rp2 + _i, N - _i + 1)); \
464:     PetscCall(PetscArraymove(ap2 + _i + 1, ap2 + _i, N - _i + 1)); \
465:     rp2[_i] = col; \
466:     ap2[_i] = value; \
467:   b_noinsert:; \
468:     bilen[row] = nrow2; \
469:   } while (0)

471: static PetscErrorCode MatSetValuesRow_MPIAIJ(Mat A, PetscInt row, const PetscScalar v[])
472: {
473:   Mat_MPIAIJ  *mat = (Mat_MPIAIJ *)A->data;
474:   Mat_SeqAIJ  *a = (Mat_SeqAIJ *)mat->A->data, *b = (Mat_SeqAIJ *)mat->B->data;
475:   PetscInt     l, *garray                         = mat->garray, diag;
476:   PetscScalar *aa, *ba;

478:   PetscFunctionBegin;
479:   /* code only works for square matrices A */

481:   /* find size of row to the left of the diagonal part */
482:   PetscCall(MatGetOwnershipRange(A, &diag, NULL));
483:   row = row - diag;
484:   for (l = 0; l < b->i[row + 1] - b->i[row]; l++) {
485:     if (garray[b->j[b->i[row] + l]] > diag) break;
486:   }
487:   if (l) {
488:     PetscCall(MatSeqAIJGetArray(mat->B, &ba));
489:     PetscCall(PetscArraycpy(ba + b->i[row], v, l));
490:     PetscCall(MatSeqAIJRestoreArray(mat->B, &ba));
491:   }

493:   /* diagonal part */
494:   if (a->i[row + 1] - a->i[row]) {
495:     PetscCall(MatSeqAIJGetArray(mat->A, &aa));
496:     PetscCall(PetscArraycpy(aa + a->i[row], v + l, a->i[row + 1] - a->i[row]));
497:     PetscCall(MatSeqAIJRestoreArray(mat->A, &aa));
498:   }

500:   /* right of diagonal part */
501:   if (b->i[row + 1] - b->i[row] - l) {
502:     PetscCall(MatSeqAIJGetArray(mat->B, &ba));
503:     PetscCall(PetscArraycpy(ba + b->i[row] + l, v + l + a->i[row + 1] - a->i[row], b->i[row + 1] - b->i[row] - l));
504:     PetscCall(MatSeqAIJRestoreArray(mat->B, &ba));
505:   }
506:   PetscFunctionReturn(PETSC_SUCCESS);
507: }

509: PetscErrorCode MatSetValues_MPIAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
510: {
511:   Mat_MPIAIJ *aij   = (Mat_MPIAIJ *)mat->data;
512:   PetscScalar value = 0.0;
513:   PetscInt    i, j, rstart = mat->rmap->rstart, rend = mat->rmap->rend;
514:   PetscInt    cstart = mat->cmap->rstart, cend = mat->cmap->rend, row, col;
515:   PetscBool   roworiented = aij->roworiented;

517:   /* Some Variables required in the macro */
518:   Mat         A     = aij->A;
519:   Mat_SeqAIJ *a     = (Mat_SeqAIJ *)A->data;
520:   PetscInt   *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
521:   PetscBool   ignorezeroentries = a->ignorezeroentries;
522:   Mat         B                 = aij->B;
523:   Mat_SeqAIJ *b                 = (Mat_SeqAIJ *)B->data;
524:   PetscInt   *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j, bm = aij->B->rmap->n, am = aij->A->rmap->n;
525:   MatScalar  *aa, *ba;
526:   PetscInt   *rp1, *rp2, ii, nrow1, nrow2, _i, rmax1, rmax2, N, low1, high1, low2, high2, t, lastcol1, lastcol2;
527:   PetscInt    nonew;
528:   MatScalar  *ap1, *ap2;

530:   PetscFunctionBegin;
531:   PetscCall(MatSeqAIJGetArray(A, &aa));
532:   PetscCall(MatSeqAIJGetArray(B, &ba));
533:   for (i = 0; i < m; i++) {
534:     if (im[i] < 0) continue;
535:     PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
536:     if (im[i] >= rstart && im[i] < rend) {
537:       row      = im[i] - rstart;
538:       lastcol1 = -1;
539:       rp1      = PetscSafePointerPlusOffset(aj, ai[row]);
540:       ap1      = PetscSafePointerPlusOffset(aa, ai[row]);
541:       rmax1    = aimax[row];
542:       nrow1    = ailen[row];
543:       low1     = 0;
544:       high1    = nrow1;
545:       lastcol2 = -1;
546:       rp2      = PetscSafePointerPlusOffset(bj, bi[row]);
547:       ap2      = PetscSafePointerPlusOffset(ba, bi[row]);
548:       rmax2    = bimax[row];
549:       nrow2    = bilen[row];
550:       low2     = 0;
551:       high2    = nrow2;

553:       for (j = 0; j < n; j++) {
554:         if (v) value = roworiented ? v[i * n + j] : v[i + j * m];
555:         if (ignorezeroentries && value == 0.0 && (addv == ADD_VALUES) && im[i] != in[j]) continue;
556:         if (in[j] >= cstart && in[j] < cend) {
557:           col   = in[j] - cstart;
558:           nonew = a->nonew;
559:           MatSetValues_SeqAIJ_A_Private(row, col, value, addv, im[i], in[j]);
560:         } else if (in[j] < 0) {
561:           continue;
562:         } else {
563:           PetscCheck(in[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
564:           if (mat->was_assembled) {
565:             if (!aij->colmap) PetscCall(MatCreateColmap_MPIAIJ_Private(mat));
566: #if defined(PETSC_USE_CTABLE)
567:             PetscCall(PetscHMapIGetWithDefault(aij->colmap, in[j] + 1, 0, &col)); /* map global col ids to local ones */
568:             col--;
569: #else
570:             col = aij->colmap[in[j]] - 1;
571: #endif
572:             if (col < 0 && !((Mat_SeqAIJ *)aij->B->data)->nonew) { /* col < 0 means in[j] is a new col for B */
573:               PetscCall(MatDisAssemble_MPIAIJ(mat));               /* Change aij->B from reduced/local format to expanded/global format */
574:               col = in[j];
575:               /* Reinitialize the variables required by MatSetValues_SeqAIJ_B_Private() */
576:               B     = aij->B;
577:               b     = (Mat_SeqAIJ *)B->data;
578:               bimax = b->imax;
579:               bi    = b->i;
580:               bilen = b->ilen;
581:               bj    = b->j;
582:               ba    = b->a;
583:               rp2   = PetscSafePointerPlusOffset(bj, bi[row]);
584:               ap2   = PetscSafePointerPlusOffset(ba, bi[row]);
585:               rmax2 = bimax[row];
586:               nrow2 = bilen[row];
587:               low2  = 0;
588:               high2 = nrow2;
589:               bm    = aij->B->rmap->n;
590:               ba    = b->a;
591:             } else if (col < 0 && !(ignorezeroentries && value == 0.0)) {
592:               if (1 == ((Mat_SeqAIJ *)aij->B->data)->nonew) {
593:                 PetscCall(PetscInfo(mat, "Skipping of insertion of new nonzero location in off-diagonal portion of matrix %g(%" PetscInt_FMT ",%" PetscInt_FMT ")\n", (double)PetscRealPart(value), im[i], in[j]));
594:               } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
595:             }
596:           } else col = in[j];
597:           nonew = b->nonew;
598:           MatSetValues_SeqAIJ_B_Private(row, col, value, addv, im[i], in[j]);
599:         }
600:       }
601:     } else {
602:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
603:       if (!aij->donotstash) {
604:         mat->assembled = PETSC_FALSE;
605:         if (roworiented) {
606:           PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, PetscSafePointerPlusOffset(v, i * n), (PetscBool)(ignorezeroentries && (addv == ADD_VALUES))));
607:         } else {
608:           PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, PetscSafePointerPlusOffset(v, i), m, (PetscBool)(ignorezeroentries && (addv == ADD_VALUES))));
609:         }
610:       }
611:     }
612:   }
613:   PetscCall(MatSeqAIJRestoreArray(A, &aa)); /* aa, bb might have been free'd due to reallocation above. But we don't access them here */
614:   PetscCall(MatSeqAIJRestoreArray(B, &ba));
615:   PetscFunctionReturn(PETSC_SUCCESS);
616: }

618: /*
619:     This function sets the j and ilen arrays (of the diagonal and off-diagonal part) of an MPIAIJ-matrix.
620:     The values in mat_i have to be sorted and the values in mat_j have to be sorted for each row (CSR-like).
621:     No off-processor parts off the matrix are allowed here and mat->was_assembled has to be PETSC_FALSE.
622: */
623: PetscErrorCode MatSetValues_MPIAIJ_CopyFromCSRFormat_Symbolic(Mat mat, const PetscInt mat_j[], const PetscInt mat_i[])
624: {
625:   Mat_MPIAIJ *aij    = (Mat_MPIAIJ *)mat->data;
626:   Mat         A      = aij->A; /* diagonal part of the matrix */
627:   Mat         B      = aij->B; /* off-diagonal part of the matrix */
628:   Mat_SeqAIJ *a      = (Mat_SeqAIJ *)A->data;
629:   Mat_SeqAIJ *b      = (Mat_SeqAIJ *)B->data;
630:   PetscInt    cstart = mat->cmap->rstart, cend = mat->cmap->rend, col;
631:   PetscInt   *ailen = a->ilen, *aj = a->j;
632:   PetscInt   *bilen = b->ilen, *bj = b->j;
633:   PetscInt    am          = aij->A->rmap->n, j;
634:   PetscInt    diag_so_far = 0, dnz;
635:   PetscInt    offd_so_far = 0, onz;

637:   PetscFunctionBegin;
638:   /* Iterate over all rows of the matrix */
639:   for (j = 0; j < am; j++) {
640:     dnz = onz = 0;
641:     /*  Iterate over all non-zero columns of the current row */
642:     for (col = mat_i[j]; col < mat_i[j + 1]; col++) {
643:       /* If column is in the diagonal */
644:       if (mat_j[col] >= cstart && mat_j[col] < cend) {
645:         aj[diag_so_far++] = mat_j[col] - cstart;
646:         dnz++;
647:       } else { /* off-diagonal entries */
648:         bj[offd_so_far++] = mat_j[col];
649:         onz++;
650:       }
651:     }
652:     ailen[j] = dnz;
653:     bilen[j] = onz;
654:   }
655:   PetscFunctionReturn(PETSC_SUCCESS);
656: }

658: /*
659:     This function sets the local j, a and ilen arrays (of the diagonal and off-diagonal part) of an MPIAIJ-matrix.
660:     The values in mat_i have to be sorted and the values in mat_j have to be sorted for each row (CSR-like).
661:     No off-processor parts off the matrix are allowed here, they are set at a later point by MatSetValues_MPIAIJ.
662:     Also, mat->was_assembled has to be false, otherwise the statement aj[rowstart_diag+dnz_row] = mat_j[col] - cstart;
663:     would not be true and the more complex MatSetValues_MPIAIJ has to be used.
664: */
665: PetscErrorCode MatSetValues_MPIAIJ_CopyFromCSRFormat(Mat mat, const PetscInt mat_j[], const PetscInt mat_i[], const PetscScalar mat_a[])
666: {
667:   Mat_MPIAIJ  *aij  = (Mat_MPIAIJ *)mat->data;
668:   Mat          A    = aij->A; /* diagonal part of the matrix */
669:   Mat          B    = aij->B; /* off-diagonal part of the matrix */
670:   Mat_SeqAIJ  *aijd = (Mat_SeqAIJ *)aij->A->data, *aijo = (Mat_SeqAIJ *)aij->B->data;
671:   Mat_SeqAIJ  *a      = (Mat_SeqAIJ *)A->data;
672:   Mat_SeqAIJ  *b      = (Mat_SeqAIJ *)B->data;
673:   PetscInt     cstart = mat->cmap->rstart, cend = mat->cmap->rend;
674:   PetscInt    *ailen = a->ilen, *aj = a->j;
675:   PetscInt    *bilen = b->ilen, *bj = b->j;
676:   PetscInt     am          = aij->A->rmap->n, j;
677:   PetscInt    *full_diag_i = aijd->i, *full_offd_i = aijo->i; /* These variables can also include non-local elements, which are set at a later point. */
678:   PetscInt     col, dnz_row, onz_row, rowstart_diag, rowstart_offd;
679:   PetscScalar *aa = a->a, *ba = b->a;

681:   PetscFunctionBegin;
682:   /* Iterate over all rows of the matrix */
683:   for (j = 0; j < am; j++) {
684:     dnz_row = onz_row = 0;
685:     rowstart_offd     = full_offd_i[j];
686:     rowstart_diag     = full_diag_i[j];
687:     /*  Iterate over all non-zero columns of the current row */
688:     for (col = mat_i[j]; col < mat_i[j + 1]; col++) {
689:       /* If column is in the diagonal */
690:       if (mat_j[col] >= cstart && mat_j[col] < cend) {
691:         aj[rowstart_diag + dnz_row] = mat_j[col] - cstart;
692:         aa[rowstart_diag + dnz_row] = mat_a[col];
693:         dnz_row++;
694:       } else { /* off-diagonal entries */
695:         bj[rowstart_offd + onz_row] = mat_j[col];
696:         ba[rowstart_offd + onz_row] = mat_a[col];
697:         onz_row++;
698:       }
699:     }
700:     ailen[j] = dnz_row;
701:     bilen[j] = onz_row;
702:   }
703:   PetscFunctionReturn(PETSC_SUCCESS);
704: }

706: static PetscErrorCode MatGetValues_MPIAIJ(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt idxn[], PetscScalar v[])
707: {
708:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;
709:   PetscInt    i, j, rstart = mat->rmap->rstart, rend = mat->rmap->rend;
710:   PetscInt    cstart = mat->cmap->rstart, cend = mat->cmap->rend, row, col;

712:   PetscFunctionBegin;
713:   for (i = 0; i < m; i++) {
714:     if (idxm[i] < 0) continue; /* negative row */
715:     PetscCheck(idxm[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm[i], mat->rmap->N - 1);
716:     PetscCheck(idxm[i] >= rstart && idxm[i] < rend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local values currently supported, row requested %" PetscInt_FMT " range [%" PetscInt_FMT " %" PetscInt_FMT ")", idxm[i], rstart, rend);
717:     row = idxm[i] - rstart;
718:     for (j = 0; j < n; j++) {
719:       if (idxn[j] < 0) continue; /* negative column */
720:       PetscCheck(idxn[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, idxn[j], mat->cmap->N - 1);
721:       if (idxn[j] >= cstart && idxn[j] < cend) {
722:         col = idxn[j] - cstart;
723:         PetscCall(MatGetValues(aij->A, 1, &row, 1, &col, v + i * n + j));
724:       } else {
725:         if (!aij->colmap) PetscCall(MatCreateColmap_MPIAIJ_Private(mat));
726: #if defined(PETSC_USE_CTABLE)
727:         PetscCall(PetscHMapIGetWithDefault(aij->colmap, idxn[j] + 1, 0, &col));
728:         col--;
729: #else
730:         col = aij->colmap[idxn[j]] - 1;
731: #endif
732:         if ((col < 0) || (aij->garray[col] != idxn[j])) *(v + i * n + j) = 0.0;
733:         else PetscCall(MatGetValues(aij->B, 1, &row, 1, &col, v + i * n + j));
734:       }
735:     }
736:   }
737:   PetscFunctionReturn(PETSC_SUCCESS);
738: }

740: static PetscErrorCode MatAssemblyBegin_MPIAIJ(Mat mat, MatAssemblyType mode)
741: {
742:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;
743:   PetscInt    nstash, reallocs;

745:   PetscFunctionBegin;
746:   if (aij->donotstash || mat->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);

748:   PetscCall(MatStashScatterBegin_Private(mat, &mat->stash, mat->rmap->range));
749:   PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
750:   PetscCall(PetscInfo(aij->A, "Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
751:   PetscFunctionReturn(PETSC_SUCCESS);
752: }

754: PetscErrorCode MatAssemblyEnd_MPIAIJ(Mat mat, MatAssemblyType mode)
755: {
756:   Mat_MPIAIJ  *aij = (Mat_MPIAIJ *)mat->data;
757:   PetscMPIInt  n;
758:   PetscInt     i, j, rstart, ncols, flg;
759:   PetscInt    *row, *col;
760:   PetscBool    other_disassembled;
761:   PetscScalar *val;

763:   /* do not use 'b = (Mat_SeqAIJ*)aij->B->data' as B can be reset in disassembly */

765:   PetscFunctionBegin;
766:   if (!aij->donotstash && !mat->nooffprocentries) {
767:     while (1) {
768:       PetscCall(MatStashScatterGetMesg_Private(&mat->stash, &n, &row, &col, &val, &flg));
769:       if (!flg) break;

771:       for (i = 0; i < n;) {
772:         /* Now identify the consecutive vals belonging to the same row */
773:         for (j = i, rstart = row[j]; j < n; j++) {
774:           if (row[j] != rstart) break;
775:         }
776:         if (j < n) ncols = j - i;
777:         else ncols = n - i;
778:         /* Now assemble all these values with a single function call */
779:         PetscCall(MatSetValues_MPIAIJ(mat, 1, row + i, ncols, col + i, val + i, mat->insertmode));
780:         i = j;
781:       }
782:     }
783:     PetscCall(MatStashScatterEnd_Private(&mat->stash));
784:   }
785: #if defined(PETSC_HAVE_DEVICE)
786:   if (mat->offloadmask == PETSC_OFFLOAD_CPU) aij->A->offloadmask = PETSC_OFFLOAD_CPU;
787:   /* We call MatBindToCPU() on aij->A and aij->B here, because if MatBindToCPU_MPIAIJ() is called before assembly, it cannot bind these. */
788:   if (mat->boundtocpu) {
789:     PetscCall(MatBindToCPU(aij->A, PETSC_TRUE));
790:     PetscCall(MatBindToCPU(aij->B, PETSC_TRUE));
791:   }
792: #endif
793:   PetscCall(MatAssemblyBegin(aij->A, mode));
794:   PetscCall(MatAssemblyEnd(aij->A, mode));

796:   /* determine if any processor has disassembled, if so we must
797:      also disassemble ourself, in order that we may reassemble. */
798:   /*
799:      if nonzero structure of submatrix B cannot change then we know that
800:      no processor disassembled thus we can skip this stuff
801:   */
802:   if (!((Mat_SeqAIJ *)aij->B->data)->nonew) {
803:     PetscCallMPI(MPIU_Allreduce(&mat->was_assembled, &other_disassembled, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
804:     if (mat->was_assembled && !other_disassembled) { /* mat on this rank has reduced off-diag B with local col ids, but globally it does not */
805:       PetscCall(MatDisAssemble_MPIAIJ(mat));
806:     }
807:   }
808:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) PetscCall(MatSetUpMultiply_MPIAIJ(mat));
809:   PetscCall(MatSetOption(aij->B, MAT_USE_INODES, PETSC_FALSE));
810: #if defined(PETSC_HAVE_DEVICE)
811:   if (mat->offloadmask == PETSC_OFFLOAD_CPU && aij->B->offloadmask != PETSC_OFFLOAD_UNALLOCATED) aij->B->offloadmask = PETSC_OFFLOAD_CPU;
812: #endif
813:   PetscCall(MatAssemblyBegin(aij->B, mode));
814:   PetscCall(MatAssemblyEnd(aij->B, mode));

816:   PetscCall(PetscFree2(aij->rowvalues, aij->rowindices));

818:   aij->rowvalues = NULL;

820:   PetscCall(VecDestroy(&aij->diag));

822:   /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
823:   if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqAIJ *)aij->A->data)->nonew) {
824:     PetscObjectState state = aij->A->nonzerostate + aij->B->nonzerostate;
825:     PetscCallMPI(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));
826:   }
827: #if defined(PETSC_HAVE_DEVICE)
828:   mat->offloadmask = PETSC_OFFLOAD_BOTH;
829: #endif
830:   PetscFunctionReturn(PETSC_SUCCESS);
831: }

833: static PetscErrorCode MatZeroEntries_MPIAIJ(Mat A)
834: {
835:   Mat_MPIAIJ *l = (Mat_MPIAIJ *)A->data;

837:   PetscFunctionBegin;
838:   PetscCall(MatZeroEntries(l->A));
839:   PetscCall(MatZeroEntries(l->B));
840:   PetscFunctionReturn(PETSC_SUCCESS);
841: }

843: static PetscErrorCode MatZeroRows_MPIAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
844: {
845:   Mat_MPIAIJ *mat = (Mat_MPIAIJ *)A->data;
846:   PetscInt   *lrows;
847:   PetscInt    r, len;
848:   PetscBool   cong;

850:   PetscFunctionBegin;
851:   /* get locally owned rows */
852:   PetscCall(MatZeroRowsMapLocal_Private(A, N, rows, &len, &lrows));
853:   PetscCall(MatHasCongruentLayouts(A, &cong));
854:   /* fix right-hand side if needed */
855:   if (x && b) {
856:     const PetscScalar *xx;
857:     PetscScalar       *bb;

859:     PetscCheck(cong, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Need matching row/col layout");
860:     PetscCall(VecGetArrayRead(x, &xx));
861:     PetscCall(VecGetArray(b, &bb));
862:     for (r = 0; r < len; ++r) bb[lrows[r]] = diag * xx[lrows[r]];
863:     PetscCall(VecRestoreArrayRead(x, &xx));
864:     PetscCall(VecRestoreArray(b, &bb));
865:   }

867:   if (diag != 0.0 && cong) {
868:     PetscCall(MatZeroRows(mat->A, len, lrows, diag, NULL, NULL));
869:     PetscCall(MatZeroRows(mat->B, len, lrows, 0.0, NULL, NULL));
870:   } else if (diag != 0.0) { /* non-square or non congruent layouts -> if keepnonzeropattern is false, we allow for new insertion */
871:     Mat_SeqAIJ *aijA = (Mat_SeqAIJ *)mat->A->data;
872:     Mat_SeqAIJ *aijB = (Mat_SeqAIJ *)mat->B->data;
873:     PetscInt    nnwA, nnwB;
874:     PetscBool   nnzA, nnzB;

876:     nnwA = aijA->nonew;
877:     nnwB = aijB->nonew;
878:     nnzA = aijA->keepnonzeropattern;
879:     nnzB = aijB->keepnonzeropattern;
880:     if (!nnzA) {
881:       PetscCall(PetscInfo(mat->A, "Requested to not keep the pattern and add a nonzero diagonal; may encounter reallocations on diagonal block.\n"));
882:       aijA->nonew = 0;
883:     }
884:     if (!nnzB) {
885:       PetscCall(PetscInfo(mat->B, "Requested to not keep the pattern and add a nonzero diagonal; may encounter reallocations on off-diagonal block.\n"));
886:       aijB->nonew = 0;
887:     }
888:     /* Must zero here before the next loop */
889:     PetscCall(MatZeroRows(mat->A, len, lrows, 0.0, NULL, NULL));
890:     PetscCall(MatZeroRows(mat->B, len, lrows, 0.0, NULL, NULL));
891:     for (r = 0; r < len; ++r) {
892:       const PetscInt row = lrows[r] + A->rmap->rstart;
893:       if (row >= A->cmap->N) continue;
894:       PetscCall(MatSetValues(A, 1, &row, 1, &row, &diag, INSERT_VALUES));
895:     }
896:     aijA->nonew = nnwA;
897:     aijB->nonew = nnwB;
898:   } else {
899:     PetscCall(MatZeroRows(mat->A, len, lrows, 0.0, NULL, NULL));
900:     PetscCall(MatZeroRows(mat->B, len, lrows, 0.0, NULL, NULL));
901:   }
902:   PetscCall(PetscFree(lrows));
903:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
904:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));

906:   /* only change matrix nonzero state if pattern was allowed to be changed */
907:   if (!((Mat_SeqAIJ *)mat->A->data)->keepnonzeropattern || !((Mat_SeqAIJ *)mat->A->data)->nonew) {
908:     PetscObjectState state = mat->A->nonzerostate + mat->B->nonzerostate;
909:     PetscCallMPI(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
910:   }
911:   PetscFunctionReturn(PETSC_SUCCESS);
912: }

914: static PetscErrorCode MatZeroRowsColumns_MPIAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
915: {
916:   Mat_MPIAIJ        *l = (Mat_MPIAIJ *)A->data;
917:   PetscInt           n = A->rmap->n;
918:   PetscInt           i, j, r, m, len = 0;
919:   PetscInt          *lrows, *owners = A->rmap->range;
920:   PetscMPIInt        p = 0;
921:   PetscSFNode       *rrows;
922:   PetscSF            sf;
923:   const PetscScalar *xx;
924:   PetscScalar       *bb, *mask, *aij_a;
925:   Vec                xmask, lmask;
926:   Mat_SeqAIJ        *aij = (Mat_SeqAIJ *)l->B->data;
927:   const PetscInt    *aj, *ii, *ridx;
928:   PetscScalar       *aa;

930:   PetscFunctionBegin;
931:   /* Create SF where leaves are input rows and roots are owned rows */
932:   PetscCall(PetscMalloc1(n, &lrows));
933:   for (r = 0; r < n; ++r) lrows[r] = -1;
934:   PetscCall(PetscMalloc1(N, &rrows));
935:   for (r = 0; r < N; ++r) {
936:     const PetscInt idx = rows[r];
937:     PetscCheck(idx >= 0 && A->rmap->N > idx, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " out of range [0,%" PetscInt_FMT ")", idx, A->rmap->N);
938:     if (idx < owners[p] || owners[p + 1] <= idx) { /* short-circuit the search if the last p owns this row too */
939:       PetscCall(PetscLayoutFindOwner(A->rmap, idx, &p));
940:     }
941:     rrows[r].rank  = p;
942:     rrows[r].index = rows[r] - owners[p];
943:   }
944:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
945:   PetscCall(PetscSFSetGraph(sf, n, N, NULL, PETSC_OWN_POINTER, rrows, PETSC_OWN_POINTER));
946:   /* Collect flags for rows to be zeroed */
947:   PetscCall(PetscSFReduceBegin(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
948:   PetscCall(PetscSFReduceEnd(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
949:   PetscCall(PetscSFDestroy(&sf));
950:   /* Compress and put in row numbers */
951:   for (r = 0; r < n; ++r)
952:     if (lrows[r] >= 0) lrows[len++] = r;
953:   /* zero diagonal part of matrix */
954:   PetscCall(MatZeroRowsColumns(l->A, len, lrows, diag, x, b));
955:   /* handle off-diagonal part of matrix */
956:   PetscCall(MatCreateVecs(A, &xmask, NULL));
957:   PetscCall(VecDuplicate(l->lvec, &lmask));
958:   PetscCall(VecGetArray(xmask, &bb));
959:   for (i = 0; i < len; i++) bb[lrows[i]] = 1;
960:   PetscCall(VecRestoreArray(xmask, &bb));
961:   PetscCall(VecScatterBegin(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
962:   PetscCall(VecScatterEnd(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
963:   PetscCall(VecDestroy(&xmask));
964:   if (x && b) { /* this code is buggy when the row and column layout don't match */
965:     PetscBool cong;

967:     PetscCall(MatHasCongruentLayouts(A, &cong));
968:     PetscCheck(cong, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Need matching row/col layout");
969:     PetscCall(VecScatterBegin(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
970:     PetscCall(VecScatterEnd(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
971:     PetscCall(VecGetArrayRead(l->lvec, &xx));
972:     PetscCall(VecGetArray(b, &bb));
973:   }
974:   PetscCall(VecGetArray(lmask, &mask));
975:   /* remove zeroed rows of off-diagonal matrix */
976:   PetscCall(MatSeqAIJGetArray(l->B, &aij_a));
977:   ii = aij->i;
978:   for (i = 0; i < len; i++) PetscCall(PetscArrayzero(PetscSafePointerPlusOffset(aij_a, ii[lrows[i]]), ii[lrows[i] + 1] - ii[lrows[i]]));
979:   /* loop over all elements of off process part of matrix zeroing removed columns*/
980:   if (aij->compressedrow.use) {
981:     m    = aij->compressedrow.nrows;
982:     ii   = aij->compressedrow.i;
983:     ridx = aij->compressedrow.rindex;
984:     for (i = 0; i < m; i++) {
985:       n  = ii[i + 1] - ii[i];
986:       aj = aij->j + ii[i];
987:       aa = aij_a + ii[i];

989:       for (j = 0; j < n; j++) {
990:         if (PetscAbsScalar(mask[*aj])) {
991:           if (b) bb[*ridx] -= *aa * xx[*aj];
992:           *aa = 0.0;
993:         }
994:         aa++;
995:         aj++;
996:       }
997:       ridx++;
998:     }
999:   } else { /* do not use compressed row format */
1000:     m = l->B->rmap->n;
1001:     for (i = 0; i < m; i++) {
1002:       n  = ii[i + 1] - ii[i];
1003:       aj = aij->j + ii[i];
1004:       aa = aij_a + ii[i];
1005:       for (j = 0; j < n; j++) {
1006:         if (PetscAbsScalar(mask[*aj])) {
1007:           if (b) bb[i] -= *aa * xx[*aj];
1008:           *aa = 0.0;
1009:         }
1010:         aa++;
1011:         aj++;
1012:       }
1013:     }
1014:   }
1015:   if (x && b) {
1016:     PetscCall(VecRestoreArray(b, &bb));
1017:     PetscCall(VecRestoreArrayRead(l->lvec, &xx));
1018:   }
1019:   PetscCall(MatSeqAIJRestoreArray(l->B, &aij_a));
1020:   PetscCall(VecRestoreArray(lmask, &mask));
1021:   PetscCall(VecDestroy(&lmask));
1022:   PetscCall(PetscFree(lrows));

1024:   /* only change matrix nonzero state if pattern was allowed to be changed */
1025:   if (!((Mat_SeqAIJ *)l->A->data)->nonew) {
1026:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1027:     PetscCallMPI(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1028:   }
1029:   PetscFunctionReturn(PETSC_SUCCESS);
1030: }

1032: static PetscErrorCode MatMult_MPIAIJ(Mat A, Vec xx, Vec yy)
1033: {
1034:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;
1035:   PetscInt    nt;
1036:   VecScatter  Mvctx = a->Mvctx;

1038:   PetscFunctionBegin;
1039:   PetscCall(VecGetLocalSize(xx, &nt));
1040:   PetscCheck(nt == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A (%" PetscInt_FMT ") and xx (%" PetscInt_FMT ")", A->cmap->n, nt);
1041:   PetscCall(VecScatterBegin(Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1042:   PetscUseTypeMethod(a->A, mult, xx, yy);
1043:   PetscCall(VecScatterEnd(Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1044:   PetscUseTypeMethod(a->B, multadd, a->lvec, yy, yy);
1045:   PetscFunctionReturn(PETSC_SUCCESS);
1046: }

1048: static PetscErrorCode MatMultDiagonalBlock_MPIAIJ(Mat A, Vec bb, Vec xx)
1049: {
1050:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

1052:   PetscFunctionBegin;
1053:   PetscCall(MatMultDiagonalBlock(a->A, bb, xx));
1054:   PetscFunctionReturn(PETSC_SUCCESS);
1055: }

1057: static PetscErrorCode MatMultAdd_MPIAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1058: {
1059:   Mat_MPIAIJ *a     = (Mat_MPIAIJ *)A->data;
1060:   VecScatter  Mvctx = a->Mvctx;

1062:   PetscFunctionBegin;
1063:   PetscCall(VecScatterBegin(Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1064:   PetscCall((*a->A->ops->multadd)(a->A, xx, yy, zz));
1065:   PetscCall(VecScatterEnd(Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1066:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, zz, zz));
1067:   PetscFunctionReturn(PETSC_SUCCESS);
1068: }

1070: static PetscErrorCode MatMultTranspose_MPIAIJ(Mat A, Vec xx, Vec yy)
1071: {
1072:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

1074:   PetscFunctionBegin;
1075:   /* do nondiagonal part */
1076:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1077:   /* do local part */
1078:   PetscCall((*a->A->ops->multtranspose)(a->A, xx, yy));
1079:   /* add partial results together */
1080:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1081:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1082:   PetscFunctionReturn(PETSC_SUCCESS);
1083: }

1085: static PetscErrorCode MatIsTranspose_MPIAIJ(Mat Amat, Mat Bmat, PetscReal tol, PetscBool *f)
1086: {
1087:   MPI_Comm    comm;
1088:   Mat_MPIAIJ *Aij = (Mat_MPIAIJ *)Amat->data, *Bij = (Mat_MPIAIJ *)Bmat->data;
1089:   Mat         Adia = Aij->A, Bdia = Bij->A, Aoff, Boff, *Aoffs, *Boffs;
1090:   IS          Me, Notme;
1091:   PetscInt    M, N, first, last, *notme, i;
1092:   PetscBool   lf;
1093:   PetscMPIInt size;

1095:   PetscFunctionBegin;
1096:   /* Easy test: symmetric diagonal block */
1097:   PetscCall(MatIsTranspose(Adia, Bdia, tol, &lf));
1098:   PetscCallMPI(MPIU_Allreduce(&lf, f, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)Amat)));
1099:   if (!*f) PetscFunctionReturn(PETSC_SUCCESS);
1100:   PetscCall(PetscObjectGetComm((PetscObject)Amat, &comm));
1101:   PetscCallMPI(MPI_Comm_size(comm, &size));
1102:   if (size == 1) PetscFunctionReturn(PETSC_SUCCESS);

1104:   /* Hard test: off-diagonal block. This takes a MatCreateSubMatrix. */
1105:   PetscCall(MatGetSize(Amat, &M, &N));
1106:   PetscCall(MatGetOwnershipRange(Amat, &first, &last));
1107:   PetscCall(PetscMalloc1(N - last + first, &notme));
1108:   for (i = 0; i < first; i++) notme[i] = i;
1109:   for (i = last; i < M; i++) notme[i - last + first] = i;
1110:   PetscCall(ISCreateGeneral(MPI_COMM_SELF, N - last + first, notme, PETSC_COPY_VALUES, &Notme));
1111:   PetscCall(ISCreateStride(MPI_COMM_SELF, last - first, first, 1, &Me));
1112:   PetscCall(MatCreateSubMatrices(Amat, 1, &Me, &Notme, MAT_INITIAL_MATRIX, &Aoffs));
1113:   Aoff = Aoffs[0];
1114:   PetscCall(MatCreateSubMatrices(Bmat, 1, &Notme, &Me, MAT_INITIAL_MATRIX, &Boffs));
1115:   Boff = Boffs[0];
1116:   PetscCall(MatIsTranspose(Aoff, Boff, tol, f));
1117:   PetscCall(MatDestroyMatrices(1, &Aoffs));
1118:   PetscCall(MatDestroyMatrices(1, &Boffs));
1119:   PetscCall(ISDestroy(&Me));
1120:   PetscCall(ISDestroy(&Notme));
1121:   PetscCall(PetscFree(notme));
1122:   PetscFunctionReturn(PETSC_SUCCESS);
1123: }

1125: static PetscErrorCode MatMultTransposeAdd_MPIAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1126: {
1127:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

1129:   PetscFunctionBegin;
1130:   /* do nondiagonal part */
1131:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1132:   /* do local part */
1133:   PetscCall((*a->A->ops->multtransposeadd)(a->A, xx, yy, zz));
1134:   /* add partial results together */
1135:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1136:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1137:   PetscFunctionReturn(PETSC_SUCCESS);
1138: }

1140: /*
1141:   This only works correctly for square matrices where the subblock A->A is the
1142:    diagonal block
1143: */
1144: static PetscErrorCode MatGetDiagonal_MPIAIJ(Mat A, Vec v)
1145: {
1146:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

1148:   PetscFunctionBegin;
1149:   PetscCheck(A->rmap->N == A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Supports only square matrix where A->A is diag block");
1150:   PetscCheck(A->rmap->rstart == A->cmap->rstart && A->rmap->rend == A->cmap->rend, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "row partition must equal col partition");
1151:   PetscCall(MatGetDiagonal(a->A, v));
1152:   PetscFunctionReturn(PETSC_SUCCESS);
1153: }

1155: static PetscErrorCode MatScale_MPIAIJ(Mat A, PetscScalar aa)
1156: {
1157:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

1159:   PetscFunctionBegin;
1160:   PetscCall(MatScale(a->A, aa));
1161:   PetscCall(MatScale(a->B, aa));
1162:   PetscFunctionReturn(PETSC_SUCCESS);
1163: }

1165: static PetscErrorCode MatView_MPIAIJ_Binary(Mat mat, PetscViewer viewer)
1166: {
1167:   Mat_MPIAIJ        *aij    = (Mat_MPIAIJ *)mat->data;
1168:   Mat_SeqAIJ        *A      = (Mat_SeqAIJ *)aij->A->data;
1169:   Mat_SeqAIJ        *B      = (Mat_SeqAIJ *)aij->B->data;
1170:   const PetscInt    *garray = aij->garray;
1171:   const PetscScalar *aa, *ba;
1172:   PetscInt           header[4], M, N, m, rs, cs, cnt, i, ja, jb;
1173:   PetscInt64         nz, hnz;
1174:   PetscInt          *rowlens;
1175:   PetscInt          *colidxs;
1176:   PetscScalar       *matvals;
1177:   PetscMPIInt        rank;

1179:   PetscFunctionBegin;
1180:   PetscCall(PetscViewerSetUp(viewer));

1182:   M  = mat->rmap->N;
1183:   N  = mat->cmap->N;
1184:   m  = mat->rmap->n;
1185:   rs = mat->rmap->rstart;
1186:   cs = mat->cmap->rstart;
1187:   nz = A->nz + B->nz;

1189:   /* write matrix header */
1190:   header[0] = MAT_FILE_CLASSID;
1191:   header[1] = M;
1192:   header[2] = N;
1193:   PetscCallMPI(MPI_Reduce(&nz, &hnz, 1, MPIU_INT64, MPI_SUM, 0, PetscObjectComm((PetscObject)mat)));
1194:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1195:   if (rank == 0) {
1196:     if (hnz > PETSC_INT_MAX) header[3] = PETSC_INT_MAX;
1197:     else header[3] = (PetscInt)hnz;
1198:   }
1199:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1201:   /* fill in and store row lengths  */
1202:   PetscCall(PetscMalloc1(m, &rowlens));
1203:   for (i = 0; i < m; i++) rowlens[i] = A->i[i + 1] - A->i[i] + B->i[i + 1] - B->i[i];
1204:   PetscCall(PetscViewerBinaryWriteAll(viewer, rowlens, m, rs, M, PETSC_INT));
1205:   PetscCall(PetscFree(rowlens));

1207:   /* fill in and store column indices */
1208:   PetscCall(PetscMalloc1(nz, &colidxs));
1209:   for (cnt = 0, i = 0; i < m; i++) {
1210:     for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1211:       if (garray[B->j[jb]] > cs) break;
1212:       colidxs[cnt++] = garray[B->j[jb]];
1213:     }
1214:     for (ja = A->i[i]; ja < A->i[i + 1]; ja++) colidxs[cnt++] = A->j[ja] + cs;
1215:     for (; jb < B->i[i + 1]; jb++) colidxs[cnt++] = garray[B->j[jb]];
1216:   }
1217:   PetscCheck(cnt == nz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Internal PETSc error: cnt = %" PetscInt_FMT " nz = %" PetscInt64_FMT, cnt, nz);
1218:   PetscCall(PetscViewerBinaryWriteAll(viewer, colidxs, nz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1219:   PetscCall(PetscFree(colidxs));

1221:   /* fill in and store nonzero values */
1222:   PetscCall(MatSeqAIJGetArrayRead(aij->A, &aa));
1223:   PetscCall(MatSeqAIJGetArrayRead(aij->B, &ba));
1224:   PetscCall(PetscMalloc1(nz, &matvals));
1225:   for (cnt = 0, i = 0; i < m; i++) {
1226:     for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1227:       if (garray[B->j[jb]] > cs) break;
1228:       matvals[cnt++] = ba[jb];
1229:     }
1230:     for (ja = A->i[i]; ja < A->i[i + 1]; ja++) matvals[cnt++] = aa[ja];
1231:     for (; jb < B->i[i + 1]; jb++) matvals[cnt++] = ba[jb];
1232:   }
1233:   PetscCall(MatSeqAIJRestoreArrayRead(aij->A, &aa));
1234:   PetscCall(MatSeqAIJRestoreArrayRead(aij->B, &ba));
1235:   PetscCheck(cnt == nz, PETSC_COMM_SELF, PETSC_ERR_LIB, "Internal PETSc error: cnt = %" PetscInt_FMT " nz = %" PetscInt64_FMT, cnt, nz);
1236:   PetscCall(PetscViewerBinaryWriteAll(viewer, matvals, nz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1237:   PetscCall(PetscFree(matvals));

1239:   /* write block size option to the viewer's .info file */
1240:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
1241:   PetscFunctionReturn(PETSC_SUCCESS);
1242: }

1244: #include <petscdraw.h>
1245: static PetscErrorCode MatView_MPIAIJ_ASCIIorDraworSocket(Mat mat, PetscViewer viewer)
1246: {
1247:   Mat_MPIAIJ       *aij  = (Mat_MPIAIJ *)mat->data;
1248:   PetscMPIInt       rank = aij->rank, size = aij->size;
1249:   PetscBool         isdraw, iascii, isbinary;
1250:   PetscViewer       sviewer;
1251:   PetscViewerFormat format;

1253:   PetscFunctionBegin;
1254:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1255:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1256:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1257:   if (iascii) {
1258:     PetscCall(PetscViewerGetFormat(viewer, &format));
1259:     if (format == PETSC_VIEWER_LOAD_BALANCE) {
1260:       PetscInt i, nmax = 0, nmin = PETSC_INT_MAX, navg = 0, *nz, nzlocal = ((Mat_SeqAIJ *)aij->A->data)->nz + ((Mat_SeqAIJ *)aij->B->data)->nz;
1261:       PetscCall(PetscMalloc1(size, &nz));
1262:       PetscCallMPI(MPI_Allgather(&nzlocal, 1, MPIU_INT, nz, 1, MPIU_INT, PetscObjectComm((PetscObject)mat)));
1263:       for (i = 0; i < (PetscInt)size; i++) {
1264:         nmax = PetscMax(nmax, nz[i]);
1265:         nmin = PetscMin(nmin, nz[i]);
1266:         navg += nz[i];
1267:       }
1268:       PetscCall(PetscFree(nz));
1269:       navg = navg / size;
1270:       PetscCall(PetscViewerASCIIPrintf(viewer, "Load Balance - Nonzeros: Min %" PetscInt_FMT "  avg %" PetscInt_FMT "  max %" PetscInt_FMT "\n", nmin, navg, nmax));
1271:       PetscFunctionReturn(PETSC_SUCCESS);
1272:     }
1273:     PetscCall(PetscViewerGetFormat(viewer, &format));
1274:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1275:       MatInfo   info;
1276:       PetscInt *inodes = NULL;

1278:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1279:       PetscCall(MatGetInfo(mat, MAT_LOCAL, &info));
1280:       PetscCall(MatInodeGetInodeSizes(aij->A, NULL, &inodes, NULL));
1281:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
1282:       if (!inodes) {
1283:         PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " mem %g, not using I-node routines\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
1284:                                                      (double)info.memory));
1285:       } else {
1286:         PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " mem %g, using I-node routines\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
1287:                                                      (double)info.memory));
1288:       }
1289:       PetscCall(MatGetInfo(aij->A, MAT_LOCAL, &info));
1290:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] on-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1291:       PetscCall(MatGetInfo(aij->B, MAT_LOCAL, &info));
1292:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] off-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1293:       PetscCall(PetscViewerFlush(viewer));
1294:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1295:       PetscCall(PetscViewerASCIIPrintf(viewer, "Information on VecScatter used in matrix-vector product: \n"));
1296:       PetscCall(VecScatterView(aij->Mvctx, viewer));
1297:       PetscFunctionReturn(PETSC_SUCCESS);
1298:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
1299:       PetscInt inodecount, inodelimit, *inodes;
1300:       PetscCall(MatInodeGetInodeSizes(aij->A, &inodecount, &inodes, &inodelimit));
1301:       if (inodes) {
1302:         PetscCall(PetscViewerASCIIPrintf(viewer, "using I-node (on process 0) routines: found %" PetscInt_FMT " nodes, limit used is %" PetscInt_FMT "\n", inodecount, inodelimit));
1303:       } else {
1304:         PetscCall(PetscViewerASCIIPrintf(viewer, "not using I-node (on process 0) routines\n"));
1305:       }
1306:       PetscFunctionReturn(PETSC_SUCCESS);
1307:     } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
1308:       PetscFunctionReturn(PETSC_SUCCESS);
1309:     }
1310:   } else if (isbinary) {
1311:     if (size == 1) {
1312:       PetscCall(PetscObjectSetName((PetscObject)aij->A, ((PetscObject)mat)->name));
1313:       PetscCall(MatView(aij->A, viewer));
1314:     } else {
1315:       PetscCall(MatView_MPIAIJ_Binary(mat, viewer));
1316:     }
1317:     PetscFunctionReturn(PETSC_SUCCESS);
1318:   } else if (iascii && size == 1) {
1319:     PetscCall(PetscObjectSetName((PetscObject)aij->A, ((PetscObject)mat)->name));
1320:     PetscCall(MatView(aij->A, viewer));
1321:     PetscFunctionReturn(PETSC_SUCCESS);
1322:   } else if (isdraw) {
1323:     PetscDraw draw;
1324:     PetscBool isnull;
1325:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1326:     PetscCall(PetscDrawIsNull(draw, &isnull));
1327:     if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
1328:   }

1330:   { /* assemble the entire matrix onto first processor */
1331:     Mat A = NULL, Av;
1332:     IS  isrow, iscol;

1334:     PetscCall(ISCreateStride(PetscObjectComm((PetscObject)mat), rank == 0 ? mat->rmap->N : 0, 0, 1, &isrow));
1335:     PetscCall(ISCreateStride(PetscObjectComm((PetscObject)mat), rank == 0 ? mat->cmap->N : 0, 0, 1, &iscol));
1336:     PetscCall(MatCreateSubMatrix(mat, isrow, iscol, MAT_INITIAL_MATRIX, &A));
1337:     PetscCall(MatMPIAIJGetSeqAIJ(A, &Av, NULL, NULL));
1338:     /*  The commented code uses MatCreateSubMatrices instead */
1339:     /*
1340:     Mat *AA, A = NULL, Av;
1341:     IS  isrow,iscol;

1343:     PetscCall(ISCreateStride(PetscObjectComm((PetscObject)mat),rank == 0 ? mat->rmap->N : 0,0,1,&isrow));
1344:     PetscCall(ISCreateStride(PetscObjectComm((PetscObject)mat),rank == 0 ? mat->cmap->N : 0,0,1,&iscol));
1345:     PetscCall(MatCreateSubMatrices(mat,1,&isrow,&iscol,MAT_INITIAL_MATRIX,&AA));
1346:     if (rank == 0) {
1347:        PetscCall(PetscObjectReference((PetscObject)AA[0]));
1348:        A    = AA[0];
1349:        Av   = AA[0];
1350:     }
1351:     PetscCall(MatDestroySubMatrices(1,&AA));
1352: */
1353:     PetscCall(ISDestroy(&iscol));
1354:     PetscCall(ISDestroy(&isrow));
1355:     /*
1356:        Everyone has to call to draw the matrix since the graphics waits are
1357:        synchronized across all processors that share the PetscDraw object
1358:     */
1359:     PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1360:     if (rank == 0) {
1361:       if (((PetscObject)mat)->name) PetscCall(PetscObjectSetName((PetscObject)Av, ((PetscObject)mat)->name));
1362:       PetscCall(MatView_SeqAIJ(Av, sviewer));
1363:     }
1364:     PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1365:     PetscCall(MatDestroy(&A));
1366:   }
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: PetscErrorCode MatView_MPIAIJ(Mat mat, PetscViewer viewer)
1371: {
1372:   PetscBool iascii, isdraw, issocket, isbinary;

1374:   PetscFunctionBegin;
1375:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1376:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1377:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1378:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSOCKET, &issocket));
1379:   if (iascii || isdraw || isbinary || issocket) PetscCall(MatView_MPIAIJ_ASCIIorDraworSocket(mat, viewer));
1380:   PetscFunctionReturn(PETSC_SUCCESS);
1381: }

1383: static PetscErrorCode MatSOR_MPIAIJ(Mat matin, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1384: {
1385:   Mat_MPIAIJ *mat = (Mat_MPIAIJ *)matin->data;
1386:   Vec         bb1 = NULL;
1387:   PetscBool   hasop;

1389:   PetscFunctionBegin;
1390:   if (flag == SOR_APPLY_UPPER) {
1391:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
1392:     PetscFunctionReturn(PETSC_SUCCESS);
1393:   }

1395:   if (its > 1 || ~flag & SOR_ZERO_INITIAL_GUESS || flag & SOR_EISENSTAT) PetscCall(VecDuplicate(bb, &bb1));

1397:   if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
1398:     if (flag & SOR_ZERO_INITIAL_GUESS) {
1399:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
1400:       its--;
1401:     }

1403:     while (its--) {
1404:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
1405:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

1407:       /* update rhs: bb1 = bb - B*x */
1408:       PetscCall(VecScale(mat->lvec, -1.0));
1409:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

1411:       /* local sweep */
1412:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_SYMMETRIC_SWEEP, fshift, lits, 1, xx));
1413:     }
1414:   } else if (flag & SOR_LOCAL_FORWARD_SWEEP) {
1415:     if (flag & SOR_ZERO_INITIAL_GUESS) {
1416:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
1417:       its--;
1418:     }
1419:     while (its--) {
1420:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
1421:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

1423:       /* update rhs: bb1 = bb - B*x */
1424:       PetscCall(VecScale(mat->lvec, -1.0));
1425:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

1427:       /* local sweep */
1428:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_FORWARD_SWEEP, fshift, lits, 1, xx));
1429:     }
1430:   } else if (flag & SOR_LOCAL_BACKWARD_SWEEP) {
1431:     if (flag & SOR_ZERO_INITIAL_GUESS) {
1432:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
1433:       its--;
1434:     }
1435:     while (its--) {
1436:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
1437:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

1439:       /* update rhs: bb1 = bb - B*x */
1440:       PetscCall(VecScale(mat->lvec, -1.0));
1441:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

1443:       /* local sweep */
1444:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_BACKWARD_SWEEP, fshift, lits, 1, xx));
1445:     }
1446:   } else if (flag & SOR_EISENSTAT) {
1447:     Vec xx1;

1449:     PetscCall(VecDuplicate(bb, &xx1));
1450:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, (MatSORType)(SOR_ZERO_INITIAL_GUESS | SOR_LOCAL_BACKWARD_SWEEP), fshift, lits, 1, xx));

1452:     PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
1453:     PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
1454:     if (!mat->diag) {
1455:       PetscCall(MatCreateVecs(matin, &mat->diag, NULL));
1456:       PetscCall(MatGetDiagonal(matin, mat->diag));
1457:     }
1458:     PetscCall(MatHasOperation(matin, MATOP_MULT_DIAGONAL_BLOCK, &hasop));
1459:     if (hasop) {
1460:       PetscCall(MatMultDiagonalBlock(matin, xx, bb1));
1461:     } else {
1462:       PetscCall(VecPointwiseMult(bb1, mat->diag, xx));
1463:     }
1464:     PetscCall(VecAYPX(bb1, (omega - 2.0) / omega, bb));

1466:     PetscCall(MatMultAdd(mat->B, mat->lvec, bb1, bb1));

1468:     /* local sweep */
1469:     PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, (MatSORType)(SOR_ZERO_INITIAL_GUESS | SOR_LOCAL_FORWARD_SWEEP), fshift, lits, 1, xx1));
1470:     PetscCall(VecAXPY(xx, 1.0, xx1));
1471:     PetscCall(VecDestroy(&xx1));
1472:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_SUP, "Parallel SOR not supported");

1474:   PetscCall(VecDestroy(&bb1));

1476:   matin->factorerrortype = mat->A->factorerrortype;
1477:   PetscFunctionReturn(PETSC_SUCCESS);
1478: }

1480: static PetscErrorCode MatPermute_MPIAIJ(Mat A, IS rowp, IS colp, Mat *B)
1481: {
1482:   Mat             aA, aB, Aperm;
1483:   const PetscInt *rwant, *cwant, *gcols, *ai, *bi, *aj, *bj;
1484:   PetscScalar    *aa, *ba;
1485:   PetscInt        i, j, m, n, ng, anz, bnz, *dnnz, *onnz, *tdnnz, *tonnz, *rdest, *cdest, *work, *gcdest;
1486:   PetscSF         rowsf, sf;
1487:   IS              parcolp = NULL;
1488:   PetscBool       done;

1490:   PetscFunctionBegin;
1491:   PetscCall(MatGetLocalSize(A, &m, &n));
1492:   PetscCall(ISGetIndices(rowp, &rwant));
1493:   PetscCall(ISGetIndices(colp, &cwant));
1494:   PetscCall(PetscMalloc3(PetscMax(m, n), &work, m, &rdest, n, &cdest));

1496:   /* Invert row permutation to find out where my rows should go */
1497:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &rowsf));
1498:   PetscCall(PetscSFSetGraphLayout(rowsf, A->rmap, A->rmap->n, NULL, PETSC_OWN_POINTER, rwant));
1499:   PetscCall(PetscSFSetFromOptions(rowsf));
1500:   for (i = 0; i < m; i++) work[i] = A->rmap->rstart + i;
1501:   PetscCall(PetscSFReduceBegin(rowsf, MPIU_INT, work, rdest, MPI_REPLACE));
1502:   PetscCall(PetscSFReduceEnd(rowsf, MPIU_INT, work, rdest, MPI_REPLACE));

1504:   /* Invert column permutation to find out where my columns should go */
1505:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1506:   PetscCall(PetscSFSetGraphLayout(sf, A->cmap, A->cmap->n, NULL, PETSC_OWN_POINTER, cwant));
1507:   PetscCall(PetscSFSetFromOptions(sf));
1508:   for (i = 0; i < n; i++) work[i] = A->cmap->rstart + i;
1509:   PetscCall(PetscSFReduceBegin(sf, MPIU_INT, work, cdest, MPI_REPLACE));
1510:   PetscCall(PetscSFReduceEnd(sf, MPIU_INT, work, cdest, MPI_REPLACE));
1511:   PetscCall(PetscSFDestroy(&sf));

1513:   PetscCall(ISRestoreIndices(rowp, &rwant));
1514:   PetscCall(ISRestoreIndices(colp, &cwant));
1515:   PetscCall(MatMPIAIJGetSeqAIJ(A, &aA, &aB, &gcols));

1517:   /* Find out where my gcols should go */
1518:   PetscCall(MatGetSize(aB, NULL, &ng));
1519:   PetscCall(PetscMalloc1(ng, &gcdest));
1520:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1521:   PetscCall(PetscSFSetGraphLayout(sf, A->cmap, ng, NULL, PETSC_OWN_POINTER, gcols));
1522:   PetscCall(PetscSFSetFromOptions(sf));
1523:   PetscCall(PetscSFBcastBegin(sf, MPIU_INT, cdest, gcdest, MPI_REPLACE));
1524:   PetscCall(PetscSFBcastEnd(sf, MPIU_INT, cdest, gcdest, MPI_REPLACE));
1525:   PetscCall(PetscSFDestroy(&sf));

1527:   PetscCall(PetscCalloc4(m, &dnnz, m, &onnz, m, &tdnnz, m, &tonnz));
1528:   PetscCall(MatGetRowIJ(aA, 0, PETSC_FALSE, PETSC_FALSE, &anz, &ai, &aj, &done));
1529:   PetscCall(MatGetRowIJ(aB, 0, PETSC_FALSE, PETSC_FALSE, &bnz, &bi, &bj, &done));
1530:   for (i = 0; i < m; i++) {
1531:     PetscInt    row = rdest[i];
1532:     PetscMPIInt rowner;
1533:     PetscCall(PetscLayoutFindOwner(A->rmap, row, &rowner));
1534:     for (j = ai[i]; j < ai[i + 1]; j++) {
1535:       PetscInt    col = cdest[aj[j]];
1536:       PetscMPIInt cowner;
1537:       PetscCall(PetscLayoutFindOwner(A->cmap, col, &cowner)); /* Could build an index for the columns to eliminate this search */
1538:       if (rowner == cowner) dnnz[i]++;
1539:       else onnz[i]++;
1540:     }
1541:     for (j = bi[i]; j < bi[i + 1]; j++) {
1542:       PetscInt    col = gcdest[bj[j]];
1543:       PetscMPIInt cowner;
1544:       PetscCall(PetscLayoutFindOwner(A->cmap, col, &cowner));
1545:       if (rowner == cowner) dnnz[i]++;
1546:       else onnz[i]++;
1547:     }
1548:   }
1549:   PetscCall(PetscSFBcastBegin(rowsf, MPIU_INT, dnnz, tdnnz, MPI_REPLACE));
1550:   PetscCall(PetscSFBcastEnd(rowsf, MPIU_INT, dnnz, tdnnz, MPI_REPLACE));
1551:   PetscCall(PetscSFBcastBegin(rowsf, MPIU_INT, onnz, tonnz, MPI_REPLACE));
1552:   PetscCall(PetscSFBcastEnd(rowsf, MPIU_INT, onnz, tonnz, MPI_REPLACE));
1553:   PetscCall(PetscSFDestroy(&rowsf));

1555:   PetscCall(MatCreateAIJ(PetscObjectComm((PetscObject)A), A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N, 0, tdnnz, 0, tonnz, &Aperm));
1556:   PetscCall(MatSeqAIJGetArray(aA, &aa));
1557:   PetscCall(MatSeqAIJGetArray(aB, &ba));
1558:   for (i = 0; i < m; i++) {
1559:     PetscInt *acols = dnnz, *bcols = onnz; /* Repurpose now-unneeded arrays */
1560:     PetscInt  j0, rowlen;
1561:     rowlen = ai[i + 1] - ai[i];
1562:     for (j0 = j = 0; j < rowlen; j0 = j) { /* rowlen could be larger than number of rows m, so sum in batches */
1563:       for (; j < PetscMin(rowlen, j0 + m); j++) acols[j - j0] = cdest[aj[ai[i] + j]];
1564:       PetscCall(MatSetValues(Aperm, 1, &rdest[i], j - j0, acols, aa + ai[i] + j0, INSERT_VALUES));
1565:     }
1566:     rowlen = bi[i + 1] - bi[i];
1567:     for (j0 = j = 0; j < rowlen; j0 = j) {
1568:       for (; j < PetscMin(rowlen, j0 + m); j++) bcols[j - j0] = gcdest[bj[bi[i] + j]];
1569:       PetscCall(MatSetValues(Aperm, 1, &rdest[i], j - j0, bcols, ba + bi[i] + j0, INSERT_VALUES));
1570:     }
1571:   }
1572:   PetscCall(MatAssemblyBegin(Aperm, MAT_FINAL_ASSEMBLY));
1573:   PetscCall(MatAssemblyEnd(Aperm, MAT_FINAL_ASSEMBLY));
1574:   PetscCall(MatRestoreRowIJ(aA, 0, PETSC_FALSE, PETSC_FALSE, &anz, &ai, &aj, &done));
1575:   PetscCall(MatRestoreRowIJ(aB, 0, PETSC_FALSE, PETSC_FALSE, &bnz, &bi, &bj, &done));
1576:   PetscCall(MatSeqAIJRestoreArray(aA, &aa));
1577:   PetscCall(MatSeqAIJRestoreArray(aB, &ba));
1578:   PetscCall(PetscFree4(dnnz, onnz, tdnnz, tonnz));
1579:   PetscCall(PetscFree3(work, rdest, cdest));
1580:   PetscCall(PetscFree(gcdest));
1581:   if (parcolp) PetscCall(ISDestroy(&colp));
1582:   *B = Aperm;
1583:   PetscFunctionReturn(PETSC_SUCCESS);
1584: }

1586: static PetscErrorCode MatGetGhosts_MPIAIJ(Mat mat, PetscInt *nghosts, const PetscInt *ghosts[])
1587: {
1588:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;

1590:   PetscFunctionBegin;
1591:   PetscCall(MatGetSize(aij->B, NULL, nghosts));
1592:   if (ghosts) *ghosts = aij->garray;
1593:   PetscFunctionReturn(PETSC_SUCCESS);
1594: }

1596: static PetscErrorCode MatGetInfo_MPIAIJ(Mat matin, MatInfoType flag, MatInfo *info)
1597: {
1598:   Mat_MPIAIJ    *mat = (Mat_MPIAIJ *)matin->data;
1599:   Mat            A = mat->A, B = mat->B;
1600:   PetscLogDouble isend[5], irecv[5];

1602:   PetscFunctionBegin;
1603:   info->block_size = 1.0;
1604:   PetscCall(MatGetInfo(A, MAT_LOCAL, info));

1606:   isend[0] = info->nz_used;
1607:   isend[1] = info->nz_allocated;
1608:   isend[2] = info->nz_unneeded;
1609:   isend[3] = info->memory;
1610:   isend[4] = info->mallocs;

1612:   PetscCall(MatGetInfo(B, MAT_LOCAL, info));

1614:   isend[0] += info->nz_used;
1615:   isend[1] += info->nz_allocated;
1616:   isend[2] += info->nz_unneeded;
1617:   isend[3] += info->memory;
1618:   isend[4] += info->mallocs;
1619:   if (flag == MAT_LOCAL) {
1620:     info->nz_used      = isend[0];
1621:     info->nz_allocated = isend[1];
1622:     info->nz_unneeded  = isend[2];
1623:     info->memory       = isend[3];
1624:     info->mallocs      = isend[4];
1625:   } else if (flag == MAT_GLOBAL_MAX) {
1626:     PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)matin)));

1628:     info->nz_used      = irecv[0];
1629:     info->nz_allocated = irecv[1];
1630:     info->nz_unneeded  = irecv[2];
1631:     info->memory       = irecv[3];
1632:     info->mallocs      = irecv[4];
1633:   } else if (flag == MAT_GLOBAL_SUM) {
1634:     PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)matin)));

1636:     info->nz_used      = irecv[0];
1637:     info->nz_allocated = irecv[1];
1638:     info->nz_unneeded  = irecv[2];
1639:     info->memory       = irecv[3];
1640:     info->mallocs      = irecv[4];
1641:   }
1642:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
1643:   info->fill_ratio_needed = 0;
1644:   info->factor_mallocs    = 0;
1645:   PetscFunctionReturn(PETSC_SUCCESS);
1646: }

1648: PetscErrorCode MatSetOption_MPIAIJ(Mat A, MatOption op, PetscBool flg)
1649: {
1650:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

1652:   PetscFunctionBegin;
1653:   switch (op) {
1654:   case MAT_NEW_NONZERO_LOCATIONS:
1655:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1656:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1657:   case MAT_KEEP_NONZERO_PATTERN:
1658:   case MAT_NEW_NONZERO_LOCATION_ERR:
1659:   case MAT_USE_INODES:
1660:   case MAT_IGNORE_ZERO_ENTRIES:
1661:   case MAT_FORM_EXPLICIT_TRANSPOSE:
1662:     MatCheckPreallocated(A, 1);
1663:     PetscCall(MatSetOption(a->A, op, flg));
1664:     PetscCall(MatSetOption(a->B, op, flg));
1665:     break;
1666:   case MAT_ROW_ORIENTED:
1667:     MatCheckPreallocated(A, 1);
1668:     a->roworiented = flg;

1670:     PetscCall(MatSetOption(a->A, op, flg));
1671:     PetscCall(MatSetOption(a->B, op, flg));
1672:     break;
1673:   case MAT_FORCE_DIAGONAL_ENTRIES:
1674:   case MAT_SORTED_FULL:
1675:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
1676:     break;
1677:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1678:     a->donotstash = flg;
1679:     break;
1680:   /* Symmetry flags are handled directly by MatSetOption() and they don't affect preallocation */
1681:   case MAT_SPD:
1682:   case MAT_SYMMETRIC:
1683:   case MAT_STRUCTURALLY_SYMMETRIC:
1684:   case MAT_HERMITIAN:
1685:   case MAT_SYMMETRY_ETERNAL:
1686:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
1687:   case MAT_SPD_ETERNAL:
1688:     /* if the diagonal matrix is square it inherits some of the properties above */
1689:     break;
1690:   case MAT_SUBMAT_SINGLEIS:
1691:     A->submat_singleis = flg;
1692:     break;
1693:   case MAT_STRUCTURE_ONLY:
1694:     /* The option is handled directly by MatSetOption() */
1695:     break;
1696:   default:
1697:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "unknown option %d", op);
1698:   }
1699:   PetscFunctionReturn(PETSC_SUCCESS);
1700: }

1702: PetscErrorCode MatGetRow_MPIAIJ(Mat matin, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1703: {
1704:   Mat_MPIAIJ  *mat = (Mat_MPIAIJ *)matin->data;
1705:   PetscScalar *vworkA, *vworkB, **pvA, **pvB, *v_p;
1706:   PetscInt     i, *cworkA, *cworkB, **pcA, **pcB, cstart = matin->cmap->rstart;
1707:   PetscInt     nztot, nzA, nzB, lrow, rstart = matin->rmap->rstart, rend = matin->rmap->rend;
1708:   PetscInt    *cmap, *idx_p;

1710:   PetscFunctionBegin;
1711:   PetscCheck(!mat->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Already active");
1712:   mat->getrowactive = PETSC_TRUE;

1714:   if (!mat->rowvalues && (idx || v)) {
1715:     /*
1716:         allocate enough space to hold information from the longest row.
1717:     */
1718:     Mat_SeqAIJ *Aa = (Mat_SeqAIJ *)mat->A->data, *Ba = (Mat_SeqAIJ *)mat->B->data;
1719:     PetscInt    max = 1, tmp;
1720:     for (i = 0; i < matin->rmap->n; i++) {
1721:       tmp = Aa->i[i + 1] - Aa->i[i] + Ba->i[i + 1] - Ba->i[i];
1722:       if (max < tmp) max = tmp;
1723:     }
1724:     PetscCall(PetscMalloc2(max, &mat->rowvalues, max, &mat->rowindices));
1725:   }

1727:   PetscCheck(row >= rstart && row < rend, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Only local rows");
1728:   lrow = row - rstart;

1730:   pvA = &vworkA;
1731:   pcA = &cworkA;
1732:   pvB = &vworkB;
1733:   pcB = &cworkB;
1734:   if (!v) {
1735:     pvA = NULL;
1736:     pvB = NULL;
1737:   }
1738:   if (!idx) {
1739:     pcA = NULL;
1740:     if (!v) pcB = NULL;
1741:   }
1742:   PetscCall((*mat->A->ops->getrow)(mat->A, lrow, &nzA, pcA, pvA));
1743:   PetscCall((*mat->B->ops->getrow)(mat->B, lrow, &nzB, pcB, pvB));
1744:   nztot = nzA + nzB;

1746:   cmap = mat->garray;
1747:   if (v || idx) {
1748:     if (nztot) {
1749:       /* Sort by increasing column numbers, assuming A and B already sorted */
1750:       PetscInt imark = -1;
1751:       if (v) {
1752:         *v = v_p = mat->rowvalues;
1753:         for (i = 0; i < nzB; i++) {
1754:           if (cmap[cworkB[i]] < cstart) v_p[i] = vworkB[i];
1755:           else break;
1756:         }
1757:         imark = i;
1758:         for (i = 0; i < nzA; i++) v_p[imark + i] = vworkA[i];
1759:         for (i = imark; i < nzB; i++) v_p[nzA + i] = vworkB[i];
1760:       }
1761:       if (idx) {
1762:         *idx = idx_p = mat->rowindices;
1763:         if (imark > -1) {
1764:           for (i = 0; i < imark; i++) idx_p[i] = cmap[cworkB[i]];
1765:         } else {
1766:           for (i = 0; i < nzB; i++) {
1767:             if (cmap[cworkB[i]] < cstart) idx_p[i] = cmap[cworkB[i]];
1768:             else break;
1769:           }
1770:           imark = i;
1771:         }
1772:         for (i = 0; i < nzA; i++) idx_p[imark + i] = cstart + cworkA[i];
1773:         for (i = imark; i < nzB; i++) idx_p[nzA + i] = cmap[cworkB[i]];
1774:       }
1775:     } else {
1776:       if (idx) *idx = NULL;
1777:       if (v) *v = NULL;
1778:     }
1779:   }
1780:   *nz = nztot;
1781:   PetscCall((*mat->A->ops->restorerow)(mat->A, lrow, &nzA, pcA, pvA));
1782:   PetscCall((*mat->B->ops->restorerow)(mat->B, lrow, &nzB, pcB, pvB));
1783:   PetscFunctionReturn(PETSC_SUCCESS);
1784: }

1786: PetscErrorCode MatRestoreRow_MPIAIJ(Mat mat, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1787: {
1788:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;

1790:   PetscFunctionBegin;
1791:   PetscCheck(aij->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "MatGetRow() must be called first");
1792:   aij->getrowactive = PETSC_FALSE;
1793:   PetscFunctionReturn(PETSC_SUCCESS);
1794: }

1796: static PetscErrorCode MatNorm_MPIAIJ(Mat mat, NormType type, PetscReal *norm)
1797: {
1798:   Mat_MPIAIJ      *aij  = (Mat_MPIAIJ *)mat->data;
1799:   Mat_SeqAIJ      *amat = (Mat_SeqAIJ *)aij->A->data, *bmat = (Mat_SeqAIJ *)aij->B->data;
1800:   PetscInt         i, j, cstart = mat->cmap->rstart;
1801:   PetscReal        sum = 0.0;
1802:   const MatScalar *v, *amata, *bmata;
1803:   PetscMPIInt      iN;

1805:   PetscFunctionBegin;
1806:   if (aij->size == 1) {
1807:     PetscCall(MatNorm(aij->A, type, norm));
1808:   } else {
1809:     PetscCall(MatSeqAIJGetArrayRead(aij->A, &amata));
1810:     PetscCall(MatSeqAIJGetArrayRead(aij->B, &bmata));
1811:     if (type == NORM_FROBENIUS) {
1812:       v = amata;
1813:       for (i = 0; i < amat->nz; i++) {
1814:         sum += PetscRealPart(PetscConj(*v) * (*v));
1815:         v++;
1816:       }
1817:       v = bmata;
1818:       for (i = 0; i < bmat->nz; i++) {
1819:         sum += PetscRealPart(PetscConj(*v) * (*v));
1820:         v++;
1821:       }
1822:       PetscCallMPI(MPIU_Allreduce(&sum, norm, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
1823:       *norm = PetscSqrtReal(*norm);
1824:       PetscCall(PetscLogFlops(2.0 * amat->nz + 2.0 * bmat->nz));
1825:     } else if (type == NORM_1) { /* max column norm */
1826:       PetscReal *tmp, *tmp2;
1827:       PetscInt  *jj, *garray = aij->garray;
1828:       PetscCall(PetscCalloc1(mat->cmap->N + 1, &tmp));
1829:       PetscCall(PetscMalloc1(mat->cmap->N + 1, &tmp2));
1830:       *norm = 0.0;
1831:       v     = amata;
1832:       jj    = amat->j;
1833:       for (j = 0; j < amat->nz; j++) {
1834:         tmp[cstart + *jj++] += PetscAbsScalar(*v);
1835:         v++;
1836:       }
1837:       v  = bmata;
1838:       jj = bmat->j;
1839:       for (j = 0; j < bmat->nz; j++) {
1840:         tmp[garray[*jj++]] += PetscAbsScalar(*v);
1841:         v++;
1842:       }
1843:       PetscCall(PetscMPIIntCast(mat->cmap->N, &iN));
1844:       PetscCallMPI(MPIU_Allreduce(tmp, tmp2, iN, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
1845:       for (j = 0; j < mat->cmap->N; j++) {
1846:         if (tmp2[j] > *norm) *norm = tmp2[j];
1847:       }
1848:       PetscCall(PetscFree(tmp));
1849:       PetscCall(PetscFree(tmp2));
1850:       PetscCall(PetscLogFlops(PetscMax(amat->nz + bmat->nz - 1, 0)));
1851:     } else if (type == NORM_INFINITY) { /* max row norm */
1852:       PetscReal ntemp = 0.0;
1853:       for (j = 0; j < aij->A->rmap->n; j++) {
1854:         v   = PetscSafePointerPlusOffset(amata, amat->i[j]);
1855:         sum = 0.0;
1856:         for (i = 0; i < amat->i[j + 1] - amat->i[j]; i++) {
1857:           sum += PetscAbsScalar(*v);
1858:           v++;
1859:         }
1860:         v = PetscSafePointerPlusOffset(bmata, bmat->i[j]);
1861:         for (i = 0; i < bmat->i[j + 1] - bmat->i[j]; i++) {
1862:           sum += PetscAbsScalar(*v);
1863:           v++;
1864:         }
1865:         if (sum > ntemp) ntemp = sum;
1866:       }
1867:       PetscCallMPI(MPIU_Allreduce(&ntemp, norm, 1, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)mat)));
1868:       PetscCall(PetscLogFlops(PetscMax(amat->nz + bmat->nz - 1, 0)));
1869:     } else SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "No support for two norm");
1870:     PetscCall(MatSeqAIJRestoreArrayRead(aij->A, &amata));
1871:     PetscCall(MatSeqAIJRestoreArrayRead(aij->B, &bmata));
1872:   }
1873:   PetscFunctionReturn(PETSC_SUCCESS);
1874: }

1876: static PetscErrorCode MatTranspose_MPIAIJ(Mat A, MatReuse reuse, Mat *matout)
1877: {
1878:   Mat_MPIAIJ      *a    = (Mat_MPIAIJ *)A->data, *b;
1879:   Mat_SeqAIJ      *Aloc = (Mat_SeqAIJ *)a->A->data, *Bloc = (Mat_SeqAIJ *)a->B->data, *sub_B_diag;
1880:   PetscInt         M = A->rmap->N, N = A->cmap->N, ma, na, mb, nb, row, *cols, *cols_tmp, *B_diag_ilen, i, ncol, A_diag_ncol;
1881:   const PetscInt  *ai, *aj, *bi, *bj, *B_diag_i;
1882:   Mat              B, A_diag, *B_diag;
1883:   const MatScalar *pbv, *bv;

1885:   PetscFunctionBegin;
1886:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1887:   ma = A->rmap->n;
1888:   na = A->cmap->n;
1889:   mb = a->B->rmap->n;
1890:   nb = a->B->cmap->n;
1891:   ai = Aloc->i;
1892:   aj = Aloc->j;
1893:   bi = Bloc->i;
1894:   bj = Bloc->j;
1895:   if (reuse == MAT_INITIAL_MATRIX || *matout == A) {
1896:     PetscInt            *d_nnz, *g_nnz, *o_nnz;
1897:     PetscSFNode         *oloc;
1898:     PETSC_UNUSED PetscSF sf;

1900:     PetscCall(PetscMalloc4(na, &d_nnz, na, &o_nnz, nb, &g_nnz, nb, &oloc));
1901:     /* compute d_nnz for preallocation */
1902:     PetscCall(PetscArrayzero(d_nnz, na));
1903:     for (i = 0; i < ai[ma]; i++) d_nnz[aj[i]]++;
1904:     /* compute local off-diagonal contributions */
1905:     PetscCall(PetscArrayzero(g_nnz, nb));
1906:     for (i = 0; i < bi[ma]; i++) g_nnz[bj[i]]++;
1907:     /* map those to global */
1908:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1909:     PetscCall(PetscSFSetGraphLayout(sf, A->cmap, nb, NULL, PETSC_USE_POINTER, a->garray));
1910:     PetscCall(PetscSFSetFromOptions(sf));
1911:     PetscCall(PetscArrayzero(o_nnz, na));
1912:     PetscCall(PetscSFReduceBegin(sf, MPIU_INT, g_nnz, o_nnz, MPI_SUM));
1913:     PetscCall(PetscSFReduceEnd(sf, MPIU_INT, g_nnz, o_nnz, MPI_SUM));
1914:     PetscCall(PetscSFDestroy(&sf));

1916:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
1917:     PetscCall(MatSetSizes(B, A->cmap->n, A->rmap->n, N, M));
1918:     PetscCall(MatSetBlockSizes(B, PetscAbs(A->cmap->bs), PetscAbs(A->rmap->bs)));
1919:     PetscCall(MatSetType(B, ((PetscObject)A)->type_name));
1920:     PetscCall(MatMPIAIJSetPreallocation(B, 0, d_nnz, 0, o_nnz));
1921:     PetscCall(PetscFree4(d_nnz, o_nnz, g_nnz, oloc));
1922:   } else {
1923:     B = *matout;
1924:     PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
1925:   }

1927:   b           = (Mat_MPIAIJ *)B->data;
1928:   A_diag      = a->A;
1929:   B_diag      = &b->A;
1930:   sub_B_diag  = (Mat_SeqAIJ *)(*B_diag)->data;
1931:   A_diag_ncol = A_diag->cmap->N;
1932:   B_diag_ilen = sub_B_diag->ilen;
1933:   B_diag_i    = sub_B_diag->i;

1935:   /* Set ilen for diagonal of B */
1936:   for (i = 0; i < A_diag_ncol; i++) B_diag_ilen[i] = B_diag_i[i + 1] - B_diag_i[i];

1938:   /* Transpose the diagonal part of the matrix. In contrast to the off-diagonal part, this can be done
1939:   very quickly (=without using MatSetValues), because all writes are local. */
1940:   PetscCall(MatTransposeSetPrecursor(A_diag, *B_diag));
1941:   PetscCall(MatTranspose(A_diag, MAT_REUSE_MATRIX, B_diag));

1943:   /* copy over the B part */
1944:   PetscCall(PetscMalloc1(bi[mb], &cols));
1945:   PetscCall(MatSeqAIJGetArrayRead(a->B, &bv));
1946:   pbv = bv;
1947:   row = A->rmap->rstart;
1948:   for (i = 0; i < bi[mb]; i++) cols[i] = a->garray[bj[i]];
1949:   cols_tmp = cols;
1950:   for (i = 0; i < mb; i++) {
1951:     ncol = bi[i + 1] - bi[i];
1952:     PetscCall(MatSetValues(B, ncol, cols_tmp, 1, &row, pbv, INSERT_VALUES));
1953:     row++;
1954:     if (pbv) pbv += ncol;
1955:     if (cols_tmp) cols_tmp += ncol;
1956:   }
1957:   PetscCall(PetscFree(cols));
1958:   PetscCall(MatSeqAIJRestoreArrayRead(a->B, &bv));

1960:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
1961:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
1962:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) {
1963:     *matout = B;
1964:   } else {
1965:     PetscCall(MatHeaderMerge(A, &B));
1966:   }
1967:   PetscFunctionReturn(PETSC_SUCCESS);
1968: }

1970: static PetscErrorCode MatDiagonalScale_MPIAIJ(Mat mat, Vec ll, Vec rr)
1971: {
1972:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;
1973:   Mat         a = aij->A, b = aij->B;
1974:   PetscInt    s1, s2, s3;

1976:   PetscFunctionBegin;
1977:   PetscCall(MatGetLocalSize(mat, &s2, &s3));
1978:   if (rr) {
1979:     PetscCall(VecGetLocalSize(rr, &s1));
1980:     PetscCheck(s1 == s3, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "right vector non-conforming local size");
1981:     /* Overlap communication with computation. */
1982:     PetscCall(VecScatterBegin(aij->Mvctx, rr, aij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1983:   }
1984:   if (ll) {
1985:     PetscCall(VecGetLocalSize(ll, &s1));
1986:     PetscCheck(s1 == s2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "left vector non-conforming local size");
1987:     PetscUseTypeMethod(b, diagonalscale, ll, NULL);
1988:   }
1989:   /* scale  the diagonal block */
1990:   PetscUseTypeMethod(a, diagonalscale, ll, rr);

1992:   if (rr) {
1993:     /* Do a scatter end and then right scale the off-diagonal block */
1994:     PetscCall(VecScatterEnd(aij->Mvctx, rr, aij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1995:     PetscUseTypeMethod(b, diagonalscale, NULL, aij->lvec);
1996:   }
1997:   PetscFunctionReturn(PETSC_SUCCESS);
1998: }

2000: static PetscErrorCode MatSetUnfactored_MPIAIJ(Mat A)
2001: {
2002:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2004:   PetscFunctionBegin;
2005:   PetscCall(MatSetUnfactored(a->A));
2006:   PetscFunctionReturn(PETSC_SUCCESS);
2007: }

2009: static PetscErrorCode MatEqual_MPIAIJ(Mat A, Mat B, PetscBool *flag)
2010: {
2011:   Mat_MPIAIJ *matB = (Mat_MPIAIJ *)B->data, *matA = (Mat_MPIAIJ *)A->data;
2012:   Mat         a, b, c, d;
2013:   PetscBool   flg;

2015:   PetscFunctionBegin;
2016:   a = matA->A;
2017:   b = matA->B;
2018:   c = matB->A;
2019:   d = matB->B;

2021:   PetscCall(MatEqual(a, c, &flg));
2022:   if (flg) PetscCall(MatEqual(b, d, &flg));
2023:   PetscCallMPI(MPIU_Allreduce(&flg, flag, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)A)));
2024:   PetscFunctionReturn(PETSC_SUCCESS);
2025: }

2027: static PetscErrorCode MatCopy_MPIAIJ(Mat A, Mat B, MatStructure str)
2028: {
2029:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;
2030:   Mat_MPIAIJ *b = (Mat_MPIAIJ *)B->data;

2032:   PetscFunctionBegin;
2033:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
2034:   if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
2035:     /* because of the column compression in the off-processor part of the matrix a->B,
2036:        the number of columns in a->B and b->B may be different, hence we cannot call
2037:        the MatCopy() directly on the two parts. If need be, we can provide a more
2038:        efficient copy than the MatCopy_Basic() by first uncompressing the a->B matrices
2039:        then copying the submatrices */
2040:     PetscCall(MatCopy_Basic(A, B, str));
2041:   } else {
2042:     PetscCall(MatCopy(a->A, b->A, str));
2043:     PetscCall(MatCopy(a->B, b->B, str));
2044:   }
2045:   PetscCall(PetscObjectStateIncrease((PetscObject)B));
2046:   PetscFunctionReturn(PETSC_SUCCESS);
2047: }

2049: /*
2050:    Computes the number of nonzeros per row needed for preallocation when X and Y
2051:    have different nonzero structure.
2052: */
2053: PetscErrorCode MatAXPYGetPreallocation_MPIX_private(PetscInt m, const PetscInt *xi, const PetscInt *xj, const PetscInt *xltog, const PetscInt *yi, const PetscInt *yj, const PetscInt *yltog, PetscInt *nnz)
2054: {
2055:   PetscInt i, j, k, nzx, nzy;

2057:   PetscFunctionBegin;
2058:   /* Set the number of nonzeros in the new matrix */
2059:   for (i = 0; i < m; i++) {
2060:     const PetscInt *xjj = PetscSafePointerPlusOffset(xj, xi[i]), *yjj = PetscSafePointerPlusOffset(yj, yi[i]);
2061:     nzx    = xi[i + 1] - xi[i];
2062:     nzy    = yi[i + 1] - yi[i];
2063:     nnz[i] = 0;
2064:     for (j = 0, k = 0; j < nzx; j++) {                                /* Point in X */
2065:       for (; k < nzy && yltog[yjj[k]] < xltog[xjj[j]]; k++) nnz[i]++; /* Catch up to X */
2066:       if (k < nzy && yltog[yjj[k]] == xltog[xjj[j]]) k++;             /* Skip duplicate */
2067:       nnz[i]++;
2068:     }
2069:     for (; k < nzy; k++) nnz[i]++;
2070:   }
2071:   PetscFunctionReturn(PETSC_SUCCESS);
2072: }

2074: /* This is the same as MatAXPYGetPreallocation_SeqAIJ, except that the local-to-global map is provided */
2075: static PetscErrorCode MatAXPYGetPreallocation_MPIAIJ(Mat Y, const PetscInt *yltog, Mat X, const PetscInt *xltog, PetscInt *nnz)
2076: {
2077:   PetscInt    m = Y->rmap->N;
2078:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data;
2079:   Mat_SeqAIJ *y = (Mat_SeqAIJ *)Y->data;

2081:   PetscFunctionBegin;
2082:   PetscCall(MatAXPYGetPreallocation_MPIX_private(m, x->i, x->j, xltog, y->i, y->j, yltog, nnz));
2083:   PetscFunctionReturn(PETSC_SUCCESS);
2084: }

2086: static PetscErrorCode MatAXPY_MPIAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
2087: {
2088:   Mat_MPIAIJ *xx = (Mat_MPIAIJ *)X->data, *yy = (Mat_MPIAIJ *)Y->data;

2090:   PetscFunctionBegin;
2091:   if (str == SAME_NONZERO_PATTERN) {
2092:     PetscCall(MatAXPY(yy->A, a, xx->A, str));
2093:     PetscCall(MatAXPY(yy->B, a, xx->B, str));
2094:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
2095:     PetscCall(MatAXPY_Basic(Y, a, X, str));
2096:   } else {
2097:     Mat       B;
2098:     PetscInt *nnz_d, *nnz_o;

2100:     PetscCall(PetscMalloc1(yy->A->rmap->N, &nnz_d));
2101:     PetscCall(PetscMalloc1(yy->B->rmap->N, &nnz_o));
2102:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
2103:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
2104:     PetscCall(MatSetLayouts(B, Y->rmap, Y->cmap));
2105:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
2106:     PetscCall(MatAXPYGetPreallocation_SeqAIJ(yy->A, xx->A, nnz_d));
2107:     PetscCall(MatAXPYGetPreallocation_MPIAIJ(yy->B, yy->garray, xx->B, xx->garray, nnz_o));
2108:     PetscCall(MatMPIAIJSetPreallocation(B, 0, nnz_d, 0, nnz_o));
2109:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
2110:     PetscCall(MatHeaderMerge(Y, &B));
2111:     PetscCall(PetscFree(nnz_d));
2112:     PetscCall(PetscFree(nnz_o));
2113:   }
2114:   PetscFunctionReturn(PETSC_SUCCESS);
2115: }

2117: PETSC_INTERN PetscErrorCode MatConjugate_SeqAIJ(Mat);

2119: static PetscErrorCode MatConjugate_MPIAIJ(Mat mat)
2120: {
2121:   PetscFunctionBegin;
2122:   if (PetscDefined(USE_COMPLEX)) {
2123:     Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;

2125:     PetscCall(MatConjugate_SeqAIJ(aij->A));
2126:     PetscCall(MatConjugate_SeqAIJ(aij->B));
2127:   }
2128:   PetscFunctionReturn(PETSC_SUCCESS);
2129: }

2131: static PetscErrorCode MatRealPart_MPIAIJ(Mat A)
2132: {
2133:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2135:   PetscFunctionBegin;
2136:   PetscCall(MatRealPart(a->A));
2137:   PetscCall(MatRealPart(a->B));
2138:   PetscFunctionReturn(PETSC_SUCCESS);
2139: }

2141: static PetscErrorCode MatImaginaryPart_MPIAIJ(Mat A)
2142: {
2143:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2145:   PetscFunctionBegin;
2146:   PetscCall(MatImaginaryPart(a->A));
2147:   PetscCall(MatImaginaryPart(a->B));
2148:   PetscFunctionReturn(PETSC_SUCCESS);
2149: }

2151: static PetscErrorCode MatGetRowMaxAbs_MPIAIJ(Mat A, Vec v, PetscInt idx[])
2152: {
2153:   Mat_MPIAIJ        *a = (Mat_MPIAIJ *)A->data;
2154:   PetscInt           i, *idxb = NULL, m = A->rmap->n;
2155:   PetscScalar       *va, *vv;
2156:   Vec                vB, vA;
2157:   const PetscScalar *vb;

2159:   PetscFunctionBegin;
2160:   PetscCall(MatCreateVecs(a->A, NULL, &vA));
2161:   PetscCall(MatGetRowMaxAbs(a->A, vA, idx));

2163:   PetscCall(VecGetArrayWrite(vA, &va));
2164:   if (idx) {
2165:     for (i = 0; i < m; i++) {
2166:       if (PetscAbsScalar(va[i])) idx[i] += A->cmap->rstart;
2167:     }
2168:   }

2170:   PetscCall(MatCreateVecs(a->B, NULL, &vB));
2171:   PetscCall(PetscMalloc1(m, &idxb));
2172:   PetscCall(MatGetRowMaxAbs(a->B, vB, idxb));

2174:   PetscCall(VecGetArrayWrite(v, &vv));
2175:   PetscCall(VecGetArrayRead(vB, &vb));
2176:   for (i = 0; i < m; i++) {
2177:     if (PetscAbsScalar(va[i]) < PetscAbsScalar(vb[i])) {
2178:       vv[i] = vb[i];
2179:       if (idx) idx[i] = a->garray[idxb[i]];
2180:     } else {
2181:       vv[i] = va[i];
2182:       if (idx && PetscAbsScalar(va[i]) == PetscAbsScalar(vb[i]) && idxb[i] != -1 && idx[i] > a->garray[idxb[i]]) idx[i] = a->garray[idxb[i]];
2183:     }
2184:   }
2185:   PetscCall(VecRestoreArrayWrite(vA, &vv));
2186:   PetscCall(VecRestoreArrayWrite(vA, &va));
2187:   PetscCall(VecRestoreArrayRead(vB, &vb));
2188:   PetscCall(PetscFree(idxb));
2189:   PetscCall(VecDestroy(&vA));
2190:   PetscCall(VecDestroy(&vB));
2191:   PetscFunctionReturn(PETSC_SUCCESS);
2192: }

2194: static PetscErrorCode MatGetRowSumAbs_MPIAIJ(Mat A, Vec v)
2195: {
2196:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;
2197:   Vec         vB, vA;

2199:   PetscFunctionBegin;
2200:   PetscCall(MatCreateVecs(a->A, NULL, &vA));
2201:   PetscCall(MatGetRowSumAbs(a->A, vA));
2202:   PetscCall(MatCreateVecs(a->B, NULL, &vB));
2203:   PetscCall(MatGetRowSumAbs(a->B, vB));
2204:   PetscCall(VecAXPY(vA, 1.0, vB));
2205:   PetscCall(VecDestroy(&vB));
2206:   PetscCall(VecCopy(vA, v));
2207:   PetscCall(VecDestroy(&vA));
2208:   PetscFunctionReturn(PETSC_SUCCESS);
2209: }

2211: static PetscErrorCode MatGetRowMinAbs_MPIAIJ(Mat A, Vec v, PetscInt idx[])
2212: {
2213:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ *)A->data;
2214:   PetscInt           m = A->rmap->n, n = A->cmap->n;
2215:   PetscInt           cstart = A->cmap->rstart, cend = A->cmap->rend;
2216:   PetscInt          *cmap = mat->garray;
2217:   PetscInt          *diagIdx, *offdiagIdx;
2218:   Vec                diagV, offdiagV;
2219:   PetscScalar       *a, *diagA, *offdiagA;
2220:   const PetscScalar *ba, *bav;
2221:   PetscInt           r, j, col, ncols, *bi, *bj;
2222:   Mat                B = mat->B;
2223:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;

2225:   PetscFunctionBegin;
2226:   /* When a process holds entire A and other processes have no entry */
2227:   if (A->cmap->N == n) {
2228:     PetscCall(VecGetArrayWrite(v, &diagA));
2229:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, m, diagA, &diagV));
2230:     PetscCall(MatGetRowMinAbs(mat->A, diagV, idx));
2231:     PetscCall(VecDestroy(&diagV));
2232:     PetscCall(VecRestoreArrayWrite(v, &diagA));
2233:     PetscFunctionReturn(PETSC_SUCCESS);
2234:   } else if (n == 0) {
2235:     if (m) {
2236:       PetscCall(VecGetArrayWrite(v, &a));
2237:       for (r = 0; r < m; r++) {
2238:         a[r] = 0.0;
2239:         if (idx) idx[r] = -1;
2240:       }
2241:       PetscCall(VecRestoreArrayWrite(v, &a));
2242:     }
2243:     PetscFunctionReturn(PETSC_SUCCESS);
2244:   }

2246:   PetscCall(PetscMalloc2(m, &diagIdx, m, &offdiagIdx));
2247:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &diagV));
2248:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &offdiagV));
2249:   PetscCall(MatGetRowMinAbs(mat->A, diagV, diagIdx));

2251:   /* Get offdiagIdx[] for implicit 0.0 */
2252:   PetscCall(MatSeqAIJGetArrayRead(B, &bav));
2253:   ba = bav;
2254:   bi = b->i;
2255:   bj = b->j;
2256:   PetscCall(VecGetArrayWrite(offdiagV, &offdiagA));
2257:   for (r = 0; r < m; r++) {
2258:     ncols = bi[r + 1] - bi[r];
2259:     if (ncols == A->cmap->N - n) { /* Brow is dense */
2260:       offdiagA[r]   = *ba;
2261:       offdiagIdx[r] = cmap[0];
2262:     } else { /* Brow is sparse so already KNOW maximum is 0.0 or higher */
2263:       offdiagA[r] = 0.0;

2265:       /* Find first hole in the cmap */
2266:       for (j = 0; j < ncols; j++) {
2267:         col = cmap[bj[j]]; /* global column number = cmap[B column number] */
2268:         if (col > j && j < cstart) {
2269:           offdiagIdx[r] = j; /* global column number of first implicit 0.0 */
2270:           break;
2271:         } else if (col > j + n && j >= cstart) {
2272:           offdiagIdx[r] = j + n; /* global column number of first implicit 0.0 */
2273:           break;
2274:         }
2275:       }
2276:       if (j == ncols && ncols < A->cmap->N - n) {
2277:         /* a hole is outside compressed Bcols */
2278:         if (ncols == 0) {
2279:           if (cstart) {
2280:             offdiagIdx[r] = 0;
2281:           } else offdiagIdx[r] = cend;
2282:         } else { /* ncols > 0 */
2283:           offdiagIdx[r] = cmap[ncols - 1] + 1;
2284:           if (offdiagIdx[r] == cstart) offdiagIdx[r] += n;
2285:         }
2286:       }
2287:     }

2289:     for (j = 0; j < ncols; j++) {
2290:       if (PetscAbsScalar(offdiagA[r]) > PetscAbsScalar(*ba)) {
2291:         offdiagA[r]   = *ba;
2292:         offdiagIdx[r] = cmap[*bj];
2293:       }
2294:       ba++;
2295:       bj++;
2296:     }
2297:   }

2299:   PetscCall(VecGetArrayWrite(v, &a));
2300:   PetscCall(VecGetArrayRead(diagV, (const PetscScalar **)&diagA));
2301:   for (r = 0; r < m; ++r) {
2302:     if (PetscAbsScalar(diagA[r]) < PetscAbsScalar(offdiagA[r])) {
2303:       a[r] = diagA[r];
2304:       if (idx) idx[r] = cstart + diagIdx[r];
2305:     } else if (PetscAbsScalar(diagA[r]) == PetscAbsScalar(offdiagA[r])) {
2306:       a[r] = diagA[r];
2307:       if (idx) {
2308:         if (cstart + diagIdx[r] <= offdiagIdx[r]) {
2309:           idx[r] = cstart + diagIdx[r];
2310:         } else idx[r] = offdiagIdx[r];
2311:       }
2312:     } else {
2313:       a[r] = offdiagA[r];
2314:       if (idx) idx[r] = offdiagIdx[r];
2315:     }
2316:   }
2317:   PetscCall(MatSeqAIJRestoreArrayRead(B, &bav));
2318:   PetscCall(VecRestoreArrayWrite(v, &a));
2319:   PetscCall(VecRestoreArrayRead(diagV, (const PetscScalar **)&diagA));
2320:   PetscCall(VecRestoreArrayWrite(offdiagV, &offdiagA));
2321:   PetscCall(VecDestroy(&diagV));
2322:   PetscCall(VecDestroy(&offdiagV));
2323:   PetscCall(PetscFree2(diagIdx, offdiagIdx));
2324:   PetscFunctionReturn(PETSC_SUCCESS);
2325: }

2327: static PetscErrorCode MatGetRowMin_MPIAIJ(Mat A, Vec v, PetscInt idx[])
2328: {
2329:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ *)A->data;
2330:   PetscInt           m = A->rmap->n, n = A->cmap->n;
2331:   PetscInt           cstart = A->cmap->rstart, cend = A->cmap->rend;
2332:   PetscInt          *cmap = mat->garray;
2333:   PetscInt          *diagIdx, *offdiagIdx;
2334:   Vec                diagV, offdiagV;
2335:   PetscScalar       *a, *diagA, *offdiagA;
2336:   const PetscScalar *ba, *bav;
2337:   PetscInt           r, j, col, ncols, *bi, *bj;
2338:   Mat                B = mat->B;
2339:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;

2341:   PetscFunctionBegin;
2342:   /* When a process holds entire A and other processes have no entry */
2343:   if (A->cmap->N == n) {
2344:     PetscCall(VecGetArrayWrite(v, &diagA));
2345:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, m, diagA, &diagV));
2346:     PetscCall(MatGetRowMin(mat->A, diagV, idx));
2347:     PetscCall(VecDestroy(&diagV));
2348:     PetscCall(VecRestoreArrayWrite(v, &diagA));
2349:     PetscFunctionReturn(PETSC_SUCCESS);
2350:   } else if (n == 0) {
2351:     if (m) {
2352:       PetscCall(VecGetArrayWrite(v, &a));
2353:       for (r = 0; r < m; r++) {
2354:         a[r] = PETSC_MAX_REAL;
2355:         if (idx) idx[r] = -1;
2356:       }
2357:       PetscCall(VecRestoreArrayWrite(v, &a));
2358:     }
2359:     PetscFunctionReturn(PETSC_SUCCESS);
2360:   }

2362:   PetscCall(PetscCalloc2(m, &diagIdx, m, &offdiagIdx));
2363:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &diagV));
2364:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &offdiagV));
2365:   PetscCall(MatGetRowMin(mat->A, diagV, diagIdx));

2367:   /* Get offdiagIdx[] for implicit 0.0 */
2368:   PetscCall(MatSeqAIJGetArrayRead(B, &bav));
2369:   ba = bav;
2370:   bi = b->i;
2371:   bj = b->j;
2372:   PetscCall(VecGetArrayWrite(offdiagV, &offdiagA));
2373:   for (r = 0; r < m; r++) {
2374:     ncols = bi[r + 1] - bi[r];
2375:     if (ncols == A->cmap->N - n) { /* Brow is dense */
2376:       offdiagA[r]   = *ba;
2377:       offdiagIdx[r] = cmap[0];
2378:     } else { /* Brow is sparse so already KNOW maximum is 0.0 or higher */
2379:       offdiagA[r] = 0.0;

2381:       /* Find first hole in the cmap */
2382:       for (j = 0; j < ncols; j++) {
2383:         col = cmap[bj[j]]; /* global column number = cmap[B column number] */
2384:         if (col > j && j < cstart) {
2385:           offdiagIdx[r] = j; /* global column number of first implicit 0.0 */
2386:           break;
2387:         } else if (col > j + n && j >= cstart) {
2388:           offdiagIdx[r] = j + n; /* global column number of first implicit 0.0 */
2389:           break;
2390:         }
2391:       }
2392:       if (j == ncols && ncols < A->cmap->N - n) {
2393:         /* a hole is outside compressed Bcols */
2394:         if (ncols == 0) {
2395:           if (cstart) {
2396:             offdiagIdx[r] = 0;
2397:           } else offdiagIdx[r] = cend;
2398:         } else { /* ncols > 0 */
2399:           offdiagIdx[r] = cmap[ncols - 1] + 1;
2400:           if (offdiagIdx[r] == cstart) offdiagIdx[r] += n;
2401:         }
2402:       }
2403:     }

2405:     for (j = 0; j < ncols; j++) {
2406:       if (PetscRealPart(offdiagA[r]) > PetscRealPart(*ba)) {
2407:         offdiagA[r]   = *ba;
2408:         offdiagIdx[r] = cmap[*bj];
2409:       }
2410:       ba++;
2411:       bj++;
2412:     }
2413:   }

2415:   PetscCall(VecGetArrayWrite(v, &a));
2416:   PetscCall(VecGetArrayRead(diagV, (const PetscScalar **)&diagA));
2417:   for (r = 0; r < m; ++r) {
2418:     if (PetscRealPart(diagA[r]) < PetscRealPart(offdiagA[r])) {
2419:       a[r] = diagA[r];
2420:       if (idx) idx[r] = cstart + diagIdx[r];
2421:     } else if (PetscRealPart(diagA[r]) == PetscRealPart(offdiagA[r])) {
2422:       a[r] = diagA[r];
2423:       if (idx) {
2424:         if (cstart + diagIdx[r] <= offdiagIdx[r]) {
2425:           idx[r] = cstart + diagIdx[r];
2426:         } else idx[r] = offdiagIdx[r];
2427:       }
2428:     } else {
2429:       a[r] = offdiagA[r];
2430:       if (idx) idx[r] = offdiagIdx[r];
2431:     }
2432:   }
2433:   PetscCall(MatSeqAIJRestoreArrayRead(B, &bav));
2434:   PetscCall(VecRestoreArrayWrite(v, &a));
2435:   PetscCall(VecRestoreArrayRead(diagV, (const PetscScalar **)&diagA));
2436:   PetscCall(VecRestoreArrayWrite(offdiagV, &offdiagA));
2437:   PetscCall(VecDestroy(&diagV));
2438:   PetscCall(VecDestroy(&offdiagV));
2439:   PetscCall(PetscFree2(diagIdx, offdiagIdx));
2440:   PetscFunctionReturn(PETSC_SUCCESS);
2441: }

2443: static PetscErrorCode MatGetRowMax_MPIAIJ(Mat A, Vec v, PetscInt idx[])
2444: {
2445:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ *)A->data;
2446:   PetscInt           m = A->rmap->n, n = A->cmap->n;
2447:   PetscInt           cstart = A->cmap->rstart, cend = A->cmap->rend;
2448:   PetscInt          *cmap = mat->garray;
2449:   PetscInt          *diagIdx, *offdiagIdx;
2450:   Vec                diagV, offdiagV;
2451:   PetscScalar       *a, *diagA, *offdiagA;
2452:   const PetscScalar *ba, *bav;
2453:   PetscInt           r, j, col, ncols, *bi, *bj;
2454:   Mat                B = mat->B;
2455:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;

2457:   PetscFunctionBegin;
2458:   /* When a process holds entire A and other processes have no entry */
2459:   if (A->cmap->N == n) {
2460:     PetscCall(VecGetArrayWrite(v, &diagA));
2461:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, m, diagA, &diagV));
2462:     PetscCall(MatGetRowMax(mat->A, diagV, idx));
2463:     PetscCall(VecDestroy(&diagV));
2464:     PetscCall(VecRestoreArrayWrite(v, &diagA));
2465:     PetscFunctionReturn(PETSC_SUCCESS);
2466:   } else if (n == 0) {
2467:     if (m) {
2468:       PetscCall(VecGetArrayWrite(v, &a));
2469:       for (r = 0; r < m; r++) {
2470:         a[r] = PETSC_MIN_REAL;
2471:         if (idx) idx[r] = -1;
2472:       }
2473:       PetscCall(VecRestoreArrayWrite(v, &a));
2474:     }
2475:     PetscFunctionReturn(PETSC_SUCCESS);
2476:   }

2478:   PetscCall(PetscMalloc2(m, &diagIdx, m, &offdiagIdx));
2479:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &diagV));
2480:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &offdiagV));
2481:   PetscCall(MatGetRowMax(mat->A, diagV, diagIdx));

2483:   /* Get offdiagIdx[] for implicit 0.0 */
2484:   PetscCall(MatSeqAIJGetArrayRead(B, &bav));
2485:   ba = bav;
2486:   bi = b->i;
2487:   bj = b->j;
2488:   PetscCall(VecGetArrayWrite(offdiagV, &offdiagA));
2489:   for (r = 0; r < m; r++) {
2490:     ncols = bi[r + 1] - bi[r];
2491:     if (ncols == A->cmap->N - n) { /* Brow is dense */
2492:       offdiagA[r]   = *ba;
2493:       offdiagIdx[r] = cmap[0];
2494:     } else { /* Brow is sparse so already KNOW maximum is 0.0 or higher */
2495:       offdiagA[r] = 0.0;

2497:       /* Find first hole in the cmap */
2498:       for (j = 0; j < ncols; j++) {
2499:         col = cmap[bj[j]]; /* global column number = cmap[B column number] */
2500:         if (col > j && j < cstart) {
2501:           offdiagIdx[r] = j; /* global column number of first implicit 0.0 */
2502:           break;
2503:         } else if (col > j + n && j >= cstart) {
2504:           offdiagIdx[r] = j + n; /* global column number of first implicit 0.0 */
2505:           break;
2506:         }
2507:       }
2508:       if (j == ncols && ncols < A->cmap->N - n) {
2509:         /* a hole is outside compressed Bcols */
2510:         if (ncols == 0) {
2511:           if (cstart) {
2512:             offdiagIdx[r] = 0;
2513:           } else offdiagIdx[r] = cend;
2514:         } else { /* ncols > 0 */
2515:           offdiagIdx[r] = cmap[ncols - 1] + 1;
2516:           if (offdiagIdx[r] == cstart) offdiagIdx[r] += n;
2517:         }
2518:       }
2519:     }

2521:     for (j = 0; j < ncols; j++) {
2522:       if (PetscRealPart(offdiagA[r]) < PetscRealPart(*ba)) {
2523:         offdiagA[r]   = *ba;
2524:         offdiagIdx[r] = cmap[*bj];
2525:       }
2526:       ba++;
2527:       bj++;
2528:     }
2529:   }

2531:   PetscCall(VecGetArrayWrite(v, &a));
2532:   PetscCall(VecGetArrayRead(diagV, (const PetscScalar **)&diagA));
2533:   for (r = 0; r < m; ++r) {
2534:     if (PetscRealPart(diagA[r]) > PetscRealPart(offdiagA[r])) {
2535:       a[r] = diagA[r];
2536:       if (idx) idx[r] = cstart + diagIdx[r];
2537:     } else if (PetscRealPart(diagA[r]) == PetscRealPart(offdiagA[r])) {
2538:       a[r] = diagA[r];
2539:       if (idx) {
2540:         if (cstart + diagIdx[r] <= offdiagIdx[r]) {
2541:           idx[r] = cstart + diagIdx[r];
2542:         } else idx[r] = offdiagIdx[r];
2543:       }
2544:     } else {
2545:       a[r] = offdiagA[r];
2546:       if (idx) idx[r] = offdiagIdx[r];
2547:     }
2548:   }
2549:   PetscCall(MatSeqAIJRestoreArrayRead(B, &bav));
2550:   PetscCall(VecRestoreArrayWrite(v, &a));
2551:   PetscCall(VecRestoreArrayRead(diagV, (const PetscScalar **)&diagA));
2552:   PetscCall(VecRestoreArrayWrite(offdiagV, &offdiagA));
2553:   PetscCall(VecDestroy(&diagV));
2554:   PetscCall(VecDestroy(&offdiagV));
2555:   PetscCall(PetscFree2(diagIdx, offdiagIdx));
2556:   PetscFunctionReturn(PETSC_SUCCESS);
2557: }

2559: PetscErrorCode MatGetSeqNonzeroStructure_MPIAIJ(Mat mat, Mat *newmat)
2560: {
2561:   Mat *dummy;

2563:   PetscFunctionBegin;
2564:   PetscCall(MatCreateSubMatrix_MPIAIJ_All(mat, MAT_DO_NOT_GET_VALUES, MAT_INITIAL_MATRIX, &dummy));
2565:   *newmat = *dummy;
2566:   PetscCall(PetscFree(dummy));
2567:   PetscFunctionReturn(PETSC_SUCCESS);
2568: }

2570: static PetscErrorCode MatInvertBlockDiagonal_MPIAIJ(Mat A, const PetscScalar **values)
2571: {
2572:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2574:   PetscFunctionBegin;
2575:   PetscCall(MatInvertBlockDiagonal(a->A, values));
2576:   A->factorerrortype = a->A->factorerrortype;
2577:   PetscFunctionReturn(PETSC_SUCCESS);
2578: }

2580: static PetscErrorCode MatSetRandom_MPIAIJ(Mat x, PetscRandom rctx)
2581: {
2582:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)x->data;

2584:   PetscFunctionBegin;
2585:   PetscCheck(x->assembled || x->preallocated, PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_WRONGSTATE, "MatSetRandom on an unassembled and unpreallocated MATMPIAIJ is not allowed");
2586:   PetscCall(MatSetRandom(aij->A, rctx));
2587:   if (x->assembled) {
2588:     PetscCall(MatSetRandom(aij->B, rctx));
2589:   } else {
2590:     PetscCall(MatSetRandomSkipColumnRange_SeqAIJ_Private(aij->B, x->cmap->rstart, x->cmap->rend, rctx));
2591:   }
2592:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
2593:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
2594:   PetscFunctionReturn(PETSC_SUCCESS);
2595: }

2597: static PetscErrorCode MatMPIAIJSetUseScalableIncreaseOverlap_MPIAIJ(Mat A, PetscBool sc)
2598: {
2599:   PetscFunctionBegin;
2600:   if (sc) A->ops->increaseoverlap = MatIncreaseOverlap_MPIAIJ_Scalable;
2601:   else A->ops->increaseoverlap = MatIncreaseOverlap_MPIAIJ;
2602:   PetscFunctionReturn(PETSC_SUCCESS);
2603: }

2605: /*@
2606:   MatMPIAIJGetNumberNonzeros - gets the number of nonzeros in the matrix on this MPI rank

2608:   Not Collective

2610:   Input Parameter:
2611: . A - the matrix

2613:   Output Parameter:
2614: . nz - the number of nonzeros

2616:   Level: advanced

2618: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`
2619: @*/
2620: PetscErrorCode MatMPIAIJGetNumberNonzeros(Mat A, PetscCount *nz)
2621: {
2622:   Mat_MPIAIJ *maij = (Mat_MPIAIJ *)A->data;
2623:   Mat_SeqAIJ *aaij = (Mat_SeqAIJ *)maij->A->data, *baij = (Mat_SeqAIJ *)maij->B->data;
2624:   PetscBool   isaij;

2626:   PetscFunctionBegin;
2627:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIAIJ, &isaij));
2628:   PetscCheck(isaij, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Not for type %s", ((PetscObject)A)->type_name);
2629:   *nz = aaij->i[A->rmap->n] + baij->i[A->rmap->n];
2630:   PetscFunctionReturn(PETSC_SUCCESS);
2631: }

2633: /*@
2634:   MatMPIAIJSetUseScalableIncreaseOverlap - Determine if the matrix uses a scalable algorithm to compute the overlap

2636:   Collective

2638:   Input Parameters:
2639: + A  - the matrix
2640: - sc - `PETSC_TRUE` indicates use the scalable algorithm (default is not to use the scalable algorithm)

2642:   Level: advanced

2644: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`
2645: @*/
2646: PetscErrorCode MatMPIAIJSetUseScalableIncreaseOverlap(Mat A, PetscBool sc)
2647: {
2648:   PetscFunctionBegin;
2649:   PetscTryMethod(A, "MatMPIAIJSetUseScalableIncreaseOverlap_C", (Mat, PetscBool), (A, sc));
2650:   PetscFunctionReturn(PETSC_SUCCESS);
2651: }

2653: PetscErrorCode MatSetFromOptions_MPIAIJ(Mat A, PetscOptionItems *PetscOptionsObject)
2654: {
2655:   PetscBool sc = PETSC_FALSE, flg;

2657:   PetscFunctionBegin;
2658:   PetscOptionsHeadBegin(PetscOptionsObject, "MPIAIJ options");
2659:   if (A->ops->increaseoverlap == MatIncreaseOverlap_MPIAIJ_Scalable) sc = PETSC_TRUE;
2660:   PetscCall(PetscOptionsBool("-mat_increase_overlap_scalable", "Use a scalable algorithm to compute the overlap", "MatIncreaseOverlap", sc, &sc, &flg));
2661:   if (flg) PetscCall(MatMPIAIJSetUseScalableIncreaseOverlap(A, sc));
2662:   PetscOptionsHeadEnd();
2663:   PetscFunctionReturn(PETSC_SUCCESS);
2664: }

2666: static PetscErrorCode MatShift_MPIAIJ(Mat Y, PetscScalar a)
2667: {
2668:   Mat_MPIAIJ *maij = (Mat_MPIAIJ *)Y->data;
2669:   Mat_SeqAIJ *aij  = (Mat_SeqAIJ *)maij->A->data;

2671:   PetscFunctionBegin;
2672:   if (!Y->preallocated) {
2673:     PetscCall(MatMPIAIJSetPreallocation(Y, 1, NULL, 0, NULL));
2674:   } else if (!aij->nz) { /* It does not matter if diagonals of Y only partially lie in maij->A. We just need an estimated preallocation. */
2675:     PetscInt nonew = aij->nonew;
2676:     PetscCall(MatSeqAIJSetPreallocation(maij->A, 1, NULL));
2677:     aij->nonew = nonew;
2678:   }
2679:   PetscCall(MatShift_Basic(Y, a));
2680:   PetscFunctionReturn(PETSC_SUCCESS);
2681: }

2683: static PetscErrorCode MatMissingDiagonal_MPIAIJ(Mat A, PetscBool *missing, PetscInt *d)
2684: {
2685:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2687:   PetscFunctionBegin;
2688:   PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only works for square matrices");
2689:   PetscCall(MatMissingDiagonal(a->A, missing, d));
2690:   if (d) {
2691:     PetscInt rstart;
2692:     PetscCall(MatGetOwnershipRange(A, &rstart, NULL));
2693:     *d += rstart;
2694:   }
2695:   PetscFunctionReturn(PETSC_SUCCESS);
2696: }

2698: static PetscErrorCode MatInvertVariableBlockDiagonal_MPIAIJ(Mat A, PetscInt nblocks, const PetscInt *bsizes, PetscScalar *diag)
2699: {
2700:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2702:   PetscFunctionBegin;
2703:   PetscCall(MatInvertVariableBlockDiagonal(a->A, nblocks, bsizes, diag));
2704:   PetscFunctionReturn(PETSC_SUCCESS);
2705: }

2707: static PetscErrorCode MatEliminateZeros_MPIAIJ(Mat A, PetscBool keep)
2708: {
2709:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;

2711:   PetscFunctionBegin;
2712:   PetscCall(MatEliminateZeros_SeqAIJ(a->A, keep));        // possibly keep zero diagonal coefficients
2713:   PetscCall(MatEliminateZeros_SeqAIJ(a->B, PETSC_FALSE)); // never keep zero diagonal coefficients
2714:   PetscFunctionReturn(PETSC_SUCCESS);
2715: }

2717: static struct _MatOps MatOps_Values = {MatSetValues_MPIAIJ,
2718:                                        MatGetRow_MPIAIJ,
2719:                                        MatRestoreRow_MPIAIJ,
2720:                                        MatMult_MPIAIJ,
2721:                                        /* 4*/ MatMultAdd_MPIAIJ,
2722:                                        MatMultTranspose_MPIAIJ,
2723:                                        MatMultTransposeAdd_MPIAIJ,
2724:                                        NULL,
2725:                                        NULL,
2726:                                        NULL,
2727:                                        /*10*/ NULL,
2728:                                        NULL,
2729:                                        NULL,
2730:                                        MatSOR_MPIAIJ,
2731:                                        MatTranspose_MPIAIJ,
2732:                                        /*15*/ MatGetInfo_MPIAIJ,
2733:                                        MatEqual_MPIAIJ,
2734:                                        MatGetDiagonal_MPIAIJ,
2735:                                        MatDiagonalScale_MPIAIJ,
2736:                                        MatNorm_MPIAIJ,
2737:                                        /*20*/ MatAssemblyBegin_MPIAIJ,
2738:                                        MatAssemblyEnd_MPIAIJ,
2739:                                        MatSetOption_MPIAIJ,
2740:                                        MatZeroEntries_MPIAIJ,
2741:                                        /*24*/ MatZeroRows_MPIAIJ,
2742:                                        NULL,
2743:                                        NULL,
2744:                                        NULL,
2745:                                        NULL,
2746:                                        /*29*/ MatSetUp_MPI_Hash,
2747:                                        NULL,
2748:                                        NULL,
2749:                                        MatGetDiagonalBlock_MPIAIJ,
2750:                                        NULL,
2751:                                        /*34*/ MatDuplicate_MPIAIJ,
2752:                                        NULL,
2753:                                        NULL,
2754:                                        NULL,
2755:                                        NULL,
2756:                                        /*39*/ MatAXPY_MPIAIJ,
2757:                                        MatCreateSubMatrices_MPIAIJ,
2758:                                        MatIncreaseOverlap_MPIAIJ,
2759:                                        MatGetValues_MPIAIJ,
2760:                                        MatCopy_MPIAIJ,
2761:                                        /*44*/ MatGetRowMax_MPIAIJ,
2762:                                        MatScale_MPIAIJ,
2763:                                        MatShift_MPIAIJ,
2764:                                        MatDiagonalSet_MPIAIJ,
2765:                                        MatZeroRowsColumns_MPIAIJ,
2766:                                        /*49*/ MatSetRandom_MPIAIJ,
2767:                                        MatGetRowIJ_MPIAIJ,
2768:                                        MatRestoreRowIJ_MPIAIJ,
2769:                                        NULL,
2770:                                        NULL,
2771:                                        /*54*/ MatFDColoringCreate_MPIXAIJ,
2772:                                        NULL,
2773:                                        MatSetUnfactored_MPIAIJ,
2774:                                        MatPermute_MPIAIJ,
2775:                                        NULL,
2776:                                        /*59*/ MatCreateSubMatrix_MPIAIJ,
2777:                                        MatDestroy_MPIAIJ,
2778:                                        MatView_MPIAIJ,
2779:                                        NULL,
2780:                                        NULL,
2781:                                        /*64*/ NULL,
2782:                                        MatMatMatMultNumeric_MPIAIJ_MPIAIJ_MPIAIJ,
2783:                                        NULL,
2784:                                        NULL,
2785:                                        NULL,
2786:                                        /*69*/ MatGetRowMaxAbs_MPIAIJ,
2787:                                        MatGetRowMinAbs_MPIAIJ,
2788:                                        NULL,
2789:                                        NULL,
2790:                                        NULL,
2791:                                        NULL,
2792:                                        /*75*/ MatFDColoringApply_AIJ,
2793:                                        MatSetFromOptions_MPIAIJ,
2794:                                        NULL,
2795:                                        NULL,
2796:                                        MatFindZeroDiagonals_MPIAIJ,
2797:                                        /*80*/ NULL,
2798:                                        NULL,
2799:                                        NULL,
2800:                                        /*83*/ MatLoad_MPIAIJ,
2801:                                        NULL,
2802:                                        NULL,
2803:                                        NULL,
2804:                                        NULL,
2805:                                        NULL,
2806:                                        /*89*/ NULL,
2807:                                        NULL,
2808:                                        MatMatMultNumeric_MPIAIJ_MPIAIJ,
2809:                                        NULL,
2810:                                        NULL,
2811:                                        /*94*/ MatPtAPNumeric_MPIAIJ_MPIAIJ,
2812:                                        NULL,
2813:                                        NULL,
2814:                                        NULL,
2815:                                        MatBindToCPU_MPIAIJ,
2816:                                        /*99*/ MatProductSetFromOptions_MPIAIJ,
2817:                                        NULL,
2818:                                        NULL,
2819:                                        MatConjugate_MPIAIJ,
2820:                                        NULL,
2821:                                        /*104*/ MatSetValuesRow_MPIAIJ,
2822:                                        MatRealPart_MPIAIJ,
2823:                                        MatImaginaryPart_MPIAIJ,
2824:                                        NULL,
2825:                                        NULL,
2826:                                        /*109*/ NULL,
2827:                                        NULL,
2828:                                        MatGetRowMin_MPIAIJ,
2829:                                        NULL,
2830:                                        MatMissingDiagonal_MPIAIJ,
2831:                                        /*114*/ MatGetSeqNonzeroStructure_MPIAIJ,
2832:                                        NULL,
2833:                                        MatGetGhosts_MPIAIJ,
2834:                                        NULL,
2835:                                        NULL,
2836:                                        /*119*/ MatMultDiagonalBlock_MPIAIJ,
2837:                                        NULL,
2838:                                        NULL,
2839:                                        NULL,
2840:                                        MatGetMultiProcBlock_MPIAIJ,
2841:                                        /*124*/ MatFindNonzeroRows_MPIAIJ,
2842:                                        MatGetColumnReductions_MPIAIJ,
2843:                                        MatInvertBlockDiagonal_MPIAIJ,
2844:                                        MatInvertVariableBlockDiagonal_MPIAIJ,
2845:                                        MatCreateSubMatricesMPI_MPIAIJ,
2846:                                        /*129*/ NULL,
2847:                                        NULL,
2848:                                        NULL,
2849:                                        MatTransposeMatMultNumeric_MPIAIJ_MPIAIJ,
2850:                                        NULL,
2851:                                        /*134*/ NULL,
2852:                                        NULL,
2853:                                        NULL,
2854:                                        NULL,
2855:                                        NULL,
2856:                                        /*139*/ MatSetBlockSizes_MPIAIJ,
2857:                                        NULL,
2858:                                        NULL,
2859:                                        MatFDColoringSetUp_MPIXAIJ,
2860:                                        MatFindOffBlockDiagonalEntries_MPIAIJ,
2861:                                        MatCreateMPIMatConcatenateSeqMat_MPIAIJ,
2862:                                        /*145*/ NULL,
2863:                                        NULL,
2864:                                        NULL,
2865:                                        MatCreateGraph_Simple_AIJ,
2866:                                        NULL,
2867:                                        /*150*/ NULL,
2868:                                        MatEliminateZeros_MPIAIJ,
2869:                                        MatGetRowSumAbs_MPIAIJ,
2870:                                        NULL,
2871:                                        NULL,
2872:                                        NULL};

2874: static PetscErrorCode MatStoreValues_MPIAIJ(Mat mat)
2875: {
2876:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;

2878:   PetscFunctionBegin;
2879:   PetscCall(MatStoreValues(aij->A));
2880:   PetscCall(MatStoreValues(aij->B));
2881:   PetscFunctionReturn(PETSC_SUCCESS);
2882: }

2884: static PetscErrorCode MatRetrieveValues_MPIAIJ(Mat mat)
2885: {
2886:   Mat_MPIAIJ *aij = (Mat_MPIAIJ *)mat->data;

2888:   PetscFunctionBegin;
2889:   PetscCall(MatRetrieveValues(aij->A));
2890:   PetscCall(MatRetrieveValues(aij->B));
2891:   PetscFunctionReturn(PETSC_SUCCESS);
2892: }

2894: PetscErrorCode MatMPIAIJSetPreallocation_MPIAIJ(Mat B, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
2895: {
2896:   Mat_MPIAIJ *b = (Mat_MPIAIJ *)B->data;
2897:   PetscMPIInt size;

2899:   PetscFunctionBegin;
2900:   if (B->hash_active) {
2901:     B->ops[0]      = b->cops;
2902:     B->hash_active = PETSC_FALSE;
2903:   }
2904:   PetscCall(PetscLayoutSetUp(B->rmap));
2905:   PetscCall(PetscLayoutSetUp(B->cmap));

2907: #if defined(PETSC_USE_CTABLE)
2908:   PetscCall(PetscHMapIDestroy(&b->colmap));
2909: #else
2910:   PetscCall(PetscFree(b->colmap));
2911: #endif
2912:   PetscCall(PetscFree(b->garray));
2913:   PetscCall(VecDestroy(&b->lvec));
2914:   PetscCall(VecScatterDestroy(&b->Mvctx));

2916:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));

2918:   MatSeqXAIJGetOptions_Private(b->B);
2919:   PetscCall(MatDestroy(&b->B));
2920:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->B));
2921:   PetscCall(MatSetSizes(b->B, B->rmap->n, size > 1 ? B->cmap->N : 0, B->rmap->n, size > 1 ? B->cmap->N : 0));
2922:   PetscCall(MatSetBlockSizesFromMats(b->B, B, B));
2923:   PetscCall(MatSetType(b->B, MATSEQAIJ));
2924:   MatSeqXAIJRestoreOptions_Private(b->B);

2926:   MatSeqXAIJGetOptions_Private(b->A);
2927:   PetscCall(MatDestroy(&b->A));
2928:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->A));
2929:   PetscCall(MatSetSizes(b->A, B->rmap->n, B->cmap->n, B->rmap->n, B->cmap->n));
2930:   PetscCall(MatSetBlockSizesFromMats(b->A, B, B));
2931:   PetscCall(MatSetType(b->A, MATSEQAIJ));
2932:   MatSeqXAIJRestoreOptions_Private(b->A);

2934:   PetscCall(MatSeqAIJSetPreallocation(b->A, d_nz, d_nnz));
2935:   PetscCall(MatSeqAIJSetPreallocation(b->B, o_nz, o_nnz));
2936:   B->preallocated  = PETSC_TRUE;
2937:   B->was_assembled = PETSC_FALSE;
2938:   B->assembled     = PETSC_FALSE;
2939:   PetscFunctionReturn(PETSC_SUCCESS);
2940: }

2942: static PetscErrorCode MatResetPreallocation_MPIAIJ(Mat B)
2943: {
2944:   Mat_MPIAIJ *b = (Mat_MPIAIJ *)B->data;

2946:   PetscFunctionBegin;
2948:   PetscCall(PetscLayoutSetUp(B->rmap));
2949:   PetscCall(PetscLayoutSetUp(B->cmap));

2951: #if defined(PETSC_USE_CTABLE)
2952:   PetscCall(PetscHMapIDestroy(&b->colmap));
2953: #else
2954:   PetscCall(PetscFree(b->colmap));
2955: #endif
2956:   PetscCall(PetscFree(b->garray));
2957:   PetscCall(VecDestroy(&b->lvec));
2958:   PetscCall(VecScatterDestroy(&b->Mvctx));

2960:   PetscCall(MatResetPreallocation(b->A));
2961:   PetscCall(MatResetPreallocation(b->B));
2962:   B->preallocated  = PETSC_TRUE;
2963:   B->was_assembled = PETSC_FALSE;
2964:   B->assembled     = PETSC_FALSE;
2965:   PetscFunctionReturn(PETSC_SUCCESS);
2966: }

2968: PetscErrorCode MatDuplicate_MPIAIJ(Mat matin, MatDuplicateOption cpvalues, Mat *newmat)
2969: {
2970:   Mat         mat;
2971:   Mat_MPIAIJ *a, *oldmat = (Mat_MPIAIJ *)matin->data;

2973:   PetscFunctionBegin;
2974:   *newmat = NULL;
2975:   PetscCall(MatCreate(PetscObjectComm((PetscObject)matin), &mat));
2976:   PetscCall(MatSetSizes(mat, matin->rmap->n, matin->cmap->n, matin->rmap->N, matin->cmap->N));
2977:   PetscCall(MatSetBlockSizesFromMats(mat, matin, matin));
2978:   PetscCall(MatSetType(mat, ((PetscObject)matin)->type_name));
2979:   a = (Mat_MPIAIJ *)mat->data;

2981:   mat->factortype = matin->factortype;
2982:   mat->assembled  = matin->assembled;
2983:   mat->insertmode = NOT_SET_VALUES;

2985:   a->size         = oldmat->size;
2986:   a->rank         = oldmat->rank;
2987:   a->donotstash   = oldmat->donotstash;
2988:   a->roworiented  = oldmat->roworiented;
2989:   a->rowindices   = NULL;
2990:   a->rowvalues    = NULL;
2991:   a->getrowactive = PETSC_FALSE;

2993:   PetscCall(PetscLayoutReference(matin->rmap, &mat->rmap));
2994:   PetscCall(PetscLayoutReference(matin->cmap, &mat->cmap));
2995:   if (matin->hash_active) {
2996:     PetscCall(MatSetUp(mat));
2997:   } else {
2998:     mat->preallocated = matin->preallocated;
2999:     if (oldmat->colmap) {
3000: #if defined(PETSC_USE_CTABLE)
3001:       PetscCall(PetscHMapIDuplicate(oldmat->colmap, &a->colmap));
3002: #else
3003:       PetscCall(PetscMalloc1(mat->cmap->N, &a->colmap));
3004:       PetscCall(PetscArraycpy(a->colmap, oldmat->colmap, mat->cmap->N));
3005: #endif
3006:     } else a->colmap = NULL;
3007:     if (oldmat->garray) {
3008:       PetscInt len;
3009:       len = oldmat->B->cmap->n;
3010:       PetscCall(PetscMalloc1(len + 1, &a->garray));
3011:       if (len) PetscCall(PetscArraycpy(a->garray, oldmat->garray, len));
3012:     } else a->garray = NULL;

3014:     /* It may happen MatDuplicate is called with a non-assembled matrix
3015:       In fact, MatDuplicate only requires the matrix to be preallocated
3016:       This may happen inside a DMCreateMatrix_Shell */
3017:     if (oldmat->lvec) PetscCall(VecDuplicate(oldmat->lvec, &a->lvec));
3018:     if (oldmat->Mvctx) {
3019:       a->Mvctx = oldmat->Mvctx;
3020:       PetscCall(PetscObjectReference((PetscObject)oldmat->Mvctx));
3021:     }
3022:     PetscCall(MatDuplicate(oldmat->A, cpvalues, &a->A));
3023:     PetscCall(MatDuplicate(oldmat->B, cpvalues, &a->B));
3024:   }
3025:   PetscCall(PetscFunctionListDuplicate(((PetscObject)matin)->qlist, &((PetscObject)mat)->qlist));
3026:   *newmat = mat;
3027:   PetscFunctionReturn(PETSC_SUCCESS);
3028: }

3030: PetscErrorCode MatLoad_MPIAIJ(Mat newMat, PetscViewer viewer)
3031: {
3032:   PetscBool isbinary, ishdf5;

3034:   PetscFunctionBegin;
3037:   /* force binary viewer to load .info file if it has not yet done so */
3038:   PetscCall(PetscViewerSetUp(viewer));
3039:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
3040:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
3041:   if (isbinary) {
3042:     PetscCall(MatLoad_MPIAIJ_Binary(newMat, viewer));
3043:   } else if (ishdf5) {
3044: #if defined(PETSC_HAVE_HDF5)
3045:     PetscCall(MatLoad_AIJ_HDF5(newMat, viewer));
3046: #else
3047:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
3048: #endif
3049:   } else {
3050:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
3051:   }
3052:   PetscFunctionReturn(PETSC_SUCCESS);
3053: }

3055: PetscErrorCode MatLoad_MPIAIJ_Binary(Mat mat, PetscViewer viewer)
3056: {
3057:   PetscInt     header[4], M, N, m, nz, rows, cols, sum, i;
3058:   PetscInt    *rowidxs, *colidxs;
3059:   PetscScalar *matvals;

3061:   PetscFunctionBegin;
3062:   PetscCall(PetscViewerSetUp(viewer));

3064:   /* read in matrix header */
3065:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
3066:   PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
3067:   M  = header[1];
3068:   N  = header[2];
3069:   nz = header[3];
3070:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
3071:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
3072:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as MPIAIJ");

3074:   /* set block sizes from the viewer's .info file */
3075:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
3076:   /* set global sizes if not set already */
3077:   if (mat->rmap->N < 0) mat->rmap->N = M;
3078:   if (mat->cmap->N < 0) mat->cmap->N = N;
3079:   PetscCall(PetscLayoutSetUp(mat->rmap));
3080:   PetscCall(PetscLayoutSetUp(mat->cmap));

3082:   /* check if the matrix sizes are correct */
3083:   PetscCall(MatGetSize(mat, &rows, &cols));
3084:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

3086:   /* read in row lengths and build row indices */
3087:   PetscCall(MatGetLocalSize(mat, &m, NULL));
3088:   PetscCall(PetscMalloc1(m + 1, &rowidxs));
3089:   PetscCall(PetscViewerBinaryReadAll(viewer, rowidxs + 1, m, PETSC_DECIDE, M, PETSC_INT));
3090:   rowidxs[0] = 0;
3091:   for (i = 0; i < m; i++) rowidxs[i + 1] += rowidxs[i];
3092:   if (nz != PETSC_INT_MAX) {
3093:     PetscCallMPI(MPIU_Allreduce(&rowidxs[m], &sum, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)viewer)));
3094:     PetscCheck(sum == nz, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);
3095:   }

3097:   /* read in column indices and matrix values */
3098:   PetscCall(PetscMalloc2(rowidxs[m], &colidxs, rowidxs[m], &matvals));
3099:   PetscCall(PetscViewerBinaryReadAll(viewer, colidxs, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
3100:   PetscCall(PetscViewerBinaryReadAll(viewer, matvals, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
3101:   /* store matrix indices and values */
3102:   PetscCall(MatMPIAIJSetPreallocationCSR(mat, rowidxs, colidxs, matvals));
3103:   PetscCall(PetscFree(rowidxs));
3104:   PetscCall(PetscFree2(colidxs, matvals));
3105:   PetscFunctionReturn(PETSC_SUCCESS);
3106: }

3108: /* Not scalable because of ISAllGather() unless getting all columns. */
3109: static PetscErrorCode ISGetSeqIS_Private(Mat mat, IS iscol, IS *isseq)
3110: {
3111:   IS          iscol_local;
3112:   PetscBool   isstride;
3113:   PetscMPIInt lisstride = 0, gisstride;

3115:   PetscFunctionBegin;
3116:   /* check if we are grabbing all columns*/
3117:   PetscCall(PetscObjectTypeCompare((PetscObject)iscol, ISSTRIDE, &isstride));

3119:   if (isstride) {
3120:     PetscInt start, len, mstart, mlen;
3121:     PetscCall(ISStrideGetInfo(iscol, &start, NULL));
3122:     PetscCall(ISGetLocalSize(iscol, &len));
3123:     PetscCall(MatGetOwnershipRangeColumn(mat, &mstart, &mlen));
3124:     if (mstart == start && mlen - mstart == len) lisstride = 1;
3125:   }

3127:   PetscCallMPI(MPIU_Allreduce(&lisstride, &gisstride, 1, MPI_INT, MPI_MIN, PetscObjectComm((PetscObject)mat)));
3128:   if (gisstride) {
3129:     PetscInt N;
3130:     PetscCall(MatGetSize(mat, NULL, &N));
3131:     PetscCall(ISCreateStride(PETSC_COMM_SELF, N, 0, 1, &iscol_local));
3132:     PetscCall(ISSetIdentity(iscol_local));
3133:     PetscCall(PetscInfo(mat, "Optimizing for obtaining all columns of the matrix; skipping ISAllGather()\n"));
3134:   } else {
3135:     PetscInt cbs;
3136:     PetscCall(ISGetBlockSize(iscol, &cbs));
3137:     PetscCall(ISAllGather(iscol, &iscol_local));
3138:     PetscCall(ISSetBlockSize(iscol_local, cbs));
3139:   }

3141:   *isseq = iscol_local;
3142:   PetscFunctionReturn(PETSC_SUCCESS);
3143: }

3145: /*
3146:  Used by MatCreateSubMatrix_MPIAIJ_SameRowColDist() to avoid ISAllGather() and global size of iscol_local
3147:  (see MatCreateSubMatrix_MPIAIJ_nonscalable)

3149:  Input Parameters:
3150: +   mat - matrix
3151: .   isrow - parallel row index set; its local indices are a subset of local columns of `mat`,
3152:            i.e., mat->rstart <= isrow[i] < mat->rend
3153: -   iscol - parallel column index set; its local indices are a subset of local columns of `mat`,
3154:            i.e., mat->cstart <= iscol[i] < mat->cend

3156:  Output Parameters:
3157: +   isrow_d - sequential row index set for retrieving mat->A
3158: .   iscol_d - sequential  column index set for retrieving mat->A
3159: .   iscol_o - sequential column index set for retrieving mat->B
3160: -   garray - column map; garray[i] indicates global location of iscol_o[i] in `iscol`
3161:  */
3162: static PetscErrorCode ISGetSeqIS_SameColDist_Private(Mat mat, IS isrow, IS iscol, IS *isrow_d, IS *iscol_d, IS *iscol_o, const PetscInt *garray[])
3163: {
3164:   Vec             x, cmap;
3165:   const PetscInt *is_idx;
3166:   PetscScalar    *xarray, *cmaparray;
3167:   PetscInt        ncols, isstart, *idx, m, rstart, *cmap1, count;
3168:   Mat_MPIAIJ     *a    = (Mat_MPIAIJ *)mat->data;
3169:   Mat             B    = a->B;
3170:   Vec             lvec = a->lvec, lcmap;
3171:   PetscInt        i, cstart, cend, Bn = B->cmap->N;
3172:   MPI_Comm        comm;
3173:   VecScatter      Mvctx = a->Mvctx;

3175:   PetscFunctionBegin;
3176:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
3177:   PetscCall(ISGetLocalSize(iscol, &ncols));

3179:   /* (1) iscol is a sub-column vector of mat, pad it with '-1.' to form a full vector x */
3180:   PetscCall(MatCreateVecs(mat, &x, NULL));
3181:   PetscCall(VecSet(x, -1.0));
3182:   PetscCall(VecDuplicate(x, &cmap));
3183:   PetscCall(VecSet(cmap, -1.0));

3185:   /* Get start indices */
3186:   PetscCallMPI(MPI_Scan(&ncols, &isstart, 1, MPIU_INT, MPI_SUM, comm));
3187:   isstart -= ncols;
3188:   PetscCall(MatGetOwnershipRangeColumn(mat, &cstart, &cend));

3190:   PetscCall(ISGetIndices(iscol, &is_idx));
3191:   PetscCall(VecGetArray(x, &xarray));
3192:   PetscCall(VecGetArray(cmap, &cmaparray));
3193:   PetscCall(PetscMalloc1(ncols, &idx));
3194:   for (i = 0; i < ncols; i++) {
3195:     xarray[is_idx[i] - cstart]    = (PetscScalar)is_idx[i];
3196:     cmaparray[is_idx[i] - cstart] = i + isstart;        /* global index of iscol[i] */
3197:     idx[i]                        = is_idx[i] - cstart; /* local index of iscol[i]  */
3198:   }
3199:   PetscCall(VecRestoreArray(x, &xarray));
3200:   PetscCall(VecRestoreArray(cmap, &cmaparray));
3201:   PetscCall(ISRestoreIndices(iscol, &is_idx));

3203:   /* Get iscol_d */
3204:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncols, idx, PETSC_OWN_POINTER, iscol_d));
3205:   PetscCall(ISGetBlockSize(iscol, &i));
3206:   PetscCall(ISSetBlockSize(*iscol_d, i));

3208:   /* Get isrow_d */
3209:   PetscCall(ISGetLocalSize(isrow, &m));
3210:   rstart = mat->rmap->rstart;
3211:   PetscCall(PetscMalloc1(m, &idx));
3212:   PetscCall(ISGetIndices(isrow, &is_idx));
3213:   for (i = 0; i < m; i++) idx[i] = is_idx[i] - rstart;
3214:   PetscCall(ISRestoreIndices(isrow, &is_idx));

3216:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, idx, PETSC_OWN_POINTER, isrow_d));
3217:   PetscCall(ISGetBlockSize(isrow, &i));
3218:   PetscCall(ISSetBlockSize(*isrow_d, i));

3220:   /* (2) Scatter x and cmap using aij->Mvctx to get their off-process portions (see MatMult_MPIAIJ) */
3221:   PetscCall(VecScatterBegin(Mvctx, x, lvec, INSERT_VALUES, SCATTER_FORWARD));
3222:   PetscCall(VecScatterEnd(Mvctx, x, lvec, INSERT_VALUES, SCATTER_FORWARD));

3224:   PetscCall(VecDuplicate(lvec, &lcmap));

3226:   PetscCall(VecScatterBegin(Mvctx, cmap, lcmap, INSERT_VALUES, SCATTER_FORWARD));
3227:   PetscCall(VecScatterEnd(Mvctx, cmap, lcmap, INSERT_VALUES, SCATTER_FORWARD));

3229:   /* (3) create sequential iscol_o (a subset of iscol) and isgarray */
3230:   /* off-process column indices */
3231:   count = 0;
3232:   PetscCall(PetscMalloc1(Bn, &idx));
3233:   PetscCall(PetscMalloc1(Bn, &cmap1));

3235:   PetscCall(VecGetArray(lvec, &xarray));
3236:   PetscCall(VecGetArray(lcmap, &cmaparray));
3237:   for (i = 0; i < Bn; i++) {
3238:     if (PetscRealPart(xarray[i]) > -1.0) {
3239:       idx[count]   = i;                                     /* local column index in off-diagonal part B */
3240:       cmap1[count] = (PetscInt)PetscRealPart(cmaparray[i]); /* column index in submat */
3241:       count++;
3242:     }
3243:   }
3244:   PetscCall(VecRestoreArray(lvec, &xarray));
3245:   PetscCall(VecRestoreArray(lcmap, &cmaparray));

3247:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, count, idx, PETSC_COPY_VALUES, iscol_o));
3248:   /* cannot ensure iscol_o has same blocksize as iscol! */

3250:   PetscCall(PetscFree(idx));
3251:   *garray = cmap1;

3253:   PetscCall(VecDestroy(&x));
3254:   PetscCall(VecDestroy(&cmap));
3255:   PetscCall(VecDestroy(&lcmap));
3256:   PetscFunctionReturn(PETSC_SUCCESS);
3257: }

3259: /* isrow and iscol have same processor distribution as mat, output *submat is a submatrix of local mat */
3260: PetscErrorCode MatCreateSubMatrix_MPIAIJ_SameRowColDist(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *submat)
3261: {
3262:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)mat->data, *asub;
3263:   Mat         M = NULL;
3264:   MPI_Comm    comm;
3265:   IS          iscol_d, isrow_d, iscol_o;
3266:   Mat         Asub = NULL, Bsub = NULL;
3267:   PetscInt    n;

3269:   PetscFunctionBegin;
3270:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));

3272:   if (call == MAT_REUSE_MATRIX) {
3273:     /* Retrieve isrow_d, iscol_d and iscol_o from submat */
3274:     PetscCall(PetscObjectQuery((PetscObject)*submat, "isrow_d", (PetscObject *)&isrow_d));
3275:     PetscCheck(isrow_d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "isrow_d passed in was not used before, cannot reuse");

3277:     PetscCall(PetscObjectQuery((PetscObject)*submat, "iscol_d", (PetscObject *)&iscol_d));
3278:     PetscCheck(iscol_d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "iscol_d passed in was not used before, cannot reuse");

3280:     PetscCall(PetscObjectQuery((PetscObject)*submat, "iscol_o", (PetscObject *)&iscol_o));
3281:     PetscCheck(iscol_o, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "iscol_o passed in was not used before, cannot reuse");

3283:     /* Update diagonal and off-diagonal portions of submat */
3284:     asub = (Mat_MPIAIJ *)(*submat)->data;
3285:     PetscCall(MatCreateSubMatrix_SeqAIJ(a->A, isrow_d, iscol_d, PETSC_DECIDE, MAT_REUSE_MATRIX, &asub->A));
3286:     PetscCall(ISGetLocalSize(iscol_o, &n));
3287:     if (n) PetscCall(MatCreateSubMatrix_SeqAIJ(a->B, isrow_d, iscol_o, PETSC_DECIDE, MAT_REUSE_MATRIX, &asub->B));
3288:     PetscCall(MatAssemblyBegin(*submat, MAT_FINAL_ASSEMBLY));
3289:     PetscCall(MatAssemblyEnd(*submat, MAT_FINAL_ASSEMBLY));

3291:   } else { /* call == MAT_INITIAL_MATRIX) */
3292:     const PetscInt *garray;
3293:     PetscInt        BsubN;

3295:     /* Create isrow_d, iscol_d, iscol_o and isgarray (replace isgarray with array?) */
3296:     PetscCall(ISGetSeqIS_SameColDist_Private(mat, isrow, iscol, &isrow_d, &iscol_d, &iscol_o, &garray));

3298:     /* Create local submatrices Asub and Bsub */
3299:     PetscCall(MatCreateSubMatrix_SeqAIJ(a->A, isrow_d, iscol_d, PETSC_DECIDE, MAT_INITIAL_MATRIX, &Asub));
3300:     PetscCall(MatCreateSubMatrix_SeqAIJ(a->B, isrow_d, iscol_o, PETSC_DECIDE, MAT_INITIAL_MATRIX, &Bsub));

3302:     /* Create submatrix M */
3303:     PetscCall(MatCreateMPIAIJWithSeqAIJ(comm, Asub, Bsub, garray, &M));

3305:     /* If Bsub has empty columns, compress iscol_o such that it will retrieve condensed Bsub from a->B during reuse */
3306:     asub = (Mat_MPIAIJ *)M->data;

3308:     PetscCall(ISGetLocalSize(iscol_o, &BsubN));
3309:     n = asub->B->cmap->N;
3310:     if (BsubN > n) {
3311:       /* This case can be tested using ~petsc/src/tao/bound/tutorials/runplate2_3 */
3312:       const PetscInt *idx;
3313:       PetscInt        i, j, *idx_new, *subgarray = asub->garray;
3314:       PetscCall(PetscInfo(M, "submatrix Bn %" PetscInt_FMT " != BsubN %" PetscInt_FMT ", update iscol_o\n", n, BsubN));

3316:       PetscCall(PetscMalloc1(n, &idx_new));
3317:       j = 0;
3318:       PetscCall(ISGetIndices(iscol_o, &idx));
3319:       for (i = 0; i < n; i++) {
3320:         if (j >= BsubN) break;
3321:         while (subgarray[i] > garray[j]) j++;

3323:         if (subgarray[i] == garray[j]) {
3324:           idx_new[i] = idx[j++];
3325:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "subgarray[%" PetscInt_FMT "]=%" PetscInt_FMT " cannot < garray[%" PetscInt_FMT "]=%" PetscInt_FMT, i, subgarray[i], j, garray[j]);
3326:       }
3327:       PetscCall(ISRestoreIndices(iscol_o, &idx));

3329:       PetscCall(ISDestroy(&iscol_o));
3330:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, n, idx_new, PETSC_OWN_POINTER, &iscol_o));

3332:     } else if (BsubN < n) {
3333:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Columns of Bsub (%" PetscInt_FMT ") cannot be smaller than B's (%" PetscInt_FMT ")", BsubN, asub->B->cmap->N);
3334:     }

3336:     PetscCall(PetscFree(garray));
3337:     *submat = M;

3339:     /* Save isrow_d, iscol_d and iscol_o used in processor for next request */
3340:     PetscCall(PetscObjectCompose((PetscObject)M, "isrow_d", (PetscObject)isrow_d));
3341:     PetscCall(ISDestroy(&isrow_d));

3343:     PetscCall(PetscObjectCompose((PetscObject)M, "iscol_d", (PetscObject)iscol_d));
3344:     PetscCall(ISDestroy(&iscol_d));

3346:     PetscCall(PetscObjectCompose((PetscObject)M, "iscol_o", (PetscObject)iscol_o));
3347:     PetscCall(ISDestroy(&iscol_o));
3348:   }
3349:   PetscFunctionReturn(PETSC_SUCCESS);
3350: }

3352: PetscErrorCode MatCreateSubMatrix_MPIAIJ(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *newmat)
3353: {
3354:   IS        iscol_local = NULL, isrow_d;
3355:   PetscInt  csize;
3356:   PetscInt  n, i, j, start, end;
3357:   PetscBool sameRowDist = PETSC_FALSE, sameDist[2], tsameDist[2];
3358:   MPI_Comm  comm;

3360:   PetscFunctionBegin;
3361:   /* If isrow has same processor distribution as mat,
3362:      call MatCreateSubMatrix_MPIAIJ_SameRowDist() to avoid using a hash table with global size of iscol */
3363:   if (call == MAT_REUSE_MATRIX) {
3364:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "isrow_d", (PetscObject *)&isrow_d));
3365:     if (isrow_d) {
3366:       sameRowDist  = PETSC_TRUE;
3367:       tsameDist[1] = PETSC_TRUE; /* sameColDist */
3368:     } else {
3369:       PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubIScol", (PetscObject *)&iscol_local));
3370:       if (iscol_local) {
3371:         sameRowDist  = PETSC_TRUE;
3372:         tsameDist[1] = PETSC_FALSE; /* !sameColDist */
3373:       }
3374:     }
3375:   } else {
3376:     /* Check if isrow has same processor distribution as mat */
3377:     sameDist[0] = PETSC_FALSE;
3378:     PetscCall(ISGetLocalSize(isrow, &n));
3379:     if (!n) {
3380:       sameDist[0] = PETSC_TRUE;
3381:     } else {
3382:       PetscCall(ISGetMinMax(isrow, &i, &j));
3383:       PetscCall(MatGetOwnershipRange(mat, &start, &end));
3384:       if (i >= start && j < end) sameDist[0] = PETSC_TRUE;
3385:     }

3387:     /* Check if iscol has same processor distribution as mat */
3388:     sameDist[1] = PETSC_FALSE;
3389:     PetscCall(ISGetLocalSize(iscol, &n));
3390:     if (!n) {
3391:       sameDist[1] = PETSC_TRUE;
3392:     } else {
3393:       PetscCall(ISGetMinMax(iscol, &i, &j));
3394:       PetscCall(MatGetOwnershipRangeColumn(mat, &start, &end));
3395:       if (i >= start && j < end) sameDist[1] = PETSC_TRUE;
3396:     }

3398:     PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
3399:     PetscCallMPI(MPIU_Allreduce(&sameDist, &tsameDist, 2, MPIU_BOOL, MPI_LAND, comm));
3400:     sameRowDist = tsameDist[0];
3401:   }

3403:   if (sameRowDist) {
3404:     if (tsameDist[1]) { /* sameRowDist & sameColDist */
3405:       /* isrow and iscol have same processor distribution as mat */
3406:       PetscCall(MatCreateSubMatrix_MPIAIJ_SameRowColDist(mat, isrow, iscol, call, newmat));
3407:       PetscFunctionReturn(PETSC_SUCCESS);
3408:     } else { /* sameRowDist */
3409:       /* isrow has same processor distribution as mat */
3410:       if (call == MAT_INITIAL_MATRIX) {
3411:         PetscBool sorted;
3412:         PetscCall(ISGetSeqIS_Private(mat, iscol, &iscol_local));
3413:         PetscCall(ISGetLocalSize(iscol_local, &n)); /* local size of iscol_local = global columns of newmat */
3414:         PetscCall(ISGetSize(iscol, &i));
3415:         PetscCheck(n == i, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "n %" PetscInt_FMT " != size of iscol %" PetscInt_FMT, n, i);

3417:         PetscCall(ISSorted(iscol_local, &sorted));
3418:         if (sorted) {
3419:           /* MatCreateSubMatrix_MPIAIJ_SameRowDist() requires iscol_local be sorted; it can have duplicate indices */
3420:           PetscCall(MatCreateSubMatrix_MPIAIJ_SameRowDist(mat, isrow, iscol, iscol_local, MAT_INITIAL_MATRIX, newmat));
3421:           PetscFunctionReturn(PETSC_SUCCESS);
3422:         }
3423:       } else { /* call == MAT_REUSE_MATRIX */
3424:         IS iscol_sub;
3425:         PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubIScol", (PetscObject *)&iscol_sub));
3426:         if (iscol_sub) {
3427:           PetscCall(MatCreateSubMatrix_MPIAIJ_SameRowDist(mat, isrow, iscol, NULL, call, newmat));
3428:           PetscFunctionReturn(PETSC_SUCCESS);
3429:         }
3430:       }
3431:     }
3432:   }

3434:   /* General case: iscol -> iscol_local which has global size of iscol */
3435:   if (call == MAT_REUSE_MATRIX) {
3436:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather", (PetscObject *)&iscol_local));
3437:     PetscCheck(iscol_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
3438:   } else {
3439:     if (!iscol_local) PetscCall(ISGetSeqIS_Private(mat, iscol, &iscol_local));
3440:   }

3442:   PetscCall(ISGetLocalSize(iscol, &csize));
3443:   PetscCall(MatCreateSubMatrix_MPIAIJ_nonscalable(mat, isrow, iscol_local, csize, call, newmat));

3445:   if (call == MAT_INITIAL_MATRIX) {
3446:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
3447:     PetscCall(ISDestroy(&iscol_local));
3448:   }
3449:   PetscFunctionReturn(PETSC_SUCCESS);
3450: }

3452: /*@C
3453:   MatCreateMPIAIJWithSeqAIJ - creates a `MATMPIAIJ` matrix using `MATSEQAIJ` matrices that contain the "diagonal"
3454:   and "off-diagonal" part of the matrix in CSR format.

3456:   Collective

3458:   Input Parameters:
3459: + comm   - MPI communicator
3460: . A      - "diagonal" portion of matrix
3461: . B      - "off-diagonal" portion of matrix, may have empty columns, will be destroyed by this routine
3462: - garray - global index of `B` columns

3464:   Output Parameter:
3465: . mat - the matrix, with input `A` as its local diagonal matrix

3467:   Level: advanced

3469:   Notes:
3470:   See `MatCreateAIJ()` for the definition of "diagonal" and "off-diagonal" portion of the matrix.

3472:   `A` becomes part of output mat, `B` is destroyed by this routine. The user cannot use `A` and `B` anymore.

3474: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MATSEQAIJ`, `MatCreateMPIAIJWithSplitArrays()`
3475: @*/
3476: PetscErrorCode MatCreateMPIAIJWithSeqAIJ(MPI_Comm comm, Mat A, Mat B, const PetscInt garray[], Mat *mat)
3477: {
3478:   Mat_MPIAIJ        *maij;
3479:   Mat_SeqAIJ        *b  = (Mat_SeqAIJ *)B->data, *bnew;
3480:   PetscInt          *oi = b->i, *oj = b->j, i, nz, col;
3481:   const PetscScalar *oa;
3482:   Mat                Bnew;
3483:   PetscInt           m, n, N;
3484:   MatType            mpi_mat_type;

3486:   PetscFunctionBegin;
3487:   PetscCall(MatCreate(comm, mat));
3488:   PetscCall(MatGetSize(A, &m, &n));
3489:   PetscCheck(m == B->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Am %" PetscInt_FMT " != Bm %" PetscInt_FMT, m, B->rmap->N);
3490:   PetscCheck(PetscAbs(A->rmap->bs) == PetscAbs(B->rmap->bs), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "A row bs %" PetscInt_FMT " != B row bs %" PetscInt_FMT, A->rmap->bs, B->rmap->bs);
3491:   /* remove check below; When B is created using iscol_o from ISGetSeqIS_SameColDist_Private(), its bs may not be same as A */
3492:   /* PetscCheck(A->cmap->bs == B->cmap->bs,PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"A column bs %" PetscInt_FMT " != B column bs %" PetscInt_FMT,A->cmap->bs,B->cmap->bs); */

3494:   /* Get global columns of mat */
3495:   PetscCallMPI(MPIU_Allreduce(&n, &N, 1, MPIU_INT, MPI_SUM, comm));

3497:   PetscCall(MatSetSizes(*mat, m, n, PETSC_DECIDE, N));
3498:   /* Determine the type of MPI matrix that should be created from the type of matrix A, which holds the "diagonal" portion. */
3499:   PetscCall(MatGetMPIMatType_Private(A, &mpi_mat_type));
3500:   PetscCall(MatSetType(*mat, mpi_mat_type));

3502:   if (A->rmap->bs > 1 || A->cmap->bs > 1) PetscCall(MatSetBlockSizes(*mat, A->rmap->bs, A->cmap->bs));
3503:   maij = (Mat_MPIAIJ *)(*mat)->data;

3505:   (*mat)->preallocated = PETSC_TRUE;

3507:   PetscCall(PetscLayoutSetUp((*mat)->rmap));
3508:   PetscCall(PetscLayoutSetUp((*mat)->cmap));

3510:   /* Set A as diagonal portion of *mat */
3511:   maij->A = A;

3513:   nz = oi[m];
3514:   for (i = 0; i < nz; i++) {
3515:     col   = oj[i];
3516:     oj[i] = garray[col];
3517:   }

3519:   /* Set Bnew as off-diagonal portion of *mat */
3520:   PetscCall(MatSeqAIJGetArrayRead(B, &oa));
3521:   PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, m, N, oi, oj, (PetscScalar *)oa, &Bnew));
3522:   PetscCall(MatSeqAIJRestoreArrayRead(B, &oa));
3523:   bnew        = (Mat_SeqAIJ *)Bnew->data;
3524:   bnew->maxnz = b->maxnz; /* allocated nonzeros of B */
3525:   maij->B     = Bnew;

3527:   PetscCheck(B->rmap->N == Bnew->rmap->N, PETSC_COMM_SELF, PETSC_ERR_PLIB, "BN %" PetscInt_FMT " != BnewN %" PetscInt_FMT, B->rmap->N, Bnew->rmap->N);

3529:   b->free_a  = PETSC_FALSE;
3530:   b->free_ij = PETSC_FALSE;
3531:   PetscCall(MatDestroy(&B));

3533:   bnew->free_a  = PETSC_TRUE;
3534:   bnew->free_ij = PETSC_TRUE;

3536:   /* condense columns of maij->B */
3537:   PetscCall(MatSetOption(*mat, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
3538:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
3539:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
3540:   PetscCall(MatSetOption(*mat, MAT_NO_OFF_PROC_ENTRIES, PETSC_FALSE));
3541:   PetscCall(MatSetOption(*mat, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
3542:   PetscFunctionReturn(PETSC_SUCCESS);
3543: }

3545: extern PetscErrorCode MatCreateSubMatrices_MPIAIJ_SingleIS_Local(Mat, PetscInt, const IS[], const IS[], MatReuse, PetscBool, Mat *);

3547: PetscErrorCode MatCreateSubMatrix_MPIAIJ_SameRowDist(Mat mat, IS isrow, IS iscol, IS iscol_local, MatReuse call, Mat *newmat)
3548: {
3549:   PetscInt        i, m, n, rstart, row, rend, nz, j, bs, cbs;
3550:   PetscInt       *ii, *jj, nlocal, *dlens, *olens, dlen, olen, jend, mglobal;
3551:   Mat_MPIAIJ     *a = (Mat_MPIAIJ *)mat->data;
3552:   Mat             M, Msub, B = a->B;
3553:   MatScalar      *aa;
3554:   Mat_SeqAIJ     *aij;
3555:   PetscInt       *garray = a->garray, *colsub, Ncols;
3556:   PetscInt        count, Bn = B->cmap->N, cstart = mat->cmap->rstart, cend = mat->cmap->rend;
3557:   IS              iscol_sub, iscmap;
3558:   const PetscInt *is_idx, *cmap;
3559:   PetscBool       allcolumns = PETSC_FALSE;
3560:   MPI_Comm        comm;

3562:   PetscFunctionBegin;
3563:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
3564:   if (call == MAT_REUSE_MATRIX) {
3565:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubIScol", (PetscObject *)&iscol_sub));
3566:     PetscCheck(iscol_sub, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "SubIScol passed in was not used before, cannot reuse");
3567:     PetscCall(ISGetLocalSize(iscol_sub, &count));

3569:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "Subcmap", (PetscObject *)&iscmap));
3570:     PetscCheck(iscmap, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Subcmap passed in was not used before, cannot reuse");

3572:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubMatrix", (PetscObject *)&Msub));
3573:     PetscCheck(Msub, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");

3575:     PetscCall(MatCreateSubMatrices_MPIAIJ_SingleIS_Local(mat, 1, &isrow, &iscol_sub, MAT_REUSE_MATRIX, PETSC_FALSE, &Msub));

3577:   } else { /* call == MAT_INITIAL_MATRIX) */
3578:     PetscBool flg;

3580:     PetscCall(ISGetLocalSize(iscol, &n));
3581:     PetscCall(ISGetSize(iscol, &Ncols));

3583:     /* (1) iscol -> nonscalable iscol_local */
3584:     /* Check for special case: each processor gets entire matrix columns */
3585:     PetscCall(ISIdentity(iscol_local, &flg));
3586:     if (flg && n == mat->cmap->N) allcolumns = PETSC_TRUE;
3587:     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &allcolumns, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
3588:     if (allcolumns) {
3589:       iscol_sub = iscol_local;
3590:       PetscCall(PetscObjectReference((PetscObject)iscol_local));
3591:       PetscCall(ISCreateStride(PETSC_COMM_SELF, n, 0, 1, &iscmap));

3593:     } else {
3594:       /* (2) iscol_local -> iscol_sub and iscmap. Implementation below requires iscol_local be sorted, it can have duplicate indices */
3595:       PetscInt *idx, *cmap1, k;
3596:       PetscCall(PetscMalloc1(Ncols, &idx));
3597:       PetscCall(PetscMalloc1(Ncols, &cmap1));
3598:       PetscCall(ISGetIndices(iscol_local, &is_idx));
3599:       count = 0;
3600:       k     = 0;
3601:       for (i = 0; i < Ncols; i++) {
3602:         j = is_idx[i];
3603:         if (j >= cstart && j < cend) {
3604:           /* diagonal part of mat */
3605:           idx[count]     = j;
3606:           cmap1[count++] = i; /* column index in submat */
3607:         } else if (Bn) {
3608:           /* off-diagonal part of mat */
3609:           if (j == garray[k]) {
3610:             idx[count]     = j;
3611:             cmap1[count++] = i; /* column index in submat */
3612:           } else if (j > garray[k]) {
3613:             while (j > garray[k] && k < Bn - 1) k++;
3614:             if (j == garray[k]) {
3615:               idx[count]     = j;
3616:               cmap1[count++] = i; /* column index in submat */
3617:             }
3618:           }
3619:         }
3620:       }
3621:       PetscCall(ISRestoreIndices(iscol_local, &is_idx));

3623:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, count, idx, PETSC_OWN_POINTER, &iscol_sub));
3624:       PetscCall(ISGetBlockSize(iscol, &cbs));
3625:       PetscCall(ISSetBlockSize(iscol_sub, cbs));

3627:       PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)iscol_local), count, cmap1, PETSC_OWN_POINTER, &iscmap));
3628:     }

3630:     /* (3) Create sequential Msub */
3631:     PetscCall(MatCreateSubMatrices_MPIAIJ_SingleIS_Local(mat, 1, &isrow, &iscol_sub, MAT_INITIAL_MATRIX, allcolumns, &Msub));
3632:   }

3634:   PetscCall(ISGetLocalSize(iscol_sub, &count));
3635:   aij = (Mat_SeqAIJ *)Msub->data;
3636:   ii  = aij->i;
3637:   PetscCall(ISGetIndices(iscmap, &cmap));

3639:   /*
3640:       m - number of local rows
3641:       Ncols - number of columns (same on all processors)
3642:       rstart - first row in new global matrix generated
3643:   */
3644:   PetscCall(MatGetSize(Msub, &m, NULL));

3646:   if (call == MAT_INITIAL_MATRIX) {
3647:     /* (4) Create parallel newmat */
3648:     PetscMPIInt rank, size;
3649:     PetscInt    csize;

3651:     PetscCallMPI(MPI_Comm_size(comm, &size));
3652:     PetscCallMPI(MPI_Comm_rank(comm, &rank));

3654:     /*
3655:         Determine the number of non-zeros in the diagonal and off-diagonal
3656:         portions of the matrix in order to do correct preallocation
3657:     */

3659:     /* first get start and end of "diagonal" columns */
3660:     PetscCall(ISGetLocalSize(iscol, &csize));
3661:     if (csize == PETSC_DECIDE) {
3662:       PetscCall(ISGetSize(isrow, &mglobal));
3663:       if (mglobal == Ncols) { /* square matrix */
3664:         nlocal = m;
3665:       } else {
3666:         nlocal = Ncols / size + ((Ncols % size) > rank);
3667:       }
3668:     } else {
3669:       nlocal = csize;
3670:     }
3671:     PetscCallMPI(MPI_Scan(&nlocal, &rend, 1, MPIU_INT, MPI_SUM, comm));
3672:     rstart = rend - nlocal;
3673:     PetscCheck(rank != size - 1 || rend == Ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Local column sizes %" PetscInt_FMT " do not add up to total number of columns %" PetscInt_FMT, rend, Ncols);

3675:     /* next, compute all the lengths */
3676:     jj = aij->j;
3677:     PetscCall(PetscMalloc1(2 * m + 1, &dlens));
3678:     olens = dlens + m;
3679:     for (i = 0; i < m; i++) {
3680:       jend = ii[i + 1] - ii[i];
3681:       olen = 0;
3682:       dlen = 0;
3683:       for (j = 0; j < jend; j++) {
3684:         if (cmap[*jj] < rstart || cmap[*jj] >= rend) olen++;
3685:         else dlen++;
3686:         jj++;
3687:       }
3688:       olens[i] = olen;
3689:       dlens[i] = dlen;
3690:     }

3692:     PetscCall(ISGetBlockSize(isrow, &bs));
3693:     PetscCall(ISGetBlockSize(iscol, &cbs));

3695:     PetscCall(MatCreate(comm, &M));
3696:     PetscCall(MatSetSizes(M, m, nlocal, PETSC_DECIDE, Ncols));
3697:     PetscCall(MatSetBlockSizes(M, bs, cbs));
3698:     PetscCall(MatSetType(M, ((PetscObject)mat)->type_name));
3699:     PetscCall(MatMPIAIJSetPreallocation(M, 0, dlens, 0, olens));
3700:     PetscCall(PetscFree(dlens));

3702:   } else { /* call == MAT_REUSE_MATRIX */
3703:     M = *newmat;
3704:     PetscCall(MatGetLocalSize(M, &i, NULL));
3705:     PetscCheck(i == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Previous matrix must be same size/layout as request");
3706:     PetscCall(MatZeroEntries(M));
3707:     /*
3708:          The next two lines are needed so we may call MatSetValues_MPIAIJ() below directly,
3709:        rather than the slower MatSetValues().
3710:     */
3711:     M->was_assembled = PETSC_TRUE;
3712:     M->assembled     = PETSC_FALSE;
3713:   }

3715:   /* (5) Set values of Msub to *newmat */
3716:   PetscCall(PetscMalloc1(count, &colsub));
3717:   PetscCall(MatGetOwnershipRange(M, &rstart, NULL));

3719:   jj = aij->j;
3720:   PetscCall(MatSeqAIJGetArrayRead(Msub, (const PetscScalar **)&aa));
3721:   for (i = 0; i < m; i++) {
3722:     row = rstart + i;
3723:     nz  = ii[i + 1] - ii[i];
3724:     for (j = 0; j < nz; j++) colsub[j] = cmap[jj[j]];
3725:     PetscCall(MatSetValues_MPIAIJ(M, 1, &row, nz, colsub, aa, INSERT_VALUES));
3726:     jj += nz;
3727:     aa += nz;
3728:   }
3729:   PetscCall(MatSeqAIJRestoreArrayRead(Msub, (const PetscScalar **)&aa));
3730:   PetscCall(ISRestoreIndices(iscmap, &cmap));

3732:   PetscCall(MatAssemblyBegin(M, MAT_FINAL_ASSEMBLY));
3733:   PetscCall(MatAssemblyEnd(M, MAT_FINAL_ASSEMBLY));

3735:   PetscCall(PetscFree(colsub));

3737:   /* save Msub, iscol_sub and iscmap used in processor for next request */
3738:   if (call == MAT_INITIAL_MATRIX) {
3739:     *newmat = M;
3740:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "SubMatrix", (PetscObject)Msub));
3741:     PetscCall(MatDestroy(&Msub));

3743:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "SubIScol", (PetscObject)iscol_sub));
3744:     PetscCall(ISDestroy(&iscol_sub));

3746:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "Subcmap", (PetscObject)iscmap));
3747:     PetscCall(ISDestroy(&iscmap));

3749:     if (iscol_local) {
3750:       PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
3751:       PetscCall(ISDestroy(&iscol_local));
3752:     }
3753:   }
3754:   PetscFunctionReturn(PETSC_SUCCESS);
3755: }

3757: /*
3758:     Not great since it makes two copies of the submatrix, first an SeqAIJ
3759:   in local and then by concatenating the local matrices the end result.
3760:   Writing it directly would be much like MatCreateSubMatrices_MPIAIJ()

3762:   This requires a sequential iscol with all indices.
3763: */
3764: PetscErrorCode MatCreateSubMatrix_MPIAIJ_nonscalable(Mat mat, IS isrow, IS iscol, PetscInt csize, MatReuse call, Mat *newmat)
3765: {
3766:   PetscMPIInt rank, size;
3767:   PetscInt    i, m, n, rstart, row, rend, nz, *cwork, j, bs, cbs;
3768:   PetscInt   *ii, *jj, nlocal, *dlens, *olens, dlen, olen, jend, mglobal;
3769:   Mat         M, Mreuse;
3770:   MatScalar  *aa, *vwork;
3771:   MPI_Comm    comm;
3772:   Mat_SeqAIJ *aij;
3773:   PetscBool   colflag, allcolumns = PETSC_FALSE;

3775:   PetscFunctionBegin;
3776:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
3777:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
3778:   PetscCallMPI(MPI_Comm_size(comm, &size));

3780:   /* Check for special case: each processor gets entire matrix columns */
3781:   PetscCall(ISIdentity(iscol, &colflag));
3782:   PetscCall(ISGetLocalSize(iscol, &n));
3783:   if (colflag && n == mat->cmap->N) allcolumns = PETSC_TRUE;
3784:   PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &allcolumns, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));

3786:   if (call == MAT_REUSE_MATRIX) {
3787:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubMatrix", (PetscObject *)&Mreuse));
3788:     PetscCheck(Mreuse, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
3789:     PetscCall(MatCreateSubMatrices_MPIAIJ_SingleIS_Local(mat, 1, &isrow, &iscol, MAT_REUSE_MATRIX, allcolumns, &Mreuse));
3790:   } else {
3791:     PetscCall(MatCreateSubMatrices_MPIAIJ_SingleIS_Local(mat, 1, &isrow, &iscol, MAT_INITIAL_MATRIX, allcolumns, &Mreuse));
3792:   }

3794:   /*
3795:       m - number of local rows
3796:       n - number of columns (same on all processors)
3797:       rstart - first row in new global matrix generated
3798:   */
3799:   PetscCall(MatGetSize(Mreuse, &m, &n));
3800:   PetscCall(MatGetBlockSizes(Mreuse, &bs, &cbs));
3801:   if (call == MAT_INITIAL_MATRIX) {
3802:     aij = (Mat_SeqAIJ *)Mreuse->data;
3803:     ii  = aij->i;
3804:     jj  = aij->j;

3806:     /*
3807:         Determine the number of non-zeros in the diagonal and off-diagonal
3808:         portions of the matrix in order to do correct preallocation
3809:     */

3811:     /* first get start and end of "diagonal" columns */
3812:     if (csize == PETSC_DECIDE) {
3813:       PetscCall(ISGetSize(isrow, &mglobal));
3814:       if (mglobal == n) { /* square matrix */
3815:         nlocal = m;
3816:       } else {
3817:         nlocal = n / size + ((n % size) > rank);
3818:       }
3819:     } else {
3820:       nlocal = csize;
3821:     }
3822:     PetscCallMPI(MPI_Scan(&nlocal, &rend, 1, MPIU_INT, MPI_SUM, comm));
3823:     rstart = rend - nlocal;
3824:     PetscCheck(rank != size - 1 || rend == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Local column sizes %" PetscInt_FMT " do not add up to total number of columns %" PetscInt_FMT, rend, n);

3826:     /* next, compute all the lengths */
3827:     PetscCall(PetscMalloc1(2 * m + 1, &dlens));
3828:     olens = dlens + m;
3829:     for (i = 0; i < m; i++) {
3830:       jend = ii[i + 1] - ii[i];
3831:       olen = 0;
3832:       dlen = 0;
3833:       for (j = 0; j < jend; j++) {
3834:         if (*jj < rstart || *jj >= rend) olen++;
3835:         else dlen++;
3836:         jj++;
3837:       }
3838:       olens[i] = olen;
3839:       dlens[i] = dlen;
3840:     }
3841:     PetscCall(MatCreate(comm, &M));
3842:     PetscCall(MatSetSizes(M, m, nlocal, PETSC_DECIDE, n));
3843:     PetscCall(MatSetBlockSizes(M, bs, cbs));
3844:     PetscCall(MatSetType(M, ((PetscObject)mat)->type_name));
3845:     PetscCall(MatMPIAIJSetPreallocation(M, 0, dlens, 0, olens));
3846:     PetscCall(PetscFree(dlens));
3847:   } else {
3848:     PetscInt ml, nl;

3850:     M = *newmat;
3851:     PetscCall(MatGetLocalSize(M, &ml, &nl));
3852:     PetscCheck(ml == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Previous matrix must be same size/layout as request");
3853:     PetscCall(MatZeroEntries(M));
3854:     /*
3855:          The next two lines are needed so we may call MatSetValues_MPIAIJ() below directly,
3856:        rather than the slower MatSetValues().
3857:     */
3858:     M->was_assembled = PETSC_TRUE;
3859:     M->assembled     = PETSC_FALSE;
3860:   }
3861:   PetscCall(MatGetOwnershipRange(M, &rstart, &rend));
3862:   aij = (Mat_SeqAIJ *)Mreuse->data;
3863:   ii  = aij->i;
3864:   jj  = aij->j;

3866:   /* trigger copy to CPU if needed */
3867:   PetscCall(MatSeqAIJGetArrayRead(Mreuse, (const PetscScalar **)&aa));
3868:   for (i = 0; i < m; i++) {
3869:     row   = rstart + i;
3870:     nz    = ii[i + 1] - ii[i];
3871:     cwork = jj;
3872:     jj    = PetscSafePointerPlusOffset(jj, nz);
3873:     vwork = aa;
3874:     aa    = PetscSafePointerPlusOffset(aa, nz);
3875:     PetscCall(MatSetValues_MPIAIJ(M, 1, &row, nz, cwork, vwork, INSERT_VALUES));
3876:   }
3877:   PetscCall(MatSeqAIJRestoreArrayRead(Mreuse, (const PetscScalar **)&aa));

3879:   PetscCall(MatAssemblyBegin(M, MAT_FINAL_ASSEMBLY));
3880:   PetscCall(MatAssemblyEnd(M, MAT_FINAL_ASSEMBLY));
3881:   *newmat = M;

3883:   /* save submatrix used in processor for next request */
3884:   if (call == MAT_INITIAL_MATRIX) {
3885:     PetscCall(PetscObjectCompose((PetscObject)M, "SubMatrix", (PetscObject)Mreuse));
3886:     PetscCall(MatDestroy(&Mreuse));
3887:   }
3888:   PetscFunctionReturn(PETSC_SUCCESS);
3889: }

3891: static PetscErrorCode MatMPIAIJSetPreallocationCSR_MPIAIJ(Mat B, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
3892: {
3893:   PetscInt        m, cstart, cend, j, nnz, i, d, *ld;
3894:   PetscInt       *d_nnz, *o_nnz, nnz_max = 0, rstart, ii, irstart;
3895:   const PetscInt *JJ;
3896:   PetscBool       nooffprocentries;
3897:   Mat_MPIAIJ     *Aij = (Mat_MPIAIJ *)B->data;

3899:   PetscFunctionBegin;
3900:   PetscCall(PetscLayoutSetUp(B->rmap));
3901:   PetscCall(PetscLayoutSetUp(B->cmap));
3902:   m       = B->rmap->n;
3903:   cstart  = B->cmap->rstart;
3904:   cend    = B->cmap->rend;
3905:   rstart  = B->rmap->rstart;
3906:   irstart = Ii[0];

3908:   PetscCall(PetscCalloc2(m, &d_nnz, m, &o_nnz));

3910:   if (PetscDefined(USE_DEBUG)) {
3911:     for (i = 0; i < m; i++) {
3912:       nnz = Ii[i + 1] - Ii[i];
3913:       JJ  = PetscSafePointerPlusOffset(J, Ii[i] - irstart);
3914:       PetscCheck(nnz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative %" PetscInt_FMT " number of columns", i, nnz);
3915:       PetscCheck(!nnz || !(JJ[0] < 0), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Row %" PetscInt_FMT " starts with negative column index %" PetscInt_FMT, i, JJ[0]);
3916:       PetscCheck(!nnz || !(JJ[nnz - 1] >= B->cmap->N), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Row %" PetscInt_FMT " ends with too large a column index %" PetscInt_FMT " (max allowed %" PetscInt_FMT ")", i, JJ[nnz - 1], B->cmap->N);
3917:     }
3918:   }

3920:   for (i = 0; i < m; i++) {
3921:     nnz     = Ii[i + 1] - Ii[i];
3922:     JJ      = PetscSafePointerPlusOffset(J, Ii[i] - irstart);
3923:     nnz_max = PetscMax(nnz_max, nnz);
3924:     d       = 0;
3925:     for (j = 0; j < nnz; j++) {
3926:       if (cstart <= JJ[j] && JJ[j] < cend) d++;
3927:     }
3928:     d_nnz[i] = d;
3929:     o_nnz[i] = nnz - d;
3930:   }
3931:   PetscCall(MatMPIAIJSetPreallocation(B, 0, d_nnz, 0, o_nnz));
3932:   PetscCall(PetscFree2(d_nnz, o_nnz));

3934:   for (i = 0; i < m; i++) {
3935:     ii = i + rstart;
3936:     PetscCall(MatSetValues_MPIAIJ(B, 1, &ii, Ii[i + 1] - Ii[i], PetscSafePointerPlusOffset(J, Ii[i] - irstart), PetscSafePointerPlusOffset(v, Ii[i] - irstart), INSERT_VALUES));
3937:   }
3938:   nooffprocentries    = B->nooffprocentries;
3939:   B->nooffprocentries = PETSC_TRUE;
3940:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
3941:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
3942:   B->nooffprocentries = nooffprocentries;

3944:   /* count number of entries below block diagonal */
3945:   PetscCall(PetscFree(Aij->ld));
3946:   PetscCall(PetscCalloc1(m, &ld));
3947:   Aij->ld = ld;
3948:   for (i = 0; i < m; i++) {
3949:     nnz = Ii[i + 1] - Ii[i];
3950:     j   = 0;
3951:     while (j < nnz && J[j] < cstart) j++;
3952:     ld[i] = j;
3953:     if (J) J += nnz;
3954:   }

3956:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
3957:   PetscFunctionReturn(PETSC_SUCCESS);
3958: }

3960: /*@
3961:   MatMPIAIJSetPreallocationCSR - Allocates memory for a sparse parallel matrix in `MATAIJ` format
3962:   (the default parallel PETSc format).

3964:   Collective

3966:   Input Parameters:
3967: + B - the matrix
3968: . i - the indices into `j` for the start of each local row (indices start with zero)
3969: . j - the column indices for each local row (indices start with zero)
3970: - v - optional values in the matrix

3972:   Level: developer

3974:   Notes:
3975:   The `i`, `j`, and `v` arrays ARE copied by this routine into the internal format used by PETSc;
3976:   thus you CANNOT change the matrix entries by changing the values of `v` after you have
3977:   called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.

3979:   The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.

3981:   A convenience routine for this functionality is `MatCreateMPIAIJWithArrays()`.

3983:   You can update the matrix with new numerical values using `MatUpdateMPIAIJWithArrays()` after this call if the column indices in `j` are sorted.

3985:   If you do **not** use `MatUpdateMPIAIJWithArrays()`, the column indices in `j` do not need to be sorted. If you will use
3986:   `MatUpdateMPIAIJWithArrays()`, the column indices **must** be sorted.

3988:   The format which is used for the sparse matrix input, is equivalent to a
3989:   row-major ordering.. i.e for the following matrix, the input data expected is
3990:   as shown
3991: .vb
3992:         1 0 0
3993:         2 0 3     P0
3994:        -------
3995:         4 5 6     P1

3997:      Process0 [P0] rows_owned=[0,1]
3998:         i =  {0,1,3}  [size = nrow+1  = 2+1]
3999:         j =  {0,0,2}  [size = 3]
4000:         v =  {1,2,3}  [size = 3]

4002:      Process1 [P1] rows_owned=[2]
4003:         i =  {0,3}    [size = nrow+1  = 1+1]
4004:         j =  {0,1,2}  [size = 3]
4005:         v =  {4,5,6}  [size = 3]
4006: .ve

4008: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatCreateAIJ()`,
4009:           `MatCreateSeqAIJWithArrays()`, `MatCreateMPIAIJWithSplitArrays()`, `MatCreateMPIAIJWithArrays()`, `MatSetPreallocationCOO()`, `MatSetValuesCOO()`
4010: @*/
4011: PetscErrorCode MatMPIAIJSetPreallocationCSR(Mat B, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
4012: {
4013:   PetscFunctionBegin;
4014:   PetscTryMethod(B, "MatMPIAIJSetPreallocationCSR_C", (Mat, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, i, j, v));
4015:   PetscFunctionReturn(PETSC_SUCCESS);
4016: }

4018: /*@
4019:   MatMPIAIJSetPreallocation - Preallocates memory for a sparse parallel matrix in `MATMPIAIJ` format
4020:   (the default parallel PETSc format).  For good matrix assembly performance
4021:   the user should preallocate the matrix storage by setting the parameters
4022:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).

4024:   Collective

4026:   Input Parameters:
4027: + B     - the matrix
4028: . d_nz  - number of nonzeros per row in DIAGONAL portion of local submatrix
4029:            (same value is used for all local rows)
4030: . d_nnz - array containing the number of nonzeros in the various rows of the
4031:            DIAGONAL portion of the local submatrix (possibly different for each row)
4032:            or `NULL` (`PETSC_NULL_INTEGER` in Fortran), if `d_nz` is used to specify the nonzero structure.
4033:            The size of this array is equal to the number of local rows, i.e 'm'.
4034:            For matrices that will be factored, you must leave room for (and set)
4035:            the diagonal entry even if it is zero.
4036: . o_nz  - number of nonzeros per row in the OFF-DIAGONAL portion of local
4037:            submatrix (same value is used for all local rows).
4038: - o_nnz - array containing the number of nonzeros in the various rows of the
4039:            OFF-DIAGONAL portion of the local submatrix (possibly different for
4040:            each row) or `NULL` (`PETSC_NULL_INTEGER` in Fortran), if `o_nz` is used to specify the nonzero
4041:            structure. The size of this array is equal to the number
4042:            of local rows, i.e 'm'.

4044:   Example Usage:
4045:   Consider the following 8x8 matrix with 34 non-zero values, that is
4046:   assembled across 3 processors. Lets assume that proc0 owns 3 rows,
4047:   proc1 owns 3 rows, proc2 owns 2 rows. This division can be shown
4048:   as follows

4050: .vb
4051:             1  2  0  |  0  3  0  |  0  4
4052:     Proc0   0  5  6  |  7  0  0  |  8  0
4053:             9  0 10  | 11  0  0  | 12  0
4054:     -------------------------------------
4055:            13  0 14  | 15 16 17  |  0  0
4056:     Proc1   0 18  0  | 19 20 21  |  0  0
4057:             0  0  0  | 22 23  0  | 24  0
4058:     -------------------------------------
4059:     Proc2  25 26 27  |  0  0 28  | 29  0
4060:            30  0  0  | 31 32 33  |  0 34
4061: .ve

4063:   This can be represented as a collection of submatrices as
4064: .vb
4065:       A B C
4066:       D E F
4067:       G H I
4068: .ve

4070:   Where the submatrices A,B,C are owned by proc0, D,E,F are
4071:   owned by proc1, G,H,I are owned by proc2.

4073:   The 'm' parameters for proc0,proc1,proc2 are 3,3,2 respectively.
4074:   The 'n' parameters for proc0,proc1,proc2 are 3,3,2 respectively.
4075:   The 'M','N' parameters are 8,8, and have the same values on all procs.

4077:   The DIAGONAL submatrices corresponding to proc0,proc1,proc2 are
4078:   submatrices [A], [E], [I] respectively. The OFF-DIAGONAL submatrices
4079:   corresponding to proc0,proc1,proc2 are [BC], [DF], [GH] respectively.
4080:   Internally, each processor stores the DIAGONAL part, and the OFF-DIAGONAL
4081:   part as `MATSEQAIJ` matrices. For example, proc1 will store [E] as a `MATSEQAIJ`
4082:   matrix, ans [DF] as another `MATSEQAIJ` matrix.

4084:   When `d_nz`, `o_nz` parameters are specified, `d_nz` storage elements are
4085:   allocated for every row of the local diagonal submatrix, and `o_nz`
4086:   storage locations are allocated for every row of the OFF-DIAGONAL submat.
4087:   One way to choose `d_nz` and `o_nz` is to use the max nonzerors per local
4088:   rows for each of the local DIAGONAL, and the OFF-DIAGONAL submatrices.
4089:   In this case, the values of `d_nz`, `o_nz` are
4090: .vb
4091:      proc0  dnz = 2, o_nz = 2
4092:      proc1  dnz = 3, o_nz = 2
4093:      proc2  dnz = 1, o_nz = 4
4094: .ve
4095:   We are allocating `m`*(`d_nz`+`o_nz`) storage locations for every proc. This
4096:   translates to 3*(2+2)=12 for proc0, 3*(3+2)=15 for proc1, 2*(1+4)=10
4097:   for proc3. i.e we are using 12+15+10=37 storage locations to store
4098:   34 values.

4100:   When `d_nnz`, `o_nnz` parameters are specified, the storage is specified
4101:   for every row, corresponding to both DIAGONAL and OFF-DIAGONAL submatrices.
4102:   In the above case the values for `d_nnz`, `o_nnz` are
4103: .vb
4104:      proc0 d_nnz = [2,2,2] and o_nnz = [2,2,2]
4105:      proc1 d_nnz = [3,3,2] and o_nnz = [2,1,1]
4106:      proc2 d_nnz = [1,1]   and o_nnz = [4,4]
4107: .ve
4108:   Here the space allocated is sum of all the above values i.e 34, and
4109:   hence pre-allocation is perfect.

4111:   Level: intermediate

4113:   Notes:
4114:   If the *_nnz parameter is given then the *_nz parameter is ignored

4116:   The `MATAIJ` format, also called compressed row storage (CSR), is compatible with standard Fortran
4117:   storage.  The stored row and column indices begin with zero.
4118:   See [Sparse Matrices](sec_matsparse) for details.

4120:   The parallel matrix is partitioned such that the first m0 rows belong to
4121:   process 0, the next m1 rows belong to process 1, the next m2 rows belong
4122:   to process 2 etc.. where m0,m1,m2... are the input parameter 'm'.

4124:   The DIAGONAL portion of the local submatrix of a processor can be defined
4125:   as the submatrix which is obtained by extraction the part corresponding to
4126:   the rows r1-r2 and columns c1-c2 of the global matrix, where r1 is the
4127:   first row that belongs to the processor, r2 is the last row belonging to
4128:   the this processor, and c1-c2 is range of indices of the local part of a
4129:   vector suitable for applying the matrix to.  This is an mxn matrix.  In the
4130:   common case of a square matrix, the row and column ranges are the same and
4131:   the DIAGONAL part is also square. The remaining portion of the local
4132:   submatrix (mxN) constitute the OFF-DIAGONAL portion.

4134:   If `o_nnz` and `d_nnz` are specified, then `o_nz` and `d_nz` are ignored.

4136:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
4137:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
4138:   You can also run with the option `-info` and look for messages with the string
4139:   malloc in them to see if additional memory allocation was needed.

4141: .seealso: [](ch_matrices), `Mat`, [Sparse Matrices](sec_matsparse), `MATMPIAIJ`, `MATAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatCreateAIJ()`, `MatMPIAIJSetPreallocationCSR()`,
4142:           `MatGetInfo()`, `PetscSplitOwnership()`, `MatSetPreallocationCOO()`, `MatSetValuesCOO()`
4143: @*/
4144: PetscErrorCode MatMPIAIJSetPreallocation(Mat B, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
4145: {
4146:   PetscFunctionBegin;
4149:   PetscTryMethod(B, "MatMPIAIJSetPreallocation_C", (Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[]), (B, d_nz, d_nnz, o_nz, o_nnz));
4150:   PetscFunctionReturn(PETSC_SUCCESS);
4151: }

4153: /*@
4154:   MatCreateMPIAIJWithArrays - creates a `MATMPIAIJ` matrix using arrays that contain in standard
4155:   CSR format for the local rows.

4157:   Collective

4159:   Input Parameters:
4160: + comm - MPI communicator
4161: . m    - number of local rows (Cannot be `PETSC_DECIDE`)
4162: . n    - This value should be the same as the local size used in creating the
4163:          x vector for the matrix-vector product $ y = Ax$. (or `PETSC_DECIDE` to have
4164:          calculated if `N` is given) For square matrices n is almost always `m`.
4165: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
4166: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
4167: . i    - row indices (of length m+1); that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
4168: . j    - global column indices
4169: - a    - optional matrix values

4171:   Output Parameter:
4172: . mat - the matrix

4174:   Level: intermediate

4176:   Notes:
4177:   The `i`, `j`, and `a` arrays ARE copied by this routine into the internal format used by PETSc;
4178:   thus you CANNOT change the matrix entries by changing the values of `a[]` after you have
4179:   called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.

4181:   The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.

4183:   Once you have created the matrix you can update it with new numerical values using `MatUpdateMPIAIJWithArray()`

4185:   If you do **not** use `MatUpdateMPIAIJWithArray()`, the column indices in `j` do not need to be sorted. If you will use
4186:   `MatUpdateMPIAIJWithArrays()`, the column indices **must** be sorted.

4188:   The format which is used for the sparse matrix input, is equivalent to a
4189:   row-major ordering, i.e., for the following matrix, the input data expected is
4190:   as shown
4191: .vb
4192:         1 0 0
4193:         2 0 3     P0
4194:        -------
4195:         4 5 6     P1

4197:      Process0 [P0] rows_owned=[0,1]
4198:         i =  {0,1,3}  [size = nrow+1  = 2+1]
4199:         j =  {0,0,2}  [size = 3]
4200:         v =  {1,2,3}  [size = 3]

4202:      Process1 [P1] rows_owned=[2]
4203:         i =  {0,3}    [size = nrow+1  = 1+1]
4204:         j =  {0,1,2}  [size = 3]
4205:         v =  {4,5,6}  [size = 3]
4206: .ve

4208: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
4209:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`, `MatUpdateMPIAIJWithArray()`, `MatSetPreallocationCOO()`, `MatSetValuesCOO()`
4210: @*/
4211: PetscErrorCode MatCreateMPIAIJWithArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt i[], const PetscInt j[], const PetscScalar a[], Mat *mat)
4212: {
4213:   PetscFunctionBegin;
4214:   PetscCheck(!i || !i[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
4215:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
4216:   PetscCall(MatCreate(comm, mat));
4217:   PetscCall(MatSetSizes(*mat, m, n, M, N));
4218:   /* PetscCall(MatSetBlockSizes(M,bs,cbs)); */
4219:   PetscCall(MatSetType(*mat, MATMPIAIJ));
4220:   PetscCall(MatMPIAIJSetPreallocationCSR(*mat, i, j, a));
4221:   PetscFunctionReturn(PETSC_SUCCESS);
4222: }

4224: /*@
4225:   MatUpdateMPIAIJWithArrays - updates a `MATMPIAIJ` matrix using arrays that contain in standard
4226:   CSR format for the local rows. Only the numerical values are updated the other arrays must be identical to what was passed
4227:   from `MatCreateMPIAIJWithArrays()`

4229:   Deprecated: Use `MatUpdateMPIAIJWithArray()`

4231:   Collective

4233:   Input Parameters:
4234: + mat - the matrix
4235: . m   - number of local rows (Cannot be `PETSC_DECIDE`)
4236: . n   - This value should be the same as the local size used in creating the
4237:        x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
4238:        calculated if N is given) For square matrices n is almost always m.
4239: . M   - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
4240: . N   - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
4241: . Ii  - row indices; that is Ii[0] = 0, Ii[row] = Ii[row-1] + number of elements in that row of the matrix
4242: . J   - column indices
4243: - v   - matrix values

4245:   Level: deprecated

4247: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
4248:           `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`, `MatUpdateMPIAIJWithArray()`, `MatSetPreallocationCOO()`, `MatSetValuesCOO()`
4249: @*/
4250: PetscErrorCode MatUpdateMPIAIJWithArrays(Mat mat, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
4251: {
4252:   PetscInt        nnz, i;
4253:   PetscBool       nooffprocentries;
4254:   Mat_MPIAIJ     *Aij = (Mat_MPIAIJ *)mat->data;
4255:   Mat_SeqAIJ     *Ad  = (Mat_SeqAIJ *)Aij->A->data;
4256:   PetscScalar    *ad, *ao;
4257:   PetscInt        ldi, Iii, md;
4258:   const PetscInt *Adi = Ad->i;
4259:   PetscInt       *ld  = Aij->ld;

4261:   PetscFunctionBegin;
4262:   PetscCheck(Ii[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
4263:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
4264:   PetscCheck(m == mat->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Local number of rows cannot change from call to MatUpdateMPIAIJWithArrays()");
4265:   PetscCheck(n == mat->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Local number of columns cannot change from call to MatUpdateMPIAIJWithArrays()");

4267:   PetscCall(MatSeqAIJGetArrayWrite(Aij->A, &ad));
4268:   PetscCall(MatSeqAIJGetArrayWrite(Aij->B, &ao));

4270:   for (i = 0; i < m; i++) {
4271:     if (PetscDefined(USE_DEBUG)) {
4272:       for (PetscInt j = Ii[i] + 1; j < Ii[i + 1]; ++j) {
4273:         PetscCheck(J[j] >= J[j - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is not sorted", j - Ii[i], J[j], i);
4274:         PetscCheck(J[j] != J[j - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is identical to previous entry", j - Ii[i], J[j], i);
4275:       }
4276:     }
4277:     nnz = Ii[i + 1] - Ii[i];
4278:     Iii = Ii[i];
4279:     ldi = ld[i];
4280:     md  = Adi[i + 1] - Adi[i];
4281:     PetscCall(PetscArraycpy(ao, v + Iii, ldi));
4282:     PetscCall(PetscArraycpy(ad, v + Iii + ldi, md));
4283:     PetscCall(PetscArraycpy(ao + ldi, v + Iii + ldi + md, nnz - ldi - md));
4284:     ad += md;
4285:     ao += nnz - md;
4286:   }
4287:   nooffprocentries      = mat->nooffprocentries;
4288:   mat->nooffprocentries = PETSC_TRUE;
4289:   PetscCall(MatSeqAIJRestoreArrayWrite(Aij->A, &ad));
4290:   PetscCall(MatSeqAIJRestoreArrayWrite(Aij->B, &ao));
4291:   PetscCall(PetscObjectStateIncrease((PetscObject)Aij->A));
4292:   PetscCall(PetscObjectStateIncrease((PetscObject)Aij->B));
4293:   PetscCall(PetscObjectStateIncrease((PetscObject)mat));
4294:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
4295:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
4296:   mat->nooffprocentries = nooffprocentries;
4297:   PetscFunctionReturn(PETSC_SUCCESS);
4298: }

4300: /*@
4301:   MatUpdateMPIAIJWithArray - updates an `MATMPIAIJ` matrix using an array that contains the nonzero values

4303:   Collective

4305:   Input Parameters:
4306: + mat - the matrix
4307: - v   - matrix values, stored by row

4309:   Level: intermediate

4311:   Notes:
4312:   The matrix must have been obtained with `MatCreateMPIAIJWithArrays()` or `MatMPIAIJSetPreallocationCSR()`

4314:   The column indices in the call to `MatCreateMPIAIJWithArrays()` or `MatMPIAIJSetPreallocationCSR()` must have been sorted for this call to work correctly

4316: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
4317:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`, `MatUpdateMPIAIJWithArrays()`, `MatSetPreallocationCOO()`, `MatSetValuesCOO()`
4318: @*/
4319: PetscErrorCode MatUpdateMPIAIJWithArray(Mat mat, const PetscScalar v[])
4320: {
4321:   PetscInt        nnz, i, m;
4322:   PetscBool       nooffprocentries;
4323:   Mat_MPIAIJ     *Aij = (Mat_MPIAIJ *)mat->data;
4324:   Mat_SeqAIJ     *Ad  = (Mat_SeqAIJ *)Aij->A->data;
4325:   Mat_SeqAIJ     *Ao  = (Mat_SeqAIJ *)Aij->B->data;
4326:   PetscScalar    *ad, *ao;
4327:   const PetscInt *Adi = Ad->i, *Adj = Ao->i;
4328:   PetscInt        ldi, Iii, md;
4329:   PetscInt       *ld = Aij->ld;

4331:   PetscFunctionBegin;
4332:   m = mat->rmap->n;

4334:   PetscCall(MatSeqAIJGetArrayWrite(Aij->A, &ad));
4335:   PetscCall(MatSeqAIJGetArrayWrite(Aij->B, &ao));
4336:   Iii = 0;
4337:   for (i = 0; i < m; i++) {
4338:     nnz = Adi[i + 1] - Adi[i] + Adj[i + 1] - Adj[i];
4339:     ldi = ld[i];
4340:     md  = Adi[i + 1] - Adi[i];
4341:     PetscCall(PetscArraycpy(ad, v + Iii + ldi, md));
4342:     ad += md;
4343:     if (ao) {
4344:       PetscCall(PetscArraycpy(ao, v + Iii, ldi));
4345:       PetscCall(PetscArraycpy(ao + ldi, v + Iii + ldi + md, nnz - ldi - md));
4346:       ao += nnz - md;
4347:     }
4348:     Iii += nnz;
4349:   }
4350:   nooffprocentries      = mat->nooffprocentries;
4351:   mat->nooffprocentries = PETSC_TRUE;
4352:   PetscCall(MatSeqAIJRestoreArrayWrite(Aij->A, &ad));
4353:   PetscCall(MatSeqAIJRestoreArrayWrite(Aij->B, &ao));
4354:   PetscCall(PetscObjectStateIncrease((PetscObject)Aij->A));
4355:   PetscCall(PetscObjectStateIncrease((PetscObject)Aij->B));
4356:   PetscCall(PetscObjectStateIncrease((PetscObject)mat));
4357:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
4358:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
4359:   mat->nooffprocentries = nooffprocentries;
4360:   PetscFunctionReturn(PETSC_SUCCESS);
4361: }

4363: /*@
4364:   MatCreateAIJ - Creates a sparse parallel matrix in `MATAIJ` format
4365:   (the default parallel PETSc format).  For good matrix assembly performance
4366:   the user should preallocate the matrix storage by setting the parameters
4367:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).

4369:   Collective

4371:   Input Parameters:
4372: + comm  - MPI communicator
4373: . m     - number of local rows (or `PETSC_DECIDE` to have calculated if M is given)
4374:           This value should be the same as the local size used in creating the
4375:           y vector for the matrix-vector product y = Ax.
4376: . n     - This value should be the same as the local size used in creating the
4377:           x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
4378:           calculated if N is given) For square matrices n is almost always m.
4379: . M     - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
4380: . N     - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
4381: . d_nz  - number of nonzeros per row in DIAGONAL portion of local submatrix
4382:           (same value is used for all local rows)
4383: . d_nnz - array containing the number of nonzeros in the various rows of the
4384:           DIAGONAL portion of the local submatrix (possibly different for each row)
4385:           or `NULL`, if `d_nz` is used to specify the nonzero structure.
4386:           The size of this array is equal to the number of local rows, i.e 'm'.
4387: . o_nz  - number of nonzeros per row in the OFF-DIAGONAL portion of local
4388:           submatrix (same value is used for all local rows).
4389: - o_nnz - array containing the number of nonzeros in the various rows of the
4390:           OFF-DIAGONAL portion of the local submatrix (possibly different for
4391:           each row) or `NULL`, if `o_nz` is used to specify the nonzero
4392:           structure. The size of this array is equal to the number
4393:           of local rows, i.e 'm'.

4395:   Output Parameter:
4396: . A - the matrix

4398:   Options Database Keys:
4399: + -mat_no_inode                     - Do not use inodes
4400: . -mat_inode_limit <limit>          - Sets inode limit (max limit=5)
4401: - -matmult_vecscatter_view <viewer> - View the vecscatter (i.e., communication pattern) used in `MatMult()` of sparse parallel matrices.
4402:                                       See viewer types in manual of `MatView()`. Of them, ascii_matlab, draw or binary cause the `VecScatter`
4403:                                       to be viewed as a matrix. Entry (i,j) is the size of message (in bytes) rank i sends to rank j in one `MatMult()` call.

4405:   Level: intermediate

4407:   Notes:
4408:   It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
4409:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
4410:   [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]

4412:   If the *_nnz parameter is given then the *_nz parameter is ignored

4414:   The `m`,`n`,`M`,`N` parameters specify the size of the matrix, and its partitioning across
4415:   processors, while `d_nz`,`d_nnz`,`o_nz`,`o_nnz` parameters specify the approximate
4416:   storage requirements for this matrix.

4418:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one
4419:   processor than it must be used on all processors that share the object for
4420:   that argument.

4422:   If `m` and `n` are not `PETSC_DECIDE`, then the values determine the `PetscLayout` of the matrix and the ranges returned by
4423:   `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.

4425:   The user MUST specify either the local or global matrix dimensions
4426:   (possibly both).

4428:   The parallel matrix is partitioned across processors such that the
4429:   first `m0` rows belong to process 0, the next `m1` rows belong to
4430:   process 1, the next `m2` rows belong to process 2, etc., where
4431:   `m0`, `m1`, `m2`... are the input parameter `m` on each MPI process. I.e., each MPI process stores
4432:   values corresponding to [m x N] submatrix.

4434:   The columns are logically partitioned with the n0 columns belonging
4435:   to 0th partition, the next n1 columns belonging to the next
4436:   partition etc.. where n0,n1,n2... are the input parameter 'n'.

4438:   The DIAGONAL portion of the local submatrix on any given processor
4439:   is the submatrix corresponding to the rows and columns m,n
4440:   corresponding to the given processor. i.e diagonal matrix on
4441:   process 0 is [m0 x n0], diagonal matrix on process 1 is [m1 x n1]
4442:   etc. The remaining portion of the local submatrix [m x (N-n)]
4443:   constitute the OFF-DIAGONAL portion. The example below better
4444:   illustrates this concept.

4446:   For a square global matrix we define each processor's diagonal portion
4447:   to be its local rows and the corresponding columns (a square submatrix);
4448:   each processor's off-diagonal portion encompasses the remainder of the
4449:   local matrix (a rectangular submatrix).

4451:   If `o_nnz`, `d_nnz` are specified, then `o_nz`, and `d_nz` are ignored.

4453:   When calling this routine with a single process communicator, a matrix of
4454:   type `MATSEQAIJ` is returned.  If a matrix of type `MATMPIAIJ` is desired for this
4455:   type of communicator, use the construction mechanism
4456: .vb
4457:   MatCreate(..., &A);
4458:   MatSetType(A, MATMPIAIJ);
4459:   MatSetSizes(A, m, n, M, N);
4460:   MatMPIAIJSetPreallocation(A, ...);
4461: .ve

4463:   By default, this format uses inodes (identical nodes) when possible.
4464:   We search for consecutive rows with the same nonzero structure, thereby
4465:   reusing matrix information to achieve increased efficiency.

4467:   Example Usage:
4468:   Consider the following 8x8 matrix with 34 non-zero values, that is
4469:   assembled across 3 processors. Lets assume that proc0 owns 3 rows,
4470:   proc1 owns 3 rows, proc2 owns 2 rows. This division can be shown
4471:   as follows

4473: .vb
4474:             1  2  0  |  0  3  0  |  0  4
4475:     Proc0   0  5  6  |  7  0  0  |  8  0
4476:             9  0 10  | 11  0  0  | 12  0
4477:     -------------------------------------
4478:            13  0 14  | 15 16 17  |  0  0
4479:     Proc1   0 18  0  | 19 20 21  |  0  0
4480:             0  0  0  | 22 23  0  | 24  0
4481:     -------------------------------------
4482:     Proc2  25 26 27  |  0  0 28  | 29  0
4483:            30  0  0  | 31 32 33  |  0 34
4484: .ve

4486:   This can be represented as a collection of submatrices as

4488: .vb
4489:       A B C
4490:       D E F
4491:       G H I
4492: .ve

4494:   Where the submatrices A,B,C are owned by proc0, D,E,F are
4495:   owned by proc1, G,H,I are owned by proc2.

4497:   The 'm' parameters for proc0,proc1,proc2 are 3,3,2 respectively.
4498:   The 'n' parameters for proc0,proc1,proc2 are 3,3,2 respectively.
4499:   The 'M','N' parameters are 8,8, and have the same values on all procs.

4501:   The DIAGONAL submatrices corresponding to proc0,proc1,proc2 are
4502:   submatrices [A], [E], [I] respectively. The OFF-DIAGONAL submatrices
4503:   corresponding to proc0,proc1,proc2 are [BC], [DF], [GH] respectively.
4504:   Internally, each processor stores the DIAGONAL part, and the OFF-DIAGONAL
4505:   part as `MATSEQAIJ` matrices. For example, proc1 will store [E] as a `MATSEQAIJ`
4506:   matrix, ans [DF] as another SeqAIJ matrix.

4508:   When `d_nz`, `o_nz` parameters are specified, `d_nz` storage elements are
4509:   allocated for every row of the local diagonal submatrix, and `o_nz`
4510:   storage locations are allocated for every row of the OFF-DIAGONAL submat.
4511:   One way to choose `d_nz` and `o_nz` is to use the max nonzerors per local
4512:   rows for each of the local DIAGONAL, and the OFF-DIAGONAL submatrices.
4513:   In this case, the values of `d_nz`,`o_nz` are
4514: .vb
4515:      proc0  dnz = 2, o_nz = 2
4516:      proc1  dnz = 3, o_nz = 2
4517:      proc2  dnz = 1, o_nz = 4
4518: .ve
4519:   We are allocating m*(`d_nz`+`o_nz`) storage locations for every proc. This
4520:   translates to 3*(2+2)=12 for proc0, 3*(3+2)=15 for proc1, 2*(1+4)=10
4521:   for proc3. i.e we are using 12+15+10=37 storage locations to store
4522:   34 values.

4524:   When `d_nnz`, `o_nnz` parameters are specified, the storage is specified
4525:   for every row, corresponding to both DIAGONAL and OFF-DIAGONAL submatrices.
4526:   In the above case the values for d_nnz,o_nnz are
4527: .vb
4528:      proc0 d_nnz = [2,2,2] and o_nnz = [2,2,2]
4529:      proc1 d_nnz = [3,3,2] and o_nnz = [2,1,1]
4530:      proc2 d_nnz = [1,1]   and o_nnz = [4,4]
4531: .ve
4532:   Here the space allocated is sum of all the above values i.e 34, and
4533:   hence pre-allocation is perfect.

4535: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
4536:           `MATMPIAIJ`, `MatCreateMPIAIJWithArrays()`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`,
4537:           `MatGetOwnershipRangesColumn()`, `PetscLayout`
4538: @*/
4539: PetscErrorCode MatCreateAIJ(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
4540: {
4541:   PetscMPIInt size;

4543:   PetscFunctionBegin;
4544:   PetscCall(MatCreate(comm, A));
4545:   PetscCall(MatSetSizes(*A, m, n, M, N));
4546:   PetscCallMPI(MPI_Comm_size(comm, &size));
4547:   if (size > 1) {
4548:     PetscCall(MatSetType(*A, MATMPIAIJ));
4549:     PetscCall(MatMPIAIJSetPreallocation(*A, d_nz, d_nnz, o_nz, o_nnz));
4550:   } else {
4551:     PetscCall(MatSetType(*A, MATSEQAIJ));
4552:     PetscCall(MatSeqAIJSetPreallocation(*A, d_nz, d_nnz));
4553:   }
4554:   PetscFunctionReturn(PETSC_SUCCESS);
4555: }

4557: /*MC
4558:     MatMPIAIJGetSeqAIJF90 - Returns the local pieces of this distributed matrix

4560:     Synopsis:
4561:     MatMPIAIJGetSeqAIJF90(Mat A, Mat Ad, Mat Ao, {PetscInt, pointer :: colmap(:)},integer ierr)

4563:     Not Collective

4565:     Input Parameter:
4566: .   A - the `MATMPIAIJ` matrix

4568:     Output Parameters:
4569: +   Ad - the diagonal portion of the matrix
4570: .   Ao - the off-diagonal portion of the matrix
4571: .   colmap - An array mapping local column numbers of `Ao` to global column numbers of the parallel matrix
4572: -   ierr - error code

4574:      Level: advanced

4576:     Note:
4577:     Use  `MatMPIAIJRestoreSeqAIJF90()` when you no longer need access to the matrices and `colmap`

4579: .seealso: [](ch_matrices), `Mat`, [](sec_fortranarrays), `Mat`, `MATMPIAIJ`, `MatMPIAIJGetSeqAIJ()`, `MatMPIAIJRestoreSeqAIJF90()`
4580: M*/

4582: /*MC
4583:     MatMPIAIJRestoreSeqAIJF90 - call after `MatMPIAIJGetSeqAIJF90()` when you no longer need access to the matrices and `colmap`

4585:     Synopsis:
4586:     MatMPIAIJRestoreSeqAIJF90(Mat A, Mat Ad, Mat Ao, {PetscInt, pointer :: colmap(:)},integer ierr)

4588:     Not Collective

4590:     Input Parameters:
4591: +   A - the `MATMPIAIJ` matrix
4592: .   Ad - the diagonal portion of the matrix
4593: .   Ao - the off-diagonal portion of the matrix
4594: .   colmap - An array mapping local column numbers of `Ao` to global column numbers of the parallel matrix
4595: -   ierr - error code

4597:      Level: advanced

4599: .seealso: [](ch_matrices), `Mat`, [](sec_fortranarrays), `Mat`, `MATMPIAIJ`, `MatMPIAIJGetSeqAIJ()`, `MatMPIAIJGetSeqAIJF90()`
4600: M*/

4602: /*@C
4603:   MatMPIAIJGetSeqAIJ - Returns the local pieces of this distributed matrix

4605:   Not Collective

4607:   Input Parameter:
4608: . A - The `MATMPIAIJ` matrix

4610:   Output Parameters:
4611: + Ad     - The local diagonal block as a `MATSEQAIJ` matrix
4612: . Ao     - The local off-diagonal block as a `MATSEQAIJ` matrix
4613: - colmap - An array mapping local column numbers of `Ao` to global column numbers of the parallel matrix

4615:   Level: intermediate

4617:   Note:
4618:   The rows in `Ad` and `Ao` are in [0, Nr), where Nr is the number of local rows on this process. The columns
4619:   in `Ad` are in [0, Nc) where Nc is the number of local columns. The columns are `Ao` are in [0, Nco), where Nco is
4620:   the number of nonzero columns in the local off-diagonal piece of the matrix `A`. The array colmap maps these
4621:   local column numbers to global column numbers in the original matrix.

4623:   Fortran Notes:
4624:   `MatMPIAIJGetSeqAIJ()` Fortran binding is deprecated (since PETSc 3.19), use `MatMPIAIJGetSeqAIJF90()`

4626: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MatMPIAIJGetSeqAIJF90()`, `MatMPIAIJRestoreSeqAIJF90()`, `MatMPIAIJGetLocalMat()`, `MatMPIAIJGetLocalMatCondensed()`, `MatCreateAIJ()`, `MATSEQAIJ`
4627: @*/
4628: PetscErrorCode MatMPIAIJGetSeqAIJ(Mat A, Mat *Ad, Mat *Ao, const PetscInt *colmap[])
4629: {
4630:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;
4631:   PetscBool   flg;

4633:   PetscFunctionBegin;
4634:   PetscCall(PetscStrbeginswith(((PetscObject)A)->type_name, MATMPIAIJ, &flg));
4635:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "This function requires a MATMPIAIJ matrix as input");
4636:   if (Ad) *Ad = a->A;
4637:   if (Ao) *Ao = a->B;
4638:   if (colmap) *colmap = a->garray;
4639:   PetscFunctionReturn(PETSC_SUCCESS);
4640: }

4642: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPIAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
4643: {
4644:   PetscInt     m, N, i, rstart, nnz, Ii;
4645:   PetscInt    *indx;
4646:   PetscScalar *values;
4647:   MatType      rootType;

4649:   PetscFunctionBegin;
4650:   PetscCall(MatGetSize(inmat, &m, &N));
4651:   if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
4652:     PetscInt *dnz, *onz, sum, bs, cbs;

4654:     if (n == PETSC_DECIDE) PetscCall(PetscSplitOwnership(comm, &n, &N));
4655:     /* Check sum(n) = N */
4656:     PetscCallMPI(MPIU_Allreduce(&n, &sum, 1, MPIU_INT, MPI_SUM, comm));
4657:     PetscCheck(sum == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Sum of local columns %" PetscInt_FMT " != global columns %" PetscInt_FMT, sum, N);

4659:     PetscCallMPI(MPI_Scan(&m, &rstart, 1, MPIU_INT, MPI_SUM, comm));
4660:     rstart -= m;

4662:     MatPreallocateBegin(comm, m, n, dnz, onz);
4663:     for (i = 0; i < m; i++) {
4664:       PetscCall(MatGetRow_SeqAIJ(inmat, i, &nnz, &indx, NULL));
4665:       PetscCall(MatPreallocateSet(i + rstart, nnz, indx, dnz, onz));
4666:       PetscCall(MatRestoreRow_SeqAIJ(inmat, i, &nnz, &indx, NULL));
4667:     }

4669:     PetscCall(MatCreate(comm, outmat));
4670:     PetscCall(MatSetSizes(*outmat, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
4671:     PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
4672:     PetscCall(MatSetBlockSizes(*outmat, bs, cbs));
4673:     PetscCall(MatGetRootType_Private(inmat, &rootType));
4674:     PetscCall(MatSetType(*outmat, rootType));
4675:     PetscCall(MatSeqAIJSetPreallocation(*outmat, 0, dnz));
4676:     PetscCall(MatMPIAIJSetPreallocation(*outmat, 0, dnz, 0, onz));
4677:     MatPreallocateEnd(dnz, onz);
4678:     PetscCall(MatSetOption(*outmat, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
4679:   }

4681:   /* numeric phase */
4682:   PetscCall(MatGetOwnershipRange(*outmat, &rstart, NULL));
4683:   for (i = 0; i < m; i++) {
4684:     PetscCall(MatGetRow_SeqAIJ(inmat, i, &nnz, &indx, &values));
4685:     Ii = i + rstart;
4686:     PetscCall(MatSetValues(*outmat, 1, &Ii, nnz, indx, values, INSERT_VALUES));
4687:     PetscCall(MatRestoreRow_SeqAIJ(inmat, i, &nnz, &indx, &values));
4688:   }
4689:   PetscCall(MatAssemblyBegin(*outmat, MAT_FINAL_ASSEMBLY));
4690:   PetscCall(MatAssemblyEnd(*outmat, MAT_FINAL_ASSEMBLY));
4691:   PetscFunctionReturn(PETSC_SUCCESS);
4692: }

4694: static PetscErrorCode MatDestroy_MPIAIJ_SeqsToMPI(void *data)
4695: {
4696:   Mat_Merge_SeqsToMPI *merge = (Mat_Merge_SeqsToMPI *)data;

4698:   PetscFunctionBegin;
4699:   if (!merge) PetscFunctionReturn(PETSC_SUCCESS);
4700:   PetscCall(PetscFree(merge->id_r));
4701:   PetscCall(PetscFree(merge->len_s));
4702:   PetscCall(PetscFree(merge->len_r));
4703:   PetscCall(PetscFree(merge->bi));
4704:   PetscCall(PetscFree(merge->bj));
4705:   PetscCall(PetscFree(merge->buf_ri[0]));
4706:   PetscCall(PetscFree(merge->buf_ri));
4707:   PetscCall(PetscFree(merge->buf_rj[0]));
4708:   PetscCall(PetscFree(merge->buf_rj));
4709:   PetscCall(PetscFree(merge->coi));
4710:   PetscCall(PetscFree(merge->coj));
4711:   PetscCall(PetscFree(merge->owners_co));
4712:   PetscCall(PetscLayoutDestroy(&merge->rowmap));
4713:   PetscCall(PetscFree(merge));
4714:   PetscFunctionReturn(PETSC_SUCCESS);
4715: }

4717: #include <../src/mat/utils/freespace.h>
4718: #include <petscbt.h>

4720: PetscErrorCode MatCreateMPIAIJSumSeqAIJNumeric(Mat seqmat, Mat mpimat)
4721: {
4722:   MPI_Comm             comm;
4723:   Mat_SeqAIJ          *a = (Mat_SeqAIJ *)seqmat->data;
4724:   PetscMPIInt          size, rank, taga, *len_s;
4725:   PetscInt             N = mpimat->cmap->N, i, j, *owners, *ai = a->i, *aj, m;
4726:   PetscMPIInt          proc, k;
4727:   PetscInt           **buf_ri, **buf_rj;
4728:   PetscInt             anzi, *bj_i, *bi, *bj, arow, bnzi, nextaj;
4729:   PetscInt             nrows, **buf_ri_k, **nextrow, **nextai;
4730:   MPI_Request         *s_waits, *r_waits;
4731:   MPI_Status          *status;
4732:   const MatScalar     *aa, *a_a;
4733:   MatScalar          **abuf_r, *ba_i;
4734:   Mat_Merge_SeqsToMPI *merge;
4735:   PetscContainer       container;

4737:   PetscFunctionBegin;
4738:   PetscCall(PetscObjectGetComm((PetscObject)mpimat, &comm));
4739:   PetscCall(PetscLogEventBegin(MAT_Seqstompinum, seqmat, 0, 0, 0));

4741:   PetscCallMPI(MPI_Comm_size(comm, &size));
4742:   PetscCallMPI(MPI_Comm_rank(comm, &rank));

4744:   PetscCall(PetscObjectQuery((PetscObject)mpimat, "MatMergeSeqsToMPI", (PetscObject *)&container));
4745:   PetscCheck(container, PetscObjectComm((PetscObject)mpimat), PETSC_ERR_PLIB, "Mat not created from MatCreateMPIAIJSumSeqAIJSymbolic");
4746:   PetscCall(PetscContainerGetPointer(container, (void **)&merge));
4747:   PetscCall(MatSeqAIJGetArrayRead(seqmat, &a_a));
4748:   aa = a_a;

4750:   bi     = merge->bi;
4751:   bj     = merge->bj;
4752:   buf_ri = merge->buf_ri;
4753:   buf_rj = merge->buf_rj;

4755:   PetscCall(PetscMalloc1(size, &status));
4756:   owners = merge->rowmap->range;
4757:   len_s  = merge->len_s;

4759:   /* send and recv matrix values */
4760:   PetscCall(PetscObjectGetNewTag((PetscObject)mpimat, &taga));
4761:   PetscCall(PetscPostIrecvScalar(comm, taga, merge->nrecv, merge->id_r, merge->len_r, &abuf_r, &r_waits));

4763:   PetscCall(PetscMalloc1(merge->nsend + 1, &s_waits));
4764:   for (proc = 0, k = 0; proc < size; proc++) {
4765:     if (!len_s[proc]) continue;
4766:     i = owners[proc];
4767:     PetscCallMPI(MPIU_Isend(aa + ai[i], len_s[proc], MPIU_MATSCALAR, proc, taga, comm, s_waits + k));
4768:     k++;
4769:   }

4771:   if (merge->nrecv) PetscCallMPI(MPI_Waitall(merge->nrecv, r_waits, status));
4772:   if (merge->nsend) PetscCallMPI(MPI_Waitall(merge->nsend, s_waits, status));
4773:   PetscCall(PetscFree(status));

4775:   PetscCall(PetscFree(s_waits));
4776:   PetscCall(PetscFree(r_waits));

4778:   /* insert mat values of mpimat */
4779:   PetscCall(PetscMalloc1(N, &ba_i));
4780:   PetscCall(PetscMalloc3(merge->nrecv, &buf_ri_k, merge->nrecv, &nextrow, merge->nrecv, &nextai));

4782:   for (k = 0; k < merge->nrecv; k++) {
4783:     buf_ri_k[k] = buf_ri[k]; /* beginning of k-th recved i-structure */
4784:     nrows       = *buf_ri_k[k];
4785:     nextrow[k]  = buf_ri_k[k] + 1;           /* next row number of k-th recved i-structure */
4786:     nextai[k]   = buf_ri_k[k] + (nrows + 1); /* points to the next i-structure of k-th recved i-structure  */
4787:   }

4789:   /* set values of ba */
4790:   m = merge->rowmap->n;
4791:   for (i = 0; i < m; i++) {
4792:     arow = owners[rank] + i;
4793:     bj_i = bj + bi[i]; /* col indices of the i-th row of mpimat */
4794:     bnzi = bi[i + 1] - bi[i];
4795:     PetscCall(PetscArrayzero(ba_i, bnzi));

4797:     /* add local non-zero vals of this proc's seqmat into ba */
4798:     anzi   = ai[arow + 1] - ai[arow];
4799:     aj     = a->j + ai[arow];
4800:     aa     = a_a + ai[arow];
4801:     nextaj = 0;
4802:     for (j = 0; nextaj < anzi; j++) {
4803:       if (*(bj_i + j) == aj[nextaj]) { /* bcol == acol */
4804:         ba_i[j] += aa[nextaj++];
4805:       }
4806:     }

4808:     /* add received vals into ba */
4809:     for (k = 0; k < merge->nrecv; k++) { /* k-th received message */
4810:       /* i-th row */
4811:       if (i == *nextrow[k]) {
4812:         anzi   = *(nextai[k] + 1) - *nextai[k];
4813:         aj     = buf_rj[k] + *nextai[k];
4814:         aa     = abuf_r[k] + *nextai[k];
4815:         nextaj = 0;
4816:         for (j = 0; nextaj < anzi; j++) {
4817:           if (*(bj_i + j) == aj[nextaj]) { /* bcol == acol */
4818:             ba_i[j] += aa[nextaj++];
4819:           }
4820:         }
4821:         nextrow[k]++;
4822:         nextai[k]++;
4823:       }
4824:     }
4825:     PetscCall(MatSetValues(mpimat, 1, &arow, bnzi, bj_i, ba_i, INSERT_VALUES));
4826:   }
4827:   PetscCall(MatSeqAIJRestoreArrayRead(seqmat, &a_a));
4828:   PetscCall(MatAssemblyBegin(mpimat, MAT_FINAL_ASSEMBLY));
4829:   PetscCall(MatAssemblyEnd(mpimat, MAT_FINAL_ASSEMBLY));

4831:   PetscCall(PetscFree(abuf_r[0]));
4832:   PetscCall(PetscFree(abuf_r));
4833:   PetscCall(PetscFree(ba_i));
4834:   PetscCall(PetscFree3(buf_ri_k, nextrow, nextai));
4835:   PetscCall(PetscLogEventEnd(MAT_Seqstompinum, seqmat, 0, 0, 0));
4836:   PetscFunctionReturn(PETSC_SUCCESS);
4837: }

4839: PetscErrorCode MatCreateMPIAIJSumSeqAIJSymbolic(MPI_Comm comm, Mat seqmat, PetscInt m, PetscInt n, Mat *mpimat)
4840: {
4841:   Mat                  B_mpi;
4842:   Mat_SeqAIJ          *a = (Mat_SeqAIJ *)seqmat->data;
4843:   PetscMPIInt          size, rank, tagi, tagj, *len_s, *len_si, *len_ri;
4844:   PetscInt           **buf_rj, **buf_ri, **buf_ri_k;
4845:   PetscInt             M = seqmat->rmap->n, N = seqmat->cmap->n, i, *owners, *ai = a->i, *aj = a->j;
4846:   PetscInt             len, *dnz, *onz, bs, cbs;
4847:   PetscInt             k, anzi, *bi, *bj, *lnk, nlnk, arow, bnzi;
4848:   PetscInt             nrows, *buf_s, *buf_si, *buf_si_i, **nextrow, **nextai;
4849:   MPI_Request         *si_waits, *sj_waits, *ri_waits, *rj_waits;
4850:   MPI_Status          *status;
4851:   PetscFreeSpaceList   free_space = NULL, current_space = NULL;
4852:   PetscBT              lnkbt;
4853:   Mat_Merge_SeqsToMPI *merge;
4854:   PetscContainer       container;

4856:   PetscFunctionBegin;
4857:   PetscCall(PetscLogEventBegin(MAT_Seqstompisym, seqmat, 0, 0, 0));

4859:   /* make sure it is a PETSc comm */
4860:   PetscCall(PetscCommDuplicate(comm, &comm, NULL));
4861:   PetscCallMPI(MPI_Comm_size(comm, &size));
4862:   PetscCallMPI(MPI_Comm_rank(comm, &rank));

4864:   PetscCall(PetscNew(&merge));
4865:   PetscCall(PetscMalloc1(size, &status));

4867:   /* determine row ownership */
4868:   PetscCall(PetscLayoutCreate(comm, &merge->rowmap));
4869:   PetscCall(PetscLayoutSetLocalSize(merge->rowmap, m));
4870:   PetscCall(PetscLayoutSetSize(merge->rowmap, M));
4871:   PetscCall(PetscLayoutSetBlockSize(merge->rowmap, 1));
4872:   PetscCall(PetscLayoutSetUp(merge->rowmap));
4873:   PetscCall(PetscMalloc1(size, &len_si));
4874:   PetscCall(PetscMalloc1(size, &merge->len_s));

4876:   m      = merge->rowmap->n;
4877:   owners = merge->rowmap->range;

4879:   /* determine the number of messages to send, their lengths */
4880:   len_s = merge->len_s;

4882:   len          = 0; /* length of buf_si[] */
4883:   merge->nsend = 0;
4884:   for (PetscMPIInt proc = 0; proc < size; proc++) {
4885:     len_si[proc] = 0;
4886:     if (proc == rank) {
4887:       len_s[proc] = 0;
4888:     } else {
4889:       PetscCall(PetscMPIIntCast(owners[proc + 1] - owners[proc] + 1, &len_si[proc]));
4890:       PetscCall(PetscMPIIntCast(ai[owners[proc + 1]] - ai[owners[proc]], &len_s[proc])); /* num of rows to be sent to [proc] */
4891:     }
4892:     if (len_s[proc]) {
4893:       merge->nsend++;
4894:       nrows = 0;
4895:       for (i = owners[proc]; i < owners[proc + 1]; i++) {
4896:         if (ai[i + 1] > ai[i]) nrows++;
4897:       }
4898:       PetscCall(PetscMPIIntCast(2 * (nrows + 1), &len_si[proc]));
4899:       len += len_si[proc];
4900:     }
4901:   }

4903:   /* determine the number and length of messages to receive for ij-structure */
4904:   PetscCall(PetscGatherNumberOfMessages(comm, NULL, len_s, &merge->nrecv));
4905:   PetscCall(PetscGatherMessageLengths2(comm, merge->nsend, merge->nrecv, len_s, len_si, &merge->id_r, &merge->len_r, &len_ri));

4907:   /* post the Irecv of j-structure */
4908:   PetscCall(PetscCommGetNewTag(comm, &tagj));
4909:   PetscCall(PetscPostIrecvInt(comm, tagj, merge->nrecv, merge->id_r, merge->len_r, &buf_rj, &rj_waits));

4911:   /* post the Isend of j-structure */
4912:   PetscCall(PetscMalloc2(merge->nsend, &si_waits, merge->nsend, &sj_waits));

4914:   for (PetscMPIInt proc = 0, k = 0; proc < size; proc++) {
4915:     if (!len_s[proc]) continue;
4916:     i = owners[proc];
4917:     PetscCallMPI(MPIU_Isend(aj + ai[i], len_s[proc], MPIU_INT, proc, tagj, comm, sj_waits + k));
4918:     k++;
4919:   }

4921:   /* receives and sends of j-structure are complete */
4922:   if (merge->nrecv) PetscCallMPI(MPI_Waitall(merge->nrecv, rj_waits, status));
4923:   if (merge->nsend) PetscCallMPI(MPI_Waitall(merge->nsend, sj_waits, status));

4925:   /* send and recv i-structure */
4926:   PetscCall(PetscCommGetNewTag(comm, &tagi));
4927:   PetscCall(PetscPostIrecvInt(comm, tagi, merge->nrecv, merge->id_r, len_ri, &buf_ri, &ri_waits));

4929:   PetscCall(PetscMalloc1(len + 1, &buf_s));
4930:   buf_si = buf_s; /* points to the beginning of k-th msg to be sent */
4931:   for (PetscMPIInt proc = 0, k = 0; proc < size; proc++) {
4932:     if (!len_s[proc]) continue;
4933:     /* form outgoing message for i-structure:
4934:          buf_si[0]:                 nrows to be sent
4935:                [1:nrows]:           row index (global)
4936:                [nrows+1:2*nrows+1]: i-structure index
4937:     */
4938:     nrows       = len_si[proc] / 2 - 1;
4939:     buf_si_i    = buf_si + nrows + 1;
4940:     buf_si[0]   = nrows;
4941:     buf_si_i[0] = 0;
4942:     nrows       = 0;
4943:     for (i = owners[proc]; i < owners[proc + 1]; i++) {
4944:       anzi = ai[i + 1] - ai[i];
4945:       if (anzi) {
4946:         buf_si_i[nrows + 1] = buf_si_i[nrows] + anzi; /* i-structure */
4947:         buf_si[nrows + 1]   = i - owners[proc];       /* local row index */
4948:         nrows++;
4949:       }
4950:     }
4951:     PetscCallMPI(MPIU_Isend(buf_si, len_si[proc], MPIU_INT, proc, tagi, comm, si_waits + k));
4952:     k++;
4953:     buf_si += len_si[proc];
4954:   }

4956:   if (merge->nrecv) PetscCallMPI(MPI_Waitall(merge->nrecv, ri_waits, status));
4957:   if (merge->nsend) PetscCallMPI(MPI_Waitall(merge->nsend, si_waits, status));

4959:   PetscCall(PetscInfo(seqmat, "nsend: %d, nrecv: %d\n", merge->nsend, merge->nrecv));
4960:   for (i = 0; i < merge->nrecv; i++) PetscCall(PetscInfo(seqmat, "recv len_ri=%d, len_rj=%d from [%d]\n", len_ri[i], merge->len_r[i], merge->id_r[i]));

4962:   PetscCall(PetscFree(len_si));
4963:   PetscCall(PetscFree(len_ri));
4964:   PetscCall(PetscFree(rj_waits));
4965:   PetscCall(PetscFree2(si_waits, sj_waits));
4966:   PetscCall(PetscFree(ri_waits));
4967:   PetscCall(PetscFree(buf_s));
4968:   PetscCall(PetscFree(status));

4970:   /* compute a local seq matrix in each processor */
4971:   /* allocate bi array and free space for accumulating nonzero column info */
4972:   PetscCall(PetscMalloc1(m + 1, &bi));
4973:   bi[0] = 0;

4975:   /* create and initialize a linked list */
4976:   nlnk = N + 1;
4977:   PetscCall(PetscLLCreate(N, N, nlnk, lnk, lnkbt));

4979:   /* initial FreeSpace size is 2*(num of local nnz(seqmat)) */
4980:   len = ai[owners[rank + 1]] - ai[owners[rank]];
4981:   PetscCall(PetscFreeSpaceGet(PetscIntMultTruncate(2, len) + 1, &free_space));

4983:   current_space = free_space;

4985:   /* determine symbolic info for each local row */
4986:   PetscCall(PetscMalloc3(merge->nrecv, &buf_ri_k, merge->nrecv, &nextrow, merge->nrecv, &nextai));

4988:   for (k = 0; k < merge->nrecv; k++) {
4989:     buf_ri_k[k] = buf_ri[k]; /* beginning of k-th recved i-structure */
4990:     nrows       = *buf_ri_k[k];
4991:     nextrow[k]  = buf_ri_k[k] + 1;           /* next row number of k-th recved i-structure */
4992:     nextai[k]   = buf_ri_k[k] + (nrows + 1); /* points to the next i-structure of k-th recved i-structure  */
4993:   }

4995:   MatPreallocateBegin(comm, m, n, dnz, onz);
4996:   len = 0;
4997:   for (i = 0; i < m; i++) {
4998:     bnzi = 0;
4999:     /* add local non-zero cols of this proc's seqmat into lnk */
5000:     arow = owners[rank] + i;
5001:     anzi = ai[arow + 1] - ai[arow];
5002:     aj   = a->j + ai[arow];
5003:     PetscCall(PetscLLAddSorted(anzi, aj, N, &nlnk, lnk, lnkbt));
5004:     bnzi += nlnk;
5005:     /* add received col data into lnk */
5006:     for (k = 0; k < merge->nrecv; k++) { /* k-th received message */
5007:       if (i == *nextrow[k]) {            /* i-th row */
5008:         anzi = *(nextai[k] + 1) - *nextai[k];
5009:         aj   = buf_rj[k] + *nextai[k];
5010:         PetscCall(PetscLLAddSorted(anzi, aj, N, &nlnk, lnk, lnkbt));
5011:         bnzi += nlnk;
5012:         nextrow[k]++;
5013:         nextai[k]++;
5014:       }
5015:     }
5016:     if (len < bnzi) len = bnzi; /* =max(bnzi) */

5018:     /* if free space is not available, make more free space */
5019:     if (current_space->local_remaining < bnzi) PetscCall(PetscFreeSpaceGet(PetscIntSumTruncate(bnzi, current_space->total_array_size), &current_space));
5020:     /* copy data into free space, then initialize lnk */
5021:     PetscCall(PetscLLClean(N, N, bnzi, lnk, current_space->array, lnkbt));
5022:     PetscCall(MatPreallocateSet(i + owners[rank], bnzi, current_space->array, dnz, onz));

5024:     current_space->array += bnzi;
5025:     current_space->local_used += bnzi;
5026:     current_space->local_remaining -= bnzi;

5028:     bi[i + 1] = bi[i] + bnzi;
5029:   }

5031:   PetscCall(PetscFree3(buf_ri_k, nextrow, nextai));

5033:   PetscCall(PetscMalloc1(bi[m] + 1, &bj));
5034:   PetscCall(PetscFreeSpaceContiguous(&free_space, bj));
5035:   PetscCall(PetscLLDestroy(lnk, lnkbt));

5037:   /* create symbolic parallel matrix B_mpi */
5038:   PetscCall(MatGetBlockSizes(seqmat, &bs, &cbs));
5039:   PetscCall(MatCreate(comm, &B_mpi));
5040:   if (n == PETSC_DECIDE) {
5041:     PetscCall(MatSetSizes(B_mpi, m, n, PETSC_DETERMINE, N));
5042:   } else {
5043:     PetscCall(MatSetSizes(B_mpi, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
5044:   }
5045:   PetscCall(MatSetBlockSizes(B_mpi, bs, cbs));
5046:   PetscCall(MatSetType(B_mpi, MATMPIAIJ));
5047:   PetscCall(MatMPIAIJSetPreallocation(B_mpi, 0, dnz, 0, onz));
5048:   MatPreallocateEnd(dnz, onz);
5049:   PetscCall(MatSetOption(B_mpi, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE));

5051:   /* B_mpi is not ready for use - assembly will be done by MatCreateMPIAIJSumSeqAIJNumeric() */
5052:   B_mpi->assembled = PETSC_FALSE;
5053:   merge->bi        = bi;
5054:   merge->bj        = bj;
5055:   merge->buf_ri    = buf_ri;
5056:   merge->buf_rj    = buf_rj;
5057:   merge->coi       = NULL;
5058:   merge->coj       = NULL;
5059:   merge->owners_co = NULL;

5061:   PetscCall(PetscCommDestroy(&comm));

5063:   /* attach the supporting struct to B_mpi for reuse */
5064:   PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
5065:   PetscCall(PetscContainerSetPointer(container, merge));
5066:   PetscCall(PetscContainerSetUserDestroy(container, MatDestroy_MPIAIJ_SeqsToMPI));
5067:   PetscCall(PetscObjectCompose((PetscObject)B_mpi, "MatMergeSeqsToMPI", (PetscObject)container));
5068:   PetscCall(PetscContainerDestroy(&container));
5069:   *mpimat = B_mpi;

5071:   PetscCall(PetscLogEventEnd(MAT_Seqstompisym, seqmat, 0, 0, 0));
5072:   PetscFunctionReturn(PETSC_SUCCESS);
5073: }

5075: /*@
5076:   MatCreateMPIAIJSumSeqAIJ - Creates a `MATMPIAIJ` matrix by adding sequential
5077:   matrices from each processor

5079:   Collective

5081:   Input Parameters:
5082: + comm   - the communicators the parallel matrix will live on
5083: . seqmat - the input sequential matrices
5084: . m      - number of local rows (or `PETSC_DECIDE`)
5085: . n      - number of local columns (or `PETSC_DECIDE`)
5086: - scall  - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

5088:   Output Parameter:
5089: . mpimat - the parallel matrix generated

5091:   Level: advanced

5093:   Note:
5094:   The dimensions of the sequential matrix in each processor MUST be the same.
5095:   The input seqmat is included into the container "Mat_Merge_SeqsToMPI", and will be
5096:   destroyed when `mpimat` is destroyed. Call `PetscObjectQuery()` to access `seqmat`.

5098: .seealso: [](ch_matrices), `Mat`, `MatCreateAIJ()`
5099: @*/
5100: PetscErrorCode MatCreateMPIAIJSumSeqAIJ(MPI_Comm comm, Mat seqmat, PetscInt m, PetscInt n, MatReuse scall, Mat *mpimat)
5101: {
5102:   PetscMPIInt size;

5104:   PetscFunctionBegin;
5105:   PetscCallMPI(MPI_Comm_size(comm, &size));
5106:   if (size == 1) {
5107:     PetscCall(PetscLogEventBegin(MAT_Seqstompi, seqmat, 0, 0, 0));
5108:     if (scall == MAT_INITIAL_MATRIX) {
5109:       PetscCall(MatDuplicate(seqmat, MAT_COPY_VALUES, mpimat));
5110:     } else {
5111:       PetscCall(MatCopy(seqmat, *mpimat, SAME_NONZERO_PATTERN));
5112:     }
5113:     PetscCall(PetscLogEventEnd(MAT_Seqstompi, seqmat, 0, 0, 0));
5114:     PetscFunctionReturn(PETSC_SUCCESS);
5115:   }
5116:   PetscCall(PetscLogEventBegin(MAT_Seqstompi, seqmat, 0, 0, 0));
5117:   if (scall == MAT_INITIAL_MATRIX) PetscCall(MatCreateMPIAIJSumSeqAIJSymbolic(comm, seqmat, m, n, mpimat));
5118:   PetscCall(MatCreateMPIAIJSumSeqAIJNumeric(seqmat, *mpimat));
5119:   PetscCall(PetscLogEventEnd(MAT_Seqstompi, seqmat, 0, 0, 0));
5120:   PetscFunctionReturn(PETSC_SUCCESS);
5121: }

5123: /*@
5124:   MatAIJGetLocalMat - Creates a `MATSEQAIJ` from a `MATAIJ` matrix.

5126:   Not Collective

5128:   Input Parameter:
5129: . A - the matrix

5131:   Output Parameter:
5132: . A_loc - the local sequential matrix generated

5134:   Level: developer

5136:   Notes:
5137:   The matrix is created by taking `A`'s local rows and putting them into a sequential matrix
5138:   with `mlocal` rows and `n` columns. Where `mlocal` is obtained with `MatGetLocalSize()` and
5139:   `n` is the global column count obtained with `MatGetSize()`

5141:   In other words combines the two parts of a parallel `MATMPIAIJ` matrix on each process to a single matrix.

5143:   For parallel matrices this creates an entirely new matrix. If the matrix is sequential it merely increases the reference count.

5145:   Destroy the matrix with `MatDestroy()`

5147: .seealso: [](ch_matrices), `Mat`, `MatMPIAIJGetLocalMat()`
5148: @*/
5149: PetscErrorCode MatAIJGetLocalMat(Mat A, Mat *A_loc)
5150: {
5151:   PetscBool mpi;

5153:   PetscFunctionBegin;
5154:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIAIJ, &mpi));
5155:   if (mpi) {
5156:     PetscCall(MatMPIAIJGetLocalMat(A, MAT_INITIAL_MATRIX, A_loc));
5157:   } else {
5158:     *A_loc = A;
5159:     PetscCall(PetscObjectReference((PetscObject)*A_loc));
5160:   }
5161:   PetscFunctionReturn(PETSC_SUCCESS);
5162: }

5164: /*@
5165:   MatMPIAIJGetLocalMat - Creates a `MATSEQAIJ` from a `MATMPIAIJ` matrix.

5167:   Not Collective

5169:   Input Parameters:
5170: + A     - the matrix
5171: - scall - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

5173:   Output Parameter:
5174: . A_loc - the local sequential matrix generated

5176:   Level: developer

5178:   Notes:
5179:   The matrix is created by taking all `A`'s local rows and putting them into a sequential
5180:   matrix with `mlocal` rows and `n` columns.`mlocal` is the row count obtained with
5181:   `MatGetLocalSize()` and `n` is the global column count obtained with `MatGetSize()`.

5183:   In other words combines the two parts of a parallel `MATMPIAIJ` matrix on each process to a single matrix.

5185:   When `A` is sequential and `MAT_INITIAL_MATRIX` is requested, the matrix returned is the diagonal part of `A` (which contains the entire matrix),
5186:   with its reference count increased by one. Hence changing values of `A_loc` changes `A`. If `MAT_REUSE_MATRIX` is requested on a sequential matrix
5187:   then `MatCopy`(Adiag,*`A_loc`,`SAME_NONZERO_PATTERN`) is called to fill `A_loc`. Thus one can preallocate the appropriate sequential matrix `A_loc`
5188:   and then call this routine with `MAT_REUSE_MATRIX`. In this case, one can modify the values of `A_loc` without affecting the original sequential matrix.

5190: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MatGetOwnershipRange()`, `MatMPIAIJGetLocalMatCondensed()`, `MatMPIAIJGetLocalMatMerge()`
5191: @*/
5192: PetscErrorCode MatMPIAIJGetLocalMat(Mat A, MatReuse scall, Mat *A_loc)
5193: {
5194:   Mat_MPIAIJ        *mpimat = (Mat_MPIAIJ *)A->data;
5195:   Mat_SeqAIJ        *mat, *a, *b;
5196:   PetscInt          *ai, *aj, *bi, *bj, *cmap = mpimat->garray;
5197:   const PetscScalar *aa, *ba, *aav, *bav;
5198:   PetscScalar       *ca, *cam;
5199:   PetscMPIInt        size;
5200:   PetscInt           am = A->rmap->n, i, j, k, cstart = A->cmap->rstart;
5201:   PetscInt          *ci, *cj, col, ncols_d, ncols_o, jo;
5202:   PetscBool          match;

5204:   PetscFunctionBegin;
5205:   PetscCall(PetscStrbeginswith(((PetscObject)A)->type_name, MATMPIAIJ, &match));
5206:   PetscCheck(match, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Requires MATMPIAIJ matrix as input");
5207:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
5208:   if (size == 1) {
5209:     if (scall == MAT_INITIAL_MATRIX) {
5210:       PetscCall(PetscObjectReference((PetscObject)mpimat->A));
5211:       *A_loc = mpimat->A;
5212:     } else if (scall == MAT_REUSE_MATRIX) {
5213:       PetscCall(MatCopy(mpimat->A, *A_loc, SAME_NONZERO_PATTERN));
5214:     }
5215:     PetscFunctionReturn(PETSC_SUCCESS);
5216:   }

5218:   PetscCall(PetscLogEventBegin(MAT_Getlocalmat, A, 0, 0, 0));
5219:   a  = (Mat_SeqAIJ *)mpimat->A->data;
5220:   b  = (Mat_SeqAIJ *)mpimat->B->data;
5221:   ai = a->i;
5222:   aj = a->j;
5223:   bi = b->i;
5224:   bj = b->j;
5225:   PetscCall(MatSeqAIJGetArrayRead(mpimat->A, &aav));
5226:   PetscCall(MatSeqAIJGetArrayRead(mpimat->B, &bav));
5227:   aa = aav;
5228:   ba = bav;
5229:   if (scall == MAT_INITIAL_MATRIX) {
5230:     PetscCall(PetscMalloc1(1 + am, &ci));
5231:     ci[0] = 0;
5232:     for (i = 0; i < am; i++) ci[i + 1] = ci[i] + (ai[i + 1] - ai[i]) + (bi[i + 1] - bi[i]);
5233:     PetscCall(PetscMalloc1(1 + ci[am], &cj));
5234:     PetscCall(PetscMalloc1(1 + ci[am], &ca));
5235:     k = 0;
5236:     for (i = 0; i < am; i++) {
5237:       ncols_o = bi[i + 1] - bi[i];
5238:       ncols_d = ai[i + 1] - ai[i];
5239:       /* off-diagonal portion of A */
5240:       for (jo = 0; jo < ncols_o; jo++) {
5241:         col = cmap[*bj];
5242:         if (col >= cstart) break;
5243:         cj[k] = col;
5244:         bj++;
5245:         ca[k++] = *ba++;
5246:       }
5247:       /* diagonal portion of A */
5248:       for (j = 0; j < ncols_d; j++) {
5249:         cj[k]   = cstart + *aj++;
5250:         ca[k++] = *aa++;
5251:       }
5252:       /* off-diagonal portion of A */
5253:       for (j = jo; j < ncols_o; j++) {
5254:         cj[k]   = cmap[*bj++];
5255:         ca[k++] = *ba++;
5256:       }
5257:     }
5258:     /* put together the new matrix */
5259:     PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, am, A->cmap->N, ci, cj, ca, A_loc));
5260:     /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
5261:     /* Since these are PETSc arrays, change flags to free them as necessary. */
5262:     mat          = (Mat_SeqAIJ *)(*A_loc)->data;
5263:     mat->free_a  = PETSC_TRUE;
5264:     mat->free_ij = PETSC_TRUE;
5265:     mat->nonew   = 0;
5266:   } else if (scall == MAT_REUSE_MATRIX) {
5267:     mat = (Mat_SeqAIJ *)(*A_loc)->data;
5268:     ci  = mat->i;
5269:     cj  = mat->j;
5270:     PetscCall(MatSeqAIJGetArrayWrite(*A_loc, &cam));
5271:     for (i = 0; i < am; i++) {
5272:       /* off-diagonal portion of A */
5273:       ncols_o = bi[i + 1] - bi[i];
5274:       for (jo = 0; jo < ncols_o; jo++) {
5275:         col = cmap[*bj];
5276:         if (col >= cstart) break;
5277:         *cam++ = *ba++;
5278:         bj++;
5279:       }
5280:       /* diagonal portion of A */
5281:       ncols_d = ai[i + 1] - ai[i];
5282:       for (j = 0; j < ncols_d; j++) *cam++ = *aa++;
5283:       /* off-diagonal portion of A */
5284:       for (j = jo; j < ncols_o; j++) {
5285:         *cam++ = *ba++;
5286:         bj++;
5287:       }
5288:     }
5289:     PetscCall(MatSeqAIJRestoreArrayWrite(*A_loc, &cam));
5290:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid MatReuse %d", (int)scall);
5291:   PetscCall(MatSeqAIJRestoreArrayRead(mpimat->A, &aav));
5292:   PetscCall(MatSeqAIJRestoreArrayRead(mpimat->B, &bav));
5293:   PetscCall(PetscLogEventEnd(MAT_Getlocalmat, A, 0, 0, 0));
5294:   PetscFunctionReturn(PETSC_SUCCESS);
5295: }

5297: /*@
5298:   MatMPIAIJGetLocalMatMerge - Creates a `MATSEQAIJ` from a `MATMPIAIJ` matrix by taking all its local rows and putting them into a sequential matrix with
5299:   mlocal rows and n columns. Where n is the sum of the number of columns of the diagonal and off-diagonal part

5301:   Not Collective

5303:   Input Parameters:
5304: + A     - the matrix
5305: - scall - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

5307:   Output Parameters:
5308: + glob  - sequential `IS` with global indices associated with the columns of the local sequential matrix generated (can be `NULL`)
5309: - A_loc - the local sequential matrix generated

5311:   Level: developer

5313:   Note:
5314:   This is different from `MatMPIAIJGetLocalMat()` since the first columns in the returning matrix are those associated with the diagonal
5315:   part, then those associated with the off-diagonal part (in its local ordering)

5317: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MatGetOwnershipRange()`, `MatMPIAIJGetLocalMat()`, `MatMPIAIJGetLocalMatCondensed()`
5318: @*/
5319: PetscErrorCode MatMPIAIJGetLocalMatMerge(Mat A, MatReuse scall, IS *glob, Mat *A_loc)
5320: {
5321:   Mat             Ao, Ad;
5322:   const PetscInt *cmap;
5323:   PetscMPIInt     size;
5324:   PetscErrorCode (*f)(Mat, MatReuse, IS *, Mat *);

5326:   PetscFunctionBegin;
5327:   PetscCall(MatMPIAIJGetSeqAIJ(A, &Ad, &Ao, &cmap));
5328:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
5329:   if (size == 1) {
5330:     if (scall == MAT_INITIAL_MATRIX) {
5331:       PetscCall(PetscObjectReference((PetscObject)Ad));
5332:       *A_loc = Ad;
5333:     } else if (scall == MAT_REUSE_MATRIX) {
5334:       PetscCall(MatCopy(Ad, *A_loc, SAME_NONZERO_PATTERN));
5335:     }
5336:     if (glob) PetscCall(ISCreateStride(PetscObjectComm((PetscObject)Ad), Ad->cmap->n, Ad->cmap->rstart, 1, glob));
5337:     PetscFunctionReturn(PETSC_SUCCESS);
5338:   }
5339:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatMPIAIJGetLocalMatMerge_C", &f));
5340:   PetscCall(PetscLogEventBegin(MAT_Getlocalmat, A, 0, 0, 0));
5341:   if (f) {
5342:     PetscCall((*f)(A, scall, glob, A_loc));
5343:   } else {
5344:     Mat_SeqAIJ        *a = (Mat_SeqAIJ *)Ad->data;
5345:     Mat_SeqAIJ        *b = (Mat_SeqAIJ *)Ao->data;
5346:     Mat_SeqAIJ        *c;
5347:     PetscInt          *ai = a->i, *aj = a->j;
5348:     PetscInt          *bi = b->i, *bj = b->j;
5349:     PetscInt          *ci, *cj;
5350:     const PetscScalar *aa, *ba;
5351:     PetscScalar       *ca;
5352:     PetscInt           i, j, am, dn, on;

5354:     PetscCall(MatGetLocalSize(Ad, &am, &dn));
5355:     PetscCall(MatGetLocalSize(Ao, NULL, &on));
5356:     PetscCall(MatSeqAIJGetArrayRead(Ad, &aa));
5357:     PetscCall(MatSeqAIJGetArrayRead(Ao, &ba));
5358:     if (scall == MAT_INITIAL_MATRIX) {
5359:       PetscInt k;
5360:       PetscCall(PetscMalloc1(1 + am, &ci));
5361:       PetscCall(PetscMalloc1(ai[am] + bi[am], &cj));
5362:       PetscCall(PetscMalloc1(ai[am] + bi[am], &ca));
5363:       ci[0] = 0;
5364:       for (i = 0, k = 0; i < am; i++) {
5365:         const PetscInt ncols_o = bi[i + 1] - bi[i];
5366:         const PetscInt ncols_d = ai[i + 1] - ai[i];
5367:         ci[i + 1]              = ci[i] + ncols_o + ncols_d;
5368:         /* diagonal portion of A */
5369:         for (j = 0; j < ncols_d; j++, k++) {
5370:           cj[k] = *aj++;
5371:           ca[k] = *aa++;
5372:         }
5373:         /* off-diagonal portion of A */
5374:         for (j = 0; j < ncols_o; j++, k++) {
5375:           cj[k] = dn + *bj++;
5376:           ca[k] = *ba++;
5377:         }
5378:       }
5379:       /* put together the new matrix */
5380:       PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, am, dn + on, ci, cj, ca, A_loc));
5381:       /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
5382:       /* Since these are PETSc arrays, change flags to free them as necessary. */
5383:       c          = (Mat_SeqAIJ *)(*A_loc)->data;
5384:       c->free_a  = PETSC_TRUE;
5385:       c->free_ij = PETSC_TRUE;
5386:       c->nonew   = 0;
5387:       PetscCall(MatSetType(*A_loc, ((PetscObject)Ad)->type_name));
5388:     } else if (scall == MAT_REUSE_MATRIX) {
5389:       PetscCall(MatSeqAIJGetArrayWrite(*A_loc, &ca));
5390:       for (i = 0; i < am; i++) {
5391:         const PetscInt ncols_d = ai[i + 1] - ai[i];
5392:         const PetscInt ncols_o = bi[i + 1] - bi[i];
5393:         /* diagonal portion of A */
5394:         for (j = 0; j < ncols_d; j++) *ca++ = *aa++;
5395:         /* off-diagonal portion of A */
5396:         for (j = 0; j < ncols_o; j++) *ca++ = *ba++;
5397:       }
5398:       PetscCall(MatSeqAIJRestoreArrayWrite(*A_loc, &ca));
5399:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid MatReuse %d", (int)scall);
5400:     PetscCall(MatSeqAIJRestoreArrayRead(Ad, &aa));
5401:     PetscCall(MatSeqAIJRestoreArrayRead(Ao, &aa));
5402:     if (glob) {
5403:       PetscInt cst, *gidx;

5405:       PetscCall(MatGetOwnershipRangeColumn(A, &cst, NULL));
5406:       PetscCall(PetscMalloc1(dn + on, &gidx));
5407:       for (i = 0; i < dn; i++) gidx[i] = cst + i;
5408:       for (i = 0; i < on; i++) gidx[i + dn] = cmap[i];
5409:       PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)Ad), dn + on, gidx, PETSC_OWN_POINTER, glob));
5410:     }
5411:   }
5412:   PetscCall(PetscLogEventEnd(MAT_Getlocalmat, A, 0, 0, 0));
5413:   PetscFunctionReturn(PETSC_SUCCESS);
5414: }

5416: /*@C
5417:   MatMPIAIJGetLocalMatCondensed - Creates a `MATSEQAIJ` matrix from an `MATMPIAIJ` matrix by taking all its local rows and NON-ZERO columns

5419:   Not Collective

5421:   Input Parameters:
5422: + A     - the matrix
5423: . scall - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`
5424: . row   - index set of rows to extract (or `NULL`)
5425: - col   - index set of columns to extract (or `NULL`)

5427:   Output Parameter:
5428: . A_loc - the local sequential matrix generated

5430:   Level: developer

5432: .seealso: [](ch_matrices), `Mat`, `MATMPIAIJ`, `MatGetOwnershipRange()`, `MatMPIAIJGetLocalMat()`
5433: @*/
5434: PetscErrorCode MatMPIAIJGetLocalMatCondensed(Mat A, MatReuse scall, IS *row, IS *col, Mat *A_loc)
5435: {
5436:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;
5437:   PetscInt    i, start, end, ncols, nzA, nzB, *cmap, imark, *idx;
5438:   IS          isrowa, iscola;
5439:   Mat        *aloc;
5440:   PetscBool   match;

5442:   PetscFunctionBegin;
5443:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIAIJ, &match));
5444:   PetscCheck(match, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Requires MATMPIAIJ matrix as input");
5445:   PetscCall(PetscLogEventBegin(MAT_Getlocalmatcondensed, A, 0, 0, 0));
5446:   if (!row) {
5447:     start = A->rmap->rstart;
5448:     end   = A->rmap->rend;
5449:     PetscCall(ISCreateStride(PETSC_COMM_SELF, end - start, start, 1, &isrowa));
5450:   } else {
5451:     isrowa = *row;
5452:   }
5453:   if (!col) {
5454:     start = A->cmap->rstart;
5455:     cmap  = a->garray;
5456:     nzA   = a->A->cmap->n;
5457:     nzB   = a->B->cmap->n;
5458:     PetscCall(PetscMalloc1(nzA + nzB, &idx));
5459:     ncols = 0;
5460:     for (i = 0; i < nzB; i++) {
5461:       if (cmap[i] < start) idx[ncols++] = cmap[i];
5462:       else break;
5463:     }
5464:     imark = i;
5465:     for (i = 0; i < nzA; i++) idx[ncols++] = start + i;
5466:     for (i = imark; i < nzB; i++) idx[ncols++] = cmap[i];
5467:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncols, idx, PETSC_OWN_POINTER, &iscola));
5468:   } else {
5469:     iscola = *col;
5470:   }
5471:   if (scall != MAT_INITIAL_MATRIX) {
5472:     PetscCall(PetscMalloc1(1, &aloc));
5473:     aloc[0] = *A_loc;
5474:   }
5475:   PetscCall(MatCreateSubMatrices(A, 1, &isrowa, &iscola, scall, &aloc));
5476:   if (!col) { /* attach global id of condensed columns */
5477:     PetscCall(PetscObjectCompose((PetscObject)aloc[0], "_petsc_GetLocalMatCondensed_iscol", (PetscObject)iscola));
5478:   }
5479:   *A_loc = aloc[0];
5480:   PetscCall(PetscFree(aloc));
5481:   if (!row) PetscCall(ISDestroy(&isrowa));
5482:   if (!col) PetscCall(ISDestroy(&iscola));
5483:   PetscCall(PetscLogEventEnd(MAT_Getlocalmatcondensed, A, 0, 0, 0));
5484:   PetscFunctionReturn(PETSC_SUCCESS);
5485: }

5487: /*
5488:  * Create a sequential AIJ matrix based on row indices. a whole column is extracted once a row is matched.
5489:  * Row could be local or remote.The routine is designed to be scalable in memory so that nothing is based
5490:  * on a global size.
5491:  * */
5492: static PetscErrorCode MatCreateSeqSubMatrixWithRows_Private(Mat P, IS rows, Mat *P_oth)
5493: {
5494:   Mat_MPIAIJ            *p  = (Mat_MPIAIJ *)P->data;
5495:   Mat_SeqAIJ            *pd = (Mat_SeqAIJ *)p->A->data, *po = (Mat_SeqAIJ *)p->B->data, *p_oth;
5496:   PetscInt               plocalsize, nrows, *ilocal, *oilocal, i, lidx, *nrcols, *nlcols, ncol;
5497:   PetscMPIInt            owner;
5498:   PetscSFNode           *iremote, *oiremote;
5499:   const PetscInt        *lrowindices;
5500:   PetscSF                sf, osf;
5501:   PetscInt               pcstart, *roffsets, *loffsets, *pnnz, j;
5502:   PetscInt               ontotalcols, dntotalcols, ntotalcols, nout;
5503:   MPI_Comm               comm;
5504:   ISLocalToGlobalMapping mapping;
5505:   const PetscScalar     *pd_a, *po_a;

5507:   PetscFunctionBegin;
5508:   PetscCall(PetscObjectGetComm((PetscObject)P, &comm));
5509:   /* plocalsize is the number of roots
5510:    * nrows is the number of leaves
5511:    * */
5512:   PetscCall(MatGetLocalSize(P, &plocalsize, NULL));
5513:   PetscCall(ISGetLocalSize(rows, &nrows));
5514:   PetscCall(PetscCalloc1(nrows, &iremote));
5515:   PetscCall(ISGetIndices(rows, &lrowindices));
5516:   for (i = 0; i < nrows; i++) {
5517:     /* Find a remote index and an owner for a row
5518:      * The row could be local or remote
5519:      * */
5520:     owner = 0;
5521:     lidx  = 0;
5522:     PetscCall(PetscLayoutFindOwnerIndex(P->rmap, lrowindices[i], &owner, &lidx));
5523:     iremote[i].index = lidx;
5524:     iremote[i].rank  = owner;
5525:   }
5526:   /* Create SF to communicate how many nonzero columns for each row */
5527:   PetscCall(PetscSFCreate(comm, &sf));
5528:   /* SF will figure out the number of nonzero columns for each row, and their
5529:    * offsets
5530:    * */
5531:   PetscCall(PetscSFSetGraph(sf, plocalsize, nrows, NULL, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));
5532:   PetscCall(PetscSFSetFromOptions(sf));
5533:   PetscCall(PetscSFSetUp(sf));

5535:   PetscCall(PetscCalloc1(2 * (plocalsize + 1), &roffsets));
5536:   PetscCall(PetscCalloc1(2 * plocalsize, &nrcols));
5537:   PetscCall(PetscCalloc1(nrows, &pnnz));
5538:   roffsets[0] = 0;
5539:   roffsets[1] = 0;
5540:   for (i = 0; i < plocalsize; i++) {
5541:     /* diagonal */
5542:     nrcols[i * 2 + 0] = pd->i[i + 1] - pd->i[i];
5543:     /* off-diagonal */
5544:     nrcols[i * 2 + 1] = po->i[i + 1] - po->i[i];
5545:     /* compute offsets so that we relative location for each row */
5546:     roffsets[(i + 1) * 2 + 0] = roffsets[i * 2 + 0] + nrcols[i * 2 + 0];
5547:     roffsets[(i + 1) * 2 + 1] = roffsets[i * 2 + 1] + nrcols[i * 2 + 1];
5548:   }
5549:   PetscCall(PetscCalloc1(2 * nrows, &nlcols));
5550:   PetscCall(PetscCalloc1(2 * nrows, &loffsets));
5551:   /* 'r' means root, and 'l' means leaf */
5552:   PetscCall(PetscSFBcastBegin(sf, MPIU_2INT, nrcols, nlcols, MPI_REPLACE));
5553:   PetscCall(PetscSFBcastBegin(sf, MPIU_2INT, roffsets, loffsets, MPI_REPLACE));
5554:   PetscCall(PetscSFBcastEnd(sf, MPIU_2INT, nrcols, nlcols, MPI_REPLACE));
5555:   PetscCall(PetscSFBcastEnd(sf, MPIU_2INT, roffsets, loffsets, MPI_REPLACE));
5556:   PetscCall(PetscSFDestroy(&sf));
5557:   PetscCall(PetscFree(roffsets));
5558:   PetscCall(PetscFree(nrcols));
5559:   dntotalcols = 0;
5560:   ontotalcols = 0;
5561:   ncol        = 0;
5562:   for (i = 0; i < nrows; i++) {
5563:     pnnz[i] = nlcols[i * 2 + 0] + nlcols[i * 2 + 1];
5564:     ncol    = PetscMax(pnnz[i], ncol);
5565:     /* diagonal */
5566:     dntotalcols += nlcols[i * 2 + 0];
5567:     /* off-diagonal */
5568:     ontotalcols += nlcols[i * 2 + 1];
5569:   }
5570:   /* We do not need to figure the right number of columns
5571:    * since all the calculations will be done by going through the raw data
5572:    * */
5573:   PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, nrows, ncol, 0, pnnz, P_oth));
5574:   PetscCall(MatSetUp(*P_oth));
5575:   PetscCall(PetscFree(pnnz));
5576:   p_oth = (Mat_SeqAIJ *)(*P_oth)->data;
5577:   /* diagonal */
5578:   PetscCall(PetscCalloc1(dntotalcols, &iremote));
5579:   /* off-diagonal */
5580:   PetscCall(PetscCalloc1(ontotalcols, &oiremote));
5581:   /* diagonal */
5582:   PetscCall(PetscCalloc1(dntotalcols, &ilocal));
5583:   /* off-diagonal */
5584:   PetscCall(PetscCalloc1(ontotalcols, &oilocal));
5585:   dntotalcols = 0;
5586:   ontotalcols = 0;
5587:   ntotalcols  = 0;
5588:   for (i = 0; i < nrows; i++) {
5589:     owner = 0;
5590:     PetscCall(PetscLayoutFindOwnerIndex(P->rmap, lrowindices[i], &owner, NULL));
5591:     /* Set iremote for diag matrix */
5592:     for (j = 0; j < nlcols[i * 2 + 0]; j++) {
5593:       iremote[dntotalcols].index = loffsets[i * 2 + 0] + j;
5594:       iremote[dntotalcols].rank  = owner;
5595:       /* P_oth is seqAIJ so that ilocal need to point to the first part of memory */
5596:       ilocal[dntotalcols++] = ntotalcols++;
5597:     }
5598:     /* off-diagonal */
5599:     for (j = 0; j < nlcols[i * 2 + 1]; j++) {
5600:       oiremote[ontotalcols].index = loffsets[i * 2 + 1] + j;
5601:       oiremote[ontotalcols].rank  = owner;
5602:       oilocal[ontotalcols++]      = ntotalcols++;
5603:     }
5604:   }
5605:   PetscCall(ISRestoreIndices(rows, &lrowindices));
5606:   PetscCall(PetscFree(loffsets));
5607:   PetscCall(PetscFree(nlcols));
5608:   PetscCall(PetscSFCreate(comm, &sf));
5609:   /* P serves as roots and P_oth is leaves
5610:    * Diag matrix
5611:    * */
5612:   PetscCall(PetscSFSetGraph(sf, pd->i[plocalsize], dntotalcols, ilocal, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));
5613:   PetscCall(PetscSFSetFromOptions(sf));
5614:   PetscCall(PetscSFSetUp(sf));

5616:   PetscCall(PetscSFCreate(comm, &osf));
5617:   /* off-diagonal */
5618:   PetscCall(PetscSFSetGraph(osf, po->i[plocalsize], ontotalcols, oilocal, PETSC_OWN_POINTER, oiremote, PETSC_OWN_POINTER));
5619:   PetscCall(PetscSFSetFromOptions(osf));
5620:   PetscCall(PetscSFSetUp(osf));
5621:   PetscCall(MatSeqAIJGetArrayRead(p->A, &pd_a));
5622:   PetscCall(MatSeqAIJGetArrayRead(p->B, &po_a));
5623:   /* operate on the matrix internal data to save memory */
5624:   PetscCall(PetscSFBcastBegin(sf, MPIU_SCALAR, pd_a, p_oth->a, MPI_REPLACE));
5625:   PetscCall(PetscSFBcastBegin(osf, MPIU_SCALAR, po_a, p_oth->a, MPI_REPLACE));
5626:   PetscCall(MatGetOwnershipRangeColumn(P, &pcstart, NULL));
5627:   /* Convert to global indices for diag matrix */
5628:   for (i = 0; i < pd->i[plocalsize]; i++) pd->j[i] += pcstart;
5629:   PetscCall(PetscSFBcastBegin(sf, MPIU_INT, pd->j, p_oth->j, MPI_REPLACE));
5630:   /* We want P_oth store global indices */
5631:   PetscCall(ISLocalToGlobalMappingCreate(comm, 1, p->B->cmap->n, p->garray, PETSC_COPY_VALUES, &mapping));
5632:   /* Use memory scalable approach */
5633:   PetscCall(ISLocalToGlobalMappingSetType(mapping, ISLOCALTOGLOBALMAPPINGHASH));
5634:   PetscCall(ISLocalToGlobalMappingApply(mapping, po->i[plocalsize], po->j, po->j));
5635:   PetscCall(PetscSFBcastBegin(osf, MPIU_INT, po->j, p_oth->j, MPI_REPLACE));
5636:   PetscCall(PetscSFBcastEnd(sf, MPIU_INT, pd->j, p_oth->j, MPI_REPLACE));
5637:   /* Convert back to local indices */
5638:   for (i = 0; i < pd->i[plocalsize]; i++) pd->j[i] -= pcstart;
5639:   PetscCall(PetscSFBcastEnd(osf, MPIU_INT, po->j, p_oth->j, MPI_REPLACE));
5640:   nout = 0;
5641:   PetscCall(ISGlobalToLocalMappingApply(mapping, IS_GTOLM_DROP, po->i[plocalsize], po->j, &nout, po->j));
5642:   PetscCheck(nout == po->i[plocalsize], comm, PETSC_ERR_ARG_INCOMP, "n %" PetscInt_FMT " does not equal to nout %" PetscInt_FMT " ", po->i[plocalsize], nout);
5643:   PetscCall(ISLocalToGlobalMappingDestroy(&mapping));
5644:   /* Exchange values */
5645:   PetscCall(PetscSFBcastEnd(sf, MPIU_SCALAR, pd_a, p_oth->a, MPI_REPLACE));
5646:   PetscCall(PetscSFBcastEnd(osf, MPIU_SCALAR, po_a, p_oth->a, MPI_REPLACE));
5647:   PetscCall(MatSeqAIJRestoreArrayRead(p->A, &pd_a));
5648:   PetscCall(MatSeqAIJRestoreArrayRead(p->B, &po_a));
5649:   /* Stop PETSc from shrinking memory */
5650:   for (i = 0; i < nrows; i++) p_oth->ilen[i] = p_oth->imax[i];
5651:   PetscCall(MatAssemblyBegin(*P_oth, MAT_FINAL_ASSEMBLY));
5652:   PetscCall(MatAssemblyEnd(*P_oth, MAT_FINAL_ASSEMBLY));
5653:   /* Attach PetscSF objects to P_oth so that we can reuse it later */
5654:   PetscCall(PetscObjectCompose((PetscObject)*P_oth, "diagsf", (PetscObject)sf));
5655:   PetscCall(PetscObjectCompose((PetscObject)*P_oth, "offdiagsf", (PetscObject)osf));
5656:   PetscCall(PetscSFDestroy(&sf));
5657:   PetscCall(PetscSFDestroy(&osf));
5658:   PetscFunctionReturn(PETSC_SUCCESS);
5659: }

5661: /*
5662:  * Creates a SeqAIJ matrix by taking rows of B that equal to nonzero columns of local A
5663:  * This supports MPIAIJ and MAIJ
5664:  * */
5665: PetscErrorCode MatGetBrowsOfAcols_MPIXAIJ(Mat A, Mat P, PetscInt dof, MatReuse reuse, Mat *P_oth)
5666: {
5667:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data, *p = (Mat_MPIAIJ *)P->data;
5668:   Mat_SeqAIJ *p_oth;
5669:   IS          rows, map;
5670:   PetscHMapI  hamp;
5671:   PetscInt    i, htsize, *rowindices, off, *mapping, key, count;
5672:   MPI_Comm    comm;
5673:   PetscSF     sf, osf;
5674:   PetscBool   has;

5676:   PetscFunctionBegin;
5677:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
5678:   PetscCall(PetscLogEventBegin(MAT_GetBrowsOfAocols, A, P, 0, 0));
5679:   /* If it is the first time, create an index set of off-diag nonzero columns of A,
5680:    *  and then create a submatrix (that often is an overlapping matrix)
5681:    * */
5682:   if (reuse == MAT_INITIAL_MATRIX) {
5683:     /* Use a hash table to figure out unique keys */
5684:     PetscCall(PetscHMapICreateWithSize(a->B->cmap->n, &hamp));
5685:     PetscCall(PetscCalloc1(a->B->cmap->n, &mapping));
5686:     count = 0;
5687:     /* Assume that  a->g is sorted, otherwise the following does not make sense */
5688:     for (i = 0; i < a->B->cmap->n; i++) {
5689:       key = a->garray[i] / dof;
5690:       PetscCall(PetscHMapIHas(hamp, key, &has));
5691:       if (!has) {
5692:         mapping[i] = count;
5693:         PetscCall(PetscHMapISet(hamp, key, count++));
5694:       } else {
5695:         /* Current 'i' has the same value the previous step */
5696:         mapping[i] = count - 1;
5697:       }
5698:     }
5699:     PetscCall(ISCreateGeneral(comm, a->B->cmap->n, mapping, PETSC_OWN_POINTER, &map));
5700:     PetscCall(PetscHMapIGetSize(hamp, &htsize));
5701:     PetscCheck(htsize == count, comm, PETSC_ERR_ARG_INCOMP, " Size of hash map %" PetscInt_FMT " is inconsistent with count %" PetscInt_FMT, htsize, count);
5702:     PetscCall(PetscCalloc1(htsize, &rowindices));
5703:     off = 0;
5704:     PetscCall(PetscHMapIGetKeys(hamp, &off, rowindices));
5705:     PetscCall(PetscHMapIDestroy(&hamp));
5706:     PetscCall(PetscSortInt(htsize, rowindices));
5707:     PetscCall(ISCreateGeneral(comm, htsize, rowindices, PETSC_OWN_POINTER, &rows));
5708:     /* In case, the matrix was already created but users want to recreate the matrix */
5709:     PetscCall(MatDestroy(P_oth));
5710:     PetscCall(MatCreateSeqSubMatrixWithRows_Private(P, rows, P_oth));
5711:     PetscCall(PetscObjectCompose((PetscObject)*P_oth, "aoffdiagtopothmapping", (PetscObject)map));
5712:     PetscCall(ISDestroy(&map));
5713:     PetscCall(ISDestroy(&rows));
5714:   } else if (reuse == MAT_REUSE_MATRIX) {
5715:     /* If matrix was already created, we simply update values using SF objects
5716:      * that as attached to the matrix earlier.
5717:      */
5718:     const PetscScalar *pd_a, *po_a;

5720:     PetscCall(PetscObjectQuery((PetscObject)*P_oth, "diagsf", (PetscObject *)&sf));
5721:     PetscCall(PetscObjectQuery((PetscObject)*P_oth, "offdiagsf", (PetscObject *)&osf));
5722:     PetscCheck(sf && osf, comm, PETSC_ERR_ARG_NULL, "Matrix is not initialized yet");
5723:     p_oth = (Mat_SeqAIJ *)(*P_oth)->data;
5724:     /* Update values in place */
5725:     PetscCall(MatSeqAIJGetArrayRead(p->A, &pd_a));
5726:     PetscCall(MatSeqAIJGetArrayRead(p->B, &po_a));
5727:     PetscCall(PetscSFBcastBegin(sf, MPIU_SCALAR, pd_a, p_oth->a, MPI_REPLACE));
5728:     PetscCall(PetscSFBcastBegin(osf, MPIU_SCALAR, po_a, p_oth->a, MPI_REPLACE));
5729:     PetscCall(PetscSFBcastEnd(sf, MPIU_SCALAR, pd_a, p_oth->a, MPI_REPLACE));
5730:     PetscCall(PetscSFBcastEnd(osf, MPIU_SCALAR, po_a, p_oth->a, MPI_REPLACE));
5731:     PetscCall(MatSeqAIJRestoreArrayRead(p->A, &pd_a));
5732:     PetscCall(MatSeqAIJRestoreArrayRead(p->B, &po_a));
5733:   } else SETERRQ(comm, PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown reuse type");
5734:   PetscCall(PetscLogEventEnd(MAT_GetBrowsOfAocols, A, P, 0, 0));
5735:   PetscFunctionReturn(PETSC_SUCCESS);
5736: }

5738: /*@C
5739:   MatGetBrowsOfAcols - Returns `IS` that contain rows of `B` that equal to nonzero columns of local `A`

5741:   Collective

5743:   Input Parameters:
5744: + A     - the first matrix in `MATMPIAIJ` format
5745: . B     - the second matrix in `MATMPIAIJ` format
5746: - scall - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

5748:   Output Parameters:
5749: + rowb  - On input index sets of rows of B to extract (or `NULL`), modified on output
5750: . colb  - On input index sets of columns of B to extract (or `NULL`), modified on output
5751: - B_seq - the sequential matrix generated

5753:   Level: developer

5755: .seealso: `Mat`, `MATMPIAIJ`, `IS`, `MatReuse`
5756: @*/
5757: PetscErrorCode MatGetBrowsOfAcols(Mat A, Mat B, MatReuse scall, IS *rowb, IS *colb, Mat *B_seq)
5758: {
5759:   Mat_MPIAIJ *a = (Mat_MPIAIJ *)A->data;
5760:   PetscInt   *idx, i, start, ncols, nzA, nzB, *cmap, imark;
5761:   IS          isrowb, iscolb;
5762:   Mat        *bseq = NULL;

5764:   PetscFunctionBegin;
5765:   PetscCheck(A->cmap->rstart == B->rmap->rstart && A->cmap->rend == B->rmap->rend, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrix local dimensions are incompatible, (%" PetscInt_FMT ", %" PetscInt_FMT ") != (%" PetscInt_FMT ",%" PetscInt_FMT ")",
5766:              A->cmap->rstart, A->cmap->rend, B->rmap->rstart, B->rmap->rend);
5767:   PetscCall(PetscLogEventBegin(MAT_GetBrowsOfAcols, A, B, 0, 0));

5769:   if (scall == MAT_INITIAL_MATRIX) {
5770:     start = A->cmap->rstart;
5771:     cmap  = a->garray;
5772:     nzA   = a->A->cmap->n;
5773:     nzB   = a->B->cmap->n;
5774:     PetscCall(PetscMalloc1(nzA + nzB, &idx));
5775:     ncols = 0;
5776:     for (i = 0; i < nzB; i++) { /* row < local row index */
5777:       if (cmap[i] < start) idx[ncols++] = cmap[i];
5778:       else break;
5779:     }
5780:     imark = i;
5781:     for (i = 0; i < nzA; i++) idx[ncols++] = start + i;   /* local rows */
5782:     for (i = imark; i < nzB; i++) idx[ncols++] = cmap[i]; /* row > local row index */
5783:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncols, idx, PETSC_OWN_POINTER, &isrowb));
5784:     PetscCall(ISCreateStride(PETSC_COMM_SELF, B->cmap->N, 0, 1, &iscolb));
5785:   } else {
5786:     PetscCheck(rowb && colb, PETSC_COMM_SELF, PETSC_ERR_SUP, "IS rowb and colb must be provided for MAT_REUSE_MATRIX");
5787:     isrowb = *rowb;
5788:     iscolb = *colb;
5789:     PetscCall(PetscMalloc1(1, &bseq));
5790:     bseq[0] = *B_seq;
5791:   }
5792:   PetscCall(MatCreateSubMatrices(B, 1, &isrowb, &iscolb, scall, &bseq));
5793:   *B_seq = bseq[0];
5794:   PetscCall(PetscFree(bseq));
5795:   if (!rowb) {
5796:     PetscCall(ISDestroy(&isrowb));
5797:   } else {
5798:     *rowb = isrowb;
5799:   }
5800:   if (!colb) {
5801:     PetscCall(ISDestroy(&iscolb));
5802:   } else {
5803:     *colb = iscolb;
5804:   }
5805:   PetscCall(PetscLogEventEnd(MAT_GetBrowsOfAcols, A, B, 0, 0));
5806:   PetscFunctionReturn(PETSC_SUCCESS);
5807: }

5809: /*
5810:     MatGetBrowsOfAoCols_MPIAIJ - Creates a `MATSEQAIJ` matrix by taking rows of B that equal to nonzero columns
5811:     of the OFF-DIAGONAL portion of local A

5813:     Collective

5815:    Input Parameters:
5816: +    A,B - the matrices in `MATMPIAIJ` format
5817: -    scall - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

5819:    Output Parameter:
5820: +    startsj_s - starting point in B's sending j-arrays, saved for MAT_REUSE (or NULL)
5821: .    startsj_r - starting point in B's receiving j-arrays, saved for MAT_REUSE (or NULL)
5822: .    bufa_ptr - array for sending matrix values, saved for MAT_REUSE (or NULL)
5823: -    B_oth - the sequential matrix generated with size aBn=a->B->cmap->n by B->cmap->N

5825:     Developer Note:
5826:     This directly accesses information inside the VecScatter associated with the matrix-vector product
5827:      for this matrix. This is not desirable..

5829:     Level: developer

5831: */

5833: PetscErrorCode MatGetBrowsOfAoCols_MPIAIJ(Mat A, Mat B, MatReuse scall, PetscInt **startsj_s, PetscInt **startsj_r, MatScalar **bufa_ptr, Mat *B_oth)
5834: {
5835:   Mat_MPIAIJ        *a = (Mat_MPIAIJ *)A->data;
5836:   VecScatter         ctx;
5837:   MPI_Comm           comm;
5838:   const PetscMPIInt *rprocs, *sprocs;
5839:   PetscMPIInt        nrecvs, nsends;
5840:   const PetscInt    *srow, *rstarts, *sstarts;
5841:   PetscInt          *rowlen, *bufj, *bufJ, ncols = 0, aBn = a->B->cmap->n, row, *b_othi, *b_othj, *rvalues = NULL, *svalues = NULL, *cols, sbs, rbs;
5842:   PetscInt           i, j, k = 0, l, ll, nrows, *rstartsj = NULL, *sstartsj, len;
5843:   PetscScalar       *b_otha, *bufa, *bufA, *vals = NULL;
5844:   MPI_Request       *reqs = NULL, *rwaits = NULL, *swaits = NULL;
5845:   PetscMPIInt        size, tag, rank, nreqs;

5847:   PetscFunctionBegin;
5848:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
5849:   PetscCallMPI(MPI_Comm_size(comm, &size));

5851:   PetscCheck(A->cmap->rstart == B->rmap->rstart && A->cmap->rend == B->rmap->rend, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrix local dimensions are incompatible, (%" PetscInt_FMT ", %" PetscInt_FMT ") != (%" PetscInt_FMT ",%" PetscInt_FMT ")",
5852:              A->cmap->rstart, A->cmap->rend, B->rmap->rstart, B->rmap->rend);
5853:   PetscCall(PetscLogEventBegin(MAT_GetBrowsOfAocols, A, B, 0, 0));
5854:   PetscCallMPI(MPI_Comm_rank(comm, &rank));

5856:   if (size == 1) {
5857:     startsj_s = NULL;
5858:     bufa_ptr  = NULL;
5859:     *B_oth    = NULL;
5860:     PetscFunctionReturn(PETSC_SUCCESS);
5861:   }

5863:   ctx = a->Mvctx;
5864:   tag = ((PetscObject)ctx)->tag;

5866:   PetscCall(VecScatterGetRemote_Private(ctx, PETSC_TRUE /*send*/, &nsends, &sstarts, &srow, &sprocs, &sbs));
5867:   /* rprocs[] must be ordered so that indices received from them are ordered in rvalues[], which is key to algorithms used in this subroutine */
5868:   PetscCall(VecScatterGetRemoteOrdered_Private(ctx, PETSC_FALSE /*recv*/, &nrecvs, &rstarts, NULL /*indices not needed*/, &rprocs, &rbs));
5869:   PetscCall(PetscMPIIntCast(nsends + nrecvs, &nreqs));
5870:   PetscCall(PetscMalloc1(nreqs, &reqs));
5871:   rwaits = reqs;
5872:   swaits = PetscSafePointerPlusOffset(reqs, nrecvs);

5874:   if (!startsj_s || !bufa_ptr) scall = MAT_INITIAL_MATRIX;
5875:   if (scall == MAT_INITIAL_MATRIX) {
5876:     /* i-array */
5877:     /*  post receives */
5878:     if (nrecvs) PetscCall(PetscMalloc1(rbs * (rstarts[nrecvs] - rstarts[0]), &rvalues)); /* rstarts can be NULL when nrecvs=0 */
5879:     for (i = 0; i < nrecvs; i++) {
5880:       rowlen = rvalues + rstarts[i] * rbs;
5881:       nrows  = (rstarts[i + 1] - rstarts[i]) * rbs; /* num of indices to be received */
5882:       PetscCallMPI(MPIU_Irecv(rowlen, nrows, MPIU_INT, rprocs[i], tag, comm, rwaits + i));
5883:     }

5885:     /* pack the outgoing message */
5886:     PetscCall(PetscMalloc2(nsends + 1, &sstartsj, nrecvs + 1, &rstartsj));

5888:     sstartsj[0] = 0;
5889:     rstartsj[0] = 0;
5890:     len         = 0; /* total length of j or a array to be sent */
5891:     if (nsends) {
5892:       k = sstarts[0]; /* ATTENTION: sstarts[0] and rstarts[0] are not necessarily zero */
5893:       PetscCall(PetscMalloc1(sbs * (sstarts[nsends] - sstarts[0]), &svalues));
5894:     }
5895:     for (i = 0; i < nsends; i++) {
5896:       rowlen = svalues + (sstarts[i] - sstarts[0]) * sbs;
5897:       nrows  = sstarts[i + 1] - sstarts[i]; /* num of block rows */
5898:       for (j = 0; j < nrows; j++) {
5899:         row = srow[k] + B->rmap->range[rank]; /* global row idx */
5900:         for (l = 0; l < sbs; l++) {
5901:           PetscCall(MatGetRow_MPIAIJ(B, row + l, &ncols, NULL, NULL)); /* rowlength */

5903:           rowlen[j * sbs + l] = ncols;

5905:           len += ncols;
5906:           PetscCall(MatRestoreRow_MPIAIJ(B, row + l, &ncols, NULL, NULL));
5907:         }
5908:         k++;
5909:       }
5910:       PetscCallMPI(MPIU_Isend(rowlen, nrows * sbs, MPIU_INT, sprocs[i], tag, comm, swaits + i));

5912:       sstartsj[i + 1] = len; /* starting point of (i+1)-th outgoing msg in bufj and bufa */
5913:     }
5914:     /* recvs and sends of i-array are completed */
5915:     if (nreqs) PetscCallMPI(MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE));
5916:     PetscCall(PetscFree(svalues));

5918:     /* allocate buffers for sending j and a arrays */
5919:     PetscCall(PetscMalloc1(len + 1, &bufj));
5920:     PetscCall(PetscMalloc1(len + 1, &bufa));

5922:     /* create i-array of B_oth */
5923:     PetscCall(PetscMalloc1(aBn + 2, &b_othi));

5925:     b_othi[0] = 0;
5926:     len       = 0; /* total length of j or a array to be received */
5927:     k         = 0;
5928:     for (i = 0; i < nrecvs; i++) {
5929:       rowlen = rvalues + (rstarts[i] - rstarts[0]) * rbs;
5930:       nrows  = (rstarts[i + 1] - rstarts[i]) * rbs; /* num of rows to be received */
5931:       for (j = 0; j < nrows; j++) {
5932:         b_othi[k + 1] = b_othi[k] + rowlen[j];
5933:         PetscCall(PetscIntSumError(rowlen[j], len, &len));
5934:         k++;
5935:       }
5936:       rstartsj[i + 1] = len; /* starting point of (i+1)-th incoming msg in bufj and bufa */
5937:     }
5938:     PetscCall(PetscFree(rvalues));

5940:     /* allocate space for j and a arrays of B_oth */
5941:     PetscCall(PetscMalloc1(b_othi[aBn] + 1, &b_othj));
5942:     PetscCall(PetscMalloc1(b_othi[aBn] + 1, &b_otha));

5944:     /* j-array */
5945:     /*  post receives of j-array */
5946:     for (i = 0; i < nrecvs; i++) {
5947:       nrows = rstartsj[i + 1] - rstartsj[i]; /* length of the msg received */
5948:       PetscCallMPI(MPIU_Irecv(b_othj + rstartsj[i], nrows, MPIU_INT, rprocs[i], tag, comm, rwaits + i));
5949:     }

5951:     /* pack the outgoing message j-array */
5952:     if (nsends) k = sstarts[0];
5953:     for (i = 0; i < nsends; i++) {
5954:       nrows = sstarts[i + 1] - sstarts[i]; /* num of block rows */
5955:       bufJ  = bufj + sstartsj[i];
5956:       for (j = 0; j < nrows; j++) {
5957:         row = srow[k++] + B->rmap->range[rank]; /* global row idx */
5958:         for (ll = 0; ll < sbs; ll++) {
5959:           PetscCall(MatGetRow_MPIAIJ(B, row + ll, &ncols, &cols, NULL));
5960:           for (l = 0; l < ncols; l++) *bufJ++ = cols[l];
5961:           PetscCall(MatRestoreRow_MPIAIJ(B, row + ll, &ncols, &cols, NULL));
5962:         }
5963:       }
5964:       PetscCallMPI(MPIU_Isend(bufj + sstartsj[i], sstartsj[i + 1] - sstartsj[i], MPIU_INT, sprocs[i], tag, comm, swaits + i));
5965:     }

5967:     /* recvs and sends of j-array are completed */
5968:     if (nreqs) PetscCallMPI(MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE));
5969:   } else if (scall == MAT_REUSE_MATRIX) {
5970:     sstartsj = *startsj_s;
5971:     rstartsj = *startsj_r;
5972:     bufa     = *bufa_ptr;
5973:     PetscCall(MatSeqAIJGetArrayWrite(*B_oth, &b_otha));
5974:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix P does not possess an object container");

5976:   /* a-array */
5977:   /*  post receives of a-array */
5978:   for (i = 0; i < nrecvs; i++) {
5979:     nrows = rstartsj[i + 1] - rstartsj[i]; /* length of the msg received */
5980:     PetscCallMPI(MPIU_Irecv(b_otha + rstartsj[i], nrows, MPIU_SCALAR, rprocs[i], tag, comm, rwaits + i));
5981:   }

5983:   /* pack the outgoing message a-array */
5984:   if (nsends) k = sstarts[0];
5985:   for (i = 0; i < nsends; i++) {
5986:     nrows = sstarts[i + 1] - sstarts[i]; /* num of block rows */
5987:     bufA  = bufa + sstartsj[i];
5988:     for (j = 0; j < nrows; j++) {
5989:       row = srow[k++] + B->rmap->range[rank]; /* global row idx */
5990:       for (ll = 0; ll < sbs; ll++) {
5991:         PetscCall(MatGetRow_MPIAIJ(B, row + ll, &ncols, NULL, &vals));
5992:         for (l = 0; l < ncols; l++) *bufA++ = vals[l];
5993:         PetscCall(MatRestoreRow_MPIAIJ(B, row + ll, &ncols, NULL, &vals));
5994:       }
5995:     }
5996:     PetscCallMPI(MPIU_Isend(bufa + sstartsj[i], sstartsj[i + 1] - sstartsj[i], MPIU_SCALAR, sprocs[i], tag, comm, swaits + i));
5997:   }
5998:   /* recvs and sends of a-array are completed */
5999:   if (nreqs) PetscCallMPI(MPI_Waitall(nreqs, reqs, MPI_STATUSES_IGNORE));
6000:   PetscCall(PetscFree(reqs));

6002:   if (scall == MAT_INITIAL_MATRIX) {
6003:     Mat_SeqAIJ *b_oth;

6005:     /* put together the new matrix */
6006:     PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, aBn, B->cmap->N, b_othi, b_othj, b_otha, B_oth));

6008:     /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
6009:     /* Since these are PETSc arrays, change flags to free them as necessary. */
6010:     b_oth          = (Mat_SeqAIJ *)(*B_oth)->data;
6011:     b_oth->free_a  = PETSC_TRUE;
6012:     b_oth->free_ij = PETSC_TRUE;
6013:     b_oth->nonew   = 0;

6015:     PetscCall(PetscFree(bufj));
6016:     if (!startsj_s || !bufa_ptr) {
6017:       PetscCall(PetscFree2(sstartsj, rstartsj));
6018:       PetscCall(PetscFree(bufa_ptr));
6019:     } else {
6020:       *startsj_s = sstartsj;
6021:       *startsj_r = rstartsj;
6022:       *bufa_ptr  = bufa;
6023:     }
6024:   } else if (scall == MAT_REUSE_MATRIX) {
6025:     PetscCall(MatSeqAIJRestoreArrayWrite(*B_oth, &b_otha));
6026:   }

6028:   PetscCall(VecScatterRestoreRemote_Private(ctx, PETSC_TRUE, &nsends, &sstarts, &srow, &sprocs, &sbs));
6029:   PetscCall(VecScatterRestoreRemoteOrdered_Private(ctx, PETSC_FALSE, &nrecvs, &rstarts, NULL, &rprocs, &rbs));
6030:   PetscCall(PetscLogEventEnd(MAT_GetBrowsOfAocols, A, B, 0, 0));
6031:   PetscFunctionReturn(PETSC_SUCCESS);
6032: }

6034: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJCRL(Mat, MatType, MatReuse, Mat *);
6035: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJPERM(Mat, MatType, MatReuse, Mat *);
6036: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJSELL(Mat, MatType, MatReuse, Mat *);
6037: #if defined(PETSC_HAVE_MKL_SPARSE)
6038: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJMKL(Mat, MatType, MatReuse, Mat *);
6039: #endif
6040: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIBAIJ(Mat, MatType, MatReuse, Mat *);
6041: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPISBAIJ(Mat, MatType, MatReuse, Mat *);
6042: #if defined(PETSC_HAVE_ELEMENTAL)
6043: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
6044: #endif
6045: #if defined(PETSC_HAVE_SCALAPACK)
6046: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
6047: #endif
6048: #if defined(PETSC_HAVE_HYPRE)
6049: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat, MatType, MatReuse, Mat *);
6050: #endif
6051: #if defined(PETSC_HAVE_CUDA)
6052: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJCUSPARSE(Mat, MatType, MatReuse, Mat *);
6053: #endif
6054: #if defined(PETSC_HAVE_HIP)
6055: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJHIPSPARSE(Mat, MatType, MatReuse, Mat *);
6056: #endif
6057: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
6058: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJKokkos(Mat, MatType, MatReuse, Mat *);
6059: #endif
6060: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPISELL(Mat, MatType, MatReuse, Mat *);
6061: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);
6062: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

6064: /*
6065:     Computes (B'*A')' since computing B*A directly is untenable

6067:                n                       p                          p
6068:         [             ]       [             ]         [                 ]
6069:       m [      A      ]  *  n [       B     ]   =   m [         C       ]
6070:         [             ]       [             ]         [                 ]

6072: */
6073: static PetscErrorCode MatMatMultNumeric_MPIDense_MPIAIJ(Mat A, Mat B, Mat C)
6074: {
6075:   Mat At, Bt, Ct;

6077:   PetscFunctionBegin;
6078:   PetscCall(MatTranspose(A, MAT_INITIAL_MATRIX, &At));
6079:   PetscCall(MatTranspose(B, MAT_INITIAL_MATRIX, &Bt));
6080:   PetscCall(MatMatMult(Bt, At, MAT_INITIAL_MATRIX, PETSC_CURRENT, &Ct));
6081:   PetscCall(MatDestroy(&At));
6082:   PetscCall(MatDestroy(&Bt));
6083:   PetscCall(MatTransposeSetPrecursor(Ct, C));
6084:   PetscCall(MatTranspose(Ct, MAT_REUSE_MATRIX, &C));
6085:   PetscCall(MatDestroy(&Ct));
6086:   PetscFunctionReturn(PETSC_SUCCESS);
6087: }

6089: static PetscErrorCode MatMatMultSymbolic_MPIDense_MPIAIJ(Mat A, Mat B, PetscReal fill, Mat C)
6090: {
6091:   PetscBool cisdense;

6093:   PetscFunctionBegin;
6094:   PetscCheck(A->cmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "A->cmap->n %" PetscInt_FMT " != B->rmap->n %" PetscInt_FMT, A->cmap->n, B->rmap->n);
6095:   PetscCall(MatSetSizes(C, A->rmap->n, B->cmap->n, A->rmap->N, B->cmap->N));
6096:   PetscCall(MatSetBlockSizesFromMats(C, A, B));
6097:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATMPIDENSE, MATMPIDENSECUDA, MATMPIDENSEHIP, ""));
6098:   if (!cisdense) PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
6099:   PetscCall(MatSetUp(C));

6101:   C->ops->matmultnumeric = MatMatMultNumeric_MPIDense_MPIAIJ;
6102:   PetscFunctionReturn(PETSC_SUCCESS);
6103: }

6105: static PetscErrorCode MatProductSetFromOptions_MPIDense_MPIAIJ_AB(Mat C)
6106: {
6107:   Mat_Product *product = C->product;
6108:   Mat          A = product->A, B = product->B;

6110:   PetscFunctionBegin;
6111:   PetscCheck(A->cmap->rstart == B->rmap->rstart && A->cmap->rend == B->rmap->rend, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrix local dimensions are incompatible, (%" PetscInt_FMT ", %" PetscInt_FMT ") != (%" PetscInt_FMT ",%" PetscInt_FMT ")",
6112:              A->cmap->rstart, A->cmap->rend, B->rmap->rstart, B->rmap->rend);
6113:   C->ops->matmultsymbolic = MatMatMultSymbolic_MPIDense_MPIAIJ;
6114:   C->ops->productsymbolic = MatProductSymbolic_AB;
6115:   PetscFunctionReturn(PETSC_SUCCESS);
6116: }

6118: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_MPIDense_MPIAIJ(Mat C)
6119: {
6120:   Mat_Product *product = C->product;

6122:   PetscFunctionBegin;
6123:   if (product->type == MATPRODUCT_AB) PetscCall(MatProductSetFromOptions_MPIDense_MPIAIJ_AB(C));
6124:   PetscFunctionReturn(PETSC_SUCCESS);
6125: }

6127: /*
6128:    Merge two sets of sorted nonzeros and return a CSR for the merged (sequential) matrix

6130:   Input Parameters:

6132:     j1,rowBegin1,rowEnd1,jmap1: describe the first set of nonzeros (Set1)
6133:     j2,rowBegin2,rowEnd2,jmap2: describe the second set of nonzeros (Set2)

6135:     mat: both sets' nonzeros are on m rows, where m is the number of local rows of the matrix mat

6137:     For Set1, j1[] contains column indices of the nonzeros.
6138:     For the k-th row (0<=k<m), [rowBegin1[k],rowEnd1[k]) index into j1[] and point to the begin/end nonzero in row k
6139:     respectively (note rowEnd1[k] is not necessarily equal to rwoBegin1[k+1]). Indices in this range of j1[] are sorted,
6140:     but might have repeats. jmap1[t+1] - jmap1[t] is the number of repeats for the t-th unique nonzero in Set1.

6142:     Similar for Set2.

6144:     This routine merges the two sets of nonzeros row by row and removes repeats.

6146:   Output Parameters: (memory is allocated by the caller)

6148:     i[],j[]: the CSR of the merged matrix, which has m rows.
6149:     imap1[]: the k-th unique nonzero in Set1 (k=0,1,...) corresponds to imap1[k]-th unique nonzero in the merged matrix.
6150:     imap2[]: similar to imap1[], but for Set2.
6151:     Note we order nonzeros row-by-row and from left to right.
6152: */
6153: static PetscErrorCode MatMergeEntries_Internal(Mat mat, const PetscInt j1[], const PetscInt j2[], const PetscCount rowBegin1[], const PetscCount rowEnd1[], const PetscCount rowBegin2[], const PetscCount rowEnd2[], const PetscCount jmap1[], const PetscCount jmap2[], PetscCount imap1[], PetscCount imap2[], PetscInt i[], PetscInt j[])
6154: {
6155:   PetscInt   r, m; /* Row index of mat */
6156:   PetscCount t, t1, t2, b1, e1, b2, e2;

6158:   PetscFunctionBegin;
6159:   PetscCall(MatGetLocalSize(mat, &m, NULL));
6160:   t1 = t2 = t = 0; /* Count unique nonzeros of in Set1, Set1 and the merged respectively */
6161:   i[0]        = 0;
6162:   for (r = 0; r < m; r++) { /* Do row by row merging */
6163:     b1 = rowBegin1[r];
6164:     e1 = rowEnd1[r];
6165:     b2 = rowBegin2[r];
6166:     e2 = rowEnd2[r];
6167:     while (b1 < e1 && b2 < e2) {
6168:       if (j1[b1] == j2[b2]) { /* Same column index and hence same nonzero */
6169:         j[t]      = j1[b1];
6170:         imap1[t1] = t;
6171:         imap2[t2] = t;
6172:         b1 += jmap1[t1 + 1] - jmap1[t1]; /* Jump to next unique local nonzero */
6173:         b2 += jmap2[t2 + 1] - jmap2[t2]; /* Jump to next unique remote nonzero */
6174:         t1++;
6175:         t2++;
6176:         t++;
6177:       } else if (j1[b1] < j2[b2]) {
6178:         j[t]      = j1[b1];
6179:         imap1[t1] = t;
6180:         b1 += jmap1[t1 + 1] - jmap1[t1];
6181:         t1++;
6182:         t++;
6183:       } else {
6184:         j[t]      = j2[b2];
6185:         imap2[t2] = t;
6186:         b2 += jmap2[t2 + 1] - jmap2[t2];
6187:         t2++;
6188:         t++;
6189:       }
6190:     }
6191:     /* Merge the remaining in either j1[] or j2[] */
6192:     while (b1 < e1) {
6193:       j[t]      = j1[b1];
6194:       imap1[t1] = t;
6195:       b1 += jmap1[t1 + 1] - jmap1[t1];
6196:       t1++;
6197:       t++;
6198:     }
6199:     while (b2 < e2) {
6200:       j[t]      = j2[b2];
6201:       imap2[t2] = t;
6202:       b2 += jmap2[t2 + 1] - jmap2[t2];
6203:       t2++;
6204:       t++;
6205:     }
6206:     PetscCall(PetscIntCast(t, i + r + 1));
6207:   }
6208:   PetscFunctionReturn(PETSC_SUCCESS);
6209: }

6211: /*
6212:   Split nonzeros in a block of local rows into two subsets: those in the diagonal block and those in the off-diagonal block

6214:   Input Parameters:
6215:     mat: an MPI matrix that provides row and column layout information for splitting. Let's say its number of local rows is m.
6216:     n,i[],j[],perm[]: there are n input entries, belonging to m rows. Row/col indices of the entries are stored in i[] and j[]
6217:       respectively, along with a permutation array perm[]. Length of the i[],j[],perm[] arrays is n.

6219:       i[] is already sorted, but within a row, j[] is not sorted and might have repeats.
6220:       i[] might contain negative indices at the beginning, which means the corresponding entries should be ignored in the splitting.

6222:   Output Parameters:
6223:     j[],perm[]: the routine needs to sort j[] within each row along with perm[].
6224:     rowBegin[],rowMid[],rowEnd[]: of length m, and the memory is preallocated and zeroed by the caller.
6225:       They contain indices pointing to j[]. For 0<=r<m, [rowBegin[r],rowMid[r]) point to begin/end entries of row r of the diagonal block,
6226:       and [rowMid[r],rowEnd[r]) point to begin/end entries of row r of the off-diagonal block.

6228:     Aperm[],Ajmap[],Atot,Annz: Arrays are allocated by this routine.
6229:       Atot: number of entries belonging to the diagonal block.
6230:       Annz: number of unique nonzeros belonging to the diagonal block.
6231:       Aperm[Atot] stores values from perm[] for entries belonging to the diagonal block. Length of Aperm[] is Atot, though it may also count
6232:         repeats (i.e., same 'i,j' pair).
6233:       Ajmap[Annz+1] stores the number of repeats of each unique entry belonging to the diagonal block. More precisely, Ajmap[t+1] - Ajmap[t]
6234:         is the number of repeats for the t-th unique entry in the diagonal block. Ajmap[0] is always 0.

6236:       Atot: number of entries belonging to the diagonal block
6237:       Annz: number of unique nonzeros belonging to the diagonal block.

6239:     Bperm[], Bjmap[], Btot, Bnnz are similar but for the off-diagonal block.

6241:     Aperm[],Bperm[],Ajmap[] and Bjmap[] are allocated separately by this routine with PetscMalloc1().
6242: */
6243: static PetscErrorCode MatSplitEntries_Internal(Mat mat, PetscCount n, const PetscInt i[], PetscInt j[], PetscCount perm[], PetscCount rowBegin[], PetscCount rowMid[], PetscCount rowEnd[], PetscCount *Atot_, PetscCount **Aperm_, PetscCount *Annz_, PetscCount **Ajmap_, PetscCount *Btot_, PetscCount **Bperm_, PetscCount *Bnnz_, PetscCount **Bjmap_)
6244: {
6245:   PetscInt    cstart, cend, rstart, rend, row, col;
6246:   PetscCount  Atot = 0, Btot = 0; /* Total number of nonzeros in the diagonal and off-diagonal blocks */
6247:   PetscCount  Annz = 0, Bnnz = 0; /* Number of unique nonzeros in the diagonal and off-diagonal blocks */
6248:   PetscCount  k, m, p, q, r, s, mid;
6249:   PetscCount *Aperm, *Bperm, *Ajmap, *Bjmap;

6251:   PetscFunctionBegin;
6252:   PetscCall(PetscLayoutGetRange(mat->rmap, &rstart, &rend));
6253:   PetscCall(PetscLayoutGetRange(mat->cmap, &cstart, &cend));
6254:   m = rend - rstart;

6256:   /* Skip negative rows */
6257:   for (k = 0; k < n; k++)
6258:     if (i[k] >= 0) break;

6260:   /* Process [k,n): sort and partition each local row into diag and offdiag portions,
6261:      fill rowBegin[], rowMid[], rowEnd[], and count Atot, Btot, Annz, Bnnz.
6262:   */
6263:   while (k < n) {
6264:     row = i[k];
6265:     /* Entries in [k,s) are in one row. Shift diagonal block col indices so that diag is ahead of offdiag after sorting the row */
6266:     for (s = k; s < n; s++)
6267:       if (i[s] != row) break;

6269:     /* Shift diag columns to range of [-PETSC_INT_MAX, -1] */
6270:     for (p = k; p < s; p++) {
6271:       if (j[p] >= cstart && j[p] < cend) j[p] -= PETSC_INT_MAX;
6272:       else PetscAssert((j[p] >= 0) && (j[p] <= mat->cmap->N), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index %" PetscInt_FMT " is out of range", j[p]);
6273:     }
6274:     PetscCall(PetscSortIntWithCountArray(s - k, j + k, perm + k));
6275:     PetscCall(PetscSortedIntUpperBound(j, k, s, -1, &mid)); /* Separate [k,s) into [k,mid) for diag and [mid,s) for offdiag */
6276:     rowBegin[row - rstart] = k;
6277:     rowMid[row - rstart]   = mid;
6278:     rowEnd[row - rstart]   = s;

6280:     /* Count nonzeros of this diag/offdiag row, which might have repeats */
6281:     Atot += mid - k;
6282:     Btot += s - mid;

6284:     /* Count unique nonzeros of this diag row */
6285:     for (p = k; p < mid;) {
6286:       col = j[p];
6287:       do {
6288:         j[p] += PETSC_INT_MAX; /* Revert the modified diagonal indices */
6289:         p++;
6290:       } while (p < mid && j[p] == col);
6291:       Annz++;
6292:     }

6294:     /* Count unique nonzeros of this offdiag row */
6295:     for (p = mid; p < s;) {
6296:       col = j[p];
6297:       do {
6298:         p++;
6299:       } while (p < s && j[p] == col);
6300:       Bnnz++;
6301:     }
6302:     k = s;
6303:   }

6305:   /* Allocation according to Atot, Btot, Annz, Bnnz */
6306:   PetscCall(PetscMalloc1(Atot, &Aperm));
6307:   PetscCall(PetscMalloc1(Btot, &Bperm));
6308:   PetscCall(PetscMalloc1(Annz + 1, &Ajmap));
6309:   PetscCall(PetscMalloc1(Bnnz + 1, &Bjmap));

6311:   /* Re-scan indices and copy diag/offdiag permutation indices to Aperm, Bperm and also fill Ajmap and Bjmap */
6312:   Ajmap[0] = Bjmap[0] = Atot = Btot = Annz = Bnnz = 0;
6313:   for (r = 0; r < m; r++) {
6314:     k   = rowBegin[r];
6315:     mid = rowMid[r];
6316:     s   = rowEnd[r];
6317:     PetscCall(PetscArraycpy(PetscSafePointerPlusOffset(Aperm, Atot), PetscSafePointerPlusOffset(perm, k), mid - k));
6318:     PetscCall(PetscArraycpy(PetscSafePointerPlusOffset(Bperm, Btot), PetscSafePointerPlusOffset(perm, mid), s - mid));
6319:     Atot += mid - k;
6320:     Btot += s - mid;

6322:     /* Scan column indices in this row and find out how many repeats each unique nonzero has */
6323:     for (p = k; p < mid;) {
6324:       col = j[p];
6325:       q   = p;
6326:       do {
6327:         p++;
6328:       } while (p < mid && j[p] == col);
6329:       Ajmap[Annz + 1] = Ajmap[Annz] + (p - q);
6330:       Annz++;
6331:     }

6333:     for (p = mid; p < s;) {
6334:       col = j[p];
6335:       q   = p;
6336:       do {
6337:         p++;
6338:       } while (p < s && j[p] == col);
6339:       Bjmap[Bnnz + 1] = Bjmap[Bnnz] + (p - q);
6340:       Bnnz++;
6341:     }
6342:   }
6343:   /* Output */
6344:   *Aperm_ = Aperm;
6345:   *Annz_  = Annz;
6346:   *Atot_  = Atot;
6347:   *Ajmap_ = Ajmap;
6348:   *Bperm_ = Bperm;
6349:   *Bnnz_  = Bnnz;
6350:   *Btot_  = Btot;
6351:   *Bjmap_ = Bjmap;
6352:   PetscFunctionReturn(PETSC_SUCCESS);
6353: }

6355: /*
6356:   Expand the jmap[] array to make a new one in view of nonzeros in the merged matrix

6358:   Input Parameters:
6359:     nnz1: number of unique nonzeros in a set that was used to produce imap[], jmap[]
6360:     nnz:  number of unique nonzeros in the merged matrix
6361:     imap[nnz1]: i-th nonzero in the set is the imap[i]-th nonzero in the merged matrix
6362:     jmap[nnz1+1]: i-th nonzero in the set has jmap[i+1] - jmap[i] repeats in the set

6364:   Output Parameter: (memory is allocated by the caller)
6365:     jmap_new[nnz+1]: i-th nonzero in the merged matrix has jmap_new[i+1] - jmap_new[i] repeats in the set

6367:   Example:
6368:     nnz1 = 4
6369:     nnz  = 6
6370:     imap = [1,3,4,5]
6371:     jmap = [0,3,5,6,7]
6372:    then,
6373:     jmap_new = [0,0,3,3,5,6,7]
6374: */
6375: static PetscErrorCode ExpandJmap_Internal(PetscCount nnz1, PetscCount nnz, const PetscCount imap[], const PetscCount jmap[], PetscCount jmap_new[])
6376: {
6377:   PetscCount k, p;

6379:   PetscFunctionBegin;
6380:   jmap_new[0] = 0;
6381:   p           = nnz;                /* p loops over jmap_new[] backwards */
6382:   for (k = nnz1 - 1; k >= 0; k--) { /* k loops over imap[] */
6383:     for (; p > imap[k]; p--) jmap_new[p] = jmap[k + 1];
6384:   }
6385:   for (; p >= 0; p--) jmap_new[p] = jmap[0];
6386:   PetscFunctionReturn(PETSC_SUCCESS);
6387: }

6389: static PetscErrorCode MatCOOStructDestroy_MPIAIJ(void *data)
6390: {
6391:   MatCOOStruct_MPIAIJ *coo = (MatCOOStruct_MPIAIJ *)data;

6393:   PetscFunctionBegin;
6394:   PetscCall(PetscSFDestroy(&coo->sf));
6395:   PetscCall(PetscFree(coo->Aperm1));
6396:   PetscCall(PetscFree(coo->Bperm1));
6397:   PetscCall(PetscFree(coo->Ajmap1));
6398:   PetscCall(PetscFree(coo->Bjmap1));
6399:   PetscCall(PetscFree(coo->Aimap2));
6400:   PetscCall(PetscFree(coo->Bimap2));
6401:   PetscCall(PetscFree(coo->Aperm2));
6402:   PetscCall(PetscFree(coo->Bperm2));
6403:   PetscCall(PetscFree(coo->Ajmap2));
6404:   PetscCall(PetscFree(coo->Bjmap2));
6405:   PetscCall(PetscFree(coo->Cperm1));
6406:   PetscCall(PetscFree2(coo->sendbuf, coo->recvbuf));
6407:   PetscCall(PetscFree(coo));
6408:   PetscFunctionReturn(PETSC_SUCCESS);
6409: }

6411: PetscErrorCode MatSetPreallocationCOO_MPIAIJ(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
6412: {
6413:   MPI_Comm             comm;
6414:   PetscMPIInt          rank, size;
6415:   PetscInt             m, n, M, N, rstart, rend, cstart, cend; /* Sizes, indices of row/col, therefore with type PetscInt */
6416:   PetscCount           k, p, q, rem;                           /* Loop variables over coo arrays */
6417:   Mat_MPIAIJ          *mpiaij = (Mat_MPIAIJ *)mat->data;
6418:   PetscContainer       container;
6419:   MatCOOStruct_MPIAIJ *coo;

6421:   PetscFunctionBegin;
6422:   PetscCall(PetscFree(mpiaij->garray));
6423:   PetscCall(VecDestroy(&mpiaij->lvec));
6424: #if defined(PETSC_USE_CTABLE)
6425:   PetscCall(PetscHMapIDestroy(&mpiaij->colmap));
6426: #else
6427:   PetscCall(PetscFree(mpiaij->colmap));
6428: #endif
6429:   PetscCall(VecScatterDestroy(&mpiaij->Mvctx));
6430:   mat->assembled     = PETSC_FALSE;
6431:   mat->was_assembled = PETSC_FALSE;

6433:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
6434:   PetscCallMPI(MPI_Comm_size(comm, &size));
6435:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
6436:   PetscCall(PetscLayoutSetUp(mat->rmap));
6437:   PetscCall(PetscLayoutSetUp(mat->cmap));
6438:   PetscCall(PetscLayoutGetRange(mat->rmap, &rstart, &rend));
6439:   PetscCall(PetscLayoutGetRange(mat->cmap, &cstart, &cend));
6440:   PetscCall(MatGetLocalSize(mat, &m, &n));
6441:   PetscCall(MatGetSize(mat, &M, &N));

6443:   /* Sort (i,j) by row along with a permutation array, so that the to-be-ignored */
6444:   /* entries come first, then local rows, then remote rows.                     */
6445:   PetscCount n1 = coo_n, *perm1;
6446:   PetscInt  *i1 = coo_i, *j1 = coo_j;

6448:   PetscCall(PetscMalloc1(n1, &perm1));
6449:   for (k = 0; k < n1; k++) perm1[k] = k;

6451:   /* Manipulate indices so that entries with negative row or col indices will have smallest
6452:      row indices, local entries will have greater but negative row indices, and remote entries
6453:      will have positive row indices.
6454:   */
6455:   for (k = 0; k < n1; k++) {
6456:     if (i1[k] < 0 || j1[k] < 0) i1[k] = PETSC_INT_MIN;                /* e.g., -2^31, minimal to move them ahead */
6457:     else if (i1[k] >= rstart && i1[k] < rend) i1[k] -= PETSC_INT_MAX; /* e.g., minus 2^31-1 to shift local rows to range of [-PETSC_INT_MAX, -1] */
6458:     else {
6459:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_USER_INPUT, "MAT_NO_OFF_PROC_ENTRIES is set but insert to remote rows");
6460:       if (mpiaij->donotstash) i1[k] = PETSC_INT_MIN; /* Ignore offproc entries as if they had negative indices */
6461:     }
6462:   }

6464:   /* Sort by row; after that, [0,k) have ignored entries, [k,rem) have local rows and [rem,n1) have remote rows */
6465:   PetscCall(PetscSortIntWithIntCountArrayPair(n1, i1, j1, perm1));

6467:   /* Advance k to the first entry we need to take care of */
6468:   for (k = 0; k < n1; k++)
6469:     if (i1[k] > PETSC_INT_MIN) break;
6470:   PetscCount i1start = k;

6472:   PetscCall(PetscSortedIntUpperBound(i1, k, n1, rend - 1 - PETSC_INT_MAX, &rem)); /* rem is upper bound of the last local row */
6473:   for (; k < rem; k++) i1[k] += PETSC_INT_MAX;                                    /* Revert row indices of local rows*/

6475:   /*           Send remote rows to their owner                                  */
6476:   /* Find which rows should be sent to which remote ranks*/
6477:   PetscInt        nsend = 0; /* Number of MPI ranks to send data to */
6478:   PetscMPIInt    *sendto;    /* [nsend], storing remote ranks */
6479:   PetscInt       *nentries;  /* [nsend], storing number of entries sent to remote ranks; Assume PetscInt is big enough for this count, and error if not */
6480:   const PetscInt *ranges;
6481:   PetscInt        maxNsend = size >= 128 ? 128 : size; /* Assume max 128 neighbors; realloc when needed */

6483:   PetscCall(PetscLayoutGetRanges(mat->rmap, &ranges));
6484:   PetscCall(PetscMalloc2(maxNsend, &sendto, maxNsend, &nentries));
6485:   for (k = rem; k < n1;) {
6486:     PetscMPIInt owner;
6487:     PetscInt    firstRow, lastRow;

6489:     /* Locate a row range */
6490:     firstRow = i1[k]; /* first row of this owner */
6491:     PetscCall(PetscLayoutFindOwner(mat->rmap, firstRow, &owner));
6492:     lastRow = ranges[owner + 1] - 1; /* last row of this owner */

6494:     /* Find the first index 'p' in [k,n) with i[p] belonging to next owner */
6495:     PetscCall(PetscSortedIntUpperBound(i1, k, n1, lastRow, &p));

6497:     /* All entries in [k,p) belong to this remote owner */
6498:     if (nsend >= maxNsend) { /* Double the remote ranks arrays if not long enough */
6499:       PetscMPIInt *sendto2;
6500:       PetscInt    *nentries2;
6501:       PetscInt     maxNsend2 = (maxNsend <= size / 2) ? maxNsend * 2 : size;

6503:       PetscCall(PetscMalloc2(maxNsend2, &sendto2, maxNsend2, &nentries2));
6504:       PetscCall(PetscArraycpy(sendto2, sendto, maxNsend));
6505:       PetscCall(PetscArraycpy(nentries2, nentries2, maxNsend + 1));
6506:       PetscCall(PetscFree2(sendto, nentries2));
6507:       sendto   = sendto2;
6508:       nentries = nentries2;
6509:       maxNsend = maxNsend2;
6510:     }
6511:     sendto[nsend] = owner;
6512:     PetscCall(PetscIntCast(p - k, &nentries[nsend]));
6513:     nsend++;
6514:     k = p;
6515:   }

6517:   /* Build 1st SF to know offsets on remote to send data */
6518:   PetscSF      sf1;
6519:   PetscInt     nroots = 1, nroots2 = 0;
6520:   PetscInt     nleaves = nsend, nleaves2 = 0;
6521:   PetscInt    *offsets;
6522:   PetscSFNode *iremote;

6524:   PetscCall(PetscSFCreate(comm, &sf1));
6525:   PetscCall(PetscMalloc1(nsend, &iremote));
6526:   PetscCall(PetscMalloc1(nsend, &offsets));
6527:   for (k = 0; k < nsend; k++) {
6528:     iremote[k].rank  = sendto[k];
6529:     iremote[k].index = 0;
6530:     nleaves2 += nentries[k];
6531:     PetscCheck(nleaves2 >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of SF leaves is too large for PetscInt");
6532:   }
6533:   PetscCall(PetscSFSetGraph(sf1, nroots, nleaves, NULL, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));
6534:   PetscCall(PetscSFFetchAndOpWithMemTypeBegin(sf1, MPIU_INT, PETSC_MEMTYPE_HOST, &nroots2 /*rootdata*/, PETSC_MEMTYPE_HOST, nentries /*leafdata*/, PETSC_MEMTYPE_HOST, offsets /*leafupdate*/, MPI_SUM));
6535:   PetscCall(PetscSFFetchAndOpEnd(sf1, MPIU_INT, &nroots2, nentries, offsets, MPI_SUM)); /* Would nroots2 overflow, we check offsets[] below */
6536:   PetscCall(PetscSFDestroy(&sf1));
6537:   PetscAssert(nleaves2 == n1 - rem, PETSC_COMM_SELF, PETSC_ERR_PLIB, "nleaves2 %" PetscInt_FMT " != number of remote entries %" PetscCount_FMT, nleaves2, n1 - rem);

6539:   /* Build 2nd SF to send remote COOs to their owner */
6540:   PetscSF sf2;
6541:   nroots  = nroots2;
6542:   nleaves = nleaves2;
6543:   PetscCall(PetscSFCreate(comm, &sf2));
6544:   PetscCall(PetscSFSetFromOptions(sf2));
6545:   PetscCall(PetscMalloc1(nleaves, &iremote));
6546:   p = 0;
6547:   for (k = 0; k < nsend; k++) {
6548:     PetscCheck(offsets[k] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of SF roots is too large for PetscInt");
6549:     for (q = 0; q < nentries[k]; q++, p++) {
6550:       iremote[p].rank = sendto[k];
6551:       PetscCall(PetscIntCast(offsets[k] + q, &iremote[p].index));
6552:     }
6553:   }
6554:   PetscCall(PetscSFSetGraph(sf2, nroots, nleaves, NULL, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));

6556:   /* Send the remote COOs to their owner */
6557:   PetscInt    n2 = nroots, *i2, *j2; /* Buffers for received COOs from other ranks, along with a permutation array */
6558:   PetscCount *perm2;                 /* Though PetscInt is enough for remote entries, we use PetscCount here as we want to reuse MatSplitEntries_Internal() */
6559:   PetscCall(PetscMalloc3(n2, &i2, n2, &j2, n2, &perm2));
6560:   PetscAssert(rem == 0 || i1 != NULL, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cannot add nonzero offset to null");
6561:   PetscAssert(rem == 0 || j1 != NULL, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cannot add nonzero offset to null");
6562:   PetscInt *i1prem = PetscSafePointerPlusOffset(i1, rem);
6563:   PetscInt *j1prem = PetscSafePointerPlusOffset(j1, rem);
6564:   PetscCall(PetscSFReduceWithMemTypeBegin(sf2, MPIU_INT, PETSC_MEMTYPE_HOST, i1prem, PETSC_MEMTYPE_HOST, i2, MPI_REPLACE));
6565:   PetscCall(PetscSFReduceEnd(sf2, MPIU_INT, i1prem, i2, MPI_REPLACE));
6566:   PetscCall(PetscSFReduceWithMemTypeBegin(sf2, MPIU_INT, PETSC_MEMTYPE_HOST, j1prem, PETSC_MEMTYPE_HOST, j2, MPI_REPLACE));
6567:   PetscCall(PetscSFReduceEnd(sf2, MPIU_INT, j1prem, j2, MPI_REPLACE));

6569:   PetscCall(PetscFree(offsets));
6570:   PetscCall(PetscFree2(sendto, nentries));

6572:   /* Sort received COOs by row along with the permutation array     */
6573:   for (k = 0; k < n2; k++) perm2[k] = k;
6574:   PetscCall(PetscSortIntWithIntCountArrayPair(n2, i2, j2, perm2));

6576:   /* sf2 only sends contiguous leafdata to contiguous rootdata. We record the permutation which will be used to fill leafdata */
6577:   PetscCount *Cperm1;
6578:   PetscAssert(rem == 0 || perm1 != NULL, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cannot add nonzero offset to null");
6579:   PetscCount *perm1prem = PetscSafePointerPlusOffset(perm1, rem);
6580:   PetscCall(PetscMalloc1(nleaves, &Cperm1));
6581:   PetscCall(PetscArraycpy(Cperm1, perm1prem, nleaves));

6583:   /* Support for HYPRE matrices, kind of a hack.
6584:      Swap min column with diagonal so that diagonal values will go first */
6585:   PetscBool hypre;
6586:   PetscCall(PetscStrcmp("_internal_COO_mat_for_hypre", ((PetscObject)mat)->name, &hypre));
6587:   if (hypre) {
6588:     PetscInt *minj;
6589:     PetscBT   hasdiag;

6591:     PetscCall(PetscBTCreate(m, &hasdiag));
6592:     PetscCall(PetscMalloc1(m, &minj));
6593:     for (k = 0; k < m; k++) minj[k] = PETSC_INT_MAX;
6594:     for (k = i1start; k < rem; k++) {
6595:       if (j1[k] < cstart || j1[k] >= cend) continue;
6596:       const PetscInt rindex = i1[k] - rstart;
6597:       if ((j1[k] - cstart) == rindex) PetscCall(PetscBTSet(hasdiag, rindex));
6598:       minj[rindex] = PetscMin(minj[rindex], j1[k]);
6599:     }
6600:     for (k = 0; k < n2; k++) {
6601:       if (j2[k] < cstart || j2[k] >= cend) continue;
6602:       const PetscInt rindex = i2[k] - rstart;
6603:       if ((j2[k] - cstart) == rindex) PetscCall(PetscBTSet(hasdiag, rindex));
6604:       minj[rindex] = PetscMin(minj[rindex], j2[k]);
6605:     }
6606:     for (k = i1start; k < rem; k++) {
6607:       const PetscInt rindex = i1[k] - rstart;
6608:       if (j1[k] < cstart || j1[k] >= cend || !PetscBTLookup(hasdiag, rindex)) continue;
6609:       if (j1[k] == minj[rindex]) j1[k] = i1[k] + (cstart - rstart);
6610:       else if ((j1[k] - cstart) == rindex) j1[k] = minj[rindex];
6611:     }
6612:     for (k = 0; k < n2; k++) {
6613:       const PetscInt rindex = i2[k] - rstart;
6614:       if (j2[k] < cstart || j2[k] >= cend || !PetscBTLookup(hasdiag, rindex)) continue;
6615:       if (j2[k] == minj[rindex]) j2[k] = i2[k] + (cstart - rstart);
6616:       else if ((j2[k] - cstart) == rindex) j2[k] = minj[rindex];
6617:     }
6618:     PetscCall(PetscBTDestroy(&hasdiag));
6619:     PetscCall(PetscFree(minj));
6620:   }

6622:   /* Split local COOs and received COOs into diag/offdiag portions */
6623:   PetscCount *rowBegin1, *rowMid1, *rowEnd1;
6624:   PetscCount *Ajmap1, *Aperm1, *Bjmap1, *Bperm1;
6625:   PetscCount  Annz1, Bnnz1, Atot1, Btot1;
6626:   PetscCount *rowBegin2, *rowMid2, *rowEnd2;
6627:   PetscCount *Ajmap2, *Aperm2, *Bjmap2, *Bperm2;
6628:   PetscCount  Annz2, Bnnz2, Atot2, Btot2;

6630:   PetscCall(PetscCalloc3(m, &rowBegin1, m, &rowMid1, m, &rowEnd1));
6631:   PetscCall(PetscCalloc3(m, &rowBegin2, m, &rowMid2, m, &rowEnd2));
6632:   PetscCall(MatSplitEntries_Internal(mat, rem, i1, j1, perm1, rowBegin1, rowMid1, rowEnd1, &Atot1, &Aperm1, &Annz1, &Ajmap1, &Btot1, &Bperm1, &Bnnz1, &Bjmap1));
6633:   PetscCall(MatSplitEntries_Internal(mat, n2, i2, j2, perm2, rowBegin2, rowMid2, rowEnd2, &Atot2, &Aperm2, &Annz2, &Ajmap2, &Btot2, &Bperm2, &Bnnz2, &Bjmap2));

6635:   /* Merge local COOs with received COOs: diag with diag, offdiag with offdiag */
6636:   PetscInt *Ai, *Bi;
6637:   PetscInt *Aj, *Bj;

6639:   PetscCall(PetscMalloc1(m + 1, &Ai));
6640:   PetscCall(PetscMalloc1(m + 1, &Bi));
6641:   PetscCall(PetscMalloc1(Annz1 + Annz2, &Aj)); /* Since local and remote entries might have dups, we might allocate excess memory */
6642:   PetscCall(PetscMalloc1(Bnnz1 + Bnnz2, &Bj));

6644:   PetscCount *Aimap1, *Bimap1, *Aimap2, *Bimap2;
6645:   PetscCall(PetscMalloc1(Annz1, &Aimap1));
6646:   PetscCall(PetscMalloc1(Bnnz1, &Bimap1));
6647:   PetscCall(PetscMalloc1(Annz2, &Aimap2));
6648:   PetscCall(PetscMalloc1(Bnnz2, &Bimap2));

6650:   PetscCall(MatMergeEntries_Internal(mat, j1, j2, rowBegin1, rowMid1, rowBegin2, rowMid2, Ajmap1, Ajmap2, Aimap1, Aimap2, Ai, Aj));
6651:   PetscCall(MatMergeEntries_Internal(mat, j1, j2, rowMid1, rowEnd1, rowMid2, rowEnd2, Bjmap1, Bjmap2, Bimap1, Bimap2, Bi, Bj));

6653:   /* Expand Ajmap1/Bjmap1 to make them based off nonzeros in A/B, since we     */
6654:   /* expect nonzeros in A/B most likely have local contributing entries        */
6655:   PetscInt    Annz = Ai[m];
6656:   PetscInt    Bnnz = Bi[m];
6657:   PetscCount *Ajmap1_new, *Bjmap1_new;

6659:   PetscCall(PetscMalloc1(Annz + 1, &Ajmap1_new));
6660:   PetscCall(PetscMalloc1(Bnnz + 1, &Bjmap1_new));

6662:   PetscCall(ExpandJmap_Internal(Annz1, Annz, Aimap1, Ajmap1, Ajmap1_new));
6663:   PetscCall(ExpandJmap_Internal(Bnnz1, Bnnz, Bimap1, Bjmap1, Bjmap1_new));

6665:   PetscCall(PetscFree(Aimap1));
6666:   PetscCall(PetscFree(Ajmap1));
6667:   PetscCall(PetscFree(Bimap1));
6668:   PetscCall(PetscFree(Bjmap1));
6669:   PetscCall(PetscFree3(rowBegin1, rowMid1, rowEnd1));
6670:   PetscCall(PetscFree3(rowBegin2, rowMid2, rowEnd2));
6671:   PetscCall(PetscFree(perm1));
6672:   PetscCall(PetscFree3(i2, j2, perm2));

6674:   Ajmap1 = Ajmap1_new;
6675:   Bjmap1 = Bjmap1_new;

6677:   /* Reallocate Aj, Bj once we know actual numbers of unique nonzeros in A and B */
6678:   if (Annz < Annz1 + Annz2) {
6679:     PetscInt *Aj_new;
6680:     PetscCall(PetscMalloc1(Annz, &Aj_new));
6681:     PetscCall(PetscArraycpy(Aj_new, Aj, Annz));
6682:     PetscCall(PetscFree(Aj));
6683:     Aj = Aj_new;
6684:   }

6686:   if (Bnnz < Bnnz1 + Bnnz2) {
6687:     PetscInt *Bj_new;
6688:     PetscCall(PetscMalloc1(Bnnz, &Bj_new));
6689:     PetscCall(PetscArraycpy(Bj_new, Bj, Bnnz));
6690:     PetscCall(PetscFree(Bj));
6691:     Bj = Bj_new;
6692:   }

6694:   /* Create new submatrices for on-process and off-process coupling                  */
6695:   PetscScalar     *Aa, *Ba;
6696:   MatType          rtype;
6697:   Mat_SeqAIJ      *a, *b;
6698:   PetscObjectState state;
6699:   PetscCall(PetscCalloc1(Annz, &Aa)); /* Zero matrix on device */
6700:   PetscCall(PetscCalloc1(Bnnz, &Ba));
6701:   /* make Aj[] local, i.e, based off the start column of the diagonal portion */
6702:   if (cstart) {
6703:     for (k = 0; k < Annz; k++) Aj[k] -= cstart;
6704:   }

6706:   PetscCall(MatGetRootType_Private(mat, &rtype));

6708:   MatSeqXAIJGetOptions_Private(mpiaij->A);
6709:   PetscCall(MatDestroy(&mpiaij->A));
6710:   PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, m, n, Ai, Aj, Aa, &mpiaij->A));
6711:   PetscCall(MatSetBlockSizesFromMats(mpiaij->A, mat, mat));
6712:   MatSeqXAIJRestoreOptions_Private(mpiaij->A);

6714:   MatSeqXAIJGetOptions_Private(mpiaij->B);
6715:   PetscCall(MatDestroy(&mpiaij->B));
6716:   PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, m, mat->cmap->N, Bi, Bj, Ba, &mpiaij->B));
6717:   PetscCall(MatSetBlockSizesFromMats(mpiaij->B, mat, mat));
6718:   MatSeqXAIJRestoreOptions_Private(mpiaij->B);

6720:   PetscCall(MatSetUpMultiply_MPIAIJ(mat));
6721:   mat->was_assembled = PETSC_TRUE; // was_assembled in effect means the Mvctx is built; doing so avoids redundant MatSetUpMultiply_MPIAIJ
6722:   state              = mpiaij->A->nonzerostate + mpiaij->B->nonzerostate;
6723:   PetscCallMPI(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));

6725:   a          = (Mat_SeqAIJ *)mpiaij->A->data;
6726:   b          = (Mat_SeqAIJ *)mpiaij->B->data;
6727:   a->free_a  = PETSC_TRUE;
6728:   a->free_ij = PETSC_TRUE;
6729:   b->free_a  = PETSC_TRUE;
6730:   b->free_ij = PETSC_TRUE;
6731:   a->maxnz   = a->nz;
6732:   b->maxnz   = b->nz;

6734:   /* conversion must happen AFTER multiply setup */
6735:   PetscCall(MatConvert(mpiaij->A, rtype, MAT_INPLACE_MATRIX, &mpiaij->A));
6736:   PetscCall(MatConvert(mpiaij->B, rtype, MAT_INPLACE_MATRIX, &mpiaij->B));
6737:   PetscCall(VecDestroy(&mpiaij->lvec));
6738:   PetscCall(MatCreateVecs(mpiaij->B, &mpiaij->lvec, NULL));

6740:   // Put the COO struct in a container and then attach that to the matrix
6741:   PetscCall(PetscMalloc1(1, &coo));
6742:   coo->n       = coo_n;
6743:   coo->sf      = sf2;
6744:   coo->sendlen = nleaves;
6745:   coo->recvlen = nroots;
6746:   coo->Annz    = Annz;
6747:   coo->Bnnz    = Bnnz;
6748:   coo->Annz2   = Annz2;
6749:   coo->Bnnz2   = Bnnz2;
6750:   coo->Atot1   = Atot1;
6751:   coo->Atot2   = Atot2;
6752:   coo->Btot1   = Btot1;
6753:   coo->Btot2   = Btot2;
6754:   coo->Ajmap1  = Ajmap1;
6755:   coo->Aperm1  = Aperm1;
6756:   coo->Bjmap1  = Bjmap1;
6757:   coo->Bperm1  = Bperm1;
6758:   coo->Aimap2  = Aimap2;
6759:   coo->Ajmap2  = Ajmap2;
6760:   coo->Aperm2  = Aperm2;
6761:   coo->Bimap2  = Bimap2;
6762:   coo->Bjmap2  = Bjmap2;
6763:   coo->Bperm2  = Bperm2;
6764:   coo->Cperm1  = Cperm1;
6765:   // Allocate in preallocation. If not used, it has zero cost on host
6766:   PetscCall(PetscMalloc2(coo->sendlen, &coo->sendbuf, coo->recvlen, &coo->recvbuf));
6767:   PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
6768:   PetscCall(PetscContainerSetPointer(container, coo));
6769:   PetscCall(PetscContainerSetUserDestroy(container, MatCOOStructDestroy_MPIAIJ));
6770:   PetscCall(PetscObjectCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Host", (PetscObject)container));
6771:   PetscCall(PetscContainerDestroy(&container));
6772:   PetscFunctionReturn(PETSC_SUCCESS);
6773: }

6775: static PetscErrorCode MatSetValuesCOO_MPIAIJ(Mat mat, const PetscScalar v[], InsertMode imode)
6776: {
6777:   Mat_MPIAIJ          *mpiaij = (Mat_MPIAIJ *)mat->data;
6778:   Mat                  A = mpiaij->A, B = mpiaij->B;
6779:   PetscScalar         *Aa, *Ba;
6780:   PetscScalar         *sendbuf, *recvbuf;
6781:   const PetscCount    *Ajmap1, *Ajmap2, *Aimap2;
6782:   const PetscCount    *Bjmap1, *Bjmap2, *Bimap2;
6783:   const PetscCount    *Aperm1, *Aperm2, *Bperm1, *Bperm2;
6784:   const PetscCount    *Cperm1;
6785:   PetscContainer       container;
6786:   MatCOOStruct_MPIAIJ *coo;

6788:   PetscFunctionBegin;
6789:   PetscCall(PetscObjectQuery((PetscObject)mat, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container));
6790:   PetscCheck(container, PetscObjectComm((PetscObject)mat), PETSC_ERR_PLIB, "Not found MatCOOStruct on this matrix");
6791:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));
6792:   sendbuf = coo->sendbuf;
6793:   recvbuf = coo->recvbuf;
6794:   Ajmap1  = coo->Ajmap1;
6795:   Ajmap2  = coo->Ajmap2;
6796:   Aimap2  = coo->Aimap2;
6797:   Bjmap1  = coo->Bjmap1;
6798:   Bjmap2  = coo->Bjmap2;
6799:   Bimap2  = coo->Bimap2;
6800:   Aperm1  = coo->Aperm1;
6801:   Aperm2  = coo->Aperm2;
6802:   Bperm1  = coo->Bperm1;
6803:   Bperm2  = coo->Bperm2;
6804:   Cperm1  = coo->Cperm1;

6806:   PetscCall(MatSeqAIJGetArray(A, &Aa)); /* Might read and write matrix values */
6807:   PetscCall(MatSeqAIJGetArray(B, &Ba));

6809:   /* Pack entries to be sent to remote */
6810:   for (PetscCount i = 0; i < coo->sendlen; i++) sendbuf[i] = v[Cperm1[i]];

6812:   /* Send remote entries to their owner and overlap the communication with local computation */
6813:   PetscCall(PetscSFReduceWithMemTypeBegin(coo->sf, MPIU_SCALAR, PETSC_MEMTYPE_HOST, sendbuf, PETSC_MEMTYPE_HOST, recvbuf, MPI_REPLACE));
6814:   /* Add local entries to A and B */
6815:   for (PetscCount i = 0; i < coo->Annz; i++) { /* All nonzeros in A are either zero'ed or added with a value (i.e., initialized) */
6816:     PetscScalar sum = 0.0;                     /* Do partial summation first to improve numerical stability */
6817:     for (PetscCount k = Ajmap1[i]; k < Ajmap1[i + 1]; k++) sum += v[Aperm1[k]];
6818:     Aa[i] = (imode == INSERT_VALUES ? 0.0 : Aa[i]) + sum;
6819:   }
6820:   for (PetscCount i = 0; i < coo->Bnnz; i++) {
6821:     PetscScalar sum = 0.0;
6822:     for (PetscCount k = Bjmap1[i]; k < Bjmap1[i + 1]; k++) sum += v[Bperm1[k]];
6823:     Ba[i] = (imode == INSERT_VALUES ? 0.0 : Ba[i]) + sum;
6824:   }
6825:   PetscCall(PetscSFReduceEnd(coo->sf, MPIU_SCALAR, sendbuf, recvbuf, MPI_REPLACE));

6827:   /* Add received remote entries to A and B */
6828:   for (PetscCount i = 0; i < coo->Annz2; i++) {
6829:     for (PetscCount k = Ajmap2[i]; k < Ajmap2[i + 1]; k++) Aa[Aimap2[i]] += recvbuf[Aperm2[k]];
6830:   }
6831:   for (PetscCount i = 0; i < coo->Bnnz2; i++) {
6832:     for (PetscCount k = Bjmap2[i]; k < Bjmap2[i + 1]; k++) Ba[Bimap2[i]] += recvbuf[Bperm2[k]];
6833:   }
6834:   PetscCall(MatSeqAIJRestoreArray(A, &Aa));
6835:   PetscCall(MatSeqAIJRestoreArray(B, &Ba));
6836:   PetscFunctionReturn(PETSC_SUCCESS);
6837: }

6839: /*MC
6840:    MATMPIAIJ - MATMPIAIJ = "mpiaij" - A matrix type to be used for parallel sparse matrices.

6842:    Options Database Keys:
6843: . -mat_type mpiaij - sets the matrix type to `MATMPIAIJ` during a call to `MatSetFromOptions()`

6845:    Level: beginner

6847:    Notes:
6848:    `MatSetValues()` may be called for this matrix type with a `NULL` argument for the numerical values,
6849:     in this case the values associated with the rows and columns one passes in are set to zero
6850:     in the matrix

6852:     `MatSetOptions`(,`MAT_STRUCTURE_ONLY`,`PETSC_TRUE`) may be called for this matrix type. In this no
6853:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

6855: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`, `MATAIJ`, `MatCreateAIJ()`
6856: M*/
6857: PETSC_EXTERN PetscErrorCode MatCreate_MPIAIJ(Mat B)
6858: {
6859:   Mat_MPIAIJ *b;
6860:   PetscMPIInt size;

6862:   PetscFunctionBegin;
6863:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));

6865:   PetscCall(PetscNew(&b));
6866:   B->data       = (void *)b;
6867:   B->ops[0]     = MatOps_Values;
6868:   B->assembled  = PETSC_FALSE;
6869:   B->insertmode = NOT_SET_VALUES;
6870:   b->size       = size;

6872:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)B), &b->rank));

6874:   /* build cache for off array entries formed */
6875:   PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), 1, &B->stash));

6877:   b->donotstash  = PETSC_FALSE;
6878:   b->colmap      = NULL;
6879:   b->garray      = NULL;
6880:   b->roworiented = PETSC_TRUE;

6882:   /* stuff used for matrix vector multiply */
6883:   b->lvec  = NULL;
6884:   b->Mvctx = NULL;

6886:   /* stuff for MatGetRow() */
6887:   b->rowindices   = NULL;
6888:   b->rowvalues    = NULL;
6889:   b->getrowactive = PETSC_FALSE;

6891:   /* flexible pointer used in CUSPARSE classes */
6892:   b->spptr = NULL;

6894:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIAIJSetUseScalableIncreaseOverlap_C", MatMPIAIJSetUseScalableIncreaseOverlap_MPIAIJ));
6895:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_MPIAIJ));
6896:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_MPIAIJ));
6897:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsTranspose_C", MatIsTranspose_MPIAIJ));
6898:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIAIJSetPreallocation_C", MatMPIAIJSetPreallocation_MPIAIJ));
6899:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetPreallocation_C", MatResetPreallocation_MPIAIJ));
6900:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIAIJSetPreallocationCSR_C", MatMPIAIJSetPreallocationCSR_MPIAIJ));
6901:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDiagonalScaleLocal_C", MatDiagonalScaleLocal_MPIAIJ));
6902:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijperm_C", MatConvert_MPIAIJ_MPIAIJPERM));
6903:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijsell_C", MatConvert_MPIAIJ_MPIAIJSELL));
6904: #if defined(PETSC_HAVE_CUDA)
6905:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijcusparse_C", MatConvert_MPIAIJ_MPIAIJCUSPARSE));
6906: #endif
6907: #if defined(PETSC_HAVE_HIP)
6908:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijhipsparse_C", MatConvert_MPIAIJ_MPIAIJHIPSPARSE));
6909: #endif
6910: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
6911:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijkokkos_C", MatConvert_MPIAIJ_MPIAIJKokkos));
6912: #endif
6913: #if defined(PETSC_HAVE_MKL_SPARSE)
6914:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijmkl_C", MatConvert_MPIAIJ_MPIAIJMKL));
6915: #endif
6916:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpiaijcrl_C", MatConvert_MPIAIJ_MPIAIJCRL));
6917:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpibaij_C", MatConvert_MPIAIJ_MPIBAIJ));
6918:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpisbaij_C", MatConvert_MPIAIJ_MPISBAIJ));
6919:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpidense_C", MatConvert_MPIAIJ_MPIDense));
6920: #if defined(PETSC_HAVE_ELEMENTAL)
6921:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_elemental_C", MatConvert_MPIAIJ_Elemental));
6922: #endif
6923: #if defined(PETSC_HAVE_SCALAPACK)
6924:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_scalapack_C", MatConvert_AIJ_ScaLAPACK));
6925: #endif
6926:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_is_C", MatConvert_XAIJ_IS));
6927:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_mpisell_C", MatConvert_MPIAIJ_MPISELL));
6928: #if defined(PETSC_HAVE_HYPRE)
6929:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpiaij_hypre_C", MatConvert_AIJ_HYPRE));
6930:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_transpose_mpiaij_mpiaij_C", MatProductSetFromOptions_Transpose_AIJ_AIJ));
6931: #endif
6932:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_is_mpiaij_C", MatProductSetFromOptions_IS_XAIJ));
6933:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_mpiaij_mpiaij_C", MatProductSetFromOptions_MPIAIJ));
6934:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_MPIAIJ));
6935:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetValuesCOO_C", MatSetValuesCOO_MPIAIJ));
6936:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPIAIJ));
6937:   PetscFunctionReturn(PETSC_SUCCESS);
6938: }

6940: /*@
6941:   MatCreateMPIAIJWithSplitArrays - creates a `MATMPIAIJ` matrix using arrays that contain the "diagonal"
6942:   and "off-diagonal" part of the matrix in CSR format.

6944:   Collective

6946:   Input Parameters:
6947: + comm - MPI communicator
6948: . m    - number of local rows (Cannot be `PETSC_DECIDE`)
6949: . n    - This value should be the same as the local size used in creating the
6950:          x vector for the matrix-vector product $y = Ax$. (or `PETSC_DECIDE` to have
6951:          calculated if `N` is given) For square matrices `n` is almost always `m`.
6952: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
6953: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
6954: . i    - row indices for "diagonal" portion of matrix; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
6955: . j    - column indices, which must be local, i.e., based off the start column of the diagonal portion
6956: . a    - matrix values
6957: . oi   - row indices for "off-diagonal" portion of matrix; that is oi[0] = 0, oi[row] = oi[row-1] + number of elements in that row of the matrix
6958: . oj   - column indices, which must be global, representing global columns in the `MATMPIAIJ` matrix
6959: - oa   - matrix values

6961:   Output Parameter:
6962: . mat - the matrix

6964:   Level: advanced

6966:   Notes:
6967:   The `i`, `j`, and `a` arrays ARE NOT copied by this routine into the internal format used by PETSc (even in Fortran). The user
6968:   must free the arrays once the matrix has been destroyed and not before.

6970:   The `i` and `j` indices are 0 based

6972:   See `MatCreateAIJ()` for the definition of "diagonal" and "off-diagonal" portion of the matrix

6974:   This sets local rows and cannot be used to set off-processor values.

6976:   Use of this routine is discouraged because it is inflexible and cumbersome to use. It is extremely rare that a
6977:   legacy application natively assembles into exactly this split format. The code to do so is nontrivial and does
6978:   not easily support in-place reassembly. It is recommended to use MatSetValues() (or a variant thereof) because
6979:   the resulting assembly is easier to implement, will work with any matrix format, and the user does not have to
6980:   keep track of the underlying array. Use `MatSetOption`(A,`MAT_NO_OFF_PROC_ENTRIES`,`PETSC_TRUE`) to disable all
6981:   communication if it is known that only local entries will be set.

6983: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
6984:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithArrays()`
6985: @*/
6986: PetscErrorCode MatCreateMPIAIJWithSplitArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt i[], PetscInt j[], PetscScalar a[], PetscInt oi[], PetscInt oj[], PetscScalar oa[], Mat *mat)
6987: {
6988:   Mat_MPIAIJ *maij;

6990:   PetscFunctionBegin;
6991:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
6992:   PetscCheck(i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
6993:   PetscCheck(oi[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "oi (row indices) must start with 0");
6994:   PetscCall(MatCreate(comm, mat));
6995:   PetscCall(MatSetSizes(*mat, m, n, M, N));
6996:   PetscCall(MatSetType(*mat, MATMPIAIJ));
6997:   maij = (Mat_MPIAIJ *)(*mat)->data;

6999:   (*mat)->preallocated = PETSC_TRUE;

7001:   PetscCall(PetscLayoutSetUp((*mat)->rmap));
7002:   PetscCall(PetscLayoutSetUp((*mat)->cmap));

7004:   PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, m, n, i, j, a, &maij->A));
7005:   PetscCall(MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, m, (*mat)->cmap->N, oi, oj, oa, &maij->B));

7007:   PetscCall(MatSetOption(*mat, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
7008:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
7009:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
7010:   PetscCall(MatSetOption(*mat, MAT_NO_OFF_PROC_ENTRIES, PETSC_FALSE));
7011:   PetscCall(MatSetOption(*mat, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
7012:   PetscFunctionReturn(PETSC_SUCCESS);
7013: }

7015: typedef struct {
7016:   Mat       *mp;    /* intermediate products */
7017:   PetscBool *mptmp; /* is the intermediate product temporary ? */
7018:   PetscInt   cp;    /* number of intermediate products */

7020:   /* support for MatGetBrowsOfAoCols_MPIAIJ for P_oth */
7021:   PetscInt    *startsj_s, *startsj_r;
7022:   PetscScalar *bufa;
7023:   Mat          P_oth;

7025:   /* may take advantage of merging product->B */
7026:   Mat Bloc; /* B-local by merging diag and off-diag */

7028:   /* cusparse does not have support to split between symbolic and numeric phases.
7029:      When api_user is true, we don't need to update the numerical values
7030:      of the temporary storage */
7031:   PetscBool reusesym;

7033:   /* support for COO values insertion */
7034:   PetscScalar *coo_v, *coo_w; /* store on-process and off-process COO scalars, and used as MPI recv/send buffers respectively */
7035:   PetscInt   **own;           /* own[i] points to address of on-process COO indices for Mat mp[i] */
7036:   PetscInt   **off;           /* off[i] points to address of off-process COO indices for Mat mp[i] */
7037:   PetscBool    hasoffproc;    /* if true, have off-process values insertion (i.e. AtB or PtAP) */
7038:   PetscSF      sf;            /* used for non-local values insertion and memory malloc */
7039:   PetscMemType mtype;

7041:   /* customization */
7042:   PetscBool abmerge;
7043:   PetscBool P_oth_bind;
7044: } MatMatMPIAIJBACKEND;

7046: static PetscErrorCode MatDestroy_MatMatMPIAIJBACKEND(void *data)
7047: {
7048:   MatMatMPIAIJBACKEND *mmdata = (MatMatMPIAIJBACKEND *)data;
7049:   PetscInt             i;

7051:   PetscFunctionBegin;
7052:   PetscCall(PetscFree2(mmdata->startsj_s, mmdata->startsj_r));
7053:   PetscCall(PetscFree(mmdata->bufa));
7054:   PetscCall(PetscSFFree(mmdata->sf, mmdata->mtype, mmdata->coo_v));
7055:   PetscCall(PetscSFFree(mmdata->sf, mmdata->mtype, mmdata->coo_w));
7056:   PetscCall(MatDestroy(&mmdata->P_oth));
7057:   PetscCall(MatDestroy(&mmdata->Bloc));
7058:   PetscCall(PetscSFDestroy(&mmdata->sf));
7059:   for (i = 0; i < mmdata->cp; i++) PetscCall(MatDestroy(&mmdata->mp[i]));
7060:   PetscCall(PetscFree2(mmdata->mp, mmdata->mptmp));
7061:   PetscCall(PetscFree(mmdata->own[0]));
7062:   PetscCall(PetscFree(mmdata->own));
7063:   PetscCall(PetscFree(mmdata->off[0]));
7064:   PetscCall(PetscFree(mmdata->off));
7065:   PetscCall(PetscFree(mmdata));
7066:   PetscFunctionReturn(PETSC_SUCCESS);
7067: }

7069: /* Copy selected n entries with indices in idx[] of A to v[].
7070:    If idx is NULL, copy the whole data array of A to v[]
7071:  */
7072: static PetscErrorCode MatSeqAIJCopySubArray(Mat A, PetscInt n, const PetscInt idx[], PetscScalar v[])
7073: {
7074:   PetscErrorCode (*f)(Mat, PetscInt, const PetscInt[], PetscScalar[]);

7076:   PetscFunctionBegin;
7077:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSeqAIJCopySubArray_C", &f));
7078:   if (f) {
7079:     PetscCall((*f)(A, n, idx, v));
7080:   } else {
7081:     const PetscScalar *vv;

7083:     PetscCall(MatSeqAIJGetArrayRead(A, &vv));
7084:     if (n && idx) {
7085:       PetscScalar    *w  = v;
7086:       const PetscInt *oi = idx;
7087:       PetscInt        j;

7089:       for (j = 0; j < n; j++) *w++ = vv[*oi++];
7090:     } else {
7091:       PetscCall(PetscArraycpy(v, vv, n));
7092:     }
7093:     PetscCall(MatSeqAIJRestoreArrayRead(A, &vv));
7094:   }
7095:   PetscFunctionReturn(PETSC_SUCCESS);
7096: }

7098: static PetscErrorCode MatProductNumeric_MPIAIJBACKEND(Mat C)
7099: {
7100:   MatMatMPIAIJBACKEND *mmdata;
7101:   PetscInt             i, n_d, n_o;

7103:   PetscFunctionBegin;
7104:   MatCheckProduct(C, 1);
7105:   PetscCheck(C->product->data, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data empty");
7106:   mmdata = (MatMatMPIAIJBACKEND *)C->product->data;
7107:   if (!mmdata->reusesym) { /* update temporary matrices */
7108:     if (mmdata->P_oth) PetscCall(MatGetBrowsOfAoCols_MPIAIJ(C->product->A, C->product->B, MAT_REUSE_MATRIX, &mmdata->startsj_s, &mmdata->startsj_r, &mmdata->bufa, &mmdata->P_oth));
7109:     if (mmdata->Bloc) PetscCall(MatMPIAIJGetLocalMatMerge(C->product->B, MAT_REUSE_MATRIX, NULL, &mmdata->Bloc));
7110:   }
7111:   mmdata->reusesym = PETSC_FALSE;

7113:   for (i = 0; i < mmdata->cp; i++) {
7114:     PetscCheck(mmdata->mp[i]->ops->productnumeric, PetscObjectComm((PetscObject)mmdata->mp[i]), PETSC_ERR_PLIB, "Missing numeric op for %s", MatProductTypes[mmdata->mp[i]->product->type]);
7115:     PetscCall((*mmdata->mp[i]->ops->productnumeric)(mmdata->mp[i]));
7116:   }
7117:   for (i = 0, n_d = 0, n_o = 0; i < mmdata->cp; i++) {
7118:     PetscInt noff;

7120:     PetscCall(PetscIntCast(mmdata->off[i + 1] - mmdata->off[i], &noff));
7121:     if (mmdata->mptmp[i]) continue;
7122:     if (noff) {
7123:       PetscInt nown;

7125:       PetscCall(PetscIntCast(mmdata->own[i + 1] - mmdata->own[i], &nown));
7126:       PetscCall(MatSeqAIJCopySubArray(mmdata->mp[i], noff, mmdata->off[i], mmdata->coo_w + n_o));
7127:       PetscCall(MatSeqAIJCopySubArray(mmdata->mp[i], nown, mmdata->own[i], mmdata->coo_v + n_d));
7128:       n_o += noff;
7129:       n_d += nown;
7130:     } else {
7131:       Mat_SeqAIJ *mm = (Mat_SeqAIJ *)mmdata->mp[i]->data;

7133:       PetscCall(MatSeqAIJCopySubArray(mmdata->mp[i], mm->nz, NULL, mmdata->coo_v + n_d));
7134:       n_d += mm->nz;
7135:     }
7136:   }
7137:   if (mmdata->hasoffproc) { /* offprocess insertion */
7138:     PetscCall(PetscSFGatherBegin(mmdata->sf, MPIU_SCALAR, mmdata->coo_w, mmdata->coo_v + n_d));
7139:     PetscCall(PetscSFGatherEnd(mmdata->sf, MPIU_SCALAR, mmdata->coo_w, mmdata->coo_v + n_d));
7140:   }
7141:   PetscCall(MatSetValuesCOO(C, mmdata->coo_v, INSERT_VALUES));
7142:   PetscFunctionReturn(PETSC_SUCCESS);
7143: }

7145: /* Support for Pt * A, A * P, or Pt * A * P */
7146: #define MAX_NUMBER_INTERMEDIATE 4
7147: PetscErrorCode MatProductSymbolic_MPIAIJBACKEND(Mat C)
7148: {
7149:   Mat_Product           *product = C->product;
7150:   Mat                    A, P, mp[MAX_NUMBER_INTERMEDIATE]; /* A, P and a series of intermediate matrices */
7151:   Mat_MPIAIJ            *a, *p;
7152:   MatMatMPIAIJBACKEND   *mmdata;
7153:   ISLocalToGlobalMapping P_oth_l2g = NULL;
7154:   IS                     glob      = NULL;
7155:   const char            *prefix;
7156:   char                   pprefix[256];
7157:   const PetscInt        *globidx, *P_oth_idx;
7158:   PetscInt               i, j, cp, m, n, M, N, *coo_i, *coo_j;
7159:   PetscCount             ncoo, ncoo_d, ncoo_o, ncoo_oown;
7160:   PetscInt               cmapt[MAX_NUMBER_INTERMEDIATE], rmapt[MAX_NUMBER_INTERMEDIATE]; /* col/row map type for each Mat in mp[]. */
7161:                                                                                          /* type-0: consecutive, start from 0; type-1: consecutive with */
7162:                                                                                          /* a base offset; type-2: sparse with a local to global map table */
7163:   const PetscInt *cmapa[MAX_NUMBER_INTERMEDIATE], *rmapa[MAX_NUMBER_INTERMEDIATE];       /* col/row local to global map array (table) for type-2 map type */

7165:   MatProductType ptype;
7166:   PetscBool      mptmp[MAX_NUMBER_INTERMEDIATE], hasoffproc = PETSC_FALSE, iscuda, iship, iskokk;
7167:   PetscMPIInt    size;

7169:   PetscFunctionBegin;
7170:   MatCheckProduct(C, 1);
7171:   PetscCheck(!product->data, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data not empty");
7172:   ptype = product->type;
7173:   if (product->A->symmetric == PETSC_BOOL3_TRUE && ptype == MATPRODUCT_AtB) {
7174:     ptype                                          = MATPRODUCT_AB;
7175:     product->symbolic_used_the_fact_A_is_symmetric = PETSC_TRUE;
7176:   }
7177:   switch (ptype) {
7178:   case MATPRODUCT_AB:
7179:     A          = product->A;
7180:     P          = product->B;
7181:     m          = A->rmap->n;
7182:     n          = P->cmap->n;
7183:     M          = A->rmap->N;
7184:     N          = P->cmap->N;
7185:     hasoffproc = PETSC_FALSE; /* will not scatter mat product values to other processes */
7186:     break;
7187:   case MATPRODUCT_AtB:
7188:     P          = product->A;
7189:     A          = product->B;
7190:     m          = P->cmap->n;
7191:     n          = A->cmap->n;
7192:     M          = P->cmap->N;
7193:     N          = A->cmap->N;
7194:     hasoffproc = PETSC_TRUE;
7195:     break;
7196:   case MATPRODUCT_PtAP:
7197:     A          = product->A;
7198:     P          = product->B;
7199:     m          = P->cmap->n;
7200:     n          = P->cmap->n;
7201:     M          = P->cmap->N;
7202:     N          = P->cmap->N;
7203:     hasoffproc = PETSC_TRUE;
7204:     break;
7205:   default:
7206:     SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Not for product type %s", MatProductTypes[ptype]);
7207:   }
7208:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)C), &size));
7209:   if (size == 1) hasoffproc = PETSC_FALSE;

7211:   /* defaults */
7212:   for (i = 0; i < MAX_NUMBER_INTERMEDIATE; i++) {
7213:     mp[i]    = NULL;
7214:     mptmp[i] = PETSC_FALSE;
7215:     rmapt[i] = -1;
7216:     cmapt[i] = -1;
7217:     rmapa[i] = NULL;
7218:     cmapa[i] = NULL;
7219:   }

7221:   /* customization */
7222:   PetscCall(PetscNew(&mmdata));
7223:   mmdata->reusesym = product->api_user;
7224:   if (ptype == MATPRODUCT_AB) {
7225:     if (product->api_user) {
7226:       PetscOptionsBegin(PetscObjectComm((PetscObject)C), ((PetscObject)C)->prefix, "MatMatMult", "Mat");
7227:       PetscCall(PetscOptionsBool("-matmatmult_backend_mergeB", "Merge product->B local matrices", "MatMatMult", mmdata->abmerge, &mmdata->abmerge, NULL));
7228:       PetscCall(PetscOptionsBool("-matmatmult_backend_pothbind", "Bind P_oth to CPU", "MatBindToCPU", mmdata->P_oth_bind, &mmdata->P_oth_bind, NULL));
7229:       PetscOptionsEnd();
7230:     } else {
7231:       PetscOptionsBegin(PetscObjectComm((PetscObject)C), ((PetscObject)C)->prefix, "MatProduct_AB", "Mat");
7232:       PetscCall(PetscOptionsBool("-mat_product_algorithm_backend_mergeB", "Merge product->B local matrices", "MatMatMult", mmdata->abmerge, &mmdata->abmerge, NULL));
7233:       PetscCall(PetscOptionsBool("-mat_product_algorithm_backend_pothbind", "Bind P_oth to CPU", "MatBindToCPU", mmdata->P_oth_bind, &mmdata->P_oth_bind, NULL));
7234:       PetscOptionsEnd();
7235:     }
7236:   } else if (ptype == MATPRODUCT_PtAP) {
7237:     if (product->api_user) {
7238:       PetscOptionsBegin(PetscObjectComm((PetscObject)C), ((PetscObject)C)->prefix, "MatPtAP", "Mat");
7239:       PetscCall(PetscOptionsBool("-matptap_backend_pothbind", "Bind P_oth to CPU", "MatBindToCPU", mmdata->P_oth_bind, &mmdata->P_oth_bind, NULL));
7240:       PetscOptionsEnd();
7241:     } else {
7242:       PetscOptionsBegin(PetscObjectComm((PetscObject)C), ((PetscObject)C)->prefix, "MatProduct_PtAP", "Mat");
7243:       PetscCall(PetscOptionsBool("-mat_product_algorithm_backend_pothbind", "Bind P_oth to CPU", "MatBindToCPU", mmdata->P_oth_bind, &mmdata->P_oth_bind, NULL));
7244:       PetscOptionsEnd();
7245:     }
7246:   }
7247:   a = (Mat_MPIAIJ *)A->data;
7248:   p = (Mat_MPIAIJ *)P->data;
7249:   PetscCall(MatSetSizes(C, m, n, M, N));
7250:   PetscCall(PetscLayoutSetUp(C->rmap));
7251:   PetscCall(PetscLayoutSetUp(C->cmap));
7252:   PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
7253:   PetscCall(MatGetOptionsPrefix(C, &prefix));

7255:   cp = 0;
7256:   switch (ptype) {
7257:   case MATPRODUCT_AB: /* A * P */
7258:     PetscCall(MatGetBrowsOfAoCols_MPIAIJ(A, P, MAT_INITIAL_MATRIX, &mmdata->startsj_s, &mmdata->startsj_r, &mmdata->bufa, &mmdata->P_oth));

7260:     /* A_diag * P_local (merged or not) */
7261:     if (mmdata->abmerge) { /* P's diagonal and off-diag blocks are merged to one matrix, then multiplied by A_diag */
7262:       /* P is product->B */
7263:       PetscCall(MatMPIAIJGetLocalMatMerge(P, MAT_INITIAL_MATRIX, &glob, &mmdata->Bloc));
7264:       PetscCall(MatProductCreate(a->A, mmdata->Bloc, NULL, &mp[cp]));
7265:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AB));
7266:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7267:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7268:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7269:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7270:       mp[cp]->product->api_user = product->api_user;
7271:       PetscCall(MatProductSetFromOptions(mp[cp]));
7272:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7273:       PetscCall(ISGetIndices(glob, &globidx));
7274:       rmapt[cp] = 1;
7275:       cmapt[cp] = 2;
7276:       cmapa[cp] = globidx;
7277:       mptmp[cp] = PETSC_FALSE;
7278:       cp++;
7279:     } else { /* A_diag * P_diag and A_diag * P_off */
7280:       PetscCall(MatProductCreate(a->A, p->A, NULL, &mp[cp]));
7281:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AB));
7282:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7283:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7284:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7285:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7286:       mp[cp]->product->api_user = product->api_user;
7287:       PetscCall(MatProductSetFromOptions(mp[cp]));
7288:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7289:       rmapt[cp] = 1;
7290:       cmapt[cp] = 1;
7291:       mptmp[cp] = PETSC_FALSE;
7292:       cp++;
7293:       PetscCall(MatProductCreate(a->A, p->B, NULL, &mp[cp]));
7294:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AB));
7295:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7296:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7297:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7298:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7299:       mp[cp]->product->api_user = product->api_user;
7300:       PetscCall(MatProductSetFromOptions(mp[cp]));
7301:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7302:       rmapt[cp] = 1;
7303:       cmapt[cp] = 2;
7304:       cmapa[cp] = p->garray;
7305:       mptmp[cp] = PETSC_FALSE;
7306:       cp++;
7307:     }

7309:     /* A_off * P_other */
7310:     if (mmdata->P_oth) {
7311:       PetscCall(MatSeqAIJCompactOutExtraColumns_SeqAIJ(mmdata->P_oth, &P_oth_l2g)); /* make P_oth use local col ids */
7312:       PetscCall(ISLocalToGlobalMappingGetIndices(P_oth_l2g, &P_oth_idx));
7313:       PetscCall(MatSetType(mmdata->P_oth, ((PetscObject)a->B)->type_name));
7314:       PetscCall(MatBindToCPU(mmdata->P_oth, mmdata->P_oth_bind));
7315:       PetscCall(MatProductCreate(a->B, mmdata->P_oth, NULL, &mp[cp]));
7316:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AB));
7317:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7318:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7319:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7320:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7321:       mp[cp]->product->api_user = product->api_user;
7322:       PetscCall(MatProductSetFromOptions(mp[cp]));
7323:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7324:       rmapt[cp] = 1;
7325:       cmapt[cp] = 2;
7326:       cmapa[cp] = P_oth_idx;
7327:       mptmp[cp] = PETSC_FALSE;
7328:       cp++;
7329:     }
7330:     break;

7332:   case MATPRODUCT_AtB: /* (P^t * A): P_diag * A_loc + P_off * A_loc */
7333:     /* A is product->B */
7334:     PetscCall(MatMPIAIJGetLocalMatMerge(A, MAT_INITIAL_MATRIX, &glob, &mmdata->Bloc));
7335:     if (A == P) { /* when A==P, we can take advantage of the already merged mmdata->Bloc */
7336:       PetscCall(MatProductCreate(mmdata->Bloc, mmdata->Bloc, NULL, &mp[cp]));
7337:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AtB));
7338:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7339:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7340:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7341:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7342:       mp[cp]->product->api_user = product->api_user;
7343:       PetscCall(MatProductSetFromOptions(mp[cp]));
7344:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7345:       PetscCall(ISGetIndices(glob, &globidx));
7346:       rmapt[cp] = 2;
7347:       rmapa[cp] = globidx;
7348:       cmapt[cp] = 2;
7349:       cmapa[cp] = globidx;
7350:       mptmp[cp] = PETSC_FALSE;
7351:       cp++;
7352:     } else {
7353:       PetscCall(MatProductCreate(p->A, mmdata->Bloc, NULL, &mp[cp]));
7354:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AtB));
7355:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7356:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7357:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7358:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7359:       mp[cp]->product->api_user = product->api_user;
7360:       PetscCall(MatProductSetFromOptions(mp[cp]));
7361:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7362:       PetscCall(ISGetIndices(glob, &globidx));
7363:       rmapt[cp] = 1;
7364:       cmapt[cp] = 2;
7365:       cmapa[cp] = globidx;
7366:       mptmp[cp] = PETSC_FALSE;
7367:       cp++;
7368:       PetscCall(MatProductCreate(p->B, mmdata->Bloc, NULL, &mp[cp]));
7369:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AtB));
7370:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7371:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7372:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7373:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7374:       mp[cp]->product->api_user = product->api_user;
7375:       PetscCall(MatProductSetFromOptions(mp[cp]));
7376:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7377:       rmapt[cp] = 2;
7378:       rmapa[cp] = p->garray;
7379:       cmapt[cp] = 2;
7380:       cmapa[cp] = globidx;
7381:       mptmp[cp] = PETSC_FALSE;
7382:       cp++;
7383:     }
7384:     break;
7385:   case MATPRODUCT_PtAP:
7386:     PetscCall(MatGetBrowsOfAoCols_MPIAIJ(A, P, MAT_INITIAL_MATRIX, &mmdata->startsj_s, &mmdata->startsj_r, &mmdata->bufa, &mmdata->P_oth));
7387:     /* P is product->B */
7388:     PetscCall(MatMPIAIJGetLocalMatMerge(P, MAT_INITIAL_MATRIX, &glob, &mmdata->Bloc));
7389:     PetscCall(MatProductCreate(a->A, mmdata->Bloc, NULL, &mp[cp]));
7390:     PetscCall(MatProductSetType(mp[cp], MATPRODUCT_PtAP));
7391:     PetscCall(MatProductSetFill(mp[cp], product->fill));
7392:     PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7393:     PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7394:     PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7395:     mp[cp]->product->api_user = product->api_user;
7396:     PetscCall(MatProductSetFromOptions(mp[cp]));
7397:     PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7398:     PetscCall(ISGetIndices(glob, &globidx));
7399:     rmapt[cp] = 2;
7400:     rmapa[cp] = globidx;
7401:     cmapt[cp] = 2;
7402:     cmapa[cp] = globidx;
7403:     mptmp[cp] = PETSC_FALSE;
7404:     cp++;
7405:     if (mmdata->P_oth) {
7406:       PetscCall(MatSeqAIJCompactOutExtraColumns_SeqAIJ(mmdata->P_oth, &P_oth_l2g));
7407:       PetscCall(ISLocalToGlobalMappingGetIndices(P_oth_l2g, &P_oth_idx));
7408:       PetscCall(MatSetType(mmdata->P_oth, ((PetscObject)a->B)->type_name));
7409:       PetscCall(MatBindToCPU(mmdata->P_oth, mmdata->P_oth_bind));
7410:       PetscCall(MatProductCreate(a->B, mmdata->P_oth, NULL, &mp[cp]));
7411:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AB));
7412:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7413:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7414:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7415:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7416:       mp[cp]->product->api_user = product->api_user;
7417:       PetscCall(MatProductSetFromOptions(mp[cp]));
7418:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7419:       mptmp[cp] = PETSC_TRUE;
7420:       cp++;
7421:       PetscCall(MatProductCreate(mmdata->Bloc, mp[1], NULL, &mp[cp]));
7422:       PetscCall(MatProductSetType(mp[cp], MATPRODUCT_AtB));
7423:       PetscCall(MatProductSetFill(mp[cp], product->fill));
7424:       PetscCall(PetscSNPrintf(pprefix, sizeof(pprefix), "backend_p%" PetscInt_FMT "_", cp));
7425:       PetscCall(MatSetOptionsPrefix(mp[cp], prefix));
7426:       PetscCall(MatAppendOptionsPrefix(mp[cp], pprefix));
7427:       mp[cp]->product->api_user = product->api_user;
7428:       PetscCall(MatProductSetFromOptions(mp[cp]));
7429:       PetscCall((*mp[cp]->ops->productsymbolic)(mp[cp]));
7430:       rmapt[cp] = 2;
7431:       rmapa[cp] = globidx;
7432:       cmapt[cp] = 2;
7433:       cmapa[cp] = P_oth_idx;
7434:       mptmp[cp] = PETSC_FALSE;
7435:       cp++;
7436:     }
7437:     break;
7438:   default:
7439:     SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Not for product type %s", MatProductTypes[ptype]);
7440:   }
7441:   /* sanity check */
7442:   if (size > 1)
7443:     for (i = 0; i < cp; i++) PetscCheck(rmapt[i] != 2 || hasoffproc, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unexpected offproc map type for product %" PetscInt_FMT, i);

7445:   PetscCall(PetscMalloc2(cp, &mmdata->mp, cp, &mmdata->mptmp));
7446:   for (i = 0; i < cp; i++) {
7447:     mmdata->mp[i]    = mp[i];
7448:     mmdata->mptmp[i] = mptmp[i];
7449:   }
7450:   mmdata->cp             = cp;
7451:   C->product->data       = mmdata;
7452:   C->product->destroy    = MatDestroy_MatMatMPIAIJBACKEND;
7453:   C->ops->productnumeric = MatProductNumeric_MPIAIJBACKEND;

7455:   /* memory type */
7456:   mmdata->mtype = PETSC_MEMTYPE_HOST;
7457:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &iscuda, MATSEQAIJCUSPARSE, MATMPIAIJCUSPARSE, ""));
7458:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &iship, MATSEQAIJHIPSPARSE, MATMPIAIJHIPSPARSE, ""));
7459:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &iskokk, MATSEQAIJKOKKOS, MATMPIAIJKOKKOS, ""));
7460:   if (iscuda) mmdata->mtype = PETSC_MEMTYPE_CUDA;
7461:   else if (iship) mmdata->mtype = PETSC_MEMTYPE_HIP;
7462:   else if (iskokk) mmdata->mtype = PETSC_MEMTYPE_KOKKOS;

7464:   /* prepare coo coordinates for values insertion */

7466:   /* count total nonzeros of those intermediate seqaij Mats
7467:     ncoo_d:    # of nonzeros of matrices that do not have offproc entries
7468:     ncoo_o:    # of nonzeros (of matrices that might have offproc entries) that will be inserted to remote procs
7469:     ncoo_oown: # of nonzeros (of matrices that might have offproc entries) that will be inserted locally
7470:   */
7471:   for (cp = 0, ncoo_d = 0, ncoo_o = 0, ncoo_oown = 0; cp < mmdata->cp; cp++) {
7472:     Mat_SeqAIJ *mm = (Mat_SeqAIJ *)mp[cp]->data;
7473:     if (mptmp[cp]) continue;
7474:     if (rmapt[cp] == 2 && hasoffproc) { /* the rows need to be scatter to all processes (might include self) */
7475:       const PetscInt *rmap = rmapa[cp];
7476:       const PetscInt  mr   = mp[cp]->rmap->n;
7477:       const PetscInt  rs   = C->rmap->rstart;
7478:       const PetscInt  re   = C->rmap->rend;
7479:       const PetscInt *ii   = mm->i;
7480:       for (i = 0; i < mr; i++) {
7481:         const PetscInt gr = rmap[i];
7482:         const PetscInt nz = ii[i + 1] - ii[i];
7483:         if (gr < rs || gr >= re) ncoo_o += nz; /* this row is offproc */
7484:         else ncoo_oown += nz;                  /* this row is local */
7485:       }
7486:     } else ncoo_d += mm->nz;
7487:   }

7489:   /*
7490:     ncoo: total number of nonzeros (including those inserted by remote procs) belonging to this proc

7492:     ncoo = ncoo_d + ncoo_oown + ncoo2, which ncoo2 is number of nonzeros inserted to me by other procs.

7494:     off[0] points to a big index array, which is shared by off[1,2,...]. Similarly, for own[0].

7496:     off[p]: points to the segment for matrix mp[p], storing location of nonzeros that mp[p] will insert to others
7497:     own[p]: points to the segment for matrix mp[p], storing location of nonzeros that mp[p] will insert locally
7498:     so, off[p+1]-off[p] is the number of nonzeros that mp[p] will send to others.

7500:     coo_i/j/v[]: [ncoo] row/col/val of nonzeros belonging to this proc.
7501:     Ex. coo_i[]: the beginning part (of size ncoo_d + ncoo_oown) stores i of local nonzeros, and the remaining part stores i of nonzeros I will receive.
7502:   */
7503:   PetscCall(PetscCalloc1(mmdata->cp + 1, &mmdata->off)); /* +1 to make a csr-like data structure */
7504:   PetscCall(PetscCalloc1(mmdata->cp + 1, &mmdata->own));

7506:   /* gather (i,j) of nonzeros inserted by remote procs */
7507:   if (hasoffproc) {
7508:     PetscSF  msf;
7509:     PetscInt ncoo2, *coo_i2, *coo_j2;

7511:     PetscCall(PetscMalloc1(ncoo_o, &mmdata->off[0]));
7512:     PetscCall(PetscMalloc1(ncoo_oown, &mmdata->own[0]));
7513:     PetscCall(PetscMalloc2(ncoo_o, &coo_i, ncoo_o, &coo_j)); /* to collect (i,j) of entries to be sent to others */

7515:     for (cp = 0, ncoo_o = 0; cp < mmdata->cp; cp++) {
7516:       Mat_SeqAIJ *mm     = (Mat_SeqAIJ *)mp[cp]->data;
7517:       PetscInt   *idxoff = mmdata->off[cp];
7518:       PetscInt   *idxown = mmdata->own[cp];
7519:       if (!mptmp[cp] && rmapt[cp] == 2) { /* row map is sparse */
7520:         const PetscInt *rmap = rmapa[cp];
7521:         const PetscInt *cmap = cmapa[cp];
7522:         const PetscInt *ii   = mm->i;
7523:         PetscInt       *coi  = coo_i + ncoo_o;
7524:         PetscInt       *coj  = coo_j + ncoo_o;
7525:         const PetscInt  mr   = mp[cp]->rmap->n;
7526:         const PetscInt  rs   = C->rmap->rstart;
7527:         const PetscInt  re   = C->rmap->rend;
7528:         const PetscInt  cs   = C->cmap->rstart;
7529:         for (i = 0; i < mr; i++) {
7530:           const PetscInt *jj = mm->j + ii[i];
7531:           const PetscInt  gr = rmap[i];
7532:           const PetscInt  nz = ii[i + 1] - ii[i];
7533:           if (gr < rs || gr >= re) { /* this is an offproc row */
7534:             for (j = ii[i]; j < ii[i + 1]; j++) {
7535:               *coi++    = gr;
7536:               *idxoff++ = j;
7537:             }
7538:             if (!cmapt[cp]) { /* already global */
7539:               for (j = 0; j < nz; j++) *coj++ = jj[j];
7540:             } else if (cmapt[cp] == 1) { /* local to global for owned columns of C */
7541:               for (j = 0; j < nz; j++) *coj++ = jj[j] + cs;
7542:             } else { /* offdiag */
7543:               for (j = 0; j < nz; j++) *coj++ = cmap[jj[j]];
7544:             }
7545:             ncoo_o += nz;
7546:           } else { /* this is a local row */
7547:             for (j = ii[i]; j < ii[i + 1]; j++) *idxown++ = j;
7548:           }
7549:         }
7550:       }
7551:       mmdata->off[cp + 1] = idxoff;
7552:       mmdata->own[cp + 1] = idxown;
7553:     }

7555:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)C), &mmdata->sf));
7556:     PetscInt incoo_o;
7557:     PetscCall(PetscIntCast(ncoo_o, &incoo_o));
7558:     PetscCall(PetscSFSetGraphLayout(mmdata->sf, C->rmap, incoo_o /*nleaves*/, NULL /*ilocal*/, PETSC_OWN_POINTER, coo_i));
7559:     PetscCall(PetscSFGetMultiSF(mmdata->sf, &msf));
7560:     PetscCall(PetscSFGetGraph(msf, &ncoo2 /*nroots*/, NULL, NULL, NULL));
7561:     ncoo = ncoo_d + ncoo_oown + ncoo2;
7562:     PetscCall(PetscMalloc2(ncoo, &coo_i2, ncoo, &coo_j2));
7563:     PetscCall(PetscSFGatherBegin(mmdata->sf, MPIU_INT, coo_i, coo_i2 + ncoo_d + ncoo_oown)); /* put (i,j) of remote nonzeros at back */
7564:     PetscCall(PetscSFGatherEnd(mmdata->sf, MPIU_INT, coo_i, coo_i2 + ncoo_d + ncoo_oown));
7565:     PetscCall(PetscSFGatherBegin(mmdata->sf, MPIU_INT, coo_j, coo_j2 + ncoo_d + ncoo_oown));
7566:     PetscCall(PetscSFGatherEnd(mmdata->sf, MPIU_INT, coo_j, coo_j2 + ncoo_d + ncoo_oown));
7567:     PetscCall(PetscFree2(coo_i, coo_j));
7568:     /* allocate MPI send buffer to collect nonzero values to be sent to remote procs */
7569:     PetscCall(PetscSFMalloc(mmdata->sf, mmdata->mtype, ncoo_o * sizeof(PetscScalar), (void **)&mmdata->coo_w));
7570:     coo_i = coo_i2;
7571:     coo_j = coo_j2;
7572:   } else { /* no offproc values insertion */
7573:     ncoo = ncoo_d;
7574:     PetscCall(PetscMalloc2(ncoo, &coo_i, ncoo, &coo_j));

7576:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)C), &mmdata->sf));
7577:     PetscCall(PetscSFSetGraph(mmdata->sf, 0, 0, NULL, PETSC_OWN_POINTER, NULL, PETSC_OWN_POINTER));
7578:     PetscCall(PetscSFSetUp(mmdata->sf));
7579:   }
7580:   mmdata->hasoffproc = hasoffproc;

7582:   /* gather (i,j) of nonzeros inserted locally */
7583:   for (cp = 0, ncoo_d = 0; cp < mmdata->cp; cp++) {
7584:     Mat_SeqAIJ     *mm   = (Mat_SeqAIJ *)mp[cp]->data;
7585:     PetscInt       *coi  = coo_i + ncoo_d;
7586:     PetscInt       *coj  = coo_j + ncoo_d;
7587:     const PetscInt *jj   = mm->j;
7588:     const PetscInt *ii   = mm->i;
7589:     const PetscInt *cmap = cmapa[cp];
7590:     const PetscInt *rmap = rmapa[cp];
7591:     const PetscInt  mr   = mp[cp]->rmap->n;
7592:     const PetscInt  rs   = C->rmap->rstart;
7593:     const PetscInt  re   = C->rmap->rend;
7594:     const PetscInt  cs   = C->cmap->rstart;

7596:     if (mptmp[cp]) continue;
7597:     if (rmapt[cp] == 1) { /* consecutive rows */
7598:       /* fill coo_i */
7599:       for (i = 0; i < mr; i++) {
7600:         const PetscInt gr = i + rs;
7601:         for (j = ii[i]; j < ii[i + 1]; j++) coi[j] = gr;
7602:       }
7603:       /* fill coo_j */
7604:       if (!cmapt[cp]) { /* type-0, already global */
7605:         PetscCall(PetscArraycpy(coj, jj, mm->nz));
7606:       } else if (cmapt[cp] == 1) {                        /* type-1, local to global for consecutive columns of C */
7607:         for (j = 0; j < mm->nz; j++) coj[j] = jj[j] + cs; /* lid + col start */
7608:       } else {                                            /* type-2, local to global for sparse columns */
7609:         for (j = 0; j < mm->nz; j++) coj[j] = cmap[jj[j]];
7610:       }
7611:       ncoo_d += mm->nz;
7612:     } else if (rmapt[cp] == 2) { /* sparse rows */
7613:       for (i = 0; i < mr; i++) {
7614:         const PetscInt *jj = mm->j + ii[i];
7615:         const PetscInt  gr = rmap[i];
7616:         const PetscInt  nz = ii[i + 1] - ii[i];
7617:         if (gr >= rs && gr < re) { /* local rows */
7618:           for (j = ii[i]; j < ii[i + 1]; j++) *coi++ = gr;
7619:           if (!cmapt[cp]) { /* type-0, already global */
7620:             for (j = 0; j < nz; j++) *coj++ = jj[j];
7621:           } else if (cmapt[cp] == 1) { /* local to global for owned columns of C */
7622:             for (j = 0; j < nz; j++) *coj++ = jj[j] + cs;
7623:           } else { /* type-2, local to global for sparse columns */
7624:             for (j = 0; j < nz; j++) *coj++ = cmap[jj[j]];
7625:           }
7626:           ncoo_d += nz;
7627:         }
7628:       }
7629:     }
7630:   }
7631:   if (glob) PetscCall(ISRestoreIndices(glob, &globidx));
7632:   PetscCall(ISDestroy(&glob));
7633:   if (P_oth_l2g) PetscCall(ISLocalToGlobalMappingRestoreIndices(P_oth_l2g, &P_oth_idx));
7634:   PetscCall(ISLocalToGlobalMappingDestroy(&P_oth_l2g));
7635:   /* allocate an array to store all nonzeros (inserted locally or remotely) belonging to this proc */
7636:   PetscCall(PetscSFMalloc(mmdata->sf, mmdata->mtype, ncoo * sizeof(PetscScalar), (void **)&mmdata->coo_v));

7638:   /* preallocate with COO data */
7639:   PetscCall(MatSetPreallocationCOO(C, ncoo, coo_i, coo_j));
7640:   PetscCall(PetscFree2(coo_i, coo_j));
7641:   PetscFunctionReturn(PETSC_SUCCESS);
7642: }

7644: PetscErrorCode MatProductSetFromOptions_MPIAIJBACKEND(Mat mat)
7645: {
7646:   Mat_Product *product = mat->product;
7647: #if defined(PETSC_HAVE_DEVICE)
7648:   PetscBool match  = PETSC_FALSE;
7649:   PetscBool usecpu = PETSC_FALSE;
7650: #else
7651:   PetscBool match = PETSC_TRUE;
7652: #endif

7654:   PetscFunctionBegin;
7655:   MatCheckProduct(mat, 1);
7656: #if defined(PETSC_HAVE_DEVICE)
7657:   if (!product->A->boundtocpu && !product->B->boundtocpu) PetscCall(PetscObjectTypeCompare((PetscObject)product->B, ((PetscObject)product->A)->type_name, &match));
7658:   if (match) { /* we can always fallback to the CPU if requested */
7659:     switch (product->type) {
7660:     case MATPRODUCT_AB:
7661:       if (product->api_user) {
7662:         PetscOptionsBegin(PetscObjectComm((PetscObject)mat), ((PetscObject)mat)->prefix, "MatMatMult", "Mat");
7663:         PetscCall(PetscOptionsBool("-matmatmult_backend_cpu", "Use CPU code", "MatMatMult", usecpu, &usecpu, NULL));
7664:         PetscOptionsEnd();
7665:       } else {
7666:         PetscOptionsBegin(PetscObjectComm((PetscObject)mat), ((PetscObject)mat)->prefix, "MatProduct_AB", "Mat");
7667:         PetscCall(PetscOptionsBool("-mat_product_algorithm_backend_cpu", "Use CPU code", "MatMatMult", usecpu, &usecpu, NULL));
7668:         PetscOptionsEnd();
7669:       }
7670:       break;
7671:     case MATPRODUCT_AtB:
7672:       if (product->api_user) {
7673:         PetscOptionsBegin(PetscObjectComm((PetscObject)mat), ((PetscObject)mat)->prefix, "MatTransposeMatMult", "Mat");
7674:         PetscCall(PetscOptionsBool("-mattransposematmult_backend_cpu", "Use CPU code", "MatTransposeMatMult", usecpu, &usecpu, NULL));
7675:         PetscOptionsEnd();
7676:       } else {
7677:         PetscOptionsBegin(PetscObjectComm((PetscObject)mat), ((PetscObject)mat)->prefix, "MatProduct_AtB", "Mat");
7678:         PetscCall(PetscOptionsBool("-mat_product_algorithm_backend_cpu", "Use CPU code", "MatTransposeMatMult", usecpu, &usecpu, NULL));
7679:         PetscOptionsEnd();
7680:       }
7681:       break;
7682:     case MATPRODUCT_PtAP:
7683:       if (product->api_user) {
7684:         PetscOptionsBegin(PetscObjectComm((PetscObject)mat), ((PetscObject)mat)->prefix, "MatPtAP", "Mat");
7685:         PetscCall(PetscOptionsBool("-matptap_backend_cpu", "Use CPU code", "MatPtAP", usecpu, &usecpu, NULL));
7686:         PetscOptionsEnd();
7687:       } else {
7688:         PetscOptionsBegin(PetscObjectComm((PetscObject)mat), ((PetscObject)mat)->prefix, "MatProduct_PtAP", "Mat");
7689:         PetscCall(PetscOptionsBool("-mat_product_algorithm_backend_cpu", "Use CPU code", "MatPtAP", usecpu, &usecpu, NULL));
7690:         PetscOptionsEnd();
7691:       }
7692:       break;
7693:     default:
7694:       break;
7695:     }
7696:     match = (PetscBool)!usecpu;
7697:   }
7698: #endif
7699:   if (match) {
7700:     switch (product->type) {
7701:     case MATPRODUCT_AB:
7702:     case MATPRODUCT_AtB:
7703:     case MATPRODUCT_PtAP:
7704:       mat->ops->productsymbolic = MatProductSymbolic_MPIAIJBACKEND;
7705:       break;
7706:     default:
7707:       break;
7708:     }
7709:   }
7710:   /* fallback to MPIAIJ ops */
7711:   if (!mat->ops->productsymbolic) PetscCall(MatProductSetFromOptions_MPIAIJ(mat));
7712:   PetscFunctionReturn(PETSC_SUCCESS);
7713: }

7715: /*
7716:    Produces a set of block column indices of the matrix row, one for each block represented in the original row

7718:    n - the number of block indices in cc[]
7719:    cc - the block indices (must be large enough to contain the indices)
7720: */
7721: static inline PetscErrorCode MatCollapseRow(Mat Amat, PetscInt row, PetscInt bs, PetscInt *n, PetscInt *cc)
7722: {
7723:   PetscInt        cnt = -1, nidx, j;
7724:   const PetscInt *idx;

7726:   PetscFunctionBegin;
7727:   PetscCall(MatGetRow(Amat, row, &nidx, &idx, NULL));
7728:   if (nidx) {
7729:     cnt     = 0;
7730:     cc[cnt] = idx[0] / bs;
7731:     for (j = 1; j < nidx; j++) {
7732:       if (cc[cnt] < idx[j] / bs) cc[++cnt] = idx[j] / bs;
7733:     }
7734:   }
7735:   PetscCall(MatRestoreRow(Amat, row, &nidx, &idx, NULL));
7736:   *n = cnt + 1;
7737:   PetscFunctionReturn(PETSC_SUCCESS);
7738: }

7740: /*
7741:     Produces a set of block column indices of the matrix block row, one for each block represented in the original set of rows

7743:     ncollapsed - the number of block indices
7744:     collapsed - the block indices (must be large enough to contain the indices)
7745: */
7746: static inline PetscErrorCode MatCollapseRows(Mat Amat, PetscInt start, PetscInt bs, PetscInt *w0, PetscInt *w1, PetscInt *w2, PetscInt *ncollapsed, PetscInt **collapsed)
7747: {
7748:   PetscInt i, nprev, *cprev = w0, ncur = 0, *ccur = w1, *merged = w2, *cprevtmp;

7750:   PetscFunctionBegin;
7751:   PetscCall(MatCollapseRow(Amat, start, bs, &nprev, cprev));
7752:   for (i = start + 1; i < start + bs; i++) {
7753:     PetscCall(MatCollapseRow(Amat, i, bs, &ncur, ccur));
7754:     PetscCall(PetscMergeIntArray(nprev, cprev, ncur, ccur, &nprev, &merged));
7755:     cprevtmp = cprev;
7756:     cprev    = merged;
7757:     merged   = cprevtmp;
7758:   }
7759:   *ncollapsed = nprev;
7760:   if (collapsed) *collapsed = cprev;
7761:   PetscFunctionReturn(PETSC_SUCCESS);
7762: }

7764: /*
7765:  MatCreateGraph_Simple_AIJ - create simple scalar matrix (graph) from potentially blocked matrix

7767:  Input Parameter:
7768:  . Amat - matrix
7769:  - symmetrize - make the result symmetric
7770:  + scale - scale with diagonal

7772:  Output Parameter:
7773:  . a_Gmat - output scalar graph >= 0

7775: */
7776: PETSC_INTERN PetscErrorCode MatCreateGraph_Simple_AIJ(Mat Amat, PetscBool symmetrize, PetscBool scale, PetscReal filter, PetscInt index_size, PetscInt index[], Mat *a_Gmat)
7777: {
7778:   PetscInt  Istart, Iend, Ii, jj, kk, ncols, nloc, NN, MM, bs;
7779:   MPI_Comm  comm;
7780:   Mat       Gmat;
7781:   PetscBool ismpiaij, isseqaij;
7782:   Mat       a, b, c;
7783:   MatType   jtype;

7785:   PetscFunctionBegin;
7786:   PetscCall(PetscObjectGetComm((PetscObject)Amat, &comm));
7787:   PetscCall(MatGetOwnershipRange(Amat, &Istart, &Iend));
7788:   PetscCall(MatGetSize(Amat, &MM, &NN));
7789:   PetscCall(MatGetBlockSize(Amat, &bs));
7790:   nloc = (Iend - Istart) / bs;

7792:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)Amat, MATSEQAIJ, &isseqaij));
7793:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)Amat, MATMPIAIJ, &ismpiaij));
7794:   PetscCheck(isseqaij || ismpiaij, comm, PETSC_ERR_USER, "Require (MPI)AIJ matrix type");

7796:   /* TODO GPU: these calls are potentially expensive if matrices are large and we want to use the GPU */
7797:   /* A solution consists in providing a new API, MatAIJGetCollapsedAIJ, and each class can provide a fast
7798:      implementation */
7799:   if (bs > 1) {
7800:     PetscCall(MatGetType(Amat, &jtype));
7801:     PetscCall(MatCreate(comm, &Gmat));
7802:     PetscCall(MatSetType(Gmat, jtype));
7803:     PetscCall(MatSetSizes(Gmat, nloc, nloc, PETSC_DETERMINE, PETSC_DETERMINE));
7804:     PetscCall(MatSetBlockSizes(Gmat, 1, 1));
7805:     if (isseqaij || ((Mat_MPIAIJ *)Amat->data)->garray) {
7806:       PetscInt  *d_nnz, *o_nnz;
7807:       MatScalar *aa, val, *AA;
7808:       PetscInt  *aj, *ai, *AJ, nc, nmax = 0;

7810:       if (isseqaij) {
7811:         a = Amat;
7812:         b = NULL;
7813:       } else {
7814:         Mat_MPIAIJ *d = (Mat_MPIAIJ *)Amat->data;
7815:         a             = d->A;
7816:         b             = d->B;
7817:       }
7818:       PetscCall(PetscInfo(Amat, "New bs>1 Graph. nloc=%" PetscInt_FMT "\n", nloc));
7819:       PetscCall(PetscMalloc2(nloc, &d_nnz, (isseqaij ? 0 : nloc), &o_nnz));
7820:       for (c = a, kk = 0; c && kk < 2; c = b, kk++) {
7821:         PetscInt       *nnz = (c == a) ? d_nnz : o_nnz;
7822:         const PetscInt *cols1, *cols2;

7824:         for (PetscInt brow = 0, nc1, nc2, ok = 1; brow < nloc * bs; brow += bs) { // block rows
7825:           PetscCall(MatGetRow(c, brow, &nc2, &cols2, NULL));
7826:           nnz[brow / bs] = nc2 / bs;
7827:           if (nc2 % bs) ok = 0;
7828:           if (nnz[brow / bs] > nmax) nmax = nnz[brow / bs];
7829:           for (PetscInt ii = 1; ii < bs; ii++) { // check for non-dense blocks
7830:             PetscCall(MatGetRow(c, brow + ii, &nc1, &cols1, NULL));
7831:             if (nc1 != nc2) ok = 0;
7832:             else {
7833:               for (PetscInt jj = 0; jj < nc1 && ok == 1; jj++) {
7834:                 if (cols1[jj] != cols2[jj]) ok = 0;
7835:                 if (cols1[jj] % bs != jj % bs) ok = 0;
7836:               }
7837:             }
7838:             PetscCall(MatRestoreRow(c, brow + ii, &nc1, &cols1, NULL));
7839:           }
7840:           PetscCall(MatRestoreRow(c, brow, &nc2, &cols2, NULL));
7841:           if (!ok) {
7842:             PetscCall(PetscFree2(d_nnz, o_nnz));
7843:             PetscCall(PetscInfo(Amat, "Found sparse blocks - revert to slow method\n"));
7844:             goto old_bs;
7845:           }
7846:         }
7847:       }
7848:       PetscCall(MatSeqAIJSetPreallocation(Gmat, 0, d_nnz));
7849:       PetscCall(MatMPIAIJSetPreallocation(Gmat, 0, d_nnz, 0, o_nnz));
7850:       PetscCall(PetscFree2(d_nnz, o_nnz));
7851:       PetscCall(PetscMalloc2(nmax, &AA, nmax, &AJ));
7852:       // diag
7853:       for (PetscInt brow = 0, n, grow; brow < nloc * bs; brow += bs) { // block rows
7854:         Mat_SeqAIJ *aseq = (Mat_SeqAIJ *)a->data;

7856:         ai = aseq->i;
7857:         n  = ai[brow + 1] - ai[brow];
7858:         aj = aseq->j + ai[brow];
7859:         for (PetscInt k = 0; k < n; k += bs) {   // block columns
7860:           AJ[k / bs] = aj[k] / bs + Istart / bs; // diag starts at (Istart,Istart)
7861:           val        = 0;
7862:           if (index_size == 0) {
7863:             for (PetscInt ii = 0; ii < bs; ii++) { // rows in block
7864:               aa = aseq->a + ai[brow + ii] + k;
7865:               for (PetscInt jj = 0; jj < bs; jj++) {    // columns in block
7866:                 val += PetscAbs(PetscRealPart(aa[jj])); // a sort of norm
7867:               }
7868:             }
7869:           } else {                                            // use (index,index) value if provided
7870:             for (PetscInt iii = 0; iii < index_size; iii++) { // rows in block
7871:               PetscInt ii = index[iii];
7872:               aa          = aseq->a + ai[brow + ii] + k;
7873:               for (PetscInt jjj = 0; jjj < index_size; jjj++) { // columns in block
7874:                 PetscInt jj = index[jjj];
7875:                 val += PetscAbs(PetscRealPart(aa[jj]));
7876:               }
7877:             }
7878:           }
7879:           PetscAssert(k / bs < nmax, comm, PETSC_ERR_USER, "k / bs (%d) >= nmax (%d)", (int)(k / bs), (int)nmax);
7880:           AA[k / bs] = val;
7881:         }
7882:         grow = Istart / bs + brow / bs;
7883:         PetscCall(MatSetValues(Gmat, 1, &grow, n / bs, AJ, AA, ADD_VALUES));
7884:       }
7885:       // off-diag
7886:       if (ismpiaij) {
7887:         Mat_MPIAIJ        *aij = (Mat_MPIAIJ *)Amat->data;
7888:         const PetscScalar *vals;
7889:         const PetscInt    *cols, *garray = aij->garray;

7891:         PetscCheck(garray, PETSC_COMM_SELF, PETSC_ERR_USER, "No garray ?");
7892:         for (PetscInt brow = 0, grow; brow < nloc * bs; brow += bs) { // block rows
7893:           PetscCall(MatGetRow(b, brow, &ncols, &cols, NULL));
7894:           for (PetscInt k = 0, cidx = 0; k < ncols; k += bs, cidx++) {
7895:             PetscAssert(k / bs < nmax, comm, PETSC_ERR_USER, "k / bs >= nmax");
7896:             AA[k / bs] = 0;
7897:             AJ[cidx]   = garray[cols[k]] / bs;
7898:           }
7899:           nc = ncols / bs;
7900:           PetscCall(MatRestoreRow(b, brow, &ncols, &cols, NULL));
7901:           if (index_size == 0) {
7902:             for (PetscInt ii = 0; ii < bs; ii++) { // rows in block
7903:               PetscCall(MatGetRow(b, brow + ii, &ncols, &cols, &vals));
7904:               for (PetscInt k = 0; k < ncols; k += bs) {
7905:                 for (PetscInt jj = 0; jj < bs; jj++) { // cols in block
7906:                   PetscAssert(k / bs < nmax, comm, PETSC_ERR_USER, "k / bs (%d) >= nmax (%d)", (int)(k / bs), (int)nmax);
7907:                   AA[k / bs] += PetscAbs(PetscRealPart(vals[k + jj]));
7908:                 }
7909:               }
7910:               PetscCall(MatRestoreRow(b, brow + ii, &ncols, &cols, &vals));
7911:             }
7912:           } else {                                            // use (index,index) value if provided
7913:             for (PetscInt iii = 0; iii < index_size; iii++) { // rows in block
7914:               PetscInt ii = index[iii];
7915:               PetscCall(MatGetRow(b, brow + ii, &ncols, &cols, &vals));
7916:               for (PetscInt k = 0; k < ncols; k += bs) {
7917:                 for (PetscInt jjj = 0; jjj < index_size; jjj++) { // cols in block
7918:                   PetscInt jj = index[jjj];
7919:                   AA[k / bs] += PetscAbs(PetscRealPart(vals[k + jj]));
7920:                 }
7921:               }
7922:               PetscCall(MatRestoreRow(b, brow + ii, &ncols, &cols, &vals));
7923:             }
7924:           }
7925:           grow = Istart / bs + brow / bs;
7926:           PetscCall(MatSetValues(Gmat, 1, &grow, nc, AJ, AA, ADD_VALUES));
7927:         }
7928:       }
7929:       PetscCall(MatAssemblyBegin(Gmat, MAT_FINAL_ASSEMBLY));
7930:       PetscCall(MatAssemblyEnd(Gmat, MAT_FINAL_ASSEMBLY));
7931:       PetscCall(PetscFree2(AA, AJ));
7932:     } else {
7933:       const PetscScalar *vals;
7934:       const PetscInt    *idx;
7935:       PetscInt          *d_nnz, *o_nnz, *w0, *w1, *w2;
7936:     old_bs:
7937:       /*
7938:        Determine the preallocation needed for the scalar matrix derived from the vector matrix.
7939:        */
7940:       PetscCall(PetscInfo(Amat, "OLD bs>1 CreateGraph\n"));
7941:       PetscCall(PetscMalloc2(nloc, &d_nnz, (isseqaij ? 0 : nloc), &o_nnz));
7942:       if (isseqaij) {
7943:         PetscInt max_d_nnz;

7945:         /*
7946:          Determine exact preallocation count for (sequential) scalar matrix
7947:          */
7948:         PetscCall(MatSeqAIJGetMaxRowNonzeros(Amat, &max_d_nnz));
7949:         max_d_nnz = PetscMin(nloc, bs * max_d_nnz);
7950:         PetscCall(PetscMalloc3(max_d_nnz, &w0, max_d_nnz, &w1, max_d_nnz, &w2));
7951:         for (Ii = 0, jj = 0; Ii < Iend; Ii += bs, jj++) PetscCall(MatCollapseRows(Amat, Ii, bs, w0, w1, w2, &d_nnz[jj], NULL));
7952:         PetscCall(PetscFree3(w0, w1, w2));
7953:       } else if (ismpiaij) {
7954:         Mat             Daij, Oaij;
7955:         const PetscInt *garray;
7956:         PetscInt        max_d_nnz;

7958:         PetscCall(MatMPIAIJGetSeqAIJ(Amat, &Daij, &Oaij, &garray));
7959:         /*
7960:          Determine exact preallocation count for diagonal block portion of scalar matrix
7961:          */
7962:         PetscCall(MatSeqAIJGetMaxRowNonzeros(Daij, &max_d_nnz));
7963:         max_d_nnz = PetscMin(nloc, bs * max_d_nnz);
7964:         PetscCall(PetscMalloc3(max_d_nnz, &w0, max_d_nnz, &w1, max_d_nnz, &w2));
7965:         for (Ii = 0, jj = 0; Ii < Iend - Istart; Ii += bs, jj++) PetscCall(MatCollapseRows(Daij, Ii, bs, w0, w1, w2, &d_nnz[jj], NULL));
7966:         PetscCall(PetscFree3(w0, w1, w2));
7967:         /*
7968:          Over estimate (usually grossly over), preallocation count for off-diagonal portion of scalar matrix
7969:          */
7970:         for (Ii = 0, jj = 0; Ii < Iend - Istart; Ii += bs, jj++) {
7971:           o_nnz[jj] = 0;
7972:           for (kk = 0; kk < bs; kk++) { /* rows that get collapsed to a single row */
7973:             PetscCall(MatGetRow(Oaij, Ii + kk, &ncols, NULL, NULL));
7974:             o_nnz[jj] += ncols;
7975:             PetscCall(MatRestoreRow(Oaij, Ii + kk, &ncols, NULL, NULL));
7976:           }
7977:           if (o_nnz[jj] > (NN / bs - nloc)) o_nnz[jj] = NN / bs - nloc;
7978:         }
7979:       } else SETERRQ(comm, PETSC_ERR_USER, "Require AIJ matrix type");
7980:       /* get scalar copy (norms) of matrix */
7981:       PetscCall(MatSeqAIJSetPreallocation(Gmat, 0, d_nnz));
7982:       PetscCall(MatMPIAIJSetPreallocation(Gmat, 0, d_nnz, 0, o_nnz));
7983:       PetscCall(PetscFree2(d_nnz, o_nnz));
7984:       for (Ii = Istart; Ii < Iend; Ii++) {
7985:         PetscInt dest_row = Ii / bs;

7987:         PetscCall(MatGetRow(Amat, Ii, &ncols, &idx, &vals));
7988:         for (jj = 0; jj < ncols; jj++) {
7989:           PetscInt    dest_col = idx[jj] / bs;
7990:           PetscScalar sv       = PetscAbs(PetscRealPart(vals[jj]));

7992:           PetscCall(MatSetValues(Gmat, 1, &dest_row, 1, &dest_col, &sv, ADD_VALUES));
7993:         }
7994:         PetscCall(MatRestoreRow(Amat, Ii, &ncols, &idx, &vals));
7995:       }
7996:       PetscCall(MatAssemblyBegin(Gmat, MAT_FINAL_ASSEMBLY));
7997:       PetscCall(MatAssemblyEnd(Gmat, MAT_FINAL_ASSEMBLY));
7998:     }
7999:   } else {
8000:     if (symmetrize || filter >= 0 || scale) PetscCall(MatDuplicate(Amat, MAT_COPY_VALUES, &Gmat));
8001:     else {
8002:       Gmat = Amat;
8003:       PetscCall(PetscObjectReference((PetscObject)Gmat));
8004:     }
8005:     if (isseqaij) {
8006:       a = Gmat;
8007:       b = NULL;
8008:     } else {
8009:       Mat_MPIAIJ *d = (Mat_MPIAIJ *)Gmat->data;
8010:       a             = d->A;
8011:       b             = d->B;
8012:     }
8013:     if (filter >= 0 || scale) {
8014:       /* take absolute value of each entry */
8015:       for (c = a, kk = 0; c && kk < 2; c = b, kk++) {
8016:         MatInfo      info;
8017:         PetscScalar *avals;

8019:         PetscCall(MatGetInfo(c, MAT_LOCAL, &info));
8020:         PetscCall(MatSeqAIJGetArray(c, &avals));
8021:         for (int jj = 0; jj < info.nz_used; jj++) avals[jj] = PetscAbsScalar(avals[jj]);
8022:         PetscCall(MatSeqAIJRestoreArray(c, &avals));
8023:       }
8024:     }
8025:   }
8026:   if (symmetrize) {
8027:     PetscBool isset, issym;

8029:     PetscCall(MatIsSymmetricKnown(Amat, &isset, &issym));
8030:     if (!isset || !issym) {
8031:       Mat matTrans;

8033:       PetscCall(MatTranspose(Gmat, MAT_INITIAL_MATRIX, &matTrans));
8034:       PetscCall(MatAXPY(Gmat, 1.0, matTrans, Gmat->structurally_symmetric == PETSC_BOOL3_TRUE ? SAME_NONZERO_PATTERN : DIFFERENT_NONZERO_PATTERN));
8035:       PetscCall(MatDestroy(&matTrans));
8036:     }
8037:     PetscCall(MatSetOption(Gmat, MAT_SYMMETRIC, PETSC_TRUE));
8038:   } else if (Amat != Gmat) PetscCall(MatPropagateSymmetryOptions(Amat, Gmat));
8039:   if (scale) {
8040:     /* scale c for all diagonal values = 1 or -1 */
8041:     Vec diag;

8043:     PetscCall(MatCreateVecs(Gmat, &diag, NULL));
8044:     PetscCall(MatGetDiagonal(Gmat, diag));
8045:     PetscCall(VecReciprocal(diag));
8046:     PetscCall(VecSqrtAbs(diag));
8047:     PetscCall(MatDiagonalScale(Gmat, diag, diag));
8048:     PetscCall(VecDestroy(&diag));
8049:   }
8050:   PetscCall(MatViewFromOptions(Gmat, NULL, "-mat_graph_view"));
8051:   if (filter >= 0) {
8052:     PetscCall(MatFilter(Gmat, filter, PETSC_TRUE, PETSC_TRUE));
8053:     PetscCall(MatViewFromOptions(Gmat, NULL, "-mat_filter_graph_view"));
8054:   }
8055:   *a_Gmat = Gmat;
8056:   PetscFunctionReturn(PETSC_SUCCESS);
8057: }

8059: /*
8060:     Special version for direct calls from Fortran
8061: */

8063: /* Change these macros so can be used in void function */
8064: /* Identical to PetscCallVoid, except it assigns to *_ierr */
8065: #undef PetscCall
8066: #define PetscCall(...) \
8067:   do { \
8068:     PetscErrorCode ierr_msv_mpiaij = __VA_ARGS__; \
8069:     if (PetscUnlikely(ierr_msv_mpiaij)) { \
8070:       *_ierr = PetscError(PETSC_COMM_SELF, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr_msv_mpiaij, PETSC_ERROR_REPEAT, " "); \
8071:       return; \
8072:     } \
8073:   } while (0)

8075: #undef SETERRQ
8076: #define SETERRQ(comm, ierr, ...) \
8077:   do { \
8078:     *_ierr = PetscError(comm, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr, PETSC_ERROR_INITIAL, __VA_ARGS__); \
8079:     return; \
8080:   } while (0)

8082: #if defined(PETSC_HAVE_FORTRAN_CAPS)
8083:   #define matsetvaluesmpiaij_ MATSETVALUESMPIAIJ
8084: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
8085:   #define matsetvaluesmpiaij_ matsetvaluesmpiaij
8086: #else
8087: #endif
8088: PETSC_EXTERN void matsetvaluesmpiaij_(Mat *mmat, PetscInt *mm, const PetscInt im[], PetscInt *mn, const PetscInt in[], const PetscScalar v[], InsertMode *maddv, PetscErrorCode *_ierr)
8089: {
8090:   Mat         mat = *mmat;
8091:   PetscInt    m = *mm, n = *mn;
8092:   InsertMode  addv = *maddv;
8093:   Mat_MPIAIJ *aij  = (Mat_MPIAIJ *)mat->data;
8094:   PetscScalar value;

8096:   MatCheckPreallocated(mat, 1);
8097:   if (mat->insertmode == NOT_SET_VALUES) mat->insertmode = addv;
8098:   else PetscCheck(mat->insertmode == addv, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot mix add values and insert values");
8099:   {
8100:     PetscInt  i, j, rstart = mat->rmap->rstart, rend = mat->rmap->rend;
8101:     PetscInt  cstart = mat->cmap->rstart, cend = mat->cmap->rend, row, col;
8102:     PetscBool roworiented = aij->roworiented;

8104:     /* Some Variables required in the macro */
8105:     Mat         A     = aij->A;
8106:     Mat_SeqAIJ *a     = (Mat_SeqAIJ *)A->data;
8107:     PetscInt   *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
8108:     MatScalar  *aa;
8109:     PetscBool   ignorezeroentries = ((a->ignorezeroentries && (addv == ADD_VALUES)) ? PETSC_TRUE : PETSC_FALSE);
8110:     Mat         B                 = aij->B;
8111:     Mat_SeqAIJ *b                 = (Mat_SeqAIJ *)B->data;
8112:     PetscInt   *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j, bm = aij->B->rmap->n, am = aij->A->rmap->n;
8113:     MatScalar  *ba;
8114:     /* This variable below is only for the PETSC_HAVE_VIENNACL or PETSC_HAVE_CUDA cases, but we define it in all cases because we
8115:      * cannot use "#if defined" inside a macro. */
8116:     PETSC_UNUSED PetscBool inserted = PETSC_FALSE;

8118:     PetscInt  *rp1, *rp2, ii, nrow1, nrow2, _i, rmax1, rmax2, N, low1, high1, low2, high2, t, lastcol1, lastcol2;
8119:     PetscInt   nonew = a->nonew;
8120:     MatScalar *ap1, *ap2;

8122:     PetscFunctionBegin;
8123:     PetscCall(MatSeqAIJGetArray(A, &aa));
8124:     PetscCall(MatSeqAIJGetArray(B, &ba));
8125:     for (i = 0; i < m; i++) {
8126:       if (im[i] < 0) continue;
8127:       PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
8128:       if (im[i] >= rstart && im[i] < rend) {
8129:         row      = im[i] - rstart;
8130:         lastcol1 = -1;
8131:         rp1      = aj + ai[row];
8132:         ap1      = aa + ai[row];
8133:         rmax1    = aimax[row];
8134:         nrow1    = ailen[row];
8135:         low1     = 0;
8136:         high1    = nrow1;
8137:         lastcol2 = -1;
8138:         rp2      = bj + bi[row];
8139:         ap2      = ba + bi[row];
8140:         rmax2    = bimax[row];
8141:         nrow2    = bilen[row];
8142:         low2     = 0;
8143:         high2    = nrow2;

8145:         for (j = 0; j < n; j++) {
8146:           if (roworiented) value = v[i * n + j];
8147:           else value = v[i + j * m];
8148:           if (ignorezeroentries && value == 0.0 && (addv == ADD_VALUES) && im[i] != in[j]) continue;
8149:           if (in[j] >= cstart && in[j] < cend) {
8150:             col = in[j] - cstart;
8151:             MatSetValues_SeqAIJ_A_Private(row, col, value, addv, im[i], in[j]);
8152:           } else if (in[j] < 0) continue;
8153:           else if (PetscUnlikelyDebug(in[j] >= mat->cmap->N)) {
8154:             SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
8155:           } else {
8156:             if (mat->was_assembled) {
8157:               if (!aij->colmap) PetscCall(MatCreateColmap_MPIAIJ_Private(mat));
8158: #if defined(PETSC_USE_CTABLE)
8159:               PetscCall(PetscHMapIGetWithDefault(aij->colmap, in[j] + 1, 0, &col));
8160:               col--;
8161: #else
8162:               col = aij->colmap[in[j]] - 1;
8163: #endif
8164:               if (col < 0 && !((Mat_SeqAIJ *)aij->A->data)->nonew) {
8165:                 PetscCall(MatDisAssemble_MPIAIJ(mat));
8166:                 col = in[j];
8167:                 /* Reinitialize the variables required by MatSetValues_SeqAIJ_B_Private() */
8168:                 B        = aij->B;
8169:                 b        = (Mat_SeqAIJ *)B->data;
8170:                 bimax    = b->imax;
8171:                 bi       = b->i;
8172:                 bilen    = b->ilen;
8173:                 bj       = b->j;
8174:                 rp2      = bj + bi[row];
8175:                 ap2      = ba + bi[row];
8176:                 rmax2    = bimax[row];
8177:                 nrow2    = bilen[row];
8178:                 low2     = 0;
8179:                 high2    = nrow2;
8180:                 bm       = aij->B->rmap->n;
8181:                 ba       = b->a;
8182:                 inserted = PETSC_FALSE;
8183:               }
8184:             } else col = in[j];
8185:             MatSetValues_SeqAIJ_B_Private(row, col, value, addv, im[i], in[j]);
8186:           }
8187:         }
8188:       } else if (!aij->donotstash) {
8189:         if (roworiented) {
8190:           PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, (PetscBool)(ignorezeroentries && (addv == ADD_VALUES))));
8191:         } else {
8192:           PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, (PetscBool)(ignorezeroentries && (addv == ADD_VALUES))));
8193:         }
8194:       }
8195:     }
8196:     PetscCall(MatSeqAIJRestoreArray(A, &aa));
8197:     PetscCall(MatSeqAIJRestoreArray(B, &ba));
8198:   }
8199:   PetscFunctionReturnVoid();
8200: }

8202: /* Undefining these here since they were redefined from their original definition above! No
8203:  * other PETSc functions should be defined past this point, as it is impossible to recover the
8204:  * original definitions */
8205: #undef PetscCall
8206: #undef SETERRQ