Actual source code: ex12.c
1: static char help[] = "Poisson Problem in 2d and 3d with simplicial finite elements.\n\
2: We solve the Poisson problem in a rectangular\n\
3: domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\
4: This example supports discretized auxiliary fields (conductivity) as well as\n\
5: multilevel nonlinear solvers.\n\n\n";
7: /*
8: A visualization of the adaptation can be accomplished using:
10: -dm_adapt_view hdf5:$PWD/adapt.h5 -sol_adapt_view hdf5:$PWD/adapt.h5::append -dm_adapt_pre_view hdf5:$PWD/orig.h5 -sol_adapt_pre_view hdf5:$PWD/orig.h5::append
12: Information on refinement:
14: -info :~sys,vec,is,mat,ksp,snes,ts
15: */
17: #include <petscdmplex.h>
18: #include <petscdmadaptor.h>
19: #include <petscsnes.h>
20: #include <petscds.h>
21: #include <petscviewerhdf5.h>
23: typedef enum {
24: NEUMANN,
25: DIRICHLET,
26: NONE
27: } BCType;
28: typedef enum {
29: RUN_FULL,
30: RUN_EXACT,
31: RUN_TEST,
32: RUN_PERF
33: } RunType;
34: typedef enum {
35: COEFF_NONE,
36: COEFF_ANALYTIC,
37: COEFF_FIELD,
38: COEFF_NONLINEAR,
39: COEFF_BALL,
40: COEFF_CROSS,
41: COEFF_CHECKERBOARD_0,
42: COEFF_CHECKERBOARD_1
43: } CoeffType;
45: typedef struct {
46: RunType runType; /* Whether to run tests, or solve the full problem */
47: PetscBool jacobianMF; /* Whether to calculate the Jacobian action on the fly */
48: PetscBool showInitial, showSolution, restart, quiet, nonzInit;
49: /* Problem definition */
50: BCType bcType;
51: CoeffType variableCoefficient;
52: PetscErrorCode (**exactFuncs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx);
53: PetscBool fieldBC;
54: void (**exactFields)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
55: PetscBool bdIntegral; /* Compute the integral of the solution on the boundary */
56: /* Reproducing tests from SISC 40(3), pp. A1473-A1493, 2018 */
57: PetscInt div; /* Number of divisions */
58: PetscInt k; /* Parameter for checkerboard coefficient */
59: PetscInt *kgrid; /* Random parameter grid */
60: PetscBool rand; /* Make random assignments */
61: /* Solver */
62: PC pcmg; /* This is needed for error monitoring */
63: PetscBool checkksp; /* Whether to check the KSPSolve for runType == RUN_TEST */
64: } AppCtx;
66: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
67: {
68: u[0] = 0.0;
69: return PETSC_SUCCESS;
70: }
72: static PetscErrorCode ecks(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
73: {
74: u[0] = x[0];
75: return PETSC_SUCCESS;
76: }
78: /*
79: In 2D for Dirichlet conditions, we use exact solution:
81: u = x^2 + y^2
82: f = 4
84: so that
86: -\Delta u + f = -4 + 4 = 0
88: For Neumann conditions, we have
90: -\nabla u \cdot -\hat y |_{y=0} = (2y)|_{y=0} = 0 (bottom)
91: -\nabla u \cdot \hat y |_{y=1} = -(2y)|_{y=1} = -2 (top)
92: -\nabla u \cdot -\hat x |_{x=0} = (2x)|_{x=0} = 0 (left)
93: -\nabla u \cdot \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right)
95: Which we can express as
97: \nabla u \cdot \hat n|_\Gamma = {2 x, 2 y} \cdot \hat n = 2 (x + y)
99: The boundary integral of this solution is (assuming we are not orienting the edges)
101: \int^1_0 x^2 dx + \int^1_0 (1 + y^2) dy + \int^1_0 (x^2 + 1) dx + \int^1_0 y^2 dy = 1/3 + 4/3 + 4/3 + 1/3 = 3 1/3
102: */
103: static PetscErrorCode quadratic_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
104: {
105: *u = x[0] * x[0] + x[1] * x[1];
106: return PETSC_SUCCESS;
107: }
109: static void quadratic_u_field_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[])
110: {
111: uexact[0] = a[0];
112: }
114: static PetscErrorCode ball_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
115: {
116: const PetscReal alpha = 500.;
117: const PetscReal radius2 = PetscSqr(0.15);
118: const PetscReal r2 = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5);
119: const PetscReal xi = alpha * (radius2 - r2);
121: *u = PetscTanhScalar(xi) + 1.0;
122: return PETSC_SUCCESS;
123: }
125: static PetscErrorCode cross_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
126: {
127: const PetscReal alpha = 50 * 4;
128: const PetscReal xy = (x[0] - 0.5) * (x[1] - 0.5);
130: *u = PetscSinReal(alpha * xy) * (alpha * PetscAbsReal(xy) < 2 * PETSC_PI ? 1 : 0.01);
131: return PETSC_SUCCESS;
132: }
134: static void f0_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
135: {
136: f0[0] = 4.0;
137: }
139: static void f0_ball_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
140: {
141: PetscInt d;
142: const PetscReal alpha = 500., radius2 = PetscSqr(0.15);
143: PetscReal r2, xi;
145: for (d = 0, r2 = 0.0; d < dim; ++d) r2 += PetscSqr(x[d] - 0.5);
146: xi = alpha * (radius2 - r2);
147: f0[0] = (-2.0 * dim * alpha - 8.0 * PetscSqr(alpha) * r2 * PetscTanhReal(xi)) * PetscSqr(1.0 / PetscCoshReal(xi));
148: }
150: static void f0_cross_u_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
151: {
152: const PetscReal alpha = 50 * 4;
153: const PetscReal xy = (x[0] - 0.5) * (x[1] - 0.5);
155: f0[0] = PetscSinReal(alpha * xy) * (alpha * PetscAbsReal(xy) < 2 * PETSC_PI ? 1 : 0.01);
156: }
158: static void f0_checkerboard_0_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
159: {
160: f0[0] = -20.0 * PetscExpReal(-(PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5)));
161: }
163: static void f0_bd_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
164: {
165: PetscInt d;
166: for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += -n[d] * 2.0 * x[d];
167: }
169: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
170: static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
171: {
172: PetscInt d;
173: for (d = 0; d < dim; ++d) f1[d] = u_x[d];
174: }
176: /* < \nabla v, \nabla u + {\nabla u}^T >
177: This just gives \nabla u, give the perdiagonal for the transpose */
178: static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
179: {
180: PetscInt d;
181: for (d = 0; d < dim; ++d) g3[d * dim + d] = 1.0;
182: }
184: /*
185: In 2D for x periodicity and y Dirichlet conditions, we use exact solution:
187: u = sin(2 pi x)
188: f = -4 pi^2 sin(2 pi x)
190: so that
192: -\Delta u + f = 4 pi^2 sin(2 pi x) - 4 pi^2 sin(2 pi x) = 0
193: */
194: static PetscErrorCode xtrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
195: {
196: *u = PetscSinReal(2.0 * PETSC_PI * x[0]);
197: return PETSC_SUCCESS;
198: }
200: static void f0_xtrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
201: {
202: f0[0] = -4.0 * PetscSqr(PETSC_PI) * PetscSinReal(2.0 * PETSC_PI * x[0]);
203: }
205: /*
206: In 2D for x-y periodicity, we use exact solution:
208: u = sin(2 pi x) sin(2 pi y)
209: f = -8 pi^2 sin(2 pi x)
211: so that
213: -\Delta u + f = 4 pi^2 sin(2 pi x) sin(2 pi y) + 4 pi^2 sin(2 pi x) sin(2 pi y) - 8 pi^2 sin(2 pi x) = 0
214: */
215: static PetscErrorCode xytrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
216: {
217: *u = PetscSinReal(2.0 * PETSC_PI * x[0]) * PetscSinReal(2.0 * PETSC_PI * x[1]);
218: return PETSC_SUCCESS;
219: }
221: static void f0_xytrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
222: {
223: f0[0] = -8.0 * PetscSqr(PETSC_PI) * PetscSinReal(2.0 * PETSC_PI * x[0]);
224: }
226: /*
227: In 2D for Dirichlet conditions with a variable coefficient, we use exact solution:
229: u = x^2 + y^2
230: f = 6 (x + y)
231: nu = (x + y)
233: so that
235: -\div \nu \grad u + f = -6 (x + y) + 6 (x + y) = 0
236: */
237: static PetscErrorCode nu_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
238: {
239: *u = x[0] + x[1];
240: return PETSC_SUCCESS;
241: }
243: static PetscErrorCode checkerboardCoeff(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
244: {
245: AppCtx *user = (AppCtx *)ctx;
246: PetscInt div = user->div;
247: PetscInt k = user->k;
248: PetscInt mask = 0, ind = 0, d;
250: PetscFunctionBeginUser;
251: for (d = 0; d < dim; ++d) mask = (mask + (PetscInt)(x[d] * div)) % 2;
252: if (user->kgrid) {
253: for (d = 0; d < dim; ++d) {
254: if (d > 0) ind *= dim;
255: ind += (PetscInt)(x[d] * div);
256: }
257: k = user->kgrid[ind];
258: }
259: u[0] = mask ? 1.0 : PetscPowRealInt(10.0, -k);
260: PetscFunctionReturn(PETSC_SUCCESS);
261: }
263: void f0_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
264: {
265: f0[0] = 6.0 * (x[0] + x[1]);
266: }
268: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
269: void f1_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
270: {
271: PetscInt d;
272: for (d = 0; d < dim; ++d) f1[d] = (x[0] + x[1]) * u_x[d];
273: }
275: void f1_field_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
276: {
277: PetscInt d;
278: for (d = 0; d < dim; ++d) f1[d] = a[0] * u_x[d];
279: }
281: /* < \nabla v, \nabla u + {\nabla u}^T >
282: This just gives \nabla u, give the perdiagonal for the transpose */
283: void g3_analytic_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
284: {
285: PetscInt d;
286: for (d = 0; d < dim; ++d) g3[d * dim + d] = x[0] + x[1];
287: }
289: void g3_field_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
290: {
291: PetscInt d;
292: for (d = 0; d < dim; ++d) g3[d * dim + d] = a[0];
293: }
295: /*
296: In 2D for Dirichlet conditions with a nonlinear coefficient (p-Laplacian with p = 4), we use exact solution:
298: u = x^2 + y^2
299: f = 16 (x^2 + y^2)
300: nu = 1/2 |grad u|^2
302: so that
304: -\div \nu \grad u + f = -16 (x^2 + y^2) + 16 (x^2 + y^2) = 0
305: */
306: void f0_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
307: {
308: f0[0] = 16.0 * (x[0] * x[0] + x[1] * x[1]);
309: }
311: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
312: void f1_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
313: {
314: PetscScalar nu = 0.0;
315: PetscInt d;
316: for (d = 0; d < dim; ++d) nu += u_x[d] * u_x[d];
317: for (d = 0; d < dim; ++d) f1[d] = 0.5 * nu * u_x[d];
318: }
320: /*
321: grad (u + eps w) - grad u = eps grad w
323: 1/2 |grad (u + eps w)|^2 grad (u + eps w) - 1/2 |grad u|^2 grad u
324: = 1/2 (|grad u|^2 + 2 eps <grad u,grad w>) (grad u + eps grad w) - 1/2 |grad u|^2 grad u
325: = 1/2 (eps |grad u|^2 grad w + 2 eps <grad u,grad w> grad u)
326: = eps (1/2 |grad u|^2 grad w + grad u <grad u,grad w>)
327: */
328: void g3_analytic_nonlinear_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
329: {
330: PetscScalar nu = 0.0;
331: PetscInt d, e;
332: for (d = 0; d < dim; ++d) nu += u_x[d] * u_x[d];
333: for (d = 0; d < dim; ++d) {
334: g3[d * dim + d] = 0.5 * nu;
335: for (e = 0; e < dim; ++e) g3[d * dim + e] += u_x[d] * u_x[e];
336: }
337: }
339: /*
340: In 3D for Dirichlet conditions we use exact solution:
342: u = 2/3 (x^2 + y^2 + z^2)
343: f = 4
345: so that
347: -\Delta u + f = -2/3 * 6 + 4 = 0
349: For Neumann conditions, we have
351: -\nabla u \cdot -\hat z |_{z=0} = (2z)|_{z=0} = 0 (bottom)
352: -\nabla u \cdot \hat z |_{z=1} = -(2z)|_{z=1} = -2 (top)
353: -\nabla u \cdot -\hat y |_{y=0} = (2y)|_{y=0} = 0 (front)
354: -\nabla u \cdot \hat y |_{y=1} = -(2y)|_{y=1} = -2 (back)
355: -\nabla u \cdot -\hat x |_{x=0} = (2x)|_{x=0} = 0 (left)
356: -\nabla u \cdot \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right)
358: Which we can express as
360: \nabla u \cdot \hat n|_\Gamma = {2 x, 2 y, 2z} \cdot \hat n = 2 (x + y + z)
361: */
362: static PetscErrorCode quadratic_u_3d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
363: {
364: *u = 2.0 * (x[0] * x[0] + x[1] * x[1] + x[2] * x[2]) / 3.0;
365: return PETSC_SUCCESS;
366: }
368: static PetscErrorCode ball_u_3d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
369: {
370: const PetscReal alpha = 500.;
371: const PetscReal radius2 = PetscSqr(0.15);
372: const PetscReal r2 = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5) + PetscSqr(x[2] - 0.5);
373: const PetscReal xi = alpha * (radius2 - r2);
375: *u = PetscTanhScalar(xi) + 1.0;
376: return PETSC_SUCCESS;
377: }
379: static void quadratic_u_field_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[])
380: {
381: uexact[0] = a[0];
382: }
384: static PetscErrorCode cross_u_3d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
385: {
386: const PetscReal alpha = 50 * 4;
387: const PetscReal xyz = (x[0] - 0.5) * (x[1] - 0.5) * (x[2] - 0.5);
389: *u = PetscSinReal(alpha * xyz) * (alpha * PetscAbsReal(xyz) < 2 * PETSC_PI ? (alpha * PetscAbsReal(xyz) > -2 * PETSC_PI ? 1.0 : 0.01) : 0.01);
390: return PETSC_SUCCESS;
391: }
393: static void f0_cross_u_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
394: {
395: const PetscReal alpha = 50 * 4;
396: const PetscReal xyz = (x[0] - 0.5) * (x[1] - 0.5) * (x[2] - 0.5);
398: f0[0] = PetscSinReal(alpha * xyz) * (alpha * PetscAbsReal(xyz) < 2 * PETSC_PI ? (alpha * PetscAbsReal(xyz) > -2 * PETSC_PI ? 1.0 : 0.01) : 0.01);
399: }
401: static void bd_integral_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *uint)
402: {
403: uint[0] = u[0];
404: }
406: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
407: {
408: const char *bcTypes[3] = {"neumann", "dirichlet", "none"};
409: const char *runTypes[4] = {"full", "exact", "test", "perf"};
410: const char *coeffTypes[8] = {"none", "analytic", "field", "nonlinear", "ball", "cross", "checkerboard_0", "checkerboard_1"};
411: PetscInt bc, run, coeff;
413: PetscFunctionBeginUser;
414: options->runType = RUN_FULL;
415: options->bcType = DIRICHLET;
416: options->variableCoefficient = COEFF_NONE;
417: options->fieldBC = PETSC_FALSE;
418: options->jacobianMF = PETSC_FALSE;
419: options->showInitial = PETSC_FALSE;
420: options->showSolution = PETSC_FALSE;
421: options->restart = PETSC_FALSE;
422: options->quiet = PETSC_FALSE;
423: options->nonzInit = PETSC_FALSE;
424: options->bdIntegral = PETSC_FALSE;
425: options->checkksp = PETSC_FALSE;
426: options->div = 4;
427: options->k = 1;
428: options->kgrid = NULL;
429: options->rand = PETSC_FALSE;
431: PetscOptionsBegin(comm, "", "Poisson Problem Options", "DMPLEX");
432: run = options->runType;
433: PetscCall(PetscOptionsEList("-run_type", "The run type", "ex12.c", runTypes, 4, runTypes[options->runType], &run, NULL));
434: options->runType = (RunType)run;
435: bc = options->bcType;
436: PetscCall(PetscOptionsEList("-bc_type", "Type of boundary condition", "ex12.c", bcTypes, 3, bcTypes[options->bcType], &bc, NULL));
437: options->bcType = (BCType)bc;
438: coeff = options->variableCoefficient;
439: PetscCall(PetscOptionsEList("-variable_coefficient", "Type of variable coefficient", "ex12.c", coeffTypes, 8, coeffTypes[options->variableCoefficient], &coeff, NULL));
440: options->variableCoefficient = (CoeffType)coeff;
442: PetscCall(PetscOptionsBool("-field_bc", "Use a field representation for the BC", "ex12.c", options->fieldBC, &options->fieldBC, NULL));
443: PetscCall(PetscOptionsBool("-jacobian_mf", "Calculate the action of the Jacobian on the fly", "ex12.c", options->jacobianMF, &options->jacobianMF, NULL));
444: PetscCall(PetscOptionsBool("-show_initial", "Output the initial guess for verification", "ex12.c", options->showInitial, &options->showInitial, NULL));
445: PetscCall(PetscOptionsBool("-show_solution", "Output the solution for verification", "ex12.c", options->showSolution, &options->showSolution, NULL));
446: PetscCall(PetscOptionsBool("-restart", "Read in the mesh and solution from a file", "ex12.c", options->restart, &options->restart, NULL));
447: PetscCall(PetscOptionsBool("-quiet", "Don't print any vecs", "ex12.c", options->quiet, &options->quiet, NULL));
448: PetscCall(PetscOptionsBool("-nonzero_initial_guess", "nonzero initial guess", "ex12.c", options->nonzInit, &options->nonzInit, NULL));
449: PetscCall(PetscOptionsBool("-bd_integral", "Compute the integral of the solution on the boundary", "ex12.c", options->bdIntegral, &options->bdIntegral, NULL));
450: if (options->runType == RUN_TEST) PetscCall(PetscOptionsBool("-run_test_check_ksp", "Check solution of KSP", "ex12.c", options->checkksp, &options->checkksp, NULL));
451: PetscCall(PetscOptionsInt("-div", "The number of division for the checkerboard coefficient", "ex12.c", options->div, &options->div, NULL));
452: PetscCall(PetscOptionsInt("-k", "The exponent for the checkerboard coefficient", "ex12.c", options->k, &options->k, NULL));
453: PetscCall(PetscOptionsBool("-k_random", "Assign random k values to checkerboard", "ex12.c", options->rand, &options->rand, NULL));
454: PetscOptionsEnd();
455: PetscFunctionReturn(PETSC_SUCCESS);
456: }
458: static PetscErrorCode CreateBCLabel(DM dm, const char name[])
459: {
460: DM plex;
461: DMLabel label;
463: PetscFunctionBeginUser;
464: PetscCall(DMCreateLabel(dm, name));
465: PetscCall(DMGetLabel(dm, name, &label));
466: PetscCall(DMConvert(dm, DMPLEX, &plex));
467: PetscCall(DMPlexMarkBoundaryFaces(plex, 1, label));
468: PetscCall(DMDestroy(&plex));
469: PetscFunctionReturn(PETSC_SUCCESS);
470: }
472: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
473: {
474: PetscFunctionBeginUser;
475: PetscCall(DMCreate(comm, dm));
476: PetscCall(DMSetType(*dm, DMPLEX));
477: PetscCall(DMSetFromOptions(*dm));
478: {
479: char convType[256];
480: PetscBool flg;
482: PetscOptionsBegin(comm, "", "Mesh conversion options", "DMPLEX");
483: PetscCall(PetscOptionsFList("-dm_plex_convert_type", "Convert DMPlex to another format", "ex12", DMList, DMPLEX, convType, 256, &flg));
484: PetscOptionsEnd();
485: if (flg) {
486: DM dmConv;
488: PetscCall(DMConvert(*dm, convType, &dmConv));
489: if (dmConv) {
490: PetscCall(DMDestroy(dm));
491: *dm = dmConv;
492: }
493: PetscCall(DMSetFromOptions(*dm));
494: PetscCall(DMSetUp(*dm));
495: }
496: }
497: PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
498: if (user->rand) {
499: PetscRandom r;
500: PetscReal val;
501: PetscInt dim, N, i;
503: PetscCall(DMGetDimension(*dm, &dim));
504: N = PetscPowInt(user->div, dim);
505: PetscCall(PetscMalloc1(N, &user->kgrid));
506: PetscCall(PetscRandomCreate(PETSC_COMM_SELF, &r));
507: PetscCall(PetscRandomSetFromOptions(r));
508: PetscCall(PetscRandomSetInterval(r, 0.0, user->k));
509: PetscCall(PetscRandomSetSeed(r, 1973));
510: PetscCall(PetscRandomSeed(r));
511: for (i = 0; i < N; ++i) {
512: PetscCall(PetscRandomGetValueReal(r, &val));
513: user->kgrid[i] = 1 + (PetscInt)val;
514: }
515: PetscCall(PetscRandomDestroy(&r));
516: }
517: PetscFunctionReturn(PETSC_SUCCESS);
518: }
520: static PetscErrorCode SetupProblem(DM dm, AppCtx *user)
521: {
522: PetscDS ds;
523: DMLabel label;
524: PetscWeakForm wf;
525: const PetscReal *L;
526: const PetscInt id = 1;
527: PetscInt bd, dim;
529: PetscFunctionBeginUser;
530: PetscCall(DMGetDS(dm, &ds));
531: PetscCall(DMGetDimension(dm, &dim));
532: PetscCall(DMGetPeriodicity(dm, NULL, NULL, &L));
533: switch (user->variableCoefficient) {
534: case COEFF_NONE:
535: if (L && L[0]) {
536: if (L && L[1]) {
537: PetscCall(PetscDSSetResidual(ds, 0, f0_xytrig_u, f1_u));
538: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_uu));
539: } else {
540: PetscCall(PetscDSSetResidual(ds, 0, f0_xtrig_u, f1_u));
541: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_uu));
542: }
543: } else {
544: PetscCall(PetscDSSetResidual(ds, 0, f0_u, f1_u));
545: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_uu));
546: }
547: break;
548: case COEFF_ANALYTIC:
549: PetscCall(PetscDSSetResidual(ds, 0, f0_analytic_u, f1_analytic_u));
550: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_analytic_uu));
551: break;
552: case COEFF_FIELD:
553: PetscCall(PetscDSSetResidual(ds, 0, f0_analytic_u, f1_field_u));
554: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_field_uu));
555: break;
556: case COEFF_NONLINEAR:
557: PetscCall(PetscDSSetResidual(ds, 0, f0_analytic_nonlinear_u, f1_analytic_nonlinear_u));
558: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_analytic_nonlinear_uu));
559: break;
560: case COEFF_BALL:
561: PetscCall(PetscDSSetResidual(ds, 0, f0_ball_u, f1_u));
562: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_uu));
563: break;
564: case COEFF_CROSS:
565: switch (dim) {
566: case 2:
567: PetscCall(PetscDSSetResidual(ds, 0, f0_cross_u_2d, f1_u));
568: break;
569: case 3:
570: PetscCall(PetscDSSetResidual(ds, 0, f0_cross_u_3d, f1_u));
571: break;
572: default:
573: SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
574: }
575: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_uu));
576: break;
577: case COEFF_CHECKERBOARD_0:
578: PetscCall(PetscDSSetResidual(ds, 0, f0_checkerboard_0_u, f1_field_u));
579: PetscCall(PetscDSSetJacobian(ds, 0, 0, NULL, NULL, NULL, g3_field_uu));
580: break;
581: default:
582: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid variable coefficient type %d", user->variableCoefficient);
583: }
584: switch (dim) {
585: case 2:
586: switch (user->variableCoefficient) {
587: case COEFF_BALL:
588: user->exactFuncs[0] = ball_u_2d;
589: break;
590: case COEFF_CROSS:
591: user->exactFuncs[0] = cross_u_2d;
592: break;
593: case COEFF_CHECKERBOARD_0:
594: user->exactFuncs[0] = zero;
595: break;
596: default:
597: if (L && L[0]) {
598: if (L && L[1]) {
599: user->exactFuncs[0] = xytrig_u_2d;
600: } else {
601: user->exactFuncs[0] = xtrig_u_2d;
602: }
603: } else {
604: user->exactFuncs[0] = quadratic_u_2d;
605: user->exactFields[0] = quadratic_u_field_2d;
606: }
607: }
608: if (user->bcType == NEUMANN) {
609: PetscCall(DMGetLabel(dm, "boundary", &label));
610: PetscCall(DMAddBoundary(dm, DM_BC_NATURAL, "wall", label, 1, &id, 0, 0, NULL, NULL, NULL, user, &bd));
611: PetscCall(PetscDSGetBoundary(ds, bd, &wf, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL));
612: PetscCall(PetscWeakFormSetIndexBdResidual(wf, label, id, 0, 0, 0, f0_bd_u, 0, NULL));
613: }
614: break;
615: case 3:
616: switch (user->variableCoefficient) {
617: case COEFF_BALL:
618: user->exactFuncs[0] = ball_u_3d;
619: break;
620: case COEFF_CROSS:
621: user->exactFuncs[0] = cross_u_3d;
622: break;
623: default:
624: user->exactFuncs[0] = quadratic_u_3d;
625: user->exactFields[0] = quadratic_u_field_3d;
626: }
627: if (user->bcType == NEUMANN) {
628: PetscCall(DMGetLabel(dm, "boundary", &label));
629: PetscCall(DMAddBoundary(dm, DM_BC_NATURAL, "wall", label, 1, &id, 0, 0, NULL, NULL, NULL, user, &bd));
630: PetscCall(PetscDSGetBoundary(ds, bd, &wf, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL));
631: PetscCall(PetscWeakFormSetIndexBdResidual(wf, label, id, 0, 0, 0, f0_bd_u, 0, NULL));
632: }
633: break;
634: default:
635: SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
636: }
637: /* Setup constants */
638: switch (user->variableCoefficient) {
639: case COEFF_CHECKERBOARD_0: {
640: PetscScalar constants[2];
642: constants[0] = user->div;
643: constants[1] = user->k;
644: PetscCall(PetscDSSetConstants(ds, 2, constants));
645: } break;
646: default:
647: break;
648: }
649: PetscCall(PetscDSSetExactSolution(ds, 0, user->exactFuncs[0], user));
650: /* Setup Boundary Conditions */
651: if (user->bcType == DIRICHLET) {
652: PetscCall(DMGetLabel(dm, "marker", &label));
653: if (!label) {
654: /* Right now, p4est cannot create labels immediately */
655: PetscCall(PetscDSAddBoundaryByName(ds, user->fieldBC ? DM_BC_ESSENTIAL_FIELD : DM_BC_ESSENTIAL, "wall", "marker", 1, &id, 0, 0, NULL, user->fieldBC ? (void (*)(void))user->exactFields[0] : (void (*)(void))user->exactFuncs[0], NULL, user, NULL));
656: } else {
657: PetscCall(DMAddBoundary(dm, user->fieldBC ? DM_BC_ESSENTIAL_FIELD : DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, user->fieldBC ? (void (*)(void))user->exactFields[0] : (void (*)(void))user->exactFuncs[0], NULL, user, NULL));
658: }
659: }
660: PetscFunctionReturn(PETSC_SUCCESS);
661: }
663: static PetscErrorCode SetupMaterial(DM dm, DM dmAux, AppCtx *user)
664: {
665: PetscErrorCode (*matFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {nu_2d};
666: void *ctx[1];
667: Vec nu;
669: PetscFunctionBegin;
670: ctx[0] = user;
671: if (user->variableCoefficient == COEFF_CHECKERBOARD_0) matFuncs[0] = checkerboardCoeff;
672: PetscCall(DMCreateLocalVector(dmAux, &nu));
673: PetscCall(PetscObjectSetName((PetscObject)nu, "Coefficient"));
674: PetscCall(DMProjectFunctionLocal(dmAux, 0.0, matFuncs, ctx, INSERT_ALL_VALUES, nu));
675: PetscCall(DMSetAuxiliaryVec(dm, NULL, 0, 0, nu));
676: PetscCall(VecDestroy(&nu));
677: PetscFunctionReturn(PETSC_SUCCESS);
678: }
680: static PetscErrorCode SetupBC(DM dm, DM dmAux, AppCtx *user)
681: {
682: PetscErrorCode (*bcFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx);
683: Vec uexact;
684: PetscInt dim;
686: PetscFunctionBegin;
687: PetscCall(DMGetDimension(dm, &dim));
688: if (dim == 2) bcFuncs[0] = quadratic_u_2d;
689: else bcFuncs[0] = quadratic_u_3d;
690: PetscCall(DMCreateLocalVector(dmAux, &uexact));
691: PetscCall(DMProjectFunctionLocal(dmAux, 0.0, bcFuncs, NULL, INSERT_ALL_VALUES, uexact));
692: PetscCall(DMSetAuxiliaryVec(dm, NULL, 0, 0, uexact));
693: PetscCall(VecDestroy(&uexact));
694: PetscFunctionReturn(PETSC_SUCCESS);
695: }
697: static PetscErrorCode SetupAuxDM(DM dm, PetscFE feAux, AppCtx *user)
698: {
699: DM dmAux, coordDM;
701: PetscFunctionBegin;
702: /* MUST call DMGetCoordinateDM() in order to get p4est setup if present */
703: PetscCall(DMGetCoordinateDM(dm, &coordDM));
704: if (!feAux) PetscFunctionReturn(PETSC_SUCCESS);
705: PetscCall(DMClone(dm, &dmAux));
706: PetscCall(DMSetCoordinateDM(dmAux, coordDM));
707: PetscCall(DMSetField(dmAux, 0, NULL, (PetscObject)feAux));
708: PetscCall(DMCreateDS(dmAux));
709: if (user->fieldBC) PetscCall(SetupBC(dm, dmAux, user));
710: else PetscCall(SetupMaterial(dm, dmAux, user));
711: PetscCall(DMDestroy(&dmAux));
712: PetscFunctionReturn(PETSC_SUCCESS);
713: }
715: static PetscErrorCode SetupDiscretization(DM dm, AppCtx *user)
716: {
717: DM plex, cdm = dm;
718: PetscFE fe, feAux = NULL;
719: PetscBool simplex;
720: PetscInt dim;
721: MPI_Comm comm;
723: PetscFunctionBeginUser;
724: PetscCall(DMGetDimension(dm, &dim));
725: PetscCall(DMConvert(dm, DMPLEX, &plex));
726: PetscCall(DMPlexIsSimplex(plex, &simplex));
727: PetscCall(DMDestroy(&plex));
728: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
729: PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, simplex, NULL, -1, &fe));
730: PetscCall(PetscObjectSetName((PetscObject)fe, "potential"));
731: if (user->variableCoefficient == COEFF_FIELD || user->variableCoefficient == COEFF_CHECKERBOARD_0) {
732: PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, simplex, "mat_", -1, &feAux));
733: PetscCall(PetscObjectSetName((PetscObject)feAux, "coefficient"));
734: PetscCall(PetscFECopyQuadrature(fe, feAux));
735: } else if (user->fieldBC) {
736: PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, simplex, "bc_", -1, &feAux));
737: PetscCall(PetscFECopyQuadrature(fe, feAux));
738: }
739: /* Set discretization and boundary conditions for each mesh */
740: PetscCall(DMSetField(dm, 0, NULL, (PetscObject)fe));
741: PetscCall(DMCreateDS(dm));
742: PetscCall(SetupProblem(dm, user));
743: while (cdm) {
744: PetscCall(SetupAuxDM(cdm, feAux, user));
745: if (user->bcType == DIRICHLET) {
746: PetscBool hasLabel;
748: PetscCall(DMHasLabel(cdm, "marker", &hasLabel));
749: if (!hasLabel) PetscCall(CreateBCLabel(cdm, "marker"));
750: }
751: PetscCall(DMCopyDisc(dm, cdm));
752: PetscCall(DMGetCoarseDM(cdm, &cdm));
753: }
754: PetscCall(PetscFEDestroy(&fe));
755: PetscCall(PetscFEDestroy(&feAux));
756: PetscFunctionReturn(PETSC_SUCCESS);
757: }
759: int main(int argc, char **argv)
760: {
761: DM dm; /* Problem specification */
762: SNES snes; /* nonlinear solver */
763: Vec u; /* solution vector */
764: Mat A, J; /* Jacobian matrix */
765: MatNullSpace nullSpace; /* May be necessary for Neumann conditions */
766: AppCtx user; /* user-defined work context */
767: JacActionCtx userJ; /* context for Jacobian MF action */
768: PetscReal error = 0.0; /* L_2 error in the solution */
770: PetscFunctionBeginUser;
771: PetscCall(PetscInitialize(&argc, &argv, NULL, help));
772: PetscCall(ProcessOptions(PETSC_COMM_WORLD, &user));
773: PetscCall(SNESCreate(PETSC_COMM_WORLD, &snes));
774: PetscCall(CreateMesh(PETSC_COMM_WORLD, &user, &dm));
775: PetscCall(SNESSetDM(snes, dm));
776: PetscCall(DMSetApplicationContext(dm, &user));
778: PetscCall(PetscMalloc2(1, &user.exactFuncs, 1, &user.exactFields));
779: PetscCall(SetupDiscretization(dm, &user));
781: PetscCall(DMCreateGlobalVector(dm, &u));
782: PetscCall(PetscObjectSetName((PetscObject)u, "potential"));
784: PetscCall(DMCreateMatrix(dm, &J));
785: if (user.jacobianMF) {
786: PetscInt M, m, N, n;
788: PetscCall(MatGetSize(J, &M, &N));
789: PetscCall(MatGetLocalSize(J, &m, &n));
790: PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
791: PetscCall(MatSetSizes(A, m, n, M, N));
792: PetscCall(MatSetType(A, MATSHELL));
793: PetscCall(MatSetUp(A));
794: #if 0
795: PetscCall(MatShellSetOperation(A, MATOP_MULT, (void (*)(void))FormJacobianAction));
796: #endif
798: userJ.dm = dm;
799: userJ.J = J;
800: userJ.user = &user;
802: PetscCall(DMCreateLocalVector(dm, &userJ.u));
803: if (user.fieldBC) PetscCall(DMProjectFieldLocal(dm, 0.0, userJ.u, user.exactFields, INSERT_BC_VALUES, userJ.u));
804: else PetscCall(DMProjectFunctionLocal(dm, 0.0, user.exactFuncs, NULL, INSERT_BC_VALUES, userJ.u));
805: PetscCall(MatShellSetContext(A, &userJ));
806: } else {
807: A = J;
808: }
810: nullSpace = NULL;
811: if (user.bcType != DIRICHLET) {
812: PetscCall(MatNullSpaceCreate(PetscObjectComm((PetscObject)dm), PETSC_TRUE, 0, NULL, &nullSpace));
813: PetscCall(MatSetNullSpace(A, nullSpace));
814: }
816: PetscCall(DMPlexSetSNESLocalFEM(dm, &user, &user, &user));
817: PetscCall(SNESSetJacobian(snes, A, J, NULL, NULL));
819: PetscCall(SNESSetFromOptions(snes));
821: if (user.fieldBC) PetscCall(DMProjectField(dm, 0.0, u, user.exactFields, INSERT_ALL_VALUES, u));
822: else PetscCall(DMProjectFunction(dm, 0.0, user.exactFuncs, NULL, INSERT_ALL_VALUES, u));
823: if (user.restart) {
824: #if defined(PETSC_HAVE_HDF5)
825: PetscViewer viewer;
826: char filename[PETSC_MAX_PATH_LEN];
828: PetscCall(PetscOptionsGetString(NULL, NULL, "-dm_plex_filename", filename, sizeof(filename), NULL));
829: PetscCall(PetscViewerCreate(PETSC_COMM_WORLD, &viewer));
830: PetscCall(PetscViewerSetType(viewer, PETSCVIEWERHDF5));
831: PetscCall(PetscViewerFileSetMode(viewer, FILE_MODE_READ));
832: PetscCall(PetscViewerFileSetName(viewer, filename));
833: PetscCall(PetscViewerHDF5PushGroup(viewer, "/fields"));
834: PetscCall(VecLoad(u, viewer));
835: PetscCall(PetscViewerHDF5PopGroup(viewer));
836: PetscCall(PetscViewerDestroy(&viewer));
837: #endif
838: }
839: if (user.showInitial) {
840: Vec lv;
841: PetscCall(DMGetLocalVector(dm, &lv));
842: PetscCall(DMGlobalToLocalBegin(dm, u, INSERT_VALUES, lv));
843: PetscCall(DMGlobalToLocalEnd(dm, u, INSERT_VALUES, lv));
844: PetscCall(DMPrintLocalVec(dm, "Local function", 1.0e-10, lv));
845: PetscCall(DMRestoreLocalVector(dm, &lv));
846: }
847: if (user.runType == RUN_FULL || user.runType == RUN_EXACT) {
848: PetscErrorCode (*initialGuess[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {zero};
850: if (user.nonzInit) initialGuess[0] = ecks;
851: if (user.runType == RUN_FULL) PetscCall(DMProjectFunction(dm, 0.0, initialGuess, NULL, INSERT_VALUES, u));
852: PetscCall(VecViewFromOptions(u, NULL, "-guess_vec_view"));
853: PetscCall(SNESSolve(snes, NULL, u));
854: PetscCall(SNESGetSolution(snes, &u));
855: PetscCall(SNESGetDM(snes, &dm));
857: if (user.showSolution) {
858: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Solution\n"));
859: PetscCall(VecChop(u, 3.0e-9));
860: PetscCall(VecView(u, PETSC_VIEWER_STDOUT_WORLD));
861: }
862: } else if (user.runType == RUN_PERF) {
863: Vec r;
864: PetscReal res = 0.0;
866: PetscCall(SNESGetFunction(snes, &r, NULL, NULL));
867: PetscCall(SNESComputeFunction(snes, u, r));
868: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n"));
869: PetscCall(VecChop(r, 1.0e-10));
870: PetscCall(VecNorm(r, NORM_2, &res));
871: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", (double)res));
872: } else {
873: Vec r;
874: PetscReal res = 0.0, tol = 1.0e-11;
876: /* Check discretization error */
877: PetscCall(SNESGetFunction(snes, &r, NULL, NULL));
878: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n"));
879: if (!user.quiet) PetscCall(VecView(u, PETSC_VIEWER_STDOUT_WORLD));
880: PetscCall(DMComputeL2Diff(dm, 0.0, user.exactFuncs, NULL, u, &error));
881: if (error < tol) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: < %2.1e\n", (double)tol));
882: else PetscCall(PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: %g\n", (double)error));
883: /* Check residual */
884: PetscCall(SNESComputeFunction(snes, u, r));
885: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n"));
886: PetscCall(VecChop(r, 1.0e-10));
887: if (!user.quiet) PetscCall(VecView(r, PETSC_VIEWER_STDOUT_WORLD));
888: PetscCall(VecNorm(r, NORM_2, &res));
889: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", (double)res));
890: /* Check Jacobian */
891: {
892: Vec b;
894: PetscCall(SNESComputeJacobian(snes, u, A, A));
895: PetscCall(VecDuplicate(u, &b));
896: PetscCall(VecSet(r, 0.0));
897: PetscCall(SNESComputeFunction(snes, r, b));
898: PetscCall(MatMult(A, u, r));
899: PetscCall(VecAXPY(r, 1.0, b));
900: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Au - b = Au + F(0)\n"));
901: PetscCall(VecChop(r, 1.0e-10));
902: if (!user.quiet) PetscCall(VecView(r, PETSC_VIEWER_STDOUT_WORLD));
903: PetscCall(VecNorm(r, NORM_2, &res));
904: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Linear L_2 Residual: %g\n", (double)res));
905: /* check solver */
906: if (user.checkksp) {
907: KSP ksp;
909: if (nullSpace) PetscCall(MatNullSpaceRemove(nullSpace, u));
910: PetscCall(SNESComputeJacobian(snes, u, A, J));
911: PetscCall(MatMult(A, u, b));
912: PetscCall(SNESGetKSP(snes, &ksp));
913: PetscCall(KSPSetOperators(ksp, A, J));
914: PetscCall(KSPSolve(ksp, b, r));
915: PetscCall(VecAXPY(r, -1.0, u));
916: PetscCall(VecNorm(r, NORM_2, &res));
917: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "KSP Error: %g\n", (double)res));
918: }
919: PetscCall(VecDestroy(&b));
920: }
921: }
922: PetscCall(VecViewFromOptions(u, NULL, "-vec_view"));
923: {
924: Vec nu;
926: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &nu));
927: if (nu) PetscCall(VecViewFromOptions(nu, NULL, "-coeff_view"));
928: }
930: if (user.bdIntegral) {
931: DMLabel label;
932: PetscInt id = 1;
933: PetscScalar bdInt = 0.0;
934: PetscReal exact = 3.3333333333;
936: PetscCall(DMGetLabel(dm, "marker", &label));
937: PetscCall(DMPlexComputeBdIntegral(dm, u, label, 1, &id, bd_integral_2d, &bdInt, NULL));
938: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Solution boundary integral: %.4g\n", (double)PetscAbsScalar(bdInt)));
939: PetscCheck(PetscAbsReal(PetscAbsScalar(bdInt) - exact) <= PETSC_SQRT_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Invalid boundary integral %g != %g", (double)PetscAbsScalar(bdInt), (double)exact);
940: }
942: PetscCall(MatNullSpaceDestroy(&nullSpace));
943: if (user.jacobianMF) PetscCall(VecDestroy(&userJ.u));
944: if (A != J) PetscCall(MatDestroy(&A));
945: PetscCall(MatDestroy(&J));
946: PetscCall(VecDestroy(&u));
947: PetscCall(SNESDestroy(&snes));
948: PetscCall(DMDestroy(&dm));
949: PetscCall(PetscFree2(user.exactFuncs, user.exactFields));
950: PetscCall(PetscFree(user.kgrid));
951: PetscCall(PetscFinalize());
952: return 0;
953: }
955: /*TEST
956: # 2D serial P1 test 0-4
957: test:
958: suffix: 2d_p1_0
959: requires: triangle
960: args: -run_type test -bc_type dirichlet -dm_plex_interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
962: test:
963: suffix: 2d_p1_1
964: requires: triangle
965: args: -run_type test -bc_type dirichlet -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
967: test:
968: suffix: 2d_p1_2
969: requires: triangle
970: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -bc_type dirichlet -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
972: test:
973: suffix: 2d_p1_neumann_0
974: requires: triangle
975: args: -dm_coord_space 0 -run_type test -bc_type neumann -dm_plex_boundary_label boundary -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail
977: test:
978: suffix: 2d_p1_neumann_1
979: requires: triangle
980: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -bc_type neumann -dm_plex_boundary_label boundary -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
982: # 2D serial P2 test 5-8
983: test:
984: suffix: 2d_p2_0
985: requires: triangle
986: args: -run_type test -bc_type dirichlet -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
988: test:
989: suffix: 2d_p2_1
990: requires: triangle
991: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -bc_type dirichlet -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
993: test:
994: suffix: 2d_p2_neumann_0
995: requires: triangle
996: args: -dm_coord_space 0 -run_type test -bc_type neumann -dm_plex_boundary_label boundary -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail
998: test:
999: suffix: 2d_p2_neumann_1
1000: requires: triangle
1001: args: -dm_coord_space 0 -run_type test -dm_refine_volume_limit_pre 0.0625 -bc_type neumann -dm_plex_boundary_label boundary -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail
1003: test:
1004: suffix: bd_int_0
1005: requires: triangle
1006: args: -run_type test -bc_type dirichlet -petscspace_degree 2 -bd_integral -dm_view -quiet
1008: test:
1009: suffix: bd_int_1
1010: requires: triangle
1011: args: -run_type test -dm_refine 2 -bc_type dirichlet -petscspace_degree 2 -bd_integral -dm_view -quiet
1013: # 3D serial P1 test 9-12
1014: test:
1015: suffix: 3d_p1_0
1016: requires: ctetgen
1017: args: -run_type test -dm_plex_dim 3 -bc_type dirichlet -dm_plex_interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view
1019: test:
1020: suffix: 3d_p1_1
1021: requires: ctetgen
1022: args: -run_type test -dm_plex_dim 3 -bc_type dirichlet -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view
1024: test:
1025: suffix: 3d_p1_2
1026: requires: ctetgen
1027: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -bc_type dirichlet -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view
1029: test:
1030: suffix: 3d_p1_neumann_0
1031: requires: ctetgen
1032: args: -run_type test -dm_plex_dim 3 -bc_type neumann -dm_plex_boundary_label boundary -petscspace_degree 1 -snes_fd -show_initial -dm_plex_print_fem 1 -dm_view
1034: # Analytic variable coefficient 13-20
1035: test:
1036: suffix: 13
1037: requires: triangle
1038: args: -run_type test -variable_coefficient analytic -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1039: test:
1040: suffix: 14
1041: requires: triangle
1042: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -variable_coefficient analytic -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1043: test:
1044: suffix: 15
1045: requires: triangle
1046: args: -run_type test -variable_coefficient analytic -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1047: test:
1048: suffix: 16
1049: requires: triangle
1050: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -variable_coefficient analytic -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1051: test:
1052: suffix: 17
1053: requires: ctetgen
1054: args: -run_type test -dm_plex_dim 3 -variable_coefficient analytic -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1056: test:
1057: suffix: 18
1058: requires: ctetgen
1059: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -variable_coefficient analytic -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1061: test:
1062: suffix: 19
1063: requires: ctetgen
1064: args: -run_type test -dm_plex_dim 3 -variable_coefficient analytic -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1066: test:
1067: suffix: 20
1068: requires: ctetgen
1069: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -variable_coefficient analytic -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1071: # P1 variable coefficient 21-28
1072: test:
1073: suffix: 21
1074: requires: triangle
1075: args: -run_type test -variable_coefficient field -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1077: test:
1078: suffix: 22
1079: requires: triangle
1080: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -variable_coefficient field -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1082: test:
1083: suffix: 23
1084: requires: triangle
1085: args: -run_type test -variable_coefficient field -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1087: test:
1088: suffix: 24
1089: requires: triangle
1090: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -variable_coefficient field -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1092: test:
1093: suffix: 25
1094: requires: ctetgen
1095: args: -run_type test -dm_plex_dim 3 -variable_coefficient field -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1097: test:
1098: suffix: 26
1099: requires: ctetgen
1100: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -variable_coefficient field -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1102: test:
1103: suffix: 27
1104: requires: ctetgen
1105: args: -run_type test -dm_plex_dim 3 -variable_coefficient field -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1107: test:
1108: suffix: 28
1109: requires: ctetgen
1110: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -variable_coefficient field -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1112: # P0 variable coefficient 29-36
1113: test:
1114: suffix: 29
1115: requires: triangle
1116: args: -run_type test -variable_coefficient field -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1118: test:
1119: suffix: 30
1120: requires: triangle
1121: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -variable_coefficient field -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1123: test:
1124: suffix: 31
1125: requires: triangle
1126: args: -run_type test -variable_coefficient field -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1128: test:
1129: requires: triangle
1130: suffix: 32
1131: args: -run_type test -dm_refine_volume_limit_pre 0.0625 -variable_coefficient field -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1133: test:
1134: requires: ctetgen
1135: suffix: 33
1136: args: -run_type test -dm_plex_dim 3 -variable_coefficient field -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1138: test:
1139: suffix: 34
1140: requires: ctetgen
1141: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -variable_coefficient field -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1143: test:
1144: suffix: 35
1145: requires: ctetgen
1146: args: -run_type test -dm_plex_dim 3 -variable_coefficient field -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1148: test:
1149: suffix: 36
1150: requires: ctetgen
1151: args: -run_type test -dm_plex_dim 3 -dm_refine_volume_limit_pre 0.0125 -variable_coefficient field -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1153: # Full solve 39-44
1154: test:
1155: suffix: 39
1156: requires: triangle !single
1157: args: -run_type full -dm_refine_volume_limit_pre 0.015625 -petscspace_degree 2 -pc_type gamg -pc_gamg_esteig_ksp_type cg -pc_gamg_esteig_ksp_max_it 10 -snes_rtol 1.0e-6 -ksp_rtol 1.0e-7 -ksp_monitor -ksp_converged_reason -snes_monitor_short -snes_converged_reason ::ascii_info_detail
1158: test:
1159: suffix: 40
1160: requires: triangle !single
1161: args: -run_type full -dm_refine_volume_limit_pre 0.015625 -variable_coefficient nonlinear -petscspace_degree 2 -pc_type svd -ksp_rtol 1.0e-10 -snes_monitor_short -snes_converged_reason ::ascii_info_detail
1162: test:
1163: suffix: 41
1164: requires: triangle !single
1165: args: -run_type full -dm_refine_volume_limit_pre 0.03125 -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short
1166: test:
1167: suffix: 42
1168: requires: triangle !single
1169: args: -run_type full -dm_refine_volume_limit_pre 0.0625 -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short
1170: test:
1171: suffix: 43
1172: requires: triangle !single
1173: nsize: 2
1174: args: -run_type full -dm_refine_volume_limit_pre 0.03125 -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short
1176: test:
1177: suffix: 44
1178: requires: triangle !single
1179: nsize: 2
1180: args: -run_type full -dm_refine_volume_limit_pre 0.0625 -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short
1182: # These tests use a loose tolerance just to exercise the PtAP operations for MATIS and multiple PCBDDC setup calls inside PCMG
1183: testset:
1184: requires: triangle !single
1185: nsize: 3
1186: args: -run_type full -petscspace_degree 1 -dm_mat_type is -pc_type mg -mg_coarse_pc_type bddc -pc_mg_galerkin pmat -ksp_rtol 1.0e-2 -snes_converged_reason -dm_refine_hierarchy 2 -snes_max_it 4
1187: test:
1188: suffix: gmg_bddc
1189: filter: sed -e "s/CONVERGED_FNORM_RELATIVE iterations 3/CONVERGED_FNORM_RELATIVE iterations 4/g"
1190: args: -mg_levels_pc_type jacobi
1191: test:
1192: filter: sed -e "s/iterations [0-4]/iterations 4/g"
1193: suffix: gmg_bddc_lev
1194: args: -mg_levels_pc_type bddc
1196: # Restarting
1197: testset:
1198: suffix: restart
1199: requires: hdf5 triangle !complex
1200: args: -run_type test -bc_type dirichlet -petscspace_degree 1
1201: test:
1202: args: -dm_view hdf5:sol.h5 -vec_view hdf5:sol.h5::append
1203: test:
1204: args: -dm_plex_filename sol.h5 -dm_plex_name box -restart
1206: # Periodicity
1207: test:
1208: suffix: periodic_0
1209: requires: triangle
1210: args: -run_type full -bc_type dirichlet -petscspace_degree 1 -snes_converged_reason ::ascii_info_detail
1212: test:
1213: requires: !complex
1214: suffix: periodic_1
1215: args: -quiet -run_type test -dm_plex_simplex 0 -dm_plex_box_faces 3,3 -dm_plex_box_bd periodic,periodic -vec_view vtk:test.vtu:vtk_vtu -petscspace_degree 1 -dm_refine 1
1217: # 2D serial P1 test with field bc
1218: test:
1219: suffix: field_bc_2d_p1_0
1220: requires: triangle
1221: args: -run_type test -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1223: test:
1224: suffix: field_bc_2d_p1_1
1225: requires: triangle
1226: args: -run_type test -dm_refine 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1228: test:
1229: suffix: field_bc_2d_p1_neumann_0
1230: requires: triangle
1231: args: -run_type test -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1233: test:
1234: suffix: field_bc_2d_p1_neumann_1
1235: requires: triangle
1236: args: -run_type test -dm_refine 1 -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1238: # 3D serial P1 test with field bc
1239: test:
1240: suffix: field_bc_3d_p1_0
1241: requires: ctetgen
1242: args: -run_type test -dm_plex_dim 3 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1244: test:
1245: suffix: field_bc_3d_p1_1
1246: requires: ctetgen
1247: args: -run_type test -dm_plex_dim 3 -dm_refine 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1249: test:
1250: suffix: field_bc_3d_p1_neumann_0
1251: requires: ctetgen
1252: args: -run_type test -dm_plex_dim 3 -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1254: test:
1255: suffix: field_bc_3d_p1_neumann_1
1256: requires: ctetgen
1257: args: -run_type test -dm_plex_dim 3 -dm_refine 1 -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1259: # 2D serial P2 test with field bc
1260: test:
1261: suffix: field_bc_2d_p2_0
1262: requires: triangle
1263: args: -run_type test -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1265: test:
1266: suffix: field_bc_2d_p2_1
1267: requires: triangle
1268: args: -run_type test -dm_refine 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1270: test:
1271: suffix: field_bc_2d_p2_neumann_0
1272: requires: triangle
1273: args: -run_type test -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1275: test:
1276: suffix: field_bc_2d_p2_neumann_1
1277: requires: triangle
1278: args: -run_type test -dm_refine 1 -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1280: # 3D serial P2 test with field bc
1281: test:
1282: suffix: field_bc_3d_p2_0
1283: requires: ctetgen
1284: args: -run_type test -dm_plex_dim 3 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1286: test:
1287: suffix: field_bc_3d_p2_1
1288: requires: ctetgen
1289: args: -run_type test -dm_plex_dim 3 -dm_refine 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1291: test:
1292: suffix: field_bc_3d_p2_neumann_0
1293: requires: ctetgen
1294: args: -run_type test -dm_plex_dim 3 -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1296: test:
1297: suffix: field_bc_3d_p2_neumann_1
1298: requires: ctetgen
1299: args: -run_type test -dm_plex_dim 3 -dm_refine 1 -bc_type neumann -dm_plex_boundary_label boundary -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1301: # Full solve simplex: Convergence
1302: test:
1303: suffix: 3d_p1_conv
1304: requires: ctetgen
1305: args: -run_type full -dm_plex_dim 3 -dm_refine 1 -bc_type dirichlet -petscspace_degree 1 \
1306: -snes_convergence_estimate -convest_num_refine 1 -pc_type lu
1308: # Full solve simplex: PCBDDC
1309: test:
1310: suffix: tri_bddc
1311: requires: triangle !single
1312: nsize: 5
1313: args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0
1315: # Full solve simplex: PCBDDC
1316: test:
1317: suffix: tri_parmetis_bddc
1318: requires: triangle !single parmetis
1319: nsize: 4
1320: args: -run_type full -petscpartitioner_type parmetis -dm_refine 2 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0
1322: testset:
1323: args: -run_type full -dm_plex_simplex 0 -dm_plex_box_faces 3,3 -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -petscspace_degree 2 -dm_mat_type is -pc_type bddc -ksp_type gmres -snes_monitor_short -ksp_monitor_short -snes_view -petscspace_poly_tensor -pc_bddc_corner_selection -ksp_rtol 1.e-9 -pc_bddc_use_edges 0
1324: nsize: 5
1325: output_file: output/ex12_quad_bddc.out
1326: filter: sed -e "s/aijcusparse/aij/g" -e "s/aijviennacl/aij/g" -e "s/factorization: cusparse/factorization: petsc/g"
1327: test:
1328: requires: !single
1329: suffix: quad_bddc
1330: test:
1331: requires: !single cuda
1332: suffix: quad_bddc_cuda
1333: args: -matis_localmat_type aijcusparse -pc_bddc_dirichlet_pc_factor_mat_solver_type cusparse -pc_bddc_neumann_pc_factor_mat_solver_type cusparse
1334: test:
1335: requires: !single viennacl
1336: suffix: quad_bddc_viennacl
1337: args: -matis_localmat_type aijviennacl
1339: # Full solve simplex: ASM
1340: test:
1341: suffix: tri_q2q1_asm_lu
1342: requires: triangle !single
1343: args: -run_type full -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0
1345: test:
1346: suffix: tri_q2q1_msm_lu
1347: requires: triangle !single
1348: args: -run_type full -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0
1350: test:
1351: suffix: tri_q2q1_asm_sor
1352: requires: triangle !single
1353: args: -run_type full -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0
1355: test:
1356: suffix: tri_q2q1_msm_sor
1357: requires: triangle !single
1358: args: -run_type full -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0
1360: # Full solve simplex: FAS
1361: test:
1362: suffix: fas_newton_0
1363: requires: triangle !single
1364: args: -run_type full -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short
1366: test:
1367: suffix: fas_newton_1
1368: requires: triangle !single
1369: args: -run_type full -dm_refine_hierarchy 3 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type lu -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type basic -fas_levels_ksp_rtol 1.0e-10 -fas_levels_snes_monitor_short
1370: filter: sed -e "s/total number of linear solver iterations=14/total number of linear solver iterations=15/g"
1372: test:
1373: suffix: fas_ngs_0
1374: requires: triangle !single
1375: args: -run_type full -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type ngs -fas_levels_1_snes_monitor_short
1377: # These two tests are broken because DMPlexComputeInjectorFEM() only works for regularly refined meshes
1378: test:
1379: suffix: fas_newton_coarse_0
1380: requires: pragmatic triangle
1381: TODO: broken
1382: args: -run_type full -variable_coefficient nonlinear -petscspace_degree 1 \
1383: -dm_refine 2 -dm_coarsen_hierarchy 1 -dm_plex_hash_location -dm_adaptor pragmatic \
1384: -snes_type fas -snes_fas_levels 2 -snes_converged_reason ::ascii_info_detail -snes_monitor_short -snes_view \
1385: -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -fas_coarse_snes_linesearch_type basic \
1386: -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short
1388: test:
1389: suffix: mg_newton_coarse_0
1390: requires: triangle pragmatic
1391: TODO: broken
1392: args: -run_type full -petscspace_degree 1 \
1393: -dm_refine 3 -dm_coarsen_hierarchy 3 -dm_plex_hash_location -dm_adaptor pragmatic \
1394: -snes_atol 1.0e-8 -snes_rtol 0.0 -snes_monitor_short -snes_converged_reason ::ascii_info_detail -snes_view \
1395: -ksp_type richardson -ksp_atol 1.0e-8 -ksp_rtol 0.0 -ksp_norm_type unpreconditioned -ksp_monitor_true_residual \
1396: -pc_type mg -pc_mg_levels 4 \
1397: -mg_levels_ksp_type gmres -mg_levels_pc_type ilu -mg_levels_ksp_max_it 10
1399: # Full solve tensor
1400: test:
1401: suffix: tensor_plex_2d
1402: args: -run_type test -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -dm_refine_hierarchy 2
1404: test:
1405: suffix: tensor_p4est_2d
1406: requires: p4est
1407: args: -run_type test -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 2 -dm_forest_minimum_refinement 0 -dm_plex_convert_type p4est
1409: test:
1410: suffix: tensor_plex_3d
1411: args: -run_type test -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -dm_plex_dim 3 -dm_refine_hierarchy 1 -dm_plex_box_faces 2,2,2
1413: test:
1414: suffix: tensor_p4est_3d
1415: requires: p4est
1416: args: -run_type test -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 1 -dm_forest_minimum_refinement 0 -dm_plex_dim 3 -dm_plex_convert_type p8est -dm_plex_box_faces 2,2,2
1418: test:
1419: suffix: p4est_test_q2_conformal_serial
1420: requires: p4est
1421: args: -run_type test -petscspace_degree 2 -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2
1423: test:
1424: suffix: p4est_test_q2_conformal_parallel
1425: requires: p4est
1426: nsize: 7
1427: args: -run_type test -petscspace_degree 2 -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type simple
1429: test:
1430: suffix: p4est_test_q2_conformal_parallel_parmetis
1431: requires: parmetis p4est
1432: nsize: 4
1433: args: -run_type test -petscspace_degree 2 -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis
1435: test:
1436: suffix: p4est_test_q2_nonconformal_serial
1437: requires: p4est
1438: filter: grep -v "CG or CGNE: variant"
1439: args: -run_type test -petscspace_degree 2 -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1441: test:
1442: suffix: p4est_test_q2_nonconformal_parallel
1443: requires: p4est
1444: filter: grep -v "CG or CGNE: variant"
1445: nsize: 7
1446: args: -run_type test -petscspace_degree 2 -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple
1448: test:
1449: suffix: p4est_test_q2_nonconformal_parallel_parmetis
1450: requires: parmetis p4est
1451: nsize: 4
1452: args: -run_type test -petscspace_degree 2 -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis
1454: test:
1455: suffix: p4est_exact_q2_conformal_serial
1456: requires: p4est !single !complex !__float128
1457: args: -run_type exact -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2
1459: test:
1460: suffix: p4est_exact_q2_conformal_parallel
1461: requires: p4est !single !complex !__float128
1462: nsize: 4
1463: args: -run_type exact -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2
1465: test:
1466: suffix: p4est_exact_q2_conformal_parallel_parmetis
1467: requires: parmetis p4est !single
1468: nsize: 4
1469: args: -run_type exact -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis
1471: test:
1472: suffix: p4est_exact_q2_nonconformal_serial
1473: requires: p4est
1474: args: -run_type exact -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1476: test:
1477: suffix: p4est_exact_q2_nonconformal_parallel
1478: requires: p4est
1479: nsize: 7
1480: args: -run_type exact -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple
1482: test:
1483: suffix: p4est_exact_q2_nonconformal_parallel_parmetis
1484: requires: parmetis p4est
1485: nsize: 4
1486: args: -run_type exact -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis
1488: test:
1489: suffix: p4est_full_q2_nonconformal_serial
1490: requires: p4est !single
1491: filter: grep -v "variant HERMITIAN"
1492: args: -run_type full -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1494: test:
1495: suffix: p4est_full_q2_nonconformal_parallel
1496: requires: p4est !single
1497: filter: grep -v "variant HERMITIAN"
1498: nsize: 7
1499: args: -run_type full -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple
1501: test:
1502: suffix: p4est_full_q2_nonconformal_parallel_bddcfas
1503: requires: p4est !single
1504: filter: grep -v "variant HERMITIAN"
1505: nsize: 7
1506: args: -run_type full -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -dm_mat_type is -fas_coarse_pc_type bddc -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type bddc -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple
1508: test:
1509: suffix: p4est_full_q2_nonconformal_parallel_bddc
1510: requires: p4est !single
1511: filter: grep -v "variant HERMITIAN"
1512: nsize: 7
1513: args: -run_type full -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple
1515: test:
1516: TODO: broken
1517: suffix: p4est_fas_q2_conformal_serial
1518: requires: p4est !complex !__float128
1519: args: -run_type full -variable_coefficient nonlinear -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type svd -fas_coarse_ksp_type gmres -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type svd -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_refine_hierarchy 3
1521: test:
1522: TODO: broken
1523: suffix: p4est_fas_q2_nonconformal_serial
1524: requires: p4est
1525: args: -run_type full -variable_coefficient nonlinear -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type jacobi -fas_coarse_ksp_type gmres -fas_coarse_ksp_monitor_true_residual -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1527: test:
1528: suffix: fas_newton_0_p4est
1529: requires: p4est !single !__float128
1530: args: -run_type full -variable_coefficient nonlinear -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1532: # Full solve simplicial AMR
1533: test:
1534: suffix: tri_p1_adapt_init_pragmatic
1535: requires: pragmatic
1536: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_initial 1 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor pragmatic
1538: test:
1539: suffix: tri_p2_adapt_init_pragmatic
1540: requires: pragmatic
1541: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_initial 1 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor pragmatic
1543: test:
1544: suffix: tri_p1_adapt_init_mmg
1545: requires: mmg
1546: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_initial 1 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor mmg
1548: test:
1549: suffix: tri_p2_adapt_init_mmg
1550: requires: mmg
1551: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_initial 1 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor mmg
1553: test:
1554: suffix: tri_p1_adapt_seq_pragmatic
1555: requires: pragmatic
1556: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_sequence 2 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor pragmatic
1558: test:
1559: suffix: tri_p2_adapt_seq_pragmatic
1560: requires: pragmatic
1561: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_sequence 2 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor pragmatic
1563: test:
1564: suffix: tri_p1_adapt_seq_mmg
1565: requires: mmg
1566: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_sequence 2 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor mmg
1568: test:
1569: suffix: tri_p2_adapt_seq_mmg
1570: requires: mmg
1571: args: -run_type exact -dm_refine 5 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -snes_adapt_sequence 2 -adaptor_target_num 4000 -dm_plex_metric_h_max 0.5 -dm_adaptor mmg
1573: test:
1574: suffix: tri_p1_adapt_analytic_pragmatic
1575: requires: pragmatic
1576: args: -run_type exact -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_plex_metric_h_min 0.0001 -dm_plex_metric_h_max 0.05 -dm_adaptor pragmatic
1578: test:
1579: suffix: tri_p2_adapt_analytic_pragmatic
1580: requires: pragmatic
1581: args: -run_type exact -dm_refine 3 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_plex_metric_h_min 0.0001 -dm_plex_metric_h_max 0.05 -dm_adaptor pragmatic
1583: test:
1584: suffix: tri_p1_adapt_analytic_mmg
1585: requires: mmg
1586: args: -run_type exact -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_plex_metric_h_max 0.5 -dm_adaptor mmg
1588: test:
1589: suffix: tri_p2_adapt_analytic_mmg
1590: requires: mmg
1591: args: -run_type exact -dm_refine 3 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_plex_metric_h_max 0.5 -dm_adaptor mmg
1593: test:
1594: suffix: tri_p1_adapt_uniform_pragmatic
1595: requires: pragmatic tetgen
1596: nsize: 2
1597: args: -run_type full -dm_plex_box_faces 8,8,8 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient none -snes_converged_reason ::ascii_info_detail -ksp_type cg -pc_type sor -snes_adapt_sequence 3 -adaptor_target_num 400 -dm_plex_metric_h_max 0.5 -dm_plex_dim 3 -dm_adaptor pragmatic
1598: timeoutfactor: 2
1600: test:
1601: suffix: tri_p2_adapt_uniform_pragmatic
1602: requires: pragmatic tetgen
1603: nsize: 2
1604: args: -run_type full -dm_plex_box_faces 8,8,8 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient none -snes_converged_reason ::ascii_info_detail -ksp_type cg -pc_type sor -snes_adapt_sequence 1 -adaptor_target_num 400 -dm_plex_metric_h_max 0.5 -dm_plex_dim 3 -dm_adaptor pragmatic
1605: timeoutfactor: 1
1607: test:
1608: suffix: tri_p1_adapt_uniform_mmg
1609: requires: mmg tetgen
1610: args: -run_type full -dm_plex_box_faces 4,4,4 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient none -snes_converged_reason ::ascii_info_detail -ksp_type cg -pc_type sor -snes_adapt_sequence 3 -adaptor_target_num 400 -dm_plex_metric_h_max 0.5 -dm_plex_dim 3 -dm_adaptor mmg
1611: timeoutfactor: 2
1613: test:
1614: suffix: tri_p2_adapt_uniform_mmg
1615: requires: mmg tetgen broken
1616: args: -run_type full -dm_plex_box_faces 4,4,4 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient none -snes_converged_reason ::ascii_info_detail -ksp_type cg -pc_type sor -snes_adapt_sequence 1 -adaptor_target_num 400 -dm_plex_metric_h_max 0.5 -dm_plex_dim 3 -dm_adaptor mmg
1617: timeoutfactor: 1
1619: test:
1620: suffix: tri_p1_adapt_uniform_parmmg
1621: requires: parmmg tetgen
1622: nsize: 2
1623: args: -run_type full -dm_plex_box_faces 8,8,8 -bc_type dirichlet -petscspace_degree 1 -variable_coefficient none -snes_converged_reason ::ascii_info_detail -ksp_type cg -pc_type sor -snes_adapt_sequence 3 -adaptor_target_num 400 -dm_plex_metric_h_max 0.5 -dm_plex_dim 3 -dm_adaptor parmmg
1624: timeoutfactor: 2
1626: test:
1627: suffix: tri_p2_adapt_uniform_parmmg
1628: requires: parmmg tetgen
1629: nsize: 2
1630: args: -run_type full -dm_plex_box_faces 8,8,8 -bc_type dirichlet -petscspace_degree 2 -variable_coefficient none -snes_converged_reason ::ascii_info_detail -ksp_type cg -pc_type sor -snes_adapt_sequence 1 -adaptor_target_num 400 -dm_plex_metric_h_max 0.5 -dm_plex_dim 3 -dm_adaptor parmmg
1631: timeoutfactor: 1
1633: # Full solve tensor AMR
1634: test:
1635: suffix: quad_q1_adapt_0
1636: requires: p4est
1637: args: -run_type exact -dm_plex_simplex 0 -dm_plex_convert_type p4est -bc_type dirichlet -petscspace_degree 1 -variable_coefficient ball -snes_converged_reason ::ascii_info_detail -pc_type lu -dm_forest_initial_refinement 4 -snes_adapt_initial 1 -dm_view
1638: filter: grep -v DM_
1640: test:
1641: suffix: amr_0
1642: nsize: 5
1643: args: -run_type test -petscpartitioner_type simple -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -dm_refine 1
1645: test:
1646: suffix: amr_1
1647: requires: p4est !complex
1648: args: -run_type test -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -dm_plex_convert_type p4est -dm_p4est_refine_pattern center -dm_forest_maximum_refinement 5 -dm_view vtk:amr.vtu:vtk_vtu -vec_view vtk:amr.vtu:vtk_vtu:append
1650: test:
1651: suffix: p4est_solve_bddc
1652: requires: p4est !complex
1653: args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -ksp_monitor -snes_linesearch_type bt -snes_converged_reason -snes_view -dm_plex_simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -pc_bddc_detect_disconnected
1654: nsize: 4
1656: test:
1657: suffix: p4est_solve_fas
1658: requires: p4est
1659: args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -petscspace_degree 2 -snes_max_it 10 -snes_type fas -snes_linesearch_type bt -snes_fas_levels 3 -fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type basic -fas_coarse_ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_snes_monitor_short -fas_levels_snes_max_it 4 -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type bt -fas_levels_ksp_type cg -fas_levels_pc_type jacobi -fas_levels_snes_monitor_short -fas_levels_cycle_snes_linesearch_type bt -snes_monitor_short -snes_converged_reason -snes_view -dm_plex_simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1660: nsize: 4
1661: TODO: identical machine two runs produce slightly different solver trackers
1663: test:
1664: suffix: p4est_convergence_test_1
1665: requires: p4est
1666: args: -quiet -run_type test -petscspace_degree 1 -dm_plex_simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1667: nsize: 4
1669: test:
1670: suffix: p4est_convergence_test_2
1671: requires: p4est
1672: args: -quiet -run_type test -petscspace_degree 1 -dm_plex_simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 3 -dm_forest_initial_refinement 3 -dm_forest_maximum_refinement 5 -dm_p4est_refine_pattern hash
1674: test:
1675: suffix: p4est_convergence_test_3
1676: requires: p4est
1677: args: -quiet -run_type test -petscspace_degree 1 -dm_plex_simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 4 -dm_forest_initial_refinement 4 -dm_forest_maximum_refinement 6 -dm_p4est_refine_pattern hash
1679: test:
1680: suffix: p4est_convergence_test_4
1681: requires: p4est
1682: args: -quiet -run_type test -petscspace_degree 1 -dm_plex_simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 5 -dm_forest_initial_refinement 5 -dm_forest_maximum_refinement 7 -dm_p4est_refine_pattern hash
1683: timeoutfactor: 5
1685: # Serial tests with GLVis visualization
1686: test:
1687: suffix: glvis_2d_tet_p1
1688: args: -quiet -run_type test -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_boundary_label marker -dm_plex_gmsh_periodic 0 -dm_coord_space 0
1689: test:
1690: suffix: glvis_2d_tet_p2
1691: args: -quiet -run_type test -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_boundary_label marker -dm_plex_gmsh_periodic 0 -dm_coord_space 0
1692: test:
1693: suffix: glvis_2d_hex_p1
1694: args: -quiet -run_type test -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -dm_plex_simplex 0 -dm_refine 1 -dm_coord_space 0
1695: test:
1696: suffix: glvis_2d_hex_p2
1697: args: -quiet -run_type test -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -dm_plex_simplex 0 -dm_refine 1 -dm_coord_space 0
1698: test:
1699: suffix: glvis_2d_hex_p2_p4est
1700: requires: p4est
1701: args: -quiet -run_type test -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -dm_plex_simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 1 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -viewer_glvis_dm_plex_enable_ncmesh
1702: test:
1703: suffix: glvis_2d_tet_p0
1704: args: -run_type exact -guess_vec_view glvis: -nonzero_initial_guess 1 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_boundary_label marker -petscspace_degree 0 -dm_coord_space 0 -pc_type jacobi
1705: test:
1706: suffix: glvis_2d_hex_p0
1707: args: -run_type exact -guess_vec_view glvis: -nonzero_initial_guess 1 -dm_plex_box_faces 5,7 -dm_plex_simplex 0 -petscspace_degree 0 -dm_coord_space 0 -pc_type jacobi
1709: # PCHPDDM tests
1710: testset:
1711: nsize: 4
1712: requires: hpddm slepc !single defined(PETSC_HAVE_DYNAMIC_LIBRARIES) defined(PETSC_USE_SHARED_LIBRARIES)
1713: args: -run_type test -run_test_check_ksp -quiet -petscspace_degree 1 -petscpartitioner_type simple -bc_type none -dm_plex_simplex 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 2 -pc_hpddm_coarse_p 1 -pc_hpddm_coarse_pc_type svd -ksp_rtol 1.e-10 -pc_hpddm_levels_1_st_pc_factor_shift_type INBLOCKS -ksp_converged_reason
1714: test:
1715: suffix: quad_singular_hpddm
1716: args: -dm_plex_box_faces 6,7
1717: test:
1718: requires: p4est
1719: suffix: p4est_singular_2d_hpddm
1720: args: -dm_plex_convert_type p4est -dm_forest_minimum_refinement 1 -dm_forest_initial_refinement 3 -dm_forest_maximum_refinement 3
1721: test:
1722: requires: p4est
1723: suffix: p4est_nc_singular_2d_hpddm
1724: args: -dm_plex_convert_type p4est -dm_forest_minimum_refinement 1 -dm_forest_initial_refinement 1 -dm_forest_maximum_refinement 3 -dm_p4est_refine_pattern hash
1725: testset:
1726: nsize: 4
1727: requires: hpddm slepc triangle !single defined(PETSC_HAVE_DYNAMIC_LIBRARIES) defined(PETSC_USE_SHARED_LIBRARIES)
1728: args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -petscspace_degree 2 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 4 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-1
1729: test:
1730: args: -pc_hpddm_coarse_mat_type baij -options_left no
1731: suffix: tri_hpddm_reuse_baij
1732: test:
1733: requires: !complex
1734: suffix: tri_hpddm_reuse
1735: testset:
1736: nsize: 4
1737: requires: hpddm slepc !single defined(PETSC_HAVE_DYNAMIC_LIBRARIES) defined(PETSC_USE_SHARED_LIBRARIES)
1738: args: -run_type full -petscpartitioner_type simple -dm_plex_box_faces 7,5 -dm_refine 2 -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 2 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 4 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-1
1739: test:
1740: args: -pc_hpddm_coarse_mat_type baij -options_left no
1741: suffix: quad_hpddm_reuse_baij
1742: test:
1743: requires: !complex
1744: suffix: quad_hpddm_reuse
1745: testset:
1746: nsize: 4
1747: requires: hpddm slepc !single defined(PETSC_HAVE_DYNAMIC_LIBRARIES) defined(PETSC_USE_SHARED_LIBRARIES)
1748: args: -run_type full -petscpartitioner_type simple -dm_plex_box_faces 7,5 -dm_refine 2 -dm_plex_simplex 0 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_threshold 0.1 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-1
1749: test:
1750: args: -pc_hpddm_coarse_mat_type baij -options_left no
1751: suffix: quad_hpddm_reuse_threshold_baij
1752: test:
1753: requires: !complex
1754: suffix: quad_hpddm_reuse_threshold
1755: testset:
1756: nsize: 4
1757: requires: hpddm slepc parmetis !single defined(PETSC_HAVE_DYNAMIC_LIBRARIES) defined(PETSC_USE_SHARED_LIBRARIES)
1758: filter: sed -e "s/linear solver iterations=17/linear solver iterations=16/g"
1759: args: -run_type full -petscpartitioner_type parmetis -dm_refine 3 -bc_type dirichlet -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -snes_converged_reason ::ascii_info_detail -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type icc -pc_hpddm_levels_1_eps_nev 20 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-10 -dm_plex_filename ${PETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_boundary_label marker -pc_hpddm_levels_1_sub_pc_factor_levels 3 -variable_coefficient ball -dm_plex_gmsh_periodic 0 -fp_trap 0
1760: test:
1761: args: -pc_hpddm_coarse_mat_type baij -options_left no
1762: filter: grep -v " total: nonzeros=" | grep -v " rows=" | sed -e "s/total number of linear solver iterations=[1-2][4-7]/total number of linear solver iterations=16/g"
1763: suffix: tri_parmetis_hpddm_baij
1764: test:
1765: filter: grep -v " total: nonzeros=" | grep -v " rows=" | sed -e "s/total number of linear solver iterations=[1-2][4-7]/total number of linear solver iterations=16/g"
1766: requires: !complex
1767: suffix: tri_parmetis_hpddm
1769: # 2D serial P1 tests for adaptive MG
1770: test:
1771: suffix: 2d_p1_adaptmg_0
1772: requires: triangle
1773: args: -petscpartitioner_type simple -dm_refine_hierarchy 3 -dm_plex_box_faces 4,4 -bc_type dirichlet -petscspace_degree 1 \
1774: -variable_coefficient checkerboard_0 -mat_petscspace_degree 0 -div 16 -k 3 \
1775: -snes_max_it 1 -ksp_converged_reason \
1776: -ksp_rtol 1e-8 -pc_type mg
1777: test:
1778: suffix: 2d_p1_adaptmg_1
1779: requires: triangle bamg todo
1780: args: -petscpartitioner_type simple -dm_refine_hierarchy 3 -dm_plex_box_faces 4,4 -bc_type dirichlet -petscspace_degree 1 \
1781: -variable_coefficient checkerboard_0 -mat_petscspace_degree 0 -div 16 -k 3 \
1782: -snes_max_it 1 -ksp_converged_reason \
1783: -ksp_rtol 1e-8 -pc_type mg -pc_mg_galerkin -pc_mg_adapt_interp_coarse_space eigenvector -pc_mg_adapt_interp_n 1 \
1784: -pc_mg_mesp_ksp_type richardson -pc_mg_mesp_ksp_richardson_self_scale -pc_mg_mesp_ksp_max_it 100 -pc_mg_mesp_pc_type none
1785: test:
1786: suffix: 2d_p1_adaptmg_gdsw
1787: requires: triangle
1788: nsize: 4
1789: args: -petscpartitioner_type simple -dm_refine 3 -dm_plex_box_faces 4,4 -bc_type dirichlet -petscspace_degree 1 \
1790: -variable_coefficient checkerboard_0 -mat_petscspace_degree 0 -div 16 -k 3 \
1791: -snes_max_it 1 -ksp_converged_reason \
1792: -ksp_rtol 1e-8 -pc_type mg -pc_mg_galerkin -pc_mg_adapt_interp_coarse_space gdsw -pc_mg_levels 2 -mg_levels_pc_type asm -dm_mat_type {{aij is}}
1794: test:
1795: suffix: 2d_p1_adaptmg_agdsw
1796: requires: triangle mumps
1797: nsize: 4
1798: args: -petscpartitioner_type simple -dm_refine 3 -dm_plex_box_faces 4,4 -bc_type dirichlet -petscspace_degree 1 \
1799: -variable_coefficient checkerboard_0 -mat_petscspace_degree 0 -div 16 -k 3 \
1800: -snes_max_it 1 -ksp_converged_reason \
1801: -ksp_rtol 1e-8 -pc_type mg -pc_mg_galerkin -pc_mg_adapt_interp_coarse_space gdsw -pc_mg_levels 2 -mg_levels_pc_type asm -dm_mat_type is -mg_levels_gdsw_tolerance 0.1 -mg_levels_gdsw_pseudo_pc_type qr
1803: TEST*/