Actual source code: ex30.c

  1: static char help[] = "Grid based Landau collision operator with PIC interface with OpenMP setup. (one species per grid)\n";

  3: /*
  4:    Support 2.5V with axisymmetric coordinates
  5:      - r,z coordinates
  6:      - Domain and species data input by Landau operator
  7:      - "radius" for each grid, normalized with electron thermal velocity
  8:      - Domain: (0,radius) x (-radius,radius), thus first coordinate x[0] is perpendicular velocity and 2pi*x[0] term is added for axisymmetric
  9:    Supports full 3V

 11:  */

 13: #include <petscdmplex.h>
 14: #include <petscds.h>
 15: #include <petscdmswarm.h>
 16: #include <petscksp.h>
 17: #include <petsc/private/petscimpl.h>
 18: #if defined(PETSC_HAVE_OPENMP) && defined(PETSC_HAVE_THREADSAFETY)
 19:   #include <omp.h>
 20: #endif
 21: #include <petsclandau.h>
 22: #include <petscdmcomposite.h>

 24: typedef struct {
 25:   Mat MpTrans;
 26:   Mat Mp;
 27:   Vec ff;
 28:   Vec uu;
 29: } MatShellCtx;

 31: typedef struct {
 32:   PetscInt   v_target;
 33:   PetscInt   g_target;
 34:   PetscInt   global_vertex_id_0;
 35:   DM        *globSwarmArray;
 36:   LandauCtx *ctx;
 37:   DM        *grid_dm;
 38:   Mat       *g_Mass;
 39:   Mat       *globMpArray;
 40:   Vec       *globXArray;
 41:   PetscBool  print;
 42:   PetscBool  print_entropy;
 43: } PrintCtx;

 45: PetscErrorCode MatMultMtM_SeqAIJ(Mat MtM, Vec xx, Vec yy)
 46: {
 47:   MatShellCtx *matshellctx;

 49:   PetscFunctionBeginUser;
 50:   PetscCall(MatShellGetContext(MtM, &matshellctx));
 51:   PetscCheck(matshellctx, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "No context");
 52:   PetscCall(MatMult(matshellctx->Mp, xx, matshellctx->ff));
 53:   PetscCall(MatMult(matshellctx->MpTrans, matshellctx->ff, yy));
 54:   PetscFunctionReturn(PETSC_SUCCESS);
 55: }

 57: PetscErrorCode MatMultAddMtM_SeqAIJ(Mat MtM, Vec xx, Vec yy, Vec zz)
 58: {
 59:   MatShellCtx *matshellctx;

 61:   PetscFunctionBeginUser;
 62:   PetscCall(MatShellGetContext(MtM, &matshellctx));
 63:   PetscCheck(matshellctx, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "No context");
 64:   PetscCall(MatMult(matshellctx->Mp, xx, matshellctx->ff));
 65:   PetscCall(MatMultAdd(matshellctx->MpTrans, matshellctx->ff, yy, zz));
 66:   PetscFunctionReturn(PETSC_SUCCESS);
 67: }

 69: PetscErrorCode createSwarm(const DM dm, PetscInt dim, DM *sw)
 70: {
 71:   PetscInt Nc = 1;

 73:   PetscFunctionBeginUser;
 74:   PetscCall(DMCreate(PETSC_COMM_SELF, sw));
 75:   PetscCall(DMSetType(*sw, DMSWARM));
 76:   PetscCall(DMSetDimension(*sw, dim));
 77:   PetscCall(DMSwarmSetType(*sw, DMSWARM_PIC));
 78:   PetscCall(DMSwarmSetCellDM(*sw, dm));
 79:   PetscCall(DMSwarmRegisterPetscDatatypeField(*sw, "w_q", Nc, PETSC_REAL));
 80:   PetscCall(DMSwarmFinalizeFieldRegister(*sw));
 81:   PetscCall(DMSetFromOptions(*sw));
 82:   PetscCall(PetscObjectSetName((PetscObject)*sw, "Particle Grid"));
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: static PetscErrorCode makeSwarm(DM sw, const PetscInt dim, const PetscInt Np, const PetscReal xx[], const PetscReal yy[], const PetscReal zz[])
 87: {
 88:   PetscReal    *coords;
 89:   PetscDataType dtype;
 90:   PetscInt      bs, p, zero = 0;

 92:   PetscFunctionBeginUser;
 93:   PetscCall(DMSwarmSetLocalSizes(sw, Np, zero));
 94:   PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
 95:   for (p = 0; p < Np; p++) {
 96:     coords[p * dim + 0] = xx[p];
 97:     coords[p * dim + 1] = yy[p];
 98:     if (dim == 3) coords[p * dim + 2] = zz[p];
 99:   }
100:   PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
101:   PetscFunctionReturn(PETSC_SUCCESS);
102: }

104: static PetscErrorCode createMp(const DM dm, DM sw, Mat *Mp_out)
105: {
106:   PetscBool removePoints = PETSC_TRUE;
107:   Mat       M_p;

109:   PetscFunctionBeginUser;
110:   // migrate after coords are set
111:   PetscCall(DMSwarmMigrate(sw, removePoints));
112:   //
113:   PetscCall(PetscObjectSetName((PetscObject)sw, "Particle Grid"));

115:   /* PetscInt  N,*count,nmin=10000,nmax=0,ntot=0; */
116:   /* // count */
117:   /* PetscCall(DMSwarmCreatePointPerCellCount(sw, &N, &count)); */
118:   /* for (int i=0, n; i< N ; i++) { */
119:   /*   if ((n=count[i]) > nmax) nmax = n; */
120:   /*   if (n < nmin) nmin = n; */
121:   /*   PetscCall(PetscInfo(dm, " %d) %d particles\n", i, n)); */
122:   /*   ntot += n; */
123:   /* } */
124:   /* PetscCall(PetscFree(count)); */
125:   /* PetscCall(PetscInfo(dm, " %" PetscInt_FMT " max particle / cell, and %" PetscInt_FMT " min, ratio = %g,  %" PetscInt_FMT " total\n", nmax, nmin, (double)nmax/(double)nmin,ntot)); */

127:   /* This gives M f = \int_\Omega \phi f, which looks like a rhs for a PDE */
128:   PetscCall(DMCreateMassMatrix(sw, dm, &M_p));
129:   PetscCall(DMViewFromOptions(sw, NULL, "-ex30_sw_view"));
130:   // output
131:   *Mp_out = M_p;
132:   PetscFunctionReturn(PETSC_SUCCESS);
133: }

135: static PetscErrorCode particlesToGrid(const DM dm, DM sw, const PetscInt a_tid, const PetscInt dim, const PetscReal a_wp[], Vec rho, Mat M_p)
136: {
137:   PetscReal    *wq;
138:   PetscDataType dtype;
139:   Vec           ff;
140:   PetscInt      bs, p, Np;

142:   PetscFunctionBeginUser;
143:   PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wq));
144:   PetscCall(DMSwarmGetLocalSize(sw, &Np));
145:   for (p = 0; p < Np; p++) wq[p] = a_wp[p];
146:   PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wq));
147:   PetscCall(PetscObjectSetName((PetscObject)rho, "rho"));
148:   PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &ff));
149:   PetscCall(PetscObjectSetName((PetscObject)ff, "weights"));
150:   PetscCall(MatMultTranspose(M_p, ff, rho));
151:   PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &ff));
152:   PetscFunctionReturn(PETSC_SUCCESS);
153: }

155: //
156: // add grid to arg 'sw.w_q'
157: //
158: PetscErrorCode gridToParticles(const DM dm, DM sw, const Vec rhs, Vec work_ferhs, Mat M_p, Mat Mass)
159: {
160:   PetscBool    is_lsqr;
161:   KSP          ksp;
162:   Mat          PM_p = NULL, MtM, D = NULL;
163:   Vec          ff;
164:   PetscInt     N, M, nzl;
165:   MatShellCtx *matshellctx = NULL;
166:   PC           pc;

168:   PetscFunctionBeginUser;
169:   // 1) apply M in, for Moore-Penrose with mass: Mp (Mp' Mp)^-1 M
170:   PetscCall(MatMult(Mass, rhs, work_ferhs));
171:   // 2) pseudo-inverse, first part: (Mp' Mp)^-1
172:   PetscCall(KSPCreate(PETSC_COMM_SELF, &ksp));
173:   PetscCall(KSPSetType(ksp, KSPCG));
174:   PetscCall(KSPGetPC(ksp, &pc));
175:   PetscCall(PCSetType(pc, PCJACOBI));
176:   PetscCall(KSPSetOptionsPrefix(ksp, "ftop_"));
177:   PetscCall(KSPSetFromOptions(ksp));
178:   PetscCall(PetscObjectTypeCompare((PetscObject)ksp, KSPLSQR, &is_lsqr));
179:   if (!is_lsqr) {
180:     PetscCall(MatGetLocalSize(M_p, &M, &N));
181:     if (N > M) {
182:       PetscCall(PetscInfo(ksp, " M (%" PetscInt_FMT ") < M (%" PetscInt_FMT ") more vertices than particles: revert to lsqr\n", M, N));
183:       is_lsqr = PETSC_TRUE;
184:       PetscCall(KSPSetType(ksp, KSPLSQR));
185:       PetscCall(PCSetType(pc, PCNONE)); // should not happen, but could solve stable (Mp^T Mp), move projection Mp before solve
186:     } else {
187:       PetscCall(PetscNew(&matshellctx));
188:       PetscCall(MatCreateVecs(M_p, &matshellctx->uu, &matshellctx->ff));
189:       if (0) {
190:         PetscCall(MatTransposeMatMult(M_p, M_p, MAT_INITIAL_MATRIX, 4, &MtM));
191:         PetscCall(KSPSetOperators(ksp, MtM, MtM));
192:         PetscCall(PetscInfo(M_p, "createMtM KSP with explicit Mp'Mp\n"));
193:         PetscCall(MatViewFromOptions(MtM, NULL, "-ftop2_MtM_mat_view"));
194:       } else {
195:         PetscCall(MatCreateShell(PetscObjectComm((PetscObject)dm), N, N, PETSC_DECIDE, PETSC_DECIDE, matshellctx, &MtM));
196:         PetscCall(MatTranspose(M_p, MAT_INITIAL_MATRIX, &matshellctx->MpTrans));
197:         matshellctx->Mp = M_p;
198:         PetscCall(MatShellSetOperation(MtM, MATOP_MULT, (void (*)(void))MatMultMtM_SeqAIJ));
199:         PetscCall(MatShellSetOperation(MtM, MATOP_MULT_ADD, (void (*)(void))MatMultAddMtM_SeqAIJ));
200:         PetscCall(MatCreateSeqAIJ(PETSC_COMM_SELF, N, N, 1, NULL, &D));
201:         PetscCall(MatViewFromOptions(matshellctx->MpTrans, NULL, "-ftop2_MpT_mat_view"));
202:         for (PetscInt i = 0; i < N; i++) {
203:           const PetscScalar *vals;
204:           const PetscInt    *cols;
205:           PetscScalar        dot = 0;
206:           PetscCall(MatGetRow(matshellctx->MpTrans, i, &nzl, &cols, &vals));
207:           for (PetscInt ii = 0; ii < nzl; ii++) dot += PetscSqr(vals[ii]);
208:           if (dot < PETSC_MACHINE_EPSILON) {
209:             PetscCall(PetscInfo(ksp, "empty row in pseudo-inverse %d\n", (int)i));
210:             is_lsqr = PETSC_TRUE; // empty rows
211:             PetscCall(KSPSetType(ksp, KSPLSQR));
212:             PetscCall(PCSetType(pc, PCNONE)); // should not happen, but could solve stable (Mp Mp^T), move projection Mp before solve
213:             // clean up
214:             PetscCall(MatDestroy(&matshellctx->MpTrans));
215:             PetscCall(VecDestroy(&matshellctx->ff));
216:             PetscCall(VecDestroy(&matshellctx->uu));
217:             PetscCall(MatDestroy(&D));
218:             PetscCall(MatDestroy(&MtM));
219:             PetscCall(PetscFree(matshellctx));
220:             D = NULL;
221:             break;
222:           }
223:           PetscCall(MatSetValue(D, i, i, dot, INSERT_VALUES));
224:         }
225:         if (D) {
226:           PetscCall(MatAssemblyBegin(D, MAT_FINAL_ASSEMBLY));
227:           PetscCall(MatAssemblyEnd(D, MAT_FINAL_ASSEMBLY));
228:           PetscCall(PetscInfo(M_p, "createMtMKSP Have %" PetscInt_FMT " eqs, nzl = %" PetscInt_FMT "\n", N, nzl));
229:           PetscCall(KSPSetOperators(ksp, MtM, D));
230:           PetscCall(MatViewFromOptions(D, NULL, "-ftop2_D_mat_view"));
231:           PetscCall(MatViewFromOptions(M_p, NULL, "-ftop2_Mp_mat_view"));
232:           PetscCall(MatViewFromOptions(matshellctx->MpTrans, NULL, "-ftop2_MpTranspose_mat_view"));
233:           PetscCall(MatViewFromOptions(MtM, NULL, "-ftop2_MtM_mat_view"));
234:         }
235:       }
236:     }
237:   }
238:   if (is_lsqr) {
239:     PC        pc2;
240:     PetscBool is_bjac;
241:     PetscCall(KSPGetPC(ksp, &pc2));
242:     PetscCall(PetscObjectTypeCompare((PetscObject)pc2, PCBJACOBI, &is_bjac));
243:     if (is_bjac) {
244:       PetscCall(DMSwarmCreateMassMatrixSquare(sw, dm, &PM_p));
245:       PetscCall(KSPSetOperators(ksp, M_p, PM_p));
246:     } else {
247:       PetscCall(KSPSetOperators(ksp, M_p, M_p));
248:     }
249:     PetscCall(MatViewFromOptions(M_p, NULL, "-ftop2_Mp_mat_view"));
250:   }
251:   PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &ff)); // this grabs access
252:   if (!is_lsqr) {
253:     PetscErrorCode ierr;
254:     ierr = KSPSolve(ksp, work_ferhs, matshellctx->uu);
255:     if (!ierr) {
256:       // 3) with Moore-Penrose apply Mp: M_p (Mp' Mp)^-1 M
257:       PetscCall(MatMult(M_p, matshellctx->uu, ff));
258:     } else { // failed
259:       PC        pc2;
260:       PetscBool is_bjac;
261:       PetscCall(PetscInfo(ksp, "Solver failed, probably singular, try lsqr\n"));
262:       PetscCall(KSPReset(ksp));
263:       PetscCall(KSPSetType(ksp, KSPLSQR));
264:       PetscCall(KSPGetPC(ksp, &pc2));
265:       PetscCall(PCSetType(pc2, PCNONE)); // should not happen, but could solve stable (Mp Mp^T), move projection Mp before solve
266:       PetscCall(KSPSetOptionsPrefix(ksp, "ftop_"));
267:       PetscCall(KSPSetFromOptions(ksp));
268:       PetscCall(PetscObjectTypeCompare((PetscObject)pc2, PCBJACOBI, &is_bjac));
269:       if (is_bjac) {
270:         PetscCall(DMSwarmCreateMassMatrixSquare(sw, dm, &PM_p));
271:         PetscCall(KSPSetOperators(ksp, M_p, PM_p));
272:       } else {
273:         PetscCall(KSPSetOperators(ksp, M_p, M_p));
274:       }
275:       ierr = KSPSolveTranspose(ksp, work_ferhs, ff);
276:       if (ierr) { PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "backup LSQR solver failed - need to add N_v > N_p Moore-Penrose pseudo-inverse"); }
277:     }
278:     if (D) PetscCall(MatDestroy(&D));
279:     PetscCall(MatDestroy(&MtM));
280:     if (matshellctx->MpTrans) PetscCall(MatDestroy(&matshellctx->MpTrans));
281:     PetscCall(VecDestroy(&matshellctx->ff));
282:     PetscCall(VecDestroy(&matshellctx->uu));
283:     PetscCall(PetscFree(matshellctx));
284:   } else {
285:     PetscErrorCode ierr;
286:     // finally with LSQR apply M_p^\dagger
287:     ierr = KSPSolveTranspose(ksp, work_ferhs, ff);
288:     if (ierr) { PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "backup LSQR solver failed - need to add N_v > N_p Moore-Penrose pseudo-inverse"); }
289:   }
290:   PetscCall(KSPDestroy(&ksp));
291:   PetscCall(MatDestroy(&PM_p));
292:   PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &ff));
293:   PetscFunctionReturn(PETSC_SUCCESS);
294: }

296: #define EX30_MAX_NUM_THRDS 12
297: #define EX30_MAX_BATCH_SZ  1024
298: //
299: // add grid to arg 'globSwarmArray[].w_q'
300: //
301: PetscErrorCode gridToParticles_private(DM grid_dm[], DM globSwarmArray[], const PetscInt dim, const PetscInt v_target, const PetscInt numthreads, const PetscInt num_vertices, const PetscInt global_vertex_id, Mat globMpArray[], Mat g_Mass[], Vec t_fhat[][EX30_MAX_NUM_THRDS], PetscReal moments[], Vec globXArray[], LandauCtx *ctx)
302: {
303:   PetscErrorCode ierr = (PetscErrorCode)0; // used for inside thread loops

305:   PetscFunctionBeginUser;
306:   // map back to particles
307:   for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
308:     PetscCall(PetscInfo(grid_dm[0], "g2p: global batch %" PetscInt_FMT " of %" PetscInt_FMT ", Landau batch %" PetscInt_FMT " of %" PetscInt_FMT ": map back to particles\n", global_vertex_id + 1, num_vertices, v_id_0 + 1, ctx->batch_sz));
309:     //PetscPragmaOMP(parallel for)
310:     for (PetscInt tid = 0; tid < numthreads; tid++) {
311:       const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id + v_id;
312:       if (glb_v_id < num_vertices) {
313:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
314:           PetscErrorCode ierr_t;
315:           ierr_t = PetscInfo(grid_dm[0], "gridToParticles: global batch %" PetscInt_FMT ", local batch b=%" PetscInt_FMT ", grid g=%" PetscInt_FMT ", index(b,g) %" PetscInt_FMT "\n", global_vertex_id, v_id, grid, LAND_PACK_IDX(v_id, grid));
316:           ierr_t = gridToParticles(grid_dm[grid], globSwarmArray[LAND_PACK_IDX(v_id, grid)], globXArray[LAND_PACK_IDX(v_id, grid)], t_fhat[grid][tid], globMpArray[LAND_PACK_IDX(v_id, grid)], g_Mass[grid]);
317:           if (ierr_t) ierr = ierr_t;
318:         }
319:       }
320:     }
321:     PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Error in OMP loop. ierr = %d", (int)ierr);
322:     /* Get moments */
323:     PetscCall(PetscInfo(grid_dm[0], "Cleanup batches %" PetscInt_FMT " to %" PetscInt_FMT "\n", v_id_0, v_id_0 + numthreads));
324:     for (PetscInt tid = 0; tid < numthreads; tid++) {
325:       const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id + v_id;
326:       if (glb_v_id == v_target) {
327:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
328:           PetscDataType dtype;
329:           PetscReal    *wp, *coords;
330:           DM            sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
331:           PetscInt      npoints, bs = 1;
332:           PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp)); // take data out here
333:           PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
334:           PetscCall(DMSwarmGetLocalSize(sw, &npoints));
335:           for (PetscInt p = 0; p < npoints; p++) {
336:             PetscReal v2 = 0, fact = (dim == 2) ? 2.0 * PETSC_PI * coords[p * dim + 0] : 1, w = fact * wp[p] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
337:             for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(coords[p * dim + i]);
338:             moments[0] += w;
339:             moments[1] += w * ctx->v_0 * coords[p * dim + 1]; // z-momentum
340:             moments[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
341:           }
342:           PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
343:           PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
344:         }
345:         const PetscReal N_inv = 1 / moments[0];
346:         PetscCall(PetscInfo(grid_dm[0], "gridToParticles_private [%" PetscInt_FMT "], n = %g\n", v_id, (double)moments[0]));
347:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
348:           PetscDataType dtype;
349:           PetscReal    *wp, *coords;
350:           DM            sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
351:           PetscInt      npoints, bs = 1;
352:           PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp)); // take data out here
353:           PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
354:           PetscCall(DMSwarmGetLocalSize(sw, &npoints));
355:           for (PetscInt p = 0; p < npoints; p++) {
356:             const PetscReal fact = dim == 2 ? 2.0 * PETSC_PI * coords[p * dim + 0] : 1, w = fact * wp[p] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]], ww = w * N_inv;
357:             if (w > PETSC_REAL_MIN) {
358:               moments[3] -= ww * PetscLogReal(ww);
359:               PetscCheck(ww < 1 - PETSC_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "ww (%g) > 1", (double)ww);
360:             } else moments[4] -= w; // keep track of density that is lost
361:           }
362:           PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
363:           PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
364:         }
365:       }
366:     } // thread batch
367:   } // batch
368:   PetscFunctionReturn(PETSC_SUCCESS);
369: }

371: static void maxwellian(PetscInt dim, const PetscReal x[], PetscReal kt_m, PetscReal n, PetscReal shift, PetscScalar *u)
372: {
373:   PetscInt  i;
374:   PetscReal v2 = 0, theta = 2.0 * kt_m; /* theta = 2kT/mc^2 */

376:   if (shift != 0.) {
377:     v2 = 0;
378:     for (i = 0; i < dim - 1; ++i) v2 += x[i] * x[i];
379:     v2 += (x[dim - 1] - shift) * (x[dim - 1] - shift);
380:     /* evaluate the shifted Maxwellian */
381:     u[0] += n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
382:   } else {
383:     /* compute the exponents, v^2 */
384:     for (i = 0; i < dim; ++i) v2 += x[i] * x[i];
385:     /* evaluate the Maxwellian */
386:     u[0] += n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
387:   }
388: }

390: static PetscErrorCode PostStep(TS ts)
391: {
392:   PetscInt   n, dim, nDMs, v_id;
393:   PetscReal  t;
394:   LandauCtx *ctx;
395:   Vec        X;
396:   PrintCtx  *printCtx;
397:   DM         pack;
398:   PetscReal  moments[5], e_grid[LANDAU_MAX_GRIDS];

400:   PetscFunctionBeginUser;
401:   PetscCall(TSGetApplicationContext(ts, &printCtx));
402:   if (!printCtx->print && !printCtx->print_entropy) PetscFunctionReturn(PETSC_SUCCESS);
403:   ctx = printCtx->ctx;
404:   if (printCtx->v_target < printCtx->global_vertex_id_0 || printCtx->v_target >= printCtx->global_vertex_id_0 + ctx->batch_sz) PetscFunctionReturn(PETSC_SUCCESS);
405:   for (PetscInt i = 0; i < 5; i++) moments[i] = 0;
406:   for (PetscInt i = 0; i < LANDAU_MAX_GRIDS; i++) e_grid[i] = 0;
407:   v_id = printCtx->v_target % ctx->batch_sz;
408:   PetscCall(TSGetDM(ts, &pack));
409:   PetscCall(DMGetDimension(pack, &dim));
410:   PetscCall(DMCompositeGetNumberDM(pack, &nDMs)); // number of vertices * number of grids
411:   PetscCall(TSGetSolution(ts, &X));
412:   PetscCall(TSGetStepNumber(ts, &n));
413:   PetscCall(TSGetTime(ts, &t));
414:   PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, printCtx->globXArray));
415:   if (printCtx->print_entropy && printCtx->v_target >= 0 && 0) {
416:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
417:       PetscDataType dtype;
418:       PetscReal    *wp, *coords;
419:       DM            sw = printCtx->globSwarmArray[LAND_PACK_IDX(v_id, grid)];
420:       Vec           work, subX = printCtx->globXArray[LAND_PACK_IDX(v_id, grid)];
421:       PetscInt      bs, NN;
422:       // C-G moments
423:       PetscCall(VecDuplicate(subX, &work));
424:       PetscCall(gridToParticles(printCtx->grid_dm[grid], sw, subX, work, printCtx->globMpArray[LAND_PACK_IDX(v_id, grid)], printCtx->g_Mass[grid]));
425:       PetscCall(VecDestroy(&work));
426:       // moments
427:       PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
428:       PetscCall(DMSwarmGetLocalSize(sw, &NN));
429:       PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
430:       for (PetscInt pp = 0; pp < NN; pp++) {
431:         PetscReal v2 = 0, fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
432:         for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(coords[pp * dim + i]);
433:         moments[0] += w;
434:         moments[1] += w * ctx->v_0 * coords[pp * dim + 1]; // z-momentum
435:         moments[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
436:         e_grid[grid] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
437:       }
438:       PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
439:       PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
440:     }
441:     // entropy
442:     const PetscReal N_inv = 1 / moments[0];
443:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
444:       PetscDataType dtype;
445:       PetscReal    *wp, *coords;
446:       DM            sw = printCtx->globSwarmArray[LAND_PACK_IDX(v_id, grid)];
447:       PetscInt      bs, NN;
448:       PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
449:       PetscCall(DMSwarmGetLocalSize(sw, &NN));
450:       PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
451:       for (PetscInt pp = 0; pp < NN; pp++) {
452:         PetscReal fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]], ww = w * N_inv;
453:         if (w > PETSC_REAL_MIN) {
454:           moments[3] -= ww * PetscLogReal(ww);
455:         } else moments[4] -= w;
456:       }
457:       PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
458:       PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
459:     }
460:     PetscCall(PetscInfo(X, "%4d) time %e, Landau particle moments: 0: %18.12e 1: %19.12e 2: %18.12e entropy: %e loss %e. energy = %e + %e + %e\n", (int)n, (double)t, (double)moments[0], (double)moments[1], (double)moments[2], (double)moments[3], (double)(moments[4] / moments[0]), (double)e_grid[0], (double)e_grid[1], (double)e_grid[2]));
461:   }
462:   if (printCtx->print && printCtx->g_target >= 0) {
463:     PetscInt         grid   = printCtx->g_target, id;
464:     static PetscReal last_t = -100000, period = .5;
465:     if (last_t == -100000) last_t = -period + t;
466:     if (t >= last_t + period) {
467:       last_t = t;
468:       PetscCall(DMGetOutputSequenceNumber(ctx->plex[grid], &id, NULL));
469:       PetscCall(DMSetOutputSequenceNumber(ctx->plex[grid], id + 1, t));
470:       PetscCall(VecViewFromOptions(printCtx->globXArray[LAND_PACK_IDX(v_id % ctx->batch_sz, grid)], NULL, "-ex30_vec_view"));
471:       if (ctx->num_grids > grid + 1) {
472:         PetscCall(DMSetOutputSequenceNumber(ctx->plex[grid + 1], id + 1, t));
473:         PetscCall(VecViewFromOptions(printCtx->globXArray[LAND_PACK_IDX(v_id % ctx->batch_sz, grid + 1)], NULL, "-ex30_vec_view2"));
474:       }
475:       PetscCall(PetscInfo(X, "%4d) time %e View\n", (int)n, (double)t));
476:     }
477:   }
478:   PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, printCtx->globXArray));
479:   PetscFunctionReturn(PETSC_SUCCESS);
480: }

482: PetscErrorCode go(TS ts, Vec X, const PetscInt num_vertices, const PetscInt a_Np, const PetscInt dim, const PetscInt v_target, const PetscInt g_target, PetscReal shift, PetscBool use_uniform_particle_grid)
483: {
484:   DM             pack, *globSwarmArray, grid_dm[LANDAU_MAX_GRIDS];
485:   Mat           *globMpArray, g_Mass[LANDAU_MAX_GRIDS];
486:   KSP            t_ksp[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
487:   Vec            t_fhat[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
488:   PetscInt       nDMs;
489:   PetscErrorCode ierr = (PetscErrorCode)0; // used for inside thread loops
490: #if defined(PETSC_HAVE_OPENMP) && defined(PETSC_HAVE_THREADSAFETY)
491:   PetscInt numthreads = PetscNumOMPThreads;
492: #else
493:   PetscInt numthreads = 1;
494: #endif
495:   LandauCtx *ctx;
496:   Vec       *globXArray;
497:   PetscReal  moments_0[5], moments_1a[5], moments_1b[5], dt_init;
498:   PrintCtx  *printCtx;

500:   PetscFunctionBeginUser;
501:   PetscCheck(numthreads <= EX30_MAX_NUM_THRDS, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Too many threads %" PetscInt_FMT " > %d", numthreads, EX30_MAX_NUM_THRDS);
502:   PetscCheck(numthreads > 0, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Number threads %" PetscInt_FMT " > %d", numthreads, EX30_MAX_NUM_THRDS);
503:   PetscCall(TSGetDM(ts, &pack));
504:   PetscCall(DMGetApplicationContext(pack, &ctx));
505:   PetscCheck(ctx->batch_sz % numthreads == 0, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "batch size (-dm_landau_batch_size) %" PetscInt_FMT "  mod #threads %" PetscInt_FMT " must equal zero", ctx->batch_sz, numthreads);
506:   PetscCall(DMCompositeGetNumberDM(pack, &nDMs)); // number of vertices * number of grids
507:   PetscCall(PetscInfo(pack, "Have %" PetscInt_FMT " total grids, with %" PetscInt_FMT " Landau local batched and %" PetscInt_FMT " global items (vertices) %d DMs\n", ctx->num_grids, ctx->batch_sz, num_vertices, (int)nDMs));
508:   PetscCall(PetscMalloc(sizeof(*globXArray) * nDMs, &globXArray));
509:   PetscCall(PetscMalloc(sizeof(*globMpArray) * nDMs, &globMpArray));
510:   PetscCall(PetscMalloc(sizeof(*globSwarmArray) * nDMs, &globSwarmArray));
511:   // print ctx
512:   PetscCall(PetscNew(&printCtx));
513:   PetscCall(TSSetApplicationContext(ts, printCtx));
514:   printCtx->v_target       = v_target;
515:   printCtx->g_target       = g_target;
516:   printCtx->ctx            = ctx;
517:   printCtx->globSwarmArray = globSwarmArray;
518:   printCtx->grid_dm        = grid_dm;
519:   printCtx->globMpArray    = globMpArray;
520:   printCtx->g_Mass         = g_Mass;
521:   printCtx->globXArray     = globXArray;
522:   printCtx->print_entropy  = PETSC_FALSE;
523:   PetscOptionsBegin(PETSC_COMM_SELF, "", "Print Options", "DMPLEX");
524:   PetscCall(PetscOptionsBool("-print_entropy", "Print entropy and moments at each time step", "ex30.c", printCtx->print_entropy, &printCtx->print_entropy, NULL));
525:   PetscOptionsEnd();
526:   // view
527:   PetscCall(DMViewFromOptions(ctx->plex[g_target], NULL, "-ex30_dm_view"));
528:   if (ctx->num_grids > g_target + 1) { PetscCall(DMViewFromOptions(ctx->plex[g_target + 1], NULL, "-ex30_dm_view2")); }
529:   // create mesh mass matrices
530:   PetscCall(VecZeroEntries(X));
531:   PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray)); // just to duplicate
532:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {               // add same particels for all grids
533:     Vec          subX = globXArray[LAND_PACK_IDX(0, grid)];
534:     DM           dm   = ctx->plex[grid];
535:     PetscSection s;
536:     grid_dm[grid] = dm;
537:     PetscCall(DMCreateMassMatrix(dm, dm, &g_Mass[grid]));
538:     //
539:     PetscCall(DMGetLocalSection(dm, &s));
540:     PetscCall(DMPlexCreateClosureIndex(dm, s));
541:     for (PetscInt tid = 0; tid < numthreads; tid++) {
542:       PC pc;
543:       PetscCall(VecDuplicate(subX, &t_fhat[grid][tid]));
544:       PetscCall(KSPCreate(PETSC_COMM_SELF, &t_ksp[grid][tid]));
545:       PetscCall(KSPSetType(t_ksp[grid][tid], KSPCG));
546:       PetscCall(KSPGetPC(t_ksp[grid][tid], &pc));
547:       PetscCall(PCSetType(pc, PCJACOBI));
548:       PetscCall(KSPSetOptionsPrefix(t_ksp[grid][tid], "ptof_"));
549:       PetscCall(KSPSetOperators(t_ksp[grid][tid], g_Mass[grid], g_Mass[grid]));
550:       PetscCall(KSPSetFromOptions(t_ksp[grid][tid]));
551:     }
552:   }
553:   PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
554:   PetscCall(TSGetTimeStep(ts, &dt_init)); // we could have an adaptive time stepper
555:   // loop over all vertices in chucks that are batched for TSSolve
556:   for (PetscInt i = 0; i < 5; i++) moments_0[i] = moments_1a[i] = moments_1b[i] = 0;
557:   for (PetscInt global_vertex_id_0 = 0; global_vertex_id_0 < num_vertices; global_vertex_id_0 += ctx->batch_sz, shift /= 2) { // outer vertex loop
558:     PetscCall(TSSetTime(ts, 0));
559:     PetscCall(TSSetStepNumber(ts, 0));
560:     PetscCall(TSSetTimeStep(ts, dt_init));
561:     PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray));
562:     printCtx->global_vertex_id_0 = global_vertex_id_0;
563:     if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
564:       PetscCall(PetscObjectSetName((PetscObject)globXArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], "rho"));
565:       printCtx->print = PETSC_TRUE;
566:     } else printCtx->print = PETSC_FALSE;
567:     // create fake particles in batches with threads
568:     for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
569:       PetscReal *xx_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *yy_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *zz_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *wp_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS] /* , radiuses[80000] */;
570:       PetscInt   Np_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
571:       // make particles
572:       for (PetscInt tid = 0; tid < numthreads; tid++) {
573:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
574:         if (glb_v_id < num_vertices) {                                                     // the ragged edge (in last batch)
575:           PetscInt Npp0 = a_Np + (glb_v_id % (a_Np / 10 + 1)), nTargetP[LANDAU_MAX_GRIDS]; // n of particels in each dim with load imbalance
576:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {                         // add same particels for all grids
577:             // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) {
578:             const PetscReal kT_m  = ctx->k * ctx->thermal_temps[ctx->species_offset[grid]] / ctx->masses[ctx->species_offset[grid]] / (ctx->v_0 * ctx->v_0);                      /* theta = 2kT/mc^2 per species */
579:             PetscReal       lo[3] = {-ctx->radius[grid], -ctx->radius[grid], -ctx->radius[grid]}, hi[3] = {ctx->radius[grid], ctx->radius[grid], ctx->radius[grid]}, hp[3], vole; // would be nice to get box from DM
580:             PetscInt        Npi = Npp0, Npj = 2 * Npp0, Npk = 1;
581:             PetscRandom     rand;
582:             PetscReal       sigma = ctx->thermal_speed[grid] / ctx->thermal_speed[0], p2_shift = grid == 0 ? shift : -shift; // symmetric shift of e vs ions
583:             PetscCall(PetscRandomCreate(PETSC_COMM_SELF, &rand));
584:             PetscCall(PetscRandomSetInterval(rand, 0., 1.));
585:             PetscCall(PetscRandomSetFromOptions(rand));
586:             if (dim == 2) lo[0] = 0; // Landau coordinate (r,z)
587:             else Npi = Npj = Npk = Npp0;
588:             // User: use glb_v_id to index into your data
589:             const PetscInt NNreal = Npi * Npj * Npk, NN = NNreal + (dim == 2 ? 3 : 6); // make room for bounding box
590:             Np_t[grid][tid] = NN;
591:             if (glb_v_id == v_target) nTargetP[grid] = NN;
592:             PetscCall(PetscMalloc4(NN, &xx_t[grid][tid], NN, &yy_t[grid][tid], NN, &wp_t[grid][tid], dim == 2 ? 1 : NN, &zz_t[grid][tid]));
593:             hp[0] = (hi[0] - lo[0]) / Npi;
594:             hp[1] = (hi[1] - lo[1]) / Npj;
595:             hp[2] = (hi[2] - lo[2]) / Npk;
596:             if (dim == 2) hp[2] = 1;
597:             PetscCall(PetscInfo(pack, " lo = %14.7e, hi = %14.7e; hp = %14.7e, %14.7e; kT_m = %g; \n", (double)lo[1], (double)hi[1], (double)hp[0], (double)hp[1], (double)kT_m)); // temp
598:             vole = hp[0] * hp[1] * hp[2] * ctx->n[grid];                                                                                                                           // fix for multi-species
599:             PetscCall(PetscInfo(pack, "Vertex %" PetscInt_FMT ", grid %" PetscInt_FMT " with %" PetscInt_FMT " particles (diagnostic target = %" PetscInt_FMT ")\n", glb_v_id, grid, NN, v_target));
600:             for (PetscInt pj = 0, pp = 0; pj < Npj; pj++) {
601:               for (PetscInt pk = 0; pk < Npk; pk++) {
602:                 for (PetscInt pi = 0; pi < Npi; pi++, pp++) {
603:                   PetscReal p_shift   = p2_shift;
604:                   wp_t[grid][tid][pp] = 0;
605:                   if (use_uniform_particle_grid) {
606:                     xx_t[grid][tid][pp] = lo[0] + hp[0] / 2.0 + pi * hp[0];
607:                     yy_t[grid][tid][pp] = lo[1] + hp[1] / 2.0 + pj * hp[1];
608:                     if (dim == 3) zz_t[grid][tid][pp] = lo[2] + hp[2] / 2.0 + pk * hp[2];
609:                     PetscReal x[] = {xx_t[grid][tid][pp], yy_t[grid][tid][pp], dim == 2 ? 0 : zz_t[grid][tid][pp]};
610:                     p_shift *= ctx->thermal_speed[grid] / ctx->v_0;
611:                     if (ctx->sphere && PetscSqrtReal(PetscSqr(xx_t[grid][tid][pp]) + PetscSqr(yy_t[grid][tid][pp])) > 0.92 * hi[0]) {
612:                       wp_t[grid][tid][pp] = 0;
613:                     } else {
614:                       maxwellian(dim, x, kT_m, vole, p_shift, &wp_t[grid][tid][pp]);
615:                       if (ctx->num_grids == 1 && shift != 0) {                          // bi-maxwellian, electron plasma
616:                         maxwellian(dim, x, kT_m, vole, -p_shift, &wp_t[grid][tid][pp]); // symmetric shift of electron plasma
617:                       }
618:                     }
619:                   } else {
620:                     PetscReal u1, u2;
621:                     do {
622:                       do {
623:                         PetscCall(PetscRandomGetValueReal(rand, &u1));
624:                       } while (u1 == 0);
625:                       PetscCall(PetscRandomGetValueReal(rand, &u2));
626:                       //compute z0 and z1
627:                       PetscReal mag       = sigma * PetscSqrtReal(-2.0 * PetscLogReal(u1)); // is this the same scale grid Maxwellian? t_therm = sigma
628:                       xx_t[grid][tid][pp] = mag * PetscCosReal(2.0 * PETSC_PI * u2);
629:                       yy_t[grid][tid][pp] = mag * PetscSinReal(2.0 * PETSC_PI * u2);
630:                       if (dim == 2 && xx_t[grid][tid][pp] < lo[0]) xx_t[grid][tid][pp] = -xx_t[grid][tid][pp];
631:                       if (dim == 3) zz_t[grid][tid][pp] = lo[2] + hp[2] / 2.0 + pk * hp[2];
632:                       if (!ctx->sphere) {
633:                         if (dim == 2 && xx_t[grid][tid][pp] < 0) xx_t[grid][tid][pp] = -xx_t[grid][tid][pp]; // ???
634:                         else if (dim == 3) {
635:                           while (zz_t[grid][tid][pp] >= hi[2] || zz_t[grid][tid][pp] <= lo[2]) zz_t[grid][tid][pp] *= .9;
636:                         }
637:                         while (xx_t[grid][tid][pp] >= hi[0] || xx_t[grid][tid][pp] <= lo[0]) xx_t[grid][tid][pp] *= .9;
638:                         while (yy_t[grid][tid][pp] >= hi[1] || yy_t[grid][tid][pp] <= lo[1]) yy_t[grid][tid][pp] *= .9;
639:                       } else { // 2D
640:                         //if (glb_v_id == v_target && pp < 80000) radiuses[pp] = PetscSqrtReal(PetscSqr(xx_t[grid][tid][pp]) + PetscSqr(yy_t[grid][tid][pp]));
641:                         while (PetscSqrtReal(PetscSqr(xx_t[grid][tid][pp]) + PetscSqr(yy_t[grid][tid][pp])) > 0.92 * hi[0]) { // safety factor for facets of sphere
642:                           xx_t[grid][tid][pp] *= .9;
643:                           yy_t[grid][tid][pp] *= .9;
644:                         }
645:                       }
646:                       if (ctx->num_grids == 1 && pp % 2 == 0) p_shift = 0; // one species, split bi-max
647:                       p_shift *= ctx->thermal_speed[grid] / ctx->v_0;
648:                       if (dim == 3) zz_t[grid][tid][pp] += p_shift;
649:                       else yy_t[grid][tid][pp] += p_shift;
650:                       wp_t[grid][tid][pp] += ctx->n[grid] / NNreal * PetscSqrtReal(ctx->masses[ctx->species_offset[grid]] / ctx->masses[0]);
651:                       if (p_shift <= 0) break; // add bi-max for electron plasma only
652:                       p_shift = -p_shift;
653:                     } while (ctx->num_grids == 1); // add bi-max for electron plasma only
654:                   }
655:                   {
656:                     if (glb_v_id == v_target) {
657:                       PetscReal x[] = {xx_t[grid][tid][pp], yy_t[grid][tid][pp], dim == 2 ? 0 : zz_t[grid][tid][pp]};
658:                       PetscReal v2 = 0, fact = dim == 2 ? 2.0 * PETSC_PI * x[0] : 1, w = fact * wp_t[grid][tid][pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
659:                       for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(x[i]);
660:                       moments_0[0] += w;                   // not thread safe
661:                       moments_0[1] += w * ctx->v_0 * x[1]; // z-momentum
662:                       moments_0[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
663:                     }
664:                   }
665:                 }
666:               }
667:             }
668:             if (dim == 2) { // fix bounding box
669:               PetscInt pp           = NNreal;
670:               wp_t[grid][tid][pp]   = 0;
671:               xx_t[grid][tid][pp]   = 1.e-7;
672:               yy_t[grid][tid][pp++] = hi[1] - 5.e-7;
673:               wp_t[grid][tid][pp]   = 0;
674:               xx_t[grid][tid][pp]   = hi[0] - 5.e-7;
675:               yy_t[grid][tid][pp++] = 0;
676:               wp_t[grid][tid][pp]   = 0;
677:               xx_t[grid][tid][pp]   = 1.e-7;
678:               yy_t[grid][tid][pp++] = lo[1] + 5.e-7;
679:             } else {
680:               const PetscInt p0 = NNreal;
681:               for (PetscInt pj = 0; pj < 6; pj++) { xx_t[grid][tid][p0 + pj] = yy_t[grid][tid][p0 + pj] = zz_t[grid][tid][p0 + pj] = wp_t[grid][tid][p0 + pj] = 0; }
682:               xx_t[grid][tid][p0 + 0] = lo[0];
683:               xx_t[grid][tid][p0 + 1] = hi[0];
684:               yy_t[grid][tid][p0 + 2] = lo[1];
685:               yy_t[grid][tid][p0 + 3] = hi[1];
686:               zz_t[grid][tid][p0 + 4] = lo[2];
687:               zz_t[grid][tid][p0 + 5] = hi[2];
688:             }
689:             PetscCall(PetscRandomDestroy(&rand));
690:           }
691:           // entropy init, need global n
692:           if (glb_v_id == v_target) {
693:             const PetscReal N_inv = 1 / moments_0[0];
694:             PetscCall(PetscInfo(pack, "Target %" PetscInt_FMT " with %" PetscInt_FMT " particels\n", glb_v_id, nTargetP[0]));
695:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
696:               const PetscInt NN = nTargetP[grid];
697:               for (PetscInt pp = 0; pp < NN; pp++) {
698:                 const PetscReal fact = dim == 2 ? 2.0 * PETSC_PI * xx_t[grid][tid][pp] : 1, w = fact * ctx->n_0 * ctx->masses[ctx->species_offset[grid]] * wp_t[grid][tid][pp], ww = w * N_inv;
699:                 if (w > PETSC_REAL_MIN) {
700:                   moments_0[3] -= ww * PetscLogReal(ww);
701:                   PetscCheck(ww < 1 - PETSC_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "ww (%g) > 1", (double)ww);
702:                 } else moments_0[4] -= w;
703:               }
704:             } // grid
705:           } // target
706:         } // active
707:       } // threads
708:       /* Create particle swarm */
709:       for (PetscInt tid = 0; tid < numthreads; tid++) {
710:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
711:         if (glb_v_id < num_vertices) {                             // the ragged edge of the last batch
712:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
713:             PetscSection section;
714:             PetscInt     Nf;
715:             DM           dm = grid_dm[grid];
716:             PetscCall(DMGetLocalSection(dm, &section));
717:             PetscCall(PetscSectionGetNumFields(section, &Nf));
718:             PetscCheck(Nf == 1, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Only one species per grid supported -- todo");
719:             PetscCall(DMViewFromOptions(dm, NULL, "-dm_view"));
720:             PetscCall(PetscInfo(pack, "call createSwarm [%" PetscInt_FMT ".%" PetscInt_FMT "] local block index %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid)));
721:             PetscCall(createSwarm(dm, dim, &globSwarmArray[LAND_PACK_IDX(v_id, grid)]));
722:           }
723:         } // active
724:       } // threads
725:       PetscCheck(ierr != 9999, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Only support one species per grid");
726:       // make globMpArray
727:       PetscPragmaOMP(parallel for)
728:       for (PetscInt tid = 0; tid < numthreads; tid++) {
729:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
730:         if (glb_v_id < num_vertices) {
731:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
732:             // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) -- loop over species for Nf > 1 -- TODO
733:             PetscErrorCode ierr_t;
734:             DM             sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
735:             ierr_t            = PetscInfo(pack, "makeSwarm %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
736:             ierr_t            = makeSwarm(sw, dim, Np_t[grid][tid], xx_t[grid][tid], yy_t[grid][tid], zz_t[grid][tid]);
737:             if (ierr_t) ierr = ierr_t;
738:           }
739:         }
740:       }
741:       for (PetscInt tid = 0; tid < numthreads; tid++) {
742:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
743:         if (glb_v_id < num_vertices) {
744:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
745:             DM dm = grid_dm[grid];
746:             DM sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
747:             PetscCall(PetscInfo(pack, "createMp %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid)));
748:             PetscCall(createMp(dm, sw, &globMpArray[LAND_PACK_IDX(v_id, grid)]));
749:             PetscCall(MatViewFromOptions(globMpArray[LAND_PACK_IDX(v_id, grid)], NULL, "-mp_mat_view"));
750:           }
751:         }
752:       }
753:       // p --> g: set X
754:       // PetscPragmaOMP(parallel for)
755:       for (PetscInt tid = 0; tid < numthreads; tid++) {
756:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
757:         if (glb_v_id < num_vertices) {
758:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
759:             PetscErrorCode ierr_t;
760:             DM             dm   = grid_dm[grid];
761:             DM             sw   = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
762:             Vec            subX = globXArray[LAND_PACK_IDX(v_id, grid)], work = t_fhat[grid][tid];
763:             ierr_t = PetscInfo(pack, "particlesToGrid %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
764:             ierr_t = particlesToGrid(dm, sw, tid, dim, wp_t[grid][tid], subX, globMpArray[LAND_PACK_IDX(v_id, grid)]);
765:             if (ierr_t) ierr = ierr_t;
766:             // u = M^_1 f_w
767:             ierr_t = VecCopy(subX, work);
768:             ierr_t = KSPSolve(t_ksp[grid][tid], work, subX);
769:             if (ierr_t) ierr = ierr_t;
770:           }
771:         }
772:       }
773:       PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Error in OMP loop. ierr = %d", (int)ierr);
774:       /* Cleanup */
775:       for (PetscInt tid = 0; tid < numthreads; tid++) {
776:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
777:         if (glb_v_id < num_vertices) {
778:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
779:             PetscCall(PetscFree4(xx_t[grid][tid], yy_t[grid][tid], wp_t[grid][tid], zz_t[grid][tid]));
780:           }
781:         } // active
782:       } // threads
783:     } // (fake) particle loop
784:     // standard view of initial conditions
785:     if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
786:       PetscCall(DMSetOutputSequenceNumber(ctx->plex[g_target], 0, 0.0));
787:       PetscCall(VecViewFromOptions(globXArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], NULL, "-ex30_vec_view"));
788:       if (ctx->num_grids > g_target + 1) {
789:         PetscCall(DMSetOutputSequenceNumber(ctx->plex[g_target + 1], 0, 0.0));
790:         PetscCall(VecViewFromOptions(globXArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target + 1)], NULL, "-ex30_vec_view2"));
791:       }
792:       PetscCall(MatViewFromOptions(globMpArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], NULL, "-ex30_mass_mat_view"));
793:       PetscCall(DMViewFromOptions(globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], NULL, "-ex30_sw_view"));
794:       PetscCall(DMSwarmViewXDMF(globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)], "initial_swarm.xmf")); // writes a file by default!!!
795:     }
796:     // coarse graining moments_1a, bring f back from grid before advance
797:     if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz && printCtx->print_entropy) {
798:       const PetscInt v_id = v_target % ctx->batch_sz;
799:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
800:         PetscDataType dtype;
801:         PetscReal    *wp, *coords;
802:         DM            sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
803:         Vec           work, subX = globXArray[LAND_PACK_IDX(v_id, grid)];
804:         PetscInt      bs, NN;
805:         // C-G moments
806:         PetscCall(VecDuplicate(subX, &work));
807:         PetscCall(gridToParticles(grid_dm[grid], sw, subX, work, globMpArray[LAND_PACK_IDX(v_id, grid)], g_Mass[grid]));
808:         PetscCall(VecDestroy(&work));
809:         // moments
810:         PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
811:         PetscCall(DMSwarmGetLocalSize(sw, &NN));
812:         PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
813:         for (PetscInt pp = 0; pp < NN; pp++) {
814:           PetscReal v2 = 0, fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]];
815:           for (PetscInt i = 0; i < dim; ++i) v2 += PetscSqr(coords[pp * dim + i]);
816:           moments_1a[0] += w;
817:           moments_1a[1] += w * ctx->v_0 * coords[pp * dim + 1]; // z-momentum
818:           moments_1a[2] += w * 0.5 * ctx->v_0 * ctx->v_0 * v2;
819:         }
820:         PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
821:         PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
822:       }
823:       // entropy
824:       const PetscReal N_inv = 1 / moments_1a[0];
825:       PetscCall(PetscInfo(pack, "Entropy batch %" PetscInt_FMT " of %" PetscInt_FMT ", n = %g\n", v_target, num_vertices, (double)(1 / N_inv)));
826:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
827:         PetscDataType dtype;
828:         PetscReal    *wp, *coords;
829:         DM            sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
830:         PetscInt      bs, NN;
831:         PetscCall(DMSwarmGetLocalSize(sw, &NN));
832:         PetscCall(DMSwarmGetField(sw, "w_q", &bs, &dtype, (void **)&wp));
833:         PetscCall(DMSwarmGetField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
834:         for (PetscInt pp = 0; pp < NN; pp++) {
835:           PetscReal fact = (dim == 2) ? 2.0 * PETSC_PI * coords[pp * dim + 0] : 1, w = fact * wp[pp] * ctx->n_0 * ctx->masses[ctx->species_offset[grid]], ww = w * N_inv;
836:           if (w > PETSC_REAL_MIN) {
837:             moments_1a[3] -= ww * PetscLogReal(ww);
838:             PetscCheck(ww < 1 - PETSC_MACHINE_EPSILON, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "ww (%g) > 1", (double)ww);
839:           } else moments_1a[4] -= w;
840:         }
841:         PetscCall(DMSwarmRestoreField(sw, "w_q", &bs, &dtype, (void **)&wp));
842:         PetscCall(DMSwarmRestoreField(sw, "DMSwarmPIC_coor", &bs, &dtype, (void **)&coords));
843:       }
844:     }
845:     // restore vector
846:     PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
847:     // view initial grid
848:     if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) { PetscCall(DMPlexLandauPrintNorms(X, 0)); }
849:     // advance
850:     PetscCall(TSSetSolution(ts, X));
851:     PetscCall(PetscInfo(pack, "Advance vertex %" PetscInt_FMT " to %" PetscInt_FMT "\n", global_vertex_id_0, global_vertex_id_0 + ctx->batch_sz));
852:     PetscCall(TSSetPostStep(ts, PostStep));
853:     PetscCall(PostStep(ts));
854:     PetscCall(TSSolve(ts, X));
855:     // view
856:     PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray));
857:     if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
858:       /* Visualize original particle field */
859:       DM  sw = globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)];
860:       Vec f;
861:       PetscCall(DMSetOutputSequenceNumber(sw, 0, 0.0));
862:       PetscCall(DMViewFromOptions(grid_dm[g_target], NULL, "-weights_dm_view"));
863:       PetscCall(DMViewFromOptions(sw, NULL, "-weights_sw_view"));
864:       PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &f));
865:       PetscCall(PetscObjectSetName((PetscObject)f, "weights"));
866:       PetscCall(VecViewFromOptions(f, NULL, "-weights_vec_view"));
867:       PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &f));
868:       //
869:       PetscCall(DMPlexLandauPrintNorms(X, 1));
870:     }
871:     if (!use_uniform_particle_grid) { // resample to uniform grid
872:       for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
873:         PetscReal *xx_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *yy_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *zz_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS], *wp_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
874:         PetscInt   Np_t[LANDAU_MAX_GRIDS][EX30_MAX_NUM_THRDS];
875:         for (PetscInt tid = 0; tid < numthreads; tid++) {
876:           const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
877:           if (glb_v_id < num_vertices) {
878:             // create uniform grid w/o weights & smaller
879:             PetscInt Npp0 = (a_Np + (glb_v_id % (a_Np / 10 + 1))) / 2, Nv; // 1/2 of uniform particle grid size
880:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
881:               // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++)
882:               PetscReal lo[3] = {-ctx->radius[grid], -ctx->radius[grid], -ctx->radius[grid]}, hi[3] = {ctx->radius[grid], ctx->radius[grid], ctx->radius[grid]}, hp[3];
883:               PetscInt  Npi = Npp0, Npj = 2 * Npp0, Npk = 1, NN;
884:               // delete old particles and particle mass matrix
885:               PetscCall(DMDestroy(&globSwarmArray[LAND_PACK_IDX(v_id, grid)]));
886:               PetscCall(MatDestroy(&globMpArray[LAND_PACK_IDX(v_id, grid)]));
887:               // create fake particles in batches with threads
888:               PetscCall(MatGetLocalSize(g_Mass[grid], &Nv, NULL));
889:               if (dim == 2) lo[0] = 0;
890:               else Npi = Npj = Npk = Npp0;
891:               NN = Npi * Npj * Npk + (dim == 2 ? 3 : 6); // make a regular grid of particles Npp x Npp
892:               while (Npi * Npj * Npk < Nv) {             // make stable - no LS
893:                 Npi++;
894:                 Npj++;
895:                 Npk++;
896:                 NN = Npi * Npj * Npk + (dim == 2 ? 3 : 6);
897:               }
898:               Np_t[grid][tid] = NN;
899:               PetscCall(PetscMalloc4(NN, &xx_t[grid][tid], NN, &yy_t[grid][tid], NN, &wp_t[grid][tid], dim == 2 ? 1 : NN, &zz_t[grid][tid]));
900:               hp[0] = (hi[0] - lo[0]) / Npi;
901:               hp[1] = (hi[1] - lo[1]) / Npj;
902:               hp[2] = (hi[2] - lo[2]) / Npk;
903:               if (dim == 2) hp[2] = 1;
904:               PetscCall(PetscInfo(pack, "Resampling %d particles, %d vertices\n", (int)NN, (int)Nv)); // temp
905:               for (PetscInt pj = 0, pp = 0; pj < Npj; pj++) {
906:                 for (PetscInt pk = 0; pk < Npk; pk++) {
907:                   for (PetscInt pi = 0; pi < Npi; pi++, pp++) {
908:                     wp_t[grid][tid][pp] = 0;
909:                     xx_t[grid][tid][pp] = lo[0] + hp[0] / 2.0 + pi * hp[0];
910:                     yy_t[grid][tid][pp] = lo[1] + hp[1] / 2.0 + pj * hp[1];
911:                     if (dim == 3) zz_t[grid][tid][pp] = lo[2] + hp[2] / 2.0 + pk * hp[2];
912:                   }
913:                 }
914:               }
915:               if (dim == 2) { // fix bounding box
916:                 PetscInt pp           = NN - 3;
917:                 wp_t[grid][tid][pp]   = 0;
918:                 xx_t[grid][tid][pp]   = 1.e-7;
919:                 yy_t[grid][tid][pp++] = hi[1] - 5.e-7;
920:                 wp_t[grid][tid][pp]   = 0;
921:                 xx_t[grid][tid][pp]   = hi[0] - 5.e-7;
922:                 yy_t[grid][tid][pp++] = 0;
923:                 wp_t[grid][tid][pp]   = 0;
924:                 xx_t[grid][tid][pp]   = 1.e-7;
925:                 yy_t[grid][tid][pp++] = lo[1] + 5.e-7;
926:               } else {
927:                 const PetscInt p0 = NN - 6;
928:                 for (PetscInt pj = 0; pj < 6; pj++) { xx_t[grid][tid][p0 + pj] = yy_t[grid][tid][p0 + pj] = zz_t[grid][tid][p0 + pj] = wp_t[grid][tid][p0 + pj] = 0; }
929:                 xx_t[grid][tid][p0 + 0] = lo[0];
930:                 xx_t[grid][tid][p0 + 1] = hi[0];
931:                 yy_t[grid][tid][p0 + 2] = lo[1];
932:                 yy_t[grid][tid][p0 + 3] = hi[1];
933:                 zz_t[grid][tid][p0 + 4] = lo[2];
934:                 zz_t[grid][tid][p0 + 5] = hi[2];
935:               }
936:             }
937:           } // active
938:         } // threads
939:         /* Create particle swarm */
940:         for (PetscInt tid = 0; tid < numthreads; tid++) {
941:           const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
942:           if (glb_v_id < num_vertices) {                             // the ragged edge of the last batch
943:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
944:               // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) -- loop over species for Nf > 1 -- TODO
945:               PetscErrorCode ierr_t;
946:               PetscSection   section;
947:               PetscInt       Nf;
948:               DM             dm = grid_dm[grid];
949:               ierr_t            = DMGetLocalSection(dm, &section);
950:               ierr_t            = PetscSectionGetNumFields(section, &Nf);
951:               if (Nf != 1) ierr_t = (PetscErrorCode)9999;
952:               else {
953:                 ierr_t = DMViewFromOptions(dm, NULL, "-dm_view");
954:                 ierr_t = PetscInfo(pack, "call createSwarm [%" PetscInt_FMT ".%" PetscInt_FMT "] local block index %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
955:                 ierr_t = createSwarm(dm, dim, &globSwarmArray[LAND_PACK_IDX(v_id, grid)]);
956:               }
957:               if (ierr_t) ierr = ierr_t;
958:             }
959:           } // active
960:         } // threads
961:         PetscCheck(ierr != 9999, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Only support one species per grid");
962:         PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Error in OMP loop. ierr = %d", (int)ierr);
963:         // make globMpArray
964:         PetscPragmaOMP(parallel for)
965:         for (PetscInt tid = 0; tid < numthreads; tid++) {
966:           const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
967:           if (glb_v_id < num_vertices) {
968:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
969:               // for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) -- loop over species for Nf > 1 -- TODO
970:               PetscErrorCode ierr_t;
971:               DM             sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
972:               ierr_t            = PetscInfo(pack, "makeSwarm %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
973:               ierr_t            = makeSwarm(sw, dim, Np_t[grid][tid], xx_t[grid][tid], yy_t[grid][tid], zz_t[grid][tid]);
974:               if (ierr_t) ierr = ierr_t;
975:             }
976:           } // active
977:         } // threads
978:         // create particle mass matrices
979:         //PetscPragmaOMP(parallel for)
980:         for (PetscInt tid = 0; tid < numthreads; tid++) {
981:           const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
982:           if (glb_v_id < num_vertices) {
983:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
984:               PetscErrorCode ierr_t;
985:               DM             dm = grid_dm[grid];
986:               DM             sw = globSwarmArray[LAND_PACK_IDX(v_id, grid)];
987:               ierr_t            = PetscInfo(pack, "createMp %" PetscInt_FMT ".%" PetscInt_FMT ") for block %" PetscInt_FMT "\n", v_id, grid, LAND_PACK_IDX(v_id, grid));
988:               ierr_t            = createMp(dm, sw, &globMpArray[LAND_PACK_IDX(v_id, grid)]);
989:               if (ierr_t) ierr = ierr_t;
990:             }
991:           } // active
992:         } // threads
993:         PetscCheck(!ierr, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Error in OMP loop. ierr = %d", (int)ierr);
994:         /* Cleanup */
995:         for (PetscInt tid = 0; tid < numthreads; tid++) {
996:           const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
997:           if (glb_v_id < num_vertices) {
998:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
999:               PetscCall(PetscFree4(xx_t[grid][tid], yy_t[grid][tid], wp_t[grid][tid], zz_t[grid][tid]));
1000:             }
1001:           } // active
1002:         } // threads
1003:       } // batch
1004:       // view
1005:       if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz) {
1006:         /* Visualize particle field */
1007:         DM  sw = globSwarmArray[LAND_PACK_IDX(v_target % ctx->batch_sz, g_target)];
1008:         Vec f;
1009:         PetscCall(DMSetOutputSequenceNumber(sw, 0, 0.0));
1010:         PetscCall(DMViewFromOptions(sw, NULL, "-resampled_weights_sw_view"));
1011:         PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &f));
1012:         PetscCall(PetscObjectSetName((PetscObject)f, "resampled_weights"));
1013:         PetscCall(VecViewFromOptions(f, NULL, "-resampled_weights_vec_view"));
1014:         PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &f));
1015:         PetscCall(DMSwarmViewXDMF(sw, "resampled.xmf"));
1016:       }
1017:     } // !uniform
1018:     // particles to grid, compute moments and entropy, for target vertex only
1019:     if (v_target >= global_vertex_id_0 && v_target < global_vertex_id_0 + ctx->batch_sz && printCtx->print_entropy) {
1020:       PetscReal energy_error_rel;
1021:       PetscCall(gridToParticles_private(grid_dm, globSwarmArray, dim, v_target, numthreads, num_vertices, global_vertex_id_0, globMpArray, g_Mass, t_fhat, moments_1b, globXArray, ctx));
1022:       energy_error_rel = PetscAbsReal(moments_1b[2] - moments_0[2]) / moments_0[2];
1023:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Particle Moments:\t number density      momentum (par)     energy             entropy            negative weights  : # OMP threads %g\n", (double)numthreads));
1024:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\tInitial:         %18.12e %19.12e %18.12e %18.12e %g %%\n", (double)moments_0[0], (double)moments_0[1], (double)moments_0[2], (double)moments_0[3], 100 * (double)(moments_0[4] / moments_0[0])));
1025:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\tCoarse-graining: %18.12e %19.12e %18.12e %18.12e %g %%\n", (double)moments_1a[0], (double)moments_1a[1], (double)moments_1a[2], (double)moments_1a[3], 100 * (double)(moments_1a[4] / moments_0[0])));
1026:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\tLandau:          %18.12e %19.12e %18.12e %18.12e %g %%\n", (double)moments_1b[0], (double)moments_1b[1], (double)moments_1b[2], (double)moments_1b[3], 100 * (double)(moments_1b[4] / moments_0[0])));
1027:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Coarse-graining entropy generation = %e ; Landau entropy generation = %e\n", (double)(moments_1a[3] - moments_0[3]), (double)(moments_1b[3] - moments_0[3])));
1028:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "(relative) energy conservation: Coarse-graining = %e, Landau = %e (%g %d)\n", (double)(moments_1a[2] - moments_0[2]) / (double)moments_0[2], (double)energy_error_rel, (double)PetscLog10Real(energy_error_rel), (int)(PetscLog10Real(energy_error_rel) + .5)));
1029:     }
1030:     // restore vector
1031:     PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
1032:     // cleanup
1033:     for (PetscInt v_id_0 = 0; v_id_0 < ctx->batch_sz; v_id_0 += numthreads) {
1034:       for (PetscInt tid = 0; tid < numthreads; tid++) {
1035:         const PetscInt v_id = v_id_0 + tid, glb_v_id = global_vertex_id_0 + v_id;
1036:         if (glb_v_id < num_vertices) {
1037:           for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1038:             PetscCall(DMDestroy(&globSwarmArray[LAND_PACK_IDX(v_id, grid)]));
1039:             PetscCall(MatDestroy(&globMpArray[LAND_PACK_IDX(v_id, grid)]));
1040:           }
1041:         }
1042:       }
1043:     }
1044:   } // user batch, not used
1045:   /* Cleanup */
1046:   PetscCall(PetscFree(globXArray));
1047:   PetscCall(PetscFree(globSwarmArray));
1048:   PetscCall(PetscFree(globMpArray));
1049:   PetscCall(PetscFree(printCtx));
1050:   // clean up mass matrices
1051:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // add same particels for all grids
1052:     PetscCall(MatDestroy(&g_Mass[grid]));
1053:     for (PetscInt tid = 0; tid < numthreads; tid++) {
1054:       PetscCall(VecDestroy(&t_fhat[grid][tid]));
1055:       PetscCall(KSPDestroy(&t_ksp[grid][tid]));
1056:     }
1057:   }
1058:   PetscFunctionReturn(PETSC_SUCCESS);
1059: }

1061: int main(int argc, char **argv)
1062: {
1063:   DM         pack;
1064:   Vec        X;
1065:   PetscInt   dim = 2, num_vertices = 1, Np = 10, v_target = 0, g_target = 0;
1066:   TS         ts;
1067:   Mat        J;
1068:   LandauCtx *ctx;
1069:   PetscReal  shift                     = 0;
1070:   PetscBool  use_uniform_particle_grid = PETSC_TRUE;

1072:   PetscFunctionBeginUser;
1073:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
1074:   // process args
1075:   PetscOptionsBegin(PETSC_COMM_SELF, "", "Collision Options", "DMPLEX");
1076:   PetscCall(PetscOptionsInt("-dim", "Velocity space dimension", "ex30.c", dim, &dim, NULL));
1077:   PetscCall(PetscOptionsInt("-number_spatial_vertices", "Number of user spatial vertices to be batched for Landau", "ex30.c", num_vertices, &num_vertices, NULL));
1078:   PetscCall(PetscOptionsInt("-number_particles_per_dimension", "Number of particles per grid, with slight modification per spatial vertex, in each dimension of base Cartesian grid", "ex30.c", Np, &Np, NULL));
1079:   PetscCall(PetscOptionsBool("-use_uniform_particle_grid", "Use uniform particle grid", "ex30.c", use_uniform_particle_grid, &use_uniform_particle_grid, NULL));
1080:   PetscCall(PetscOptionsInt("-vertex_view_target", "Global vertex for diagnostics", "ex30.c", v_target, &v_target, NULL));
1081:   PetscCall(PetscOptionsReal("-e_shift", "Bi-Maxwellian shift", "ex30.c", shift, &shift, NULL));
1082:   PetscCheck(v_target < num_vertices, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Batch to view %" PetscInt_FMT " should be < number of vertices %" PetscInt_FMT, v_target, num_vertices);
1083:   PetscCall(PetscOptionsInt("-grid_view_target", "Grid to view with diagnostics", "ex30.c", g_target, &g_target, NULL));
1084:   PetscOptionsEnd();
1085:   /* Create a mesh */
1086:   PetscCall(DMPlexLandauCreateVelocitySpace(PETSC_COMM_SELF, dim, "", &X, &J, &pack));
1087:   PetscCall(DMGetApplicationContext(pack, &ctx));
1088:   PetscCall(DMSetUp(pack));
1089:   PetscCall(DMSetOutputSequenceNumber(pack, 0, 0.0));
1090:   PetscCheck(g_target < ctx->num_grids, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Grid to view %" PetscInt_FMT " should be < number of grids %" PetscInt_FMT, g_target, ctx->num_grids);
1091:   PetscCheck(ctx->batch_view_idx == v_target % ctx->batch_sz, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Global view index %" PetscInt_FMT " mode batch size %" PetscInt_FMT " != ctx->batch_view_idx %" PetscInt_FMT, v_target, ctx->batch_sz, ctx->batch_view_idx);
1092:   // PetscCheck(!use_uniform_particle_grid || !ctx->sphere, PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Can not use -use_uniform_particle_grid and -dm_landau_sphere");
1093:   /* Create timestepping solver context */
1094:   PetscCall(TSCreate(PETSC_COMM_SELF, &ts));
1095:   PetscCall(TSSetDM(ts, pack));
1096:   PetscCall(TSSetIFunction(ts, NULL, DMPlexLandauIFunction, NULL));
1097:   PetscCall(TSSetIJacobian(ts, J, J, DMPlexLandauIJacobian, NULL));
1098:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
1099:   PetscCall(TSSetFromOptions(ts));
1100:   PetscCall(PetscObjectSetName((PetscObject)X, "X"));
1101:   // do particle advance
1102:   PetscCall(go(ts, X, num_vertices, Np, dim, v_target, g_target, shift, use_uniform_particle_grid));
1103:   PetscCall(MatZeroEntries(J)); // need to zero out so as to not reuse it in Landau's logic
1104:   /* clean up */
1105:   PetscCall(DMPlexLandauDestroyVelocitySpace(&pack));
1106:   PetscCall(TSDestroy(&ts));
1107:   PetscCall(VecDestroy(&X));
1108:   PetscCall(PetscFinalize());
1109:   return 0;
1110: }

1112: /*TEST

1114:   build:
1115:     requires: !complex

1117:   testset:
1118:     requires: double defined(PETSC_USE_DMLANDAU_2D)
1119:     output_file: output/ex30_0.out
1120:     args: -dim 2 -petscspace_degree 3 -dm_landau_num_species_grid 1,1,1 -dm_refine 1 -number_particles_per_dimension 20 \
1121:           -dm_landau_batch_size 4 -number_spatial_vertices 6 -vertex_view_target 5 -grid_view_target 1 -dm_landau_batch_view_idx 1 \
1122:           -dm_landau_n 1.000018,1,1e-6 -dm_landau_thermal_temps 2,1,1 -dm_landau_ion_masses 2,180 -dm_landau_ion_charges 1,18 \
1123:           -ftop_ksp_rtol 1e-10 -ftop_ksp_type lsqr -ftop_pc_type bjacobi -ftop_sub_pc_factor_shift_type nonzero -ftop_sub_pc_type lu -ftop_ksp_error_if_not_converged \
1124:           -ksp_type gmres -ksp_error_if_not_converged -dm_landau_verbose 4 -print_entropy \
1125:           -ptof_ksp_type cg -ptof_pc_type jacobi -ptof_ksp_rtol 1e-12 -ptof_ksp_error_if_not_converged\
1126:           -snes_converged_reason -snes_monitor -snes_rtol 1e-12 -snes_stol 1e-12 \
1127:           -ts_dt 0.01 -ts_rtol 1e-1 -ts_exact_final_time stepover -ts_max_snes_failures -1 -ts_max_steps 1 -ts_monitor -ts_type beuler
1128:     test:
1129:       suffix: cpu
1130:       args: -dm_landau_device_type cpu -pc_type jacobi
1131:     test:
1132:       suffix: kokkos
1133:       # failed on Sunspot@ALCF with sycl
1134:       requires: kokkos_kernels !openmp !sycl
1135:       args: -dm_landau_device_type kokkos -dm_mat_type aijkokkos -dm_vec_type kokkos -pc_type bjkokkos -pc_bjkokkos_ksp_type tfqmr -pc_bjkokkos_pc_type jacobi

1137:   testset:
1138:     requires: double !defined(PETSC_USE_DMLANDAU_2D)
1139:     output_file: output/ex30_3d.out
1140:     args: -dim 3 -petscspace_degree 2 -dm_landau_num_species_grid 1,1 -dm_refine 0 -number_particles_per_dimension 10 -dm_plex_hash_location \
1141:           -dm_landau_batch_size 1 -number_spatial_vertices 1 -vertex_view_target 0 -grid_view_target 0 -dm_landau_batch_view_idx 0 \
1142:           -dm_landau_n 1.000018,1 -dm_landau_thermal_temps 2,1 -dm_landau_ion_masses 2 -dm_landau_ion_charges 1 \
1143:           -ftop_ksp_type cg -ftop_pc_type jacobi -ftop_ksp_rtol 1e-12 -ftop_ksp_error_if_not_converged -ksp_type preonly -pc_type lu -ksp_error_if_not_converged \
1144:           -ptof_ksp_type cg -ptof_pc_type jacobi -ptof_ksp_rtol 1e-12 -ptof_ksp_error_if_not_converged \
1145:           -snes_converged_reason -snes_monitor -snes_rtol 1e-12 -snes_stol 1e-12 \
1146:           -ts_dt 0.1 -ts_exact_final_time stepover -ts_max_snes_failures -1 -ts_max_steps 1 -ts_monitor -ts_type beuler -print_entropy
1147:     test:
1148:       suffix: cpu_3d
1149:       args: -dm_landau_device_type cpu
1150:     test:
1151:       suffix: kokkos_3d
1152:       requires: kokkos_kernels !openmp
1153:       args: -dm_landau_device_type kokkos -dm_mat_type aijkokkos -dm_vec_type kokkos -pc_type bjkokkos -pc_bjkokkos_ksp_type tfqmr -pc_bjkokkos_pc_type jacobi

1155:   test:
1156:     suffix: conserve
1157:     requires: !complex double defined(PETSC_USE_DMLANDAU_2D) !cuda
1158:     args: -dm_landau_batch_size 4 -dm_refine 0 -dm_landau_num_species_grid 1 -dm_landau_thermal_temps 1 -petscspace_degree 3 -snes_converged_reason -ts_type beuler -ts_dt .1 \
1159:           -ts_max_steps 1 -ksp_type preonly -ksp_error_if_not_converged -snes_rtol 1e-14 -snes_stol 1e-14 -dm_landau_device_type cpu -number_particles_per_dimension 20 \
1160:           -ptof_ksp_type cg -ptof_pc_type jacobi -ptof_ksp_rtol 1e-14 -ptof_ksp_error_if_not_converged -pc_type lu -dm_landau_simplex 1 -use_uniform_particle_grid false -dm_landau_sphere -print_entropy -number_particles_per_dimension 50 -ftop_ksp_type cg -ftop_pc_type jacobi -ftop_ksp_rtol 1e-14

1162: TEST*/