Actual source code: matnest.c
1: #include <../src/mat/impls/nest/matnestimpl.h>
2: #include <../src/mat/impls/aij/seq/aij.h>
3: #include <../src/mat/impls/shell/shell.h>
4: #include <petscsf.h>
6: static PetscErrorCode MatSetUp_NestIS_Private(Mat, PetscInt, const IS[], PetscInt, const IS[]);
7: static PetscErrorCode MatCreateVecs_Nest(Mat, Vec *, Vec *);
8: static PetscErrorCode MatReset_Nest(Mat);
10: PETSC_INTERN PetscErrorCode MatConvert_Nest_IS(Mat, MatType, MatReuse, Mat *);
12: /* private functions */
13: static PetscErrorCode MatNestGetSizes_Private(Mat A, PetscInt *m, PetscInt *n, PetscInt *M, PetscInt *N)
14: {
15: Mat_Nest *bA = (Mat_Nest *)A->data;
16: PetscInt i, j;
18: PetscFunctionBegin;
19: *m = *n = *M = *N = 0;
20: for (i = 0; i < bA->nr; i++) { /* rows */
21: PetscInt sm, sM;
22: PetscCall(ISGetLocalSize(bA->isglobal.row[i], &sm));
23: PetscCall(ISGetSize(bA->isglobal.row[i], &sM));
24: *m += sm;
25: *M += sM;
26: }
27: for (j = 0; j < bA->nc; j++) { /* cols */
28: PetscInt sn, sN;
29: PetscCall(ISGetLocalSize(bA->isglobal.col[j], &sn));
30: PetscCall(ISGetSize(bA->isglobal.col[j], &sN));
31: *n += sn;
32: *N += sN;
33: }
34: PetscFunctionReturn(PETSC_SUCCESS);
35: }
37: /* operations */
38: static PetscErrorCode MatMult_Nest(Mat A, Vec x, Vec y)
39: {
40: Mat_Nest *bA = (Mat_Nest *)A->data;
41: Vec *bx = bA->right, *by = bA->left;
42: PetscInt i, j, nr = bA->nr, nc = bA->nc;
44: PetscFunctionBegin;
45: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(y, bA->isglobal.row[i], &by[i]));
46: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(x, bA->isglobal.col[i], &bx[i]));
47: for (i = 0; i < nr; i++) {
48: PetscCall(VecZeroEntries(by[i]));
49: for (j = 0; j < nc; j++) {
50: if (!bA->m[i][j]) continue;
51: /* y[i] <- y[i] + A[i][j] * x[j] */
52: PetscCall(MatMultAdd(bA->m[i][j], bx[j], by[i], by[i]));
53: }
54: }
55: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(y, bA->isglobal.row[i], &by[i]));
56: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.col[i], &bx[i]));
57: PetscFunctionReturn(PETSC_SUCCESS);
58: }
60: static PetscErrorCode MatMultAdd_Nest(Mat A, Vec x, Vec y, Vec z)
61: {
62: Mat_Nest *bA = (Mat_Nest *)A->data;
63: Vec *bx = bA->right, *bz = bA->left;
64: PetscInt i, j, nr = bA->nr, nc = bA->nc;
66: PetscFunctionBegin;
67: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(z, bA->isglobal.row[i], &bz[i]));
68: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(x, bA->isglobal.col[i], &bx[i]));
69: for (i = 0; i < nr; i++) {
70: if (y != z) {
71: Vec by;
72: PetscCall(VecGetSubVector(y, bA->isglobal.row[i], &by));
73: PetscCall(VecCopy(by, bz[i]));
74: PetscCall(VecRestoreSubVector(y, bA->isglobal.row[i], &by));
75: }
76: for (j = 0; j < nc; j++) {
77: if (!bA->m[i][j]) continue;
78: /* y[i] <- y[i] + A[i][j] * x[j] */
79: PetscCall(MatMultAdd(bA->m[i][j], bx[j], bz[i], bz[i]));
80: }
81: }
82: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(z, bA->isglobal.row[i], &bz[i]));
83: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.col[i], &bx[i]));
84: PetscFunctionReturn(PETSC_SUCCESS);
85: }
87: typedef struct {
88: Mat *workC; /* array of Mat with specific containers depending on the underlying MatMatMult implementation */
89: PetscScalar *tarray; /* buffer for storing all temporary products A[i][j] B[j] */
90: PetscInt *dm, *dn, k; /* displacements and number of submatrices */
91: } Nest_Dense;
93: static PetscErrorCode MatProductNumeric_Nest_Dense(Mat C)
94: {
95: Mat_Nest *bA;
96: Nest_Dense *contents;
97: Mat viewB, viewC, productB, workC;
98: const PetscScalar *barray;
99: PetscScalar *carray;
100: PetscInt i, j, M, N, nr, nc, ldb, ldc;
101: Mat A, B;
103: PetscFunctionBegin;
104: MatCheckProduct(C, 1);
105: A = C->product->A;
106: B = C->product->B;
107: PetscCall(MatGetSize(B, NULL, &N));
108: if (!N) {
109: PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
110: PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
111: PetscFunctionReturn(PETSC_SUCCESS);
112: }
113: contents = (Nest_Dense *)C->product->data;
114: PetscCheck(contents, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data empty");
115: bA = (Mat_Nest *)A->data;
116: nr = bA->nr;
117: nc = bA->nc;
118: PetscCall(MatDenseGetLDA(B, &ldb));
119: PetscCall(MatDenseGetLDA(C, &ldc));
120: PetscCall(MatZeroEntries(C));
121: PetscCall(MatDenseGetArrayRead(B, &barray));
122: PetscCall(MatDenseGetArray(C, &carray));
123: for (i = 0; i < nr; i++) {
124: PetscCall(ISGetSize(bA->isglobal.row[i], &M));
125: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), contents->dm[i + 1] - contents->dm[i], PETSC_DECIDE, M, N, PetscSafePointerPlusOffset(carray, contents->dm[i]), &viewC));
126: PetscCall(MatDenseSetLDA(viewC, ldc));
127: for (j = 0; j < nc; j++) {
128: if (!bA->m[i][j]) continue;
129: PetscCall(ISGetSize(bA->isglobal.col[j], &M));
130: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), contents->dn[j + 1] - contents->dn[j], PETSC_DECIDE, M, N, PetscSafePointerPlusOffset((PetscScalar *)barray, contents->dn[j]), &viewB));
131: PetscCall(MatDenseSetLDA(viewB, ldb));
133: /* MatMatMultNumeric(bA->m[i][j],viewB,contents->workC[i*nc + j]); */
134: workC = contents->workC[i * nc + j];
135: productB = workC->product->B;
136: workC->product->B = viewB; /* use newly created dense matrix viewB */
137: PetscCall(MatProductNumeric(workC));
138: PetscCall(MatDestroy(&viewB));
139: workC->product->B = productB; /* resume original B */
141: /* C[i] <- workC + C[i] */
142: PetscCall(MatAXPY(viewC, 1.0, contents->workC[i * nc + j], SAME_NONZERO_PATTERN));
143: }
144: PetscCall(MatDestroy(&viewC));
145: }
146: PetscCall(MatDenseRestoreArray(C, &carray));
147: PetscCall(MatDenseRestoreArrayRead(B, &barray));
149: PetscCall(MatSetOption(C, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
150: PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
151: PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));
152: PetscFunctionReturn(PETSC_SUCCESS);
153: }
155: static PetscErrorCode MatNest_DenseDestroy(void **ctx)
156: {
157: Nest_Dense *contents = *(Nest_Dense **)ctx;
158: PetscInt i;
160: PetscFunctionBegin;
161: PetscCall(PetscFree(contents->tarray));
162: for (i = 0; i < contents->k; i++) PetscCall(MatDestroy(contents->workC + i));
163: PetscCall(PetscFree3(contents->dm, contents->dn, contents->workC));
164: PetscCall(PetscFree(contents));
165: PetscFunctionReturn(PETSC_SUCCESS);
166: }
168: static PetscErrorCode MatProductSymbolic_Nest_Dense(Mat C)
169: {
170: Mat_Nest *bA;
171: Mat viewB, workC;
172: const PetscScalar *barray;
173: PetscInt i, j, M, N, m, n, nr, nc, maxm = 0, ldb;
174: Nest_Dense *contents = NULL;
175: PetscBool cisdense;
176: Mat A, B;
177: PetscReal fill;
179: PetscFunctionBegin;
180: MatCheckProduct(C, 1);
181: PetscCheck(!C->product->data, PetscObjectComm((PetscObject)C), PETSC_ERR_PLIB, "Product data not empty");
182: A = C->product->A;
183: B = C->product->B;
184: fill = C->product->fill;
185: bA = (Mat_Nest *)A->data;
186: nr = bA->nr;
187: nc = bA->nc;
188: PetscCall(MatGetLocalSize(C, &m, &n));
189: PetscCall(MatGetSize(C, &M, &N));
190: if (m == PETSC_DECIDE || n == PETSC_DECIDE || M == PETSC_DECIDE || N == PETSC_DECIDE) {
191: PetscCall(MatGetLocalSize(B, NULL, &n));
192: PetscCall(MatGetSize(B, NULL, &N));
193: PetscCall(MatGetLocalSize(A, &m, NULL));
194: PetscCall(MatGetSize(A, &M, NULL));
195: PetscCall(MatSetSizes(C, m, n, M, N));
196: }
197: PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATMPIDENSE, MATSEQDENSECUDA, MATMPIDENSECUDA, ""));
198: if (!cisdense) PetscCall(MatSetType(C, ((PetscObject)B)->type_name));
199: PetscCall(MatSetUp(C));
200: if (!N) {
201: C->ops->productnumeric = MatProductNumeric_Nest_Dense;
202: PetscFunctionReturn(PETSC_SUCCESS);
203: }
205: PetscCall(PetscNew(&contents));
206: C->product->data = contents;
207: C->product->destroy = MatNest_DenseDestroy;
208: PetscCall(PetscCalloc3(nr + 1, &contents->dm, nc + 1, &contents->dn, nr * nc, &contents->workC));
209: contents->k = nr * nc;
210: for (i = 0; i < nr; i++) {
211: PetscCall(ISGetLocalSize(bA->isglobal.row[i], contents->dm + i + 1));
212: maxm = PetscMax(maxm, contents->dm[i + 1]);
213: contents->dm[i + 1] += contents->dm[i];
214: }
215: for (i = 0; i < nc; i++) {
216: PetscCall(ISGetLocalSize(bA->isglobal.col[i], contents->dn + i + 1));
217: contents->dn[i + 1] += contents->dn[i];
218: }
219: PetscCall(PetscMalloc1(maxm * N, &contents->tarray));
220: PetscCall(MatDenseGetLDA(B, &ldb));
221: PetscCall(MatGetSize(B, NULL, &N));
222: PetscCall(MatDenseGetArrayRead(B, &barray));
223: /* loops are permuted compared to MatMatMultNumeric so that viewB is created only once per column of A */
224: for (j = 0; j < nc; j++) {
225: PetscCall(ISGetSize(bA->isglobal.col[j], &M));
226: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), contents->dn[j + 1] - contents->dn[j], PETSC_DECIDE, M, N, PetscSafePointerPlusOffset((PetscScalar *)barray, contents->dn[j]), &viewB));
227: PetscCall(MatDenseSetLDA(viewB, ldb));
228: for (i = 0; i < nr; i++) {
229: if (!bA->m[i][j]) continue;
230: /* MatMatMultSymbolic may attach a specific container (depending on MatType of bA->m[i][j]) to workC[i][j] */
232: PetscCall(MatProductCreate(bA->m[i][j], viewB, NULL, &contents->workC[i * nc + j]));
233: workC = contents->workC[i * nc + j];
234: PetscCall(MatProductSetType(workC, MATPRODUCT_AB));
235: PetscCall(MatProductSetAlgorithm(workC, "default"));
236: PetscCall(MatProductSetFill(workC, fill));
237: PetscCall(MatProductSetFromOptions(workC));
238: PetscCall(MatProductSymbolic(workC));
240: /* since tarray will be shared by all Mat */
241: PetscCall(MatSeqDenseSetPreallocation(workC, contents->tarray));
242: PetscCall(MatMPIDenseSetPreallocation(workC, contents->tarray));
243: }
244: PetscCall(MatDestroy(&viewB));
245: }
246: PetscCall(MatDenseRestoreArrayRead(B, &barray));
248: C->ops->productnumeric = MatProductNumeric_Nest_Dense;
249: PetscFunctionReturn(PETSC_SUCCESS);
250: }
252: static PetscErrorCode MatProductSetFromOptions_Nest_Dense(Mat C)
253: {
254: Mat_Product *product = C->product;
256: PetscFunctionBegin;
257: if (product->type == MATPRODUCT_AB) C->ops->productsymbolic = MatProductSymbolic_Nest_Dense;
258: PetscFunctionReturn(PETSC_SUCCESS);
259: }
261: static PetscErrorCode MatMultTransposeKernel_Nest(Mat A, Vec x, Vec y, PetscBool herm)
262: {
263: Mat_Nest *bA = (Mat_Nest *)A->data;
264: Vec *bx = bA->left, *by = bA->right;
265: PetscInt i, j, nr = bA->nr, nc = bA->nc;
267: PetscFunctionBegin;
268: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(x, bA->isglobal.row[i], &bx[i]));
269: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(y, bA->isglobal.col[i], &by[i]));
270: for (j = 0; j < nc; j++) {
271: PetscCall(VecZeroEntries(by[j]));
272: for (i = 0; i < nr; i++) {
273: if (!bA->m[i][j]) continue;
274: if (herm) PetscCall(MatMultHermitianTransposeAdd(bA->m[i][j], bx[i], by[j], by[j])); /* y[j] <- y[j] + (A[i][j])^H * x[i] */
275: else PetscCall(MatMultTransposeAdd(bA->m[i][j], bx[i], by[j], by[j])); /* y[j] <- y[j] + (A[i][j])^T * x[i] */
276: }
277: }
278: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.row[i], &bx[i]));
279: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(y, bA->isglobal.col[i], &by[i]));
280: PetscFunctionReturn(PETSC_SUCCESS);
281: }
283: static PetscErrorCode MatMultTranspose_Nest(Mat A, Vec x, Vec y)
284: {
285: PetscFunctionBegin;
286: PetscCall(MatMultTransposeKernel_Nest(A, x, y, PETSC_FALSE));
287: PetscFunctionReturn(PETSC_SUCCESS);
288: }
290: static PetscErrorCode MatMultHermitianTranspose_Nest(Mat A, Vec x, Vec y)
291: {
292: PetscFunctionBegin;
293: PetscCall(MatMultTransposeKernel_Nest(A, x, y, PETSC_TRUE));
294: PetscFunctionReturn(PETSC_SUCCESS);
295: }
297: static PetscErrorCode MatMultTransposeAddKernel_Nest(Mat A, Vec x, Vec y, Vec z, PetscBool herm)
298: {
299: Mat_Nest *bA = (Mat_Nest *)A->data;
300: Vec *bx = bA->left, *bz = bA->right;
301: PetscInt i, j, nr = bA->nr, nc = bA->nc;
303: PetscFunctionBegin;
304: for (i = 0; i < nr; i++) PetscCall(VecGetSubVector(x, bA->isglobal.row[i], &bx[i]));
305: for (i = 0; i < nc; i++) PetscCall(VecGetSubVector(z, bA->isglobal.col[i], &bz[i]));
306: for (j = 0; j < nc; j++) {
307: if (y != z) {
308: Vec by;
309: PetscCall(VecGetSubVector(y, bA->isglobal.col[j], &by));
310: PetscCall(VecCopy(by, bz[j]));
311: PetscCall(VecRestoreSubVector(y, bA->isglobal.col[j], &by));
312: }
313: for (i = 0; i < nr; i++) {
314: if (!bA->m[i][j]) continue;
315: if (herm) PetscCall(MatMultHermitianTransposeAdd(bA->m[i][j], bx[i], bz[j], bz[j])); /* z[j] <- y[j] + (A[i][j])^H * x[i] */
316: else PetscCall(MatMultTransposeAdd(bA->m[i][j], bx[i], bz[j], bz[j])); /* z[j] <- y[j] + (A[i][j])^T * x[i] */
317: }
318: }
319: for (i = 0; i < nr; i++) PetscCall(VecRestoreSubVector(x, bA->isglobal.row[i], &bx[i]));
320: for (i = 0; i < nc; i++) PetscCall(VecRestoreSubVector(z, bA->isglobal.col[i], &bz[i]));
321: PetscFunctionReturn(PETSC_SUCCESS);
322: }
324: static PetscErrorCode MatMultTransposeAdd_Nest(Mat A, Vec x, Vec y, Vec z)
325: {
326: PetscFunctionBegin;
327: PetscCall(MatMultTransposeAddKernel_Nest(A, x, y, z, PETSC_FALSE));
328: PetscFunctionReturn(PETSC_SUCCESS);
329: }
331: static PetscErrorCode MatMultHermitianTransposeAdd_Nest(Mat A, Vec x, Vec y, Vec z)
332: {
333: PetscFunctionBegin;
334: PetscCall(MatMultTransposeAddKernel_Nest(A, x, y, z, PETSC_TRUE));
335: PetscFunctionReturn(PETSC_SUCCESS);
336: }
338: static PetscErrorCode MatTranspose_Nest(Mat A, MatReuse reuse, Mat *B)
339: {
340: Mat_Nest *bA = (Mat_Nest *)A->data, *bC;
341: Mat C;
342: PetscInt i, j, nr = bA->nr, nc = bA->nc;
344: PetscFunctionBegin;
345: if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
346: PetscCheck(reuse != MAT_INPLACE_MATRIX || nr == nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_SIZ, "Square nested matrix only for in-place");
348: if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
349: Mat *subs;
350: IS *is_row, *is_col;
352: PetscCall(PetscCalloc1(nr * nc, &subs));
353: PetscCall(PetscMalloc2(nr, &is_row, nc, &is_col));
354: PetscCall(MatNestGetISs(A, is_row, is_col));
355: if (reuse == MAT_INPLACE_MATRIX) {
356: for (i = 0; i < nr; i++) {
357: for (j = 0; j < nc; j++) subs[i + nr * j] = bA->m[i][j];
358: }
359: }
361: PetscCall(MatCreateNest(PetscObjectComm((PetscObject)A), nc, is_col, nr, is_row, subs, &C));
362: PetscCall(PetscFree(subs));
363: PetscCall(PetscFree2(is_row, is_col));
364: } else {
365: C = *B;
366: }
368: bC = (Mat_Nest *)C->data;
369: for (i = 0; i < nr; i++) {
370: for (j = 0; j < nc; j++) {
371: if (bA->m[i][j]) {
372: PetscCall(MatTranspose(bA->m[i][j], reuse, &bC->m[j][i]));
373: } else {
374: bC->m[j][i] = NULL;
375: }
376: }
377: }
379: if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) {
380: *B = C;
381: } else {
382: PetscCall(MatHeaderMerge(A, &C));
383: }
384: PetscFunctionReturn(PETSC_SUCCESS);
385: }
387: static PetscErrorCode MatNestDestroyISList(PetscInt n, IS **list)
388: {
389: IS *lst = *list;
390: PetscInt i;
392: PetscFunctionBegin;
393: if (!lst) PetscFunctionReturn(PETSC_SUCCESS);
394: for (i = 0; i < n; i++)
395: if (lst[i]) PetscCall(ISDestroy(&lst[i]));
396: PetscCall(PetscFree(lst));
397: *list = NULL;
398: PetscFunctionReturn(PETSC_SUCCESS);
399: }
401: static PetscErrorCode MatReset_Nest(Mat A)
402: {
403: Mat_Nest *vs = (Mat_Nest *)A->data;
404: PetscInt i, j;
406: PetscFunctionBegin;
407: /* release the matrices and the place holders */
408: PetscCall(MatNestDestroyISList(vs->nr, &vs->isglobal.row));
409: PetscCall(MatNestDestroyISList(vs->nc, &vs->isglobal.col));
410: PetscCall(MatNestDestroyISList(vs->nr, &vs->islocal.row));
411: PetscCall(MatNestDestroyISList(vs->nc, &vs->islocal.col));
413: PetscCall(PetscFree(vs->row_len));
414: PetscCall(PetscFree(vs->col_len));
415: PetscCall(PetscFree(vs->nnzstate));
417: PetscCall(PetscFree2(vs->left, vs->right));
419: /* release the matrices and the place holders */
420: if (vs->m) {
421: for (i = 0; i < vs->nr; i++) {
422: for (j = 0; j < vs->nc; j++) PetscCall(MatDestroy(&vs->m[i][j]));
423: }
424: PetscCall(PetscFree(vs->m[0]));
425: PetscCall(PetscFree(vs->m));
426: }
428: /* restore defaults */
429: vs->nr = 0;
430: vs->nc = 0;
431: vs->splitassembly = PETSC_FALSE;
432: PetscFunctionReturn(PETSC_SUCCESS);
433: }
435: static PetscErrorCode MatDestroy_Nest(Mat A)
436: {
437: PetscFunctionBegin;
438: PetscCall(MatReset_Nest(A));
439: PetscCall(PetscFree(A->data));
440: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMat_C", NULL));
441: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMat_C", NULL));
442: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMats_C", NULL));
443: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSize_C", NULL));
444: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetISs_C", NULL));
445: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetLocalISs_C", NULL));
446: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetVecType_C", NULL));
447: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMats_C", NULL));
448: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpiaij_C", NULL));
449: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqaij_C", NULL));
450: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_aij_C", NULL));
451: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_is_C", NULL));
452: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpidense_C", NULL));
453: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqdense_C", NULL));
454: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_seqdense_C", NULL));
455: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_mpidense_C", NULL));
456: PetscFunctionReturn(PETSC_SUCCESS);
457: }
459: static PetscErrorCode MatAssemblyBegin_Nest(Mat A, MatAssemblyType type)
460: {
461: Mat_Nest *vs = (Mat_Nest *)A->data;
462: PetscInt i, j;
463: PetscBool nnzstate = PETSC_FALSE;
465: PetscFunctionBegin;
466: for (i = 0; i < vs->nr; i++) {
467: for (j = 0; j < vs->nc; j++) {
468: PetscObjectState subnnzstate = 0;
469: if (vs->m[i][j]) {
470: PetscCall(MatAssemblyBegin(vs->m[i][j], type));
471: if (!vs->splitassembly) {
472: /* Note: split assembly will fail if the same block appears more than once (even indirectly through a nested
473: * sub-block). This could be fixed by adding a flag to Mat so that there was a way to check if a Mat was
474: * already performing an assembly, but the result would by more complicated and appears to offer less
475: * potential for diagnostics and correctness checking. Split assembly should be fixed once there is an
476: * interface for libraries to make asynchronous progress in "user-defined non-blocking collectives".
477: */
478: PetscCall(MatAssemblyEnd(vs->m[i][j], type));
479: PetscCall(MatGetNonzeroState(vs->m[i][j], &subnnzstate));
480: }
481: }
482: nnzstate = (PetscBool)(nnzstate || vs->nnzstate[i * vs->nc + j] != subnnzstate);
483: vs->nnzstate[i * vs->nc + j] = subnnzstate;
484: }
485: }
486: if (nnzstate) A->nonzerostate++;
487: PetscFunctionReturn(PETSC_SUCCESS);
488: }
490: static PetscErrorCode MatAssemblyEnd_Nest(Mat A, MatAssemblyType type)
491: {
492: Mat_Nest *vs = (Mat_Nest *)A->data;
493: PetscInt i, j;
495: PetscFunctionBegin;
496: for (i = 0; i < vs->nr; i++) {
497: for (j = 0; j < vs->nc; j++) {
498: if (vs->m[i][j]) {
499: if (vs->splitassembly) PetscCall(MatAssemblyEnd(vs->m[i][j], type));
500: }
501: }
502: }
503: PetscFunctionReturn(PETSC_SUCCESS);
504: }
506: static PetscErrorCode MatNestFindNonzeroSubMatRow(Mat A, PetscInt row, Mat *B)
507: {
508: Mat_Nest *vs = (Mat_Nest *)A->data;
509: PetscInt j;
510: Mat sub;
512: PetscFunctionBegin;
513: sub = (row < vs->nc) ? vs->m[row][row] : (Mat)NULL; /* Prefer to find on the diagonal */
514: for (j = 0; !sub && j < vs->nc; j++) sub = vs->m[row][j];
515: if (sub) PetscCall(MatSetUp(sub)); /* Ensure that the sizes are available */
516: *B = sub;
517: PetscFunctionReturn(PETSC_SUCCESS);
518: }
520: static PetscErrorCode MatNestFindNonzeroSubMatCol(Mat A, PetscInt col, Mat *B)
521: {
522: Mat_Nest *vs = (Mat_Nest *)A->data;
523: PetscInt i;
524: Mat sub;
526: PetscFunctionBegin;
527: sub = (col < vs->nr) ? vs->m[col][col] : (Mat)NULL; /* Prefer to find on the diagonal */
528: for (i = 0; !sub && i < vs->nr; i++) sub = vs->m[i][col];
529: if (sub) PetscCall(MatSetUp(sub)); /* Ensure that the sizes are available */
530: *B = sub;
531: PetscFunctionReturn(PETSC_SUCCESS);
532: }
534: static PetscErrorCode MatNestFindISRange(Mat A, PetscInt n, const IS list[], IS is, PetscInt *begin, PetscInt *end)
535: {
536: PetscInt i, j, size, m;
537: PetscBool flg;
538: IS out, concatenate[2];
540: PetscFunctionBegin;
541: PetscAssertPointer(list, 3);
543: if (begin) {
544: PetscAssertPointer(begin, 5);
545: *begin = -1;
546: }
547: if (end) {
548: PetscAssertPointer(end, 6);
549: *end = -1;
550: }
551: for (i = 0; i < n; i++) {
552: if (!list[i]) continue;
553: PetscCall(ISEqualUnsorted(list[i], is, &flg));
554: if (flg) {
555: if (begin) *begin = i;
556: if (end) *end = i + 1;
557: PetscFunctionReturn(PETSC_SUCCESS);
558: }
559: }
560: PetscCall(ISGetSize(is, &size));
561: for (i = 0; i < n - 1; i++) {
562: if (!list[i]) continue;
563: m = 0;
564: PetscCall(ISConcatenate(PetscObjectComm((PetscObject)A), 2, list + i, &out));
565: PetscCall(ISGetSize(out, &m));
566: for (j = i + 2; j < n && m < size; j++) {
567: if (list[j]) {
568: concatenate[0] = out;
569: concatenate[1] = list[j];
570: PetscCall(ISConcatenate(PetscObjectComm((PetscObject)A), 2, concatenate, &out));
571: PetscCall(ISDestroy(concatenate));
572: PetscCall(ISGetSize(out, &m));
573: }
574: }
575: if (m == size) {
576: PetscCall(ISEqualUnsorted(out, is, &flg));
577: if (flg) {
578: if (begin) *begin = i;
579: if (end) *end = j;
580: PetscCall(ISDestroy(&out));
581: PetscFunctionReturn(PETSC_SUCCESS);
582: }
583: }
584: PetscCall(ISDestroy(&out));
585: }
586: PetscFunctionReturn(PETSC_SUCCESS);
587: }
589: static PetscErrorCode MatNestFillEmptyMat_Private(Mat A, PetscInt i, PetscInt j, Mat *B)
590: {
591: Mat_Nest *vs = (Mat_Nest *)A->data;
592: PetscInt lr, lc;
594: PetscFunctionBegin;
595: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
596: PetscCall(ISGetLocalSize(vs->isglobal.row[i], &lr));
597: PetscCall(ISGetLocalSize(vs->isglobal.col[j], &lc));
598: PetscCall(MatSetSizes(*B, lr, lc, PETSC_DECIDE, PETSC_DECIDE));
599: PetscCall(MatSetType(*B, MATAIJ));
600: PetscCall(MatSeqAIJSetPreallocation(*B, 0, NULL));
601: PetscCall(MatMPIAIJSetPreallocation(*B, 0, NULL, 0, NULL));
602: PetscCall(MatSetUp(*B));
603: PetscCall(MatSetOption(*B, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
604: PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
605: PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
606: PetscFunctionReturn(PETSC_SUCCESS);
607: }
609: static PetscErrorCode MatNestGetBlock_Private(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *B)
610: {
611: Mat_Nest *vs = (Mat_Nest *)A->data;
612: Mat *a;
613: PetscInt i, j, k, l, nr = rend - rbegin, nc = cend - cbegin;
614: char keyname[256];
615: PetscBool *b;
616: PetscBool flg;
618: PetscFunctionBegin;
619: *B = NULL;
620: PetscCall(PetscSNPrintf(keyname, sizeof(keyname), "NestBlock_%" PetscInt_FMT "-%" PetscInt_FMT "x%" PetscInt_FMT "-%" PetscInt_FMT, rbegin, rend, cbegin, cend));
621: PetscCall(PetscObjectQuery((PetscObject)A, keyname, (PetscObject *)B));
622: if (*B) PetscFunctionReturn(PETSC_SUCCESS);
624: PetscCall(PetscMalloc2(nr * nc, &a, nr * nc, &b));
625: for (i = 0; i < nr; i++) {
626: for (j = 0; j < nc; j++) {
627: a[i * nc + j] = vs->m[rbegin + i][cbegin + j];
628: b[i * nc + j] = PETSC_FALSE;
629: }
630: }
631: if (nc != vs->nc && nr != vs->nr) {
632: for (i = 0; i < nr; i++) {
633: for (j = 0; j < nc; j++) {
634: flg = PETSC_FALSE;
635: for (k = 0; (k < nr && !flg); k++) {
636: if (a[j + k * nc]) flg = PETSC_TRUE;
637: }
638: if (flg) {
639: flg = PETSC_FALSE;
640: for (l = 0; (l < nc && !flg); l++) {
641: if (a[i * nc + l]) flg = PETSC_TRUE;
642: }
643: }
644: if (!flg) {
645: b[i * nc + j] = PETSC_TRUE;
646: PetscCall(MatNestFillEmptyMat_Private(A, rbegin + i, cbegin + j, a + i * nc + j));
647: }
648: }
649: }
650: }
651: PetscCall(MatCreateNest(PetscObjectComm((PetscObject)A), nr, nr != vs->nr ? NULL : vs->isglobal.row, nc, nc != vs->nc ? NULL : vs->isglobal.col, a, B));
652: for (i = 0; i < nr; i++) {
653: for (j = 0; j < nc; j++) {
654: if (b[i * nc + j]) PetscCall(MatDestroy(a + i * nc + j));
655: }
656: }
657: PetscCall(PetscFree2(a, b));
658: (*B)->assembled = A->assembled;
659: PetscCall(PetscObjectCompose((PetscObject)A, keyname, (PetscObject)*B));
660: PetscCall(PetscObjectDereference((PetscObject)*B)); /* Leave the only remaining reference in the composition */
661: PetscFunctionReturn(PETSC_SUCCESS);
662: }
664: static PetscErrorCode MatNestFindSubMat(Mat A, struct MatNestISPair *is, IS isrow, IS iscol, Mat *B)
665: {
666: Mat_Nest *vs = (Mat_Nest *)A->data;
667: PetscInt rbegin, rend, cbegin, cend;
669: PetscFunctionBegin;
670: PetscCall(MatNestFindISRange(A, vs->nr, is->row, isrow, &rbegin, &rend));
671: PetscCall(MatNestFindISRange(A, vs->nc, is->col, iscol, &cbegin, &cend));
672: if (rend == rbegin + 1 && cend == cbegin + 1) {
673: if (!vs->m[rbegin][cbegin]) PetscCall(MatNestFillEmptyMat_Private(A, rbegin, cbegin, vs->m[rbegin] + cbegin));
674: *B = vs->m[rbegin][cbegin];
675: } else if (rbegin != -1 && cbegin != -1) {
676: PetscCall(MatNestGetBlock_Private(A, rbegin, rend, cbegin, cend, B));
677: } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Could not find index set");
678: PetscFunctionReturn(PETSC_SUCCESS);
679: }
681: /*
682: TODO: This does not actually returns a submatrix we can modify
683: */
684: static PetscErrorCode MatCreateSubMatrix_Nest(Mat A, IS isrow, IS iscol, MatReuse reuse, Mat *B)
685: {
686: Mat_Nest *vs = (Mat_Nest *)A->data;
687: Mat sub;
689: PetscFunctionBegin;
690: PetscCall(MatNestFindSubMat(A, &vs->isglobal, isrow, iscol, &sub));
691: switch (reuse) {
692: case MAT_INITIAL_MATRIX:
693: PetscCall(PetscObjectReference((PetscObject)sub));
694: if (sub) PetscCall(PetscObjectStateIncrease((PetscObject)sub));
695: *B = sub;
696: break;
697: case MAT_REUSE_MATRIX:
698: PetscCheck(sub == *B, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Submatrix was not used before in this call");
699: if (sub) PetscCall(PetscObjectStateIncrease((PetscObject)sub));
700: break;
701: default:
702: break;
703: }
704: PetscFunctionReturn(PETSC_SUCCESS);
705: }
707: static PetscErrorCode MatGetLocalSubMatrix_Nest(Mat A, IS isrow, IS iscol, Mat *B)
708: {
709: Mat_Nest *vs = (Mat_Nest *)A->data;
710: Mat sub;
712: PetscFunctionBegin;
713: PetscCall(MatNestFindSubMat(A, &vs->islocal, isrow, iscol, &sub));
714: /* We allow the submatrix to be NULL, perhaps it would be better for the user to return an empty matrix instead */
715: if (sub) PetscCall(PetscObjectReference((PetscObject)sub));
716: *B = sub;
717: PetscFunctionReturn(PETSC_SUCCESS);
718: }
720: static PetscErrorCode MatRestoreLocalSubMatrix_Nest(Mat A, IS isrow, IS iscol, Mat *B)
721: {
722: Mat_Nest *vs = (Mat_Nest *)A->data;
723: Mat sub;
725: PetscFunctionBegin;
726: PetscCall(MatNestFindSubMat(A, &vs->islocal, isrow, iscol, &sub));
727: PetscCheck(*B == sub, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Local submatrix has not been gotten");
728: if (sub) {
729: PetscCheck(((PetscObject)sub)->refct > 1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Local submatrix has had reference count decremented too many times");
730: PetscCall(MatDestroy(B));
731: }
732: PetscFunctionReturn(PETSC_SUCCESS);
733: }
735: static PetscErrorCode MatGetDiagonal_Nest(Mat A, Vec v)
736: {
737: Mat_Nest *bA = (Mat_Nest *)A->data;
738: PetscInt i;
740: PetscFunctionBegin;
741: for (i = 0; i < bA->nr; i++) {
742: Vec bv;
743: PetscCall(VecGetSubVector(v, bA->isglobal.row[i], &bv));
744: if (bA->m[i][i]) {
745: PetscCall(MatGetDiagonal(bA->m[i][i], bv));
746: } else {
747: PetscCall(VecSet(bv, 0.0));
748: }
749: PetscCall(VecRestoreSubVector(v, bA->isglobal.row[i], &bv));
750: }
751: PetscFunctionReturn(PETSC_SUCCESS);
752: }
754: static PetscErrorCode MatDiagonalScale_Nest(Mat A, Vec l, Vec r)
755: {
756: Mat_Nest *bA = (Mat_Nest *)A->data;
757: Vec bl, *br;
758: PetscInt i, j;
760: PetscFunctionBegin;
761: PetscCall(PetscCalloc1(bA->nc, &br));
762: if (r) {
763: for (j = 0; j < bA->nc; j++) PetscCall(VecGetSubVector(r, bA->isglobal.col[j], &br[j]));
764: }
765: bl = NULL;
766: for (i = 0; i < bA->nr; i++) {
767: if (l) PetscCall(VecGetSubVector(l, bA->isglobal.row[i], &bl));
768: for (j = 0; j < bA->nc; j++) {
769: if (bA->m[i][j]) PetscCall(MatDiagonalScale(bA->m[i][j], bl, br[j]));
770: }
771: if (l) PetscCall(VecRestoreSubVector(l, bA->isglobal.row[i], &bl));
772: }
773: if (r) {
774: for (j = 0; j < bA->nc; j++) PetscCall(VecRestoreSubVector(r, bA->isglobal.col[j], &br[j]));
775: }
776: PetscCall(PetscFree(br));
777: PetscFunctionReturn(PETSC_SUCCESS);
778: }
780: static PetscErrorCode MatScale_Nest(Mat A, PetscScalar a)
781: {
782: Mat_Nest *bA = (Mat_Nest *)A->data;
783: PetscInt i, j;
785: PetscFunctionBegin;
786: for (i = 0; i < bA->nr; i++) {
787: for (j = 0; j < bA->nc; j++) {
788: if (bA->m[i][j]) PetscCall(MatScale(bA->m[i][j], a));
789: }
790: }
791: PetscFunctionReturn(PETSC_SUCCESS);
792: }
794: static PetscErrorCode MatShift_Nest(Mat A, PetscScalar a)
795: {
796: Mat_Nest *bA = (Mat_Nest *)A->data;
797: PetscInt i;
798: PetscBool nnzstate = PETSC_FALSE;
800: PetscFunctionBegin;
801: for (i = 0; i < bA->nr; i++) {
802: PetscObjectState subnnzstate = 0;
803: PetscCheck(bA->m[i][i], PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for shifting an empty diagonal block, insert a matrix in block (%" PetscInt_FMT ",%" PetscInt_FMT ")", i, i);
804: PetscCall(MatShift(bA->m[i][i], a));
805: PetscCall(MatGetNonzeroState(bA->m[i][i], &subnnzstate));
806: nnzstate = (PetscBool)(nnzstate || bA->nnzstate[i * bA->nc + i] != subnnzstate);
807: bA->nnzstate[i * bA->nc + i] = subnnzstate;
808: }
809: if (nnzstate) A->nonzerostate++;
810: PetscFunctionReturn(PETSC_SUCCESS);
811: }
813: static PetscErrorCode MatDiagonalSet_Nest(Mat A, Vec D, InsertMode is)
814: {
815: Mat_Nest *bA = (Mat_Nest *)A->data;
816: PetscInt i;
817: PetscBool nnzstate = PETSC_FALSE;
819: PetscFunctionBegin;
820: for (i = 0; i < bA->nr; i++) {
821: PetscObjectState subnnzstate = 0;
822: Vec bv;
823: PetscCall(VecGetSubVector(D, bA->isglobal.row[i], &bv));
824: if (bA->m[i][i]) {
825: PetscCall(MatDiagonalSet(bA->m[i][i], bv, is));
826: PetscCall(MatGetNonzeroState(bA->m[i][i], &subnnzstate));
827: }
828: PetscCall(VecRestoreSubVector(D, bA->isglobal.row[i], &bv));
829: nnzstate = (PetscBool)(nnzstate || bA->nnzstate[i * bA->nc + i] != subnnzstate);
830: bA->nnzstate[i * bA->nc + i] = subnnzstate;
831: }
832: if (nnzstate) A->nonzerostate++;
833: PetscFunctionReturn(PETSC_SUCCESS);
834: }
836: static PetscErrorCode MatSetRandom_Nest(Mat A, PetscRandom rctx)
837: {
838: Mat_Nest *bA = (Mat_Nest *)A->data;
839: PetscInt i, j;
841: PetscFunctionBegin;
842: for (i = 0; i < bA->nr; i++) {
843: for (j = 0; j < bA->nc; j++) {
844: if (bA->m[i][j]) PetscCall(MatSetRandom(bA->m[i][j], rctx));
845: }
846: }
847: PetscFunctionReturn(PETSC_SUCCESS);
848: }
850: static PetscErrorCode MatCreateVecs_Nest(Mat A, Vec *right, Vec *left)
851: {
852: Mat_Nest *bA = (Mat_Nest *)A->data;
853: Vec *L, *R;
854: MPI_Comm comm;
855: PetscInt i, j;
857: PetscFunctionBegin;
858: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
859: if (right) {
860: /* allocate R */
861: PetscCall(PetscMalloc1(bA->nc, &R));
862: /* Create the right vectors */
863: for (j = 0; j < bA->nc; j++) {
864: for (i = 0; i < bA->nr; i++) {
865: if (bA->m[i][j]) {
866: PetscCall(MatCreateVecs(bA->m[i][j], &R[j], NULL));
867: break;
868: }
869: }
870: PetscCheck(i != bA->nr, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null column.");
871: }
872: PetscCall(VecCreateNest(comm, bA->nc, bA->isglobal.col, R, right));
873: /* hand back control to the nest vector */
874: for (j = 0; j < bA->nc; j++) PetscCall(VecDestroy(&R[j]));
875: PetscCall(PetscFree(R));
876: }
878: if (left) {
879: /* allocate L */
880: PetscCall(PetscMalloc1(bA->nr, &L));
881: /* Create the left vectors */
882: for (i = 0; i < bA->nr; i++) {
883: for (j = 0; j < bA->nc; j++) {
884: if (bA->m[i][j]) {
885: PetscCall(MatCreateVecs(bA->m[i][j], NULL, &L[i]));
886: break;
887: }
888: }
889: PetscCheck(j != bA->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Mat(Nest) contains a null row.");
890: }
892: PetscCall(VecCreateNest(comm, bA->nr, bA->isglobal.row, L, left));
893: for (i = 0; i < bA->nr; i++) PetscCall(VecDestroy(&L[i]));
895: PetscCall(PetscFree(L));
896: }
897: PetscFunctionReturn(PETSC_SUCCESS);
898: }
900: static PetscErrorCode MatView_Nest(Mat A, PetscViewer viewer)
901: {
902: Mat_Nest *bA = (Mat_Nest *)A->data;
903: PetscBool isascii, viewSub = PETSC_FALSE;
904: PetscInt i, j;
906: PetscFunctionBegin;
907: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
908: if (isascii) {
909: PetscViewerFormat format;
911: PetscCall(PetscViewerGetFormat(viewer, &format));
912: if (format == PETSC_VIEWER_ASCII_MATLAB) {
913: Mat T;
915: PetscCall(MatConvert(A, MATAIJ, MAT_INITIAL_MATRIX, &T));
916: PetscCall(MatView(T, viewer));
917: PetscCall(MatDestroy(&T));
918: PetscFunctionReturn(PETSC_SUCCESS);
919: }
920: PetscCall(PetscOptionsGetBool(((PetscObject)A)->options, ((PetscObject)A)->prefix, "-mat_view_nest_sub", &viewSub, NULL));
921: PetscCall(PetscViewerASCIIPushTab(viewer));
922: PetscCall(PetscViewerASCIIPrintf(viewer, "MatNest, rows=%" PetscInt_FMT ", cols=%" PetscInt_FMT ", structure:\n", bA->nr, bA->nc));
923: for (i = 0; i < bA->nr; i++) {
924: for (j = 0; j < bA->nc; j++) {
925: MatType type;
926: char name[256] = "", prefix[256] = "";
927: PetscInt NR, NC;
928: PetscBool isNest = PETSC_FALSE;
930: if (!bA->m[i][j]) {
931: PetscCall(PetscViewerASCIIPrintf(viewer, "(%" PetscInt_FMT ",%" PetscInt_FMT ") : NULL\n", i, j));
932: continue;
933: }
934: PetscCall(MatGetSize(bA->m[i][j], &NR, &NC));
935: PetscCall(MatGetType(bA->m[i][j], &type));
936: if (((PetscObject)bA->m[i][j])->name) PetscCall(PetscSNPrintf(name, sizeof(name), "name=\"%s\", ", ((PetscObject)bA->m[i][j])->name));
937: if (((PetscObject)bA->m[i][j])->prefix) PetscCall(PetscSNPrintf(prefix, sizeof(prefix), "prefix=\"%s\", ", ((PetscObject)bA->m[i][j])->prefix));
938: PetscCall(PetscObjectTypeCompare((PetscObject)bA->m[i][j], MATNEST, &isNest));
940: PetscCall(PetscViewerASCIIPrintf(viewer, "(%" PetscInt_FMT ",%" PetscInt_FMT ") : %s%stype=%s, rows=%" PetscInt_FMT ", cols=%" PetscInt_FMT "\n", i, j, name, prefix, type, NR, NC));
942: if (isNest || viewSub) {
943: PetscCall(PetscViewerASCIIPushTab(viewer)); /* push1 */
944: PetscCall(MatView(bA->m[i][j], viewer));
945: PetscCall(PetscViewerASCIIPopTab(viewer)); /* pop1 */
946: }
947: }
948: }
949: PetscCall(PetscViewerASCIIPopTab(viewer)); /* pop0 */
950: }
951: PetscFunctionReturn(PETSC_SUCCESS);
952: }
954: static PetscErrorCode MatZeroEntries_Nest(Mat A)
955: {
956: Mat_Nest *bA = (Mat_Nest *)A->data;
957: PetscInt i, j;
959: PetscFunctionBegin;
960: for (i = 0; i < bA->nr; i++) {
961: for (j = 0; j < bA->nc; j++) {
962: if (!bA->m[i][j]) continue;
963: PetscCall(MatZeroEntries(bA->m[i][j]));
964: }
965: }
966: PetscFunctionReturn(PETSC_SUCCESS);
967: }
969: static PetscErrorCode MatCopy_Nest(Mat A, Mat B, MatStructure str)
970: {
971: Mat_Nest *bA = (Mat_Nest *)A->data, *bB = (Mat_Nest *)B->data;
972: PetscInt i, j, nr = bA->nr, nc = bA->nc;
973: PetscBool nnzstate = PETSC_FALSE;
975: PetscFunctionBegin;
976: PetscCheck(nr == bB->nr && nc == bB->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Cannot copy a Mat_Nest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ") to a Mat_Nest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ")", bB->nr, bB->nc, nr, nc);
977: for (i = 0; i < nr; i++) {
978: for (j = 0; j < nc; j++) {
979: PetscObjectState subnnzstate = 0;
980: if (bA->m[i][j] && bB->m[i][j]) {
981: PetscCall(MatCopy(bA->m[i][j], bB->m[i][j], str));
982: PetscCall(MatGetNonzeroState(bB->m[i][j], &subnnzstate));
983: nnzstate = (PetscBool)(nnzstate || bB->nnzstate[i * nc + j] != subnnzstate);
984: bB->nnzstate[i * nc + j] = subnnzstate;
985: } else if (bA->m[i][j]) { // bB->m[i][j] is NULL
986: Mat M;
988: PetscCheck(str == DIFFERENT_NONZERO_PATTERN || str == UNKNOWN_NONZERO_PATTERN, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Matrix block does not exist at %" PetscInt_FMT ",%" PetscInt_FMT ". Use DIFFERENT_NONZERO_PATTERN or UNKNOWN_NONZERO_PATTERN", i, j);
989: PetscCall(MatDuplicate(bA->m[i][j], MAT_COPY_VALUES, &M));
990: PetscCall(MatNestSetSubMat(B, i, j, M));
991: PetscCall(MatDestroy(&M));
992: } else if (bB->m[i][j]) { // bA->m[i][j] is NULL
993: PetscCheck(str == DIFFERENT_NONZERO_PATTERN || str == SUBSET_NONZERO_PATTERN || str == UNKNOWN_NONZERO_PATTERN, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Matrix block does not exist at %" PetscInt_FMT ",%" PetscInt_FMT ". Use DIFFERENT_NONZERO_PATTERN, SUBSET_NONZERO_PATTERN or UNKNOWN_NONZERO_PATTERN", i, j);
994: PetscCall(MatNestSetSubMat(B, i, j, NULL));
995: }
996: }
997: }
998: if (nnzstate) B->nonzerostate++;
999: PetscFunctionReturn(PETSC_SUCCESS);
1000: }
1002: static PetscErrorCode MatAXPY_Nest(Mat Y, PetscScalar a, Mat X, MatStructure str)
1003: {
1004: Mat_Nest *bY = (Mat_Nest *)Y->data, *bX = (Mat_Nest *)X->data;
1005: PetscInt i, j, nr = bY->nr, nc = bY->nc;
1006: PetscBool nnzstate = PETSC_FALSE;
1008: PetscFunctionBegin;
1009: PetscCheck(nr == bX->nr && nc == bX->nc, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_INCOMP, "Cannot AXPY a MatNest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ") with a MatNest of block size (%" PetscInt_FMT ",%" PetscInt_FMT ")", bX->nr, bX->nc, nr, nc);
1010: for (i = 0; i < nr; i++) {
1011: for (j = 0; j < nc; j++) {
1012: PetscObjectState subnnzstate = 0;
1013: if (bY->m[i][j] && bX->m[i][j]) {
1014: PetscCall(MatAXPY(bY->m[i][j], a, bX->m[i][j], str));
1015: } else if (bX->m[i][j]) {
1016: Mat M;
1018: PetscCheck(str == DIFFERENT_NONZERO_PATTERN || str == UNKNOWN_NONZERO_PATTERN, PetscObjectComm((PetscObject)Y), PETSC_ERR_ARG_INCOMP, "Matrix block does not exist at %" PetscInt_FMT ",%" PetscInt_FMT ". Use DIFFERENT_NONZERO_PATTERN or UNKNOWN_NONZERO_PATTERN", i, j);
1019: PetscCall(MatDuplicate(bX->m[i][j], MAT_COPY_VALUES, &M));
1020: PetscCall(MatNestSetSubMat(Y, i, j, M));
1021: PetscCall(MatDestroy(&M));
1022: }
1023: if (bY->m[i][j]) PetscCall(MatGetNonzeroState(bY->m[i][j], &subnnzstate));
1024: nnzstate = (PetscBool)(nnzstate || bY->nnzstate[i * nc + j] != subnnzstate);
1025: bY->nnzstate[i * nc + j] = subnnzstate;
1026: }
1027: }
1028: if (nnzstate) Y->nonzerostate++;
1029: PetscFunctionReturn(PETSC_SUCCESS);
1030: }
1032: static PetscErrorCode MatDuplicate_Nest(Mat A, MatDuplicateOption op, Mat *B)
1033: {
1034: Mat_Nest *bA = (Mat_Nest *)A->data;
1035: Mat *b;
1036: PetscInt i, j, nr = bA->nr, nc = bA->nc;
1038: PetscFunctionBegin;
1039: PetscCall(PetscMalloc1(nr * nc, &b));
1040: for (i = 0; i < nr; i++) {
1041: for (j = 0; j < nc; j++) {
1042: if (bA->m[i][j]) {
1043: PetscCall(MatDuplicate(bA->m[i][j], op, &b[i * nc + j]));
1044: } else {
1045: b[i * nc + j] = NULL;
1046: }
1047: }
1048: }
1049: PetscCall(MatCreateNest(PetscObjectComm((PetscObject)A), nr, bA->isglobal.row, nc, bA->isglobal.col, b, B));
1050: /* Give the new MatNest exclusive ownership */
1051: for (i = 0; i < nr * nc; i++) PetscCall(MatDestroy(&b[i]));
1052: PetscCall(PetscFree(b));
1054: PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
1055: PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
1056: PetscFunctionReturn(PETSC_SUCCESS);
1057: }
1059: /* nest api */
1060: static PetscErrorCode MatNestGetSubMat_Nest(Mat A, PetscInt idxm, PetscInt jdxm, Mat *mat)
1061: {
1062: Mat_Nest *bA = (Mat_Nest *)A->data;
1064: PetscFunctionBegin;
1065: PetscCheck(idxm < bA->nr, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm, bA->nr - 1);
1066: PetscCheck(jdxm < bA->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Col too large: row %" PetscInt_FMT " max %" PetscInt_FMT, jdxm, bA->nc - 1);
1067: *mat = bA->m[idxm][jdxm];
1068: PetscFunctionReturn(PETSC_SUCCESS);
1069: }
1071: /*@
1072: MatNestGetSubMat - Returns a single, sub-matrix from a `MATNEST`
1074: Not Collective
1076: Input Parameters:
1077: + A - `MATNEST` matrix
1078: . idxm - index of the matrix within the nest matrix
1079: - jdxm - index of the matrix within the nest matrix
1081: Output Parameter:
1082: . sub - matrix at index `idxm`, `jdxm` within the nest matrix
1084: Level: developer
1086: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSize()`, `MatNestGetSubMats()`, `MatCreateNest()`, `MatNestSetSubMat()`,
1087: `MatNestGetLocalISs()`, `MatNestGetISs()`
1088: @*/
1089: PetscErrorCode MatNestGetSubMat(Mat A, PetscInt idxm, PetscInt jdxm, Mat *sub)
1090: {
1091: PetscFunctionBegin;
1095: PetscAssertPointer(sub, 4);
1096: PetscUseMethod(A, "MatNestGetSubMat_C", (Mat, PetscInt, PetscInt, Mat *), (A, idxm, jdxm, sub));
1097: PetscFunctionReturn(PETSC_SUCCESS);
1098: }
1100: static PetscErrorCode MatNestSetSubMat_Nest(Mat A, PetscInt idxm, PetscInt jdxm, Mat mat)
1101: {
1102: Mat_Nest *bA = (Mat_Nest *)A->data;
1103: PetscInt m, n, M, N, mi, ni, Mi, Ni;
1105: PetscFunctionBegin;
1106: PetscCheck(idxm < bA->nr, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm, bA->nr - 1);
1107: PetscCheck(jdxm < bA->nc, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Col too large: row %" PetscInt_FMT " max %" PetscInt_FMT, jdxm, bA->nc - 1);
1108: if (mat) {
1109: PetscCall(MatGetLocalSize(mat, &m, &n));
1110: PetscCall(MatGetSize(mat, &M, &N));
1111: PetscCall(ISGetLocalSize(bA->isglobal.row[idxm], &mi));
1112: PetscCall(ISGetSize(bA->isglobal.row[idxm], &Mi));
1113: PetscCall(ISGetLocalSize(bA->isglobal.col[jdxm], &ni));
1114: PetscCall(ISGetSize(bA->isglobal.col[jdxm], &Ni));
1115: PetscCheck(M == Mi && N == Ni, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_INCOMP, "Submatrix dimension (%" PetscInt_FMT ",%" PetscInt_FMT ") incompatible with nest block (%" PetscInt_FMT ",%" PetscInt_FMT ")", M, N, Mi, Ni);
1116: PetscCheck(m == mi && n == ni, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_INCOMP, "Submatrix local dimension (%" PetscInt_FMT ",%" PetscInt_FMT ") incompatible with nest block (%" PetscInt_FMT ",%" PetscInt_FMT ")", m, n, mi, ni);
1117: }
1119: /* do not increase object state */
1120: if (mat == bA->m[idxm][jdxm]) PetscFunctionReturn(PETSC_SUCCESS);
1122: PetscCall(PetscObjectReference((PetscObject)mat));
1123: PetscCall(MatDestroy(&bA->m[idxm][jdxm]));
1124: bA->m[idxm][jdxm] = mat;
1125: PetscCall(PetscObjectStateIncrease((PetscObject)A));
1126: if (mat) PetscCall(MatGetNonzeroState(mat, &bA->nnzstate[idxm * bA->nc + jdxm]));
1127: else bA->nnzstate[idxm * bA->nc + jdxm] = 0;
1128: A->nonzerostate++;
1129: PetscFunctionReturn(PETSC_SUCCESS);
1130: }
1132: /*@
1133: MatNestSetSubMat - Set a single submatrix in the `MATNEST`
1135: Logically Collective
1137: Input Parameters:
1138: + A - `MATNEST` matrix
1139: . idxm - index of the matrix within the nest matrix
1140: . jdxm - index of the matrix within the nest matrix
1141: - sub - matrix at index `idxm`, `jdxm` within the nest matrix
1143: Level: developer
1145: Notes:
1146: The new submatrix must have the same size and communicator as that block of the nest.
1148: This increments the reference count of the submatrix.
1150: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestSetSubMats()`, `MatNestGetSubMats()`, `MatNestGetLocalISs()`, `MatCreateNest()`,
1151: `MatNestGetSubMat()`, `MatNestGetISs()`, `MatNestGetSize()`
1152: @*/
1153: PetscErrorCode MatNestSetSubMat(Mat A, PetscInt idxm, PetscInt jdxm, Mat sub)
1154: {
1155: PetscFunctionBegin;
1160: PetscTryMethod(A, "MatNestSetSubMat_C", (Mat, PetscInt, PetscInt, Mat), (A, idxm, jdxm, sub));
1161: PetscFunctionReturn(PETSC_SUCCESS);
1162: }
1164: static PetscErrorCode MatNestGetSubMats_Nest(Mat A, PetscInt *M, PetscInt *N, Mat ***mat)
1165: {
1166: Mat_Nest *bA = (Mat_Nest *)A->data;
1168: PetscFunctionBegin;
1169: if (M) *M = bA->nr;
1170: if (N) *N = bA->nc;
1171: if (mat) *mat = bA->m;
1172: PetscFunctionReturn(PETSC_SUCCESS);
1173: }
1175: /*@C
1176: MatNestGetSubMats - Returns the entire two dimensional array of matrices defining a `MATNEST` matrix.
1178: Not Collective
1180: Input Parameter:
1181: . A - nest matrix
1183: Output Parameters:
1184: + M - number of submatrix rows in the nest matrix
1185: . N - number of submatrix columns in the nest matrix
1186: - mat - array of matrices
1188: Level: developer
1190: Note:
1191: The user should not free the array `mat`.
1193: Fortran Notes:
1194: This routine has a calling sequence `call MatNestGetSubMats(A, M, N, mat, ierr)`
1195: where the space allocated for the optional argument `mat` is assumed large enough (if provided).
1196: Matrices in `mat` are returned in row-major order, see `MatCreateNest()` for an example.
1198: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSize()`, `MatNestGetSubMat()`, `MatNestGetLocalISs()`, `MatCreateNest()`,
1199: `MatNestSetSubMats()`, `MatNestGetISs()`, `MatNestSetSubMat()`
1200: @*/
1201: PetscErrorCode MatNestGetSubMats(Mat A, PetscInt *M, PetscInt *N, Mat ***mat)
1202: {
1203: PetscFunctionBegin;
1205: PetscUseMethod(A, "MatNestGetSubMats_C", (Mat, PetscInt *, PetscInt *, Mat ***), (A, M, N, mat));
1206: PetscFunctionReturn(PETSC_SUCCESS);
1207: }
1209: static PetscErrorCode MatNestGetSize_Nest(Mat A, PetscInt *M, PetscInt *N)
1210: {
1211: Mat_Nest *bA = (Mat_Nest *)A->data;
1213: PetscFunctionBegin;
1214: if (M) *M = bA->nr;
1215: if (N) *N = bA->nc;
1216: PetscFunctionReturn(PETSC_SUCCESS);
1217: }
1219: /*@
1220: MatNestGetSize - Returns the size of the `MATNEST` matrix.
1222: Not Collective
1224: Input Parameter:
1225: . A - `MATNEST` matrix
1227: Output Parameters:
1228: + M - number of rows in the nested mat
1229: - N - number of cols in the nested mat
1231: Level: developer
1233: Note:
1234: `size` refers to the number of submatrices in the row and column directions of the nested matrix
1236: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSubMat()`, `MatNestGetSubMats()`, `MatCreateNest()`, `MatNestGetLocalISs()`,
1237: `MatNestGetISs()`
1238: @*/
1239: PetscErrorCode MatNestGetSize(Mat A, PetscInt *M, PetscInt *N)
1240: {
1241: PetscFunctionBegin;
1243: PetscUseMethod(A, "MatNestGetSize_C", (Mat, PetscInt *, PetscInt *), (A, M, N));
1244: PetscFunctionReturn(PETSC_SUCCESS);
1245: }
1247: static PetscErrorCode MatNestGetISs_Nest(Mat A, IS rows[], IS cols[])
1248: {
1249: Mat_Nest *vs = (Mat_Nest *)A->data;
1250: PetscInt i;
1252: PetscFunctionBegin;
1253: if (rows)
1254: for (i = 0; i < vs->nr; i++) rows[i] = vs->isglobal.row[i];
1255: if (cols)
1256: for (i = 0; i < vs->nc; i++) cols[i] = vs->isglobal.col[i];
1257: PetscFunctionReturn(PETSC_SUCCESS);
1258: }
1260: /*@
1261: MatNestGetISs - Returns the index sets partitioning the row and column spaces of a `MATNEST`
1263: Not Collective
1265: Input Parameter:
1266: . A - `MATNEST` matrix
1268: Output Parameters:
1269: + rows - array of row index sets (pass `NULL` to ignore)
1270: - cols - array of column index sets (pass `NULL` to ignore)
1272: Level: advanced
1274: Note:
1275: The user must have allocated arrays of the correct size. The reference count is not increased on the returned `IS`s.
1277: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSubMat()`, `MatNestGetSubMats()`, `MatNestGetSize()`, `MatNestGetLocalISs()`,
1278: `MatCreateNest()`, `MatNestSetSubMats()`
1279: @*/
1280: PetscErrorCode MatNestGetISs(Mat A, IS rows[], IS cols[])
1281: {
1282: PetscFunctionBegin;
1284: PetscUseMethod(A, "MatNestGetISs_C", (Mat, IS[], IS[]), (A, rows, cols));
1285: PetscFunctionReturn(PETSC_SUCCESS);
1286: }
1288: static PetscErrorCode MatNestGetLocalISs_Nest(Mat A, IS rows[], IS cols[])
1289: {
1290: Mat_Nest *vs = (Mat_Nest *)A->data;
1291: PetscInt i;
1293: PetscFunctionBegin;
1294: if (rows)
1295: for (i = 0; i < vs->nr; i++) rows[i] = vs->islocal.row[i];
1296: if (cols)
1297: for (i = 0; i < vs->nc; i++) cols[i] = vs->islocal.col[i];
1298: PetscFunctionReturn(PETSC_SUCCESS);
1299: }
1301: /*@
1302: MatNestGetLocalISs - Returns the index sets partitioning the row and column spaces of a `MATNEST`
1304: Not Collective
1306: Input Parameter:
1307: . A - `MATNEST` matrix
1309: Output Parameters:
1310: + rows - array of row index sets (pass `NULL` to ignore)
1311: - cols - array of column index sets (pass `NULL` to ignore)
1313: Level: advanced
1315: Note:
1316: The user must have allocated arrays of the correct size. The reference count is not increased on the returned `IS`s.
1318: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatNestGetSubMat()`, `MatNestGetSubMats()`, `MatNestGetSize()`, `MatNestGetISs()`, `MatCreateNest()`,
1319: `MatNestSetSubMats()`, `MatNestSetSubMat()`
1320: @*/
1321: PetscErrorCode MatNestGetLocalISs(Mat A, IS rows[], IS cols[])
1322: {
1323: PetscFunctionBegin;
1325: PetscUseMethod(A, "MatNestGetLocalISs_C", (Mat, IS[], IS[]), (A, rows, cols));
1326: PetscFunctionReturn(PETSC_SUCCESS);
1327: }
1329: static PetscErrorCode MatNestSetVecType_Nest(Mat A, VecType vtype)
1330: {
1331: PetscBool flg;
1333: PetscFunctionBegin;
1334: PetscCall(PetscStrcmp(vtype, VECNEST, &flg));
1335: /* In reality, this only distinguishes VECNEST and "other" */
1336: if (flg) A->ops->getvecs = MatCreateVecs_Nest;
1337: else A->ops->getvecs = NULL;
1338: PetscFunctionReturn(PETSC_SUCCESS);
1339: }
1341: /*@
1342: MatNestSetVecType - Sets the type of `Vec` returned by `MatCreateVecs()`
1344: Not Collective
1346: Input Parameters:
1347: + A - `MATNEST` matrix
1348: - vtype - `VecType` to use for creating vectors
1350: Level: developer
1352: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreateVecs()`, `MatCreateNest()`, `VecType`
1353: @*/
1354: PetscErrorCode MatNestSetVecType(Mat A, VecType vtype)
1355: {
1356: PetscFunctionBegin;
1358: PetscTryMethod(A, "MatNestSetVecType_C", (Mat, VecType), (A, vtype));
1359: PetscFunctionReturn(PETSC_SUCCESS);
1360: }
1362: static PetscErrorCode MatNestSetSubMats_Nest(Mat A, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[], const Mat a[])
1363: {
1364: Mat_Nest *s = (Mat_Nest *)A->data;
1365: PetscInt i, j, m, n, M, N;
1366: PetscBool cong, isstd, sametype = PETSC_FALSE;
1367: VecType vtype, type;
1369: PetscFunctionBegin;
1370: PetscCall(MatReset_Nest(A));
1372: s->nr = nr;
1373: s->nc = nc;
1375: /* Create space for submatrices */
1376: PetscCall(PetscMalloc1(nr, &s->m));
1377: PetscCall(PetscMalloc1(nr * nc, &s->m[0]));
1378: for (i = 0; i < nr; i++) {
1379: s->m[i] = s->m[0] + i * nc;
1380: for (j = 0; j < nc; j++) {
1381: s->m[i][j] = a ? a[i * nc + j] : NULL;
1382: PetscCall(PetscObjectReference((PetscObject)s->m[i][j]));
1383: }
1384: }
1385: PetscCall(MatGetVecType(A, &vtype));
1386: PetscCall(PetscStrcmp(vtype, VECSTANDARD, &isstd));
1387: if (isstd) {
1388: /* check if all blocks have the same vectype */
1389: vtype = NULL;
1390: for (i = 0; i < nr; i++) {
1391: for (j = 0; j < nc; j++) {
1392: if (s->m[i][j]) {
1393: if (!vtype) { /* first visited block */
1394: PetscCall(MatGetVecType(s->m[i][j], &vtype));
1395: sametype = PETSC_TRUE;
1396: } else if (sametype) {
1397: PetscCall(MatGetVecType(s->m[i][j], &type));
1398: PetscCall(PetscStrcmp(vtype, type, &sametype));
1399: }
1400: }
1401: }
1402: }
1403: if (sametype) { /* propagate vectype */
1404: PetscCall(MatSetVecType(A, vtype));
1405: }
1406: }
1408: PetscCall(MatSetUp_NestIS_Private(A, nr, is_row, nc, is_col));
1410: PetscCall(PetscMalloc1(nr, &s->row_len));
1411: PetscCall(PetscMalloc1(nc, &s->col_len));
1412: for (i = 0; i < nr; i++) s->row_len[i] = -1;
1413: for (j = 0; j < nc; j++) s->col_len[j] = -1;
1415: PetscCall(PetscCalloc1(nr * nc, &s->nnzstate));
1416: for (i = 0; i < nr; i++) {
1417: for (j = 0; j < nc; j++) {
1418: if (s->m[i][j]) PetscCall(MatGetNonzeroState(s->m[i][j], &s->nnzstate[i * nc + j]));
1419: }
1420: }
1422: PetscCall(MatNestGetSizes_Private(A, &m, &n, &M, &N));
1424: PetscCall(PetscLayoutSetSize(A->rmap, M));
1425: PetscCall(PetscLayoutSetLocalSize(A->rmap, m));
1426: PetscCall(PetscLayoutSetSize(A->cmap, N));
1427: PetscCall(PetscLayoutSetLocalSize(A->cmap, n));
1429: PetscCall(PetscLayoutSetUp(A->rmap));
1430: PetscCall(PetscLayoutSetUp(A->cmap));
1432: /* disable operations that are not supported for non-square matrices,
1433: or matrices for which is_row != is_col */
1434: PetscCall(MatHasCongruentLayouts(A, &cong));
1435: if (cong && nr != nc) cong = PETSC_FALSE;
1436: if (cong) {
1437: for (i = 0; cong && i < nr; i++) PetscCall(ISEqualUnsorted(s->isglobal.row[i], s->isglobal.col[i], &cong));
1438: }
1439: if (!cong) {
1440: A->ops->getdiagonal = NULL;
1441: A->ops->shift = NULL;
1442: A->ops->diagonalset = NULL;
1443: }
1445: PetscCall(PetscCalloc2(nr, &s->left, nc, &s->right));
1446: PetscCall(PetscObjectStateIncrease((PetscObject)A));
1447: A->nonzerostate++;
1448: PetscFunctionReturn(PETSC_SUCCESS);
1449: }
1451: /*@
1452: MatNestSetSubMats - Sets the nested submatrices in a `MATNEST`
1454: Collective
1456: Input Parameters:
1457: + A - `MATNEST` matrix
1458: . nr - number of nested row blocks
1459: . is_row - index sets for each nested row block, or `NULL` to make contiguous
1460: . nc - number of nested column blocks
1461: . is_col - index sets for each nested column block, or `NULL` to make contiguous
1462: - a - array of $ nr \times nc$ submatrices, or `NULL`
1464: Level: advanced
1466: Notes:
1467: This always resets any block matrix information previously set.
1469: Pass `NULL` in the corresponding entry of `a` for an empty block.
1471: In both C and Fortran, `a` must be a one-dimensional array representing a two-dimensional row-major order array containing the matrices. See
1472: `MatCreateNest()` for an example.
1474: Fortran Note:
1475: Pass `PETSC_NULL_MAT` in the corresponding entry of `a` for an empty block
1477: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreateNest()`, `MatNestSetSubMat()`, `MatNestGetSubMat()`, `MatNestGetSubMats()`
1478: @*/
1479: PetscErrorCode MatNestSetSubMats(Mat A, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[], const Mat a[]) PeNSS
1480: {
1481: PetscFunctionBegin;
1484: PetscCheck(nr >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Number of rows cannot be negative");
1485: if (nr && is_row) {
1486: PetscAssertPointer(is_row, 3);
1488: }
1490: PetscCheck(nc >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Number of columns cannot be negative");
1491: if (nc && is_col) {
1492: PetscAssertPointer(is_col, 5);
1494: }
1495: PetscTryMethod(A, "MatNestSetSubMats_C", (Mat, PetscInt, const IS[], PetscInt, const IS[], const Mat[]), (A, nr, is_row, nc, is_col, a));
1496: PetscFunctionReturn(PETSC_SUCCESS);
1497: }
1499: static PetscErrorCode MatNestCreateAggregateL2G_Private(Mat A, PetscInt n, const IS islocal[], const IS isglobal[], PetscBool colflg, ISLocalToGlobalMapping *ltog)
1500: {
1501: PetscBool flg;
1502: PetscInt i, j, m, mi, *ix;
1504: PetscFunctionBegin;
1505: *ltog = NULL;
1506: for (i = 0, m = 0, flg = PETSC_FALSE; i < n; i++) {
1507: if (islocal[i]) {
1508: PetscCall(ISGetLocalSize(islocal[i], &mi));
1509: flg = PETSC_TRUE; /* We found a non-trivial entry */
1510: } else {
1511: PetscCall(ISGetLocalSize(isglobal[i], &mi));
1512: }
1513: m += mi;
1514: }
1515: if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
1517: PetscCall(PetscMalloc1(m, &ix));
1518: for (i = 0, m = 0; i < n; i++) {
1519: ISLocalToGlobalMapping smap = NULL;
1520: Mat sub = NULL;
1521: PetscSF sf;
1522: PetscLayout map;
1523: const PetscInt *ix2;
1525: if (!colflg) {
1526: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1527: } else {
1528: PetscCall(MatNestFindNonzeroSubMatCol(A, i, &sub));
1529: }
1530: if (sub) {
1531: if (!colflg) {
1532: PetscCall(MatGetLocalToGlobalMapping(sub, &smap, NULL));
1533: } else {
1534: PetscCall(MatGetLocalToGlobalMapping(sub, NULL, &smap));
1535: }
1536: }
1537: /*
1538: Now we need to extract the monolithic global indices that correspond to the given split global indices.
1539: In many/most cases, we only want MatGetLocalSubMatrix() to work, in which case we only need to know the size of the local spaces.
1540: */
1541: PetscCall(ISGetIndices(isglobal[i], &ix2));
1542: if (islocal[i]) {
1543: PetscInt *ilocal, *iremote;
1544: PetscInt mil, nleaves;
1546: PetscCall(ISGetLocalSize(islocal[i], &mi));
1547: PetscCheck(smap, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "Missing local to global map");
1548: for (j = 0; j < mi; j++) ix[m + j] = j;
1549: PetscCall(ISLocalToGlobalMappingApply(smap, mi, ix + m, ix + m));
1551: /* PetscSFSetGraphLayout does not like negative indices */
1552: PetscCall(PetscMalloc2(mi, &ilocal, mi, &iremote));
1553: for (j = 0, nleaves = 0; j < mi; j++) {
1554: if (ix[m + j] < 0) continue;
1555: ilocal[nleaves] = j;
1556: iremote[nleaves] = ix[m + j];
1557: nleaves++;
1558: }
1559: PetscCall(ISGetLocalSize(isglobal[i], &mil));
1560: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1561: PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)A), &map));
1562: PetscCall(PetscLayoutSetLocalSize(map, mil));
1563: PetscCall(PetscLayoutSetUp(map));
1564: PetscCall(PetscSFSetGraphLayout(sf, map, nleaves, ilocal, PETSC_USE_POINTER, iremote));
1565: PetscCall(PetscLayoutDestroy(&map));
1566: PetscCall(PetscSFBcastBegin(sf, MPIU_INT, ix2, ix + m, MPI_REPLACE));
1567: PetscCall(PetscSFBcastEnd(sf, MPIU_INT, ix2, ix + m, MPI_REPLACE));
1568: PetscCall(PetscSFDestroy(&sf));
1569: PetscCall(PetscFree2(ilocal, iremote));
1570: } else {
1571: PetscCall(ISGetLocalSize(isglobal[i], &mi));
1572: for (j = 0; j < mi; j++) ix[m + j] = ix2[i];
1573: }
1574: PetscCall(ISRestoreIndices(isglobal[i], &ix2));
1575: m += mi;
1576: }
1577: PetscCall(ISLocalToGlobalMappingCreate(PetscObjectComm((PetscObject)A), 1, m, ix, PETSC_OWN_POINTER, ltog));
1578: PetscFunctionReturn(PETSC_SUCCESS);
1579: }
1581: /* If an IS was provided, there is nothing Nest needs to do, otherwise Nest will build a strided IS */
1582: /*
1583: nprocessors = NP
1584: Nest x^T = ((g_0,g_1,...g_nprocs-1), (h_0,h_1,...h_NP-1))
1585: proc 0: => (g_0,h_0,)
1586: proc 1: => (g_1,h_1,)
1587: ...
1588: proc nprocs-1: => (g_NP-1,h_NP-1,)
1590: proc 0: proc 1: proc nprocs-1:
1591: is[0] = (0,1,2,...,nlocal(g_0)-1) (0,1,...,nlocal(g_1)-1) (0,1,...,nlocal(g_NP-1))
1593: proc 0:
1594: is[1] = (nlocal(g_0),nlocal(g_0)+1,...,nlocal(g_0)+nlocal(h_0)-1)
1595: proc 1:
1596: is[1] = (nlocal(g_1),nlocal(g_1)+1,...,nlocal(g_1)+nlocal(h_1)-1)
1598: proc NP-1:
1599: is[1] = (nlocal(g_NP-1),nlocal(g_NP-1)+1,...,nlocal(g_NP-1)+nlocal(h_NP-1)-1)
1600: */
1601: static PetscErrorCode MatSetUp_NestIS_Private(Mat A, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[])
1602: {
1603: Mat_Nest *vs = (Mat_Nest *)A->data;
1604: PetscInt i, j, offset, n, nsum, bs;
1605: Mat sub = NULL;
1607: PetscFunctionBegin;
1608: PetscCall(PetscMalloc1(nr, &vs->isglobal.row));
1609: PetscCall(PetscMalloc1(nc, &vs->isglobal.col));
1610: if (is_row) { /* valid IS is passed in */
1611: /* refs on is[] are incremented */
1612: for (i = 0; i < vs->nr; i++) {
1613: PetscCall(PetscObjectReference((PetscObject)is_row[i]));
1614: vs->isglobal.row[i] = is_row[i];
1615: }
1616: } else { /* Create the ISs by inspecting sizes of a submatrix in each row */
1617: nsum = 0;
1618: for (i = 0; i < vs->nr; i++) { /* Add up the local sizes to compute the aggregate offset */
1619: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1620: PetscCheck(sub, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "No nonzero submatrix in row %" PetscInt_FMT, i);
1621: PetscCall(MatGetLocalSize(sub, &n, NULL));
1622: PetscCheck(n >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Sizes have not yet been set for submatrix");
1623: nsum += n;
1624: }
1625: PetscCallMPI(MPI_Scan(&nsum, &offset, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)A)));
1626: offset -= nsum;
1627: for (i = 0; i < vs->nr; i++) {
1628: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1629: PetscCall(MatGetLocalSize(sub, &n, NULL));
1630: PetscCall(MatGetBlockSizes(sub, &bs, NULL));
1631: PetscCall(ISCreateStride(PetscObjectComm((PetscObject)sub), n, offset, 1, &vs->isglobal.row[i]));
1632: PetscCall(ISSetBlockSize(vs->isglobal.row[i], bs));
1633: offset += n;
1634: }
1635: }
1637: if (is_col) { /* valid IS is passed in */
1638: /* refs on is[] are incremented */
1639: for (j = 0; j < vs->nc; j++) {
1640: PetscCall(PetscObjectReference((PetscObject)is_col[j]));
1641: vs->isglobal.col[j] = is_col[j];
1642: }
1643: } else { /* Create the ISs by inspecting sizes of a submatrix in each column */
1644: offset = A->cmap->rstart;
1645: nsum = 0;
1646: for (j = 0; j < vs->nc; j++) {
1647: PetscCall(MatNestFindNonzeroSubMatCol(A, j, &sub));
1648: PetscCheck(sub, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "No nonzero submatrix in column %" PetscInt_FMT, i);
1649: PetscCall(MatGetLocalSize(sub, NULL, &n));
1650: PetscCheck(n >= 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Sizes have not yet been set for submatrix");
1651: nsum += n;
1652: }
1653: PetscCallMPI(MPI_Scan(&nsum, &offset, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)A)));
1654: offset -= nsum;
1655: for (j = 0; j < vs->nc; j++) {
1656: PetscCall(MatNestFindNonzeroSubMatCol(A, j, &sub));
1657: PetscCall(MatGetLocalSize(sub, NULL, &n));
1658: PetscCall(MatGetBlockSizes(sub, NULL, &bs));
1659: PetscCall(ISCreateStride(PetscObjectComm((PetscObject)sub), n, offset, 1, &vs->isglobal.col[j]));
1660: PetscCall(ISSetBlockSize(vs->isglobal.col[j], bs));
1661: offset += n;
1662: }
1663: }
1665: /* Set up the local ISs */
1666: PetscCall(PetscMalloc1(vs->nr, &vs->islocal.row));
1667: PetscCall(PetscMalloc1(vs->nc, &vs->islocal.col));
1668: for (i = 0, offset = 0; i < vs->nr; i++) {
1669: IS isloc;
1670: ISLocalToGlobalMapping rmap = NULL;
1671: PetscInt nlocal, bs;
1672: PetscCall(MatNestFindNonzeroSubMatRow(A, i, &sub));
1673: if (sub) PetscCall(MatGetLocalToGlobalMapping(sub, &rmap, NULL));
1674: if (rmap) {
1675: PetscCall(MatGetBlockSizes(sub, &bs, NULL));
1676: PetscCall(ISLocalToGlobalMappingGetSize(rmap, &nlocal));
1677: PetscCall(ISCreateStride(PETSC_COMM_SELF, nlocal, offset, 1, &isloc));
1678: PetscCall(ISSetBlockSize(isloc, bs));
1679: } else {
1680: nlocal = 0;
1681: isloc = NULL;
1682: }
1683: vs->islocal.row[i] = isloc;
1684: offset += nlocal;
1685: }
1686: for (i = 0, offset = 0; i < vs->nc; i++) {
1687: IS isloc;
1688: ISLocalToGlobalMapping cmap = NULL;
1689: PetscInt nlocal, bs;
1690: PetscCall(MatNestFindNonzeroSubMatCol(A, i, &sub));
1691: if (sub) PetscCall(MatGetLocalToGlobalMapping(sub, NULL, &cmap));
1692: if (cmap) {
1693: PetscCall(MatGetBlockSizes(sub, NULL, &bs));
1694: PetscCall(ISLocalToGlobalMappingGetSize(cmap, &nlocal));
1695: PetscCall(ISCreateStride(PETSC_COMM_SELF, nlocal, offset, 1, &isloc));
1696: PetscCall(ISSetBlockSize(isloc, bs));
1697: } else {
1698: nlocal = 0;
1699: isloc = NULL;
1700: }
1701: vs->islocal.col[i] = isloc;
1702: offset += nlocal;
1703: }
1705: /* Set up the aggregate ISLocalToGlobalMapping */
1706: {
1707: ISLocalToGlobalMapping rmap, cmap;
1708: PetscCall(MatNestCreateAggregateL2G_Private(A, vs->nr, vs->islocal.row, vs->isglobal.row, PETSC_FALSE, &rmap));
1709: PetscCall(MatNestCreateAggregateL2G_Private(A, vs->nc, vs->islocal.col, vs->isglobal.col, PETSC_TRUE, &cmap));
1710: if (rmap && cmap) PetscCall(MatSetLocalToGlobalMapping(A, rmap, cmap));
1711: PetscCall(ISLocalToGlobalMappingDestroy(&rmap));
1712: PetscCall(ISLocalToGlobalMappingDestroy(&cmap));
1713: }
1715: if (PetscDefined(USE_DEBUG)) {
1716: for (i = 0; i < vs->nr; i++) {
1717: for (j = 0; j < vs->nc; j++) {
1718: PetscInt m, n, M, N, mi, ni, Mi, Ni;
1719: Mat B = vs->m[i][j];
1720: if (!B) continue;
1721: PetscCall(MatGetSize(B, &M, &N));
1722: PetscCall(MatGetLocalSize(B, &m, &n));
1723: PetscCall(ISGetSize(vs->isglobal.row[i], &Mi));
1724: PetscCall(ISGetSize(vs->isglobal.col[j], &Ni));
1725: PetscCall(ISGetLocalSize(vs->isglobal.row[i], &mi));
1726: PetscCall(ISGetLocalSize(vs->isglobal.col[j], &ni));
1727: PetscCheck(M == Mi && N == Ni, PetscObjectComm((PetscObject)sub), PETSC_ERR_ARG_INCOMP, "Global sizes (%" PetscInt_FMT ",%" PetscInt_FMT ") of nested submatrix (%" PetscInt_FMT ",%" PetscInt_FMT ") do not agree with space defined by index sets (%" PetscInt_FMT ",%" PetscInt_FMT ")", M, N, i, j, Mi, Ni);
1728: PetscCheck(m == mi && n == ni, PetscObjectComm((PetscObject)sub), PETSC_ERR_ARG_INCOMP, "Local sizes (%" PetscInt_FMT ",%" PetscInt_FMT ") of nested submatrix (%" PetscInt_FMT ",%" PetscInt_FMT ") do not agree with space defined by index sets (%" PetscInt_FMT ",%" PetscInt_FMT ")", m, n, i, j, mi, ni);
1729: }
1730: }
1731: }
1733: /* Set A->assembled if all non-null blocks are currently assembled */
1734: for (i = 0; i < vs->nr; i++) {
1735: for (j = 0; j < vs->nc; j++) {
1736: if (vs->m[i][j] && !vs->m[i][j]->assembled) PetscFunctionReturn(PETSC_SUCCESS);
1737: }
1738: }
1739: A->assembled = PETSC_TRUE;
1740: PetscFunctionReturn(PETSC_SUCCESS);
1741: }
1743: /*@C
1744: MatCreateNest - Creates a new `MATNEST` matrix containing several nested submatrices, each stored separately
1746: Collective
1748: Input Parameters:
1749: + comm - Communicator for the new `MATNEST`
1750: . nr - number of nested row blocks
1751: . is_row - index sets for each nested row block, or `NULL` to make contiguous
1752: . nc - number of nested column blocks
1753: . is_col - index sets for each nested column block, or `NULL` to make contiguous
1754: - a - array of $nr \times nc$ submatrices, empty submatrices can be passed using `NULL`
1756: Output Parameter:
1757: . B - new matrix
1759: Level: advanced
1761: Note:
1762: In both C and Fortran, `a` must be a one-dimensional array representing a two-dimensional row-major order array holding references to the matrices.
1763: For instance, to represent the matrix
1764: $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix}$
1765: one should use `Mat a[4]={A11,A12,A21,A22}`.
1767: Fortran Note:
1768: Pass `PETSC_NULL_MAT` in the corresponding entry of `a` for an empty block
1770: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreate()`, `VecCreateNest()`, `DMCreateMatrix()`, `MatNestSetSubMat()`,
1771: `MatNestGetSubMat()`, `MatNestGetLocalISs()`, `MatNestGetSize()`,
1772: `MatNestGetISs()`, `MatNestSetSubMats()`, `MatNestGetSubMats()`
1773: @*/
1774: PetscErrorCode MatCreateNest(MPI_Comm comm, PetscInt nr, const IS is_row[], PetscInt nc, const IS is_col[], const Mat a[], Mat *B) PeNSS
1775: {
1776: PetscFunctionBegin;
1777: PetscCall(MatCreate(comm, B));
1778: PetscCall(MatSetType(*B, MATNEST));
1779: (*B)->preallocated = PETSC_TRUE;
1780: PetscCall(MatNestSetSubMats(*B, nr, is_row, nc, is_col, a));
1781: PetscFunctionReturn(PETSC_SUCCESS);
1782: }
1784: static PetscErrorCode MatConvert_Nest_SeqAIJ_fast(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
1785: {
1786: Mat_Nest *nest = (Mat_Nest *)A->data;
1787: Mat *trans;
1788: PetscScalar **avv;
1789: PetscScalar *vv;
1790: PetscInt **aii, **ajj;
1791: PetscInt *ii, *jj, *ci;
1792: PetscInt nr, nc, nnz, i, j;
1793: PetscBool done;
1795: PetscFunctionBegin;
1796: PetscCall(MatGetSize(A, &nr, &nc));
1797: if (reuse == MAT_REUSE_MATRIX) {
1798: PetscInt rnr;
1800: PetscCall(MatGetRowIJ(*newmat, 0, PETSC_FALSE, PETSC_FALSE, &rnr, (const PetscInt **)&ii, (const PetscInt **)&jj, &done));
1801: PetscCheck(done, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "MatGetRowIJ");
1802: PetscCheck(rnr == nr, PetscObjectComm((PetscObject)A), PETSC_ERR_USER, "Cannot reuse matrix, wrong number of rows");
1803: PetscCall(MatSeqAIJGetArray(*newmat, &vv));
1804: }
1805: /* extract CSR for nested SeqAIJ matrices */
1806: nnz = 0;
1807: PetscCall(PetscCalloc4(nest->nr * nest->nc, &aii, nest->nr * nest->nc, &ajj, nest->nr * nest->nc, &avv, nest->nr * nest->nc, &trans));
1808: for (i = 0; i < nest->nr; ++i) {
1809: for (j = 0; j < nest->nc; ++j) {
1810: Mat B = nest->m[i][j];
1811: if (B) {
1812: PetscScalar *naa;
1813: PetscInt *nii, *njj, nnr;
1814: PetscBool istrans;
1816: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATTRANSPOSEVIRTUAL, &istrans));
1817: if (istrans) {
1818: Mat Bt;
1820: PetscCall(MatTransposeGetMat(B, &Bt));
1821: PetscCall(MatTranspose(Bt, MAT_INITIAL_MATRIX, &trans[i * nest->nc + j]));
1822: B = trans[i * nest->nc + j];
1823: } else {
1824: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATHERMITIANTRANSPOSEVIRTUAL, &istrans));
1825: if (istrans) {
1826: Mat Bt;
1828: PetscCall(MatHermitianTransposeGetMat(B, &Bt));
1829: PetscCall(MatHermitianTranspose(Bt, MAT_INITIAL_MATRIX, &trans[i * nest->nc + j]));
1830: B = trans[i * nest->nc + j];
1831: }
1832: }
1833: PetscCall(MatGetRowIJ(B, 0, PETSC_FALSE, PETSC_FALSE, &nnr, (const PetscInt **)&nii, (const PetscInt **)&njj, &done));
1834: PetscCheck(done, PetscObjectComm((PetscObject)B), PETSC_ERR_PLIB, "MatGetRowIJ");
1835: PetscCall(MatSeqAIJGetArray(B, &naa));
1836: nnz += nii[nnr];
1838: aii[i * nest->nc + j] = nii;
1839: ajj[i * nest->nc + j] = njj;
1840: avv[i * nest->nc + j] = naa;
1841: }
1842: }
1843: }
1844: if (reuse != MAT_REUSE_MATRIX) {
1845: PetscCall(PetscMalloc1(nr + 1, &ii));
1846: PetscCall(PetscMalloc1(nnz, &jj));
1847: PetscCall(PetscMalloc1(nnz, &vv));
1848: } else {
1849: PetscCheck(nnz == ii[nr], PetscObjectComm((PetscObject)A), PETSC_ERR_USER, "Cannot reuse matrix, wrong number of nonzeros");
1850: }
1852: /* new row pointer */
1853: PetscCall(PetscArrayzero(ii, nr + 1));
1854: for (i = 0; i < nest->nr; ++i) {
1855: PetscInt ncr, rst;
1857: PetscCall(ISStrideGetInfo(nest->isglobal.row[i], &rst, NULL));
1858: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &ncr));
1859: for (j = 0; j < nest->nc; ++j) {
1860: if (aii[i * nest->nc + j]) {
1861: PetscInt *nii = aii[i * nest->nc + j];
1862: PetscInt ir;
1864: for (ir = rst; ir < ncr + rst; ++ir) {
1865: ii[ir + 1] += nii[1] - nii[0];
1866: nii++;
1867: }
1868: }
1869: }
1870: }
1871: for (i = 0; i < nr; i++) ii[i + 1] += ii[i];
1873: /* construct CSR for the new matrix */
1874: PetscCall(PetscCalloc1(nr, &ci));
1875: for (i = 0; i < nest->nr; ++i) {
1876: PetscInt ncr, rst;
1878: PetscCall(ISStrideGetInfo(nest->isglobal.row[i], &rst, NULL));
1879: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &ncr));
1880: for (j = 0; j < nest->nc; ++j) {
1881: if (aii[i * nest->nc + j]) {
1882: PetscScalar *nvv = avv[i * nest->nc + j], vscale = 1.0, vshift = 0.0;
1883: PetscInt *nii = aii[i * nest->nc + j];
1884: PetscInt *njj = ajj[i * nest->nc + j];
1885: PetscInt ir, cst;
1887: if (trans[i * nest->nc + j]) {
1888: vscale = ((Mat_Shell *)nest->m[i][j]->data)->vscale;
1889: vshift = ((Mat_Shell *)nest->m[i][j]->data)->vshift;
1890: }
1891: PetscCall(ISStrideGetInfo(nest->isglobal.col[j], &cst, NULL));
1892: for (ir = rst; ir < ncr + rst; ++ir) {
1893: PetscInt ij, rsize = nii[1] - nii[0], ist = ii[ir] + ci[ir];
1895: for (ij = 0; ij < rsize; ij++) {
1896: jj[ist + ij] = *njj + cst;
1897: vv[ist + ij] = vscale * *nvv;
1898: if (PetscUnlikely(vshift != 0.0 && *njj == ir - rst)) vv[ist + ij] += vshift;
1899: njj++;
1900: nvv++;
1901: }
1902: ci[ir] += rsize;
1903: nii++;
1904: }
1905: }
1906: }
1907: }
1908: PetscCall(PetscFree(ci));
1910: /* restore info */
1911: for (i = 0; i < nest->nr; ++i) {
1912: for (j = 0; j < nest->nc; ++j) {
1913: Mat B = nest->m[i][j];
1914: if (B) {
1915: PetscInt nnr = 0, k = i * nest->nc + j;
1917: B = (trans[k] ? trans[k] : B);
1918: PetscCall(MatRestoreRowIJ(B, 0, PETSC_FALSE, PETSC_FALSE, &nnr, (const PetscInt **)&aii[k], (const PetscInt **)&ajj[k], &done));
1919: PetscCheck(done, PetscObjectComm((PetscObject)B), PETSC_ERR_PLIB, "MatRestoreRowIJ");
1920: PetscCall(MatSeqAIJRestoreArray(B, &avv[k]));
1921: PetscCall(MatDestroy(&trans[k]));
1922: }
1923: }
1924: }
1925: PetscCall(PetscFree4(aii, ajj, avv, trans));
1927: /* finalize newmat */
1928: if (reuse == MAT_INITIAL_MATRIX) {
1929: PetscCall(MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A), nr, nc, ii, jj, vv, newmat));
1930: } else if (reuse == MAT_INPLACE_MATRIX) {
1931: Mat B;
1933: PetscCall(MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A), nr, nc, ii, jj, vv, &B));
1934: PetscCall(MatHeaderReplace(A, &B));
1935: }
1936: PetscCall(MatAssemblyBegin(*newmat, MAT_FINAL_ASSEMBLY));
1937: PetscCall(MatAssemblyEnd(*newmat, MAT_FINAL_ASSEMBLY));
1938: {
1939: Mat_SeqAIJ *a = (Mat_SeqAIJ *)((*newmat)->data);
1940: a->free_a = PETSC_TRUE;
1941: a->free_ij = PETSC_TRUE;
1942: }
1943: PetscFunctionReturn(PETSC_SUCCESS);
1944: }
1946: PETSC_INTERN PetscErrorCode MatAXPY_Dense_Nest(Mat Y, PetscScalar a, Mat X)
1947: {
1948: Mat_Nest *nest = (Mat_Nest *)X->data;
1949: PetscInt i, j, k, rstart;
1950: PetscBool flg;
1952: PetscFunctionBegin;
1953: /* Fill by row */
1954: for (j = 0; j < nest->nc; ++j) {
1955: /* Using global column indices and ISAllGather() is not scalable. */
1956: IS bNis;
1957: PetscInt bN;
1958: const PetscInt *bNindices;
1959: PetscCall(ISAllGather(nest->isglobal.col[j], &bNis));
1960: PetscCall(ISGetSize(bNis, &bN));
1961: PetscCall(ISGetIndices(bNis, &bNindices));
1962: for (i = 0; i < nest->nr; ++i) {
1963: Mat B = nest->m[i][j], D = NULL;
1964: PetscInt bm, br;
1965: const PetscInt *bmindices;
1966: if (!B) continue;
1967: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATTRANSPOSEVIRTUAL, MATHERMITIANTRANSPOSEVIRTUAL, ""));
1968: if (flg) {
1969: PetscTryMethod(B, "MatTransposeGetMat_C", (Mat, Mat *), (B, &D));
1970: PetscTryMethod(B, "MatHermitianTransposeGetMat_C", (Mat, Mat *), (B, &D));
1971: PetscCall(MatConvert(B, ((PetscObject)D)->type_name, MAT_INITIAL_MATRIX, &D));
1972: B = D;
1973: }
1974: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATSEQSBAIJ, MATMPISBAIJ, ""));
1975: if (flg) {
1976: if (D) PetscCall(MatConvert(D, MATBAIJ, MAT_INPLACE_MATRIX, &D));
1977: else PetscCall(MatConvert(B, MATBAIJ, MAT_INITIAL_MATRIX, &D));
1978: B = D;
1979: }
1980: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &bm));
1981: PetscCall(ISGetIndices(nest->isglobal.row[i], &bmindices));
1982: PetscCall(MatGetOwnershipRange(B, &rstart, NULL));
1983: for (br = 0; br < bm; ++br) {
1984: PetscInt row = bmindices[br], brncols, *cols;
1985: const PetscInt *brcols;
1986: const PetscScalar *brcoldata;
1987: PetscScalar *vals = NULL;
1988: PetscCall(MatGetRow(B, br + rstart, &brncols, &brcols, &brcoldata));
1989: PetscCall(PetscMalloc1(brncols, &cols));
1990: for (k = 0; k < brncols; k++) cols[k] = bNindices[brcols[k]];
1991: /*
1992: Nest blocks are required to be nonoverlapping -- otherwise nest and monolithic index layouts wouldn't match.
1993: Thus, we could use INSERT_VALUES, but I prefer ADD_VALUES.
1994: */
1995: if (a != 1.0) {
1996: PetscCall(PetscMalloc1(brncols, &vals));
1997: for (k = 0; k < brncols; k++) vals[k] = a * brcoldata[k];
1998: PetscCall(MatSetValues(Y, 1, &row, brncols, cols, vals, ADD_VALUES));
1999: PetscCall(PetscFree(vals));
2000: } else {
2001: PetscCall(MatSetValues(Y, 1, &row, brncols, cols, brcoldata, ADD_VALUES));
2002: }
2003: PetscCall(MatRestoreRow(B, br + rstart, &brncols, &brcols, &brcoldata));
2004: PetscCall(PetscFree(cols));
2005: }
2006: if (D) PetscCall(MatDestroy(&D));
2007: PetscCall(ISRestoreIndices(nest->isglobal.row[i], &bmindices));
2008: }
2009: PetscCall(ISRestoreIndices(bNis, &bNindices));
2010: PetscCall(ISDestroy(&bNis));
2011: }
2012: PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
2013: PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
2014: PetscFunctionReturn(PETSC_SUCCESS);
2015: }
2017: static PetscErrorCode MatConvert_Nest_AIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2018: {
2019: Mat_Nest *nest = (Mat_Nest *)A->data;
2020: PetscInt m, n, M, N, i, j, k, *dnnz, *onnz = NULL, rstart, cstart, cend;
2021: PetscMPIInt size;
2022: Mat C;
2024: PetscFunctionBegin;
2025: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2026: if (size == 1) { /* look for a special case with SeqAIJ matrices and strided-1, contiguous, blocks */
2027: PetscInt nf;
2028: PetscBool fast;
2030: PetscCall(PetscStrcmp(newtype, MATAIJ, &fast));
2031: if (!fast) PetscCall(PetscStrcmp(newtype, MATSEQAIJ, &fast));
2032: for (i = 0; i < nest->nr && fast; ++i) {
2033: for (j = 0; j < nest->nc && fast; ++j) {
2034: Mat B = nest->m[i][j];
2035: if (B) {
2036: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &fast));
2037: if (!fast) {
2038: PetscBool istrans;
2040: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATTRANSPOSEVIRTUAL, &istrans));
2041: if (istrans) {
2042: Mat Bt;
2044: PetscCall(MatTransposeGetMat(B, &Bt));
2045: PetscCall(PetscObjectTypeCompare((PetscObject)Bt, MATSEQAIJ, &fast));
2046: } else {
2047: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATHERMITIANTRANSPOSEVIRTUAL, &istrans));
2048: if (istrans) {
2049: Mat Bt;
2051: PetscCall(MatHermitianTransposeGetMat(B, &Bt));
2052: PetscCall(PetscObjectTypeCompare((PetscObject)Bt, MATSEQAIJ, &fast));
2053: }
2054: }
2055: if (fast) fast = (PetscBool)(!((Mat_Shell *)B->data)->zrows && !((Mat_Shell *)B->data)->zcols && !((Mat_Shell *)B->data)->axpy && !((Mat_Shell *)B->data)->left && !((Mat_Shell *)B->data)->right && !((Mat_Shell *)B->data)->dshift);
2056: }
2057: }
2058: }
2059: }
2060: for (i = 0, nf = 0; i < nest->nr && fast; ++i) {
2061: PetscCall(PetscObjectTypeCompare((PetscObject)nest->isglobal.row[i], ISSTRIDE, &fast));
2062: if (fast) {
2063: PetscInt f, s;
2065: PetscCall(ISStrideGetInfo(nest->isglobal.row[i], &f, &s));
2066: if (f != nf || s != 1) {
2067: fast = PETSC_FALSE;
2068: } else {
2069: PetscCall(ISGetSize(nest->isglobal.row[i], &f));
2070: nf += f;
2071: }
2072: }
2073: }
2074: for (i = 0, nf = 0; i < nest->nc && fast; ++i) {
2075: PetscCall(PetscObjectTypeCompare((PetscObject)nest->isglobal.col[i], ISSTRIDE, &fast));
2076: if (fast) {
2077: PetscInt f, s;
2079: PetscCall(ISStrideGetInfo(nest->isglobal.col[i], &f, &s));
2080: if (f != nf || s != 1) {
2081: fast = PETSC_FALSE;
2082: } else {
2083: PetscCall(ISGetSize(nest->isglobal.col[i], &f));
2084: nf += f;
2085: }
2086: }
2087: }
2088: if (fast) {
2089: PetscCall(MatConvert_Nest_SeqAIJ_fast(A, newtype, reuse, newmat));
2090: PetscFunctionReturn(PETSC_SUCCESS);
2091: }
2092: }
2093: PetscCall(MatGetSize(A, &M, &N));
2094: PetscCall(MatGetLocalSize(A, &m, &n));
2095: PetscCall(MatGetOwnershipRangeColumn(A, &cstart, &cend));
2096: if (reuse == MAT_REUSE_MATRIX) C = *newmat;
2097: else {
2098: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2099: PetscCall(MatSetType(C, newtype));
2100: PetscCall(MatSetSizes(C, m, n, M, N));
2101: }
2102: PetscCall(PetscMalloc1(2 * m, &dnnz));
2103: if (m) {
2104: onnz = dnnz + m;
2105: for (k = 0; k < m; k++) {
2106: dnnz[k] = 0;
2107: onnz[k] = 0;
2108: }
2109: }
2110: for (j = 0; j < nest->nc; ++j) {
2111: IS bNis;
2112: PetscInt bN;
2113: const PetscInt *bNindices;
2114: PetscBool flg;
2115: /* Using global column indices and ISAllGather() is not scalable. */
2116: PetscCall(ISAllGather(nest->isglobal.col[j], &bNis));
2117: PetscCall(ISGetSize(bNis, &bN));
2118: PetscCall(ISGetIndices(bNis, &bNindices));
2119: for (i = 0; i < nest->nr; ++i) {
2120: PetscSF bmsf;
2121: PetscSFNode *iremote;
2122: Mat B = nest->m[i][j], D = NULL;
2123: PetscInt bm, *sub_dnnz, *sub_onnz, br;
2124: const PetscInt *bmindices;
2125: if (!B) continue;
2126: PetscCall(ISGetLocalSize(nest->isglobal.row[i], &bm));
2127: PetscCall(ISGetIndices(nest->isglobal.row[i], &bmindices));
2128: PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &bmsf));
2129: PetscCall(PetscMalloc1(bm, &iremote));
2130: PetscCall(PetscMalloc1(bm, &sub_dnnz));
2131: PetscCall(PetscMalloc1(bm, &sub_onnz));
2132: for (k = 0; k < bm; ++k) {
2133: sub_dnnz[k] = 0;
2134: sub_onnz[k] = 0;
2135: }
2136: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATTRANSPOSEVIRTUAL, MATHERMITIANTRANSPOSEVIRTUAL, ""));
2137: if (flg) {
2138: PetscTryMethod(B, "MatTransposeGetMat_C", (Mat, Mat *), (B, &D));
2139: PetscTryMethod(B, "MatHermitianTransposeGetMat_C", (Mat, Mat *), (B, &D));
2140: PetscCall(MatConvert(B, ((PetscObject)D)->type_name, MAT_INITIAL_MATRIX, &D));
2141: B = D;
2142: }
2143: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &flg, MATSEQSBAIJ, MATMPISBAIJ, ""));
2144: if (flg) {
2145: if (D) PetscCall(MatConvert(D, MATBAIJ, MAT_INPLACE_MATRIX, &D));
2146: else PetscCall(MatConvert(B, MATBAIJ, MAT_INITIAL_MATRIX, &D));
2147: B = D;
2148: }
2149: /*
2150: Locate the owners for all of the locally-owned global row indices for this row block.
2151: These determine the roots of PetscSF used to communicate preallocation data to row owners.
2152: The roots correspond to the dnnz and onnz entries; thus, there are two roots per row.
2153: */
2154: PetscCall(MatGetOwnershipRange(B, &rstart, NULL));
2155: for (br = 0; br < bm; ++br) {
2156: PetscInt row = bmindices[br], brncols, col;
2157: const PetscInt *brcols;
2158: PetscInt rowrel = 0; /* row's relative index on its owner rank */
2159: PetscMPIInt rowowner = 0;
2160: PetscCall(PetscLayoutFindOwnerIndex(A->rmap, row, &rowowner, &rowrel));
2161: /* how many roots */
2162: iremote[br].rank = rowowner;
2163: iremote[br].index = rowrel; /* edge from bmdnnz to dnnz */
2164: /* get nonzero pattern */
2165: PetscCall(MatGetRow(B, br + rstart, &brncols, &brcols, NULL));
2166: for (k = 0; k < brncols; k++) {
2167: col = bNindices[brcols[k]];
2168: if (col >= A->cmap->range[rowowner] && col < A->cmap->range[rowowner + 1]) {
2169: sub_dnnz[br]++;
2170: } else {
2171: sub_onnz[br]++;
2172: }
2173: }
2174: PetscCall(MatRestoreRow(B, br + rstart, &brncols, &brcols, NULL));
2175: }
2176: if (D) PetscCall(MatDestroy(&D));
2177: PetscCall(ISRestoreIndices(nest->isglobal.row[i], &bmindices));
2178: /* bsf will have to take care of disposing of bedges. */
2179: PetscCall(PetscSFSetGraph(bmsf, m, bm, NULL, PETSC_OWN_POINTER, iremote, PETSC_OWN_POINTER));
2180: PetscCall(PetscSFReduceBegin(bmsf, MPIU_INT, sub_dnnz, dnnz, MPI_SUM));
2181: PetscCall(PetscSFReduceEnd(bmsf, MPIU_INT, sub_dnnz, dnnz, MPI_SUM));
2182: PetscCall(PetscSFReduceBegin(bmsf, MPIU_INT, sub_onnz, onnz, MPI_SUM));
2183: PetscCall(PetscSFReduceEnd(bmsf, MPIU_INT, sub_onnz, onnz, MPI_SUM));
2184: PetscCall(PetscFree(sub_dnnz));
2185: PetscCall(PetscFree(sub_onnz));
2186: PetscCall(PetscSFDestroy(&bmsf));
2187: }
2188: PetscCall(ISRestoreIndices(bNis, &bNindices));
2189: PetscCall(ISDestroy(&bNis));
2190: }
2191: /* Resize preallocation if overestimated */
2192: for (i = 0; i < m; i++) {
2193: dnnz[i] = PetscMin(dnnz[i], A->cmap->n);
2194: onnz[i] = PetscMin(onnz[i], A->cmap->N - A->cmap->n);
2195: }
2196: PetscCall(MatSeqAIJSetPreallocation(C, 0, dnnz));
2197: PetscCall(MatMPIAIJSetPreallocation(C, 0, dnnz, 0, onnz));
2198: PetscCall(PetscFree(dnnz));
2199: PetscCall(MatAXPY_Dense_Nest(C, 1.0, A));
2200: if (reuse == MAT_INPLACE_MATRIX) PetscCall(MatHeaderReplace(A, &C));
2201: else *newmat = C;
2202: PetscFunctionReturn(PETSC_SUCCESS);
2203: }
2205: static PetscErrorCode MatConvert_Nest_Dense(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2206: {
2207: Mat B;
2208: PetscInt m, n, M, N;
2210: PetscFunctionBegin;
2211: PetscCall(MatGetSize(A, &M, &N));
2212: PetscCall(MatGetLocalSize(A, &m, &n));
2213: if (reuse == MAT_REUSE_MATRIX) {
2214: B = *newmat;
2215: PetscCall(MatZeroEntries(B));
2216: } else {
2217: PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), m, PETSC_DECIDE, M, N, NULL, &B));
2218: }
2219: PetscCall(MatAXPY_Dense_Nest(B, 1.0, A));
2220: if (reuse == MAT_INPLACE_MATRIX) PetscCall(MatHeaderReplace(A, &B));
2221: else if (reuse == MAT_INITIAL_MATRIX) *newmat = B;
2222: PetscFunctionReturn(PETSC_SUCCESS);
2223: }
2225: static PetscErrorCode MatHasOperation_Nest(Mat mat, MatOperation op, PetscBool *has)
2226: {
2227: Mat_Nest *bA = (Mat_Nest *)mat->data;
2228: MatOperation opAdd;
2229: PetscInt i, j, nr = bA->nr, nc = bA->nc;
2230: PetscBool flg;
2232: PetscFunctionBegin;
2233: *has = PETSC_FALSE;
2234: if (op == MATOP_MULT || op == MATOP_MULT_ADD || op == MATOP_MULT_TRANSPOSE || op == MATOP_MULT_TRANSPOSE_ADD) {
2235: opAdd = (op == MATOP_MULT || op == MATOP_MULT_ADD ? MATOP_MULT_ADD : MATOP_MULT_TRANSPOSE_ADD);
2236: for (j = 0; j < nc; j++) {
2237: for (i = 0; i < nr; i++) {
2238: if (!bA->m[i][j]) continue;
2239: PetscCall(MatHasOperation(bA->m[i][j], opAdd, &flg));
2240: if (!flg) PetscFunctionReturn(PETSC_SUCCESS);
2241: }
2242: }
2243: }
2244: if (((void **)mat->ops)[op]) *has = PETSC_TRUE;
2245: PetscFunctionReturn(PETSC_SUCCESS);
2246: }
2248: /*MC
2249: MATNEST - "nest" - Matrix type consisting of nested submatrices, each stored separately.
2251: Level: intermediate
2253: Notes:
2254: This matrix type permits scalable use of `PCFIELDSPLIT` and avoids the large memory costs of extracting submatrices.
2255: It allows the use of symmetric and block formats for parts of multi-physics simulations.
2256: It is usually used with `DMCOMPOSITE` and `DMCreateMatrix()`
2258: Each of the submatrices lives on the same MPI communicator as the original nest matrix (though they can have zero
2259: rows/columns on some processes.) Thus this is not meant for cases where the submatrices live on far fewer processes
2260: than the nest matrix.
2262: .seealso: [](ch_matrices), `Mat`, `MATNEST`, `MatCreate()`, `MatType`, `MatCreateNest()`, `MatNestSetSubMat()`, `MatNestGetSubMat()`,
2263: `VecCreateNest()`, `DMCreateMatrix()`, `DMCOMPOSITE`, `MatNestSetVecType()`, `MatNestGetLocalISs()`,
2264: `MatNestGetISs()`, `MatNestSetSubMats()`, `MatNestGetSubMats()`
2265: M*/
2266: PETSC_EXTERN PetscErrorCode MatCreate_Nest(Mat A)
2267: {
2268: Mat_Nest *s;
2270: PetscFunctionBegin;
2271: PetscCall(PetscNew(&s));
2272: A->data = (void *)s;
2274: s->nr = -1;
2275: s->nc = -1;
2276: s->m = NULL;
2277: s->splitassembly = PETSC_FALSE;
2279: PetscCall(PetscMemzero(A->ops, sizeof(*A->ops)));
2281: A->ops->mult = MatMult_Nest;
2282: A->ops->multadd = MatMultAdd_Nest;
2283: A->ops->multtranspose = MatMultTranspose_Nest;
2284: A->ops->multtransposeadd = MatMultTransposeAdd_Nest;
2285: A->ops->transpose = MatTranspose_Nest;
2286: A->ops->multhermitiantranspose = MatMultHermitianTranspose_Nest;
2287: A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_Nest;
2288: A->ops->assemblybegin = MatAssemblyBegin_Nest;
2289: A->ops->assemblyend = MatAssemblyEnd_Nest;
2290: A->ops->zeroentries = MatZeroEntries_Nest;
2291: A->ops->copy = MatCopy_Nest;
2292: A->ops->axpy = MatAXPY_Nest;
2293: A->ops->duplicate = MatDuplicate_Nest;
2294: A->ops->createsubmatrix = MatCreateSubMatrix_Nest;
2295: A->ops->destroy = MatDestroy_Nest;
2296: A->ops->view = MatView_Nest;
2297: A->ops->getvecs = NULL; /* Use VECNEST by calling MatNestSetVecType(A,VECNEST) */
2298: A->ops->getlocalsubmatrix = MatGetLocalSubMatrix_Nest;
2299: A->ops->restorelocalsubmatrix = MatRestoreLocalSubMatrix_Nest;
2300: A->ops->getdiagonal = MatGetDiagonal_Nest;
2301: A->ops->diagonalscale = MatDiagonalScale_Nest;
2302: A->ops->scale = MatScale_Nest;
2303: A->ops->shift = MatShift_Nest;
2304: A->ops->diagonalset = MatDiagonalSet_Nest;
2305: A->ops->setrandom = MatSetRandom_Nest;
2306: A->ops->hasoperation = MatHasOperation_Nest;
2308: A->spptr = NULL;
2309: A->assembled = PETSC_FALSE;
2311: /* expose Nest api's */
2312: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMat_C", MatNestGetSubMat_Nest));
2313: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMat_C", MatNestSetSubMat_Nest));
2314: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSubMats_C", MatNestGetSubMats_Nest));
2315: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetSize_C", MatNestGetSize_Nest));
2316: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetISs_C", MatNestGetISs_Nest));
2317: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestGetLocalISs_C", MatNestGetLocalISs_Nest));
2318: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetVecType_C", MatNestSetVecType_Nest));
2319: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatNestSetSubMats_C", MatNestSetSubMats_Nest));
2320: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpiaij_C", MatConvert_Nest_AIJ));
2321: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqaij_C", MatConvert_Nest_AIJ));
2322: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_aij_C", MatConvert_Nest_AIJ));
2323: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_is_C", MatConvert_Nest_IS));
2324: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_mpidense_C", MatConvert_Nest_Dense));
2325: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_nest_seqdense_C", MatConvert_Nest_Dense));
2326: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_seqdense_C", MatProductSetFromOptions_Nest_Dense));
2327: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_nest_mpidense_C", MatProductSetFromOptions_Nest_Dense));
2329: PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATNEST));
2330: PetscFunctionReturn(PETSC_SUCCESS);
2331: }