Actual source code: ex30.c
1: static char help[] = "Grid based Landau collision operator with PIC interface with OpenMP setup. (one species per grid)\n";
3: /*
4: Support 2.5V with axisymmetric coordinates
5: - r,z coordinates
6: - Domain and species data input by Landau operator
7: - "radius" for each grid, normalized with electron thermal velocity
8: - Domain: (0,radius) x (-radius,radius), thus first coordinate x[0] is perpendicular velocity and 2pi*x[0] term is added for axisymmetric
9: Supports full 3V
11: */
13: #include <petscdmplex.h>
14: #include <petscds.h>
15: #include <petscdmswarm.h>
16: #include <petscksp.h>
17: #include <petsc/private/petscimpl.h>
18: #if defined(PETSC_HAVE_OPENMP) && defined(PETSC_HAVE_THREADSAFETY)
19: #include <omp.h>
20: #endif
21: #include <petsclandau.h>
22: #include <petscdmcomposite.h>
24: typedef struct {
25: Mat MpTrans;
26: Mat Mp;
27: Vec ff;
28: Vec uu;
29: } MatShellCtx;
31: typedef struct {
32: PetscInt v_target;
33: PetscInt g_target;
34: PetscInt global_vertex_id_0;
35: DM *globSwarmArray;
36: LandauCtx *ctx;
37: DM *grid_dm;
38: Mat *g_Mass;
39: Mat *globMpArray;
40: Vec *globXArray;
41: PetscBool print;
42: PetscBool print_entropy;
43: } PrintCtx;
45: PetscErrorCode MatMultMtM_SeqAIJ(Mat MtM, Vec xx, Vec yy)
46: {
47: MatShellCtx *matshellctx;
49: PetscFunctionBeginUser;
50: PetscCall(MatShellGetContext(MtM, &matshellctx));
51: PetscCheck(matshellctx, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "No context");
52: PetscCall(MatMult(matshellctx->Mp, xx, matshellctx->ff));
53: PetscCall(MatMult(matshellctx->MpTrans, matshellctx->ff, yy));
54: PetscFunctionReturn(PETSC_SUCCESS);
55: }
57: PetscErrorCode MatMultAddMtM_SeqAIJ(Mat MtM, Vec xx, Vec yy, Vec zz)
58: {
59: MatShellCtx *matshellctx;
61: PetscFunctionBeginUser;
62: PetscCall(MatShellGetContext(MtM, &matshellctx));
63: PetscCheck(matshellctx, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "No context");
64: PetscCall(MatMult(matshellctx->Mp, xx, matshellctx->ff));
65: PetscCall(MatMultAdd(matshellctx->MpTrans, matshellctx->ff, yy, zz));
66: PetscFunctionReturn(PETSC_SUCCESS);
67: }
69: PetscErrorCode createSwarm(const DM dm, PetscInt dim, DM *sw)
70: {
71: PetscInt Nc = 1;
73: PetscFunctionBeginUser;
74: PetscCall(DMCreate(PETSC_COMM_SELF, sw));
75: PetscCall(DMSetType(*sw, DMSWARM));
76: PetscCall(DMSetDimension(*sw, dim));
77: PetscCall(DMSwarmSetType(*sw, DMSWARM_PIC));
78: PetscCall(DMSwarmSetCellDM(*sw, dm));
79: PetscCall(DMSwarmRegisterPetscDatatypeField(*sw, "w_q", Nc, PETSC_REAL));
80: PetscCall(DMSwarmFinalizeFieldRegister(*sw));
81: PetscCall(DMSetFromOptions(*sw));
82: PetscCall(PetscObjectSetName((PetscObject)*sw, "Particle Grid"));
83: PetscFunctionReturn(PETSC_SUCCESS);
84: }
86: static PetscErrorCode makeSwarm(DM sw, const PetscInt dim, const PetscInt Np, const PetscReal xx[], const PetscReal yy[], const PetscReal zz[])
87: {
88: PetscReal *coords;
89: PetscDataType dtype;
90: PetscInt bs, p, zero = 0;
92: PetscFunctionBeginUser;
93: PetscCall(DMSwarmSetLocalSizes(sw, Np, zero));
94: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
95: for (p = 0; p < Np; p++) {
96: coords[p * dim + 0] = xx[p];
97: coords[p * dim + 1] = yy[p];
98: if (dim == 3) coords[p * dim + 2] = zz[p];
99: }
100: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
101: PetscFunctionReturn(PETSC_SUCCESS);
102: }
104: static PetscErrorCode createMp(const DM dm, DM sw, Mat *Mp_out)
105: {
106: PetscBool removePoints = PETSC_TRUE;
107: Mat M_p;
109: PetscFunctionBeginUser;
110: // migrate after coords are set
111: PetscCall(DMSwarmMigrate(sw, removePoints));
112: //
113: PetscCall(PetscObjectSetName((PetscObject)sw, "Particle Grid"));
115: /* PetscInt N,*count,nmin=10000,nmax=0,ntot=0; */
116: /* // count */
117: /* PetscCall(DMSwarmCreatePointPerCellCount(sw, &N, &count)); */
118: /* for (int i=0, n; i< N ; i++) { */
119: /* if ((n=count[i]) > nmax) nmax = n; */
120: /* if (n < nmin) nmin = n; */
121: /* PetscCall(PetscInfo(dm, " %d) %d particles\n", i, n)); */
122: /* ntot += n; */
123: /* } */
124: /* PetscCall(PetscFree(count)); */
125: /* PetscCall(PetscInfo(dm, " %" PetscInt_FMT " max particle / cell, and %" PetscInt_FMT " min, ratio = %g, %" PetscInt_FMT " total\n", nmax, nmin, (double)nmax/(double)nmin,ntot)); */
127: /* This gives M f = \int_\Omega \phi f, which looks like a rhs for a PDE */
128: PetscCall(DMCreateMassMatrix(sw, dm, &M_p));
129: PetscCall(DMViewFromOptions(sw, NULL, "-ex30_sw_view"));
130: // output
131: *Mp_out = M_p;
132: PetscFunctionReturn(PETSC_SUCCESS);
133: }
135: static PetscErrorCode particlesToGrid(const DM dm, DM sw, const PetscInt a_tid, const PetscInt dim, const PetscReal a_wp[], Vec rho, Mat M_p)
136: {
137: PetscReal *wq;
138: PetscDataType dtype;
139: Vec ff;
140: PetscInt bs, p, Np;
142: PetscFunctionBeginUser;
143: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wq));
144: PetscCall(DMSwarmGetLocalSize(sw, &Np));
145: for (p = 0; p < Np; p++) wq[p] = a_wp[p];
146: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wq));
147: PetscCall(PetscObjectSetName((PetscObject)rho, "rho"));
148: PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &ff));
149: PetscCall(PetscObjectSetName((PetscObject)ff, "weights"));
150: PetscCall(MatMultTranspose(M_p, ff, rho));
151: PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &ff));
152: PetscFunctionReturn(PETSC_SUCCESS);
153: }
155: //
156: // add grid to arg 'sw.w_q'
157: //
158: PetscErrorCode gridToParticles(const DM dm, DM sw, const Vec rhs, Vec work_ferhs, Mat M_p, Mat Mass)
159: {
160: PetscBool is_lsqr;
161: KSP ksp;
162: Mat PM_p = NULL, MtM, D = NULL;
163: Vec ff;
164: PetscInt N, M, nzl;
165: MatShellCtx *matshellctx = NULL;
166: PC pc;
168: PetscFunctionBeginUser;
169: // 1) apply M in, for Moore-Penrose with mass: Mp (Mp' Mp)^-1 M
170: PetscCall(MatMult(Mass, rhs, work_ferhs));
171: // 2) pseudo-inverse, first part: (Mp' Mp)^-1
172: PetscCall(KSPCreate(PETSC_COMM_SELF, &ksp));
173: PetscCall(KSPSetType(ksp, KSPCG));
174: PetscCall(KSPGetPC(ksp, &pc));
175: PetscCall(PCSetType(pc, PCJACOBI));
176: PetscCall(KSPSetOptionsPrefix(ksp, "ftop_"));
177: PetscCall(KSPSetFromOptions(ksp));
178: PetscCall(PetscObjectTypeCompare((PetscObject)ksp, KSPLSQR, &is_lsqr));
179: if (!is_lsqr) {
180: PetscCall(MatGetLocalSize(M_p, &M, &N));
181: if (N > M) {
182: PetscCall(PetscInfo(ksp, " M (%" PetscInt_FMT ") < M (%" PetscInt_FMT ") more vertices than particles: revert to lsqr\n", M, N));
183: is_lsqr = PETSC_TRUE;
184: PetscCall(KSPSetType(ksp, KSPLSQR));
185: PetscCall(PCSetType(pc, PCNONE)); // should not happen, but could solve stable (Mp^T Mp), move projection Mp before solve
186: } else {
187: PetscCall(PetscNew(&matshellctx));
188: PetscCall(MatCreateVecs(M_p, &matshellctx->uu, &matshellctx->ff));
189: if (0) {
190: PetscCall(MatTransposeMatMult(M_p, M_p, MAT_INITIAL_MATRIX, 4, &MtM));
191: PetscCall(KSPSetOperators(ksp, MtM, MtM));
192: PetscCall(PetscInfo(M_p, "createMtM KSP with explicit Mp'Mp\n"));
193: PetscCall(MatViewFromOptions(MtM, NULL, "-ftop2_MtM_mat_view"));
194: } else {
195: PetscCall(MatCreateShell(PetscObjectComm((PetscObject)dm), N, N, PETSC_DECIDE, PETSC_DECIDE, matshellctx, &MtM));
196: PetscCall(MatTranspose(M_p, MAT_INITIAL_MATRIX, &matshellctx->MpTrans));
197: matshellctx->Mp = M_p;
198: PetscCall(MatShellSetOperation(MtM, MATOP_MULT, (void (*)(void))MatMultMtM_SeqAIJ));
199: PetscCall(MatShellSetOperation(MtM, MATOP_MULT_ADD, (void (*)(void))MatMultAddMtM_SeqAIJ));
200: PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, N, N, 1, NULL, &D));
201: PetscCall(MatViewFromOptions(matshellctx->MpTrans, NULL, "-ftop2_MpT_mat_view"));
202: for (PetscInt i = 0; i < N; i++) {
203: const PetscScalar *vals;
204: const PetscInt *cols;
205: PetscScalar dot = 0;
206: PetscCall(MatGetRow(matshellctx->MpTrans, i, &nzl, &cols, &vals));
207: for (PetscInt ii = 0; ii < nzl; ii++) dot += PetscSqr(vals[ii]);
208: if (dot < PETSC_MACHINE_EPSILON) {
209: PetscCall(PetscInfo(ksp, "empty row in pseudo-inverse %d\n", (int)i));
210: is_lsqr = PETSC_TRUE; // empty rows
211: PetscCall(KSPSetType(ksp, KSPLSQR));
212: PetscCall(PCSetType(pc, PCNONE)); // should not happen, but could solve stable (Mp Mp^T), move projection Mp before solve
213: // clean up
214: PetscCall(MatDestroy(&matshellctx->MpTrans));
215: PetscCall(VecDestroy(&matshellctx->ff));
216: PetscCall(VecDestroy(&matshellctx->uu));
217: PetscCall(MatDestroy(&D));
218: PetscCall(MatDestroy(&MtM));
219: PetscCall(PetscFree(matshellctx));
220: D = NULL;
221: break;
222: }
223: PetscCall(MatSetValue(D, i, i, dot, INSERT_VALUES));
224: }
225: if (D) {
226: PetscCall(MatAssemblyBegin(D, MAT_FINAL_ASSEMBLY));
227: PetscCall(MatAssemblyEnd(D, MAT_FINAL_ASSEMBLY));
228: PetscCall(PetscInfo(M_p, "createMtMKSP Have %" PetscInt_FMT " eqs, nzl = %" PetscInt_FMT "\n", N, nzl));
229: PetscCall(KSPSetOperators(ksp, MtM, D));
230: PetscCall(MatViewFromOptions(D, NULL, "-ftop2_D_mat_view"));
231: PetscCall(MatViewFromOptions(M_p, NULL, "-ftop2_Mp_mat_view"));
232: PetscCall(MatViewFromOptions(matshellctx->MpTrans, NULL, "-ftop2_MpTranspose_mat_view"));
233: PetscCall(MatViewFromOptions(MtM, NULL, "-ftop2_MtM_mat_view"));
234: }
235: }
236: }
237: }
238: if (is_lsqr) {
239: PC pc2;
240: PetscBool is_bjac;
241: PetscCall(KSPGetPC(ksp, &pc2));
242: PetscCall(PetscObjectTypeCompare((PetscObject)pc2, PCBJACOBI, &is_bjac));
243: if (is_bjac) {
244: PetscCall(DMSwarmCreateMassMatrixSquare(sw, dm, &PM_p));
245: PetscCall(KSPSetOperators(ksp, M_p, PM_p));
246: } else {
247: PetscCall(KSPSetOperators(ksp, M_p, M_p));
248: }
249: PetscCall(MatViewFromOptions(M_p, NULL, "-ftop2_Mp_mat_view"));
250: }
251: PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &ff)); // this grabs access
252: if (!is_lsqr) {
253: PetscErrorCode ierr;
254: ierr = KSPSolve(ksp, work_ferhs, matshellctx->uu);
255: if (!ierr) {
256: // 3) with Moore-Penrose apply Mp: M_p (Mp' Mp)^-1 M
257: PetscCall(MatMult(M_p, matshellctx->uu, ff));
258: } else { // failed
259: PC pc2;
260: PetscBool is_bjac;
261: PetscCall(PetscInfo(ksp, "Solver failed, probably singular, try lsqr\n"));
262: PetscCall(KSPReset(ksp));
263: PetscCall(KSPSetType(ksp, KSPLSQR));
264: PetscCall(KSPGetPC(ksp, &pc2));
265: PetscCall(PCSetType(pc2, PCNONE)); // should not happen, but could solve stable (Mp Mp^T), move projection Mp before solve
266: PetscCall(KSPSetOptionsPrefix(ksp, "ftop_"));
267: PetscCall(KSPSetFromOptions(ksp));
268: PetscCall(PetscObjectTypeCompare((PetscObject)pc2, PCBJACOBI, &is_bjac));
269: if (is_bjac) {
270: PetscCall(DMSwarmCreateMassMatrixSquare(sw, dm, &PM_p));
271: PetscCall(KSPSetOperators(ksp, M_p, PM_p));
272: } else {
273: PetscCall(KSPSetOperators(ksp, M_p, M_p));
274: }
275: ierr = KSPSolveTranspose(ksp, work_ferhs, ff);
276: if (ierr) { PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "backup LSQR solver failed - need to add N_v > N_p Moore-Penrose pseudo-inverse"); }
277: }
278: if (D) PetscCall(MatDestroy(&D));
279: PetscCall(MatDestroy(&MtM));
280: if (matshellctx->MpTrans) PetscCall(MatDestroy(&matshellctx->MpTrans));
281: PetscCall(VecDestroy(&matshellctx->ff));
282: PetscCall(VecDestroy(&matshellctx->uu));
283: PetscCall(PetscFree(matshellctx));
284: } else {
285: PetscErrorCode ierr;
286: // finally with LSQR apply M_p^\dagger
287: ierr = KSPSolveTranspose(ksp, work_ferhs, ff);
288: if (ierr) { PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "backup LSQR solver failed - need to add N_v > N_p Moore-Penrose pseudo-inverse"); }
289: }
290: PetscCall(KSPDestroy(&ksp));
291: PetscCall(MatDestroy(&PM_p));
292: PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &ff));
293: PetscFunctionReturn(PETSC_SUCCESS);
294: }
296: #define EX30_MAX_NUM_THRDS 12
297: #define EX30_MAX_BATCH_SZ 1024
298: //
299: // add grid to arg 'globSwarmArray[].w_q'
300: //
301: PetscErrorCode gridToParticles_private(DM grid_dm[], DM globSwarmArray[], const PetscInt dim, const PetscInt v_target, const PetscInt numthreads, const PetscInt num_vertices, const PetscInt global_vertex_id, Mat globMpArray[], Mat g_Mass[], Vec t_fhat[][EX30_MAX_NUM_THRDS], PetscReal moments[], Vec globXArray[], LandauCtx *ctx)
302: {
303: PetscErrorCode ierr = (PetscErrorCode)0; // used for inside thread loops
305: PetscFunctionBeginUser;
306: // map back to particles
307: for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
308: PetscCall(PetscInfo(grid_dm[0], "g2p: global batch %" PetscInt_FMT " of %" PetscInt_FMT ", Landau batch %" PetscInt_FMT " of %" PetscInt_FMT ": map back to particles\n", global_vertex_id + 1, num_vertices, v_id_0 + 1, ctx->batch_sz));
309: //PetscPragmaOMP(parallel for)
310: for (PetscInt tid = 0; tid < numthreads; tid++) {
311: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id + v_id;
312: if (glb_v_id < num_vertices) {
313: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
314: PetscErrorCode ierr_t;
315: ierr_t = PetscInfo(grid_dm[0], "gridToParticles: global batch %" PetscInt_FMT ", local batch b=%" PetscInt_FMT ", grid g=%" PetscInt_FMT ", index(b,g) %" PetscInt_FMT "\n", global_vertex_id, v_id, grid, LAND_PACK_IDX(v_id, grid));
316: ierr_t = gridToParticles(grid_dm[grid], globSwarmArray[LAND_PACK_IDX(v_id, grid)], globXArray[LAND_PACK_IDX(v_id, grid)], t_fhat[grid][tid], globMpArray[LAND_PACK_IDX(v_id, grid)], g_Mass[grid]);
317: if (ierr_t) ierr = ierr_t;
318: }
319: }
320: }
321: PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Error in OMP loop. ierr = %d", (int)ierr);
322: /* Get moments */
323: PetscCall(PetscInfo(grid_dm[0], "Cleanup batches %" PetscInt_FMT " to %" PetscInt_FMT "\n", v_id_0, v_id_0 + numthreads));
324: for (PetscInt tid = 0; tid < numthreads; tid++) {
325: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id + v_id;
326: if (glb_v_id == v_target) {
327: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
328: PetscDataType dtype;
329: PetscReal *wp, *coords;
330: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
331: PetscInt npoints, bs = 1;
332: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp)); // take data out here
333: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
334: PetscCall(DMSwarmGetLocalSize(sw, &npoints));
335: for (PetscInt p = 0; p < npoints; p++) {
336: PetscReal v2 = 0, fact = (dim == 2) ? 2.0 * PETSC_PI * coords[p * dim + 0] : 1, w = fact * wp[p] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
337: for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(coords[p * dim + i]);
338: moments[0] += w;
339: moments[1] += w * ctx->v_0 * coords[p * dim + 1]; // z-momentum
340: moments[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
341: }
342: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
343: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
344: }
345: const PetscReal N_inv = 1 / moments[0];
346: PetscCall(PetscInfo(grid_dm[0], "gridToParticles_private [%" PetscInt_FMT "], n = %g\n", v_id, (double)moments[0]));
347: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
348: PetscDataType dtype;
349: PetscReal *wp, *coords;
350: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
351: PetscInt npoints, bs = 1;
352: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp)); // take data out here
353: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
354: PetscCall(DMSwarmGetLocalSize(sw, &npoints));
355: for (PetscInt p = 0; p < npoints; p++) {
356: const PetscReal fact = dim == 2 ? 2.0 * PETSC_PI * coords[p * dim + 0] : 1, w = fact * wp[p] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]], ww = w * N_inv;
357: if (w > PETSC_REAL_MIN) {
358: moments[3] -= ww * PetscLogReal(ww);
359: PetscCheck(ww < 1 - PETSC_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "ww (%g) > 1", (double)ww);
360: } else moments[4] -= w; // keep track of density that is lost
361: }
362: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
363: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
364: }
365: }
366: } // thread batch
367: } // batch
368: PetscFunctionReturn(PETSC_SUCCESS);
369: }
371: static void maxwellian(PetscInt dim, const PetscReal x[], PetscReal kt_m, PetscReal n, PetscReal shift, PetscScalar *u)
372: {
373: PetscInt i;
374: PetscReal v2 = 0, theta = 2.0 * kt_m; /* theta = 2kT/mc^2 */
376: if (shift != 0.) {
377: v2 = 0;
378: for (i = 0; i < dim - 1; ++i) v2 += x[i] * x[i];
379: v2 += (x[dim - 1] - shift) * (x[dim - 1] - shift);
380: /* evaluate the shifted Maxwellian */
381: u[0] += n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
382: } else {
383: /* compute the exponents, v^2 */
384: for (i = 0; i < dim; ++i) v2 += x[i] * x[i];
385: /* evaluate the Maxwellian */
386: u[0] += n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
387: }
388: }
390: static PetscErrorCode PostStep(TS ts)
391: {
392: PetscInt n, dim, nDMs, v_id;
393: PetscReal t;
394: LandauCtx *ctx;
395: Vec X;
396: PrintCtx *printCtx;
397: DM pack;
398: PetscReal moments[5], e_grid[LANDAU_MAX_GRIDS];
400: PetscFunctionBeginUser;
401: PetscCall(TSGetApplicationContext(ts, &printCtx));
402: if (!printCtx->print && !printCtx->print_entropy) PetscFunctionReturn(PETSC_SUCCESS);
403: ctx = printCtx->ctx;
404: if (printCtx->v_target < printCtx->global_vertex_id_0 || printCtx->v_target >= printCtx->global_vertex_id_0 + ctx->batch_sz) PetscFunctionReturn(PETSC_SUCCESS);
405: for (PetscInt i = 0; i < 5; i++) moments[i] = 0;
406: for (PetscInt i = 0; i < LANDAU_MAX_GRIDS; i++) e_grid[i] = 0;
407: v_id = printCtx->v_target % ctx->batch_sz;
408: PetscCall(TSGetDM(ts, &pack));
409: PetscCall(DMGetDimension(pack, &dim));
410: PetscCall(DMCompositeGetNumberDM(pack, &nDMs)); // number of vertices * number of grids
411: PetscCall(TSGetSolution(ts, &X));
412: PetscCall(TSGetStepNumber(ts, &n));
413: PetscCall(TSGetTime(ts, &t));
414: PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, printCtx->globXArray));
415: if (printCtx->print_entropy && printCtx->v_target >= 0 && 0) {
416: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
417: PetscDataType dtype;
418: PetscReal *wp, *coords;
419: DM sw = printCtx->globSwarmArray[LAND_PACK_IDX(v_id, grid)];
420: Vec work, subX = printCtx->globXArray[LAND_PACK_IDX(v_id, grid)];
421: PetscInt bs, NN;
422: // C-G moments
423: PetscCall(VecDuplicate(subX, &work));
424: PetscCall(gridToParticles(printCtx->grid_dm[grid], sw, subX, work, printCtx->globMpArray[LAND_PACK_IDX(v_id, grid)], printCtx->g_Mass[grid]));
425: PetscCall(VecDestroy(&work));
426: // moments
427: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
428: PetscCall(DMSwarmGetLocalSize(sw, &NN));
429: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
430: for (PetscInt pp = 0; pp < NN; pp++) {
431: PetscReal v2 = 0, fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
432: for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(coords[pp * dim + i]);
433: moments[0] += w;
434: moments[1] += w * ctx->v_0 * coords[pp * dim + 1]; // z-momentum
435: moments[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
436: e_grid[grid] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
437: }
438: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
439: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
440: }
441: // entropy
442: const PetscReal N_inv = 1 / moments[0];
443: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
444: PetscDataType dtype;
445: PetscReal *wp, *coords;
446: DM sw = printCtx->globSwarmArray[LAND_PACK_IDX(v_id, grid)];
447: PetscInt bs, NN;
448: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
449: PetscCall(DMSwarmGetLocalSize(sw, &NN));
450: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
451: for (PetscInt pp = 0; pp < NN; pp++) {
452: PetscReal fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]], ww = w * N_inv;
453: if (w > PETSC_REAL_MIN) {
454: moments[3] -= ww * PetscLogReal(ww);
455: } else moments[4] -= w;
456: }
457: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
458: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
459: }
460: PetscCall(PetscInfo(X, "%4d) time %e, Landau particle moments: 0: %18.12e 1: %19.12e 2: %18.12e entropy: %e loss %e. energy = %e + %e + %e\n", (int)n, (double)t, (double)moments[0], (double)moments[1], (double)moments[2], (double)moments[3], (double)(moments[4] / moments[0]), (double)e_grid[0], (double)e_grid[1], (double)e_grid[2]));
461: }
462: if (printCtx->print && printCtx->g_target >= 0) {
463: PetscInt grid = printCtx->g_target, id;
464: static PetscReal last_t = -100000, period = .5;
465: if (last_t == -100000) last_t = -period + t;
466: if (t >= last_t + period) {
467: last_t = t;
468: PetscCall(DMGetOutputSequenceNumber(ctx->plex[grid], &id, NULL));
469: PetscCall(DMSetOutputSequenceNumber(ctx->plex[grid], id + 1, t));
470: PetscCall(VecViewFromOptions(printCtx->globXArray[LAND_PACK_IDX(v_id % ctx->batch_sz, grid)], NULL, "-ex30_vec_view"));
471: if (ctx->num_grids > grid + 1) {
472: PetscCall(DMSetOutputSequenceNumber(ctx->plex[grid + 1], id + 1, t));
473: PetscCall(VecViewFromOptions(printCtx->globXArray[LAND_PACK_IDX(v_id % ctx->batch_sz, grid + 1)], NULL, "-ex30_vec_view2"));
474: }
475: PetscCall(PetscInfo(X, "%4d) time %e View\n", (int)n, (double)t));
476: }
477: }
478: PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, printCtx->globXArray));
479: PetscFunctionReturn(PETSC_SUCCESS);
480: }
482: PetscErrorCode go(TS ts, Vec X, const PetscInt num_vertices, const PetscInt a_Np, const PetscInt dim, const PetscInt v_target, const PetscInt g_target, PetscReal shift, PetscBool use_uniform_particle_grid)
483: {
484: DM pack, *globSwarmArray, grid_dm[LANDAU_MAX_GRIDS];
485: Mat *globMpArray, g_Mass[LANDAU_MAX_GRIDS];
486: KSP t_ksp[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
487: Vec t_fhat[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
488: PetscInt nDMs;
489: PetscErrorCode ierr = (PetscErrorCode)0; // used for inside thread loops
490: #if defined(PETSC_HAVE_OPENMP) && defined(PETSC_HAVE_THREADSAFETY)
491: PetscInt numthreads = PetscNumOMPThreads;
492: #else
493: PetscInt numthreads = 1;
494: #endif
495: LandauCtx *ctx;
496: Vec *globXArray;
497: PetscReal moments_0[5], moments_1a[5], moments_1b[5], dt_init;
498: PrintCtx *printCtx;
500: PetscFunctionBeginUser;
501: PetscCheck(numthreads <= EX30_MAX_NUM_THRDS, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Too many threads %" PetscInt_FMT " > %d", numthreads, EX30_MAX_NUM_THRDS);
502: PetscCheck(numthreads > 0, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Number threads %" PetscInt_FMT " > %d", numthreads, EX30_MAX_NUM_THRDS);
503: PetscCall(TSGetDM(ts, &pack));
504: PetscCall(DMGetApplicationContext(pack, &ctx));
505: PetscCheck(ctx->batch_sz % numthreads == 0, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "batch size (-dm_landau_batch_size) %" PetscInt_FMT " mod #threads %" PetscInt_FMT " must equal zero", ctx->batch_sz, numthreads);
506: PetscCall(DMCompositeGetNumberDM(pack, &nDMs)); // number of vertices * number of grids
507: PetscCall(PetscInfo(pack, "Have %" PetscInt_FMT " total grids, with %" PetscInt_FMT " Landau local batched and %" PetscInt_FMT " global items (vertices) %d DMs\n", ctx->num_grids, ctx->batch_sz, num_vertices, (int)nDMs));
508: PetscCall(PetscMalloc(sizeof(*globXArray) * nDMs, &globXArray));
509: PetscCall(PetscMalloc(sizeof(*globMpArray) * nDMs, &globMpArray));
510: PetscCall(PetscMalloc(sizeof(*globSwarmArray) * nDMs, &globSwarmArray));
511: // print ctx
512: PetscCall(PetscNew(&printCtx));
513: PetscCall(TSSetApplicationContext(ts, printCtx));
514: printCtx->v_target = v_target;
515: printCtx->g_target = g_target;
516: printCtx->ctx = ctx;
517: printCtx->globSwarmArray = globSwarmArray;
518: printCtx->grid_dm = grid_dm;
519: printCtx->globMpArray = globMpArray;
520: printCtx->g_Mass = g_Mass;
521: printCtx->globXArray = globXArray;
522: printCtx->print_entropy = PETSC_FALSE;
523: PetscOptionsBegin(PETSC_COMM_SELF, "", "Print Options", "DMPLEX");
524: PetscCall(PetscOptionsBool("-print_entropy", "Print entropy and moments at each time step", "ex30.c", printCtx->print_entropy, &printCtx->print_entropy, NULL));
525: PetscOptionsEnd();
526: // view
527: PetscCall(DMViewFromOptions(ctx->plex[g_target], NULL, "-ex30_dm_view"));
528: if (ctx->num_grids > g_target + 1) { PetscCall(DMViewFromOptions(ctx->plex[g_target + 1], NULL, "-ex30_dm_view2")); }
529: // create mesh mass matrices
530: PetscCall(VecZeroEntries(X));
531: PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray)); // just to duplicate
532: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
533: Vec subX = globXArray[LAND_PACK_IDX(0, grid)];
534: DM dm = ctx->plex[grid];
535: PetscSection s;
536: grid_dm[grid] = dm;
537: PetscCall(DMCreateMassMatrix(dm, dm, &g_Mass[grid]));
538: //
539: PetscCall(DMGetLocalSection(dm, &s));
540: PetscCall(DMPlexCreateClosureIndex(dm, s));
541: for (PetscInt tid = 0; tid < numthreads; tid++) {
542: PC pc;
543: PetscCall(VecDuplicate(subX, &t_fhat[grid][tid]));
544: PetscCall(KSPCreate(PETSC_COMM_SELF, &t_ksp[grid][tid]));
545: PetscCall(KSPSetType(t_ksp[grid][tid], KSPCG));
546: PetscCall(KSPGetPC(t_ksp[grid][tid], &pc));
547: PetscCall(PCSetType(pc, PCJACOBI));
548: PetscCall(KSPSetOptionsPrefix(t_ksp[grid][tid], "ptof_"));
549: PetscCall(KSPSetOperators(t_ksp[grid][tid], g_Mass[grid], g_Mass[grid]));
550: PetscCall(KSPSetFromOptions(t_ksp[grid][tid]));
551: }
552: }
553: PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
554: PetscCall(TSGetTimeStep(ts, &dt_init)); // we could have an adaptive time stepper
555: // loop over all vertices in chucks that are batched for TSSolve
556: for (PetscInt i = 0; i < 5; i++) moments_0[i] = moments_1a[i] = moments_1b[i] = 0;
557: for (PetscInt global_vertex_id_0 = 0; global_vertex_id_0 < num_vertices; global_vertex_id_0 += ctx->batch_sz, shift /= 2) { // outer vertex loop
558: PetscCall(TSSetTime(ts, 0));
559: PetscCall(TSSetStepNumber(ts, 0));
560: PetscCall(TSSetTimeStep(ts, dt_init));
561: PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray));
562: printCtx->global_vertex_id_0 = global_vertex_id_0;
563: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
564: PetscCall(PetscObjectSetName((PetscObject)globXArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], "rho"));
565: printCtx->print = PETSC_TRUE;
566: } else printCtx->print = PETSC_FALSE;
567: // create fake particles in batches with threads
568: for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
569: PetscReal *xx_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *yy_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *zz_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *wp_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS] /* , radiuses[80000] */;
570: PetscInt Np_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
571: // make particles
572: for (PetscInt tid = 0; tid < numthreads; tid++) {
573: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
574: if (glb_v_id < num_vertices) { // the ragged edge (in last batch)
575: PetscInt Npp0 = a_Np + (glb_v_id % (a_Np / 10 + 1)), nTargetP[LANDAU_MAX_GRIDS]; // n of particels in each dim with load imbalance
576: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
577: // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) {
578: const PetscReal kT_m = ctx->k * ctx->thermal_temps[ctx->species_offset[grid]] / ctx->masses[ctx->species_offset[grid]] / (ctx->v_0 * ctx->v_0); /* theta = 2kT/mc^2 per species */
579: PetscReal lo[3] = {-ctx->radius[grid], -ctx->radius[grid], -ctx->radius[grid]}, hi[3] = {ctx->radius[grid], ctx->radius[grid], ctx->radius[grid]}, hp[3], vole; // would be nice to get box from DM
580: PetscInt Npi = Npp0, Npj = 2 * Npp0, Npk = 1;
581: PetscRandom rand;
582: PetscReal sigma = ctx->thermal_speed[grid] / ctx->thermal_speed[0], p2_shift = grid == 0 ? shift : -shift; // symmetric shift of e vs ions
583: PetscCall(PetscRandomCreate(PETSC_COMM_SELF, &rand));
584: PetscCall(PetscRandomSetInterval(rand, 0., 1.));
585: PetscCall(PetscRandomSetFromOptions(rand));
586: if (dim == 2) lo[0] = 0; // Landau coordinate (r,z)
587: else Npi = Npj = Npk = Npp0;
588: // User: use glb_v_id to index into your data
589: const PetscInt NNreal = Npi * Npj * Npk, NN = NNreal + (dim == 2 ? 3 : 6); // make room for bounding box
590: Np_t[grid][tid] = NN;
591: if (glb_v_id == v_target) nTargetP[grid] = NN;
592: PetscCall(PetscMalloc4(NN, &xx_t[grid][tid], NN, &yy_t[grid][tid], NN, &wp_t[grid][tid], dim == 2 ? 1 : NN, &zz_t[grid][tid]));
593: hp[0] = (hi[0] - lo[0]) / Npi;
594: hp[1] = (hi[1] - lo[1]) / Npj;
595: hp[2] = (hi[2] - lo[2]) / Npk;
596: if (dim == 2) hp[2] = 1;
597: PetscCall(PetscInfo(pack, " lo = %14.7e, hi = %14.7e; hp = %14.7e, %14.7e; kT_m = %g; \n", (double)lo[1], (double)hi[1], (double)hp[0], (double)hp[1], (double)kT_m)); // temp
598: vole = hp[0] * hp[1] * hp[2] * ctx->n[grid]; // fix for multi-species
599: PetscCall(PetscInfo(pack, "Vertex %" PetscInt_FMT ", grid %" PetscInt_FMT " with %" PetscInt_FMT " particles (diagnostic target = %" PetscInt_FMT ")\n", glb_v_id, grid, NN, v_target));
600: for (PetscInt pj = 0, pp = 0; pj < Npj; pj++) {
601: for (PetscInt pk = 0; pk < Npk; pk++) {
602: for (PetscInt pi = 0; pi < Npi; pi++, pp++) {
603: PetscReal p_shift = p2_shift;
604: wp_t[grid][tid][pp] = 0;
605: if (use_uniform_particle_grid) {
606: xx_t[grid][tid][pp] = lo[0] + hp[0] / 2.0 + pi * hp[0];
607: yy_t[grid][tid][pp] = lo[1] + hp[1] / 2.0 + pj * hp[1];
608: if (dim == 3) zz_t[grid][tid][pp] = lo[2] + hp[2] / 2.0 + pk * hp[2];
609: PetscReal x[] = {xx_t[grid][tid][pp], yy_t[grid][tid][pp], dim == 2 ? 0 : zz_t[grid][tid][pp]};
610: p_shift *= ctx->thermal_speed[grid] / ctx->v_0;
611: if (ctx->sphere && PetscSqrtReal(PetscSqr(xx_t[grid][tid][pp]) + PetscSqr(yy_t[grid][tid][pp])) > 0.92 * hi[0]) {
612: wp_t[grid][tid][pp] = 0;
613: } else {
614: maxwellian(dim, x, kT_m, vole, p_shift, &wp_t[grid][tid][pp]);
615: if (ctx->num_grids == 1 && shift != 0) { // bi-maxwellian, electron plasma
616: maxwellian(dim, x, kT_m, vole, -p_shift, &wp_t[grid][tid][pp]); // symmetric shift of electron plasma
617: }
618: }
619: } else {
620: PetscReal u1, u2;
621: do {
622: do {
623: PetscCall(PetscRandomGetValueReal(rand, &u1));
624: } while (u1 == 0);
625: PetscCall(PetscRandomGetValueReal(rand, &u2));
626: //compute z0 and z1
627: PetscReal mag = sigma * PetscSqrtReal(-2.0 * PetscLogReal(u1)); // is this the same scale grid Maxwellian? t_therm = sigma
628: xx_t[grid][tid][pp] = mag * PetscCosReal(2.0 * PETSC_PI * u2);
629: yy_t[grid][tid][pp] = mag * PetscSinReal(2.0 * PETSC_PI * u2);
630: if (dim == 2 && xx_t[grid][tid][pp] < lo[0]) xx_t[grid][tid][pp] = -xx_t[grid][tid][pp];
631: if (dim == 3) zz_t[grid][tid][pp] = lo[2] + hp[2] / 2.0 + pk * hp[2];
632: if (!ctx->sphere) {
633: if (dim == 2 && xx_t[grid][tid][pp] < 0) xx_t[grid][tid][pp] = -xx_t[grid][tid][pp]; // ???
634: else if (dim == 3) {
635: while (zz_t[grid][tid][pp] >= hi[2] || zz_t[grid][tid][pp] <= lo[2]) zz_t[grid][tid][pp] *= .9;
636: }
637: while (xx_t[grid][tid][pp] >= hi[0] || xx_t[grid][tid][pp] <= lo[0]) xx_t[grid][tid][pp] *= .9;
638: while (yy_t[grid][tid][pp] >= hi[1] || yy_t[grid][tid][pp] <= lo[1]) yy_t[grid][tid][pp] *= .9;
639: } else { // 2D
640: //if (glb_v_id == v_target && pp < 80000) radiuses[pp] = PetscSqrtReal(PetscSqr(xx_t[grid][tid][pp]) + PetscSqr(yy_t[grid][tid][pp]));
641: while (PetscSqrtReal(PetscSqr(xx_t[grid][tid][pp]) + PetscSqr(yy_t[grid][tid][pp])) > 0.92 * hi[0]) { // safety factor for facets of sphere
642: xx_t[grid][tid][pp] *= .9;
643: yy_t[grid][tid][pp] *= .9;
644: }
645: }
646: if (ctx->num_grids == 1 && pp % 2 == 0) p_shift = 0; // one species, split bi-max
647: p_shift *= ctx->thermal_speed[grid] / ctx->v_0;
648: if (dim == 3) zz_t[grid][tid][pp] += p_shift;
649: else yy_t[grid][tid][pp] += p_shift;
650: wp_t[grid][tid][pp] += ctx->n[grid] / NNreal * PetscSqrtReal(ctx->masses[ctx->species_offset[grid]] / ctx->masses[0]);
651: if (p_shift <= 0) break; // add bi-max for electron plasma only
652: p_shift = -p_shift;
653: } while (ctx->num_grids == 1); // add bi-max for electron plasma only
654: }
655: {
656: if (glb_v_id == v_target) {
657: PetscReal x[] = {xx_t[grid][tid][pp], yy_t[grid][tid][pp], dim == 2 ? 0 : zz_t[grid][tid][pp]};
658: PetscReal v2 = 0, fact = dim == 2 ? 2.0 * PETSC_PI * x[0] : 1, w = fact * wp_t[grid][tid][pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
659: for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(x[i]);
660: moments_0[0] += w; // not thread safe
661: moments_0[1] += w * ctx->v_0 * x[1]; // z-momentum
662: moments_0[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
663: }
664: }
665: }
666: }
667: }
668: if (dim == 2) { // fix bounding box
669: PetscInt pp = NNreal;
670: wp_t[grid][tid][pp] = 0;
671: xx_t[grid][tid][pp] = 1.e-7;
672: yy_t[grid][tid][pp++] = hi[1] - 5.e-7;
673: wp_t[grid][tid][pp] = 0;
674: xx_t[grid][tid][pp] = hi[0] - 5.e-7;
675: yy_t[grid][tid][pp++] = 0;
676: wp_t[grid][tid][pp] = 0;
677: xx_t[grid][tid][pp] = 1.e-7;
678: yy_t[grid][tid][pp++] = lo[1] + 5.e-7;
679: } else {
680: const PetscInt p0 = NNreal;
681: for (PetscInt pj = 0; pj < 6; pj++) { xx_t[grid][tid][p0 + pj] = yy_t[grid][tid][p0 + pj] = zz_t[grid][tid][p0 + pj] = wp_t[grid][tid][p0 + pj] = 0; }
682: xx_t[grid][tid][p0 + 0] = lo[0];
683: xx_t[grid][tid][p0 + 1] = hi[0];
684: yy_t[grid][tid][p0 + 2] = lo[1];
685: yy_t[grid][tid][p0 + 3] = hi[1];
686: zz_t[grid][tid][p0 + 4] = lo[2];
687: zz_t[grid][tid][p0 + 5] = hi[2];
688: }
689: PetscCall(PetscRandomDestroy(&rand));
690: }
691: // entropy init, need global n
692: if (glb_v_id == v_target) {
693: const PetscReal N_inv = 1 / moments_0[0];
694: PetscCall(PetscInfo(pack, "Target %" PetscInt_FMT " with %" PetscInt_FMT " particels\n", glb_v_id, nTargetP[0]));
695: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
696: const PetscInt NN = nTargetP[grid];
697: for (PetscInt pp = 0; pp < NN; pp++) {
698: const PetscReal fact = dim == 2 ? 2.0 * PETSC_PI * xx_t[grid][tid][pp] : 1, w = fact * ctx->n_0 * ctx->masses[ctx->species_offset[grid]] * wp_t[grid][tid][pp], ww = w * N_inv;
699: if (w > PETSC_REAL_MIN) {
700: moments_0[3] -= ww * PetscLogReal(ww);
701: PetscCheck(ww < 1 - PETSC_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "ww (%g) > 1", (double)ww);
702: } else moments_0[4] -= w;
703: }
704: } // grid
705: } // target
706: } // active
707: } // threads
708: /* Create particle swarm */
709: for (PetscInt tid = 0; tid < numthreads; tid++) {
710: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
711: if (glb_v_id < num_vertices) { // the ragged edge of the last batch
712: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
713: PetscSection section;
714: PetscInt Nf;
715: DM dm = grid_dm[grid];
716: PetscCall(DMGetLocalSection(dm, §ion));
717: PetscCall(PetscSectionGetNumFields(section, &Nf));
718: PetscCheck(Nf == 1, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Only one species per grid supported -- todo");
719: PetscCall(DMViewFromOptions(dm, NULL, "-dm_view"));
720: PetscCall(PetscInfo(pack, "call createSwarm [%" PetscInt_FMT ".%" PetscInt_FMT "] local block index %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid)));
721: PetscCall(createSwarm(dm, dim, &globSwarmArray[LAND_PACK_IDX(v_id, grid)]));
722: }
723: } // active
724: } // threads
725: PetscCheck(ierr != 9999, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Only support one species per grid");
726: // make globMpArray
727: PetscPragmaOMP(parallel for)
728: for (PetscInt tid = 0; tid < numthreads; tid++) {
729: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
730: if (glb_v_id < num_vertices) {
731: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
732: // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) -- loop over species for Nf > 1 -- TODO
733: PetscErrorCode ierr_t;
734: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
735: ierr_t = PetscInfo(pack, "makeSwarm %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
736: ierr_t = makeSwarm(sw, dim, Np_t[grid][tid], xx_t[grid][tid], yy_t[grid][tid], zz_t[grid][tid]);
737: if (ierr_t) ierr = ierr_t;
738: }
739: }
740: }
741: for (PetscInt tid = 0; tid < numthreads; tid++) {
742: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
743: if (glb_v_id < num_vertices) {
744: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
745: DM dm = grid_dm[grid];
746: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
747: PetscCall(PetscInfo(pack, "createMp %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid)));
748: PetscCall(createMp(dm, sw, &globMpArray[LAND_PACK_IDX(v_id, grid)]));
749: PetscCall(MatViewFromOptions(globMpArray[LAND_PACK_IDX(v_id, grid)], NULL, "-mp_mat_view"));
750: }
751: }
752: }
753: // p --> g: set X
754: // PetscPragmaOMP(parallel for)
755: for (PetscInt tid = 0; tid < numthreads; tid++) {
756: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
757: if (glb_v_id < num_vertices) {
758: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
759: PetscErrorCode ierr_t;
760: DM dm = grid_dm[grid];
761: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
762: Vec subX = globXArray[LAND_PACK_IDX(v_id, grid)], work = t_fhat[grid][tid];
763: ierr_t = PetscInfo(pack, "particlesToGrid %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
764: ierr_t = particlesToGrid(dm, sw, tid, dim, wp_t[grid][tid], subX, globMpArray[LAND_PACK_IDX(v_id, grid)]);
765: if (ierr_t) ierr = ierr_t;
766: // u = M^_1 f_w
767: ierr_t = VecCopy(subX, work);
768: ierr_t = KSPSolve(t_ksp[grid][tid], work, subX);
769: if (ierr_t) ierr = ierr_t;
770: }
771: }
772: }
773: PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Error in OMP loop. ierr = %d", (int)ierr);
774: /* Cleanup */
775: for (PetscInt tid = 0; tid < numthreads; tid++) {
776: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
777: if (glb_v_id < num_vertices) {
778: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
779: PetscCall(PetscFree4(xx_t[grid][tid], yy_t[grid][tid], wp_t[grid][tid], zz_t[grid][tid]));
780: }
781: } // active
782: } // threads
783: } // (fake) particle loop
784: // standard view of initial conditions
785: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
786: PetscCall(DMSetOutputSequenceNumber(ctx->plex[g_target], 0, 0.0));
787: PetscCall(VecViewFromOptions(globXArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], NULL, "-ex30_vec_view"));
788: if (ctx->num_grids > g_target + 1) {
789: PetscCall(DMSetOutputSequenceNumber(ctx->plex[g_target + 1], 0, 0.0));
790: PetscCall(VecViewFromOptions(globXArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target + 1)], NULL, "-ex30_vec_view2"));
791: }
792: PetscCall(MatViewFromOptions(globMpArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], NULL, "-ex30_mass_mat_view"));
793: PetscCall(DMViewFromOptions(globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], NULL, "-ex30_sw_view"));
794: PetscCall(DMSwarmViewXDMF(globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], "initial_swarm.xmf")); // writes a file by default!!!
795: }
796: // coarse graining moments_1a, bring f back from grid before advance
797: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz && printCtx->print_entropy) {
798: const PetscInt v_id = v_target % ctx->batch_sz;
799: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
800: PetscDataType dtype;
801: PetscReal *wp, *coords;
802: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
803: Vec work, subX = globXArray[LAND_PACK_IDX(v_id, grid)];
804: PetscInt bs, NN;
805: // C-G moments
806: PetscCall(VecDuplicate(subX, &work));
807: PetscCall(gridToParticles(grid_dm[grid], sw, subX, work, globMpArray[LAND_PACK_IDX(v_id, grid)], g_Mass[grid]));
808: PetscCall(VecDestroy(&work));
809: // moments
810: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
811: PetscCall(DMSwarmGetLocalSize(sw, &NN));
812: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
813: for (PetscInt pp = 0; pp < NN; pp++) {
814: PetscReal v2 = 0, fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
815: for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(coords[pp * dim + i]);
816: moments_1a[0] += w;
817: moments_1a[1] += w * ctx->v_0 * coords[pp * dim + 1]; // z-momentum
818: moments_1a[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
819: }
820: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
821: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
822: }
823: // entropy
824: const PetscReal N_inv = 1 / moments_1a[0];
825: PetscCall(PetscInfo(pack, "Entropy batch %" PetscInt_FMT " of %" PetscInt_FMT ", n = %g\n", v_target, num_vertices, (double)(1 / N_inv)));
826: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
827: PetscDataType dtype;
828: PetscReal *wp, *coords;
829: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
830: PetscInt bs, NN;
831: PetscCall(DMSwarmGetLocalSize(sw, &NN));
832: PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
833: PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
834: for (PetscInt pp = 0; pp < NN; pp++) {
835: PetscReal fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]], ww = w * N_inv;
836: if (w > PETSC_REAL_MIN) {
837: moments_1a[3] -= ww * PetscLogReal(ww);
838: PetscCheck(ww < 1 - PETSC_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "ww (%g) > 1", (double)ww);
839: } else moments_1a[4] -= w;
840: }
841: PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
842: PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
843: }
844: }
845: // restore vector
846: PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
847: // view initial grid
848: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) { PetscCall(DMPlexLandauPrintNorms(X, 0)); }
849: // advance
850: PetscCall(TSSetSolution(ts, X));
851: PetscCall(PetscInfo(pack, "Advance vertex %" PetscInt_FMT " to %" PetscInt_FMT "\n", global_vertex_id_0, global_vertex_id_0 + ctx->batch_sz));
852: PetscCall(TSSetPostStep(ts, PostStep));
853: PetscCall(PostStep(ts));
854: PetscCall(TSSolve(ts, X));
855: // view
856: PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray));
857: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
858: /* Visualize original particle field */
859: DM sw = globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)];
860: Vec f;
861: PetscCall(DMSetOutputSequenceNumber(sw, 0, 0.0));
862: PetscCall(DMViewFromOptions(grid_dm[g_target], NULL, "-weights_dm_view"));
863: PetscCall(DMViewFromOptions(sw, NULL, "-weights_sw_view"));
864: PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &f));
865: PetscCall(PetscObjectSetName((PetscObject)f, "weights"));
866: PetscCall(VecViewFromOptions(f, NULL, "-weights_vec_view"));
867: PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &f));
868: //
869: PetscCall(DMPlexLandauPrintNorms(X, 1));
870: }
871: if (!use_uniform_particle_grid) { // resample to uniform grid
872: for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
873: PetscReal *xx_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *yy_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *zz_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *wp_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
874: PetscInt Np_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
875: for (PetscInt tid = 0; tid < numthreads; tid++) {
876: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
877: if (glb_v_id < num_vertices) {
878: // create uniform grid w/o weights & smaller
879: PetscInt Npp0 = (a_Np + (glb_v_id % (a_Np / 10 + 1))) / 2, Nv; // 1/2 of uniform particle grid size
880: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
881: // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++)
882: PetscReal lo[3] = {-ctx->radius[grid], -ctx->radius[grid], -ctx->radius[grid]}, hi[3] = {ctx->radius[grid], ctx->radius[grid], ctx->radius[grid]}, hp[3];
883: PetscInt Npi = Npp0, Npj = 2 * Npp0, Npk = 1, NN;
884: // delete old particles and particle mass matrix
885: PetscCall(DMDestroy(&globSwarmArray[LAND_PACK_IDX(v_id, grid)]));
886: PetscCall(MatDestroy(&globMpArray[LAND_PACK_IDX(v_id, grid)]));
887: // create fake particles in batches with threads
888: PetscCall(MatGetLocalSize(g_Mass[grid], &Nv, NULL));
889: if (dim == 2) lo[0] = 0;
890: else Npi = Npj = Npk = Npp0;
891: NN = Npi * Npj * Npk + (dim == 2 ? 3 : 6); // make a regular grid of particles Npp x Npp
892: while (Npi * Npj * Npk < Nv) { // make stable - no LS
893: Npi++;
894: Npj++;
895: Npk++;
896: NN = Npi * Npj * Npk + (dim == 2 ? 3 : 6);
897: }
898: Np_t[grid][tid] = NN;
899: PetscCall(PetscMalloc4(NN, &xx_t[grid][tid], NN, &yy_t[grid][tid], NN, &wp_t[grid][tid], dim == 2 ? 1 : NN, &zz_t[grid][tid]));
900: hp[0] = (hi[0] - lo[0]) / Npi;
901: hp[1] = (hi[1] - lo[1]) / Npj;
902: hp[2] = (hi[2] - lo[2]) / Npk;
903: if (dim == 2) hp[2] = 1;
904: PetscCall(PetscInfo(pack, "Resampling %d particles, %d vertices\n", (int)NN, (int)Nv)); // temp
905: for (PetscInt pj = 0, pp = 0; pj < Npj; pj++) {
906: for (PetscInt pk = 0; pk < Npk; pk++) {
907: for (PetscInt pi = 0; pi < Npi; pi++, pp++) {
908: wp_t[grid][tid][pp] = 0;
909: xx_t[grid][tid][pp] = lo[0] + hp[0] / 2.0 + pi * hp[0];
910: yy_t[grid][tid][pp] = lo[1] + hp[1] / 2.0 + pj * hp[1];
911: if (dim == 3) zz_t[grid][tid][pp] = lo[2] + hp[2] / 2.0 + pk * hp[2];
912: }
913: }
914: }
915: if (dim == 2) { // fix bounding box
916: PetscInt pp = NN - 3;
917: wp_t[grid][tid][pp] = 0;
918: xx_t[grid][tid][pp] = 1.e-7;
919: yy_t[grid][tid][pp++] = hi[1] - 5.e-7;
920: wp_t[grid][tid][pp] = 0;
921: xx_t[grid][tid][pp] = hi[0] - 5.e-7;
922: yy_t[grid][tid][pp++] = 0;
923: wp_t[grid][tid][pp] = 0;
924: xx_t[grid][tid][pp] = 1.e-7;
925: yy_t[grid][tid][pp++] = lo[1] + 5.e-7;
926: } else {
927: const PetscInt p0 = NN - 6;
928: for (PetscInt pj = 0; pj < 6; pj++) { xx_t[grid][tid][p0 + pj] = yy_t[grid][tid][p0 + pj] = zz_t[grid][tid][p0 + pj] = wp_t[grid][tid][p0 + pj] = 0; }
929: xx_t[grid][tid][p0 + 0] = lo[0];
930: xx_t[grid][tid][p0 + 1] = hi[0];
931: yy_t[grid][tid][p0 + 2] = lo[1];
932: yy_t[grid][tid][p0 + 3] = hi[1];
933: zz_t[grid][tid][p0 + 4] = lo[2];
934: zz_t[grid][tid][p0 + 5] = hi[2];
935: }
936: }
937: } // active
938: } // threads
939: /* Create particle swarm */
940: for (PetscInt tid = 0; tid < numthreads; tid++) {
941: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
942: if (glb_v_id < num_vertices) { // the ragged edge of the last batch
943: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
944: // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) -- loop over species for Nf > 1 -- TODO
945: PetscErrorCode ierr_t;
946: PetscSection section;
947: PetscInt Nf;
948: DM dm = grid_dm[grid];
949: ierr_t = DMGetLocalSection(dm, §ion);
950: ierr_t = PetscSectionGetNumFields(section, &Nf);
951: if (Nf != 1) ierr_t = (PetscErrorCode)9999;
952: else {
953: ierr_t = DMViewFromOptions(dm, NULL, "-dm_view");
954: ierr_t = PetscInfo(pack, "call createSwarm [%" PetscInt_FMT ".%" PetscInt_FMT "] local block index %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
955: ierr_t = createSwarm(dm, dim, &globSwarmArray[LAND_PACK_IDX(v_id, grid)]);
956: }
957: if (ierr_t) ierr = ierr_t;
958: }
959: } // active
960: } // threads
961: PetscCheck(ierr != 9999, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Only support one species per grid");
962: PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Error in OMP loop. ierr = %d", (int)ierr);
963: // make globMpArray
964: PetscPragmaOMP(parallel for)
965: for (PetscInt tid = 0; tid < numthreads; tid++) {
966: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
967: if (glb_v_id < num_vertices) {
968: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
969: // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) -- loop over species for Nf > 1 -- TODO
970: PetscErrorCode ierr_t;
971: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
972: ierr_t = PetscInfo(pack, "makeSwarm %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
973: ierr_t = makeSwarm(sw, dim, Np_t[grid][tid], xx_t[grid][tid], yy_t[grid][tid], zz_t[grid][tid]);
974: if (ierr_t) ierr = ierr_t;
975: }
976: } // active
977: } // threads
978: // create particle mass matrices
979: //PetscPragmaOMP(parallel for)
980: for (PetscInt tid = 0; tid < numthreads; tid++) {
981: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
982: if (glb_v_id < num_vertices) {
983: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
984: PetscErrorCode ierr_t;
985: DM dm = grid_dm[grid];
986: DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
987: ierr_t = PetscInfo(pack, "createMp %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
988: ierr_t = createMp(dm, sw, &globMpArray[LAND_PACK_IDX(v_id, grid)]);
989: if (ierr_t) ierr = ierr_t;
990: }
991: } // active
992: } // threads
993: PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Error in OMP loop. ierr = %d", (int)ierr);
994: /* Cleanup */
995: for (PetscInt tid = 0; tid < numthreads; tid++) {
996: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
997: if (glb_v_id < num_vertices) {
998: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
999: PetscCall(PetscFree4(xx_t[grid][tid], yy_t[grid][tid], wp_t[grid][tid], zz_t[grid][tid]));
1000: }
1001: } // active
1002: } // threads
1003: } // batch
1004: // view
1005: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
1006: /* Visualize particle field */
1007: DM sw = globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)];
1008: Vec f;
1009: PetscCall(DMSetOutputSequenceNumber(sw, 0, 0.0));
1010: PetscCall(DMViewFromOptions(sw, NULL, "-resampled_weights_sw_view"));
1011: PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &f));
1012: PetscCall(PetscObjectSetName((PetscObject)f, "resampled_weights"));
1013: PetscCall(VecViewFromOptions(f, NULL, "-resampled_weights_vec_view"));
1014: PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &f));
1015: PetscCall(DMSwarmViewXDMF(sw, "resampled.xmf"));
1016: }
1017: } // !uniform
1018: // particles to grid, compute moments and entropy, for target vertex only
1019: if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz && printCtx->print_entropy) {
1020: PetscReal energy_error_rel;
1021: PetscCall(gridToParticles_private(grid_dm, globSwarmArray, dim, v_target, numthreads, num_vertices, global_vertex_id_0, globMpArray, g_Mass, t_fhat, moments_1b, globXArray, ctx));
1022: energy_error_rel = PetscAbsReal(moments_1b[2] - moments_0[2]) / moments_0[2];
1023: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Particle Moments:\t number density momentum (par) energy entropy negative weights : # OMP threads %g\n", (double)numthreads));
1024: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\tInitial: %18.12e %19.12e %18.12e %18.12e %g %%\n", (double)moments_0[0], (double)moments_0[1], (double)moments_0[2], (double)moments_0[3], 100 * (double)(moments_0[4] / moments_0[0])));
1025: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\tCoarse-graining: %18.12e %19.12e %18.12e %18.12e %g %%\n", (double)moments_1a[0], (double)moments_1a[1], (double)moments_1a[2], (double)moments_1a[3], 100 * (double)(moments_1a[4] / moments_0[0])));
1026: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\tLandau: %18.12e %19.12e %18.12e %18.12e %g %%\n", (double)moments_1b[0], (double)moments_1b[1], (double)moments_1b[2], (double)moments_1b[3], 100 * (double)(moments_1b[4] / moments_0[0])));
1027: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Coarse-graining entropy generation = %e ; Landau entropy generation = %e\n", (double)(moments_1a[3] - moments_0[3]), (double)(moments_1b[3] - moments_0[3])));
1028: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "(relative) energy conservation: Coarse-graining = %e, Landau = %e (%g %d)\n", (double)(moments_1a[2] - moments_0[2]) / (double)moments_0[2], (double)energy_error_rel, (double)PetscLog10Real(energy_error_rel), (int)(PetscLog10Real(energy_error_rel) + .5)));
1029: }
1030: // restore vector
1031: PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
1032: // cleanup
1033: for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
1034: for (PetscInt tid = 0; tid < numthreads; tid++) {
1035: const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
1036: if (glb_v_id < num_vertices) {
1037: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1038: PetscCall(DMDestroy(&globSwarmArray[LAND_PACK_IDX(v_id, grid)]));
1039: PetscCall(MatDestroy(&globMpArray[LAND_PACK_IDX(v_id, grid)]));
1040: }
1041: }
1042: }
1043: }
1044: } // user batch, not used
1045: /* Cleanup */
1046: PetscCall(PetscFree(globXArray));
1047: PetscCall(PetscFree(globSwarmArray));
1048: PetscCall(PetscFree(globMpArray));
1049: PetscCall(PetscFree(printCtx));
1050: // clean up mass matrices
1051: for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
1052: PetscCall(MatDestroy(&g_Mass[grid]));
1053: for (PetscInt tid = 0; tid < numthreads; tid++) {
1054: PetscCall(VecDestroy(&t_fhat[grid][tid]));
1055: PetscCall(KSPDestroy(&t_ksp[grid][tid]));
1056: }
1057: }
1058: PetscFunctionReturn(PETSC_SUCCESS);
1059: }
1061: int main(int argc, char **argv)
1062: {
1063: DM pack;
1064: Vec X;
1065: PetscInt dim = 2, num_vertices = 1, Np = 10, v_target = 0, g_target = 0;
1066: TS ts;
1067: Mat J;
1068: LandauCtx *ctx;
1069: PetscReal shift = 0;
1070: PetscBool use_uniform_particle_grid = PETSC_TRUE;
1072: PetscFunctionBeginUser;
1073: PetscCall(PetscInitialize(&argc, &argv, NULL, help));
1074: // process args
1075: PetscOptionsBegin(PETSC_COMM_SELF, "", "Collision Options", "DMPLEX");
1076: PetscCall(PetscOptionsInt("-dim", "Velocity space dimension", "ex30.c", dim, &dim, NULL));
1077: PetscCall(PetscOptionsInt("-number_spatial_vertices", "Number of user spatial vertices to be batched for Landau", "ex30.c", num_vertices, &num_vertices, NULL));
1078: PetscCall(PetscOptionsInt("-number_particles_per_dimension", "Number of particles per grid, with slight modification per spatial vertex, in each dimension of base Cartesian grid", "ex30.c", Np, &Np, NULL));
1079: PetscCall(PetscOptionsBool("-use_uniform_particle_grid", "Use uniform particle grid", "ex30.c", use_uniform_particle_grid, &use_uniform_particle_grid, NULL));
1080: PetscCall(PetscOptionsInt("-vertex_view_target", "Global vertex for diagnostics", "ex30.c", v_target, &v_target, NULL));
1081: PetscCall(PetscOptionsReal("-e_shift", "Bi-Maxwellian shift", "ex30.c", shift, &shift, NULL));
1082: PetscCheck(v_target < num_vertices, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Batch to view %" PetscInt_FMT " should be < number of vertices %" PetscInt_FMT, v_target, num_vertices);
1083: PetscCall(PetscOptionsInt("-grid_view_target", "Grid to view with diagnostics", "ex30.c", g_target, &g_target, NULL));
1084: PetscOptionsEnd();
1085: /* Create a mesh */
1086: PetscCall(DMPlexLandauCreateVelocitySpace(PETSC_COMM_SELF, dim, "", &X, &J, &pack));
1087: PetscCall(DMGetApplicationContext(pack, &ctx));
1088: PetscCall(DMSetUp(pack));
1089: PetscCall(DMSetOutputSequenceNumber(pack, 0, 0.0));
1090: PetscCheck(g_target < ctx->num_grids, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Grid to view %" PetscInt_FMT " should be < number of grids %" PetscInt_FMT, g_target, ctx->num_grids);
1091: PetscCheck(ctx->batch_view_idx == v_target % ctx->batch_sz, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Global view index %" PetscInt_FMT " mode batch size %" PetscInt_FMT " != ctx->batch_view_idx %" PetscInt_FMT, v_target, ctx->batch_sz, ctx->batch_view_idx);
1092: // PetscCheck(!use_uniform_particle_grid || !ctx->sphere, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Can not use -use_uniform_particle_grid and -dm_landau_sphere");
1093: /* Create timestepping solver context */
1094: PetscCall(TSCreate(PETSC_COMM_SELF, &ts));
1095: PetscCall(TSSetDM(ts, pack));
1096: PetscCall(TSSetIFunction(ts, NULL, DMPlexLandauIFunction, NULL));
1097: PetscCall(TSSetIJacobian(ts, J, J, DMPlexLandauIJacobian, NULL));
1098: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
1099: PetscCall(TSSetFromOptions(ts));
1100: PetscCall(PetscObjectSetName((PetscObject)X, "X"));
1101: // do particle advance
1102: PetscCall(go(ts, X, num_vertices, Np, dim, v_target, g_target, shift, use_uniform_particle_grid));
1103: PetscCall(MatZeroEntries(J)); // need to zero out so as to not reuse it in Landau's logic
1104: /* clean up */
1105: PetscCall(DMPlexLandauDestroyVelocitySpace(&pack));
1106: PetscCall(TSDestroy(&ts));
1107: PetscCall(VecDestroy(&X));
1108: PetscCall(PetscFinalize());
1109: return 0;
1110: }
1112: /*TEST
1114: build:
1115: requires: !complex
1117: testset:
1118: requires: double defined(PETSC_USE_DMLANDAU_2D)
1119: output_file: output/ex30_0.out
1120: args: -dim 2 -petscspace_degree 3 -dm_landau_num_species_grid 1,1,1 -dm_refine 1 -number_particles_per_dimension 20 \
1121: -dm_landau_batch_size 4 -number_spatial_vertices 6 -vertex_view_target 5 -grid_view_target 1 -dm_landau_batch_view_idx 1 \
1122: -dm_landau_n 1.000018,1,1e-6 -dm_landau_thermal_temps 2,1,1 -dm_landau_ion_masses 2,180 -dm_landau_ion_charges 1,18 \
1123: -ftop_ksp_rtol 1e-10 -ftop_ksp_type lsqr -ftop_pc_type bjacobi -ftop_sub_pc_factor_shift_type nonzero -ftop_sub_pc_type lu -ftop_ksp_error_if_not_converged \
1124: -ksp_type gmres -ksp_error_if_not_converged -dm_landau_verbose 4 -print_entropy \
1125: -ptof_ksp_type cg -ptof_pc_type jacobi -ptof_ksp_rtol 1e-12 -ptof_ksp_error_if_not_converged\
1126: -snes_converged_reason -snes_monitor -snes_rtol 1e-12 -snes_stol 1e-12 \
1127: -ts_dt 0.01 -ts_rtol 1e-1 -ts_exact_final_time stepover -ts_max_snes_failures -1 -ts_max_steps 1 -ts_monitor -ts_type beuler
1128: test:
1129: suffix: cpu
1130: args: -dm_landau_device_type cpu -pc_type jacobi
1131: test:
1132: suffix: kokkos
1133: # failed on Sunspot@ALCF with sycl
1134: requires: kokkos_kernels !openmp !sycl
1135: args: -dm_landau_device_type kokkos -dm_mat_type aijkokkos -dm_vec_type kokkos -pc_type bjkokkos -pc_bjkokkos_ksp_type tfqmr -pc_bjkokkos_pc_type jacobi
1137: testset:
1138: requires: double !defined(PETSC_USE_DMLANDAU_2D)
1139: output_file: output/ex30_3d.out
1140: args: -dim 3 -petscspace_degree 2 -dm_landau_num_species_grid 1,1 -dm_refine 0 -number_particles_per_dimension 10 -dm_plex_hash_location \
1141: -dm_landau_batch_size 1 -number_spatial_vertices 1 -vertex_view_target 0 -grid_view_target 0 -dm_landau_batch_view_idx 0 \
1142: -dm_landau_n 1.000018,1 -dm_landau_thermal_temps 2,1 -dm_landau_ion_masses 2 -dm_landau_ion_charges 1 \
1143: -ftop_ksp_type cg -ftop_pc_type jacobi -ftop_ksp_rtol 1e-12 -ftop_ksp_error_if_not_converged -ksp_type preonly -pc_type lu -ksp_error_if_not_converged \
1144: -ptof_ksp_type cg -ptof_pc_type jacobi -ptof_ksp_rtol 1e-12 -ptof_ksp_error_if_not_converged \
1145: -snes_converged_reason -snes_monitor -snes_rtol 1e-12 -snes_stol 1e-12 \
1146: -ts_dt 0.1 -ts_exact_final_time stepover -ts_max_snes_failures -1 -ts_max_steps 1 -ts_monitor -ts_type beuler -print_entropy
1147: test:
1148: suffix: cpu_3d
1149: args: -dm_landau_device_type cpu
1150: test:
1151: suffix: kokkos_3d
1152: requires: kokkos_kernels !openmp
1153: args: -dm_landau_device_type kokkos -dm_mat_type aijkokkos -dm_vec_type kokkos -pc_type bjkokkos -pc_bjkokkos_ksp_type tfqmr -pc_bjkokkos_pc_type jacobi
1155: test:
1156: suffix: conserve
1157: requires: !complex double defined(PETSC_USE_DMLANDAU_2D) !cuda
1158: args: -dm_landau_batch_size 4 -dm_refine 0 -dm_landau_num_species_grid 1 -dm_landau_thermal_temps 1 -petscspace_degree 3 -snes_converged_reason -ts_type beuler -ts_dt .1 \
1159: -ts_max_steps 1 -ksp_type preonly -ksp_error_if_not_converged -snes_rtol 1e-14 -snes_stol 1e-14 -dm_landau_device_type cpu -number_particles_per_dimension 20 \
1160: -ptof_ksp_type cg -ptof_pc_type jacobi -ptof_ksp_rtol 1e-14 -ptof_ksp_error_if_not_converged -pc_type lu -dm_landau_simplex 1 -use_uniform_particle_grid false -dm_landau_sphere -print_entropy -number_particles_per_dimension 50 -ftop_ksp_type cg -ftop_pc_type jacobi -ftop_ksp_rtol 1e-14
1162: TEST*/